Sample records for deactivation thermal analysis

  1. Thermal stress analysis of sulfur deactivated solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Zeng, Shumao; Parbey, Joseph; Yu, Guangsen; Xu, Min; Li, Tingshuai; Andersson, Martin

    2018-03-01

    Hydrogen sulfide in fuels can deactivate catalyst for solid oxide fuel cells, which has become one of the most critical challenges to stability. The reactions between sulfur and catalyst will cause phase changes, leading to increase in cell polarization and mechanical mismatch. A three-dimensional computational fluid dynamics (CFD) approach based on the finite element method (FEM) is thus used to investigate the polarization, temperature and thermal stress in a sulfur deactivated SOFC by coupling equations for gas-phase species, heat, momentum, ion and electron transport. The results indicate that sulfur in fuels can strongly affect the cell polarization and thermal stresses, which shows a sharp decrease in the vicinity of electrolyte when 10% nickel in the functional layer is poisoned, but they remain almost unchanged even when the poisoned Ni content was increased to 90%. This investigation is helpful to deeply understand the sulfur poisoning effects and also benefit the material design and optimization of electrode structure to enhance cell performance and lifetimes in various hydrocarbon fuels containing impurities.

  2. Low temperature deactivation of Ge heavily n-type doped by ion implantation and laser thermal annealing

    NASA Astrophysics Data System (ADS)

    Milazzo, R.; Impellizzeri, G.; Piccinotti, D.; De Salvador, D.; Portavoce, A.; La Magna, A.; Fortunato, G.; Mangelinck, D.; Privitera, V.; Carnera, A.; Napolitani, E.

    2017-01-01

    Heavy doping of Ge is crucial for several advanced micro- and optoelectronic applications, but, at the same time, it still remains extremely challenging. Ge heavily n-type doped at a concentration of 1 × 1020 cm-3 by As ion implantation and melting laser thermal annealing (LTA) is shown here to be highly metastable. Upon post-LTA conventional thermal annealing As electrically deactivates already at 350 °C reaching an active concentration of ˜4 × 1019 cm-3. No significant As diffusion is detected up to 450 °C, where the As activation decreases further to ˜3 × 1019 cm-3. The reason for the observed detrimental deactivation was investigated by Atom Probe Tomography and in situ High Resolution X-Ray Diffraction measurements. In general, the thermal stability of heavily doped Ge layers needs to be carefully evaluated because, as shown here, deactivation might occur at very low temperatures, close to those required for low resistivity Ohmic contacting of n-type Ge.

  3. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Lu, Yunhao; Dong, Peng; Yi, Jun; Ma, Xiangyang; Yang, Deren

    2014-01-01

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300-500 °C leads to further B deactivation, while that at 600-800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B2I complexes results in further B deactivation in the following CFA at 300-500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600-800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  4. Deactivation of TEM-1 β-Lactamase Investigated by Isothermal Batch and Non-Isothermal Continuous Enzyme Membrane Reactor Methods

    PubMed Central

    Rogers, Thomas A.

    2011-01-01

    The thermal deactivation of TEM-1 β-lactamase was examined using two experimental techniques: a series of isothermal batch assays and a single, continuous, non-isothermal assay in an enzyme membrane reactor (EMR). The isothermal batch-mode technique was coupled with the three-state “Equilibrium Model” of enzyme deactivation, while the results of the EMR experiment were fitted to a four-state “molten globule model”. The two methods both led to the conclusions that the thermal deactivation of TEM-1 β-lactamase does not follow the Lumry-Eyring model and that the Teq of the enzyme (the point at which active and inactive states are present in equal amounts due to thermodynamic equilibrium) is at least 10 °C from the Tm (melting temperature), contrary to the idea that the true temperature optimum of a biocatalyst is necessarily close to the melting temperature. PMID:22039393

  5. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Chao; Dong, Peng; Yi, Jun

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extendedmore » B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.« less

  6. Holographic monitoring of spatial distributions of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Bel'tyukova, D. M.; Vasyutinskii, O. S.; Petrov, N. V.; Semenova, I. V.; Chupov, A. S.

    2014-12-01

    A method for monitoring spatial distributions of singlet oxygen in biological media has been developed. Singlet oxygen was generated using Radachlorin® photosensitizer, while thermal disturbances caused by nonradiative deactivation of singlet oxygen were detected by the holographic interferometry technique. Processing of interferograms yields temperature maps that characterize the deactivation process and show the distribution of singlet oxygen species.

  7. Effect of polymers on the retention and aging of enzyme on bioactive papers.

    PubMed

    Khan, Mohidus Samad; Haniffa, Sharon B M; Slater, Alison; Garnier, Gil

    2010-08-01

    The effect of polymer on the retention and the thermal stability of bioactive enzymatic papers was measured using a colorimetric technique quantifying the intensity of the enzyme-substrate product complex. Alkaline phosphatase (ALP) was used as model enzyme. Three water soluble polymers: a cationic polyacrylamide (CPAM), an anionic polyacrylic acid (PAA) and a neutral polyethylene oxide (PEO) were selected as retention aids. The model polymers increased the enzyme adsorption on paper by around 50% and prevented enzyme desorption upon rewetting of the papers. The thermal deactivation of ALP retained on paper with polymers follows two sequential first order reactions. This was also observed for ALP simply physisorbed on paper. The retention aid polymers instigated a rapid initial deactivation which significantly decreased the longevity of the enzymatic papers. This suggests some enzyme-polymer interaction probably affecting the enzyme tertiary structure. A deactivation mathematical model predicting the enzymatic paper half-life was developed. Crown Copyright 2010. Published by Elsevier B.V. All rights reserved.

  8. Improving Models of Photosynthetic Thermal Acclimation: Which Parameters are Most Important and How Many Should Be Modified?

    NASA Astrophysics Data System (ADS)

    Stinziano, J. R.; Way, D.; Bauerle, W.

    2017-12-01

    Photosynthetic temperature acclimation could strongly affect coupled vegetation-atmosphere feedbacks in the global carbon cycle, especially as the climate warms. Thermal acclimation of photosynthesis can be modelled as changes in the parameters describing the direct effect of temperature on photosynthetic capacity (activation energy, Ea; deactivation energy, Hd; entropy parameter, ΔS) or the basal value of photosynthetic capacity (i.e. photosynthetic capacity measured at 25 °C), however the impact of acclimating these parameters (individually or in combination) on vegetative carbon gain is relatively unexplored. Here we compare the ability of 66 photosynthetic temperature acclimation scenarios to improve predictions of a spatially explicit canopy carbon flux model, MAESTRA, for eddy covariance data from a loblolly pine forest. We show that: 1) incorporating seasonal temperature acclimation of basal photosynthetic capacity improves the model's ability to capture seasonal changes in carbon fluxes; 2) multifactor scenarios of photosynthetic temperature acclimation provide minimal (if any) improvement in model performance over single factor acclimation scenarios; 3) acclimation of enzyme activation energies should be restricted to the temperature ranges of the data from which the equations are derived; and 4) model performance is strongly affected by the choice of deactivation energy. We suggest that a renewed effort be made into understanding the thermal acclimation of enzyme activation and deactivation energies across broad temperature ranges to better understand the mechanisms underlying thermal photosynthetic acclimation.

  9. The Role of Phosphorus and Soot on the Deactivation of Diesel Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, Scott J; Nguyen, Ke; Bunting, Bruce G

    The deactivation of diesel oxidation catalysts (DOCs) by soot contamination and lube-oil derived phosphorus poisoning is investigated. Pt/CeO2/-Al2O3 DOCs aged using three different protocols developed by the authors and six high mileage field-returned DOCs of similar formulation are evaluated for THC and CO oxidation performance using a bench-flow reactor. Collectively, these catalysts exhibit a variety of phosphorus and soot morphologies contributing to performance deactivation. To isolate and examine the contribution of each deactivation mechanism, performance evaluations are carried out for each DOC ''as received'' and after removal of surface carbon in a high-temperature oxidizing environment. In such a manner themore » deactivation contribution of soot contamination is de-convoluted from that of phosphorus poisoning. It will be shown that this is accomplished while preserving phosphorus (and to a lesser degree sulfur, calcium and zinc) chemistries and concentrations within the washcoat. Washcoat contaminant information and materials changes are characterized using electron-probe microanalysis (EPMA), X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS), BET surface area, oxygen storage capacity (OSC), X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, from which the relative severity of each mechanism can be quantified. Results show that soot contamination from diesel exhaust severely degrades THC and CO oxidation performance by acting as a catalyst surface diffusion barrier. This results in a considerable increase of light-off temperatures. In contrast, phosphorus poisoning, which is considered a significant deactivation mechanism in three-way catalysts, is shown to have minimal effect on DOC oxidation performance for the conditions studied here. Material changes include the formation of both Ce(III-IV) and aluminum phosphates which do not significantly hinder the THC and CO oxidation in lean exhaust. In addition, thermal aging and sulfur poisoning are shown to produce minimal contributions to the overall deactivation. Consequently, performance of aged DOCs after soot removal is observed to be comparable to that of a fresh catalyst under our testing conditions.« less

  10. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    NASA Astrophysics Data System (ADS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Deyneka, I. G.; Meshkovskii, I. K.; Jäger, A.; Syková, E.; Kubinová, Š.; Dejneka, A.

    2015-02-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin-stained rat skin sections from plasma-treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  11. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunov, O., E-mail: lunov@fzu.cz; Churpita, O.; Zablotskii, V.

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections frommore » plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.« less

  12. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.

    PubMed

    Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun

    2018-08-01

    The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma.

    PubMed

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Jäger, Ales; Polívka, Leoš; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2016-03-01

    Direct interactions of plasma matter with living cells and tissues can dramatically affect their functionality, initiating many important effects from cancer elimination to bacteria deactivation. However, the physical mechanisms and biochemical pathways underlying the effects of non-thermal plasma on bacteria and cell fate have still not been fully explored. Here, we report on the molecular mechanisms of non-thermal plasma-induced bacteria inactivation in both Gram-positive and Gram-negative strains. We demonstrate that depending on the exposure time plasma induces either direct physical destruction of bacteria or triggers programmed cell death (PCD) that exhibits characteristic features of apoptosis. The interplay between physical disruption and PCD is on the one hand driven by physical plasma parameters, and on the other hand by biological and physical properties of bacteria. The explored possibilities of the tuneable bacteria deactivation provide a basis for the development of advanced plasma-based therapies. To a great extent, our study opens new possibilities for controlled non-thermal plasma interactions with living systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Analysis of waterborne paints by gas chromatography-mass spectrometry with a temperature-programmable pyrolyzer.

    PubMed

    Nakamura, S; Takino, M; Daishima, S

    2001-04-06

    Gas chromatography-mass spectrometry (GC-MS) with a temperature-programmable pyrolyzer was used for the analysis of waterborne paints. Evolved gas analysis (EGA) profiles of the waterborne paints were obtained by this temperature-programmed pyrolysis directly coupled with MS via a deactivated metal capillary tube. The EGA profile suggested the optimal thermal desorption conditions for solvents and additives and the subsequent optimal pyrolysis temperature for the remaining polymeric material. Polymers were identified from pyrograms with the assistance of a new polymer library. The solvents were identified from the electron ionization mass spectra with the corresponding chemical ionization mass spectra. The additive was identified as zinc pyrithione by comparison with authentic standard. Zinc pyrithione cannot be analyzed by GC-MS as it is. However, the thermal decomposition products of zinc pyrithione could be detected. The information on the decomposition temperature and products was useful for the identification of the original compound.

  15. Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation.

    PubMed

    Schilling, Susanne; Schmid, Sandra; Jäger, Henry; Ludwig, Michael; Dietrich, Helmut; Toepfl, Stefan; Knorr, Dietrich; Neidhart, Sybille; Schieber, Andreas; Carle, Reinhold

    2008-06-25

    As an alternative to thermal pasteurization, pulsed electric fields (PEF) were applied to apple juices on laboratory and pilot plant scale, investigating the effects on juice quality. PEF application still falls under the EU Novel Food Regulation. Consequently, extensive investigation of quality parameters is a prerequisite to prove substantial equivalence of juices resulting from the novel process and conventional production, respectively. Juice composition was not affected by PEF treatment. However, browning of the juices provided evidence of residual enzyme activities. On laboratory scale, complete deactivation of peroxidase (POD) and polyphenoloxidase (PPO) was achieved when PEF treatment and preheating of the juices to 60 degrees C were combined. Under these conditions, a synergistic effect of heat and PEF was observed. On pilot plant scale, maximum PPO deactivation of 48% was achieved when the juices were preheated to 40 degrees C and PEF-treated at 30 kV/cm (100 kJ/kg). Thus, minimally processed juices resulted from PEF processing, when applied without additional conventional thermal preservation. Since this product type was characterized by residual native enzyme activities and nondetectable levels of 5-hydroxymethylfurfural, also when preheating up to 40 degrees C was included, it ranged between fresh and pasteurized juices regarding consumers' expectation of freshness and shelf life. Consistent with comparable iron contents among all juice samples, no electrode corrosion was observed under the PEF conditions applied.

  16. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintainingmore » high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.« less

  17. Research of the chemical activity of microgrinding coals of various metamorphism degree

    NASA Astrophysics Data System (ADS)

    Burdukov, A. P.; Butakov, E. B.; Kuznetsov, A. V.

    2017-09-01

    In this paper, we investigate the effect of mechanically activating grinding of coals of various degrees of metamorphism by two different methods - determination of the flash time in a vertical tubular furnace and thermogravimetric analysis. In the experiments, the coals that had been processed on a vibrating centrifugal mill and a disintegrator, aged for some time, were compared. The experiments showed a decrease in the ignition temperature of mechanically activated coals - deactivation of fuel, as well as the effect of mechanical activation on the further process of thermal-oxidative degradation.

  18. Collisional quenching of atoms and molecules on spacecraft thermal protection surfaces

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Green, B. D.

    1988-01-01

    Preliminary results of a research program to determine energy partitioning in spacecraft thermal protection materials due to atom recombination at the gas-surface interface are presented. The primary focus of the research is to understand the catalytic processes which determine heat loading on Shuttle, Aeroassisted OTV, and NASP thermal protection surfaces in nonequilibrium flight regimes. Highly sensitive laser diagnostics based on laser-induced fluorescence and resonantly-enhanced multiphoton ionization spectroscopy are used to detect atoms and metastable molecules. At low temperatures, a discharge flow reactor is employed to measure deactivation/recombination coefficients for O-atoms, N-atoms, and O2. Detection methods are presented for measuring O-atoms, O2 and N2, and results for deactivation of O2 and O-atoms on reaction-cured glass and Ni surfaces. Both atom recombination and metastable product formation are examined. Radio-frequency discharges are used to produce highly dissociated beams of atomic species at energies characteristic of the surface temperature. Auger electron spectroscopy is employed as a diagnostic of surface composition in order to accurately define and control measurement conditions.

  19. Deactivation of Escherichia coli by the plasma needle

    NASA Astrophysics Data System (ADS)

    Sladek, R. E. J.; Stoffels, E.

    2005-06-01

    In this paper we present a parameter study on deactivation of Escherichia coli (E. coli) by means of a non-thermal plasma (plasma needle). The plasma needle is a small-sized (1 mm) atmospheric glow sustained by radio-frequency excitation. This plasma will be used to disinfect heat-sensitive objects; one of the intended applications is in vivo deactivation of dental bacteria: destruction of plaque and treatment of caries. We use E. coli films plated on agar dishes as a model system to optimize the conditions for bacterial destruction. Plasma power, treatment time and needle-to-sample distance are varied. Plasma treatment of E. coli films results in formation of a bacteria-free void with a size up to 12 mm. 104-105 colony forming units are already destroyed after 10 s of treatment. Prolongation of treatment time and usage of high powers do not significantly improve the destruction efficiency: short exposure at low plasma power is sufficient. Furthermore, we study the effects of temperature increase on the survival of E. coli and compare it with thermal effects of the plasma. The population of E. coli heated in a warm water bath starts to decrease at temperatures above 40°C. Sample temperature during plasma treatment has been monitored. The temperature can reach up to 60°C at high plasma powers and short needle-to-sample distances. However, thermal effects cannot account for bacterial destruction at low power conditions. For safe and efficient in vivo disinfection, the sample temperature should be kept low. Thus, plasma power and treatment time should not exceed 150 mW and 60 s, respectively.

  20. Characterization of Deactivated Bio-oil Hydrotreating Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huamin; Wang, Yong

    Deactivation of bio-oil hydrotreating catalysts remains a significant challenge because of the poor quality of pyrolysis bio-oil input for hydrotreating and understanding their deactivation mode is critical to developing improved catalysts and processes. In this research, we developed an understanding of the deactivation of two-step bio-oil hydrotreating catalysts (sulfided Ru/C and sulfided CoMo/C) through detailed characterization of the catalysts using various complimentary analytical techniques. Severe fouling of both catalysts by carbonaceous species was the major form of deactivation, which is consistent with the significant loss of surface area and pore volume of both deactivated catalysts and the significant increase ofmore » the bulk density. Further analysis of the carbonaceous species by thermogravimetric analysis and x-ray photoelectron spectroscopy indicated that the carbonaceous species was formed by condensation reaction of active species such as sugars and sugar derivatives (aldehydes and ketones) in bio-oil feedstock during bio-oil hydrotreating under the conditions and catalysts used. Microscopy results did not show metal sintering of the Ru/C catalyst. However, X-ray diffraction indicated a probable transformation of the highly-active CoMoS phase in the sulfided CoMo/C catalyst to Co8S9 and MoS2 phase with low activity. Loss of the active site by transport of inorganic elements from the bio-oil and the reactor construction material onto the catalyst surface also might be a cause of deactivation as indicated by elemental analysis of spent catalysts.« less

  1. High performance channel injection sealant invention abstract

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Basiulis, D. I.; Salisbury, D. P. (Inventor)

    1982-01-01

    High performance channel sealant is based on NASA patented cyano and diamidoximine-terminated perfluoroalkylene ether prepolymers that are thermally condensed and cross linked. The sealant contains asbestos and, in its preferred embodiments, Lithofrax, to lower its thermal expansion coefficient and a phenolic metal deactivator. Extensive evaluation shows the sealant is extremely resistant to thermal degradation with an onset point of 280 C. The materials have a volatile content of 0.18%, excellent flexibility, and adherence properties, and fuel resistance. No corrosibility to aluminum or titanium was observed.

  2. Cell growth and catecholase production for Polyporus versicolor in submerged culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1977-04-01

    Cell growth and catecholase production for Polyporus versicolor (ATCC 12679) were studied in mechanically agitated submerged culture, as functions of temperature. The exponential-phase growth rate exhibited a maximum at 28/sup 0/C. Over the range of 20/sup 0/C to approximately 30/sup 0/C, both cell mass and enzyme yield factors were constant. At higher temperatures (30 to 40/sup 0/C) cell mass yield factor decreased and enzyme yield factor increased. Specific respiration rate of P. versicolor was determined. Thermal deactivation of catecholase was investigated between 30 and 50/sup 0/C, and deactivation rates were fit to an Arrhenius rate expression.

  3. Recirculating Thermocatalytic Air Purifier for Collective Protection

    DTIC Science & Technology

    2006-01-01

    stearothermophilus (Bs) spores, which are generally accepted to be more heat resistant than anthrax spores. The results for the Bg and Bs spore...7 who performed thermal deactivation tests using Bg spores in a different reactor geometry. Shankle’s data imply complete sterilization of Bg...400 CFM Catalytic Air Purifier Model, Book 2: Effects of Heat Transfer and Flow on Thermal Sterilization . CB-67-2738-12.2, Physical Protection

  4. Non-thermal Atmospheric Plasma Treatment for Deactivation of Oral Bacteria and Improvement of Dental Composite Restoration

    NASA Astrophysics Data System (ADS)

    Yu, Qing Song; Li, H.; Ritts, A. C.; Yang, B.; Chen, M.; Hong, L.; Xu, C.; Yao, X.; Wang, Y.

    This paper reviews our recent research results of using non-thermal ­atmospheric plasmas for oral bacterial deactivation and for composite restoration improvement. Oral bacteria of Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. The plasma exposure time for a 99.9999% cell reduction was less than 15 s for S. mutans and within 5 min for L. acidophilus. To evaluate the dentin/composite interfacial bonding, extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. After dental composite application and light curing, the teeth were then sectioned into micro-bars as the specimens for microtensile test. Student Newman Keuls (SNK) tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment of the dentin surfaces. These findings indicated that non-thermal atmospheric plasma technology is very promising for dental clinical applications.

  5. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires: thermally deactivating growth kinetics.

    PubMed

    In, Jung Bin; Kwon, Hyuk-Jun; Lee, Daeho; Ko, Seung Hwan; Grigoropoulos, Costas P

    2014-02-26

    The laser-assisted hydrothermal growth kinetics of a cluster of ZnO nanowires are studied based on optical in situ growth monitoring. The growth yields are orders of magnitude higher than those of conventional hydrothermal methods that use bulk heating. This remarkable improvement is attributed to suppression of precursor depletion occurring by homogeneous growth reactions, as well as to enhanced mass transport. The obtained in situ data show gradually decaying growth kinetics even with negligible precursor consumption. It is revealed that the growth deceleration is caused by thermal deactivation resulting from heat dissipation through the growing nanowires. Finally, it is demonstrated that the tailored temporal modulation of the input power enables sustained growth to extended dimensions. These results provide a key to highly efficient use of growth precursors that has been pursued for industrial use of this functional metal oxide semiconductor. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Modification of a three-way catalyst washcoat by aging: A study along the longitudinal axis

    NASA Astrophysics Data System (ADS)

    Granados, M. López; Galisteo, F. Cabello; Mariscal, R.; Alifanti, M.; Gurbani, A.; Fierro, J. L. G.; Fernández-Ruíz, R.

    2006-10-01

    This work reports the research carried out by studying aliquots extracted at different axial coordinates from Three Way Catalyst (TWC) monoliths aged under real traffic conditions. Our study focused on the catalytic properties and on several chemical and physical effects caused in the Front and Rear monolith washcoat surfaces by vehicle aging after 60,000 km. Regarding the catalytic properties, all the used aliquots showed poorer activity than their corresponding fresh counterparts. The strongest deactivation was detected for NO and hydrocarbon conversion. CO conversion was less affected and the Rear monolith was as deactivated as the Front one. The characterisation techniques (TXRF, N 2 adsorption-desorption isotherms, XRD and H 2-TPR) detected - (i) the deposition of P, Zn and Pb; (ii) the formation of CePO 4 on account of the Ce from the washcoat; (iii) thermal sintering; (iv) inhibition of the reducibility of Ce oxides - as the main effects brought about by vehicle aging conditions. The deactivation observed at the beginning of the Front monolith was the result of a combination of the former effects. When moving downstream to higher axial coordinates, Pb accumulation and the loss of specific area appeared to be the only probable sources of deactivation.

  7. Receiving and use of streams of monodisperse ice granules for cleaning and deactivation of surfaces

    NASA Astrophysics Data System (ADS)

    Boukharov, A.; Balashov, A.; Timohin, A.; Ivanov, A.; Holin, B.

    2017-11-01

    The most generally useful methods for cleaning and processing of surfaces are the sand-jets and shot blasting jets. Installations of this kind are used for cleaning of corrosion surfaces, the oil-dirt deposits, paint coatings. However the use of these installations follows to high investment and operational expenditure, larger risk of operators disease, the negative affect for a environment. These problems can be solved with the use of new cleaning method through application of mono-disperse (identical by the size and the form) ice granules of 300 - 1000 microns, accelerated by air stream in the nozzle device to the speed of 10 - 100 m/s. In view of the extreme complexity of the receiving such particles by means of cooling and the subsequent freezing of water drops are necessary additional experimental researches. For study of thermal processes of receiving mono-disperse ice granules the experimental installation was created and experiments on deactivation and cleaning of surfaces with pollution of various types are made. Experiments showed that by means of a stream of the accelerated ice granules it is rather successfully possible to delete oil-dirt deposits, outdated paint coats and rust. Besides, efficient deactivation of radioactive surfaces is possible. The coefficient deactivation of γ activity is highest.

  8. Reversible deactivation of higher-order posterior parietal areas. I. Alterations of receptive field characteristics in early stages of neocortical processing

    PubMed Central

    Cooke, Dylan F.; Goldring, Adam B.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Chen, Arnold; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    Somatosensory processing in the anesthetized macaque monkey was examined by reversibly deactivating posterior parietal areas 5L and 7b and motor/premotor cortex (M1/PM) with microfluidic thermal regulators developed by our laboratories. We examined changes in receptive field size and configuration for neurons in areas 1 and 2 that occurred during and after cooling deactivation. Together the deactivated fields and areas 1 and 2 form part of a network for reaching and grasping in human and nonhuman primates. Cooling area 7b had a dramatic effect on receptive field size for neurons in areas 1 and 2, while cooling area 5 had moderate effects and cooling M1/PM had little effect. Specifically, cooling discrete locations in 7b resulted in expansions of the receptive fields for neurons in areas 1 and 2 that were greater in magnitude and occurred in a higher proportion of sites than similar changes evoked by cooling the other fields. At some sites, the neural receptive field returned to the precooling configuration within 5–22 min of rewarming, but at other sites changes in receptive fields persisted. These results indicate that there are profound top-down influences on sensory processing of early cortical areas in the somatosensory cortex. PMID:25143546

  9. Analysis of electric and thermal behaviour of lithium-ion cells in realistic driving cycles

    NASA Astrophysics Data System (ADS)

    Tourani, Abbas; White, Peter; Ivey, Paul

    2014-12-01

    A substantial part of electric vehicles (EVs) powertrain is the battery cell. The cells are usually connected in series, and failure of a single cell can deactivate an entire module in the battery pack. Hence, understanding the cell behaviour helps to predict and improve the battery performance and leads to design a cost effective thermal management system for the battery pack. A first principle thermo electrochemical model is applied to study the cell behaviour. The model is in good agreement with the experimental results and can predict the heat generation and the temperature distribution across the cell for different operating conditions. The operating temperature effect on the cell performance is studied and the operating temperature for the best performance is verified. In addition, EV cells are examined in a realistic driving cycle from the Artemis class. The study findings lead to the proposal of some crucial recommendation to design cost effective thermal management systems for the battery pack.

  10. Mode Deactivation Therapy (MDT) Family Therapy: A Theoretical Case Analysis

    ERIC Educational Resources Information Center

    Apsche, J. A.; Ward Bailey, S. R.

    2004-01-01

    This case study presents a theoretical analysis of implementing mode deactivation therapy (MDT) (Apsche & Ward Bailey, 2003) family therapy with a 13 year old Caucasian male. MDT is a form of cognitive behavioral therapy (CBT) that combines the balance of dialectical behavior therapy (DBT) (Linehan, 1993), the importance of perception from…

  11. Diffuse x-ray scattering and transmission electron microscopy study of defects in antimony-implanted silicon

    NASA Astrophysics Data System (ADS)

    Takamura, Y.; Marshall, A. F.; Mehta, A.; Arthur, J.; Griffin, P. B.; Plummer, J. D.; Patel, J. R.

    2004-04-01

    Ion implantation followed by laser annealing has been used to create supersaturated and electrically active concentrations of antimony in silicon. Upon subsequent thermal annealing, however, these metastable dopants deactivate towards the equilibrium solubility limit. In this work, the formation of inactive antimony structures has been studied with grazing incidence diffuse x-ray scattering, and transmission electron microscopy, and the results are correlated to previous high-resolution x-ray diffraction data. We find that at a concentration of 6.0×1020 cm-3, small, incoherent clusters of radius 3-4 Å form during annealing at 900 °C. At a higher concentration of 2.2×1021 cm-3, deactivation at 600 °C occurs through the formation of small, antimony aggregates and antimony precipitates. The size of these precipitates from diffuse x-ray scattering is roughly 15 Å in radius for anneal times from 15 to 180 seconds. This value is consistent with the features observed in high-resolution and mass contrast transmission electron microscopy images. The coherent nature of the aggregates and precipitates causes the expansion of the surrounding silicon matrix as the deactivation progresses. In addition, the sensitivity of the diffuse x-ray scattering technique has allowed us to detect the presence of small clusters of radius ˜2 Å in unprocessed Czochralski silicon wafers. These defects are not observed in floating zone silicon wafers, and are tentatively attributed to thermal donors.

  12. On the CCN (de)activation nonlinearities

    NASA Astrophysics Data System (ADS)

    Arabas, Sylwester; Shima, Shin-ichiro

    2017-09-01

    We take into consideration the evolution of particle size in a monodisperse aerosol population during activation and deactivation of cloud condensation nuclei (CCN). Our analysis reveals that the system undergoes a saddle-node bifurcation and a cusp catastrophe. The control parameters chosen for the analysis are the relative humidity and the particle concentration. An analytical estimate of the activation timescale is derived through estimation of the time spent in the saddle-node bifurcation bottleneck. Numerical integration of the system coupled with a simple air-parcel cloud model portrays two types of activation/deactivation hystereses: one associated with the kinetic limitations on droplet growth when the system is far from equilibrium, and one occurring close to equilibrium and associated with the cusp catastrophe. We discuss the presented analyses in context of the development of particle-based models of aerosol-cloud interactions in which activation and deactivation impose stringent time-resolution constraints on numerical integration.

  13. Ionic liquids as silica deactivating agents in gas chromatography for direct analysis of primary amines in water.

    PubMed

    Krzyżaniak, Agnieszka; Weggemans, Wilko; Schuur, Boelo; de Haan, André B

    2011-12-16

    Analysis of primary amines in aqueous samples remains a challenging analytical issue. The preferred approach by gas chromatography is hampered by interactions of free silanol groups with the highly reactive amine groups, resulting in inconsistent measurements. Here, we report a method for direct analysis of aliphatic amines and diamines in aqueous samples by gas chromatography (GC) with silanol deactivation using ionic liquids (ILs). ILs including trihexyl(tetradecyl)phosphonium bis 2,4,4-(trimethylpentyl)phosphinate (Cyphos IL-104), 1-methyl-3-propylimidazolium bis(trifluoromethylsulfonyl)imide [pmim][Tf(2)N] and N″-ethyl-N,N,N',N'-tetramethylguanidinium tris(pentafluoroethyl)trifluorophosphate [etmg][FAP] were tested as deactivating media for the GC liner. Solutions of these ILs in methanol were injected in the system prior to the analysis of primary amines. Butane-1,4-diamine (putrescine, BDA) was used as a reference amine. The best results were obtained using the imidazolium IL [pmim][Tf(2)N]. With this deactivator, excellent reproducibility of the analysis was achieved, and the detection limit of BDA was as low as 1mM. The applicability of the method was proven for the analysis of two different primary amines (C4-C5) and pentane-1,5-diamine. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel.

    PubMed

    Tang, Cheng; Zhou, Xi; Nguyen, Phuong Tran; Zhang, Yunxiao; Hu, Zhaotun; Zhang, Changxin; Yarov-Yarovoy, Vladimir; DeCaen, Paul G; Liang, Songping; Liu, Zhonghua

    2017-07-01

    Voltage-gated sodium channels (Na V s) are activated by transiting the voltage sensor from the deactivated to the activated state. The crystal structures of several bacterial Na V s have captured the voltage sensor module (VSM) in an activated state, but structure of the deactivated voltage sensor remains elusive. In this study, we sought to identify peptide toxins stabilizing the deactivated VSM of bacterial Na V s. We screened fractions from several venoms and characterized a cystine knot toxin called JZTx-27 from the venom of tarantula Chilobrachys jingzhao as a high-affinity antagonist of the prokaryotic Na V s Ns V Ba (nonselective voltage-gated Bacillus alcalophilus ) and NaChBac (bacterial sodium channel from Bacillus halodurans ) (IC 50 = 112 nM and 30 nM, respectively). JZTx-27 was more efficacious at weaker depolarizing voltages and significantly slowed the activation but accelerated the deactivation of Ns V Ba, whereas the local anesthetic drug lidocaine was shown to antagonize Ns V Ba without affecting channel gating. Mutation analysis confirmed that JZTx-27 bound to S3-4 linker of Ns V Ba, with F98 being the critical residue in determining toxin affinity. All electrophysiological data and in silico analysis suggested that JZTx-27 trapped VSM of Ns V Ba in one of the deactivated states. In mammalian Na V s, JZTx-27 preferably inhibited the inactivation of Na V 1.5 by targeting the fourth transmembrane domain. To our knowledge, this is the first report of peptide antagonist for prokaryotic Na V s. More important, we proposed that JZTx-27 stabilized the Ns V Ba VSM in the deactivated state and may be used as a probe to determine the structure of the deactivated VSM of Na V s.-Tang, C., Zhou, X., Nguyen, P. T., Zhang, Y., Hu, Z., Zhang, C., Yarov-Yarovoy, V., DeCaen, P. G., Liang, S., Liu, Z. A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. © FASEB.

  15. Direct plasma interaction with living tissue

    NASA Astrophysics Data System (ADS)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  16. Mediation Analysis of Mode Deactivation Therapy (Reanalysis and Interpretation)

    ERIC Educational Resources Information Center

    Bass, Christopher K.; Apsche, Jack A.

    2013-01-01

    A key component of Mode Deactivation Therapy (MDT) is the development of self-awareness and regulatory skills by the client with the aim of helping adolescent males with conduct disordered behaviors, including sexually inappropriate behaviors and emotional dysregulation. The goal includes altering specific behaviors to fall within socially…

  17. A Literature Review and Analysis of Mode Deactivation Therapy

    ERIC Educational Resources Information Center

    Apsche, Jack A.

    2010-01-01

    This article is a review of articles, chapters and current research examining Mode Deactivation Therapy. Current applications of MDT suggest that mindfulness is a core component of MDT, as well as acceptance, defusion and validation, clarification and redirection of the functional alternative beliefs. These components are the core of MDT and a…

  18. Mode Deactivation Therapy (MDT): A Theoretical Case Analysis on a Suicidal Adolescent

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Siv, Alexander M.

    2005-01-01

    This case study presents a case study of the effectiveness of Mode deactivation therapy (MDT) (Apsche, Bass, Jennings, Murphy, Hunter, and Siv, 2005) with an adolescent male, with reactive conduct disorder, PTSD and 8 lethal suicide attempts. The youngster was hospitalized four times for suicide attempts, three previous placements in residential…

  19. Plasma Deactivation of Oral Bacteria Seeded on Hydroxyapatite Disks as Tooth Enamel Analogue

    PubMed Central

    Blumhagen, Adam; Singh, Prashant; Mustapha, Azlin; Chen, Meng; Wang, Yong; Yu, Qingsong

    2014-01-01

    Purpose To study the plasma treatment effects on deactivation of oral bacteria seeded on a tooth enamel analogue. Methods A non-thermal atmospheric pressure argon plasma brush was used to treat two different Gram-positive oral bacteria including Lactobacillus acidophilus (L. acidophilus) and Streptococcus mutans (S. mutans). The bacteria were seeded on hydroxyapatite (HA) disks used as tooth enamel analogue with three initial bacterial seeding concentrations: a low inoculum concentration between 2.1×108 and 2.4×108 cfu/mL, a medium inoculum concentration between 9.8×108 and 2.4×109 cfu/mL, and a high inoculum concentration between 1.7×1010 and 3.5×1010 cfu/mL. The bacterial survivability upon plasma exposure was examined in terms of plasma exposure time and oxygen addition into the plasmas. SEM was performed to examine bacterial morphological changes after plasma exposure. Results The experimental data indicated that 13 second plasma exposure time completely killed all the bacteria when initial bacterial seeding density on HA surfaces were less than 6.9×106 cfu/cm2 for L. acidophilus and 1.7×107 cfu/cm2 for S. mutans, which were resulted from low initial seeding inoculum concentration between 2.1×108 and 2.4×108 cfu/mL. Plasma exposure of the bacteria at higher initial bacterial seeding density obtained with high initial seeding inoculum concentration, however, only resulted in ~ 1.5 to 2 log reduction and ~ 2 to 2.5 log reduction for L. acidophilus and S. mutans, respectively. It was also noted that oxygen addition into the argon plasma brush did not affect the plasma deactivation effectiveness. SEM images showed that plasma deactivation mainly occurred with the top layer bacteria, while shadowing effects from the resulting bacterial debris reduced the plasma deactivation of the underlying bacteria. Clinical Significance The experimental results indicate that, with direct contact, nonthermal atmospheric pressure argon plasmas could rapidly and effectively deactivate oral bacteria seeded on HA surfaces and thus could be a promising technique in various dental clinical applications. PMID:25000666

  20. A quantum chemical study of the decomposition of Keggin-structured heteropolyacids.

    PubMed

    Janik, Michael J; Bardin, Billy B; Davis, Robert J; Neurock, Matthew

    2006-03-09

    Heterpolyacids (HPAs) demonstrate catalytic activity for oxidative and acid-catalyzed hydrocarbon conversion processes. Deactivation and thermal instability, however, have prevented their widespread use. Herein, ab initio density functional theory is used to study the thermal decomposition of the Keggin molecular HPA structure through the desorption of constitutional water molecules. The overall reaction energy and activation barrier are computed for the overall reaction HnXM12O40-->Hn-2XM12O39+H2O. and subsequently used to predict the effect of HPA composition on thermal stability. For example, the desorption of a constitutional water molecule is found to be increasingly endothermic in the order silicomolybdic acid (H4SiMo12O40)

  1. Stability of immobilized amyloglucosidase in the process of Cassava starch saccharification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanin, G.M.; De Moraes, F.F.

    1995-12-31

    The half-life of immobilized amyloglucosidase was determined in a fluidized-bed reactor operating continuously with a 30% w/v liquefied cassava starch solution at pH 4.5 and temperatures from 50 to 70{degrees}C. For the higher temperatures: 60, 65, and 70{degrees}C, thermal deactivation gives half-lives of 127, 38 and 7.3 h, respectively, in close agreement with corn starch data. For the lower temperatures: 55 and 60{degrees}C, the deposition of impurities over the immobilized enzyme particle contributes significantly to deactivation, lowering expected half-lives to 32.6 and 13.2 d, respectively. Commercial exploitation of this process would then require low temperature of operation, thorough purification ofmore » the substrate solution, and control of microbial contamination to achieve sufficiently long half-lives.« less

  2. Tyrosine Residues from the S4-S5 Linker of Kv11.1 Channels Are Critical for Slow Deactivation.

    PubMed

    Ng, Chai-Ann; Gravel, Andrée E; Perry, Matthew D; Arnold, Alexandre A; Marcotte, Isabelle; Vandenberg, Jamie I

    2016-08-12

    Slow deactivation of Kv11.1 channels is critical for its function in the heart. The S4-S5 linker, which joins the voltage sensor and pore domains, plays a critical role in this slow deactivation gating. Here, we use NMR spectroscopy to identify the membrane-bound surface of the S4S5 linker, and we show that two highly conserved tyrosine residues within the KCNH subfamily of channels are membrane-associated. Site-directed mutagenesis and electrophysiological analysis indicates that Tyr-542 interacts with both the pore domain and voltage sensor residues to stabilize activated conformations of the channel, whereas Tyr-545 contributes to the slow kinetics of deactivation by primarily stabilizing the transition state between the activated and closed states. Thus, the two tyrosine residues in the Kv11.1 S4S5 linker play critical but distinct roles in the slow deactivation phenotype, which is a hallmark of Kv11.1 channels. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, S.; Chowdhury, R.; Biswas, G.K.

    A mathematical model based on the mechanistic approach to the reaction kinetics of pyrolysis reactions and the realistic analysis of the interaction between simultaneous heat and mass transfer along with the chemical reaction has been developed for the design of smoothly running pyrolyzers. The model of a fixed-bed pyrolysis reactor has been proposed on the basis of the dimensionless parameters with respect to time and radial position. The variation of physical parameters like bed voidage, heat capacity, diffusivity, density, thermal conductivity, etc., on temperature and conversion has been taken into account. A deactivation model has also been incorporated to explainmore » the behavior of pyrolysis reactions at temperatures above 673 K. The simulated results of the model have been explained by comparing them with the experimental results.« less

  4. Psychophysiological changes following auditory subliminal suggestions for activation and deactivation.

    PubMed

    Borgeat, F; Goulet, J

    1983-06-01

    This study was to measure eventual psychophysiological changes resulting from auditory subliminal activation or deactivation suggestions. 18 subjects were alternately exposed to a control situation and to 25-dB activating and deactivating suggestions masked by a 40-dB white noise. Physiological measures (EMG, heart rate, skin-conductance levels and responses, and skin temperature) were recorded while subjects listened passively to the suggestions, during a stressing task that followed and after that task. Multivariate analysis of variance showed a significant effect of the activation subliminal suggestions during and following the stressing task. This result is discussed as indicating effects of consciously unrecognized perceptions on psychophysiological responses.

  5. Molecular evolutionary analysis of vertebrate transducins: a role for amino acid variation in photoreceptor deactivation.

    PubMed

    Lin, Yi G; Weadick, Cameron J; Santini, Francesco; Chang, Belinda S W

    2013-12-01

    Transducin is a heterotrimeric G protein that plays a critical role in phototransduction in the rod and cone photoreceptor cells of the vertebrate retina. Rods, highly sensitive cells that recover from photoactivation slowly, underlie dim-light vision, whereas cones are less sensitive, recover more quickly, and underlie bright-light vision. Transducin deactivation is a critical step in photoreceptor recovery and may underlie the functional distinction between rods and cones. Rods and cones possess distinct transducin α subunits, yet they share a common deactivation mechanism, the GTPase activating protein (GAP) complex. Here, we used codon models to examine patterns of sequence evolution in rod (GNAT1) and cone (GNAT2) α subunits. Our results indicate that purifying selection is the dominant force shaping GNAT1 and GNAT2 evolution, but that GNAT2 has additionally been subject to positive selection operating at multiple phylogenetic scales; phylogeny-wide analysis identified several sites in the GNAT2 helical domain as having substantially elevated dN/dS estimates, and branch-site analysis identified several nearby sites as targets of strong positive selection during early vertebrate history. Examination of aligned GNAT and GAP complex crystal structures revealed steric clashes between several positively selected sites and the deactivating GAP complex. This suggests that GNAT2 sequence variation could play an important role in adaptive evolution of the vertebrate visual system via effects on photoreceptor deactivation kinetics and provides an alternative perspective to previous work that focused instead on the effect of GAP complex concentration. Our findings thus further the understanding of the molecular biology, physiology, and evolution of vertebrate visual systems.

  6. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina

    Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less

  7. Patterns of Default Mode Network Deactivation in Obsessive Compulsive Disorder

    PubMed Central

    Gonçalves, Óscar F.; Soares, José Miguel; Carvalho, Sandra; Leite, Jorge; Ganho-Ávila, Ana; Fernandes-Gonçalves, Ana; Pocinho, Fernando; Carracedo, Angel; Sampaio, Adriana

    2017-01-01

    The objective of the present study was to research the patterns of Default Mode Network (DMN) deactivation in Obsessive Compulsive Disorder (OCD) in the transition between a resting and a non-rest emotional condition. Twenty-seven participants, 15 diagnosed with OCD and 12 healthy controls (HC), underwent a functional neuroimaging paradigm in which DMN brain activation in a resting condition was contrasted with activity during a non-rest condition consisting in the presentation of emotionally pleasant and unpleasant images. Results showed that HC, when compared with OCD, had a significant deactivation in two anterior nodes of the DMN (medial frontal and superior frontal) in the non-rest pleasant stimuli condition. Additional analysis for the whole brain, contrasting the resting condition with all the non-rest conditions grouped together, showed that, compared with OCD, HC had a significantly deactivation of a widespread brain network (superior frontal, insula, middle and superior temporal, putamen, lingual, cuneus, and cerebellum). Concluding, the present study found that OCD patients had difficulties with the deactivation of DMN even when the non-rest condition includes the presentation of emotional provoking stimuli, particularly evident for images with pleasant content. PMID:28287615

  8. Deactivation of Multilayered MFI Nanosheet Zeolite during Upgrading of Biomass Pyrolysis Vapors

    DOE PAGES

    Xu, Mengze; Mukarakate, Calvin; Iisa, Kristiina; ...

    2017-05-02

    Here, the catalytic fast pyrolysis (CFP) of biomass is a promising technology for producing renewable transportation fuels and chemicals. MFI-type catalysts have shown promise for CFP because they produce gasoline range hydrocarbons from oxygenated pyrolysis compounds; however, rapid catalyst deactivation due to coking is one of the major technical barriers inhibiting the commercialization of this technology. Coke deposited on the surface of the catalysts blocks access to active sites in the micropores leading to rapid catalyst deactivation. Our strategy is to minimize rapid catalyst deactivation by adding mesoporosity through forming MFI nanosheet materials. The synthesized MFI nanosheet catalysts were fullymore » characterized and evaluated for cellulose pyrolysis vapor upgrading to produce olefins and aromatic hydrocarbons. The data obtained from pyrolysis-GCMS (py-GCMS), showed that fresh MFI nanosheets produced similar aromatic hydrocarbon and olefin yields compared to conventional HZSM-5. However, MFI nanosheets demonstrated a longer lifetime than HZSM-5 even though coke contents were also higher than for HZSM-5 because the mesopores enabled better accessibility to active acid sites. This conclusion was supported by results from post-reaction analysis of various spent catalysts collected at different points during the deactivation experiments.« less

  9. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    NASA Astrophysics Data System (ADS)

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  10. Characterization of coke, or carbonaceous matter, formed on CoMo catalysts used in hydrodesulfurization unit in oil refinery

    NASA Astrophysics Data System (ADS)

    Kimura, Nobuharu; Iwanami, Yoshimu; Koide, Ryutaro; Kudo, Reiko

    2017-06-01

    When a mixture of light gas oil (LGO) and light cycle oil is fed into an oil refinery’s hydrodesulfurization (HDS) unit to produce diesel fuel, the catalyst in the HDS unit is rapidly deactivated. By contrast, when the feed is LGO mixed with residue desulfurization gas oil, the catalyst is deactivated slowly. Hoping to understand why, the authors focused on the coke formed on the catalysts during the HDS reaction. The result of a comprehensive analysis of the coke suggested that the ways coke formed and grew on the catalysts may differ depending on the feeds used, which in turn could affect the deactivation behaviors of the catalysts.

  11. Behavior or Nonmetallic Materials in Shale Oil Derived Jet Fuels and in High Aromatic and High Sulfur Petroleum Fuels

    DTIC Science & Technology

    1978-07-01

    degrades thermal stability and forms undesirable sulfur dioxide emissions . Although the original premises for controlling total sulfur may not still...eliminate corrosive trace contamination, presence of surfactants which deactivate filter/ separators, carry-over of refinery processing materials, and...increase raw vapor emissions from ground fuel handling facilities and during refueling operations. Controlling raw vapor emissions is difficult at 3

  12. Acupuncture mobilizes the brain's default mode and its anti-correlated network in healthy subjects.

    PubMed

    Hui, Kathleen K S; Marina, Ovidiu; Claunch, Joshua D; Nixon, Erika E; Fang, Jiliang; Liu, Jing; Li, Ming; Napadow, Vitaly; Vangel, Mark; Makris, Nikos; Chan, Suk-Tak; Kwong, Kenneth K; Rosen, Bruce R

    2009-09-01

    Previous work has shown that acupuncture stimulation evokes deactivation of a limbic-paralimbic-neocortical network (LPNN) as well as activation of somatosensory brain regions. This study explores the activity and functional connectivity of these regions during acupuncture vs. tactile stimulation and vs. acupuncture associated with inadvertent sharp pain. Acupuncture during 201 scans and tactile stimulation during 74 scans for comparison at acupoints LI4, ST36 and LV3 was monitored with fMRI and psychophysical response in 48 healthy subjects. Clusters of deactivated regions in the medial prefrontal, medial parietal and medial temporal lobes as well as activated regions in the sensorimotor and a few paralimbic structures can be identified during acupuncture by general linear model analysis and seed-based cross correlation analysis. Importantly, these clusters showed virtual identity with the default mode network and the anti-correlated task-positive network in response to stimulation. In addition, the amygdala and hypothalamus, structures not routinely reported in the default mode literature, were frequently involved in acupuncture. When acupuncture induced sharp pain, the deactivation was attenuated or became activated instead. Tactile stimulation induced greater activation of the somatosensory regions but less extensive deactivation of the LPNN. These results indicate that the deactivation of the LPNN during acupuncture cannot be completely explained by the demand of attention that is commonly proposed in the default mode literature. Our results suggest that acupuncture mobilizes the anti-correlated functional networks of the brain to mediate its actions, and that the effect is dependent on the psychophysical response.

  13. Solvent effects on the ultrafast nonradiative deactivation mechanisms of thymine in aqueous solution: Excited-state QM/MM molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Nakayama, Akira; Arai, Gaku; Yamazaki, Shohei; Taketsugu, Tetsuya

    2013-12-01

    On-the-fly excited-state quantum mechanics/molecular mechanics molecular dynamics (QM/MM-MD) simulations of thymine in aqueous solution are performed to investigate the role of solvent water molecules on the nonradiative deactivation process. The complete active space second-order perturbation theory (CASPT2) method is employed for a thymine molecule as the QM part in order to provide a reliable description of the excited-state potential energies. It is found that, in addition to the previously reported deactivation pathway involving the twisting of the C-C double bond in the pyrimidine ring, another efficient deactivation pathway leading to conical intersections that accompanies the out-of-plane displacement of the carbonyl group is observed in aqueous solution. Decay through this pathway is not observed in the gas phase simulations, and our analysis indicates that the hydrogen bonds with solvent water molecules play a key role in stabilizing the potential energies of thymine in this additional decay pathway.

  14. Multiple Interactions between Cytoplasmic Domains Regulate Slow Deactivation of Kv11.1 Channels*

    PubMed Central

    Ng, Chai Ann; Phan, Kevin; Hill, Adam P.; Vandenberg, Jamie I.; Perry, Matthew D.

    2014-01-01

    The intracellular domains of many ion channels are important for fine-tuning their gating kinetics. In Kv11.1 channels, the slow kinetics of channel deactivation, which are critical for their function in the heart, are largely regulated by the N-terminal N-Cap and Per-Arnt-Sim (PAS) domains, as well as the C-terminal cyclic nucleotide-binding homology (cNBH) domain. Here, we use mutant cycle analysis to probe for functional interactions between the N-Cap/PAS domains and the cNBH domain. We identified a specific and stable charge-charge interaction between Arg56 of the PAS domain and Asp803 of the cNBH domain, as well an additional interaction between the cNBH domain and the N-Cap, both of which are critical for maintaining slow deactivation kinetics. Furthermore, we found that positively charged arginine residues within the disordered region of the N-Cap interact with negatively charged residues of the C-linker domain. Although this interaction is likely more transient than the PAS-cNBD interaction, it is strong enough to stabilize the open conformation of the channel and thus slow deactivation. These findings provide novel insights into the slow deactivation mechanism of Kv11.1 channels. PMID:25074935

  15. Stabilization of solar films against hi temperature deactivation

    DOEpatents

    Jefferson, Clinton F.

    1984-03-20

    A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.

  16. Enhancement of Glycerol Steam Reforming Activity and Thermal Stability by Incorporating CeO2 and TiO2 in Ni- and Co-MCM-41 Catalysts

    NASA Astrophysics Data System (ADS)

    Dade, William N.

    Hydrogen (H2) has many applications in industry with current focus shifted to production of hydrocarbon fuels and valuable oxygenates using the Fischer-Tropsch technology and direct use in proton exchange membrane fuel cell (PEMFC). Hydrogen is generally produced via steam reforming of natural gas or alcohols like methanol and ethanol. Glycerol, a by-product of biodiesel production process, is currently considered to be one of the most attractive sources of sustainable H2 due to its high H/C ratio and bio-based origin. Ni and Co based catalysts have been reported to be active in glycerol steam reforming (GSR); however, deactivation of the catalysts by carbon deposition and sintering under GSR operating conditions is a major challenge. In this study, a series of catalysts containing Ni and Co nanoparticles incorporated in CeO2 and TiO2 modified high surface area MCM-41 have been synthesized using one-pot method. The catalysts are tested for GSR (at H2O/Glycerol mole ratio of 12 and GHSV of 2200 h-1) to study the effect of support modification and reaction temperature (450 - 700 °C) on the product selectivity and long term stability. GSR results revealed that all the catalysts performed significantly well exhibiting over 85% glycerol conversion at 650 °C except Ni catalysts that showed better low temperature activities. Deactivation studies of the catalysts conducted at 650 °C indicated that the Ni-TiO2-MCM-41 and Ni-CeO 2-MCM-41 were resistant to deactivation with ˜100% glycerol conversion for 40 h. In contrast, Co-TiO2-MCM-41 perform poorly as the catalyst rapidly deactivated after 12 h to yield ˜20% glycerol conversion after 40 h. The WAXRD and TGA-DSC analyses of spent catalysts showed a significant amount of coke deposition that might explain catalysts deactivation. The flattening shape of the original BET type IV isotherm with drastic reduction of catalyst surface area can also be responsible for observed drop in catalysts activities.

  17. Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts

    NASA Astrophysics Data System (ADS)

    Kaden, William E.; Kunkel, William A.; Roberts, F. Sloan; Kane, Matthew; Anderson, Scott L.

    2014-03-01

    Model catalysts containing size-selected Pdn (n = 1,2,4,7,10,16,20,25) deposited on rutile TiO2(110) deactivate during repeated CO oxidation temperature-programmed reaction (TPR) cycles, and the deactivation process has been probed using a combination of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), low-energy ion scattering (ISS), temperature-dependent ion scattering (TD-ISS), annealing experiments, and temperature-programmed desorption following exposure to CO and O2 reactants. Results from such experiments suggest the cluster deactivation proceeds via an alloy-like, strong metal-support interaction (SMSI) effect that chemically modifies the clusters via electronic interactions between the supported metal atoms and Ti from the support. Threshold measurements show that this effect detrimentally affects CO-oxidation activity prior to the formation of an encapsulating overlayer by severely weakening the COPd bond strengths for binding configurations on top of the clusters. Oxidation appears to provide means of partially restoring the clusters to their initial state, but after sufficient exposure to reducing environments and elevated temperatures, all Pdn become covered by an overlayer and begin to electronically and chemically resemble freshly deposited atoms, which are completely inactive towards the probe reaction. In addition, we find evidence of oxygen spillover induced by co-adsorbed CO during TPRs for all active Pdn clusters.

  18. Alterations in memory networks in mild cognitive impairment and Alzheimer's disease: an independent component analysis.

    PubMed

    Celone, Kim A; Calhoun, Vince D; Dickerson, Bradford C; Atri, Alireza; Chua, Elizabeth F; Miller, Saul L; DePeau, Kristina; Rentz, Doreen M; Selkoe, Dennis J; Blacker, Deborah; Albert, Marilyn S; Sperling, Reisa A

    2006-10-04

    Memory function is likely subserved by multiple distributed neural networks, which are disrupted by the pathophysiological process of Alzheimer's disease (AD). In this study, we used multivariate analytic techniques to investigate memory-related functional magnetic resonance imaging (fMRI) activity in 52 individuals across the continuum of normal aging, mild cognitive impairment (MCI), and mild AD. Independent component analyses revealed specific memory-related networks that activated or deactivated during an associative memory paradigm. Across all subjects, hippocampal activation and parietal deactivation demonstrated a strong reciprocal relationship. Furthermore, we found evidence of a nonlinear trajectory of fMRI activation across the continuum of impairment. Less impaired MCI subjects showed paradoxical hyperactivation in the hippocampus compared with controls, whereas more impaired MCI subjects demonstrated significant hypoactivation, similar to the levels observed in the mild AD subjects. We found a remarkably parallel curve in the pattern of memory-related deactivation in medial and lateral parietal regions with greater deactivation in less-impaired MCI and loss of deactivation in more impaired MCI and mild AD subjects. Interestingly, the failure of deactivation in these regions was also associated with increased positive activity in a neocortical attentional network in MCI and AD. Our findings suggest that loss of functional integrity of the hippocampal-based memory systems is directly related to alterations of neural activity in parietal regions seen over the course of MCI and AD. These data may also provide functional evidence of the interaction between neocortical and medial temporal lobe pathology in early AD.

  19. Metal-support interactions during the adsorption of CO on thin layers and islands of epitaxial palladium

    NASA Technical Reports Server (NTRS)

    Park, C.; Poppa, H.; Soria, F.

    1984-01-01

    Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.

  20. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    PubMed

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  1. Task deactivation reductions and atrophy within parietal default mode regions are overlapping but only weakly correlated in mild cognitive impairment

    PubMed Central

    Threlkeld, Zachary D.; Jicha, Greg A.; Smith, Charles D.; Gold, Brian T.

    2012-01-01

    Reduced task deactivation within regions of the default mode network (DMN) has been frequently reported in Alzheimer’s disease (AD) and amnestic mild cognitive impairment (aMCI). As task deactivations reductions become increasingly used in the study of early AD states, it is important to understand their relationship to atrophy. To address this issue, the present study compared task deactivation reductions during a lexical decision task and atrophy in aMCI, using a series of parallel voxel-wise and region-wise analyses of fMRI and structural data. Our results identified multiple regions within parietal cortex as convergence areas of task deactivation and atrophy in aMCI. Relationships between parietal regions showing overlapping task deactivation reductions and atrophy in aMCI were then explored. Regression analyses demonstrated minimal correlation between task deactivation reductions and either local or global atrophy in aMCI. In addition, a logistic regression model which combined task deactivation reductions and atrophy in parietal DMN regions showed higher classificatory accuracy of aMCI than separate task deactivation or atrophy models. Results suggest that task deactivation reductions and atrophy in parietal regions provide complementary rather than redundant information in aMCI. Future longitudinal studies will be required to assess the utility of combining task deactivation reductions and atrophy in the detection of early AD. PMID:21860094

  2. Hypnosis and pain perception: An Activation Likelihood Estimation (ALE) meta-analysis of functional neuroimaging studies.

    PubMed

    Del Casale, Antonio; Ferracuti, Stefano; Rapinesi, Chiara; De Rossi, Pietro; Angeletti, Gloria; Sani, Gabriele; Kotzalidis, Georgios D; Girardi, Paolo

    2015-12-01

    Several studies reported that hypnosis can modulate pain perception and tolerance by affecting cortical and subcortical activity in brain regions involved in these processes. We conducted an Activation Likelihood Estimation (ALE) meta-analysis on functional neuroimaging studies of pain perception under hypnosis to identify brain activation-deactivation patterns occurring during hypnotic suggestions aiming at pain reduction, including hypnotic analgesic, pleasant, or depersonalization suggestions (HASs). We searched the PubMed, Embase and PsycInfo databases; we included papers published in peer-reviewed journals dealing with functional neuroimaging and hypnosis-modulated pain perception. The ALE meta-analysis encompassed data from 75 healthy volunteers reported in 8 functional neuroimaging studies. HASs during experimentally-induced pain compared to control conditions correlated with significant activations of the right anterior cingulate cortex (Brodmann's Area [BA] 32), left superior frontal gyrus (BA 6), and right insula, and deactivation of right midline nuclei of the thalamus. HASs during experimental pain impact both cortical and subcortical brain activity. The anterior cingulate, left superior frontal, and right insular cortices activation increases could induce a thalamic deactivation (top-down inhibition), which may correlate with reductions in pain intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Sources of deactivation during glycerol conversion on Ni/γ-Al 2 O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimentão, R. J.; Miranda, B. C.; Szanyi, J.

    Hydrogenolysis of glycerol was studied using a diluted aqueous solution of glycerol in gas phase and atmospheric pressure on Ni/γ-Al2O3 catalyst. The catalytic transformation of glycerol generates products derived from dehydration, dehydrogenation, hydrogenolysis and condensation reactions. Deep hydrogenolysis route to produce CH4 prevails in the first few hours of reaction. As the reaction time progress, dehydration-dehydrogenation products start to appear. Here, a description of the deactivation sources and its effects on the catalytic performance of Ni catalyst was proposed. The catalyst was characterized before and after the catalytic reaction by high-resolution transmission electron microscopy (HRTEM) and by employing Fourier transformedmore » infrared spectroscopy (FTIR) of adsorbed CO. A source of deactivation was due to carbonaceous deposition. FTIR at low CO dosing pressure reveal bands assignments species essentially due to linear and bridge carbonyls, whereas high pressure CO dosing produces a complex spectra due to polycarbonyls. X-ray absorption near edge structure (XANES) analysis was employed to reveal the initial degree of reduction of the fresh catalyst. The oxidation of metallic Ni in the course of reaction may also be considered as a source of deactivation. Ni oxide species promote dehydration routes. Alumina support facilitates nickel species to be more active toward interacting with glycerol. Dehydration, which takes place on the acid sites, is the mainly route related to the generation of carbon deposition and to the observed catalyst deactivation. Another source of deactivation was due to carbiding of Ni to form Ni3C. The regeneration of used Ni catalyst was achieved by oxidation-reduction steps at 723 K.« less

  4. Specialization in the default mode: Task-induced brain deactivations dissociate between visual working memory and attention.

    PubMed

    Mayer, Jutta S; Roebroeck, Alard; Maurer, Konrad; Linden, David E J

    2010-01-01

    The idea of an organized mode of brain function that is present as default state and suspended during goal-directed behaviors has recently gained much interest in the study of human brain function. The default mode hypothesis is based on the repeated observation that certain brain areas show task-induced deactivations across a wide range of cognitive tasks. In this event-related functional resonance imaging study we tested the default mode hypothesis by comparing common and selective patterns of BOLD deactivation in response to the demands on visual attention and working memory (WM) that were independently modulated within one task. The results revealed task-induced deactivations within regions of the default mode network (DMN) with a segregation of areas that were additively deactivated by an increase in the demands on both attention and WM, and areas that were selectively deactivated by either high attentional demand or WM load. Attention-selective deactivations appeared in the left ventrolateral and medial prefrontal cortex and the left lateral temporal cortex. Conversely, WM-selective deactivations were found predominantly in the right hemisphere including the medial-parietal, the lateral temporo-parietal, and the medial prefrontal cortex. Moreover, during WM encoding deactivated regions showed task-specific functional connectivity. These findings demonstrate that task-induced deactivations within parts of the DMN depend on the specific characteristics of the attention and WM components of the task. The DMN can thus be subdivided into a set of brain regions that deactivate indiscriminately in response to cognitive demand ("the core DMN") and a part whose deactivation depends on the specific task. 2009 Wiley-Liss, Inc.

  5. INACTIVATION OF E. COLI PYRUVATE FORMATE-LYASE: ROLE OF AdhE AND SMALL MOLECULES

    PubMed Central

    Nnyepi, Mbako R.; Peng, Yi; Broderick, Joan B.

    2007-01-01

    E. coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectible, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both β-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical. PMID:17280641

  6. 49 CFR 192.727 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Abandonment or deactivation of facilities. 192.727... Abandonment or deactivation of facilities. (a) Each operator shall conduct abandonment or deactivation of... pipeline facility or each abandoned onshore pipeline facility that crosses over, under or through a...

  7. Family Mode Deactivation Therapy Results and Implications

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This article highlights the inclusion of Mode Deactivation Therapy as a treatment modality for families in crisis. As an empirically validated treatment, Mode Deactivation Therapy has been effective in treating a wide variety of psychological issues. Mode Deactivation Therapy, (MDT) was developed to treat adolescents with disorders of conduct…

  8. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    PubMed

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  9. The Effect of Opioid Receptor Blockade on the Neural Processing of Thermal Stimuli

    PubMed Central

    Schoell, Eszter D.; Bingel, Ulrike; Eippert, Falk; Yacubian, Juliana; Christiansen, Kerrin; Andresen, Hilke; May, Arne; Buechel, Christian

    2010-01-01

    The endogenous opioid system represents one of the principal systems in the modulation of pain. This has been demonstrated in studies of placebo analgesia and stress-induced analgesia, where anti-nociceptive activity triggered by pain itself or by cognitive states is blocked by opioid antagonists. The aim of this study was to characterize the effect of opioid receptor blockade on the physiological processing of painful thermal stimulation in the absence of cognitive manipulation. We therefore measured BOLD (blood oxygen level dependent) signal responses and intensity ratings to non-painful and painful thermal stimuli in a double-blind, cross-over design using the opioid receptor antagonist naloxone. On the behavioral level, we observed an increase in intensity ratings under naloxone due mainly to a difference in the non-painful stimuli. On the neural level, painful thermal stimulation was associated with a negative BOLD signal within the pregenual anterior cingulate cortex, and this deactivation was abolished by naloxone. PMID:20811582

  10. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du Yuzhe; Song Weizhong; Groome, James R.

    2010-08-15

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action ofmore » pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.« less

  11. Psychosocial versus physiological stress – meta-analyses on deactivations and activations of the neural correlates of stress reactions

    PubMed Central

    Kogler, Lydia; Mueller, Veronika I.; Chang, Amy; Eickhoff, Simon B.; Fox, Peter T.; Gur, Ruben C.; Derntl, Birgit

    2015-01-01

    Stress is present in everyday life in various forms and situations. Two stressors frequently investigated are physiological and psychosocial stress. Besides similar subjective and hormonal responses, it has been suggested that they also share common neural substrates. The current study used activation-likelihood-estimation meta-analysis to test this assumption by integrating results of previous neuroimaging studies on stress processing. Reported results are cluster-level FWE corrected. The inferior frontal gyrus (IFG) and the anterior insula (AI) were the only regions that demonstrated overlapping activation for both stressors. Analysis of physiological stress showed consistent activation of cognitive and affective components of pain processing such as the insula, striatum, or the middle cingulate cortex. Contrarily, analysis across psychosocial stress revealed consistent activation of the right superior temporal gyrus and deactivation of the striatum. Notably, parts of the striatum appeared to be functionally specified: the dorsal striatum was activated in physiological stress, whereas the ventral striatum was deactivated in psychosocial stress. Additional functional connectivity and decoding analyses further characterized this functional heterogeneity and revealed higher associations of the dorsal striatum with motor regions and of the ventral striatum with reward processing. Based on our meta-analytic approach, activation of the IFG and the AI seems to indicate a global neural stress reaction. While physiological stress activates a motoric fight-or-flight reaction, during psychosocial stress attention is shifted towards emotion regulation and goal-directed behavior, and reward processing is reduced. Our results show the significance of differentiating physiological and psychosocial stress in neural engagement. Furthermore, the assessment of deactivations in addition to activations in stress research is highly recommended. PMID:26123376

  12. PUREX/UO{sub 3} deactivation project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO{sub 3}) Plant, which converted the PUREX liquid uranium nitrate product to solid UO{sub 3} powder. Final UO{sub 3} Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO{sub 3} Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retainedmore » during the post-deactivation period. The PUREX/UO{sub 3} Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings.« less

  13. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning.

    PubMed

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning.

  14. AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate.

    PubMed

    Partin, K M; Fleck, M W; Mayer, M L

    1996-11-01

    AMPA receptor GluRA subunits with mutations at position 750, a residue shown previously to control allosteric regulation by cyclothiazide, were analyzed for modulation of deactivation and desensitization by cyclothiazide, aniracetam, and thiocyanate. Point mutations from Ser to Asn, Ala, Asp, Gly, Gln, Met, Cys, Thr, Leu, Val, and Tyr were constructed in GluRAflip. The last four of these mutants were not functional; S750D was active only in the presence of cyclothiazide, and the remaining mutants exhibited altered rates of deactivation and desensitization for control responses to glutamate, and showed differential modulation by cyclothiazide and aniracetam. Results from kinetic analysis are consistent with aniracetam and cyclothiazide acting via distinct mechanisms. Our experiments demonstrate for the first time the functional importance of residue 750 in regulating intrinsic channel-gating kinetics and emphasize the biological significance of alternative splicing in the M3-M4 extracellular loop.

  15. Epidemics in Adaptive Social Networks with Temporary Link Deactivation

    NASA Astrophysics Data System (ADS)

    Tunc, Ilker; Shkarayev, Maxim S.; Shaw, Leah B.

    2013-04-01

    Disease spread in a society depends on the topology of the network of social contacts. Moreover, individuals may respond to the epidemic by adapting their contacts to reduce the risk of infection, thus changing the network structure and affecting future disease spread. We propose an adaptation mechanism where healthy individuals may choose to temporarily deactivate their contacts with sick individuals, allowing reactivation once both individuals are healthy. We develop a mean-field description of this system and find two distinct regimes: slow network dynamics, where the adaptation mechanism simply reduces the effective number of contacts per individual, and fast network dynamics, where more efficient adaptation reduces the spread of disease by targeting dangerous connections. Analysis of the bifurcation structure is supported by numerical simulations of disease spread on an adaptive network. The system displays a single parameter-dependent stable steady state and non-monotonic dependence of connectivity on link deactivation rate.

  16. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by usingmore » Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.« less

  17. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Zhenhua; Yan, Binhang; Zhang, Li

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  18. Comparison of Methodologies of Activation Barrier Measurements for Reactions with Deactivation

    DOE PAGES

    Xie, Zhenhua; Yan, Binhang; Zhang, Li; ...

    2017-01-25

    In this work, methodologies of activation barrier measurements for reactions with deactivation were theoretically analyzed. Reforming of ethane with CO 2 was introduced as an example for reactions with deactivation to experimentally evaluate these methodologies. Both the theoretical and experimental results showed that due to catalyst deactivation, the conventional method would inevitably lead to a much lower activation barrier, compared to the intrinsic value, even though heat and mass transport limitations were excluded. In this work, an optimal method was identified in order to provide a reliable and efficient activation barrier measurement for reactions with deactivation.

  19. Defibrillator patients should not be denied a peaceful death.

    PubMed

    Westerdahl, Annika Kinch; Sutton, Richard; Frykman, Viveka

    2015-03-01

    Implantable defibrillators (ICDs) prevent sudden cardiac death. With declining health, ICD therapy may prolong death and expose the patient to unnecessary pain and anxiety. Few studies have addressed end of life care in ICD patients. The objective of this study was to investigate end of life in ICD patients, with respect to location of death; duration between do-not-resuscitate (DNR)-orders and deactivation of ICD therapy or DNR and time of death. A descriptive analysis of 65 deceased ICD patients, all whom had a written DNR-order before death, is presented. The majority (86%) was treated in hospitals, mainly (63%) university hospitals, and many (33%) in cardiology wards. Despite DNR-order, ICD shock therapy was active in 51% of all patients. In those with therapy deactivated at death, therapy deactivation was carried out two days or more after DNR-order in more than a third (38%). The time from DNR decision to death in patients with therapy active had a median of four days (IQR 1-38). During the last 24h of life, 24% of the patients experienced shock treatment. The majority of ICD patients with a DNR-order were treated in university hospitals. More than half still had shock treatment active at time of death with a median of four days or more between DNR decision and death. Patients with therapy deactivated, two days or more elapsed in more than a third from DNR decision to deactivation of therapy, exposing patients to a high risk of painful shocks before death. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Catalytic activity and stability of nanometic Rh overlayers prepared by pulsed arc-plasma deposition and r.f. magnetron-sputtering

    NASA Astrophysics Data System (ADS)

    Misumi, Satoshi; Matsumoto, Akinori; Yoshida, Hiroshi; Sato, Tetsuya; Machida, Masato

    2018-01-01

    50 μm-thick Fe-Cr-Al metal foils covered by 7 nm-thick Rh overlayers were prepared by pulsed arc-plasma (AP) and r.f. magnetron sputtering technique to compare their catalytic activities. As-prepared metal foil catalysts were wrapped into a honeycomb structure with a density of 900 cells per square inches and the stoichiometric NO-CO-C3H6-O2 reaction was performed at space velocity of 1.2 × 105 h-1. During temperature ramp at 10 °C min-1, honeycomb catalysts showed steep light-off of NO, CO, and C3H6 at above 200 °C and their conversions soon reached to almost 100%. Both catalysts exhibited high turnover frequencies close to or more than 50-fold greater compared with those for a reference Rh/ZrO2 powder-coated cordierite honeycomb prepared using a conventional slurry coating. When the temperature ramping was repeated, however, the catalytic activity was decreased to the different extent depending on the preparation procedure. Significant deactivation occurred only when prepared by sputtering, whereas the sample prepared by AP showed no signs of deactivation. The deactivation is associated with the formation of passivation layers consisting of Fe, Cr, and Al oxides, which covered the surface and decreased the surface concentration of Rh. The Rh overlayer formed by AP was found to be thermally stable because of the strong adhesion to the metal foil surface, compared to the sample prepared by sputtering.

  1. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells.

    PubMed

    Xiao, Chaoxian; Maligal-Ganesh, Raghu V; Li, Tao; Qi, Zhiyuan; Guo, Zhiyong; Brashler, Kyle T; Goes, Shannon; Li, Xinle; Goh, Tian Wei; Winans, Randall E; Huang, Wenyu

    2013-10-01

    We report the synthesis, structural characterization, thermal stability study, and regeneration of nanostructured catalysts made of 2.9 nm Pt nanoparticles sandwiched between a 180 nm SiO2 core and a mesoporous SiO2 shell. The SiO2 shell consists of 2.5 nm channels that are aligned perpendicular to the surface of the SiO2 core. The nanostructure mimics Pt nanoparticles that sit in mesoporous SiO2 wells (Pt@MSWs). By using synchrotron-based small-angle X-ray scattering, we were able to prove the ordered structure of the aligned mesoporous shell. By using high-temperature cyclohexane dehydrogenation as a model reaction, we found that the Pt@MSWs of different well depths showed stable activity at 500 °C after the induction period. Conversely, a control catalyst, SiO2 -sphere-supported Pt nanoparticles without a mesoporous SiO2 shell (Pt/SiO2 ), was deactivated. We deliberately deactivated the Pt@MSWs catalyst with a 50 nm deep well by using carbon deposition induced by a low H2 /cyclohexane ratio. The deactivated Pt@MSWs catalyst was regenerated by calcination at 500 °C with 20 % O2 balanced with He. After the regeneration treatments, the activity of the Pt@MSWs catalyst was fully restored. Our results suggest that the nanostructured catalysts-Pt nanoparticles confined inside mesoporous SiO2 wells-are stable and regenerable for treatments and reactions that require high temperatures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient Removal of Methane over Cobalt-Monoxide-Doped AuPd Nanocatalysts.

    PubMed

    Xie, Shaohua; Liu, Yuxi; Deng, Jiguang; Zang, Simiao; Zhang, Zhenhua; Arandiyan, Hamidreza; Dai, Hongxing

    2017-02-21

    To overcome deactivation of Pd-based catalysts at high temperatures, we herein design a novel pathway by introducing a certain amount of CoO to the supported Au-Pd alloy nanoparticles (NPs) to generate high-performance Au-Pd-xCoO/three-dimensionally ordered macroporous (3DOM) Co 3 O 4 (x is the Co/Pd molar ratio) catalysts. The doping of CoO induced the formation of PdO-CoO active sites, which was beneficial for the improvement in adsorption and activation of CH 4 and catalytic performance. The Au-Pd-0.40CoO/3DOM Co 3 O 4 sample performed the best (T 90% = 341 °C at a space velocity of 20 000 mL g -1 h -1 ). Deactivation of the 3DOM Co 3 O 4 -supported Au-Pd, Pd-CoO, and Au-Pd-xCoO nanocatalysts resulting from water vapor addition was due to the formation and accumulation of hydroxyl on the catalyst surface, whereas deactivation of the Pd-CoO/3DOM Co 3 O 4 catalyst at high temperatures (680-800 °C) might be due to decomposition of the PdO y active phase into aggregated Pd 0 NPs. The Au-Pd-xCoO/3DOM Co 3 O 4 nanocatalysts exhibited better thermal stability and water tolerance ability compared to the 3DOM Co 3 O 4 -supported Au-Pd and Pd-CoO nanocatalysts. We believe that the supported Au-Pd-xCoO nanomaterials are promising catalysts in practical applications for organic combustion.

  3. Demonstration of thermal dissipation of absorbed quanta during energy-dependent quenching of chlorophyll fluorescence in photosynthetic membranes.

    PubMed

    Yahyaoui, W; Harnois, J; Carpentier, R

    1998-11-27

    When plant leaves or chloroplasts are exposed to illumination that exceeds their photosynthetic capacity, photoprotective mechanisms such as described by the energy-dependent (non-photochemical) quenching of chlorophyll fluorescence are involved. The protective action is attributed to an increased rate constant for thermal dissipation of absorbed quanta. We applied photoacoustic spectroscopy to monitor thermal dissipation in spinach thylakoid membranes together with simultaneous measurement of chlorophyll fluorescence in the presence of inhibitors of opposite action on the formation of delta pH across the thylakoid membrane (tentoxin and nigericin/valinomycin). A linear relationship between the appearance of fluorescence quenching during formation of the delta pH and the reciprocal variation of thermal dissipation was demonstrated. Dicyclohexylcarbodiimide, which is known to prevent protonation of the minor light-harvesting complexes of photosystem II, significantly reduced the formation of fluorescence quenching and the concurrent increase in thermal dissipation. However, the addition of exogenous ascorbate to activate the xanthophyll de-epoxidase increased non-photochemical fluorescence quenching without affecting the measured thermal dissipation. It is concluded that a portion of energy-dependent fluorescence quenching that is independent of de-epoxidase activity can be readily measured by photoacoustic spectroscopy as an increase in thermal deactivation processes.

  4. Sulfation of ceria-zirconia model automotive emissions control catalysts

    NASA Astrophysics Data System (ADS)

    Nelson, Alan Edwin

    Cerium-zirconium mixed metal oxides are used in automotive emissions control catalysts to regulate the partial pressure of oxygen near the catalyst surface. The near surface oxygen partial pressure is regulated through transfer of atomic oxygen from the ceria-zirconia solid matrix to the platinum group metals to form metal oxides capable of oxidizing carbon monoxide and unburned hydrocarbons. Although the addition of zirconium in the cubic lattice of ceria increases the oxygen storage capacity and thermal stability of the ceria matrix, the cerium-zirconium oxide system remains particularly susceptible to deactivation from sulfur compounds. While the overall effect of sulfur on these systems is understood (partially irreversible deactivation), the fundamental and molecular interaction of sulfur with ceria-zirconia remains a challenging problem. Ceria-zirconia metal oxide solid solutions have been prepared through co-precipitation with nitrate precursors. The prepared powders were calcined and subsequently formed into planer wafers and characterized for chemical and physical attributes. The prepared samples were subsequently exposed to a sulfur dioxide based environment and characterized with spectroscopic techniques to characterize the extent of sulfation and the nature of surface sulfur species. The extent of sulfation of the model ceria-zirconia systems was characterized with Auger electron spectroscopy (AES) prior to and after treatment in a microreactor. Strong dependencies were observed between the atomic ratio of ceria to zirconia and the extent of sulfation. In addition, the partial pressure of sulfur dioxide during treatments also correlated to the extent of sulfation, while temperature only slightly effected the extent of sulfation. The AES data suggests the gas phase sulfur dioxide preferentially chemisorbs on surface ceria atoms and the extent of sulfation is heavily dependent on sulfur dioxide concentrations and only slightly dependent on catalyst temperatures, as confirmed by thermal programmed desorption (TPD). While hydrogen exposure indicated slight sulfur removal, exposure to a redox environment or atmosphere nearly eliminated the quantity of chemisorbed surface sulfur. The nature of sulfur removal is attributed to the inherent redox properties of ceria-zirconia systems. The complete analysis provides mechanistic insight into sulfation dependencies and fundamental information regarding sulfur adsorption on ceria-zirconia model automotive emissions control systems.

  5. Automated Activation and Deactivation of a System Under Test

    NASA Technical Reports Server (NTRS)

    Poff, Mark A.

    2006-01-01

    The MPLM Automated Activation/Deactivation application (MPLM means Multi-Purpose Logistic Module) was created with a three-fold purpose in mind: 1. To reduce the possibility of human error in issuing commands to, or interpreting telemetry from, the MPLM power, computer, and environmental control systems; 2. To reduce the amount of test time required for the repetitive activation/deactivation processes; and 3. To reduce the number of on-console personnel required for activation/ deactivation. All of these have been demonstrated with the release of the software. While some degree of automated end-item commanding had previously been performed for space-station hardware in the test environment, none approached the functionality and flexibility of this application. For MPLM activation, it provides mouse-click selection of the hardware complement to be activated, activates the desired hardware and verifies proper feedbacks, and alerts the user when telemetry indicates an error condition or manual intervention is required. For MPLM deactivation, the product senses which end items are active and deactivates them in the proper sequence. For historical purposes, an on-line log is maintained of commands issued and telemetry points monitored. The benefits of the MPLM Automated Activation/ Deactivation application were demonstrated with its first use in December 2002, when it flawlessly performed MPLM activation in 8 minutes (versus as much as 2.4 hours for previous manual activations), and performed MPLM deactivation in 3 minutes (versus 66 minutes for previous manual deactivations). The number of test team members required has dropped from eight to four, and in actuality the software can be operated by a sole (knowledgeable) system engineer.

  6. The effect of acupuncture needle combination on central pain processing-an fMRI study

    PubMed Central

    2014-01-01

    Background Empirical acupuncture treatment paradigm for acute pain utilizing Tendinomuscular Meridians (TMM) calls for the stimulation of Ting Points (TPs) and Gathering point(GP). This study aims to compare the supraspinal neuronal mechanisms associated with both TPs and GP needling (EA3), and TPs needling alone (EA2) with fMRI. Results A significant (P < 0.01) difference between pre-scan (heat Pain) HP, and post-EA HP VAS scores in both paradigms was noted (n = 11). The post-EA HP VAS score was significantly (P < 0.05) lower with EA3 comparing to EA2 Within-group random effect analysis indicated that EA3+HP>EA3 (condition EA3+HP subtracted by condition EA3) appeared to exert a significant degree of activity suppression in the affective supraspinal regions including the IPL, anterior cingulate cortex (ACC) and the insular cortex (IN). This level of suppression was not observed in the EA2+HP>EA2 (condition EA2+HP subtracted by condition EA2) within-group random effect analysis Between-group random effect analysis indicated that EA3 induced a significantly (P < 0.01, cluster size threshold 150) higher degree of deactivation than EA2 in several pain related supraspinal regions including the right prefrontal cortex, rostral anterior cingulate (rACC), medial cingulate cortex, left inferior frontal lobe and posterior cerebellum. The 2-factor ANOVA in those regions indicated both rACC and posterior cerebellum had a significant (P < 0.01) needle effect, and the right prefrontal area showed a significant (P < 0.01) HP effect. However, a significant interaction between the two factors was only found in the right prefrontal lobe. Granger causality analysis showed EA3 induced a much higher degree of inference among HP related supraspinal somatosensory, affective and modulatory components than EA2. Deactivation pattern at the medullary-pontine area casted a direct inference on the deactivation pattern of secondary somatosensory cortices which also affected the deactivation of the IN. Conclusions While both EA2 and EA3 induced a significant degree of deactivation in the human brain regions related to pain processing, the addition of GP stimulation further exerts an inhibitory effect on the ascending spinoreticular pain pathway. Therefore, different needling position as mandated in different empirical acupuncture treatment paradigms may play a different role in modulating pain related neuronal functions. PMID:24667015

  7. Age-related increase in brain activity during task-related and -negative networks and numerical inductive reasoning

    PubMed Central

    Sun, Li; Liang, Peipeng; Jia, Xiuqin; Qi, Zhigang; Li, Kuncheng

    2014-01-01

    Objective: Recent neuroimaging studies have shown that elderly adults exhibit increased and decreased activation on various cognitive tasks, yet little is known about age-related changes in inductive reasoning. Methods: To investigate the neural basis for the aging effect on inductive reasoning, 15 young and 15 elderly subjects performed numerical inductive reasoning while in a magnetic resonance (MR) scanner. Results: Functional magnetic resonance imaging (fMRI) analysis revealed that numerical inductive reasoning, relative to rest, yielded multiple frontal, temporal, parietal, and some subcortical area activations for both age groups. In addition, the younger participants showed significant regions of task-induced deactivation, while no deactivation occurred in the elderly adults. Direct group comparisons showed that elderly adults exhibited greater activity in regions of task-related activation and areas showing task-induced deactivation (TID) in the younger group. Conclusions: Our findings suggest an age-related deficiency in neural function and resource allocation during inductive reasoning. PMID:25337240

  8. Serum resistance to singlet oxygen in patients with diabetes mellitus in comparison to healthy donors.

    PubMed

    Lhommeau, Isabelle; Douillard, Samuel; Bigot, Edith; Benoit, Isabelle; Krempf, Michel; Patrice, Thierry

    2011-09-01

    Diabetes mellitus causes endothelial injury through oxidative stress involving reactive oxygen species and peroxides as well as inflammation, both of which consume antioxidant defenses. Singlet oxygen ((1)O(2)) is produced by leukocytes during inflammatory and biochemical reactions and deactivated by producing reactive oxygen species and peroxides. To determine whether serum was capable of deactivating (1)O(2), we triggered a photo reaction in sera from 53 healthy donors and 52 diabetic patients. Immediately after light delivery, dichlorofluorescein was added and then its fluorescence was recorded. The mean capacity of (1)O(2) or secondary oxidant deactivation was reduced in patients with diabetes mellitus. Hemolysis reduced deactivation of (1)O(2)-induced secondary oxidants in both healthy and diabetic patients. Body mass index, age, platelet counts, and blood cell numbers exerted a nonlinear influence. High levels of glycated hemoglobin were associated with an increased deactivation of oxidative species, whereas high-density lipoprotein cholesterol, total cholesterol, and the total cholesterol to high-density lipoprotein cholesterol ratio decreased the serum deactivation capacity. Oral antidiabetics bore no influence on deactivation, which was restored by insulin in women. Deactivation capacity was lower in women, who had half the complications found in men, suggesting that, with more severe diabetes mellitus, protection was maintained against complications. Resistance to (1)O(2) should be considered during the monitoring of diabetes mellitus. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  10. Mechanism of acetaldehyde-induced deactivation of microbial lipases

    PubMed Central

    2011-01-01

    Background Microbial lipases represent the most important class of biocatalysts used for a wealth of applications in organic synthesis. An often applied reaction is the lipase-catalyzed transesterification of vinyl esters and alcohols resulting in the formation of acetaldehyde which is known to deactivate microbial lipases, presumably by structural changes caused by initial Schiff-base formation at solvent accessible lysine residues. Previous studies showed that several lipases were sensitive toward acetaldehyde deactivation whereas others were insensitive; however, a general explanation of the acetaldehyde-induced inactivation mechanism is missing. Results Based on five microbial lipases from Candida rugosa, Rhizopus oryzae, Pseudomonas fluorescens and Bacillus subtilis we demonstrate that the protonation state of lysine ε-amino groups is decisive for their sensitivity toward acetaldehyde. Analysis of the diverse modification products of Bacillus subtilis lipases in the presence of acetaldehyde revealed several stable products such as α,β-unsaturated polyenals, which result from base and/or amino acid catalyzed aldol condensation of acetaldehyde. Our studies indicate that these products induce the formation of stable Michael-adducts at solvent-accessible amino acids and thus lead to enzyme deactivation. Further, our results indicate Schiff-base formation with acetaldehyde to be involved in crosslinking of lipase molecules. Conclusions Differences in stability observed with various commercially available microbial lipases most probably result from different purification procedures carried out by the respective manufacturers. We observed that the pH of the buffer used prior to lyophilization of the enzyme sample is of utmost importance. The mechanism of acetaldehyde-induced deactivation of microbial lipases involves the generation of α,β-unsaturated polyenals from acetaldehyde which subsequently form stable Michael-adducts with the enzymes. Lyophilization of the enzymes from buffer at pH 6.0 can provide an easy and effective way to stabilize lipases toward inactivation by acetaldehyde. PMID:21342514

  11. Deactivation of cellulases by phenols

    USDA-ARS?s Scientific Manuscript database

    Pretreatment of lignocellulosic materials may result in the release of inhibitors and deactivators of cellulose enzyme hydrolysis. We report the identification of phenols with major inhibition and/or deactivation effect on enzymes used for conversion of cellulose to ethanol. The inhibition effects w...

  12. Upper-crustal Stress Field Variations During the Building of the Central Andes: Constrains on the Activation/deactivation of Megadetachments

    NASA Astrophysics Data System (ADS)

    Giambiagi, L.; Tassara, A.; Mescua, J.; Suriano, J.; Mahoney, J. B.; Hoke, G. D.; Spagnotto, S. L.; Lossada, A. C.; Mardónez, D.; Mazzitelli, M.; Barrionuevo, M.

    2015-12-01

    Nowadays, it is broadly accepted that the Central Andes resulted largely from crustal shortening in the last ~45 Ma, driven by horizontal forces as a consequence of subduction of the Nazca plate beneath South America. However, the way this shortening is achieved is still a matter a debate. Structural, seismological, thermochronological, isotopical and sedimentological studies of the Central Andes, together with thermomechanical modeling, suggest that different megadetachments located shallow in the upper crust were active during the construction of the Andes. Constrains on changes in the state of stress in the crust gleaned from more than 1,500 fault-slip data in the arc region provide insights into how and when these megadetachments get activated or deactivated. We used a forward modeling procedure to examine five transects across the Central Andes, at 21.5°, 24°, 30°, 34° and 35°S, with particular emphasis on the relationship between deep and shallow structures. Our kinematic-thermomechanical models show that most of the upper-middle crust has a brittle-elastic behavior particularly for the cold and rigid forearc and foreland regions, and a ductile behavior below the thermally weakened arc region. Our models assume a shallow, sub-horizontal megadetachment located at the shallowest brittle-ductile transition, which concentrates the majority of the horizontal crustal shortening between the fore-arc and the South American craton. During this horizontal shortening, the crust gets thick and topography rises due to buoyancy of the crustal root. The threshold of this thickening is achieved when the bouyancy force equals the horizontal force. At this point, the megadetachment deactives and the crustal root widens eastwards in concert with ductile deformation in the lower crust and the generation of a new megadetachment. By studying changes in the paleostress fields along the arc region, from compression to strike-slip, and strike-slip to extension, associated with σ3/σ2 and σ2/σ1 permutations respectively, together with the timing of uplift and exhumation of the morphostructural units across the transects, we can constrain the timing of activation/deactivation of the detachments responsible for the Andean deformation.

  13. Deactivation of implantable cardioverter defibrillators in terminal illness and end of life care.

    PubMed

    Kirkpatrick, James N; Gottlieb, Maia; Sehgal, Priya; Patel, Rutuke; Verdino, Ralph J

    2012-01-01

    Cardiology professional societies have recommended that patients with cardiovascular implantable electronic devices complete advance directives (ADs). However, physicians rarely discuss end of life handling of implantable cardioverter defibrillators (ICDs), and standard AD forms do not address the presence of ICDs. We conducted a telephone survey of 278 patients with an ICD from a large, academic hospital. The average period since implantation was 5.15 years. More than 1/3 (38%) had been shocked, with a mean of 4.69 shocks. More than 1/2 had executed an AD, but only 3 had included a plan for their ICD. Most subjects (86%) had never considered what to do with their ICD if they had a serious illness and were unlikely to survive. When asked about ICD deactivation in an end of life situation, 42% said it would depend, 28% favored deactivation, and 11% would not deactivate. One quarter (26%) thought ICD deactivation was a form of assisted suicide, 22% thought a do not resuscitate order did not mean that the ICD should be deactivated, and 46% responded that the ICD should not be automatically deactivated in hospice. The answers did not correlate with any demographic factors. Almost all (95%) agreed that patients should have the opportunity to execute an AD that directs handing of an ICD. When asked who should be responsible for discussing this device for an AD, 31% said electrophysiologists, 45% said general cardiologists, and 14% said primary care physicians. In conclusion, the results of the present study highlight the lack of consensus among patients with an ICD on the issue of deactivation at the end of a patient's life. These findings suggest cardiologists should discuss end of life care and device deactivation with their patients with an ICD. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Structure of the Deactive State of Mammalian Respiratory Complex I.

    PubMed

    Blaza, James N; Vinothkumar, Kutti R; Hirst, Judy

    2018-02-06

    Complex I (NADH:ubiquinone oxidoreductase) is central to energy metabolism in mammalian mitochondria. It couples NADH oxidation by ubiquinone to proton transport across the energy-conserving inner membrane, catalyzing respiration and driving ATP synthesis. In the absence of substrates, active complex I gradually enters a pronounced resting or deactive state. The active-deactive transition occurs during ischemia and is crucial for controlling how respiration recovers upon reperfusion. Here, we set a highly active preparation of Bos taurus complex I into the biochemically defined deactive state, and used single-particle electron cryomicroscopy to determine its structure to 4.1 Å resolution. We show that the deactive state arises when critical structural elements that form the ubiquinone-binding site become disordered, and we propose reactivation is induced when substrate binding to the NADH-reduced enzyme templates their reordering. Our structure both rationalizes biochemical data on the deactive state and offers new insights into its physiological and cellular roles. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. 49 CFR 195.59 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Abandonment or deactivation of facilities. 195.59... Abandonment or deactivation of facilities. For each abandoned offshore pipeline facility or each abandoned onshore pipeline facility that crosses over, under or through a commercially navigable waterway, the last...

  16. Plasma flux-dependent lipid A deactivation

    NASA Astrophysics Data System (ADS)

    Chang, Hung-Wen; Hsu, Cheng-Che; Ahmed, Musahid; Liu, Suet Yi; Fang, Yigang; Seog, Joonil; Oehrlein, Gottlieb S.; Graves, David B.

    2014-06-01

    This paper reports the influence of gas plasma flux on endotoxin lipid A film deactivation. To study the effect of the flux magnitude of reactive species, a modified low-pressure inductively coupled plasma (ICP) with O radical flux ˜1016 cm-2 s-1 was used. After ICP exposures, it was observed that while the Fourier transform infrared absorbance of fatty chains responsible for the toxicity drops by 80% through the film, no obvious film endotoxin deactivation is seen. This is in contrast to that previously observed under low flux exposure conducted in a vacuum beam system: near-surface only loss of fatty chains led to significant film deactivation. Secondary ion mass spectrometry characterization of changes at the film surface did not appear to correlate with the degree of deactivation. Lipid A films need to be nearly completely removed in order to detect significant deactivation under high flux conditions. Additional high reactive species flux experiments were conducted using an atmospheric pressure helium plasma jet and a UV/ozone device. Exposure of lipid A films to reactive species with these devices showed similar deactivation behaviour. The causes for the difference between low and high flux exposures may be due to the nature of near-surface structural modifications as a function of the rate of film removal.

  17. Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles.

    PubMed

    Ladole, Mayur Ramrao; Mevada, Jayesh Sevantilal; Pandit, Aniruddha Bhalchandra

    2017-09-01

    In the present work, effect of low power, low frequency ultrasound on cellulase immobilized magnetic nanoparticles (cellulase@MNPs) was studied. To gain maximum activity recovery in cellulase@MNPs various parameters viz. ratio of MNPs:cellulase, concentration of glutaraldehyde and cross-linking time were optimized. The influence of ultrasonic power on cellulase@MNPs was studied. Under ultrasonic conditions at 24kHz, 6W power, and 6min of incubation time there was almost 3.6 fold increased in the catalytic activity of immobilized cellulase over the control. Results also indicated that there was improvement in pH and temperature stability of cellulase@MNPs. Furthermore, thermal deactivation energy required was more in cellulase@MNPs than that of the free cellulase. Secondary structural analysis revealed that there were conformational changes in free cellulase and cellulase@MNPs before and after sonication which might be responsible for enhanced activity after ultrasonication. Finally, the influence of ultrasound and cellulase@MNPs for biomass hydrolysis was studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Production of biodiesel fuel by transesterification of different vegetable oils with methanol using Al₂O₃ modified MgZnO catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2013-03-01

    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, D.; Fowler, J.; Tomasi, D.

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer)more » and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.« less

  20. Selective inhibition of deactivated mitochondrial complex I by biguanides.

    PubMed

    Matsuzaki, Satoshi; Humphries, Kenneth M

    2015-03-24

    Biguanides are widely used antihyperglycemic agents for diabetes mellitus and prediabetes treatment. Complex I is the rate-limiting step of the mitochondrial electron transport chain (ETC), a major source of mitochondrial free radical production, and a known target of biguanides. Complex I has two reversible conformational states, active and de-active. The deactivated state is promoted in the absence of substrates but is rapidly and fully reversed to the active state in the presence of NADH. The objective of this study was to determine the relative sensitivity of active/de-active complex I to biguanide-mediated inhibition and resulting superoxide radical (O₂(•⁻)) production. Using isolated rat heart mitochondria, we show that deactivation of complex I sensitizes it to metformin and phenformin (4- and 3-fold, respectively), but not to other known complex I inhibitors, such as rotenone. Mitochondrial O₂(•⁻) production by deactivated complex I was measured fluorescently by NADH-dependent 2-hydroxyethidium formation at alkaline pH to impede reactivation. Superoxide production was 260.4% higher than in active complex I at pH 9.4. However, phenformin treatment of de-active complex I decreased O₂(•⁻) production by 14.9%, while rotenone increased production by 42.9%. Mitochondria isolated from rat hearts subjected to cardiac ischemia, a condition known to induce complex I deactivation, were sensitized to phenformin-mediated complex I inhibition. This supports the idea that the effects of biguanides are likely to be influenced by the complex I state in vivo. These results demonstrate that the complex I active and de-active states are a determinant in biguanide-mediated inhibition.

  1. 77 FR 41895 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... bushing with a new bushing and deactivation pin, and installing a new or serviceable stowage bracket for... installation of a new bracket for stowing the deactivation pin. We are issuing this AD to prevent failure of... installing a new or serviceable stowage bracket for the deactivation pins on all airplanes powered by Pratt...

  2. Attention-Induced Deactivations in Very Low Frequency EEG Oscillations: Differential Localisation According to ADHD Symptom Status

    PubMed Central

    Broyd, Samantha J.; Helps, Suzannah K.; Sonuga-Barke, Edmund J. S.

    2011-01-01

    Background The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. Methodology/Principal Findings DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. Conclusions/Significance Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes. PMID:21408092

  3. Role of N-terminal domain and accessory subunits in controlling deactivation-inactivation coupling of Kv4.2 channels.

    PubMed

    Barghaan, Jan; Tozakidou, Magdalini; Ehmke, Heimo; Bähring, Robert

    2008-02-15

    We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2 Delta 2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2 Delta 2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.

  4. Attention, Emotion, and Deactivation of Default Activity in Inferior Medial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Geday, Jacob; Gjedde, Albert

    2009-01-01

    Attention deactivates the inferior medial prefrontal cortex (IMPC), but it is uncertain if emotions can attenuate this deactivation. To test the extent to which common emotions interfere with attention, we measured changes of a blood flow index of brain activity in key areas of the IMPC with positron emission tomography (PET) of labeled water…

  5. Rank-dependent deactivation in network evolution.

    PubMed

    Xu, Xin-Jian; Zhou, Ming-Chen

    2009-12-01

    A rank-dependent deactivation mechanism is introduced to network evolution. The growth dynamics of the network is based on a finite memory of individuals, which is implemented by deactivating one site at each time step. The model shows striking features of a wide range of real-world networks: power-law degree distribution, high clustering coefficient, and disassortative degree correlation.

  6. Patients' perception of implantable cardioverter defibrillator deactivation at the end of life.

    PubMed

    Hill, Loreena; McIlfatrick, Sonja; Taylor, Brian; Dixon, Lana; Harbinson, Mark; Fitzsimons, Donna

    2015-04-01

    Individualised care at the end of life requires professional understanding of the patient's perception of implantable cardioverter defibrillator deactivation. The aim was to evaluate the evidence on patients' perception of implantable cardioverter defibrillator deactivation at end of life. Systematic narrative review of empirical studies was published during 2008-2014. Data were collected from six databases, citations from relevant articles and expert recommendations. In all, 18 studies included with collective population of n = 5810. Concept mapping highlighted three themes: (1) Diverse preferences regarding discussion and deactivation. Deactivation was rarely discussed pre-implantation, with some studies demonstrating patients' reluctance to discuss implantable cardioverter defibrillator deactivation at any stage. Two studies found the majority of patients valued such discussions. Diversity was reflected in patients' willingness to deactivate, ranging from 12% (n = 9) in Irish cohort to 79% (n = 195) in Dutch study. (2) Ethical and legal considerations were predominant in Canadian and American literature as patients wanted to contribute but felt the decision should be a doctor's responsibility. Advance directives were uncommon in Europe, and where they existed the implantable cardioverter defibrillator was not mentioned. (3) 'Living in the now' was evident as despite deteriorating symptoms many patients maintained a positive outlook and anticipated surviving more than 10 years. Several studies asserted living longer was more important than quality of life. Patients regard the implantable cardioverter defibrillator as a complex and solely beneficial device, with little insight regarding its potential impact on a peaceful death. This review confirms the need for professionals to discuss with patients and families implantable cardioverter defibrillator functionality and deactivation at appropriate opportunities. © The Author(s) 2014.

  7. Electro-mechanical heat switch for cryogenic applications

    DOEpatents

    van den Berg, Marcel L.; Batteux, Jan D.; Labov, Simon E.

    2003-01-01

    A heat switch includes two symmetric jaws. Each jaw is comprised of a link connected at a translatable joint to a flexible arm. Each arm rotates about a fixed pivot, and has an articulated end including a thermal contact pad connected to a heat sink. The links are joined together at a translatable main joint. To close the heat switch, a closing solenoid is actuated and forces the main joint to an over-center position. This movement rotates the arms about their pivots, respectively, forces each of them into a stressed configuration, and forces the thermal contact pads towards each other and into compressive contact with a cold finger. The closing solenoid is then deactivated. The heat switch remains closed due to a restoring force generated by the stressed configuration of each arm, until actuation of an opening solenoid returns the main joint to its starting open-switch position.

  8. Concentration-jump analysis of voltage-dependent conductances activated by glutamate and kainate in neurons of the avian cochlear nucleus.

    PubMed Central

    Raman, I M; Trussell, L O

    1995-01-01

    We have examined the mechanisms underlying the voltage sensitivity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors in voltage-clamped outside-out patches and whole cells taken from the nucleus magnocellularis of the chick. Responses to either glutamate or kainate had outwardly rectifying current-voltage relations. The rate and extent of desensitization during prolonged exposure to agonist, and the rate of deactivation after brief exposure to agonist, decreased at positive potentials, suggesting that a kinetic transition was sensitive to membrane potential. Voltage dependence of the peak conductance and of the deactivation kinetics persisted when desensitization was reduced with aniracetam or blocked with cyclothiazide. Furthermore, the rate of recovery from desensitization to glutamate was not voltage dependent. Upon reduction of extracellular divalent cation concentration, kainate-evoked currents increased but preserved rectifying current-voltage relations. Rectification was strongest at lower kainate concentrations. Surprisingly, nonstationary variance analysis of desensitizing responses to glutamate or of the current deactivation after kainate removal revealed an increase in the mean single-channel conductance with more positive membrane potentials. These data indicate that the rectification of the peak response to a high agonist concentration reflects an increase in channel conductance, whereas rectification of steady-state current is dominated by voltage-sensitive channel kinetics. Images FIGURE 2 FIGURE 3 PMID:8580330

  9. Activated Carbon-Based System for the Disposal of Psychoactive Medications

    PubMed Central

    Song, Yang; Manian, Mahima; Fowler, William; Korey, Andrew; Kumar Banga, Ajay

    2016-01-01

    The misuse and improper disposal of psychoactive medications is a major safety and environmental concern. Hence, the proper disposal of these medications is critically important. A drug deactivation system which contains activated carbon offers a unique disposal method. In the present study, deactivation efficiency of this system was tested by using three model psychoactive drugs. HPLC validation was performed for each drug to ensure that the analytical method employed was suitable for its intended use. The method was found to be specific, accurate and precise for analyzing the drugs. The extent and rate of deactivation of the drugs was determined at several time points. After 28 days in the presence of activated carbon, the extent of leaching out of the drugs was evaluated. Deactivation started immediately after addition of the medications into the disposal pouches. Within 8 h, around 47%, 70% and 97% of diazepam, lorazepam and buprenorphine were adsorbed by the activated carbon, respectively. By the end of 28 days, over 99% of all drugs were deactivated. The desorption/leaching study showed that less than 1% of the active ingredients leached out from the activated carbon. Thus, this deactivation system can be successfully used for the disposal of psychoactive medications. PMID:27827989

  10. Functional Consequences of Complementarity-determining Region Deactivation in a Multifunctional Anti-nucleic Acid Antibody*

    PubMed Central

    Lee, Jiyeon; Kim, Hye-Jin; Roh, Jooho; Seo, Youngsil; Kim, Minjae; Jun, Hye-Ryeong; Pham, Chuong D.; Kwon, Myung-Hee

    2013-01-01

    Many murine monoclonal anti-DNA antibodies (Abs) derived from mice models for systemic lupus erythematosus have additional cell-penetration and/or nucleic acid-hydrolysis properties. Here, we examined the influence of deactivating each complementarity-determining region (CDR) within a multifunctional anti-nucleic acid antibody (Ab) that possesses these activities, the catalytic 3D8 single chain variable fragment (scFv). CDR-deactivated 3D8 scFv variants were generated by replacing all of the amino acids within each CDR with Gly/Ser residues. The structure of 3D8 scFv accommodated single complete CDR deactivations. Different functional activities of 3D8 scFv were affected differently depending on which CDR was deactivated. The only exception was CDR1, located within the light chain (LCDR1); deactivation of LCDR1 abolished all of the functional activities of 3D8 scFv. A hybrid Ab, HW6/3D8L1, in which the LCDR1 from an unrelated Ab (HW6) was replaced with the LCDR1 from 3D8, acquired all activities associated with the 3D8 scFv. These results suggest that the activity of a multifunctional 3D8 scFv Ab can be modulated by single complete CDR deactivation and that the LCDR1 plays a crucial role in maintaining Ab properties. This study presents a new approach for determining the role of individual CDRs in multifunctional Abs with important implications for the future of Ab engineering. PMID:24155236

  11. Detection of gaseous compounds by needle trap sampling and direct thermal-desorption photoionization mass spectrometry: concept and demonstrative application to breath gas analysis.

    PubMed

    Kleeblatt, Juliane; Schubert, Jochen K; Zimmermann, Ralf

    2015-02-03

    A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.

  12. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    NASA Technical Reports Server (NTRS)

    Bugby, D. C.; Farmer, J. T.; Stouffer, C. J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal control architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture is comprised by linking one or more hot-side variable conductance heat pipes (VCHPs) in series with one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. Combining two variable conductance devices in series ensures very high switching ratio isolation from severe environments like the Earth's moon, where each lunar day spans 15 Earth days (270 K sink, with a surface-shielded/space viewing radiator) and each lunar night spans 15 Earth days (80-100 K radiative sink, depending on location). The single VCHP-single LHP system described herein was developed to maintain thermal control of International Lunar Network (ILN) anchor node lander electronics, but it is also applicable to other variable heat rejection space missions in severe environments. The LHPVCHP system utilizes a stainless steel wire mesh wick ammonia VCHP, a Teflon wick propylene LHP, a pair of one-third square meter high ? radiators (one capillary-pumped horizontal radiator and a second gravity-fed vertical radiator), a half-meter of transport distance, and a wick-bearing co-located flow regulator (CLFR) to allow operation with a hot (deactivated) radiator. The VCHP was designed with a small reservoir formed by extending the length of its stainless steel heat pipe tubing. The system was able to provide end-to-end switching ratios of 300-500 during thermal vacuum testing at ATK, including 3-5 W/K ON conductance and 0.01 W/K OFF conductance. The test results described herein also include an in-depth analysis of VCHP condenser performance to explain VCHP switching operation in detail. Future multi-VCHP/multi-LHP thermal management system concepts that provide scalability to higher powers/longer transport lengths are also discussed in the paper.

  13. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, M.; Berry, D.; Shekhawt, D.

    2010-01-01

    Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) ofmore » n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were removed. This material also maintained >50% of its initial hydrogen yield for more than 4 h after exposure to DBT and MN, while the hydrogen for the material prepared by SSM dropped to this same level within 2 h. Incipient wetness impregnation appears to provide a higher degree of interaction between the oxygenconducting GDC support and the hexaaluminate, resulting in less rapid deactivation, which appears to be due primarily to carbon deposition.« less

  14. Top-down deactivation of interference from irrelevant spatial or verbal stimulus features.

    PubMed

    Frings, Christian; Wühr, Peter

    2014-11-01

    The selective-attention model of Houghton and Tipper (1994) assumes top-down deactivation of (conflicting) distractor representations as a mechanism of visual attention. Deactivation should produce an inverted-U-shaped activation function for distractor representations. In a recent study, Frings, Wentura, and Wühr (2012) tested this prediction in a variant of the flanker task in which a cue sometimes required participants to respond to the distractors rather than to the target. When reaction times and error rates were plotted as a function of the target-cue stimulus onset asynchrony, a quadratic trend emerged, consistent with the notion of distractor deactivation. However, in the flanker task, an alternative explanation for the quadratic trend in terms of attentional zooming is possible. The present experiments tested the deactivation account against the attentional-zooming account with the Stroop and the Simon task, in which attentional zooming should have minimal effects on distractor processing, because the target and distractor are presented at the same spatial location. Both experiments replicated the quadratic trend in the performance functions for responses to incongruent distractors, and additionally showed linear trends in the performance functions for responses to congruent distractors. These results provide additional support for the notion of top-down deactivation of distractor representations as a mechanism of visual selective attention.

  15. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  16. Restoration of visual orienting into a cortically blind hemifield by reversible deactivation of posterior parietal cortex or the superior colliculus.

    PubMed

    Lomber, Stephen G; Payne, Bertram R; Hilgetag, Claus C; Rushmore, JarrettR

    2002-02-01

    A contralateral hemineglect of the visual field can be induced by unilateral cooling deactivation of posterior middle suprasylvian (pMS) sulcal cortex of the posterior parietal region, and this neglect can be reversed by additional cooling deactivation of pMS cortex in the opposite hemisphere. The purpose of the present study was to test whether an enduring hemianopia induced by removal of all contiguous visual cortical areas of one hemisphere could be reversed by local cooling of pMS cortex in the opposite hemisphere. Two cats sustained large unilateral ablations of the contiguous visual areas, and cooling loops were placed in the pMS sulcus, and in contact with adjacent area 7 or posterior ectosylvian (PE) cortex of the opposite hemisphere. In both instances cooling of pMS cortex, but neither area 7 nor PE, restored a virtually normal level of orienting performance to stimuli presented anywhere in the previously hemianopic field. The reversal was highly sensitive to the extent of cooling deactivation. In a third cat, cooling deactivation of the superficial layers of the contralateral superior colliculus also restored orienting performance to a cortical ablation-induced hemianopia. This reversal was graded from center-to-periphery in a temperature-dependent manner. Neither the cortical ablation nor any of the cooling deactivations had any impact on an auditory detection and orienting task. The deactivations were localized and confirmed by reduced uptake of radiolabeled 2-deoxyglucose to be limited to the immediate vicinity of each cooling loop. The results are discussed in terms of excitation and disinhibition of visual circuits.

  17. FROM CONCEPT TO REALITY, IN-SITU DECOMMISSIONING OF THE P AND R REACTORS AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musall, J.; Blankenship, J.; Griffin, W.

    2012-01-09

    SRS recently completed an approximately three year effort to decommission two SRS reactors: P-Reactor (Building 105-P) and R-Reactor (Building 105-R). Completed in December 2011, the concurrent decommissionings marked the completion of two relatively complex and difficult facility disposition projects at the SRS. Buildings 105-P and 105-R began operating as production reactors in the early 1950s with the mission of producing weapons material (e.g., tritium and plutonium-239). The 'P' Reactor and was shutdown in 1991 while the 'R' Reactor and was shutdown in 1964. In the intervening period between shutdown and deactivation & decommissioning (D&D), Buildings 105-P and 105-R saw limitedmore » use (e.g., storage of excess heavy water and depleted uranium oxide). For Building 105-P, deactivation was initiated in April 2007 and was essentially complete by June 2010. For Building 105-R, deactivation was initiated in August 2008 and was essentially complete by September 2010. For both buildings, the primary objective of deactivation was to remove/mitigate hazards associated with the remaining hazardous materials, and thus prepare the buildings for in-situ decommissioning. Deactivation removed the following hazardous materials to the extent practical: combustibles/flammables, residual heavy water, acids, friable asbestos (as needed to protect workers performing deactivation and decommissioning), miscellaneous chemicals, lead/brass components, Freon(reg sign), oils, mercury/PCB containing components, mold and some radiologically-contaminated equipment. In addition to the removal of hazardous materials, deactivation included the removal of hazardous energy, exterior metallic components (representing an immediate fall hazard), and historical artifacts along with the evaporation of water from the two Disassembly Basins. Finally, so as to facilitate occupancy during the subsequent in-situ decommissioning, deactivation implemented repairs to the buildings and provided temporary power.« less

  18. Photochemistry of 1- and 2-Naphthols and Their Water Clusters: The Role of 1 ππ*(La ) Mediated Hydrogen Transfer to Carbon Atoms.

    PubMed

    Novak, Jurica; Prlj, Antonio; Basarić, Nikola; Corminboeuf, Clémence; Došlić, Nađa

    2017-06-16

    The computational analysis of the isomer- and conformer-dependent photochemistry of 1- and 2-naphthols and their microsolvated water clusters is motivated by their very different excited state reactivities. We present evidence that 1- and 2-naphthol follow distinct excited state deactivation pathways. The deactivation of 2-naphthols, 2-naphthol water clusters, as well as of the anti conformer of 1-naphthol is mediated by the optically dark 1 πσ* state. The dynamics of the 1 πσ* surface leads to the homolytic cleavage of the OH bond. On the contrary, the excited state deactivation of syn 1-naphthol and 1-naphthol water clusters follows an uncommon reaction pathway. Upon excitation to the bright 1 ππ*(L a ) state, a highly specific excited state hydrogen transfer (ESHT) to carbon atoms C8 and C5 takes place, yielding 1,8- and 1,5-naphthoquinone methides. The ESHT pathway arises from the intrinsic electronic properties of the 1 ππ*(L a ) state of 1-naphthols. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The effect of copper, MDA, and accelerated aging on jet fuel thermal stability as measured by the gravimetric JFTOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, S.G.; Hardy, D.R.

    1995-05-01

    Thermally unstable jet fuels pose operational problems. In order to adequately identify such fuels, factors that realistically impact on thermal stability were examined. Evaluation was based on a quantitative method of measuring thermal stability, viz., NRL`s recently developed gravimetric JFTOT. This method gives a quantitative measurement of both the strip deposit and filterables formed. The pertinent factors examined, included the individual and interactive effects of: soluble copper, MDA (metal deactivator), and aging. The latter was accelerated to simulate field conditions of approximately six months aging at ambient temperature and pressure. The results indicate that the individual and interactive effects ofmore » copper, MDA, and accelerated aging appear to be fuel dependent. Based on the results, the three test fuels examined (one JP-8 and two JP-5s) were categorized as exhibiting very good, typical, and poor thermal stabilities, respectively. For both the very good and poor thermal stability fuels, the effect of copper in conjunction with accelerated aging did not significantly increase the total thermal deposits of the neat fuels. In contrast, for the typical thermal stability fuel, the combined effects of copper and accelerated aging, did. Furthermore, the addition of MDA prior to aging of the copper-doped, typical stability fuel significantly counteracted the adverse effect of copper and aging. A similar beneficial effect of MDA was not observed for the poor stability fuel. These results focus on the compositional differences among fuels and the need to elucidate these differences (physical and chemical) for a better understanding and prediction of their performance.« less

  20. Deactivating stimulation sites based on low-rate thresholds improves spectral ripple and speech reception thresholds in cochlear implant users.

    PubMed

    Zhou, Ning

    2017-03-01

    The study examined whether the benefit of deactivating stimulation sites estimated to have broad neural excitation was attributed to improved spectral resolution in cochlear implant users. The subjects' spatial neural excitation pattern was estimated by measuring low-rate detection thresholds across the array [see Zhou (2016). PLoS One 11, e0165476]. Spectral resolution, as assessed by spectral-ripple discrimination thresholds, significantly improved after deactivation of five high-threshold sites. The magnitude of improvement in spectral-ripple discrimination thresholds predicted the magnitude of improvement in speech reception thresholds after deactivation. Results suggested that a smaller number of relatively independent channels provide a better outcome than using all channels that might interact.

  1. Deactivation of Zeolite Catalyst H-ZSM-5 during Conversion of Methanol to Gasoline: Operando Time- and Space-Resolved X-ray Diffraction.

    PubMed

    Rojo-Gama, Daniel; Mentel, Lukasz; Kalantzopoulos, Georgios N; Pappas, Dimitrios K; Dovgaliuk, Iurii; Olsbye, Unni; Lillerud, Karl Petter; Beato, Pablo; Lundegaard, Lars F; Wragg, David S; Svelle, Stian

    2018-03-15

    The deactivation of zeolite catalyst H-ZSM-5 by coking during the conversion of methanol to hydrocarbons was monitored by high-energy space- and time-resolved operando X-ray diffraction (XRD) . Space resolution was achieved by continuous scanning along the axial length of a capillary fixed bed reactor with a time resolution of 10 s per scan. Using real structural parameters obtained from XRD, we can track the development of coke at different points in the reactor and link this to a kinetic model to correlate catalyst deactivation with structural changes occurring in the material. The "burning cigar" model of catalyst bed deactivation is directly observed in real time.

  2. Work plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition; suitable for an extended period of minimum surveillance and maintenance (S and M) and as quickly and economical as possible. Implementation and completion of the deactivation project will further reduce the risks to the environment and to public safety and health. Furthermore, completion of the project will result in significant S and M cost savings in future years. The IFDP work plan defines the project schedule, the cost estimate, andmore » the technical approach for the project. A companion document, the EFDP management plan, has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted the strategy of deactivating the simple facilities first, to reduce the scope of the project and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify the activities that best promote the project mission and result in the largest cost savings. This work plan will be reviewed and revised annually. Deactivation of EFDP Facilities was initiated in FY 1994 and will be completed in FY 2000. The schedule for deactivation of facilities is shown. The total cost of the project is estimated to be $51M. The costs are summarized. Upon completion of deactivation, annual S and M costs of these facilities will be reduced from the current level of $5M per year to less than $1M per year.« less

  3. Mechanistic Insight into Human ether-à-go-go-related Gene (hERG) K+ Channel Deactivation Gating from the Solution Structure of the EAG Domain

    PubMed Central

    Muskett, Frederick W.; Thouta, Samrat; Thomson, Steven J.; Bowen, Alexander; Stansfeld, Phillip J.; Mitcheson, John S.

    2011-01-01

    Human ether-à-go-go-related gene (hERG) K+ channels have a critical role in cardiac repolarization. hERG channels close (deactivate) very slowly, and this is vital for regulating the time course and amplitude of repolarizing current during the cardiac action potential. Accelerated deactivation is one mechanism by which inherited mutations cause long QT syndrome and potentially lethal arrhythmias. hERG deactivation is highly dependent upon an intact EAG domain (the first 135 amino acids of the N terminus). Importantly, deletion of residues 2–26 accelerates deactivation to a similar extent as removing the entire EAG domain. These and other experiments suggest the first 26 residues (NT1–26) contain structural elements required to slow deactivation by stabilizing the open conformation of the pore. Residues 26–135 form a Per-Arnt-Sim domain, but a structure for NT1–26 has not been forthcoming, and little is known about its site of interaction on the channel. In this study, we present an NMR structure for the entire EAG domain, which reveals that NT1–26 is structurally independent from the Per-Arnt-Sim domain and contains a stable amphipathic helix with one face being positively charged. Mutagenesis and electrophysiological studies indicate that neutralizing basic residues and breaking the amphipathic helix dramatically accelerate deactivation. Furthermore, scanning mutagenesis and molecular modeling studies of the cyclic nucleotide binding domain suggest that negatively charged patches on its cytoplasmic surface form an interface with the NT1–26 domain. We propose a model in which NT1–26 obstructs gating motions of the cyclic nucleotide binding domain to allosterically stabilize the open conformation of the pore. PMID:21135103

  4. Selective Inhibition of Deactivated Mitochondrial Complex I by Biguanides †

    PubMed Central

    Matsuzaki, Satoshi; Humphries, Kenneth M.

    2015-01-01

    Biguanides are widely used antihyperglycemic agents for diabetes mellitus and prediabetes treatment. Complex I is the rate limiting step of the mitochondrial electron transport chain (ETC), a major source of mitochondrial free radical production, and a known target of biguanides. Complex I has two reversible conformational states, active and de-active. The deactivated state is promoted in the absence of substrates, but is rapidly and fully reversed to the active state in the presence of NADH. The objective of this study was to determine the relative sensitivity of active/de-active complex I to biguanide-mediated inhibition and resulting superoxide radical (O2•−) production. Using isolated rat heart mitochondria, we show that deactivation of complex I sensitizes it to metformin and phenformin (4- and 3-fold, respectively), but not to other known complex I inhibitors, such as rotenone. Mitochondrial O2•− production by deactivated complex I was measured fluorescently by the NADH-dependent 2-hydroxyethidium formation at alkaline pH to impede reactivation. Superoxide production was 260.4% higher than in active complex I at pH 9.4. However, phenformin treatment of de-active complex I decreased O2•− production by 14.9% while rotenone increased production by 42.9%. Mitochondria isolated from rat hearts subjected to cardiac ischemia, a condition known to induce complex I deactivation, were sensitized to phenformin:mediated complex I inhibition. This supports that the effects of biguanides are likely to be influenced by the complex I state in vivo. These results demonstrate that the complex I active/de-active states are a determinant in biguanide-mediated inhibition. PMID:25719498

  5. Spread of activation and deactivation in the brain: does age matter?

    PubMed Central

    Gordon, Brian A.; Tse, Chun-Yu; Gratton, Gabriele; Fabiani, Monica

    2014-01-01

    Cross-sectional aging functional MRI results are sometimes difficult to interpret, as standard measures of activation and deactivation may confound variations in signal amplitude and spread, which however, may be differentially affected by age-related changes in various anatomical and physiological factors. To disentangle these two types of measures, here we propose a novel method to obtain independent estimates of the peak amplitude and spread of the BOLD signal in areas activated (task-positive) and deactivated (task-negative) by a Sternberg task, in 14 younger and 28 older adults. The peak measures indicated that, compared to younger adults, older adults had increased activation of the task-positive network, but similar levels of deactivation in the task-negative network. Measures of signal spread revealed that older adults had an increased spread of activation in task-positive areas, but a starkly reduced spread of deactivation in task-negative areas. These effects were consistent across regions within each network. Further, there was greater variability in the anatomical localization of peak points in older adults, leading to reduced cross-subject overlap. These results reveal factors that may confound the interpretation of studies of aging. Additionally, spread measures may be linked to local connectivity phenomena and could be particularly useful to analyze age-related deactivation patterns, complementing the results obtained with standard peak and region of interest analyses. PMID:25360115

  6. The N–Terminal Tail of hERG Contains an Amphipathic α–Helix That Regulates Channel Deactivation

    PubMed Central

    Mobli, Mehdi; Ke, Ying; Kuchel, Philip W.; King, Glenn F.; Stock, Daniela; Vandenberg, Jamie I.

    2011-01-01

    The cytoplasmic N–terminal domain of the human ether–a–go–go related gene (hERG) K+ channel is critical for the slow deactivation kinetics of the channel. However, the mechanism(s) by which the N–terminal domain regulates deactivation remains to be determined. Here we show that the solution NMR structure of the N–terminal 135 residues of hERG contains a previously described Per–Arnt–Sim (PAS) domain (residues 26–135) as well as an amphipathic α–helix (residues 13–23) and an initial unstructured segment (residues 2–9). Deletion of residues 2–25, only the unstructured segment (residues 2–9) or replacement of the α–helix with a flexible linker all result in enhanced rates of deactivation. Thus, both the initial flexible segment and the α–helix are required but neither is sufficient to confer slow deactivation kinetics. Alanine scanning mutagenesis identified R5 and G6 in the initial flexible segment as critical for slow deactivation. Alanine mutants in the helical region had less dramatic phenotypes. We propose that the PAS domain is bound close to the central core of the channel and that the N–terminal α–helix ensures that the flexible tail is correctly orientated for interaction with the activation gating machinery to stabilize the open state of the channel. PMID:21249148

  7. Age and Alzheimer's pathology disrupt default mode network functioning via alterations in white matter microstructure but not hyperintensities.

    PubMed

    Brown, Christopher A; Jiang, Yang; Smith, Charles D; Gold, Brian T

    2018-04-19

    The default mode network (DMN) comprises defined brain regions contributing to internally-directed thought processes. Reductions in task-induced deactivation in the DMN have been associated with increasing age and poorer executive task performance, but factors underlying these functional changes remain unclear. We investigated contributions of white matter (WM) microstructure, WM hyperintensities (WMH) and Alzheimer's pathology to age-related alterations in DMN function. Thirty-five cognitively normal older adults and 29 younger adults underwent working memory task fMRI and diffusion tensor imaging. In the older adults, we measured cerebrospinal fluid tau and Aβ 42 (markers of AD pathology), and WMH on FLAIR imaging (marker of cerebrovascular disease). We identified a set of regions showing DMN deactivation and a set of inter-connecting WM tracts (DMN-WM) common to both age groups. There were negative associations between DMN deactivation and task performance in older adults, consistent with previous studies. Decreased DMN deactivation was associated with AD pathology and WM microstructure but not with WMH volume. Mediation analyses showed that WM microstructure mediated declines in DMN deactivation associated with both aging and AD pathology. Together these results suggest that AD pathology may exert a "second-hit" on WM microstructure, over-and-above the effects of age, both contributing to diminished DMN deactivation in older adults. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Asymmetry between Activation and Deactivation during a Transcriptional Pulse.

    PubMed

    Dunham, Lee S S; Momiji, Hiroshi; Harper, Claire V; Downton, Polly J; Hey, Kirsty; McNamara, Anne; Featherstone, Karen; Spiller, David G; Rand, David A; Finkenstädt, Bärbel; White, Michael R H; Davis, Julian R E

    2017-12-27

    Transcription in eukaryotic cells occurs in gene-specific bursts or pulses of activity. Recent studies identified a spectrum of transcriptionally active "on-states," interspersed with periods of inactivity, but these "off-states" and the process of transcriptional deactivation are poorly understood. To examine what occurs during deactivation, we investigate the dynamics of switching between variable rates. We measured live single-cell expression of luciferase reporters from human growth hormone or human prolactin promoters in a pituitary cell line. Subsequently, we applied a statistical variable-rate model of transcription, validated by single-molecule FISH, to estimate switching between transcriptional rates. Under the assumption that transcription can switch to any rate at any time, we found that transcriptional activation occurs predominantly as a single switch, whereas deactivation occurs with graded, stepwise decreases in transcription rate. Experimentally altering cAMP signalling with forskolin or chromatin remodelling with histone deacetylase inhibitor modifies the duration of defined transcriptional states. Our findings reveal transcriptional activation and deactivation as mechanistically independent, asymmetrical processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Improvement in luminance of light-emitting diode using InP/ZnS quantum dot with 1-dodecanethiol ligand

    NASA Astrophysics Data System (ADS)

    Fukuda, Takeshi; Sasaki, Hironao

    2018-03-01

    We present the synthesis protocol of a red emissive InP/ZnS quantum dot with a 1-dodecanthiol ligand and its application to a quantum dot light-emitting diode. The ligand change from oleylamine to 1-dodecanthiol, which were connected around the InP/ZnS quantum dot, was confirmed by Fourier-transform infrared spectroscopy and thermal analysis. The absorption peak was blue-shifted by changing 1-dodecanthiol ligands from oleylamine ligands to prevent the unexpected nucleation of the InP core. In addition, the luminance of the light-emitting device was improved by using the InP/ZnS quantum dot with 1-dodecanthiol ligands, and the maximum current efficiency of 7.2 × 10-3 cd/A was achieved. The 1-dodecanthiol ligand is often used for capping to reduce the number of surface defects and/or prevent unexpected core growth, resulting in reduced Auger recombination. This result indicates that 1-dodecanthiol ligands prevent the deactivation of excitons while injecting carriers by applying a voltage, resulting in a high luminance efficiency.

  10. Thalamic deactivation at sleep onset precedes that of the cerebral cortex in humans

    PubMed Central

    Magnin, Michel; Rey, Marc; Bastuji, Hélène; Guillemant, Philippe; Mauguière, François; Garcia-Larrea, Luis

    2010-01-01

    Thalamic and cortical activities are assumed to be time-locked throughout all vigilance states. Using simultaneous intracortical and intrathalamic recordings, we demonstrate here that the thalamic deactivation occurring at sleep onset most often precedes that of the cortex by several minutes, whereas reactivation of both structures during awakening is synchronized. Delays between thalamus and cortex deactivations can vary from one subject to another when a similar cortical region is considered. In addition, heterogeneity in activity levels throughout the cortical mantle is larger than previously thought during the descent into sleep. Thus, asynchronous thalamo-cortical deactivation while falling asleep probably explains the production of hypnagogic hallucinations by a still-activated cortex and the common self-overestimation of the time needed to fall asleep. PMID:20142493

  11. Age-Related Changes in BOLD Activation Pattern in Phonemic Fluency Paradigm: An Investigation of Activation, Functional Connectivity and Psychophysiological Interactions.

    PubMed

    La, Christian; Garcia-Ramos, Camille; Nair, Veena A; Meier, Timothy B; Farrar-Edwards, Dorothy; Birn, Rasmus; Meyerand, Mary E; Prabhakaran, Vivek

    2016-01-01

    Healthy aging is associated with decline of cognitive functions. However, even before those declines become noticeable, the neural architecture underlying those mechanisms has undergone considerable restructuring and reorganization. During performance of a cognitive task, not only have the task-relevant networks demonstrated reorganization with aging, which occurs primarily by recruitment of additional areas to preserve performance, but the task-irrelevant network of the "default-mode" network (DMN), which is normally deactivated during task performance, has also consistently shown reduction of this deactivation with aging. Here, we revisited those age-related changes in task-relevant (i.e., language system) and task-irrelevant (i.e., DMN) systems with a language production paradigm in terms of task-induced activation/deactivation, functional connectivity, and context-dependent correlations between the two systems. Our task fMRI data demonstrated a late increase in cortical recruitment in terms of extent of activation, only observable in our older healthy adult group, when compared to the younger healthy adult group, with recruitment of the contralateral hemisphere, but also other regions from the network previously underutilized. Our middle-aged individuals, when compared to the younger healthy adult group, presented lower levels of activation intensity and connectivity strength, with no recruitment of additional regions, possibly reflecting an initial, uncompensated, network decline. In contrast, the DMN presented a gradual decrease in deactivation intensity and deactivation extent (i.e., low in the middle-aged, and lower in the old) and similar gradual reduction of functional connectivity within the network, with no compensation. The patterns of age-related changes in the task-relevant system and DMN are incongruent with the previously suggested notion of anti-correlation of the two systems. The context-dependent correlation by psycho-physiological interaction (PPI) analysis demonstrated an independence of these two systems, with the onset of task not influencing the correlation between the two systems. Our results suggest that the language network and the DMN may be non-dependent systems, potentially correlated through the re-allocation of cortical resources, and that aging may affect those two systems differently.

  12. Age-Related Changes in BOLD Activation Pattern in Phonemic Fluency Paradigm: An Investigation of Activation, Functional Connectivity and Psychophysiological Interactions

    PubMed Central

    La, Christian; Garcia-Ramos, Camille; Nair, Veena A.; Meier, Timothy B.; Farrar-Edwards, Dorothy; Birn, Rasmus; Meyerand, Mary E.; Prabhakaran, Vivek

    2016-01-01

    Healthy aging is associated with decline of cognitive functions. However, even before those declines become noticeable, the neural architecture underlying those mechanisms has undergone considerable restructuring and reorganization. During performance of a cognitive task, not only have the task-relevant networks demonstrated reorganization with aging, which occurs primarily by recruitment of additional areas to preserve performance, but the task-irrelevant network of the “default-mode” network (DMN), which is normally deactivated during task performance, has also consistently shown reduction of this deactivation with aging. Here, we revisited those age-related changes in task-relevant (i.e., language system) and task-irrelevant (i.e., DMN) systems with a language production paradigm in terms of task-induced activation/deactivation, functional connectivity, and context-dependent correlations between the two systems. Our task fMRI data demonstrated a late increase in cortical recruitment in terms of extent of activation, only observable in our older healthy adult group, when compared to the younger healthy adult group, with recruitment of the contralateral hemisphere, but also other regions from the network previously underutilized. Our middle-aged individuals, when compared to the younger healthy adult group, presented lower levels of activation intensity and connectivity strength, with no recruitment of additional regions, possibly reflecting an initial, uncompensated, network decline. In contrast, the DMN presented a gradual decrease in deactivation intensity and deactivation extent (i.e., low in the middle-aged, and lower in the old) and similar gradual reduction of functional connectivity within the network, with no compensation. The patterns of age-related changes in the task-relevant system and DMN are incongruent with the previously suggested notion of anti-correlation of the two systems. The context-dependent correlation by psycho-physiological interaction (PPI) analysis demonstrated an independence of these two systems, with the onset of task not influencing the correlation between the two systems. Our results suggest that the language network and the DMN may be non-dependent systems, potentially correlated through the re-allocation of cortical resources, and that aging may affect those two systems differently. PMID:27242519

  13. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding

    PubMed Central

    Krystkowiak, Ewa; Dobek, Krzysztof; Maciejewski, Andrzej

    2014-01-01

    This paper presents results of the spectral (absorption and emission) and photophysical study of 6-aminocoumarin (6AC) in various aprotic hydrogen-bond forming solvents. It was established that solvent polarity as well as hydrogen-bonding ability influence solute properties. The hydrogen-bonding interactions between S1-electronic excited solute and solvent molecules were found to facilitate the nonradiative deactivation processes. The energy-gap dependence on radiationless deactivation in aprotic solvents was found to be similar to that in protic solvents. PMID:25244014

  14. Combined phosphorescence-holographic approach for singlet oxygen detection in biological media

    NASA Astrophysics Data System (ADS)

    Semenova, I. V.; Belashov, A. V.; Beltukova, D. M.; Petrov, N. V.; Vasyutinskii, O. S.

    2015-06-01

    The paper presents a novel combined approach aimed to detect and monitor singlet oxygen molecules in biological specimens by means of the simultaneous recording and monitoring of their deactivation dynamics in the two complementary channels: radiative and nonradiative. The approach involves both the direct registration of phosphorescence at the wavelength of about 1270 nm caused by radiative relaxation of excited singlet oxygen molecules and holographic recording of thermal disturbances in the medium produced by their nonradiative relaxation. The data provides a complete set of information on singlet oxygen location and dynamics in the medium. The approach was validated in the case study of photosensitized generation of singlet oxygen in onion cell structures.

  15. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Adeniyi

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensivemore » techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.« less

  16. Default Mode Network (DMN) Deactivation during Odor-Visual Association

    PubMed Central

    Karunanayaka, Prasanna R.; Wilson, Donald A.; Tobia, Michael J.; Martinez, Brittany; Meadowcroft, Mark; Eslinger, Paul J.; Yang, Qing X.

    2017-01-01

    Default mode network (DMN) deactivation has been shown to be functionally relevant for goal-directed cognition. In this study, we investigated the DMN’s role during olfactory processing using two complementary functional magnetic resonance imaging (fMRI) paradigms with identical timing, visual-cue stimulation and response monitoring protocols. Twenty-nine healthy, non-smoking, right-handed adults (mean age = 26±4 yrs., 16 females) completed an odor-visual association fMRI paradigm that had two alternating odor+visual and visual-only trial conditions. During odor+visual trials, a visual cue was presented simultaneously with an odor, while during visual-only trial conditions the same visual cue was presented alone. Eighteen of the 29 participants (mean age = 27.0 ± 6.0 yrs.,11 females) also took part in a control no-odor fMRI paradigm that consisted of visual-only trial conditions which were identical to the visual-only trials in the odor-visual association paradigm. We used Independent Component Analysis (ICA), extended unified structural equation modeling (euSEM), and psychophysiological interaction (PPI) to investigate the interplay between the DMN and olfactory network. In the odor-visual association paradigm, DMN deactivation was evoked by both the odor+visual and visual-only trial conditions. In contrast, the visual-only trials in the no-odor paradigm did not evoke consistent DMN deactivation. In the odor-visual association paradigm, the euSEM and PPI analyses identified a directed connectivity between the DMN and olfactory network which was significantly different between odor+visual and visual-only trial conditions. The results support a strong interaction between the DMN and olfactory network and highlights DMN’s role in task-evoked brain activity and behavioral responses during olfactory processing. PMID:27785847

  17. Frequency-dependent actions of benzodiazepines on GABAA receptors in cultured murine cerebellar granule cells.

    PubMed Central

    Mellor, J R; Randall, A D

    1997-01-01

    1. Miniature IPSCs recorded from cultured murine cerebellar granule cells increased in half-width and amplitude following application of the benzodiazepine (BDZ) Flunitrazepam (Flu, 1 microM). The increase in the half-width was much greater than that in the amplitude. 2. Five-millisecond applications of 1 mM GABA to nucleated outside-out patches elicited rapidly rising biexponentially decaying responses that resembled IPSCs. Flu had no effect on the amplitude of such responses, but consistently slowed their deactivation by approximately 50%. This effect was reversed by Flu washout or application of the BDZ antagonist Ro15-1788. The partial inverse agonist. Ro15-4513 speeded deactivation and depressed peak current amplitude by 23 +/- 12%. 3. The EC50 for GABA was between 45 and 50 microM. At submaximally effective agonist concentrations, Flu increased response amplitude and slowed response deactivation. Both effects were present in all cells taken from young cultures (4-7 days in vitro) but the latter was absent in 55% of the neurones obtained from older cultures (14-27 days in vitro). 4. With 120 ms applications of 20 microM GABA, responses activated monoexponentially (time constant, 39.8 +/- 2.8 ms) and deactivated biexponentially (time constants, 40.4 +/- 2.1 and 251 +/- 15 ms). Application of Flu slowed both activation and deactivation. The latter effect arose from an increased contribution of the slower component of decay. 5. Desensitization of responses to 1 mM GABA was biexponential, with time constants of 47 +/- 11 and 479 +/- 49 ms. Flu speeded desensitization by decreasing both fast and slow time constants. GABAA receptor desensitization consistently slowed subsequent deactivation. No significant relationship between the level of desensitization and the amount of slowing of deactivation produced by Flu was found. 6. Responses to paired 5 ms applications of 1 mM GABA indicated that the slowing of deactivation and the speeding of desensitization produced by Flu combine to generate a marked frequency dependence in the actions of this BDZ. Thus when compared with control responses, GABA-induced charge transfer was only enhanced by Flu during the first of two successive agonist applications. PMID:9306278

  18. Oxidation of methane over palladium catalysts: effect of the support.

    PubMed

    Escandón, Lara S; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2005-01-01

    This work is focused on the deep catalytic oxidation of methane over supported palladium catalysts. The influences of the metal loading, oxidation state of palladium, nature of supports, presence of promoters in the supports (for zirconia-based supports), and thermal stability have been studied experimentally. Catalysts were prepared by incipient wetness of commercially available supports with aqueous solutions of palladium nitrate. For gamma-alumina support, it was observed that the optimal amount of palladium is between 0.5% and 2%, with higher amounts leading to a loss in specific activity. Concerning the oxidation state of the catalyst, it is concluded that for all the supports tested in the present work, a reduction of the catalyst is not needed, yielding the same conversion at steady state catalysts reduced and oxidised. The thermal stability of various supported catalysts were also studied, zirconia supports being the most active. These supports, specially Y-modified zirconia support, do not suffer appreciable deactivation below 500 degrees C.

  19. Mode Deactivation Therapy (MDT) Comprehensive Meta-Analysis

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; DiMeo, Lucia

    2011-01-01

    MDT provides an empirically based treatment for adolescents with behavioral problems such as anger, oppositional defiant and sexual and physical aggression (Apsche & DiMeo, 2010). It offers therapists a more efficient and timely intervention that positively effects recidivism rates (Apsche, Bass & Murphy, 2004). Based on Cognitive Behavioral…

  20. Insight into the role of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, Riguang; Liu, Hongxia; Li, Qiaohong; Wang, Baojun; Ling, Lixia; Li, Debao

    2018-09-01

    In order to probe into the roles of the promoters Pt, Ru and B in inhibiting the deactivation of Co catalysts in FTS reactions, the adsorption ability of neighboring surface C and subsurface C atom around the promoters (Pt, Ru and B), and the mechanisms of surface C diffusion, accumulation, hydrogenation and penetration are examined by density functional theory calculations over the promoters Pt, Ru and B-modified Co catalysts, as well as the pure Co catalysts. Our results clearly show that compared to Co catalysts, both PtCo and RuCo bimetallic catalysts promote surface C hydrogenation, and inhibit surface C diffusion, accumulation and penetration, and therefore the ability of resistance toward deactivation and the stability of Co-based catalysts are enhanced; the promoter B cannot effectively improve the ability of resistance toward deactivation. Thus, the sequence for resistance toward deactivation of Co-based catalyst is BCo < Co < PtCo < RuCo. Moreover, the activation free energy of surface C accumulation to C2 species increases with the increasing of surface C adsorption free energy, namely, the adsorption characteristic of surface C species well represent the surface carbon deposition. Our results not only give an explanation for reported experiment that the Pt, Ru and B-modified Co catalysts exhibit ability of resistance toward deactivation in FTS at a molecular level, but also provide a clue for the design of efficient Co-based catalysts in FTS reactions.

  1. Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area

    PubMed Central

    Yoncheva, Yuliya N.; Zevin, Jason D.; Maurer, Urs

    2010-01-01

    Selective attention to speech versus nonspeech signals in complex auditory input could produce top-down modulation of cortical regions previously linked to perception of spoken, and even visual, words. To isolate such top-down attentional effects, we contrasted 2 equally challenging active listening tasks, performed on the same complex auditory stimuli (words overlaid with a series of 3 tones). Instructions required selectively attending to either the speech signals (in service of rhyme judgment) or the melodic signals (tone-triplet matching). Selective attention to speech, relative to attention to melody, was associated with blood oxygenation level–dependent (BOLD) increases during functional magnetic resonance imaging (fMRI) in left inferior frontal gyrus, temporal regions, and the visual word form area (VWFA). Further investigation of the activity in visual regions revealed overall deactivation relative to baseline rest for both attention conditions. Topographic analysis demonstrated that while attending to melody drove deactivation equivalently across all fusiform regions of interest examined, attending to speech produced a regionally specific modulation: deactivation of all fusiform regions, except the VWFA. Results indicate that selective attention to speech can topographically tune extrastriate cortex, leading to increased activity in VWFA relative to surrounding regions, in line with the well-established connectivity between areas related to spoken and visual word perception in skilled readers. PMID:19571269

  2. Deactivation of Legionella Pneumophila in municipal wastewater by ozone generated in arrays of microchannel plasmas

    NASA Astrophysics Data System (ADS)

    Dong, Shengkun; Li, Jun; Kim, Min-Hwan; Cho, Jinhoon; Park, Sung-Jin; Nguyen, Thanh H.; Eden, J. Gary

    2018-06-01

    A greater than four log10 reduction in the concentration of Legionella pneumophila in municipal wastewater has been achieved in 1 min with ozone produced by a microchannel plasma reactor. Requiring less than 22 W of electrical power, and ambient air as the feedstock gas, the microplasma ozone generator is robust and a promising alternative to conventional corona and dielectric barrier discharge (DBD) technologies. Contrary to previous studies, the Ct model for pathogen deactivation (i.e. rate proportional to the product of the available disinfectant concentration and the exposure duration) is found to be valid for L. pneumophila. Accordingly, wastewater-specific Ct equations have been developed to predict the deactivation of L. pneumophila in the secondary wastewater environment. Inactivation of this pathogen was found to be dependent on temperature only in the absence of wastewater organic matter (WOM). In the presence of WOM, pathogen deactivation is controlled by the disinfection contact time, initial ozone concentration (varied between 15 and 281 µg l‑1), and initial WOM loading. The data reported here will assist in the implementation of plasma ozone generators for L. pneumophila deactivation in cooling towers, point-of-use systems, and wastewater reclamation facilities.

  3. The Application of TD/GC/NICI-MS with an Al2O3-PLOT-S Column for the Determination of Perfluoroalkylcycloalkanes in the Atmosphere.

    PubMed

    Ren, Yu; Schlager, Hans; Martin, Damien

    2014-01-01

    A modified method for the quantitative determination of atmospheric perfluoroalkylcycloalkanes (PFCs) using thermal desorption coupled with gas chromatography and detection by negative ion chemical ionization-mass spectrometry was developed. Using an optimized analytical system, a commercially available Al 2 O 3 porous layer open tubular (PLOT) capillary column (30 m × 0.25 mm) deactivated with Na 2 SO 4 was used for separation of PFCs. Improvements in the separation of PFCs, the corresponding identification and the limit of detection of PFCs using this method and column are presented. The method was successfully applied to determine the atmospheric background concentrations of a range of PFCs from a number of samples collected at a rural site in Germany. The results of this study suggest that the method outlined using the Al 2 O 3 -PLOT-S capillary column has good sensitivity and selectivity, and that it can be deployed in a routine laboratory process for the analysis of PFCs in the future research work. In addition, the ability of this column to separate the isomers of one of the lower boiling PFCs (perfluorodimethylcyclobutane) and its ability to resolve perfluoroethylcyclohexane offer the opportunity for single-column analysis for multiple PFCs.

  4. Quenching-induced deactivation of photosensitizer by nanoencapsulation to improve phototherapy of cancer.

    PubMed

    Zeisser-Labouèbe, Magali; Mattiuzzo, Marc; Lange, Norbert; Gurny, Robert; Delie, Florence

    2009-09-01

    Photodynamic therapy has emerged as a promising alternative to current cancer treatment. However, conventional photosensitizers have several limitations due to their unsuitable pharmaceutical formulations and lack of selectivity. Our strategy was to exploit the advantages of nanoparticles and the quenching-induced deactivation of the model photosensitizer hypericin to produce "activatable" drug delivery systems. Efficient fluorescence and activity quenching were achieved by increasing the drug-loading rate of nanoparticles. In vitro assays confirmed the reversibility of hypericin deactivation, as the hypericin fluorescence and photodynamic activity were recovered upon cell internalization.

  5. Thermal decomposition of ethanol. 4. Ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH3CHOH radicals.

    PubMed

    Xu, Z F; Xu, Kun; Lin, M C

    2011-04-21

    The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.

  6. The power of charisma—perceived charisma inhibits the frontal executive network of believers in intercessory prayer

    PubMed Central

    Stødkilde-Jørgensen, Hans; Geertz, Armin W.; Lund, Torben E.; Roepstorff, Andreas

    2011-01-01

    This study used functional magnetic resonance imaging to investigate how assumptions about speakers’ abilities changed the evoked BOLD response in secular and Christian participants who received intercessory prayer. We find that recipients’ assumptions about senders’ charismatic abilities have important effects on their executive network. Most notably, the Christian participants deactivated the frontal network consisting of the medial and the dorsolateral prefrontal cortex bilaterally in response to speakers who they believed had healing abilities. An independent analysis across subjects revealed that this deactivation predicted the Christian participants’ subsequent ratings of the speakers’ charisma and experience of God’s presence during prayer. These observations point to an important mechanism of authority that may facilitate charismatic influence, a mechanism which is likely to be present in other interpersonal interactions as well. PMID:20228138

  7. 75 FR 17987 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-08

    ... time on an intraday basis at its discretion if it determined that volatility warranted deactivation. Members would be notified of intraday OPP deactivation due to volatility and any subsequent intraday...

  8. N Reactor Deactivation Program Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, J.L.

    1993-12-01

    This N Reactor Deactivation Program Plan is structured to provide the basic methodology required to place N Reactor and supporting facilities {center_dot} in a radiologically and environmentally safe condition such that they can be decommissioned at a later date. Deactivation will be in accordance with facility transfer criteria specified in Department of Energy (DOE) and Westinghouse Hanford Company (WHC) guidance. Transition activities primarily involve shutdown and isolation of operational systems and buildings, radiological/hazardous waste cleanup, N Fuel Basin stabilization and environmental stabilization of the facilities. The N Reactor Deactivation Program covers the period FY 1992 through FY 1997. The directivemore » to cease N Reactor preservation and prepare for decommissioning was issued by DOE to WHC on September 20, 1991. The work year and budget data supporting the Work Breakdown Structure in this document are found in the Activity Data Sheets (ADS) and the Environmental Restoration Program Baseline, that are prepared annually.« less

  9. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    DOE PAGES

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui; ...

    2016-12-07

    The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less

  10. Application, Deactivation, and Regeneration of Heterogeneous Catalysts in Bio-Oil Upgrading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shouyun; Wei, Lin; Zhao, Xianhui

    The massive consumption of fossil fuels and associated environmental issues are leading to an increased interest in alternative resources such as biofuels. The renewable biofuels can be upgraded from bio-oils that are derived from biomass pyrolysis. Catalytic cracking and hydrodeoxygenation (HDO) are two of the most promising bio-oil upgrading processes for biofuel production. Heterogeneous catalysts are essential for upgrading bio-oil into hydrocarbon biofuel. Although advances have been achieved, the deactivation and regeneration of catalysts still remains a challenge. This review focuses on the current progress and challenges of heterogeneous catalyst application, deactivation, and regeneration. The technologies of catalysts deactivation, reduction,more » and regeneration for improving catalyst activity and stability are discussed. Some suggestions for future research including catalyst mechanism, catalyst development, process integration, and biomass modification for the production of hydrocarbon biofuels are provided.« less

  11. The ethics of deactivating a pacemaker in a pacing-dependent patient: reflections on a case study.

    PubMed

    Malpas, Phillipa J; Cooper, Lisa

    2012-11-01

    The decision to deactivate a pacemaker in a pacing-dependent patient is troubling for some health professionals who may regard such interventions as hastening death and therefore ethically impermissible. This may be especially concerning in situations where a patient is unable to clearly state what their preferences may be and the decision--were it to be made--will almost certainly result in the patient's immediate death. In this discussion, we reflect on some of the ethical aspects that arise when JP, a 75-year-old woman who is pacing dependent, suffers a significant brain injury, and the family request that her pacemaker be deactivated. Taking into account the clinical reality of her situation, the united wishes and loving concern of her husband and family, and their substituted judgment regarding her likely preferences, we claim that the decision to deactivate her pacemaker was ethically sound.

  12. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar

    NASA Astrophysics Data System (ADS)

    Liu, Fanglin; He, Jianzhong; Fu, Wenjun

    2005-06-01

    Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.

  13. Ligand functionalization as a deactivation pathway in a fac-Ir(ppy)3-mediated radical addition.

    PubMed

    Devery Iii, James J; Douglas, James J; Nguyen, John D; Cole, Kevin P; Flowers Ii, Robert A; Stephenson, Corey R J

    2015-01-01

    Knowledge of the kinetic behavior of catalysts under synthetically relevant conditions is vital for the efficient use of compounds that mediate important transformations regardless of their composition or driving force. In particular, these data are of great importance to add perspective to the growing number of applications of photoactive transition metal complexes. Here we present kinetic, synthetic, and spectroscopic evidence of the mechanistic behavior of fac -Ir(ppy) 3 in a visible light-mediated radical addition to 3-methylindole, demonstrating the instability of fac -Ir(ppy) 3 under these conditions. During the reaction, rapid in situ functionalization of the photocatalyst occurs, eventually leading to deactivation. These findings demonstrate a conceivable deactivation process for catalytic single electron reactions in the presence of radicophilic ligands. Attempts to inhibit photocatalyst deactivation through structural modification provide further insight into catalyst selection for a given system of interest.

  14. ND3, ND1 and 39 kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I

    PubMed Central

    Babot, Marion; Labarbuta, Paola; Birch, Amanda; Kee, Sara; Fuszard, Matthew; Botting, Catherine H.; Wittig, Ilka; Heide, Heinrich; Galkin, Alexander

    2014-01-01

    An intriguing feature of mitochondrial complex I from several species is the so-called A/D transition, whereby the idle enzyme spontaneously converts from the active (A) form to the de-active (D) form. The A/D transition plays an important role in tissue response to the lack of oxygen and hypoxic deactivation of the enzyme is one of the key regulatory events that occur in mitochondria during ischaemia. We demonstrate for the first time that the A/D conformational change of complex I does not affect the macromolecular organisation of supercomplexes in vitro as revealed by two types of native electrophoresis. Cysteine 39 of the mitochondrially-encoded ND3 subunit is known to become exposed upon de-activation. Here we show that even if complex I is a constituent of the I + III2 + IV (S1) supercomplex, cysteine 39 is accessible for chemical modification in only the D-form. Using lysine-specific fluorescent labelling and a DIGE-like approach we further identified two new subunits involved in structural rearrangements during the A/D transition: ND1 (MT-ND1) and 39 kDa (NDUFA9). These results clearly show that structural rearrangements during de-activation of complex I include several subunits located at the junction between hydrophilic and hydrophobic domains, in the region of the quinone binding site. De-activation of mitochondrial complex I results in concerted structural rearrangement of membrane subunits which leads to the disruption of the sealed quinone chamber required for catalytic turnover. PMID:24560811

  15. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  16. Developing an energy efficient steam reforming process to produce hydrogen from sulfur-containing fuels

    NASA Astrophysics Data System (ADS)

    Simson, Amanda

    Hydrogen powered fuel cells have the potential to produce electricity with higher efficiency and lower emissions than conventional combustion technology. In order to realize the benefits of a hydrogen fuel cell an efficient method to produce hydrogen is needed. Currently, over 90% of hydrogen is produced from the steam reforming of natural gas. However, for many applications including fuel cell vehicles, the use of a liquid fuel rather than natural gas is desirable. This work investigates the feasibility of producing hydrogen efficiently by steam reforming E85 (85% ethanol/15% gasoline), a commercially available sulfur-containing transportation fuel. A Rh-Pt/SiO2-ZrO2 catalyst has demonstrated good activity for the E85 steam reforming reaction. An industrial steam reforming process is often run less efficiently, with more water and at higher temperatures, in order to prevent catalyst deactivation. Therefore, it is desirable to develop a process that can operate without catalyst deactivation at more energy efficient conditions. In this study, the steam reforming of a sulfur-containing fuel (E85) was studied at near stoichiometric steam/carbon ratios and at 650C, conditions at which catalyst deactivation is normally measured. At these conditions the catalyst was found to be stable steam reforming a sulfur-free E85. However, the addition of low concentrations of sulfur significantly deactivated the catalyst. The presence of sulfur in the fuel caused catalyst deactivation by promoting ethylene which generates surface carbon species (coke) that mask catalytic sites. The amount of coke increased during time on stream and became increasingly graphitic. However, the deactivation due to both sulfur adsorption and coke formation was reversible with air treatment at 650°C. However, regenerations were found to reduce the catalyst life. Air regenerations produce exotherms on the catalyst surface that cause structural changes to the catalyst. During regenerations the accessibility of the precious metal particles is reduced which causes the catalyst to deactivate more rapidly during subsequent steam reforming cycles. Changes to the carrier morphology also occur at these conditions. Regenerating the catalyst before significant deactivation is measured can improve the stability of the catalyst. Thus a process with preemptive controlled air regenerations is proposed in order to run a steam reforming process with sulfur containing fuels.

  17. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations.

    PubMed

    Fox, Kieran C R; Dixon, Matthew L; Nijeboer, Savannah; Girn, Manesh; Floman, James L; Lifshitz, Michael; Ellamil, Melissa; Sedlmeier, Peter; Christoff, Kalina

    2016-06-01

    Meditation is a family of mental practices that encompasses a wide array of techniques employing distinctive mental strategies. We systematically reviewed 78 functional neuroimaging (fMRI and PET) studies of meditation, and used activation likelihood estimation to meta-analyze 257 peak foci from 31 experiments involving 527 participants. We found reliably dissociable patterns of brain activation and deactivation for four common styles of meditation (focused attention, mantra recitation, open monitoring, and compassion/loving-kindness), and suggestive differences for three others (visualization, sense-withdrawal, and non-dual awareness practices). Overall, dissociable activation patterns are congruent with the psychological and behavioral aims of each practice. Some brain areas are recruited consistently across multiple techniques-including insula, pre/supplementary motor cortices, dorsal anterior cingulate cortex, and frontopolar cortex-but convergence is the exception rather than the rule. A preliminary effect-size meta-analysis found medium effects for both activations (d=0.59) and deactivations (d=-0.74), suggesting potential practical significance. Our meta-analysis supports the neurophysiological dissociability of meditation practices, but also raises many methodological concerns and suggests avenues for future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. 76 FR 23351 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... Exchange would also be able to temporarily deactivate OPP from time to time on an intraday basis at its... intraday OPP deactivation due to volatility and any subsequent intraday reactivation by the Exchange...

  19. Systems and methods for deactivating a matrix converter

    DOEpatents

    Ransom, Ray M.

    2013-04-02

    Systems and methods are provided for deactivating a matrix conversion module. An electrical system comprises an alternating current (AC) interface, a matrix conversion module coupled to the AC interface, an inductive element coupled between the AC interface and the matrix conversion module, and a control module. The control module is coupled to the matrix conversion module, and in response to a shutdown condition, the control module is configured to operate the matrix conversion module to deactivate the first conversion module when a magnitude of a current through the inductive element is less than a threshold value.

  20. Nanotube-assisted protein deactivation

    NASA Astrophysics Data System (ADS)

    Joshi, Amit; Punyani, Supriya; Bale, Shyam Sundhar; Yang, Hoichang; Borca-Tasciuc, Theodorian; Kane, Ravi S.

    2008-01-01

    Conjugating proteins onto carbon nanotubes has numerous applications in biosensing, imaging and cellular delivery. However, remotely controlling the activity of proteins in these conjugates has never been demonstrated. Here we show that upon near-infrared irradiation, carbon nanotubes mediate the selective deactivation of proteins in situ by photochemical effects. We designed nanotube-peptide conjugates to selectively destroy the anthrax toxin, and also optically transparent coatings that can self-clean following either visible or near-infrared irradiation. Nanotube-assisted protein deactivation may be broadly applicable to the selective destruction of pathogens and cells, and will have applications ranging from antifouling coatings to functional proteomics.

  1. Regional brain activation/deactivation during word generation in schizophrenia: fMRI study.

    PubMed

    John, John P; Halahalli, Harsha N; Vasudev, Mandapati K; Jayakumar, Peruvumba N; Jain, Sanjeev

    2011-03-01

    Examination of the brain regions that show aberrant activations and/or deactivations during semantic word generation could pave the way for a better understanding of the neurobiology of cognitive dysfunction in schizophrenia. To examine the pattern of functional magnetic resonance imaging blood oxygen level dependent activations and deactivations during semantic word generation in schizophrenia. Functional magnetic resonance imaging was performed on 24 participants with schizophrenia and 24 matched healthy controls during an overt, paced, 'semantic category word generation' condition and a baseline 'word repetition' condition that modelled all the lead-in/associated processes involved in the performance of the generation task. The brain regions activated during word generation in healthy individuals were replicated with minimal redundancies in participants with schizophrenia. The individuals with schizophrenia showed additional activations of temporo-parieto-occipital cortical regions as well as subcortical regions, despite significantly poorer behavioural performance than the healthy participants. Importantly, the extensive deactivations in other brain regions during word generation in healthy individuals could not be replicated in those with schizophrenia. More widespread activations and deficient deactivations in the poorly performing participants with schizophrenia may reflect an inability to inhibit competing cognitive processes, which in turn could constitute the core information-processing deficit underlying impaired word generation in schizophrenia.

  2. Caged Naloxone Reveals Opioid Signaling Deactivation Kinetics

    PubMed Central

    Banghart, Matthew R.; Shah, Ruchir C.; Lavis, Luke D.

    2013-01-01

    The spatiotemporal dynamics of opioid signaling in the brain remain poorly defined. Photoactivatable opioid ligands provide a means to quantitatively measure these dynamics and their underlying mechanisms in brain tissue. Although activation kinetics can be assessed using caged agonists, deactivation kinetics are obscured by slow clearance of agonist in tissue. To reveal deactivation kinetics of opioid signaling we developed a caged competitive antagonist that can be quickly photoreleased in sufficient concentrations to render agonist dissociation effectively irreversible. Carboxynitroveratryl-naloxone (CNV-NLX), a caged analog of the competitive opioid antagonist NLX, was readily synthesized from commercially available NLX in good yield and found to be devoid of antagonist activity at heterologously expressed opioid receptors. Photolysis in slices of rat locus coeruleus produced a rapid inhibition of the ionic currents evoked by multiple agonists of the μ-opioid receptor (MOR), but not of α-adrenergic receptors, which activate the same pool of ion channels. Using the high-affinity peptide agonist dermorphin, we established conditions under which light-driven deactivation rates are independent of agonist concentration and thus intrinsic to the agonist-receptor complex. Under these conditions, some MOR agonists yielded deactivation rates that are limited by G protein signaling, whereas others appeared limited by agonist dissociation. Therefore, the choice of agonist determines which feature of receptor signaling is unmasked by CNV-NLX photolysis. PMID:23960100

  3. Brain activation and deactivation during location and color working memory tasks in 11-13-year-old children.

    PubMed

    Vuontela, Virve; Steenari, Maija-Riikka; Aronen, Eeva T; Korvenoja, Antti; Aronen, Hannu J; Carlson, Synnöve

    2009-02-01

    Using functional magnetic resonance imaging (fMRI) and n-back tasks we investigated whether, in 11-13-year-old children, spatial (location) and nonspatial (color) information is differentially processed during visual attention (0-back) and working memory (WM) (2-back) tasks and whether such cognitive task performance, compared to a resting state, results in regional deactivation. The location 0-back task, compared to the color 0-back task, activated segregated areas in the frontal, parietal and occipital cortices whereas no differentially activated voxels were obtained when location and color 2-back tasks were directly contrasted. Several midline cortical areas were less active during 0- and 2-back task performance than resting state. The task-induced deactivation increased with task difficulty as demonstrated by larger deactivation during 2-back than 0-back tasks. The results suggest that, in 11-13-year-old children, the visual attentional network is differently recruited by spatial and nonspatial information processing, but the functional organization of cortical activation in WM in this age group is not based on the type of information processed. Furthermore, 11-13-year-old children exhibited a similar pattern of cortical deactivation that has been reported in adults during cognitive task performance compared to a resting state.

  4. Self-tuning digital Mössbauer detection system

    NASA Astrophysics Data System (ADS)

    Veiga, A.; Grunfeld, C. M.; Pasquevich, G. A.; Mendoza Zélis, P.; Martínez, N.; Sánchez, F. H.

    2014-01-01

    Long term gamma spectroscopy experiments involving single-channel analyzer equipment depend upon thermal stability of the detector and its associated high-voltage supply. Assuming constant discrimination levels, a drift in the detector gain impacts the output rate, producing an effect on the output spectrum. In some cases (e.g. single-energy resonant absorption experiments) data of interest can be completely lost. We present a digital self-adapting discrimination strategy that tracks emission line shifts using statistical measurements on a predefined region-of-interest of the spectrum. It is developed in the form of a synthesizable module that can be intercalated in the digital processing chain. It requires a moderate to small amount of digital resources and can be easily activated and deactivated.

  5. Microgravity

    NASA Image and Video Library

    1994-02-16

    These Vapor Diffusion Apparatus (VDA) trays were first flown in the Thermal Enclosure System (TES) during the USMP-2 (STS-62) mission. Each tray can hold 20 protein crystal growth chambers. Each chamber contains a double-barrel syringe; one barrel holds protein crystal solution and the other holds precipitant agent solution. During the microgravity mission, a torque device is used to simultaneously retract the plugs in all 20 syringes. The two solutions in each chamber are then mixed. After mixing, droplets of the combined solutions are moved onto the syringe tips so vapor diffusion can begin. During the length of the mission, protein crystals are grown in the droplets. Shortly before the Shuttle's return to Earth, the experiment is deactivated by retracting the droplets containing protein crystals, back into the syringes.

  6. Causal functional contributions and interactions in the attention network of the brain: an objective multi-perturbation analysis.

    PubMed

    Zavaglia, Melissa; Hilgetag, Claus C

    2016-06-01

    Spatial attention is a prime example for the distributed network functions of the brain. Lesion studies in animal models have been used to investigate intact attentional mechanisms as well as perspectives for rehabilitation in the injured brain. Here, we systematically analyzed behavioral data from cooling deactivation and permanent lesion experiments in the cat, where unilateral deactivation of the posterior parietal cortex (in the vicinity of the posterior middle suprasylvian cortex, pMS) or the superior colliculus (SC) cause a severe neglect in the contralateral hemifield. Counterintuitively, additional deactivation of structures in the opposite hemisphere reverses the deficit. Using such lesion data, we employed a game-theoretical approach, multi-perturbation Shapley value analysis (MSA), for inferring functional contributions and network interactions of bilateral pMS and SC from behavioral performance in visual attention studies. The approach provides an objective theoretical strategy for lesion inferences and allows a unique quantitative characterization of regional functional contributions and interactions on the basis of multi-perturbations. The quantitative analysis demonstrated that right posterior parietal cortex and superior colliculus made the strongest positive contributions to left-field orienting, while left brain regions had negative contributions, implying that their perturbation may reverse the effects of contralateral lesions or improve normal function. An analysis of functional modulations and interactions among the regions revealed redundant interactions (implying functional overlap) between regions within each hemisphere, and synergistic interactions between bilateral regions. To assess the reliability of the MSA method in the face of variable and incomplete input data, we performed a sensitivity analysis, investigating how much the contribution values of the four regions depended on the performance of specific configurations and on the prediction of unknown performances. The results suggest that the MSA approach is sensitive to categorical, but insensitive to gradual changes in the input data. Finally, we created a basic network model that was based on the known anatomical interactions among cortical-tectal regions and reproduced the experimentally observed behavior in visual orienting. We discuss the structural organization of the network model relative to the causal modulations identified by MSA, to aid a mechanistic understanding of the attention network of the brain.

  7. Distinctive Spectral Features of Exciton and Excimer States in the Ultrafast Electronic Deactivation of the Adenine Dinucleotide

    NASA Astrophysics Data System (ADS)

    Stuhldreier, Mayra C.; Röttger, Katharina; Temps, Friedrich

    We report the observation by transient absorption spectroscopy of distinctive spectro-temporal signatures of delocalized exciton versus relaxed, weakly bound excimer states in the ultrafast electronic deactivation after UV photoexcitation of the adenine dinucleotide.

  8. Implantable cardioverter defibrillator knowledge and end-of-life device deactivation: A cross-sectional survey.

    PubMed

    McEvedy, Samantha M; Cameron, Jan; Lugg, Eugene; Miller, Jennifer; Haedtke, Chris; Hammash, Muna; Biddle, Martha J; Lee, Kyoung Suk; Mariani, Justin A; Ski, Chantal F; Thompson, David R; Chung, Misook Lee; Moser, Debra K

    2018-01-01

    End-of-life implantable cardioverter defibrillator deactivation discussions should commence before device implantation and be ongoing, yet many implantable cardioverter defibrillators remain active in patients' last days. To examine associations among implantable cardioverter defibrillator knowledge, patient characteristics and attitudes to implantable cardioverter defibrillator deactivation. Cross-sectional survey using the Experiences, Attitudes and Knowledge of End-of-Life Issues in Implantable Cardioverter Defibrillator Patients Questionnaire. Participants were classified as insufficient or sufficient implantable cardioverter defibrillator knowledge and the two groups were compared. Implantable cardioverter defibrillator recipients ( n = 270, mean age 61 ± 14 years; 73% male) were recruited from cardiology and implantable cardioverter defibrillator clinics attached to two tertiary hospitals in Melbourne, Australia, and two in Kentucky, the United States. Participants with insufficient implantable cardioverter defibrillator knowledge ( n = 77, 29%) were significantly older (mean age 66 vs 60 years, p = 0.001), less likely to be Caucasian (77% vs 87%, p  = 0.047), less likely to have received implantable cardioverter defibrillator shocks (26% vs 40%, p = 0.031), and more likely to have indications of mild cognitive impairment (Montreal Cognitive Assessment score <24: 44% vs 16%, p < 0.001). Insufficient implantable cardioverter defibrillator knowledge was associated with attitudes suggesting unwillingness to discuss implantable cardioverter defibrillator deactivation, even during the last days towards end of life ( p < 0.05). Implantable cardioverter defibrillator recipients, especially those who are older or have mild cognitive impairment, often have limited knowledge about implantable cardioverter defibrillator deactivation. This study identified several potential teachable moments throughout the patients' treatment trajectory. An interdisciplinary approach is required to ensure that discussions about implantable cardioverter defibrillator deactivation issues are initiated at appropriate time points, with family members ideally also included.

  9. Negative BOLD in sensory cortices during verbal memory: a component in generating internal representations?

    PubMed

    Azulay, Haim; Striem, Ella; Amedi, Amir

    2009-05-01

    People tend to close their eyes when trying to retrieve an event or a visual image from memory. However the brain mechanisms behind this phenomenon remain poorly understood. Recently, we showed that during visual mental imagery, auditory areas show a much more robust deactivation than during visual perception. Here we ask whether this is a special case of a more general phenomenon involving retrieval of intrinsic, internally stored information, which would result in crossmodal deactivations in other sensory cortices which are irrelevant to the task at hand. To test this hypothesis, a group of 9 sighted individuals were scanned while performing a memory retrieval task for highly abstract words (i.e., with low imaginability scores). We also scanned a group of 10 congenitally blind, which by definition do not have any visual imagery per se. In sighted subjects, both auditory and visual areas were robustly deactivated during memory retrieval, whereas in the blind the auditory cortex was deactivated while visual areas, shown previously to be relevant for this task, presented a positive BOLD signal. These results suggest that deactivation may be most prominent in task-irrelevant sensory cortices whenever there is a need for retrieval or manipulation of internally stored representations. Thus, there is a task-dependent balance of activation and deactivation that might allow maximization of resources and filtering out of non relevant information to enable allocation of attention to the required task. Furthermore, these results suggest that the balance between positive and negative BOLD might be crucial to our understanding of a large variety of intrinsic and extrinsic tasks including high-level cognitive functions, sensory processing and multisensory integration.

  10. The mechanism of action of aniracetam at synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors: indirect and direct effects on desensitization.

    PubMed

    Lawrence, J Josh; Brenowitz, Stephan; Trussell, Laurence O

    2003-08-01

    The mechanism of action of aniracetam on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors was examined in outside-out patches and at glutamatergic synapses in neurons of the chick cochlear nucleus. A combination of rapid-flow analysis, using glutamate as an agonist, and kinetic modeling indicated that aniracetam slows both the rate of channel closing, and the microscopic rates of desensitization, even for partially liganded receptors. Little effect was observed on the rate of recovery from desensitization or on the response to the weakly desensitizing agonist kainate. Aniracetam's effects on receptor deactivation saturated at lower concentrations than its effects on desensitization, suggesting that cooperativity between homologous binding sites was required to regulate desensitization. Analysis of responses to paired pulses of agonist also indicated that AMPA receptors must desensitize partially even after agonist exposures too brief to permit rebinding. In the presence of aniracetam, evoked excitatory synaptic currents (EPSCs) and miniature EPSCs in low quantal-content conditions had decay times similar to the time course of receptor deactivation. Under these conditions, the time course of both transmitter release and clearance must be <1 to 2 ms. However, in high quantal-content conditions, the evoked EPSC in aniracetam decayed with a time course intermediate between deactivation and desensitization, suggesting that the time course of transmitter clearance is prolonged because of pooling of transmitter in the synaptic cleft. Moreover, by comparing the amounts of paired-pulse synaptic depression and patch desensitization prevented by aniracetam, we conclude that significant desensitization occurs in response to rebinding of transmitter to the AMPA receptors.

  11. Task-Related Deactivation and Functional Connectivity of the Subgenual Cingulate Cortex in Major Depressive Disorder

    PubMed Central

    Davey, Christopher G.; Yücel, Murat; Allen, Nicholas B.; Harrison, Ben J.

    2012-01-01

    Background: Major depressive disorder is associated with functional alterations in activity and resting-state connectivity of the extended medial frontal network. In this study we aimed to examine how task-related medial network activity and connectivity were affected in depression. Methods: 18 patients with major depressive disorder, aged 15- to 24-years-old, were matched with 19 healthy control participants. We characterized task-related activations and deactivations while participants engaged with an executive-control task (the multi-source interference task, MSIT). We used a psycho-physiological interactions approach to examine functional connectivity changes with subgenual anterior cingulate cortex. Voxel-wise statistical maps for each analysis were compared between the patient and control groups. Results: There were no differences between groups in their behavioral performances on the MSIT task, and nor in patterns of activation and deactivation. Assessment of functional connectivity with the subgenual cingulate showed that depressed patients did not demonstrate the same reduction in functional connectivity with the ventral striatum during task performance, but that they showed greater reduction in functional connectivity with adjacent ventromedial frontal cortex. The magnitude of this latter connectivity change predicted the relative activation of task-relevant executive-control regions in depressed patients. Conclusion: The study reinforces the importance of the subgenual cingulate cortex for depression, and demonstrates how dysfunctional connectivity with ventral brain regions might influence executive–attentional processes. PMID:22403553

  12. Deactivation of the E. coli pH stress sensor CadC by cadaverine.

    PubMed

    Haneburger, Ina; Fritz, Georg; Jurkschat, Nicole; Tetsch, Larissa; Eichinger, Andreas; Skerra, Arne; Gerland, Ulrich; Jung, Kirsten

    2012-11-23

    At acidic pH and in the presence of lysine, the pH sensor CadC activates transcription of the cadBA operon encoding the lysine/cadaverine antiporter CadB and the lysine decarboxylase CadA. In effect, these proteins contribute to acid stress adaptation in Escherichia coli. cadBA expression is feedback inhibited by cadaverine, and a cadaverine binding site is predicted within the central cavity of the periplasmic domain of CadC on the basis of its crystallographic analysis. Our present study demonstrates that this site only partially accounts for the cadaverine response in vivo. Instead, evidence for a second, pivotal binding site was collected, which overlaps with the pH-responsive patch of amino acids located at the dimer interface of the periplasmic domain. The temporal response of the E. coli Cad module upon acid shock was measured and modeled for two CadC variants with mutated cadaverine binding sites. These studies supported a cascade-like binding and deactivation model for the CadC dimer: binding of cadaverine within the pair of central cavities triggers a conformational transition that exposes two further binding sites at the dimer interface, and the occupation of those stabilizes the inactive conformation. Altogether, these data represent a striking example for the deactivation of a pH sensor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Fuel Efficiency Mapping of a 2014 6-Cylinder GM EcoTec 4.3L Engine with Cylinder Deactivation (SAE 2016-01-0662)

    EPA Science Inventory

    This paper describes the method and test results of the engine dyno portion of the benchmarking test results including engine fuel consumption maps showing the effects of cylinder deactivation engine technology.

  14. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks.

    PubMed

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval.

  15. Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.

    PubMed

    Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea

    2017-02-01

    Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.

  16. Mathematics anxiety reduces default mode network deactivation in response to numerical tasks

    PubMed Central

    Pletzer, Belinda; Kronbichler, Martin; Nuerk, Hans-Christoph; Kerschbaum, Hubert H.

    2015-01-01

    Mathematics anxiety is negatively related to mathematics performance, thereby threatening the professional success. Preoccupation with the emotional content of the stimuli may consume working memory resources, which may be reflected in decreased deactivation of areas associated with the default mode network (DMN) activated during self-referential and emotional processing. The common problem is that math anxiety is usually associated with poor math performance, so that any group differences are difficult to interpret. Here we compared the BOLD-response of 18 participants with high (HMAs) and 18 participants with low mathematics anxiety (LMAs) matched for their mathematical performance to two numerical tasks (number comparison, number bisection). During both tasks, we found stronger deactivation within the DMN in LMAs compared to HMAs, while BOLD-response in task-related activation areas did not differ between HMAs and LMAs. The difference in DMN deactivation between the HMA and LMA group was more pronounced in stimuli with additional requirement on inhibitory functions, but did not differ between number magnitude processing and arithmetic fact retrieval. PMID:25954179

  17. Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.

    PubMed

    Prenosil, J E

    1979-01-01

    Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results.

  18. Deactivation Mechanisms of Pt/Pd-based Diesel Oxidation Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebenga, Michelle H.; Kim, Chang H.; Schmieg, Steven J.

    2012-04-30

    Currently precious metal-based diesel oxidation catalysts (DOC) containing platinum (Pt) and palladium (Pd) are most commonly used for the oxidation of hydrocarbon and NO in diesel exhaust hydrocarbon oxidation. The present work has been carried out to investigate the deactivation mechanisms of the DOC from its real-world vehicle operation by coupling its catalytic activity measurements with surface characterization including x-ray diffraction, transmission electron microscopy, and x-ray photoelectron spectroscopy. A production Pt-Pd DOC was obtained after being aged on a vehicle driven for 135,000 miles in order to study its deactivation behavior. The performance of the vehicle-aged part was correlated withmore » that of the simulated hydrothermal lab aged sample assuming that Pt-Pd sintering plays a major role in irreversible catalyst deactivation. In addition to the hydrothermal sintering, the deterioration of hydrocarbon and NO oxidation performance was caused by surface poisoning. The role of the various aging factors in determining long-term performance in mobile applications will be discussed.« less

  19. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  20. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE PAGES

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO 2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  1. Ligand-Dependent Activation and Deactivation of the Human Adenosine A2A Receptor

    PubMed Central

    Li, Jianing; Jonsson, Amanda L.; Beuming, Thijs; Shelley, John C.; Voth, Gregory A.

    2013-01-01

    G protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR’s activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp2466.48). Our findings agree with a previously proposed view, that during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G protein-binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands. PMID:23678995

  2. Identification and root cause analysis of cell culture media precipitates in the viral deactivation treatment with high-temperature/short-time method.

    PubMed

    Cao, Xiaolin; Stimpfl, Gregory; Wen, Zai-Qing; Frank, Gregory; Hunter, Glenn

    2013-01-01

    High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the biopharmaceutical manufacturing industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating and pumping the media continuously through the preset high-temperature holding tubes to achieve a specified period of time at a specific temperature. Recently, during the evaluation and implementation of HTST method in multiple Amgen, Inc. manufacturing facilities, media precipitates were observed in the tests of HTST treatments. The media precipitates may have adverse consequences such as clogging the HTST system, altering operating conditions and compromising the efficacy of viral deactivation, and ultimately affecting the media composition and cell growth. In this study, we report the identification of the composition of media precipitates from multiple media HTST runs using combined microspectroscopic methods including Raman, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. The major composition in the precipitates was determined to be metal phosphates, including calcium phosphate, magnesium phosphate, and iron (III) phosphate. Based on the composition, stoichiometry, and root-cause study of media precipitations, methods were implemented for the mitigation and prevention of the occurrence of the media precipitation. Viral contamination in cell culture media is an important issue in the biopharmaceutical manufacturing industry and may have serious consequences on product quality, efficacy, and safety. High-temperature/short-time (HTST) treatment of cell culture media is one of the proven techniques used in the industry for the prevention and mitigation of media viral contamination. With the HTST method, the formulated media is pasteurized (virus-deactivated) by heating at preset conditions. This paper provides the identification and root-cause study of the media precipitates that adversely affected the HTST process and discusses the possible solutions to mitigate the precipitation problem.

  3. Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor.

    PubMed

    Li, Jianing; Jonsson, Amanda L; Beuming, Thijs; Shelley, John C; Voth, Gregory A

    2013-06-12

    G-protein-coupled receptors (GPCRs) are membrane proteins with critical functions in cellular signal transduction, representing a primary class of drug targets. Acting by direct binding, many drugs modulate GPCR activity and influence the signaling pathways associated with numerous diseases. However, complete details of ligand-dependent GPCR activation/deactivation are difficult to obtain from experiments. Therefore, it remains unclear how ligands modulate a GPCR's activity. To elucidate the ligand-dependent activation/deactivation mechanism of the human adenosine A2A receptor (AA2AR), a member of the class A GPCRs, we performed large-scale unbiased molecular dynamics and metadynamics simulations of the receptor embedded in a membrane. At the atomic level, we have observed distinct structural states that resemble the active and inactive states. In particular, we noted key structural elements changing in a highly concerted fashion during the conformational transitions, including six conformational states of a tryptophan (Trp246(6.48)). Our findings agree with a previously proposed view that, during activation, this tryptophan residue undergoes a rotameric transition that may be coupled to a series of coherent conformational changes, resulting in the opening of the G-protein binding site. Further, metadynamics simulations provide quantitative evidence for this mechanism, suggesting how ligand binding shifts the equilibrium between the active and inactive states. Our analysis also proposes that a few specific residues are associated with agonism/antagonism, affinity, and selectivity, and suggests that the ligand-binding pocket can be thought of as having three distinct regions, providing dynamic features for structure-based design. Additional simulations with AA2AR bound to a novel ligand are consistent with our proposed mechanism. Generally, our study provides insights into the ligand-dependent AA2AR activation/deactivation in addition to what has been found in crystal structures. These results should aid in the discovery of more effective and selective GPCR ligands.

  4. Heat treatment of unclarified Escherichia coli homogenate improved the recovery efficiency of recombinant hepatitis B core antigen.

    PubMed

    Ng, Michelle Y T; Tan, Wen Siang; Abdullah, Norhafizah; Ling, Tau Chuan; Tey, Beng Ti

    2006-10-01

    Heat precipitation procedure has been regularly incorporated as a selective purification step in various thermostable proteins expressed in different hosts. This method is efficient in precipitation of most of the host proteins and also deactivates various host proteases that can be harmful to the desired gene products. In this study, introduction of heat treatment procedure in the purification of hepatitis B core antigen (HBcAg) produced in Escherichia coli has been investigated. Thermal treatment of the cell homogenate at 60 degrees C for 30 min prior to subsequent clarification steps has resulted in 1.4 times and 18% higher in purity and recovery yield, respectively, compared to the non-heat-treated cell homogenate. In direct capture of HBcAg by using anion-exchangers from unclarified feedstock, pre-conditioning the feedstock by heat treatment at 60 degrees C for 45 min has increased the recovery yield of HBcAg by 2.9-fold and 42% in purity compared to that treated for 10 min. Enzyme-linked immunosorbent assay (ELISA) analysis showed that the antigenicity of the core particles was not affected by the heat treatment process.

  5. Study of different thermal processes on boron-doped PERL cells

    NASA Astrophysics Data System (ADS)

    Li, Wenjia; Wang, Zhenjiao; Han, Peiyu; Lu, Hongyan; Yang, Jian; Guo, Ying; Shi, Zhengrong; Li, Guohua

    2014-08-01

    In this paper, three kinds of thermal processes for boron-doped PERL cells were investigated. These are the forming gas annealing (FGA), the rapid thermal (RTP) and the low temperature annealing processes. FGA was introduced after laser ablation and doping in order to increase minority carrier lifetime by hydrogenating the trapping centers. Subsequent evaluation revealed considerable enhancement of minority carrier lifetime (from 150 μs to 240 μs) and the implied Voc (from 660 mV to 675 mV). After aluminum sputtering, three actual peak temperatures (370 °C, 600 °C and 810 °C) of RTP (as it occurs in the compressed air environment used in our experiment) were utilized to form a contact between the metal and the semi-conductor. It is concluded that only low temperature (lower than 600 °C) firing could create boron back surface field and high quality rear reflector. Lastly, a method of improving the performance of finished PERL cells which did not experience high temperature (over 800 °C) firing was investigated. Finished cells undergone low temperature annealing in N2 atmosphere at 150 °C for 15 min produced 0.44% absolute increase in PERL cells. The enhancement of low temperature annealing originally comes from the activation of passivated boron which is deactivated during FGA.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Daniel P.; Tymińska, Nina; Zurek, Eva, E-mail: ezurek@buffalo.edu

    Dispersion corrected Density Functional Theory calculations were employed to study the adsorption of benzenes derivatized with functional groups encompassing a large region of the activated/deactivated spectrum to the Ag(111) surface. Benzenes substituted with weak activating or deactivating groups, such as methyl and fluoro, do not have a strong preference for adsorbing to a particular site on the substrate, with the corrugations in the potential energy surface being similar to those of benzene. Strong activating (N(CH{sub 3}){sub 2}) and deactivating (NO{sub 2}) groups, on the other hand, possess a distinct site preference. The nitrogen in the former prefers to lie abovemore » a silver atom (top site), but in the latter a hollow hexagonal-closed-packed (H{sub hcp}) site of the Ag(111) surface is favored instead. Benzenes derivatized with classic activating groups donate electron density from their highest occupied molecular orbital to the surface, and those functionalized with deactivating groups withdraw electron density from the surface into orbitals that are unoccupied in the gas phase. For benzenes functionalized with two substituents, the groups that are strongly activating or deactivating control the site preference and the other groups assume sites that are, to a large degree, dictated by their positions on the benzene ring. The relative stabilities of the ortho, meta, and para positional isomers of disubstituted benzenes can, in some cases, be modified by adsorption to the surface.« less

  7. Reversible deactivation of higher-order posterior parietal areas. II. Alterations in response properties of neurons in areas 1 and 2

    PubMed Central

    Goldring, Adam B.; Cooke, Dylan F.; Baldwin, Mary K. L.; Recanzone, Gregg H.; Gordon, Adam G.; Pan, Tingrui; Simon, Scott I.

    2014-01-01

    The role that posterior parietal (PPC) and motor cortices play in modulating neural responses in somatosensory areas 1 and 2 was examined with reversible deactivation by transient cooling. Multiunit recordings from neurons in areas 1 and 2 were collected from six anesthetized adult monkeys (Macaca mulatta) before, during, and after reversible deactivation of areas 5L or 7b or motor cortex (M1/PM), while select locations on the hand and forelimb were stimulated. Response changes were quantified as increases and decreases to stimulus-driven activity relative to baseline and analyzed during three recording epochs: during deactivation (“cool”) and at two time points after deactivation (“rewarm 1,” “rewarm 2”). Although the type of response change observed was variable, for neurons at the recording sites tested >90% exhibited a significant change in response during cooling of 7b while cooling area 5L or M1/PM produced a change in 75% and 64% of sites, respectively. These results suggest that regions in the PPC, and to a lesser extent motor cortex, shape the response characteristics of neurons in areas 1 and 2 and that this kind of feedback modulation is necessary for normal somatosensory processing. Furthermore, this modulation appears to happen on a minute-by-minute basis and may serve as the substrate for phenomena such as somatosensory attention. PMID:25143537

  8. Final Report of a CRADA Between Pacific Northwest National Laboratory and Cummins, Incorporated (CRADA No.PNNL/283): “Enhanced High and Low Temperature Performance of NO x Reduction Catalyst Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Feng; Szanyi, Janos; Wang, Yilin

    The NO x Storage-Reduction (NSR, also known as lean-NO x trap – LNT), is based upon the concept of storing NO x as nitrates over storage components, typically barium species, during a lean-burn operation cycle and then reducing the stored nitrates to N 2 during fuel-rich conditions over a precious metal catalyst [1]. NO x Selective Catalytic Reduction (SCR), on the other hand, is accomplished by deliberately introducing reductant urea into the engine exhaust to reduce NO x with the aid of a Cu(Fe)/zeolite catalyst [2]. These two technologies have been recognized as the most promising approaches for meeting stringentmore » NO x emission standards for diesel vehicles within the Environmental Protection Agency’s (EPA’s) 2007/2010 mandated limits. For NSR, problems arising from either or both thermal and SO 2 deactivation must be addressed to meet durability standards. For SCR, SO 2 deactivation is less of an issue, but hydrothermal deactivation of the zeolite catalysts must be addressed. With continuing R&D efforts in advanced powertrains, highly novel operating modes for internal combustion engines (ICEs) are being researched in order to meet the very stringent new demands for fuel efficiency (e.g., U.S. ‘‘CAFE’’ standards for average miles/gallon are scheduled to increase dramatically over the next 10–15 years). These new ICE engine operation modes, while highly fuel-efficient, result in much lower exhaust temperatures than current engines; temperatures so low that it is hard to imagine how the current catalytic emission control technologies will be able to function. For example, while steady-state operation of the NO x reduction technology at 150 °C may be required, current ‘‘light-off’’ temperatures for CHA-based zeolite catalysts are closer to 200 °C. Therefore, understanding low-temperature limitations in NO x reduction has become one of the most daunting challenges in R&D on new catalyst materials and processes that can effectively eliminate emissions at these quite low exhaust temperatures. This project has two clear focuses: (1) development of potassium-based high-temperature NSR materials, and studying their key causes of deactivation and methods of regeneration. By comparing results obtained on ‘Simple Model’ Pt-K/Al 2O 3 with ‘Enhanced Model’ Pt-K/ MgAlO x and Pt-K/TiO 2 materials, we have developed an understanding of the role of various additives on the deactivation and regeneration processes. Studies have also been performed on the real commercial samples being used in a Dodge Ram truck with a Cummins diesel emission control system. However, the results about these ‘commercial samples’ will not be covered in this report. Following a brief description of our experimental approach, we will present a few highlights from some of the work performed in this CRADA with more details about these results provided in publications/reports/presentations lists presented at the end of the report. (2) for the Cu and Fe/Chabazite SCR catalysts, since these are so newly developed and references from open literature and industry are nearly absent, our work started from zeolite synthesis and catalyst synthesis methodology development, before research on their low- and high-temperature performance, deactivation, regeneration, etc. was conducted. Again, most work reported here is based on our “model” catalysts synthesized in-house. Work done on the ‘commercial samples’ will not be covered in this report.« less

  9. Deactivating the Writing Program.

    ERIC Educational Resources Information Center

    Strickland, James

    A written language learner must be given an environment that enables or fosters writing development. Unfortunately, the typical system of education and the learning strategies that are taught are at times the very things that deactivate, frustrate, and even pervert the writing program. In fact, some of the rules that student writers respond to are…

  10. Solvothermal fabrication of activated semi-coke supported TiO2-rGO nanocomposite photocatalysts and application for NO removal under visible light

    NASA Astrophysics Data System (ADS)

    Yang, Weiwei; Li, Chunhu; Wang, Liang; Sun, ShengNan; Yan, Xin

    2015-10-01

    The photocatalysts of activated semi-coke supported TiO2-rGO nanocomposite (TiO2-rGO/ASC) with different contents of reduced graphene oxide were fabricated by one-step solvothermal method for NO removal under visible light irradiation. It was confirmed that 8% content of reduced graphene oxide presented the best NO photooxidation performance under visible light irradiation at 70 °C with 350-400 mg/m3 NO,5% O2 and 5% relative humidity. The reasons for improved activity were discussed, alloyed with the mechanism of producing CO. Detailed structural information of TiO2-rGO/ASC photocatalysts was characterized by scanning electron microscope (SEM), energy dispersive X-ray Spectroscopy (EDX), X-ray diffraction analysis (XRD), UV-Vis diffuse reflectance spectra (UV-Vis DRS) and photoluminescence (PL), which indicated that the introduction of rGO was responsible for well dispersion, smaller crystalline size, red shift of absorption band and suppressing quick photo-induced charges recombination of TiO2-rGO/ASC photocatalysts. Optimization of operational parameters with 70 °C, 8% O2 and 8% relative humidity were also obtained. Deactivation of TiO2-rGO/ASC photocatalysts for NO removal was investigated by Fourier-transform infrared (FTIR) analysis. Regeneration experiments showed that thermal vapor regeneration would be optimal method owing to excellent regenerative capacity and inexpensive procedure.

  11. CATALYTIC STEAM REFORMING OF CHLOROCARBONS: CATALYST DEACTIVATION. (R826694C633)

    EPA Science Inventory

    Deactivation of 0.5 wt.% Pt/small gamma, Greek-Al2O3 catalysts during trichloroethylene (TCE)–steam reforming was studied with experiments at 700°C, H

  12. 77 FR 10406 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... powered by Pratt & Whitney JT9D series engines require installation of a new bracket for stowing the... serviceable stowage bracket for the deactivation pins on all airplanes powered by Pratt & Whitney JT9D series... Pratt & Whitney JT9D series engines require installation of a new bracket for stowing the deactivation...

  13. The Approach of Emotional Deactivation of Prejudice

    ERIC Educational Resources Information Center

    Boucher, Jean-Nil

    2011-01-01

    The aim of the approach of emotional deactivation is to help students reduce the prejudice they may feel towards diverse social groups. Be those groups homosexuals, people living with a disability or immigrants, the victims of prejudice are invited to come into classrooms and to confront the preconceptions that students have in their respect.…

  14. Subject specific finite element modeling of periprosthetic femoral fracture using element deactivation to simulate bone failure.

    PubMed

    Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J

    2015-06-01

    Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Effect of pH on subunit association and heat protection of soybean alpha-galactosidase

    NASA Technical Reports Server (NTRS)

    Porter, J. E.; Sarikaya, A.; Herrmann, K. M.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1992-01-01

    Soybeans contain the enzyme alpha-galactosidase, which hydrolyzes alpha-1, 6 linkages in stachyose and raffinose to give sucrose and galactose. We have found that galactose, a competitive product inhibitor of alpha-galactosidase, strongly promotes the heat stability of the tetrameric form of the enzyme at pH 4.0 and at temperatures of up to 70 degrees C for 60 min. Stachyose and raffinose also protect alpha-galactosidase from denaturation at pH 4.0 although to a lesser extent. Glucose and mannose have little effect. At pH 7.0 the enzyme is a monomer, and galactose has no effect on the heat stability of the enzyme. In the absence of heat protection of the enzyme by added sugars, a series deactivation mechanism was found to describe the deactivation data. In comparison, a unimolecular, non-first order deactivation model applies at pH 4.0, where heat protection effects were observed. At a temperature above 60 degrees C, simple deactivation is a suitable model. The results suggest that alpha-galactosidase conformation and heat stability are directly related.

  16. Lignocellulosic hydrolysate inhibitors selectively inhibit/deactivate cellulase performance.

    PubMed

    Mhlongo, Sizwe I; den Haan, Riaan; Viljoen-Bloom, Marinda; van Zyl, Willem H

    2015-12-01

    In this study, we monitored the inhibition and deactivation effects of various compounds associated with lignocellulosic hydrolysates on individual and combinations of cellulases. Tannic acid representing polymeric lignin residues strongly inhibited cellobiohydrolase 1 (CBH1) and β-glucosidase 1 (BGL1), but had a moderate inhibitory effect on endoglucanase 2 (EG2). Individual monomeric lignin residues had little or no inhibitory effect on hydrolytic enzymes. However, coniferyl aldehyde and syringaldehyde substantially decreased the activity of CBH1 and deactivated BGL1. Acetic and formic acids also showed strong inhibition of BGL1 but not CBH1 and EG2, whereas tannic, acetic and formic acid strongly inhibited a combination of CBH1 and EG2 during Avicel hydrolysis. Diminishing enzymatic hydrolysis is largely a function of inhibitor concentration and the enzyme-inhibitor relationship, rather than contact time during the hydrolysis process (i.e. deactivation). This suggests that decreased rates of hydrolysis during the enzymatic depolymerisation of lignocellulosic hydrolysates may be imparted by other factors related to substrate crystallinity and accessibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.

    PubMed

    Bennekou, P; Kristensen, B I; Christophersen, P

    2003-09-01

    The activation/deactivation kinetics of the human erythrocyte voltage-dependent cation channel was characterized at the single-channel level using inside-out patches. It was found that the time dependence for voltage activation after steps to positive membrane potentials was slow ( t(1/2) about 30 s), whereas the deactivation was fast ( t(1/2) about 15 ms). Both activation and deactivation of this channel were also demonstrated in intact red cells in suspension. At very positive membrane potentials generated by suspension in extracellular low Cl(-) concentrations, the cation conductance switched on with a time constant of about 2 min. Deactivation of the cation channel was clearly demonstrated during transient activation of the Gárdos channel elicited by Ca(2+) influx via the cation channel and ensuing efflux via the Ca(2+) pump. Thus, the voltage-dependent cation channel, the Gárdos channel and the Ca(2+) pump constitute a coupled feedback-regulated system that may become operative under physiological conditions.

  18. Learning and recall of form discriminations during reversible cooling deactivation of ventral-posterior suprasylvian cortex in the cat.

    PubMed Central

    Lomber, S G; Payne, B R; Cornwell, P

    1996-01-01

    Extrastriate visual cortex of the ventral-posterior suprasylvian gyrus (vPS cortex) of freely behaving cats was reversibly deactivated with cooling to determine its role in performance on a battery of simple or masked two-dimensional pattern discriminations, and three-dimensional object discriminations. Deactivation of vPS cortex by cooling profoundly impaired the ability of the cats to recall the difference between all previously learned pattern and object discriminations. However, the cats' ability to learn or relearn pattern and object discriminations while vPS was deactivated depended upon the nature of the pattern or object and the cats' prior level of exposure to them. During cooling of vPS cortex, the cats could neither learn the novel object discriminations nor relearn a highly familiar masked or partially occluded pattern discrimination, although they could relearn both the highly familiar object and simple pattern discriminations. These cooling-induced deficits resemble those induced by cooling of the topologically equivalent inferotemporal cortex of monkeys and provides evidence that the equivalent regions contribute to visual processing in similar ways. Images Fig. 1 Fig. 3 PMID:8643686

  19. Emotional faces and the default mode network.

    PubMed

    Sreenivas, S; Boehm, S G; Linden, D E J

    2012-01-11

    The default-mode network (DMN) of the human brain has become a central topic of cognitive neuroscience research. Although alterations in its resting state activity and in its recruitment during tasks have been reported for several mental and neurodegenerative disorders, its role in emotion processing has received relatively little attention. We investigated brain responses to different categories of emotional faces with functional magnetic resonance imaging (fMRI) and found deactivation in ventromedial prefrontal cortex (VMPFC), posterior cingulate gyrus (PC) and cuneus. This deactivation was modulated by emotional category and was less prominent for happy than for sad faces. These deactivated areas along the midline conformed to areas of the DMN. We also observed emotion-dependent deactivation of the left middle frontal gyrus, which is not a classical component of the DMN. Conversely, several areas in a fronto-parietal network commonly linked with attention were differentially activated by emotion categories. Functional connectivity patterns, as obtained by correlation of activation levels, also varied between emotions. VMPFC, PC or cuneus served as hubs between the DMN-type areas and the fronto-parietal network. These data support recent suggestions that the DMN is not a unitary system but differentiates according to task and even type of stimulus. The emotion-specific differential pattern of DMN deactivation may be explored further in patients with mood disorder, where the quest for biological markers of emotional biases is still ongoing. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  20. High-intensity erotic visual stimuli de-activate the primary visual cortex in women.

    PubMed

    Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert

    2012-06-01

    The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.

  1. Inhibition and deactivation effects in catalytic wet oxidation of high-strength alcohol-distillery liquors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkacemi, K.; Larachi, F.; Hamoudi, S.

    1999-06-01

    The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed Tmore » and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.« less

  2. Sex differences in brain response to anticipated and experienced visceral pain in healthy subjects.

    PubMed

    Kano, Michiko; Farmer, Adam D; Aziz, Qasim; Giampietro, Vincent P; Brammer, Michael J; Williams, Steven C R; Fukudo, Shin; Coen, Steven J

    2013-04-15

    Women demonstrate higher pain sensitivity and prevalence of chronic visceral pain conditions such as functional gastrointestinal disorders than men. The role of sex differences in the brain processing of visceral pain is still unclear. In 16 male and 16 female healthy subjects we compared personality, anxiety levels, skin conductance response (SCR), and brain processing using functional MRI during anticipation and pain induced by esophageal distension at pain toleration level. There was no significant difference in personality scores, anxiety levels, SCR, and subjective ratings of pain between sexes. In group analysis, both men and women demonstrated a similar pattern of brain activation and deactivation during anticipation and pain consistent with previous reports. However, during anticipation women showed significantly greater activation in the cuneus, precuneus, and supplementary motor area (SMA) and stronger deactivation in the right amygdala and left parahippocampal gyrus, whereas men demonstrated greater activation in the cerebellum. During pain, women demonstrated greater activation in the midcingulate cortex, anterior insula, premotor cortex, and cerebellum and stronger deactivation in the caudate, whereas men showed increased activity in the SMA. The pattern of brain activity suggests that, during anticipation, women may demonstrate stronger limbic inhibition, which is considered to be a cognitive modulation strategy for impending painful stimulation. During pain, women significantly activate brain areas associated with the affective and motivation components of pain. These responses may underlie the sex differences that exist in pain conditions, whereby women may attribute more emotional importance to painful stimuli compared with men.

  3. Molecular basis of slow activation of the human ether-á-go-go related gene potassium channel

    PubMed Central

    Subbiah, Rajesh N; Clarke, Catherine E; Smith, David J; Zhao, JingTing; Campbell, Terence J; Vandenberg, Jamie I

    2004-01-01

    The human ether-á-go-go related gene (HERG) encodes the pore forming α-subunit of the rapid delayed rectifier K+ channel which is central to the repolarization phase of the cardiac action potential. HERG K+ channels have unusual kinetics characterized by slow activation and deactivation, yet rapid inactivation. The fourth transmembrane domain (S4) of HERG, like other voltage-gated K+ channels, contains multiple positive charges and is the voltage sensor for activation. In this study, we mutated each of the positively charged residues in this region to glutamine (Q), expressed the mutant and wild-type (WT) channels in Xenopus laevis oocytes and studied them using two-electrode voltage clamp methods. K525Q channels activated at more hyperpolarized potentials than WT, whereas all the other mutant channels activated at more depolarized potentials. All mutants except for R531Q also had a reduction in apparent gating charge associated with activation. Mutation of K525 to cysteine (C) resulted in a less dramatic phenotype than K525Q. The addition of the positively charged MTSET to K525C altered the phenotype to one more similar to K525Q than to WT. Therefore it is not charge per se, but the specific lysine side chain at position 525, that is crucial for stabilizing the closed state. When rates of activation and deactivation for WT and mutant channels were compared at equivalent total (chemical + electrostatic) driving forces, K525Q and R528Q accelerated activation but had no effect on deactivation, R531Q slowed activation and deactivation, R534Q accelerated activation but slowed deactivation and R537Q accelerated deactivation but had no effect on activation. The main conclusions we can draw from these data are that in WT channels K525 stabilizes the closed state, R531 stabilizes the open state and R534 participates in interactions that stabilize pre-open closed states. PMID:15181157

  4. A meta-analysis of 25 years of mood-creativity research: hedonic tone, activation, or regulatory focus?

    PubMed

    Baas, Matthijs; De Dreu, Carsten K W; Nijstad, Bernard A

    2008-11-01

    This meta-analysis synthesized 102 effect sizes reflecting the relation between specific moods and creativity. Effect sizes overall revealed that positive moods produce more creativity than mood-neutral controls (r= .15), but no significant differences between negative moods and mood-neutral controls (r= -.03) or between positive and negative moods (r= .04) were observed. Creativity is enhanced most by positive mood states that are activating and associated with an approach motivation and promotion focus (e.g., happiness), rather than those that are deactivating and associated with an avoidance motivation and prevention focus (e.g., relaxed). Negative, deactivating moods with an approach motivation and a promotion focus (e.g., sadness) were not associated with creativity, but negative, activating moods with an avoidance motivation and a prevention focus (fear, anxiety) were associated with lower creativity, especially when assessed as cognitive flexibility. With a few exceptions, these results generalized across experimental and correlational designs, populations (students vs. general adult population), and facet of creativity (e.g., fluency, flexibility, originality, eureka/insight). The authors discuss theoretical implications and highlight avenues for future research on specific moods, creativity, and their relationships.

  5. 30 CFR 75.1721 - Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Opening of new underground coal mines, or reopening and reactivating of abandoned or deactivated coal mines, notification by the operator... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75...

  6. A One Year Study of Mode Deactivation Therapy: Adolescent Residential Patients with Conduct and Personality Disorders

    ERIC Educational Resources Information Center

    Murphy, Christopher J.; Siv, Alexander M.

    2011-01-01

    This case study is to evaluate the effectiveness of Mode Deactivation Therapy (MDT) implementation in a child and adolescent residential treatment unit and provide preliminary effectiveness data on MDT versus treatment as usual (TAU). This case study compared the efficacy of two treatment methodologies for adolescent males in residential treatment…

  7. Family Mode Deactivation Therapy in a Residential Setting: Treating Adolescents with Conduct Disorder and Multi-Axial Diagnosis

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Zeiter, J. Scott; Houston, Marsha Ann

    2008-01-01

    Mode Deactivation Therapy (MDT) has been shown to be an effective treatment for a variety of adolescent disorders including emotional dysregulation, behavioral dysregulation, physical aggression, sexual aggression, and many harmful symptoms of anxiety and traumatic stress. MDT Family Therapy has been effective in reducing family disharmony in case…

  8. 78 FR 9636 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    .... We have changed paragraph (k) of the supplemental NPRM (i.e., paragraph (j) of the previous NPRM) to... Limitations, Revision 7, dated April 23, 2012, of the Cessna Model S550 Maintenance Manual. (k) Deactivation..., deactivate the A/C system as specified in paragraph (k)(1), (k)(2), or (k)(3) of this AD, as applicable. (1...

  9. 40 CFR Appendix Vi to Part 268 - Recommended Technologies To Achieve Deactivation of Characteristics in Section 268.42

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VI....42 The treatment standard for many characteristic wastes is stated in the § 268.40 Table of Treatment... combination, can achieve the deactivation portion of the treatment standard. Characteristic wastes that are...

  10. 40 CFR Appendix Vi to Part 268 - Recommended Technologies To Achieve Deactivation of Characteristics in Section 268.42

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VI....42 The treatment standard for many characteristic wastes is stated in the § 268.40 Table of Treatment... combination, can achieve the deactivation portion of the treatment standard. Characteristic wastes that are...

  11. 40 CFR Appendix Vi to Part 268 - Recommended Technologies To Achieve Deactivation of Characteristics in Section 268.42

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VI....42 The treatment standard for many characteristic wastes is stated in the § 268.40 Table of Treatment... combination, can achieve the deactivation portion of the treatment standard. Characteristic wastes that are...

  12. 40 CFR Appendix Vi to Part 268 - Recommended Technologies To Achieve Deactivation of Characteristics in Section 268.42

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Pt. 268, App. VI....42 The treatment standard for many characteristic wastes is stated in the § 268.40 Table of Treatment... combination, can achieve the deactivation portion of the treatment standard. Characteristic wastes that are...

  13. The presence of isolated hydrogen donors in heavily carbon-doped GaAs

    NASA Astrophysics Data System (ADS)

    Fushimi, Hiroshi; Wada, Kazumi

    1994-12-01

    The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.

  14. BZ Disposal Facility Development and Design. Task 4, Incineration of Pyrotechnic Munitions in a Deactivation Furnace

    DTIC Science & Technology

    1982-07-01

    up to 5 percent. Normally the plume completely dissapated in less than 200 feet from the stack. 37 fo r^. -^ d. o !>. "^ .^ 0) O ON...each of the sampling points for particulate loading was analyzed for metals and organic content. The particulate analysis was combined with analysis...ducting from the mist eliminator to the ID fan and the stack can be constructed of FRP. The ID fan can be FRP, or epoxy coated steel or a combination

  15. Electrochemically Driven Deactivation and Recovery in PrBaCo2 O5+δ Oxygen Electrodes for Reversible Solid Oxide Fuel Cells.

    PubMed

    Zhu, Lin; Wei, Bo; Wang, Zhihong; Chen, Kongfa; Zhang, Haiwu; Zhang, Yaohui; Huang, Xiqiang; Lü, Zhe

    2016-09-08

    The understanding of surface chemistry changes on oxygen electrodes is critical for the development of reversible solid oxide fuel cell (RSOFC). Here, we report for the first time that the electrochemical potentials can drastically affect the surface composition and hence the electrochemical activity and stability of PrBaCo2 O5+δ (PBCO) electrodes. Anodic polarization degrades the activity of the PBCO electrode, whereas the cathodic bias could recover its performance. Alternating anodic/cathodic polarization for 180 h confirms this behavior. Microstructure and chemical analysis clearly show that anodic bias leads to the accumulation and segregation of insulating nanosized BaO on the electrode surface, whereas cathodic polarization depletes the surface species. Therefore, a mechanism based on the segregation and incorporation of BaO species under electrochemical potentials is considered to be responsible for the observed deactivation and recovery process, respectively. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Deactivation kinetics of acid-sensing ion channel 1a are strongly pH-sensitive.

    PubMed

    MacLean, David M; Jayaraman, Vasanthi

    2017-03-21

    Acid-sensing ion channels (ASICs) are trimeric cation-selective ion channels activated by protons in the physiological range. Recent reports have revealed that postsynaptically localized ASICs contribute to the excitatory postsynaptic current by responding to the transient acidification of the synaptic cleft that accompanies neurotransmission. In response to such brief acidic transients, both recombinant and native ASICs show extremely rapid deactivation in outside-out patches when jumping from a pH 5 stimulus to a single resting pH of 8. Given that the resting pH of the synaptic cleft is highly dynamic and depends on recent synaptic activity, we explored the kinetics of ASIC1a and 1a/2a heteromers to such brief pH transients over a wider [H + ] range to approximate neuronal conditions better. Surprisingly, the deactivation of ASICs was steeply dependent on the pH, spanning nearly three orders of magnitude from extremely fast (<1 ms) at pH 8 to very slow (>300 ms) at pH 7. This study provides an example of a ligand-gated ion channel whose deactivation is sensitive to agonist concentrations that do not directly activate the receptor. Kinetic simulations and further mutagenesis provide evidence that ASICs show such steeply agonist-dependent deactivation because of strong cooperativity in proton binding. This capacity to signal across such a large synaptically relevant bandwidth enhances the response to small-amplitude acidifications likely to occur at the cleft and may provide ASICs with the ability to shape activity in response to the recent history of the synapse.

  17. A facile growth process of CeO2-Co3O4 composite nanotubes and its catalytic stability for CO oxidation

    NASA Astrophysics Data System (ADS)

    Oh, Hyerim; Kim, Il Hee; Lee, Nam-Suk; Dok Kim, Young; Kim, Myung Hwa

    2017-08-01

    Hybrid cerium dioxide (CeO2)-cobalt oxide (Co3O4) composite nanotubes were successfully prepared by a combination of electrospinning and thermal annealing using CeO2 and Co3O4 precursors for the first time. Electrospun CeO2-Co3O4 composite nanotubes represent relatively porous surface texture with small dimensions between 80 and 150 nm in the outer diameter. The microscopic investigations indicate that the nanoparticle like crystalline structures of CeO2 and Co3O4 are homogenously distributed and continuously connected to form the shape of nanotube in the length of a few micrometers during thermal annealing. It is expected that the different evaporation behaviors of solvents and matrix polymer between the core and the shell in as-spun nanofibers in the course of thermal annealing could be reasonably responsible for the formation of well-defined CeO2/Co3O4 hybrid nanotubes. Additionally, the general catalytic activities of electrospun CeO2/Co3O4 hybrid nanotubes toward the oxidation of carbon monoxide (CO) were carefully examined by a continuous flow system, resulting in favorable catalytic activity as well as catalytic stability for CO oxidation between 150 °C and 200 °C without the deactivation of the catalyst with time stems from accumulation of reaction intermediates such as carbonate species.

  18. A Review and Empirical Comparison of Two Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy and Cognitive Behavior Therapy

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of two treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  19. Empirical Comparison of Three Treatments for Adolescent Males with Physical and Sexual Aggression: Mode Deactivation Therapy, Cognitive Behavior Therapy and Social Skills Training

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.; Jennings, Jerry L.; Murphy, Christopher J.; Hunter, Linda A.; Siv, Alexander M.

    2005-01-01

    This research study compared the efficacy of three treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  20. Brief and Rare Mental "Breaks" Keep You Focused: Deactivation and Reactivation of Task Goals Preempt Vigilance Decrements

    ERIC Educational Resources Information Center

    Ariga, Atsunori; Lleras, Alejandro

    2011-01-01

    We newly propose that the vigilance decrement occurs because the cognitive control system fails to maintain active the goal of the vigilance task over prolonged periods of time (goal habituation). Further, we hypothesized that momentarily deactivating this goal (via a switch in tasks) would prevent the activation level of the vigilance goal from…

  1. Gamification of Learning Deactivates the Default Mode Network

    PubMed Central

    Howard-Jones, Paul A.; Jay, Tim; Mason, Alice; Jones, Harvey

    2016-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated. PMID:26779054

  2. Ligand-specific Deactivation Time Course of GluN1/GluN2D NMDA Receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K Vance; N Simorowski; S Traynelis

    2011-12-31

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors that mediate a majority of excitatory synaptic transmission. One unique property of GluN1/GluN2D NMDA receptors is an unusually prolonged deactivation time course following the removal of L-glutamate. Here we show, using x-ray crystallography and electrophysiology, that the deactivation time course of GluN1/GluN2D receptors is influenced by the conformational variability of the ligand-binding domain (LBD) as well as the structure of the activating ligand. L-glutamate and L-CCG-IV induce significantly slower deactivation time courses compared with other agonists. Crystal structures of the isolated GluN2D LBD in complex with various ligands revealmore » that the binding of L-glutamate induces a unique conformation at the backside of the ligand-binding site in proximity to the region at which the transmembrane domain would be located in the intact receptors. These data suggest that the activity of the GluN1/GluN2D NMDA receptor is controlled distinctively by the endogenous neurotransmitter L-glutamate.« less

  3. Gamification of Learning Deactivates the Default Mode Network.

    PubMed

    Howard-Jones, Paul A; Jay, Tim; Mason, Alice; Jones, Harvey

    2015-01-01

    We hypothesized that embedding educational learning in a game would improve learning outcomes, with increased engagement and recruitment of cognitive resources evidenced by increased activation of working memory network (WMN) and deactivation of default mode network (DMN) regions. In an fMRI study, we compared activity during periods of learning in three conditions that were increasingly game-like: Study-only (when periods of learning were followed by an exemplar question together with its correct answer), Self-quizzing (when periods of learning were followed by a multiple choice question in return for a fixed number of points) and Game-based (when, following each period of learning, participants competed with a peer to answer the question for escalating, uncertain rewards). DMN hubs deactivated as conditions became more game-like, alongside greater self-reported engagement and, in the Game-based condition, higher learning scores. These changes did not occur with any detectable increase in WMN activity. Additionally, ventral striatal activation was associated with responding to questions and receiving positive question feedback. Results support the significance of DMN deactivation for educational learning, and are aligned with recent evidence suggesting DMN and WMN activity may not always be anti-correlated.

  4. The unrested resting brain: sleep deprivation alters activity within the default-mode network.

    PubMed

    Gujar, Ninad; Yoo, Seung-Schik; Hu, Peter; Walker, Matthew P

    2010-08-01

    The sleep-deprived brain has principally been characterized by examining dysfunction during cognitive task performance. However, far less attention has been afforded the possibility that sleep deprivation may be as, if not more, accurately characterized on the basis of abnormal resting-state brain activity. Here we report that one night of sleep deprivation significantly disrupts the canonical signature of task-related deactivation, resulting in a double dissociation within anterior as well as posterior midline regions of the default network. Indeed, deactivation within these regions alone discriminated sleep-deprived from sleep-control subjects with a 93% degree of sensitivity and 92% specificity. In addition, the relative balance of deactivation within these default nodes significantly correlated with the amount of prior sleep in the control group (and not extended time awake in the deprivation group). Therefore, the stability and the balance of task-related deactivation in key default-mode regions may be dependent on prior sleep, such that a lack thereof disrupts this signature pattern of brain activity, findings that may offer explanatory insights into conditions associated with sleep loss at both a clinical as well as societal level.

  5. Availability of the basal planes of graphene oxide determines whether it is antibacterial.

    PubMed

    Hui, Liwei; Piao, Ji-Gang; Auletta, Jeffrey; Hu, Kan; Zhu, Yanwu; Meyer, Tara; Liu, Haitao; Yang, Lihua

    2014-08-13

    There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of <1% at 200 μg/mL. Supplementing saline with ≤10% Luria-Bertani (LB) broth, however, progressively deactivated its bactericidal activity depending on LB-supplementation ratio. Supplementation of 10% LB made GO completely inactive; instead, ∼100-fold bacterial growth was observed. Atomic force microscopy images showed that certain LB components were adsorbed on GO basal planes. Using bovine serum albumin and tryptophan as well-defined model adsorbates, we found that noncovalent adsorption on GO basal planes may account for the deactivation of GO's bactericidal activity. Moreover, this deactivation mechanism was shown to be extrapolatable to GO's cytotoxicity against mammalian cells. Taken together, our observations suggest that bare GO intrinsically kills both bacteria and mammalian cells and noncovalent adsorption on its basal planes may be a global deactivation mechanism for GO's cytotoxicity.

  6. Oxidative degradation of silica-supported polyethylenimine for CO2 adsorption: insights into the nature of deactivated species.

    PubMed

    Ahmadalinezhad, Asieh; Sayari, Abdelhamid

    2014-01-28

    The oxidative degradation of polyethylenimine-impregnated mesoporous SBA-15 silica for CO2 capture was investigated at the molecular level. The adsorbents were exposed to flowing air at different temperatures, and their degree of deactivation was evaluated through the measurement of CO2 adsorption capacity prior and subsequent to air exposure. A solvent-extraction method was employed to isolate the deactivated species from the silica support. The extracted species were investigated by a variety of 1D and 2D NMR techniques such as (13)C, (1)H, (1)H-(15)N HMBC, (1)H-(13)C HMQC, and (1)H-(13)C HMBC. This in-depth investigation showed that they contain predominantly fragments involving imine and carbonyl groups. Several structural units were conclusively established.

  7. Optimization of drug-drug interaction alert rules in a pediatric hospital's electronic health record system using a visual analytics dashboard.

    PubMed

    Simpao, Allan F; Ahumada, Luis M; Desai, Bimal R; Bonafide, Christopher P; Gálvez, Jorge A; Rehman, Mohamed A; Jawad, Abbas F; Palma, Krisha L; Shelov, Eric D

    2015-03-01

    To develop and evaluate an electronic dashboard of hospital-wide electronic health record medication alerts for an alert fatigue reduction quality improvement project. We used visual analytics software to develop the dashboard. We collaborated with the hospital-wide Clinical Decision Support committee to perform three interventions successively deactivating clinically irrelevant drug-drug interaction (DDI) alert rules. We analyzed the impact of the interventions on care providers' and pharmacists' alert and override rates using an interrupted time series framework with piecewise regression. We evaluated 2 391 880 medication alerts between January 31, 2011 and January 26, 2014. For pharmacists, the median alert rate prior to the first DDI deactivation was 58.74 alerts/100 orders (IQR 54.98-60.48) and 25.11 alerts/100 orders (IQR 23.45-26.57) following the three interventions (p<0.001). For providers, baseline median alert rate prior to the first round of DDI deactivation was 19.73 alerts/100 orders (IQR 18.66-20.24) and 15.11 alerts/100 orders (IQR 14.44-15.49) following the three interventions (p<0.001). In a subgroup analysis, we observed a decrease in pharmacists' override rates for DDI alerts that were not modified in the system from a median of 93.06 overrides/100 alerts (IQR 91.96-94.33) to 85.68 overrides/100 alerts (IQR 84.29-87.15, p<0.001). The medication serious safety event rate decreased during the study period, and there were no serious safety events reported in association with the deactivated alert rules. An alert dashboard facilitated safe rapid-cycle reductions in alert burden that were temporally associated with lower pharmacist override rates in a subgroup of DDIs not directly affected by the interventions; meanwhile, the pharmacists' frequency of selecting the 'cancel' option increased. We hypothesize that reducing the alert burden enabled pharmacists to devote more attention to clinically relevant alerts. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Differential voltage analysis as a tool for analyzing inhomogeneous aging: A case study for LiFePO4|Graphite cylindrical cells

    NASA Astrophysics Data System (ADS)

    Lewerenz, Meinert; Marongiu, Andrea; Warnecke, Alexander; Sauer, Dirk Uwe

    2017-11-01

    In this work the differential voltage analysis (DVA) is evaluated for LiFePO4|Graphite cylindrical cells aged in calendaric and cyclic tests. The homogeneity of the active lithium distribution and the loss of anode active material (LAAM) are measured by the characteristic shape and peaks of the DVA. The results from this analysis exhibit an increasing homogeneity of the lithium-ion distribution during aging for all cells subjected to calendaric aging. At 60 °C, LAAM is found additionally and can be associated with the deposition of dissolved Fe from the cathode on the anode, where it finally leads to the clogging of pores. For cells aged under cyclic conditions, several phenomena are correlated to degradation, such as loss of active lithium and local LAAM for 100% DOD. Moreover, the deactivation of certain parts of anode and cathode due to a lithium-impermeable covering layer on top of the anode is observed for some cells. While the 100% DOD cycling is featured by a continuous LAAM, the LAAM due to deactivation by a covering layer of both electrodes starts suddenly. The homogeneity of the active lithium distribution within the cycled cells is successively reduced with deposited passivation layers and with LAAM that is lost locally at positions with lower external pressure on the electrode.

  9. Levetiracetam reduces abnormal network activations in temporal lobe epilepsy.

    PubMed

    Wandschneider, Britta; Stretton, Jason; Sidhu, Meneka; Centeno, Maria; Kozák, Lajos R; Symms, Mark; Thompson, Pamela J; Duncan, John S; Koepp, Matthias J

    2014-10-21

    We used functional MRI (fMRI) and a left-lateralizing verbal and a right-lateralizing visual-spatial working memory (WM) paradigm to investigate the effects of levetiracetam (LEV) on cognitive network activations in patients with drug-resistant temporal lobe epilepsy (TLE). In a retrospective study, we compared task-related fMRI activations and deactivations in 53 patients with left and 54 patients with right TLE treated with (59) or without (48) LEV. In patients on LEV, activation patterns were correlated with the daily LEV dose. We isolated task- and syndrome-specific effects. Patients on LEV showed normalization of functional network deactivations in the right temporal lobe in right TLE during the right-lateralizing visual-spatial task and in the left temporal lobe in left TLE during the verbal task. In a post hoc analysis, a significant dose-dependent effect was demonstrated in right TLE during the visual-spatial WM task: the lower the LEV dose, the greater the abnormal right hippocampal activation. At a less stringent threshold (p < 0.05, uncorrected for multiple comparisons), a similar dose effect was observed in left TLE during the verbal task: both hippocampi were more abnormally activated in patients with lower doses, but more prominently on the left. Our findings suggest that LEV is associated with restoration of normal activation patterns. Longitudinal studies are necessary to establish whether the neural patterns translate to drug response. This study provides Class III evidence that in patients with drug-resistant TLE, levetiracetam has a dose-dependent facilitation of deactivation of mesial temporal structures. © 2014 American Academy of Neurology.

  10. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  11. Nociception and inflammatory hyperalgesia evaluated in rodents using infrared laser stimulation after Trpv1 gene knockout or resiniferatoxin lesion.

    PubMed

    Mitchell, Kendall; Lebovitz, Evan E; Keller, Jason M; Mannes, Andrew J; Nemenov, Michael I; Iadarola, Michael J

    2014-04-01

    TRPV1 is expressed in a subpopulation of myelinated Aδ and unmyelinated C-fibers. TRPV1+ fibers are essential for the transmission of nociceptive thermal stimuli and for the establishment and maintenance of inflammatory hyperalgesia. We have previously shown that high-power, short-duration pulses from an infrared diode laser are capable of predominantly activating cutaneous TRPV1+ Aδ-fibers. Here we show that stimulating either subtype of TRPV1+ fiber in the paw during carrageenan-induced inflammation or following hind-paw incision elicits pronounced hyperalgesic responses, including prolonged paw guarding. The ultrapotent TRPV1 agonist resiniferatoxin (RTX) dose-dependently deactivates TRPV1+ fibers and blocks thermal nociceptive responses in baseline or inflamed conditions. Injecting sufficient doses of RTX peripherally renders animals unresponsive to laser stimulation even at the point of acute thermal skin damage. In contrast, Trpv1-/- mice, which are generally unresponsive to noxious thermal stimuli at lower power settings, exhibit withdrawal responses and inflammation-induced sensitization using high-power, short duration Aδ stimuli. In rats, systemic morphine suppresses paw withdrawal, inflammatory guarding, and hyperalgesia in a dose-dependent fashion using the same Aδ stimuli. The qualitative intensity of Aδ responses, the leftward shift of the stimulus-response curve, the increased guarding behaviors during carrageenan inflammation or after incision, and the reduction of Aδ responses with morphine suggest multiple roles for TRPV1+ Aδ fibers in nociceptive processes and their modulation of pathological pain conditions. Copyright © 2014. Published by Elsevier B.V.

  12. Effects of Potassium loading and thermal aging on K/Pt/Al2O3 high-temperature lean NOx trap catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinyong; Gao, Feng; Kim, Do Heui

    2014-03-31

    The effects of K loading and thermal aging on the structural properties and high temperature performance of Pt/K/Al2O3 lean NOx trap (LNT) catalysts were investigated using in situ X-ray diffraction (XRD), temperature-programmed decomposition/desorption of NOx (NOx-TPD), transmission electron microscopy (TEM), NO oxidation and NOx storage tests. In situ XRD results demonstrate that KNO3 becomes extremely mobile on the Al2O3 surface, and experiences complex transformations between orthorhombic and rhombohedral structures, accompanied by sintering, melting and thermal decomposition upon heating. NOx storage results show an optimum K loading around 10% for the best performance at high temperatures. At lower K loadings wheremore » the majority of KNO3 stays as a surface layer, the strong interaction between KNO3 and Al2O3 promotes KNO3 decomposition and deteriorates high-temperature performance. At K loadings higher than 10%, the performance drop is not caused by NOx diffusion limitations as for the case of barium-based LNTs, but rather from the blocking of Pt sites by K species, which adversely affects NO oxidation. Thermal aging at 800 ºC severely deactivates the Pt/K/Al2O3 catalysts due to Pt sintering. However, in the presence of potassium, some Pt remains in a dispersed and oxidized form. These Pt species interact strongly with K and, therefore, do not sinter. After a reduction treatment, these Pt species remain finely dispersed, contributing to a partial recovery of NOx storage performance.« less

  13. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane.

    PubMed

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush; Mohamed, Abdul Rahman

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted.

  14. Blocking Energy-Loss Pathways for Ideal Fluorescent Organic Light-Emitting Diodes with Thermally Activated Delayed Fluorescent Sensitizers.

    PubMed

    Zhang, Dongdong; Song, Xiaozeng; Cai, Minghan; Duan, Lian

    2018-02-01

    Organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence-sensitized fluorescence (TSF) offer the possibility of attaining an ultimate high efficiency with low roll-off utilizing noble-metal free, easy-to-synthesize, pure organic fluorescent emitters. However, the performances of TSF-OLEDs are still unsatisfactory. Here, TSF-OLEDs with breakthrough efficiencies even at high brightnesses by suppressing the competitive deactivation processes, including direct charge recombination on conventional fluorescent dopants (CFDs) and Dexter energy transfer from the host to the CFDs, are demonstrated. On the one hand, electronically inert terminal-substituents are introduced to protect the electronically active core of the CFDs; on the other hand, delicate device structures are designed to provide multiple energy-funneling paths. As a result, unprecedentedly high maximum external quantum efficiency/power efficiency of 24%/71.4 lm W -1 in a green TSF-OLED are demonstrated, which remain at 22.6%/52.3 lm W -1 even at a high luminance of 5000 cd m -2 . The work unlocks the potential of TSF-OLEDs, paving the way toward practical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding the performance and mechanism of Mg-containing oxides as support catalysts in the thermal dry reforming of methane

    PubMed Central

    Khairudin, Nor Fazila; Sukri, Mohd Farid Fahmi; Khavarian, Mehrnoush

    2018-01-01

    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted. PMID:29719767

  16. A Review and Empirical Comparison of Three Treatments for Adolescent Males with Conduct and Personality Disorder: Mode Deactivation Therapy, Cognitive Behavior Therapy and Social Skills Training

    ERIC Educational Resources Information Center

    Apsche, Jack A.; Bass, Christopher K.

    2006-01-01

    This research study compared the efficacy of three treatment methodologies for adolescent males in residential treatment with conduct disorders and/or personality dysfunctions and documented problems with physical and sexual aggression. The results showed that Mode Deactivation Therapy, an advanced form of cognitive behavioral therapy based on…

  17. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    PubMed

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  18. Thermal analysis of laser additive manufacturing of aluminium alloys: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Bock, Frederic E.; Froend, Martin; Herrnring, Jan; Enz, Josephin; Kashaev, Nikolai; Klusemann, Benjamin

    2018-05-01

    Laser additive manufacturing (LAM) has become increasingly popular in industry in recent decades because it enables exceptional degrees of freedom regarding the structural design of lightweight components compared to subtractive manufacturing techniques. Laser metal deposition (LMD) of wire-fed material shows in particular the advantages such as high process velocity and efficient use of material compared to other LAM processes. During wire-based LMD, the material is deposited onto a substrate and supplemented by successive layers allowing a layer-wise production of complex three-dimensional structures. Despite the increased productivity of LMD, regarding the ability to process aluminium alloys, there is still a lack in quality and reproducibility due to the inhomogeneous temperature distribution during the process, leading to undesired residual stresses, distortions and inconsistent layer geometries and poor microstructures. In this study, the aluminium alloy AA5087 as wire and AA5754 as substrate material were utilized for LMD. In order to obtain information about the temperature field during LMD, thermocouple and thermography measurements were performed during the process. The temperature measurements were used to validate a finite element model regarding the heat distribution, which will be further used to investigate the temperature field evolution over time. To consider the continuous addition of material within the FE-model, an inactive/active element approach was chosen, where initially deactivated elements are activated corresponding to the deposition of material. The first results of the simulation and the experiments show good agreement. Therefore, the model can be used in the future for LMD process optimization, e.g., in terms of minimizing local variations of the thermal load for each layer.

  19. Anterior medial prefrontal cortex exhibits activation during task preparation but deactivation during task execution.

    PubMed

    Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki

    2011-01-01

    The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.

  20. Anterior Medial Prefrontal Cortex Exhibits Activation during Task Preparation but Deactivation during Task Execution

    PubMed Central

    Koshino, Hideya; Minamoto, Takehiro; Ikeda, Takashi; Osaka, Mariko; Otsuka, Yuki; Osaka, Naoyuki

    2011-01-01

    Background The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. Methodology/Principal Findings Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. Conclusions/Significance The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing. PMID:21829668

  1. The S4–S5 Linker Acts as a Signal Integrator for hERG K+ Channel Activation and Deactivation Gating

    PubMed Central

    Ng, Chai Ann; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Kuchel, Philip W.; Vandenberg, Jamie I.

    2012-01-01

    Human ether-à-go-go-related gene (hERG) K+ channels have unusual gating kinetics. Characterised by slow activation/deactivation but rapid inactivation/recovery from inactivation, the unique gating kinetics underlie the central role hERG channels play in cardiac repolarisation. The slow activation and deactivation kinetics are regulated in part by the S4–S5 linker, which couples movement of the voltage sensor domain to opening of the activation gate at the distal end of the inner helix of the pore domain. It has also been suggested that cytosolic domains may interact with the S4–S5 linker to regulate activation and deactivation kinetics. Here, we show that the solution structure of a peptide corresponding to the S4–S5 linker of hERG contains an amphipathic helix. The effects of mutations at the majority of residues in the S4–S5 linker of hERG were consistent with the previously identified role in coupling voltage sensor movement to the activation gate. However, mutations to Ser543, Tyr545, Gly546 and Ala548 had more complex phenotypes indicating that these residues are involved in additional interactions. We propose a model in which the S4–S5 linker, in addition to coupling VSD movement to the activation gate, also contributes to interactions that stabilise the closed state and a separate set of interactions that stabilise the open state. The S4–S5 linker therefore acts as a signal integrator and plays a crucial role in the slow deactivation kinetics of the channel. PMID:22359612

  2. Naringin in Ganshuang Granule suppresses activation of hepatic stellate cells for anti-fibrosis effect by inhibition of mammalian target of rapamycin.

    PubMed

    Shi, Hongbo; Shi, Honglin; Ren, Feng; Chen, Dexi; Chen, Yu; Duan, Zhongping

    2017-03-01

    A previous study has demonstrated that Ganshuang granule (GSG) plays an anti-fibrotic role partially by deactivation of hepatic stellate cells (HSCs). In HSCs activation, mammalian target of rapamycin (mTOR)-autophagy plays an important role. We attempted to investigate the role of mTOR-autophagy in anti-fibrotic effect of GSG. The cirrhotic mouse model was prepared to demonstrate the anti-fibrosis effect of GSG. High performance liquid chromatography (HPLC) analyses were used to identify the active component of GSG. The primary mouse HSCs were isolated and naringin was added into activated HSCs to observe its anti-fibrotic effect. 3-methyladenine (3-MA) and Insulin-like growth factor-1 (IGF-1) was added, respectively, into fully activated HSCs to explore the role of autophagy and mTOR. GSG played an anti-fibrotic role through deactivation of HSCs in cirrhotic mouse model. The concentration of naringin was highest in GSG by HPLC analyses and naringin markedly suppressed HSCs activation in vitro, which suggested that naringin was the main active component of GSG. The deactivation of HSCs caused by naringin was not because of the autophagic activation but mTOR inhibition, which was supported by the following evidence: first, naringin induced autophagic activation, but when autophagy was blocked by 3-MA, deactivation of HSCs was not attenuated or reversed. Second, naringin inhibited mTOR pathway, meanwhile when mTOR was activated by IGF-1, deactivation of HSCs was reversed. In conclusion, we have demonstrated naringin in GSG suppressed activation of HSCs for anti-fibrosis effect by inhibition of mTOR, indicating a potential therapeutic application for liver cirrhosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. 17β-estradiol rapidly facilitates lordosis through G protein-coupled estrogen receptor 1 (GPER) via deactivation of medial preoptic nucleus μ-opioid receptors in estradiol primed female rats.

    PubMed

    Long, Nathan; Serey, Chhorvann; Sinchak, Kevin

    2014-09-01

    In female rats sexual receptivity (lordosis) can be induced with either a single large dose of estradiol benzoate (EB), or a priming dose of EB that does not induce sexual receptivity followed by 17β-estradiol (E2). Estradiol priming initially inhibits lordosis through a multi-synaptic circuit originating in the arcuate nucleus of the hypothalamus (ARH) that activates and internalizes μ-opioid receptors (MOR) in medial preoptic nucleus (MPN) neurons. Lordosis is facilitated when MPN MOR are deactivated after the initial estradiol-induced activation. We tested the hypothesis that E2 given 47.5 h post EB acts rapidly through G protein-coupled estrogen receptor 1 (GPER) in the ARH to deactivate MPN MOR and facilitate lordosis. Ovariectomized Long Evans rats implanted with a third ventricle cannula were primed with 2 μg EB. DMSO control, E2, or G1 (GPER selective agonist) was infused 47.5 h later, and rats were tested for sexual receptivity. E2 and G1 infusions significantly increased levels of sexual receptivity compared to DMSO controls and pretreatment with G15 (GPER antagonist) blocked the facilitation of sexual receptivity. Brains were processed for MPN MOR immunohistochemistry to measure MPN MOR activation levels. E2 and G1 both significantly reduced MPN MOR activation compared to DMSO controls, while pretreatment with G15 blocked MPN MOR deactivation. In another group of EB treated ovariectomized rats, GPER immunofluorescence positive staining was observed throughout the ARH. Together these data indicate that in the 2 μg EB primed rat, E2 rapidly signals through GPER in the ARH to deactivate MPN MOR and facilitate lordosis. Published by Elsevier Inc.

  4. Safe and Effective Deactivation of Metallic Sodium Filled Scrap and Cold Traps From Sodium-cooled Nuclear Reactor D and D - 12176

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nester, Dean; Crocker, Ben; Smart, Bill

    2012-07-01

    As part of the Plateau Remediation Project at US Department of Energy's Hanford, Washington site, CH2M Hill Plateau Remediation Company (CHPRC) contracted with IMPACT Services, LLC to receive and deactivate approximately 28 cubic meters of sodium metal contaminated debris from two sodium-cooled research reactors (Enrico Fermi Unit 1 and the Fast Flux Test Facility) which had been stored at Hanford for over 25 years. CHPRC found an off-site team composed of IMPACT Services and Commodore Advanced Sciences, Inc., with the facilities and technological capabilities to safely and effectively perform deactivation of this sodium metal contaminated debris. IMPACT Services provided themore » licensed fixed facility and the logistical support required to receive, store, and manage the waste materials before treatment, and the characterization, manifesting, and return shipping of the cleaned material after treatment. They also provided a recycle outlet for the liquid sodium hydroxide byproduct resulting from removal of the sodium from reactor parts. Commodore Advanced Sciences, Inc. mobilized their patented AMANDA unit to the IMPACT Services site and operated the unit to perform the sodium removal process. Approximately 816 Kg of metallic sodium were removed and converted to sodium hydroxide, and the project was accomplished in 107 days, from receipt of the first shipment at the IMPACT Services facility to the last outgoing shipment of deactivated scrap metal. There were no safety incidents of any kind during the performance of this project. The AMANDA process has been demonstrated in this project to be both safe and effective for deactivation of sodium and NaK. It has also been used in other venues to treat other highly reactive alkali metals, such as lithium (Li), potassium (K), NaK and Cesium (Cs). (authors)« less

  5. Plasma membrane calcium ATPase 4b inhibits nitric oxide generation through calcium-induced dynamic interaction with neuronal nitric oxide synthase.

    PubMed

    Duan, Wenjuan; Zhou, Juefei; Li, Wei; Zhou, Teng; Chen, Qianqian; Yang, Fuyu; Wei, Taotao

    2013-04-01

    The activation and deactivation of Ca(2+)- and calmodulindependent neuronal nitric oxide synthase (nNOS) in the central nervous system must be tightly controlled to prevent excessive nitric oxide (NO) generation. Considering plasma membrane calcium ATPase (PMCA) is a key deactivator of nNOS, the present investigation aims to determine the key events involved in nNOS deactivation of by PMCA in living cells to maintain its cellular context. Using time-resolved Förster resonance energy transfer (FRET), we determined the occurrence of Ca(2+)-induced protein-protein interactions between plasma membrane calcium ATPase 4b (PMCA4b) and nNOS in living cells. PMCA activation significantly decreased the intracellular Ca(2+) concentrations ([Ca(2+)]i), which deactivates nNOS and slowdowns NO synthesis. Under the basal [Ca(2+)]i caused by PMCA activation, no protein-protein interactions were observed between PMCA4b and nNOS. Furthermore, both the PDZ domain of nNOS and the PDZ-binding motif of PMCA4b were essential for the protein-protein interaction. The involvement of lipid raft microdomains on the activity of PMCA4b and nNOS was also investigated. Unlike other PMCA isoforms, PMCA4 was relatively more concentrated in the raft fractions. Disruption of lipid rafts altered the intracellular localization of PMCA4b and affected the interaction between PMCA4b and nNOS, which suggest that the unique lipid raft distribution of PMCA4 may be responsible for its regulation of nNOS activity. In summary, lipid rafts may act as platforms for the PMCA4b regulation of nNOS activity and the transient tethering of nNOS to PMCA4b is responsible for rapid nNOS deactivation.

  6. Kinetic deuterium isotope effects in glucocorticoid receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranyi, P.

    1984-01-01

    Activation and deactivation of the chick thymus glucocorticoid receptor protein was studied in ordinary and heavy water by DNA-cellulose binding of the tritiated triamcinolone acetonide-receptor complex. Activation was significantly slower in heavy water if it was promoted by incubation at elevated temperature in buffers of low ionic strength. In the presence of 300 mM KC1 or after separation from the low molecular weight cytosol constituents, the complex was activated at the same rate in both solvents. Deactivation (time dependent loss of DNA-binding capacity) was much faster in ordinary than in heavy water regardless of gel filtration or the presence ofmore » KC1. A model of receptor activation-deactivation was constructed on the basis of these data that accounts for the observed kinetic deuterium isotope effects and reveals some submolecular details of the process.« less

  7. Analysis of Deactivation Mechanism on a Multi-Component Sulfur-Tolerant Steam Reforming Catalyst

    DTIC Science & Technology

    2010-08-01

    Alkaline Fuel Cells (AFC) .............................................................................. 4 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ...temperature fuel cells. Alkaline Fuel Cell (AFC), Proton Exchange Membrane Fuel Cell ( PEMFC ), DMFC and Phosphoric Acid Fuel Cell (PAFC) are low...1960s. 1.1.2. Proton Exchange Membrane Fuel Cells ( PEMFC ) Proton exchange membrane fuel cells are said to be the best type of fuel cells to replace

  8. The Sampling and Analysis Plan, Galena Airport and Kalakaket Creek Radio Relay Station, Alaska. Addendum

    DTIC Science & Technology

    1994-09-08

    information deactivated during 1993. Currently, approximately 30 required in a QAPP per the U.S. Environmental caretakers are present at the facility...the total analytical cost. A subset of those Galena Airport-The current environmental samples collected and screened will be sent to an investigative...sampling report United States Environmental Protection Agency (US preparation. EPA), USAF, state, and local requirements. Ms. Sandy Smith is

  9. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    PubMed Central

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively. PMID:23118515

  10. Analysis of casein biopolymers adsorption to lignocellulosic biomass as a potential cellulase stabilizer.

    PubMed

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorption of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.

  11. Retention strategies and predictors of attrition in an urban pediatric asthma study.

    PubMed

    Zook, Patricia M; Jordan, Carolina; Adams, Bernadette; Visness, Cynthia M; Walter, Michelle; Pollenz, Kathryn; Logan, Jennette; Tesson, Elizabeth; Smartt, Ernestine; Chen, Amy; D'Agostino, John; Gern, James E

    2010-08-01

    The Urban Environment and Childhood Asthma (URECA) study is a multicenter prospective birth cohort study designed to examine factors related to the development of childhood asthma and allergies in an inner-city population. The retention of these participants has been challenging due to high mobility, inconsistent phone service, custody issues, and stressful life situations. In this article, we describe the specific retention challenges we encountered during the first 2 years of follow-up in URECA and the strategies we utilized to address them. We also examine how selected maternal characteristics and other factors are related to retention and missed study visits. Strategies implemented to engage participants included: collecting updated and alternative contact information, after-hours phone calls to participants, culturally competent staff, flexible study event scheduling, clinic visit transportation, quarterly newsletters, retention events, drop-in home visits, and cell phone reimbursements. An internally developed web-based data management system enabled close monitoring by site teams and the coordinating center. The rate of deactivations was calculated using survival analysis. Characteristics of active and deactivated participants were compared using the chi-squared test with a Cochran-Mantel - Haenszel adjustment for study site. The proportion of missed visits of the total expected in the first 2 years was calculated and compared by family characteristics using an ANOVA model or a trend test controlling for study site. All analyses were performed using SAS version 9.1 (Cary, NC). The 2-year retention rate was 89%. Participation in the first study event predicted subsequent engagement in study activities. Mothers who did not complete the first visit were more likely to miss future events (46.1% vs. 8.9%, p<0.0001) and to be deactivated (38.5% vs. 4.5%, p<0.0001). Mothers under 18 years of age were more likely to leave the study compared to older mothers (22.7% vs. 10.1%, p = 0.02). Also, mothers who were married missed fewer events than those not married (8.8% vs. 15.6%, p = 0.01). In addition, deactivations were more common when the child had entered daycare by 3 months of age (10.9% vs. 3.6%, p = 0.05). The URECA population is predominantly minority, thus our findings might not be generalizable to other populations. Furthermore, we may not be able to observe the effects that might exist in a more diverse population. For example, 86% of the mothers are unmarried, making it difficult to reliably examine the effect of marital status. In research, successfully engaging and retaining participants is essential for achieving the study objectives. Identifying factors related to missed visits and deactivations are the initial step in recognizing the potential at-risk participants and can enable the design of targeted strategies to retain participants.

  12. Photosensitized singlet oxygen luminescence from the protein matrix of Zn-substituted myoglobin.

    PubMed

    Lepeshkevich, Sergei V; Parkhats, Marina V; Stasheuski, Alexander S; Britikov, Vladimir V; Jarnikova, Ekaterina S; Usanov, Sergey A; Dzhagarov, Boris M

    2014-03-13

    A nanosecond laser near-infrared spectrometer was used to study singlet oxygen ((1)O2) emission in a protein matrix. Myoglobin in which the intact heme is substituted by Zn-protoporphyrin IX (ZnPP) was employed. Every collision of ground state molecular oxygen with ZnPP in the excited triplet state results in (1)O2 generation within the protein matrix. The quantum yield of (1)O2 generation was found to be equal to 0.9 ± 0.1. On the average, six from every 10 (1)O2 molecules succeed in escaping from the protein matrix into the solvent. A kinetic model for (1)O2 generation within the protein matrix and for a subsequent (1)O2 deactivation was introduced and discussed. Rate constants for radiative and nonradiative (1)O2 deactivation within the protein were determined. The first-order radiative rate constant for (1)O2 deactivation within the protein was found to be 8.1 ± 1.3 times larger than the one in aqueous solutions, indicating the strong influence of the protein matrix on the radiative (1)O2 deactivation. Collisions of singlet oxygen with each protein amino acid and ZnPP were assumed to contribute independently to the observed radiative as well as nonradiative rate constants.

  13. Rapid localized deactivation of self-assembled monolayers by propagation-controlled laser-induced plasma and its application to self-patterning of electronics and biosensors

    NASA Astrophysics Data System (ADS)

    Kim, Jongsu; Kwon, Seung-Gab; Back, Seunghyun; Kang, Bongchul

    2018-03-01

    We present a novel laser-induced surface treatment process to rapidly control the spatial wettabilities of various functional solutions with submicron to micron resolutions. Ultrathin hydrophobic self-assembled monolayers (SAMs) that little absorb typical laser lights due to short penetration depth were selectively deactivated by instantaneous interaction with laser-induced metallic plasmas. The spatial region of the deactivated SAM, which corresponds to process resolution, is adjustable by controlling the spatial propagation of the plasma. This method leads to the parallel formation of hydrophilic functional solutions on glass substrates with a minimum resolution on the submicron scale. To show its feasibility in device engineering fields, this method was applied to the cost-effective fabrication of electronics and biosensors. Rapid self-patterning of electronic and biological functional solutions (silver nanoparticle solution and streptavidin protein solution) was successfully realized by selective deactivation of two different SAMs (tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane (FOTS) for electronics and the hetero-hybrid SAM (octadecyltrichlorosilane (OTS)/2-[methoxy(polyethyleneoxy)propyl] trichlorosilane (PEG)) for biosensors). As a result, this method can be exploited for the rapid and low-cost fabrication of various thin film devices such as electronics, biosensors, energy, displays, and photonics.

  14. Inter-costal Liver Ablation Under Real Time MR-Thermometry With Partial Activation Of A HIFU Phased Array Transducer

    NASA Astrophysics Data System (ADS)

    Quesson, Bruno; Merle, Mathilde; Köhler, Max; Mougenot, Charles; Roujol, Sebastien; de Senneville, Baudouin Denis; Moonen, Chrit

    2010-03-01

    HIFU ablation of tumours located inside the liver is hampered by the rib cage, which partially obstructs the beam path and may create adverse effects such as skin burns. This study presents a method for selectively deactivating the transducer elements causing undesired temperature increases near the bones. A manual segmentation of the bones visualized on 3D anatomical MR images acquired prior to sonication was performed to identify the beam obstruction. The resulting mask was projected (ray tracing starting from the focal point) on the transducer and elements with more than 50% obstruction of their active surface were deactivated. The effectiveness of the method for HIFU ablations is demonstrated ex vivo and in vivo in the liver of pigs with real-time MR thermometry, using the proton resonant frequency (PRF) method. For both ex vivo and in vivo experiments, the temperature increase near the bones was significantly reduced when the elements located in front of the ribs were deactivated. The temperature evolution at the focal point were similar, indicative of the absence of loss of heating efficacy when the elements were deactivated. This method is simple, rapid and reliable and allows to perform intercostal MRgHIFU ablation of the liver while sparing the ribs.

  15. Implications of Subliminal Classical Conditioning for Defeating the Use of Countermeasures in the Detection of Deception: Subliminal Evaluation

    DTIC Science & Technology

    1993-08-01

    presented emotional stimuli than for subliminally presented neutral stimuli. Emotional stimuli consisted of sexually charged photographs, and the neutral...behavior. In addition to research using visual stimuli, some 13 studies have been conducted using subliminal (masked by 40 dB white noise) auditory ...deactivating suggestions masked by a 40-dB white noise signal. For the deactivating subliminal auditory messages, suggestions of heaviness and warmth

  16. Highly catalytic asymmetric addition of deactivated alkyl grignard reagents to aldehydes.

    PubMed

    Da, Chao-Shan; Wang, Jun-Rui; Yin, Xiao-Gang; Fan, Xin-Yuan; Liu, Yi; Yu, Sheng-Li

    2009-12-17

    Generally used and highly reactive RMgBr reagents were effectively deactivated by bis[2-(N,N-dimethylamino)ethyl] ether and then were employed in the highly enantioselective addition of Grignard reagents to aldehydes. The reaction was catalyzed by the complex of commercially available (S)-BINOL and Ti(O(i-)Pr)(4) under mild conditions. Compared with the other observed Grignard reagents, alkyl Grignard reagents showed higher enantioselectivity and they achieved >99% ee.

  17. Method of producing pyrolysis gases from carbon-containing materials

    DOEpatents

    Mudge, Lyle K.; Brown, Michael D.; Wilcox, Wayne A.; Baker, Eddie G.

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  18. Boosting functionality of synthetic DNA circuits with tailored deactivation

    PubMed Central

    Montagne, Kevin; Gines, Guillaume; Fujii, Teruo; Rondelez, Yannick

    2016-01-01

    Molecular programming takes advantage of synthetic nucleic acid biochemistry to assemble networks of reactions, in vitro, with the double goal of better understanding cellular regulation and providing information-processing capabilities to man-made chemical systems. The function of molecular circuits is deeply related to their topological structure, but dynamical features (rate laws) also play a critical role. Here we introduce a mechanism to tune the nonlinearities associated with individual nodes of a synthetic network. This mechanism is based on programming deactivation laws using dedicated saturable pathways. We demonstrate this approach through the conversion of a single-node homoeostatic network into a bistable and reversible switch. Furthermore, we prove its generality by adding new functions to the library of reported man-made molecular devices: a system with three addressable bits of memory, and the first DNA-encoded excitable circuit. Specific saturable deactivation pathways thus greatly enrich the functional capability of a given circuit topology. PMID:27845324

  19. Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases.

    PubMed

    Pilarek, Maciej; Szewczyk, Krzysztof W

    2007-01-20

    A new model of enzymatic 1,3-specific alcoholysis of triacylglycerols has been developed. The irreversibility of the acyl bounds cleavage in glycerides, a reversible monoglycerides isomerization and an irreversible enzyme deactivation have been assumed. The Ping Pong Bi Bi mechanism with competitive inhibition by alcohol has been applied to describe rates of acyl bonds cleavage. The enzymatic propanolysis and iso-propanolysis of triacetin and tricaprylin catalyzed by immobilized lipase B from Candida antarctica (Novozym 435) have been investigated to verify the model. Good agreement between experimental data and calculations has been obtained. It was shown that the rate of tricaprylin alcoholysis is higher than the triacetin alcoholysis and that the rate of iso-propanolysis reactions are higher than propanolysis. The irreversible enzyme deactivation affects the conversion of glycerides whereas the competitive alcohol inhibition may be neglected. Empirical correlations of rates for monoglycerides isomerization and enzyme deactivation have been proposed.

  20. Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities.

    PubMed

    Michelin, Michele; Ximenes, Eduardo; de Lourdes Teixeira de Moraes Polizeli, Maria; Ladisch, Michael R

    2016-01-01

    This work shows both cellulases and hemicellulases are inhibited and deactivated by water-soluble and acetone extracted phenolics from sugarcane bagasse pretreated at 10% (w/v) for 30 min in liquid hot water at 180 or 200°C. The dissolved phenolics in vacuum filtrate increased from 1.4 to 2.4 g/L as temperature increased from 180 to 200°C. The suppression of cellulose and hemicellulose hydrolysis by phenolics is dominated by deactivation of the β-glucosidase or β-xylosidase components of cellulase and hemicellulase enzyme by acetone extract at 0.2-0.65 mg phenolics/mg enzyme protein and deactivation of cellulases and hemicellulases by the water soluble components in vacuum filtrate at 0.05-2mg/mg. Inhibition was a function of the type of enzyme and the manner in which the phenolics were extracted from the bagasse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Photocatalytic acceptorless alkane dehydrogenation: scope, mechanism, and conquering deactivation with carbon dioxide.

    PubMed

    Chowdhury, Abhishek Dutta; Julis, Jennifer; Grabow, Kathleen; Hannebauer, Bernd; Bentrup, Ursula; Adam, Martin; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2015-01-01

    Alkane dehydrogenation is of special interest for basic science but also offers interesting opportunities for industry. The existing dehydrogenation methodologies make use of heterogeneous catalysts, which suffer from harsh reaction conditions and a lack of selectivity, whereas homogeneous methodologies rely mostly on unsolicited waste generation from hydrogen acceptors. Conversely, acceptorless photochemical alkane dehydrogenation in the presence of trans-Rh(PMe3 )2 (CO)Cl can be regarded as a more benign and atom efficient alternative. However, this methodology suffers from catalyst deactivation over time. Herein, we provide a detailed investigation of the trans-Rh(PMe3 )2 (CO)Cl-photocatalyzed alkane dehydrogenation using spectroscopic and theoretical investigations. These studies inspired us to utilize CO2 to prevent catalyst deactivation, which leads eventually to improved catalyst turnover numbers in the dehydrogenation of alkanes that include liquid organic hydrogen carriers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  3. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  4. Double dissociation of 'what' and 'where' processing in auditory cortex.

    PubMed

    Lomber, Stephen G; Malhotra, Shveta

    2008-05-01

    Studies of cortical connections or neuronal function in different cerebral areas support the hypothesis that parallel cortical processing streams, similar to those identified in visual cortex, may exist in the auditory system. However, this model has not yet been behaviorally tested. We used reversible cooling deactivation to investigate whether the individual regions in cat nonprimary auditory cortex that are responsible for processing the pattern of an acoustic stimulus or localizing a sound in space could be doubly dissociated in the same animal. We found that bilateral deactivation of the posterior auditory field resulted in deficits in a sound-localization task, whereas bilateral deactivation of the anterior auditory field resulted in deficits in a pattern-discrimination task, but not vice versa. These findings support a model of cortical organization that proposes that identifying an acoustic stimulus ('what') and its spatial location ('where') are processed in separate streams in auditory cortex.

  5. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction.

    PubMed

    Liu, Guoliang; Robertson, Alex W; Li, Molly Meng-Jung; Kuo, Winson C H; Darby, Matthew T; Muhieddine, Mohamad H; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS 2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS 2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS 2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  6. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction

    NASA Astrophysics Data System (ADS)

    Liu, Guoliang; Robertson, Alex W.; Li, Molly Meng-Jung; Kuo, Winson C. H.; Darby, Matthew T.; Muhieddine, Mohamad H.; Lin, Yung-Chang; Suenaga, Kazu; Stamatakis, Michail; Warner, Jamie H.; Tsang, Shik Chi Edman

    2017-08-01

    The conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS2 catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS2 monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene. This higher activity allows the reaction temperature to be reduced from the typically used 300 °C to 180 °C and thus allows the catalysis to proceed without sulfur loss and deactivation. Experimental analysis and density functional theory calculations reveal a large number of sites at the interface between the Co and Mo atoms on the MoS2 basal surface and we ascribe the higher activity to the presence of sulfur vacancies that are created local to the observed Co-S-Mo interfacial sites.

  7. Probing the evolution of palladium species in Pd@MOF catalysts during the Heck coupling reaction: An operando X-ray absorption spectroscopy study.

    PubMed

    Yuan, Ning; Pascanu, Vlad; Huang, Zhehao; Valiente, Alejandro; Heidenreich, Niclas; Leubner, Sebastian; Inge, A Ken; Gaar, Jakob; Stock, Norbert; Persson, Ingmar; Martin-Matute, Belen; Zou, Xiaodong

    2018-06-11

    The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance ( 1 H NMR) kinetic studies. A custom-made reaction cell was used allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is pro-posed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl - ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.

  8. Aircraft Survivability: Unmanned Aircraft Systems Survivability. Fall 2008

    DTIC Science & Technology

    2008-01-01

    until June 2005. Upon deactivation, LtCol Matthews became the “Marine JCAT of One” and was assigned to the 4th Marine Aircraft Wing as a drilling ...strain gauges along with high- speed video. Seven tests were accomplished (Figure 5): four with no airflow, and three with 200 knots of airflow across...collection for manned and unmanned systems to support vulnerability testing and analysis. As Figure 7 illustrates, the system uses advanced metrology

  9. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model

    PubMed Central

    Hillen, Brian K.; Jindrich, Devin L.; Abbas, James J.; Yamaguchi, Gary T.

    2015-01-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. PMID:25673734

  10. Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex.

    PubMed

    Stretton, J; Pope, R A; Winston, G P; Sidhu, M K; Symms, M; Duncan, J S; Koepp, M; Thompson, P J; Foong, J

    2015-02-01

    Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Carrying the past to the future: Distinct brain networks underlie individual differences in human spatial working memory capacity.

    PubMed

    Liu, Siwei; Poh, Jia-Hou; Koh, Hui Li; Ng, Kwun Kei; Loke, Yng Miin; Lim, Joseph Kai Wei; Chong, Joanna Su Xian; Zhou, Juan

    2018-08-01

    Spatial working memory (SWM) relies on the interplay of anatomically separated and interconnected large-scale brain networks. EEG studies often observe load-associated sustained negative activity during SWM retention. Yet, whether and how such sustained negative activity in retention relates to network-specific functional activation/deactivation and relates to individual differences in SWM capacity remain to be elucidated. To cover these gaps, we recorded concurrent EEG-fMRI data in 70 healthy young adults during the Sternberg delayed-match-to-sample SWM task with three memory load levels. To a subset of participants (N = 28) that performed the task properly and had artefact-free fMRI and EEG data, we employed a novel temporo-spatial principal component analysis to derive load-dependent negative slow wave (NSW) from retention-related event-related potentials. The associations between NSW responses with SWM capacity were divergent in the higher (N = 14) and lower (N = 14) SWM capacity groups. Specifically, larger load-related increase in NSW amplitude was associated with greater SWM capacity for the higher capacity group but lower SWM capacity for the lower capacity group. Furthermore, for the higher capacity group, larger NSW amplitude was related to greater activation in bilateral parietal areas of the fronto-parietal network (FPN) and greater deactivation in medial frontal gyrus and posterior mid-cingulate cortex of the default mode network (DMN) during retention. In contrast, the lower capacity group did not show similar pattern. Instead, greater NSW was linked to higher deactivation in right posterior middle temporal gyrus. Our findings shed light on the possible differential EEG-informed neural network mechanism during memory maintenance underlying individual differences in SWM capacity. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Voltage-Dependent Gating of hERG Potassium Channels

    PubMed Central

    Cheng, Yen May; Claydon, Tom W.

    2012-01-01

    The mechanisms by which voltage-gated channels sense changes in membrane voltage and energetically couple this with opening of the ion conducting pore has been the source of significant interest. In voltage-gated potassium (Kv) channels, much of our knowledge in this area comes from Shaker-type channels, for which voltage-dependent gating is quite rapid. In these channels, activation and deactivation are associated with rapid reconfiguration of the voltage-sensing domain unit that is electromechanically coupled, via the S4–S5 linker helix, to the rate-limiting opening of an intracellular pore gate. However, fast voltage-dependent gating kinetics are not typical of all Kv channels, such as Kv11.1 (human ether-à-go-go related gene, hERG), which activates and deactivates very slowly. Compared to Shaker channels, our understanding of the mechanisms underlying slow hERG gating is much poorer. Here, we present a comparative review of the structure–function relationships underlying activation and deactivation gating in Shaker and hERG channels, with a focus on the roles of the voltage-sensing domain and the S4–S5 linker that couples voltage sensor movements to the pore. Measurements of gating current kinetics and fluorimetric analysis of voltage sensor movement are consistent with models suggesting that the hERG activation pathway contains a voltage independent step, which limits voltage sensor transitions. Constraints upon hERG voltage sensor movement may result from loose packing of the S4 helices and additional intra-voltage sensor counter-charge interactions. More recent data suggest that key amino acid differences in the hERG voltage-sensing unit and S4–S5 linker, relative to fast activating Shaker-type Kv channels, may also contribute to the increased stability of the resting state of the voltage sensor. PMID:22586397

  13. Effects of spinal cord injury-induced changes in muscle activation on foot drag in a computational rat ankle model.

    PubMed

    Hillen, Brian K; Jindrich, Devin L; Abbas, James J; Yamaguchi, Gary T; Jung, Ranu

    2015-04-01

    Spinal cord injury (SCI) can lead to changes in muscle activation patterns and atrophy of affected muscles. Moderate levels of SCI are typically associated with foot drag during the swing phase of locomotion. Foot drag is often used to assess locomotor recovery, but the causes remain unclear. We hypothesized that foot drag results from inappropriate muscle coordination preventing flexion at the stance-to-swing transition. To test this hypothesis and to assess the relative contributions of neural and muscular changes on foot drag, we developed a two-dimensional, one degree of freedom ankle musculoskeletal model with gastrocnemius and tibialis anterior muscles. Anatomical data collected from sham-injured and incomplete SCI (iSCI) female Long-Evans rats as well as physiological data from the literature were used to implement an open-loop muscle dynamics model. Muscle insertion point motion was calculated with imposed ankle trajectories from kinematic analysis of treadmill walking in sham-injured and iSCI animals. Relative gastrocnemius deactivation and tibialis anterior activation onset times were varied within physiologically relevant ranges based on simplified locomotor electromyogram profiles. No-atrophy and moderate muscle atrophy as well as normal and injured muscle activation profiles were also simulated. Positive moments coinciding with the transition from stance to swing phase were defined as foot swing and negative moments as foot drag. Whereas decreases in activation delay caused by delayed gastrocnemius deactivation promote foot drag, all other changes associated with iSCI facilitate foot swing. Our results suggest that even small changes in the ability to precisely deactivate the gastrocnemius could result in foot drag after iSCI. Copyright © 2015 the American Physiological Society.

  14. Safe Deactivation of Energetic Materials and Use of By-products as Epoxy Curing Agents

    DTIC Science & Technology

    2001-11-01

    National Laboratory has developed a lab- scale synthesis to convert TNT to higher value products such as TATB. 3.2 Firing Range Clean-Up Due to...1000 2000 3000 4000 5000 TCD1 , of Nitrogen Nitric Oxide Nitrous oxide ammonia Water Figure 1. Reactant Products for the Reaction of...SAND2001-3344 Unlimited Release Printed November 2001 Safe Deactivation of Energetic Materials and Use of By- products as Epoxy Curing

  15. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy.

    PubMed

    Wang, Wenjing; Fang, Chenjie; Wang, Xiaozhu; Chen, Yuxi; Wang, Yaonan; Feng, Wei; Yan, Chunhua; Zhao, Ming; Peng, Shiqi

    2013-07-21

    Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy.

  16. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.

    1994-01-01

    Research was conducted on: (1) design and construction of a continuous flow photoreactor to study oxidation of trace atmospheric contaminants; (2) kinetics of acetone oxidation including adsorption equilibrium, variation of oxidatiin rate with acetone concentration and water, and variation of rate and apparent quantum yield with light intensity, and (3) kinetics of butanol oxidation, including rate variations; and (4) kinetics of catalyst deactivation including deactivation rate, influence of dark conditions, and photocatalytic regeneration in alcohol-free air.

  17. The default mode network in chimpanzees (Pan troglodytes) is similar to that of humans.

    PubMed

    Barks, Sarah K; Parr, Lisa A; Rilling, James K

    2015-02-01

    The human default mode network (DMN), comprising medial prefrontal cortex, precuneus, posterior cingulate cortex, lateral parietal cortex, and medial temporal cortex, is highly metabolically active at rest but deactivates during most focused cognitive tasks. The DMN and social cognitive networks overlap significantly in humans. We previously demonstrated that chimpanzees (Pan troglodytes) show highest resting metabolic brain activity in the cortical midline areas of the human DMN. Human DMN is defined by task-induced deactivations, not absolute resting metabolic levels; ergo, resting activity is insufficient to define a DMN in chimpanzees. Here, we assessed the chimpanzee DMN's deactivations relative to rest during cognitive tasks and the effect of social content on these areas' activity. Chimpanzees performed a match-to-sample task with conspecific behavioral stimuli of varying sociality. Using [(18)F]-FDG PET, brain activity during these tasks was compared with activity during a nonsocial task and at rest. Cortical midline areas in chimpanzees deactivated in these tasks relative to rest, suggesting a chimpanzee DMN anatomically and functionally similar to humans. Furthermore, when chimpanzees make social discriminations, these same areas (particularly precuneus) are highly active relative to nonsocial tasks, suggesting that, as in humans, the chimpanzee DMN may play a role in social cognition. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae

    PubMed Central

    Szyjka, Shawn J.; Aparicio, Jennifer G.; Viggiani, Christopher J.; Knott, Simon; Xu, Weihong; Tavaré, Simon; Aparicio, Oscar M.

    2008-01-01

    Replication fork stalling at a DNA lesion generates a damage signal that activates the Rad53 kinase, which plays a vital role in survival by stabilizing stalled replication forks. However, evidence that Rad53 directly modulates the activity of replication forks has been lacking, and the nature of fork stabilization has remained unclear. Recently, cells lacking the Psy2–Pph3 phosphatase were shown to be defective in dephosphorylation of Rad53 as well as replication fork restart after DNA damage, suggesting a mechanistic link between Rad53 deactivation and fork restart. To test this possibility we examined the progression of replication forks in methyl-methanesulfonate (MMS)-damaged cells, under different conditions of Rad53 activity. Hyperactivity of Rad53 in pph3Δ cells slows fork progression in MMS, whereas deactivation of Rad53, through expression of dominant-negative Rad53-KD, is sufficient to allow fork restart during recovery. Furthermore, combined deletion of PPH3 and PTC2, a second, unrelated Rad53 phosphatase, results in complete replication fork arrest and lethality in MMS, demonstrating that Rad53 deactivation is a key mechanism controlling fork restart. We propose a model for regulation of replication fork progression through damaged DNA involving a cycle of Rad53 activation and deactivation that coordinates replication restart with DNA repair. PMID:18628397

  19. Expertise-related deactivation of the right temporoparietal junction during musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2010-01-01

    Musical training has been associated with structural changes in the brain as well as functional differences in brain activity when musicians are compared to nonmusicians on both perceptual and motor tasks. Previous neuroimaging comparisons of musicians and nonmusicians in the motor domain have used tasks involving prelearned motor sequences or synchronization with an auditorily presented sequence during the experiment. Here we use functional magnetic resonance imaging (fMRI) to examine expertise-related differences in brain activity between musicians and nonmusicians during improvisation--the generation of novel musical-motor sequences--using a paradigm that we previously used in musicians alone. Despite behaviorally matched performance, the two groups showed significant differences in functional brain activity during improvisation. Specifically, musicians deactivated the right temporoparietal junction (rTPJ) during melodic improvisation, while nonmusicians showed no change in activity in this region. The rTPJ is thought to be part of a ventral attentional network for bottom-up stimulus-driven processing, and it has been postulated that deactivation of this region occurs in order to inhibit attentional shifts toward task-irrelevant stimuli during top-down, goal-driven behavior. We propose that the musicians' deactivation of the rTPJ during melodic improvisation may represent a training-induced shift toward inhibition of stimulus-driven attention, allowing for a more goal-directed performance state that aids in creative thought.

  20. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipasemore » A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. - Highlights: • Isoliquiritigenin induces growth inhibition and apoptosis in human breast cancer. • The proapoptotic action of isoliquiritigenin has been studied in vitro and in vivo. • Arachidonic acid metabolic network mediates isoliquiritigenin-induced apoptosis. • PI3K/Akt deactivation is asssociated with isoliquiritigenin-induced apoptosis. • Isoliquiritigenin may be a multi-target drug in the treatment of breast cancer.« less

  1. The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion.

    PubMed

    Chiu, Lawrence C-M; Kong, Carrie K-L; Ooi, Vincent E-C

    2005-10-01

    Targeting the mitogen-activated protein kinases (MAPKs) has been suggested as a novel strategy to treat cancer. Chlorophyllin (CHL) is the sodium-copper salt of chlorophyll derivative and is a commonly used food dye for green coloration; CHL was found previously to retard growth of the human breast carcinoma MCF-7 cells. Extracellular signal-regulated kinases (ERKs) constitute a subfamily of MAPKs, participating in cell survival, proliferation and differentiation. We report here the first evidence that CHL deactivates ERKs to inhibit the breast cancer cell proliferation. The results from flow cytometry showed that 200 microg/ml CHL reduced the phosphorylated and activated ERK-positive cells in different cell cycle phases from the control of >96 to <38% at 24 h of incubation; the ERK deactivations occurred in both dose- and time-dependent manner, so that nearly all ERKs were de-activated by 400 microg/ml CHL at 72 h of treatment. Immunoblot studies, however, illustrated that the levels of total ERKs were not significantly affected by the CHL treatments, suggesting that the phytochemical retards the enzyme activation rather than its expression. Cyclin D1, but not its enzyme Cdk6, was also depleted after the CHL treatments; the depletions were associated with elevations of G0/G1 cells. Apoptosis occurred time-dependently with the ERK deactivations by 400 microg/ml CHL; the apoptotic cells elevated from 2.7-fold of the control level at 24 h, to 4.7-fold at 48 h and to 16.6-fold at 72 h of treatment. Bcl-2 was also depleted at 72 h when there was the most prominent elevation of the apoptotic cells, suggesting that it participates during the exacerbation rather than the initiation phases of the CHL-induced apoptosis. Results from this study support further research on CHL for preventing and treating those tumors with deregulated ERK activations.

  2. SU-F-T-35: Optimization of Bladder and Rectal Doses Using a Multi-Lumen Intracavitary Applicator for Gynecological Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laoui, S; Dietrich, S; Sehgal, V

    2016-06-15

    Purpose: Radiation dose delivery for endometrial cancer using HDR techniques is limited by dose to bladder and rectum. A dosimetric study was performed using Varian Capri vaginal brachytherapy applicator to determine the optimal channel configuration which minimizes dose to bladder and rectum, while providing good target coverage. Methods: A total of 17 patients, 63 plans clinically delivered, and 252 simulated plans using Varian BrachyVision planning system were generated to investigate optimal channel configuration which results in minimum dose to bladder and rectum while providing adequate target coverage. The Capri applicator consists of 13 lumens arranged in two concentric rings, onemore » central lumen and six lumens per ring. Manual dose shaping is invariably required to lower the dose to critical organs. Three-dimensional plans were simulated for 4 channel arrangements, all 13 channels, channel 12 o’clock (close to bladder) and 6 o’clock (close to rectum) deactivated, central channel deactivated, and central channel in addition to 12 o’clock and 6 o’clock deactivated. A relationship between V100, the volume that receives the prescribed dose, and the amount of curie-seconds required to deliver it, was established. Results: Using all 13 channels results in maximum dose to bladder and rectum. Deactivating central channel in addition to 12 o’clock and 6 o’clock resulted in minimizing bladder and rectum doses but compromised target coverage. The relationship between V100, the volume that receives the prescribed dose, and the curie seconds was found to be linear. Conclusion: Deactivating channels 12 o’clock and 6 o’clock was shown to be the optimal configuration leading to minimum dose to bladder and rectum without compromising target coverage. The linear relationship between V100 and the curie- seconds can be used as a verification parameter.« less

  3. Study of collisional deactivation of O{sub 2}(b{sup 1}{Sigma}{sub g}{sup +}) molecules in a hydrogen-oxygen mixture at high temperatures using laser-induced gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, D. N., E-mail: dnk@kapella.gpi.ru; Kobtsev, V. D.; Stel'makh, O. M.

    2013-07-15

    Collisional deactivation of O{sub 2}(b{sup 1}{Sigma}{sub g}{sup +}) molecules resonantly excited by a 10 ns pulse of laser radiation with a wavelength of 762 nm in H{sub 2}/O{sub 2} mixtures is experimentally studied. The radiation intensity and hence the molecule excitation efficiency have a spatially periodic modulation that leads to the formation of laser-induced gratings (LIGs) of the refractive index. The study of LIG temporal evolution allows collisional relaxation rates of molecular excited states and gas temperature to be determined. In this work, the b{sup 1}{Sigma}{sub g}{sup +} state of O{sub 2} molecules deactivation rates are measured in a 4.3more » vol % H{sub 2} mixture at the number density of 2 amg in the temperature range 291-850 K. The physical deactivation is shown to dominate in the collisions of H{sub 2} with O{sub 2}(b{sup 1}{Sigma}{sub g}{sup +}) and O{sub 2}(a{sup 1}{Delta}{sub g}) up to temperatures of 780-790 K at time delays up to 10 {mu}s after the excitation pulse. The parameters of the obtained temperature dependence of the (b{sup 1}{Sigma}{sub g}{sup +} state deactivation rate agree well with the data of independent measurements performed earlier at lower temperatures (200-400 K). Tunable diode laser absorption spectroscopy is used to measure the temperature dependence of the number density of the H{sub 2}O molecules which appear as the mixture, as the result of the dark gross reaction with O{sub 2} molecules in the ground state, O{sub 2} + 2H{sub 2} {yields} 2H{sub 2}O. The measurements show that this reaction results in complete transformation of H{sub 2} into H{sub 2}O at temperatures of 790-810 K.« less

  4. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Duffy, Kevin P [Metamora, IL; Liechty, Michael P [Chillicothe, IL

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  5. Analysis of Casein Biopolymers Adsorption to Lignocellulosic Biomass as a Potential Cellulase Stabilizer

    DOE PAGES

    Eckard, Anahita Dehkhoda; Muthukumarappan, Kasiviswanathan; Gibbons, William

    2012-01-01

    Although lignocellulosic materials have a good potential to substitute current feedstocks used for ethanol production, conversion of these materials to fermentable sugars is still not economical through enzymatic hydrolysis. High cost of cellulase has prompted research to explore techniques that can prevent from enzyme deactivation. Colloidal proteins of casein can form monolayers on hydrophobic surfaces that alleviate the de-activation of protein of interest. Scanning electron microscope (SEM), fourier transform infrared spectroscopy (FT-IR), capillary electrophoresis (CE), and Kjeldahl and BSA protein assays were used to investigate the unknown mechanism of action of induced cellulase activity during hydrolysis of casein-treated biomass. Adsorptionmore » of casein to biomass was observed with all of the analytical techniques used and varied depending on the pretreatment techniques of biomass. FT-IR analysis of amides I and II suggested that the substructure of protein from casein or skim milk were deformed at the time of contact with biomass. With no additive, the majority of one of the cellulase mono-component, 97.1 ± 1.1, was adsorbed to CS within 24 h, this adsorption was irreversible and increased by 2% after 72 h. However, biomass treatment with skim-milk and casein reduced the adsorption to 32.9% ± 6.0 and 82.8% ± 6.0, respectively.« less

  6. The influence of different pretreatment methods on biogas production from Jatropha curcas oil cake.

    PubMed

    Jabłoński, Sławomir Jan; Kułażyński, Marek; Sikora, Ilona; Łukaszewicz, Marcin

    2017-12-01

    Drought and pest resistance, together with high oil content in its seeds, make Jatropha curcas a good oil source for biodiesel. Oil cake from J. curcas is not suitable for animal feeding and thus may be profitably used for additional energy production by conversion into biogas; however, the anaerobic digestion process must be optimized to obtain good efficiency. We subjected oil cake to thermal and acidic pretreatment to deactivate protease inhibitors and partially hydrolyze phytate. We then digested the samples in batch conditions to determine the effects of pretreatment on biogas production. Thermal pretreatment changed the kinetics of anaerobic digestion and reduced protease inhibitor activity and the concentration of phytate; however, biogas production efficiency was not affected (0.281 m 3  kg -1 ). To evaluate the possibility of recirculating water for SSF hydrolysis, ammonium nitrogen recovery from effluent was evaluated by its precipitation in the form of struvite (magnesium ammonium phosphate).Concentration of ammonium ions was reduced by 53% (to 980 mg L -1 ). We propose a water-saving concept based on percolation of J. curcas cake using anaerobic digestion effluent and feeding that percolate into a methanogenic bioreactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaluation of hypericin-loaded solid lipid nanoparticles: physicochemical properties, photostability and phototoxicity.

    PubMed

    Youssef, Tareq; Fadel, Maha; Fahmy, Rania; Kassab, Kawser

    2012-01-01

    Hypericin (HYP), a natural photosensitizer, has powerful photo-oxidizing ability, tumor-seeking characteristics, and minimal dark toxicity; nevertheless, it has proven high lipid solubility compared to its sparingly water soluble nature. Therefore, its formulation into solid lipid nanoparticles (SLNs) has attracted increasing attention as a potential drug-delivery carrier. Two HYP-loaded SLNs formulations were prepared utilizing microemulsion-based technique. Thereafter, the physicochemical properties of the formulations were investigated and evaluated. HYP-loaded SLNs showed spherical shape with mean particle size ranging from 200-300 nm for both formulations (FA and FB). The encapsulation efficiencies reached above 80% and FA showed significant higher encapsulation than FB (P<0.05), also, the thermal analysis using differential scanning calorimetry (DSC) indicated good compatibility between hypericin and lipids forming the cores in both formulations. Spectroscopic measurements of the photostability study showed that hypericin encapsulation into SLNs improved its photostability, compared to free HYP in 0.1% ethanolic solution. However, photocytotoxicity studies on HepG2 cells revealed an evident inhibition of the photodynamic efficacy of HYP-loaded SLNs, compared to free HYP. In conclusion, although the elevated entrapment efficiency of HYP into SLNs increased its photostability, it decreased its phototoxicity which might be due to the quenching deactivation of HYP molecules resulting from SLN compactness and thickness structure. © 2012 Informa Healthcare USA, Inc.

  8. Deactivation of Streptococcus mutans Biofilms on a Tooth Surface Using He Dielectric Barrier Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Imola, Molnar; Judit, Papp; Alpar, Simon; Sorin, Dan Anghel

    2013-06-01

    This paper presents a study of the effect of the low temperature atmospheric helium dielectric barrier discharge (DBD) on the Streptococcus mutans biofilms formed on tooth surface. Pig jaws were also treated by plasma to detect if there is any harmful effect on the gingiva. The plasma was characterized by using optical emission spectroscopy. Experimental data indicated that the discharge is very effective in deactivating Streptococcus mutans biofilms. It can destroy them with an average decimal reduction time (D-time) of 19 s and about 98% of them were killed after a treatment time of 30 s. According to the survival curve kinetic an overall 32 s treatment time would be necessary to perform a complete sterilization. The experimental results presented in this study indicated that the helium dielectric barrier discharge, in plan-parallel electrode configuration, could be a very effective tool for deactivation of oral bacteria and might be a promising technique in various dental clinical applications.

  9. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities.

    PubMed

    Santana, Jose; Marrero, Domingo; Macías, Elsa; Mena, Vicente; Suárez, Álvaro

    2017-07-21

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces.

  10. Attention and Working Memory in Adolescents with Autism Spectrum Disorder: A Functional MRI Study.

    PubMed

    Rahko, Jukka S; Vuontela, Virve A; Carlson, Synnöve; Nikkinen, Juha; Hurtig, Tuula M; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jussila, Katja K; Remes, Jukka J; Jansson-Verkasalo, Eira M; Aronen, Eeva T; Pauls, David L; Ebeling, Hanna E; Tervonen, Osmo; Moilanen, Irma K; Kiviniemi, Vesa J

    2016-06-01

    The present study examined attention and memory load-dependent differences in the brain activation and deactivation patterns between adolescents with autism spectrum disorders (ASDs) and typically developing (TD) controls using functional magnetic resonance imaging. Attentional (0-back) and working memory (WM; 2-back) processing and load differences (0 vs. 2-back) were analysed. WM-related areas activated and default mode network deactivated normally in ASDs as a function of task load. ASDs performed the attentional 0-back task similarly to TD controls but showed increased deactivation in cerebellum and right temporal cortical areas and weaker activation in other cerebellar areas. Increasing task load resulted in multiple responses in ASDs compared to TD and in inadequate modulation of brain activity in right insula, primary somatosensory, motor and auditory cortices. The changes during attentional task may reflect compensatory mechanisms enabling normal behavioral performance. The inadequate memory load-dependent modulation of activity suggests diminished compensatory potential in ASD.

  11. Universal and reusable virus deactivation system for respiratory protection

    NASA Astrophysics Data System (ADS)

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases.

  12. Universal and reusable virus deactivation system for respiratory protection

    PubMed Central

    Quan, Fu-Shi; Rubino, Ilaria; Lee, Su-Hwa; Koch, Brendan; Choi, Hyo-Jick

    2017-01-01

    Aerosolized pathogens are a leading cause of respiratory infection and transmission. Currently used protective measures pose potential risk of primary/secondary infection and transmission. Here, we report the development of a universal, reusable virus deactivation system by functionalization of the main fibrous filtration unit of surgical mask with sodium chloride salt. The salt coating on the fiber surface dissolves upon exposure to virus aerosols and recrystallizes during drying, destroying the pathogens. When tested with tightly sealed sides, salt-coated filters showed remarkably higher filtration efficiency than conventional mask filtration layer, and 100% survival rate was observed in mice infected with virus penetrated through salt-coated filters. Viruses captured on salt-coated filters exhibited rapid infectivity loss compared to gradual decrease on bare filters. Salt-coated filters proved highly effective in deactivating influenza viruses regardless of subtypes and following storage in harsh environmental conditions. Our results can be applied in obtaining a broad-spectrum, airborne pathogen prevention device in preparation for epidemic and pandemic of respiratory diseases. PMID:28051158

  13. Interference Effects Redress over Power-Efficient Wireless-Friendly Mesh Networks for Ubiquitous Sensor Communications across Smart Cities

    PubMed Central

    Marrero, Domingo; Macías, Elsa; Mena, Vicente

    2017-01-01

    Ubiquitous sensing allows smart cities to take control of many parameters (e.g., road traffic, air or noise pollution levels, etc.). An inexpensive Wireless Mesh Network can be used as an efficient way to transport sensed data. When that mesh is autonomously powered (e.g., solar powered), it constitutes an ideal portable network system which can be deployed when needed. Nevertheless, its power consumption must be restrained to extend its operational cycle and for preserving the environment. To this end, our strategy fosters wireless interface deactivation among nodes which do not participate in any route. As we show, this contributes to a significant power saving for the mesh. Furthermore, our strategy is wireless-friendly, meaning that it gives priority to deactivation of nodes receiving (and also causing) interferences from (to) the rest of the smart city. We also show that a routing protocol can adapt to this strategy in which certain nodes deactivate their own wireless interfaces. PMID:28754013

  14. Method For Reactivating Solid Catalysts Used For Alklation Reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2005-05-03

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  15. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  16. Unusually high fluorescence quantum yield of a homopolyfluorenylazomethine--towards a universal fluorophore.

    PubMed

    Mallet, Charlotte; Bolduc, Andréanne; Bishop, Sophie; Gautier, Yohan; Skene, W G

    2014-11-28

    The absolute fluorescence quantum yield (Φfl) of a polyfluorenyl azomethine homopolymer was measured as a function of solvent polarity. The solvent induced and temperature dependent fluorescence of the homopolymer were also investigated and they were compared to the corresponding monomer and copolymer. The Φfl of the homopolymer was consistent (45-70%), regardless of solvent polarity with Stokes shifts up to 7460 cm(-1) in ethanol. In contrast, the Φfl of its corresponding monomer decreased from 60% in ethanol to 1% in toluene, whereas a Φfl < 5% for its analogous copolymer was measured. Moderate fluorescence yields (Φfl ≈ 25%) were also possible in thin film when co-depositing the homopolymer with PMMA. Cryofluorescence was used to probe the excited state deactivation modes. Deactivation by internal conversion was found to compete with fluorescence. The fluorescence deactivation pathways of the homopolymer and its corresponding monomer could be suppressed at 77 K, resulting in fluorescence turn-on. Both fluorophores were found to detect nitroaromatics.

  17. Modifying mesoporous silica nanoparticles to avoid the metabolic deactivation of 6-mercaptopurine and methotrexate in combinatorial chemotherapy

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Fang, Chenjie; Wang, Xiaozhu; Chen, Yuxi; Wang, Yaonan; Feng, Wei; Yan, Chunhua; Zhao, Ming; Peng, Shiqi

    2013-06-01

    Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy.Mesoporous silica nanoparticles with amino and thiol groups (MSNSN) were prepared and covalently modified with methotrexate and 6-mercaptopurine to form 6-MP-MSNSN-MTX. In the presence of DTT, 6-MP-MSNSN-MTX gradually releases 6-MP. In rat plasma, 6-MP-MSNSN-MTX effectively inhibits the metabolic deactivation of 6-MP and MTX. 6-MP-MSNSN-MTX could be an agent for long-acting chemotherapy. Electronic supplementary information (ESI) available: Experimental details of the synthesis and in vitro and in vivo assays. See DOI: 10.1039/c3nr00227f

  18. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  19. Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports.

    PubMed

    Holder, Jourdan T; Kessler, David M; Noble, Jack H; Gifford, René H; Labadie, Robert F

    2018-06-01

    To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. Retrospective. Academic Medical Center. Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.

  20. Decision-Making of Patients With Implantable Cardioverter-Defibrillators at End of Life: Family Members' Experiences.

    PubMed

    Lee, Mei Ching; Sulmasy, Daniel P; Gallo, Joseph; Kub, Joan; Hughes, Mark T; Russell, Stuart; Kellogg, Anela; Owens, Sharon G; Terry, Peter; Nolan, Marie T

    2017-07-01

    Many patients with advanced heart failure (HF) experience the life-extending benefits of implantable cardioverter-defibrillators (ICD), but at the end stage of HF, patients may experience shocks with increasing frequency and change the plan for end-of-life (EOL) care including the deactivation of the ICD. This report describes family members' experiences of patients with ICD making decisions at EOL. Understanding the decision-making of patients with ICD at EOL can promote informed decision-making and improve the quality of EOL care. This pilot study used a mixed methods approach to test the effects of a nurse-guided discussion in decision-making about ICD deactivation (turning off the defibrillation function) at the EOL. Interviews were conducted, audiotaped, and transcribed in 2012 to 2013 with 6 family members of patients with advanced HF and ICDs. Three researchers coded the data and identified themes in 2014. Three main themes described family members' experiences related to patients having HF with ICDs making health-care decision at EOL: decision-making preferences, patients' perception on ICD deactivation, and communication methods. Health-care providers need to have knowledge of patients' decision-making preferences. Preferences for decision-making include the allowing of appropriate people to involve and encourages direct conversation with family members even when advance directives is completed. Information of ICD function and the option of deactivation need to be clearly delivered to patients and family members. Education and guidelines will facilitate the communication of the preferences of EOL care.

  1. Hydrodeoxygenation of phenol over zirconia supported Pd bimetallic catalysts. The effect of second metal on catalyst performance

    DOE PAGES

    Resende, Karen A.; Teles, Camila A.; Jacobs, Gary; ...

    2018-03-21

    Here, this work investigated the effect of the addition of a second metal (Cu, Ag, Zn, Sn) on the performance of Pd/ZrO 2 catalyst for HDO of phenol at 573 K in the gas phase. The incorporation of dopants resulted in the formation of Pd–X (Cu, Ag, Zn) alloys, which reduced the reaction rate for HDO and increased the selectivity to hydrogenation products (cyclohexanone and cyclohexanol). The lower activity of the bimetallic catalysts was due to the segregation of the second metal on the surface of the Pd particle. For PdSn/ZrO 2, alloying was also observed but tin oxide wasmore » still present on the surface after reduction at 773 K. For Pd and PdSn/ZrO 2, the oxophilic sites represented by Zr and Sn cations promotes the hydrogenation of the carbonyl group of the keto-tautomer intermediate formed, producing benzene as the main product. All catalysts significantly deactivated during the reaction but the deactivation degree depended on the type of the metal. Pd/ZrO 2 and PdZn/ZrO 2 and PdAg/ZrO 2 exhibited approximately the same deactivation degree. However, the loss of activity was less pronounced for PdSn/ZrO2 catalyst. Finally, Pd dispersion significantly decreased during the reaction, indicating that the sintering of Pd particles is one of the causes for catalyst deactivation.« less

  2. PUREX/UO3 Facilities deactivation lessons learned history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, M.S.

    1996-09-19

    Disconnecting the criticality alarm permanently in June 1996 signified that the hazards in the PUREX (plutonium-uranium extraction) plant had been so removed and reduced that criticality was no longer a credible event. Turning off the PUREX criticality alarm also marked a salient point in a historic deactivation project, 1 year before its anticipated conclusion. The PUREX/UO3 Deactivation Project began in October 1993 as a 5-year, $222.5- million project. As a result of innovations implemented during 1994 and 1995, the project schedule was shortened by over a year, with concomitant savings. In 1994, the innovations included arranging to send contaminated nitricmore » acid from the PUREX Plant to British Nuclear Fuels, Limited (BNFL) for reuse and sending metal solutions containing plutonium and uranium from PUREX to the Hanford Site tank farms. These two steps saved the project $36.9- million. In 1995, reductions in overhead rate, work scope, and budget, along with curtailed capital equipment expenditures, reduced the cost another $25.6 million. These savings were achieved by using activity-based cost estimating and applying technical schedule enhancements. In 1996, a series of changes brought about under the general concept of ``reengineering`` reduced the cost approximately another $15 million, and moved the completion date to May 1997. With the total savings projected at about $75 million, or 33.7 percent of the originally projected cost, understanding how the changes came about, what decisions were made, and why they were made becomes important. At the same time sweeping changes in the cultural of the Hanford Site were taking place. These changes included shifting employee relations and work structures, introducing new philosophies and methods in maintaining safety and complying with regulations, using electronic technology to manage information, and, adopting new methods and bases for evaluating progress. Because these changes helped generate cost savings and were accompanied by and were an integral part of sweeping ``culture changes,`` the story of the lessons learned during the PUREX Deactivation Project are worth recounting. Foremost among the lessons is recognizing the benefits of ``right to left`` project planning. A deactivation project must start by identifying its end points, then make every task, budget, and organizational decision based on reaching those end points. Along with this key lesson is the knowledge that project planning and scheduling should be tied directly to costing, and the project status should be checked often (more often than needed to meet mandated reporting requirements) to reflect real-time work. People working on a successful project should never be guessing about its schedule or living with a paper schedule that does not represent the actual state of work. Other salient lessons were learned in the PUREX/UO3 Deactivation Project that support these guiding principles. They include recognizing the value of independent review, teamwork, and reengineering concepts; the need and value of cooperation between the DOE, its contractors, regulators, and stakeholders; and the essential nature of early and ongoing communication. Managing a successful project also requires being willing to take a fresh look at safety requirements and to apply them in a streamlined and sensible manner to deactivating facilities; draw on the enormous value of resident knowledge acquired by people over years and sometimes decades of working in old plants; and recognize the value of bringing in outside expertise for certain specialized tasks.This approach makes possible discovering the savings that can come when many creative options are pursued persistently and the wisdom of leaving some decisions to the future. The essential job of a deactivation project is to place a facility in a safe, stable, low-maintenance mode, for an interim period. Specific end points are identified to recognize and document this state. Keeping the limited objectives of the project in mind can guide decisions that reduce risks with minimal manipulation of physical materials, minimal waste generation, streamline regulations and safety requirements where possible, and separate the facility from ongoing entanglements with operating systems. Thus, the ``parked car`` state is achieved quickly and directly. The PUREX Deactivation Lessons Learned History was first issued in January 1995. Since then, several key changes have occurred in the project, making it advisable to revise and update the document. This document is organized with the significant lessons learned captured at the end of each section, and then recounted in Section 11.0, ``Lessons Consolidated.`` It is hoped and believed that the lessons learned on the PUREX Deactivation Project will have value to other facilities both inside and outside the DOE complex.« less

  3. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  4. Highly Dispersed and Active ReOx on Alumina-Modified SBA-15 Silica for 2-Butanol Dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    She, Xiaoyan; Kwak, Ja Hun; Sun, Junming

    2012-05-23

    SBA-15 silica supported rhenium catalysts were synthesized using solution-based atomic layer deposition method, and their activity and stability were studied in the acid-catalyzed 2-butanol dehydration. We find that ReOx/SBA-15 exhibited an extremely high initial activity but a fast deactivation for 2-butanol dehydration at 90-105 C. Fast deactivation was likely due to the sintering, sublimation, and reduction of rhenia as confirmed by TEM, elemental analysis, and in situ UV vis (DRS) measurements. To overcome these issues, ReOx/AlOx/SBA-15 catalysts with significantly improved stability were prepared by first modifying the surface identity of SBA-15 with alumina followed by dispersion of rhenia using atomicmore » layer deposition. The AlOx phase stabilizes the dispersion of small and uniform rhenia clusters (<2 nm) as as confirmed by TEM, STEM and UV-vis (DRS) characterizations. Additional 27Al MAS NMR characterization revealed that modification of the SBA-15 surface with alumina introduces a strong interaction between rhenia and alumina, which consequently improves the stability of supported rhenia catalysts by suppressing the sintering, sublimation, and reduction of rhenia albeit at a moderately reduced initial catalytic dehydration activity« less

  5. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand

    PubMed Central

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    Introduction: The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. Methods: A total of 40 nickel-titanium (NiTi) wire segments (Morelli OrtodontiaTM - Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. Results: When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. Conclusion: There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio. PMID:27007760

  6. Deflection test evaluation of different lots of the same nickel-titanium wire commercial brand.

    PubMed

    Neves, Murilo Gaby; Lima, Fabrício Viana Pereira; Gurgel, Júlio de Araújo; Pinzan-Vercelino, Célia Regina Maio; Rezende, Fernanda Soares; Brandão, Gustavo Antônio Martins

    2016-01-01

    The aim of this in vitro study was to compare the elastic properties of the load-deflection ratio of orthodontic wires of different lot numbers and the same commercial brand. A total of 40 nickel-titanium (NiTi) wire segments (Morelli Ortodontia™--Sorocaba, SP, Brazil), 0.016-in in diameter were used. Groups were sorted according to lot numbers (lots 1, 2, 3 and 4). 28-mm length segments from the straight portion (ends) of archwires were used. Deflection tests were performed in an EMIC universal testing machine with 5-N load cell at 1 mm/minute speed. Force at deactivation was recorded at 0.5, 1, 2 and 3 mm deflection. Analysis of variance (ANOVA) was used to compare differences between group means. When comparing the force of groups at the same deflection (3, 2 and 1 mm), during deactivation, no statistical differences were found. There are no changes in the elastic properties of different lots of the same commercial brand; thus, the use of different lots of the orthodontic wires used in this research does not compromise the final outcomes of the load-deflection ratio.

  7. Functional MRI study of specific animal phobia using an event-related emotional counting stroop paradigm.

    PubMed

    Britton, Jennifer C; Gold, Andrea L; Deckersbach, Thilo; Rauch, Scott L

    2009-01-01

    Emotional interference tasks may be useful in probing anterior cingulate cortex (ACC) function to understand abnormal attentional study in individuals with specific phobia. In a 3 T functional MRI study, individuals with specific phobias of the animal subtype (SAP, n=12) and healthy comparison (HC) adults (n=12) completed an event-related emotional counting Stroop task. Individuals were presented phobia-related, negative, and neutral words and were instructed to report via button press the number of words displayed on each trial. Compared to the HC group, the SAP group exhibited greater rostral ACC activation (i.e., greater response to phobia-related words than neutral words). In this same contrast, HCs exhibited greater right amygdala and posterior insula activations as well as greater thalamic deactivation than the SAP group. Both groups exhibited anterior cingulate, dorsomedial prefrontal cortex, inferior frontal gyrus/insula, and amygdala activations as well as thalamic deactivation. Psychophysiological interaction analysis highlighted a network of activation in these regions in response to phobia-related words in the SAP group. Taken together, these findings implicate a circuit of dysfunction, which is linked to attention abnormalities in individuals with SAP.

  8. In Situ Characterization of Mesoporous Co/CeO 2 Catalysts for the High-Temperature Water-Gas Shift

    DOE PAGES

    Vovchok, Dimitriy; Guild, Curtis J.; Dissanayake, Shanka; ...

    2018-04-04

    Here, mesoporous Co/CeO 2 catalysts were found to exhibit significant activity for the high-temperature water-gas shift (WGS) reaction with cobalt loadings as low as 1 wt %. The catalysts feature a uniform dispersion of cobalt within the CeO 2 fluorite type lattice with no evidence of discrete cobalt phase segregation. In situ XANES and ambient pressure XPS experiments were used to elucidate the active state of the catalysts as partially reduced cerium oxide doped with oxidized cobalt atoms. In situ XRD and DRIFTS experiments suggest facile cerium reduction and oxygen vacancy formation, particularly with lower cobalt loadings. In situ DRIFTSmore » analysis also revealed the presence of surface carbonate and bidentate formate species under reaction conditions, which may be associated with additional mechanistic pathways for the WGS reaction. Deactivation behavior was observed with higher cobalt loadings. XANES data suggest the formation of small metallic cobalt clusters at temperatures above 400 °C may be responsible. Notably, this deactivation was not observed for the 1% cobalt loaded catalyst, which exhibited the highest activity per unit of cobalt.« less

  9. How does KCNE1 regulate the Kv7.1 potassium channel? Model-structure, mutations, and dynamics of the Kv7.1-KCNE1 complex.

    PubMed

    Gofman, Yana; Shats, Simona; Attali, Bernard; Haliloglu, Turkan; Ben-Tal, Nir

    2012-08-08

    The voltage-gated potassium channel Kv7.1 and its auxiliary subunit KCNE1 are expressed in the heart and give rise to the major repolarization current. The interaction of Kv7.1 with the single transmembrane helix of KCNE1 considerably slows channel activation and deactivation, raises single-channel conductance, and prevents slow voltage-dependent inactivation. We built a Kv7.1-KCNE1 model-structure. The model-structure agrees with previous disulfide mapping studies and enables us to derive molecular interpretations of electrophysiological recordings that we obtained for two KCNE1 mutations. An elastic network analysis of Kv7.1 fluctuations in the presence and absence of KCNE1 suggests a mechanistic perspective on the known effects of KCNE1 on Kv7.1 function: slow deactivation is attributed to the low mobility of the voltage-sensor domains upon KCNE1 binding, abolishment of voltage-dependent inactivation could result from decreased fluctuations in the external vestibule, and amalgamation of the fluctuations in the pore region is associated with enhanced ion conductivity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Growth of metal phthalocyanine on deactivated semiconducting surfaces steered by selective orbital coupling

    DOE PAGES

    Wagner, Sean R.; Feng, Jiagui; Yoon, Mina; ...

    2015-08-25

    Using scanning tunneling microscopy and density functional theory, we show that the molecular ordering and orientation of metal phthalocyanine molecules on the deactivated Si surface display a strong dependency on the central transition-metal ion, driven by the degree of orbital hybridization at the heterointerface via selective p – d orbital coupling. As a result, this Letter identifies a selective mechanism for modifying the molecule-substrate interaction which impacts the growth behavior of transition-metal-incorporated organic molecules on a technologically relevant substrate for silicon-based devices.

  11. Defective downregulation of receptor tyrosine kinases in cancer

    PubMed Central

    Bache, Kristi G; Slagsvold, Thomas; Stenmark, Harald

    2004-01-01

    Most growth factors control cellular functions by activating specific receptor tyrosine kinases (RTKs). While overactivation of RTK signalling pathways is strongly associated with carcinogenesis, it is becoming increasingly clear that impaired deactivation of RTKs may also be a mechanism in cancer. A major deactivation pathway, receptor downregulation, involves ligand-induced endocytosis of the RTK and subsequent degradation in lysosomes. A complex molecular machinery that uses the small protein ubiquitin as a key regulator assures proper endocytosis and degradation of RTKs. Here we discuss evidence that implicates deregulation of this machinery in cancer. PMID:15229652

  12. Rupture loop annex ion exchange RLAIX vault deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  13. Elucidation of the role of metal-to-ring charge-transfer excited states in the deactivation of photoexcited ruthenium porphyrin carbonyl complexes

    NASA Astrophysics Data System (ADS)

    Rodriguez, Juan; McDowell, Lynda; Holten, Dewey

    1988-06-01

    Deactivation of the lowest excited triplet state, 3(π, π*), of the Ru(II) porphyrins RuP(CO)(L) is more strongly dependent on temperature than decay of 3(π, π*) in Pt(II)P and H 2P (metal-free) complexes containing the same macrocycle P. This and other observations support the proposal that 3(π, π*) in the RuP(CO)(L) complexes decays in part via a metal-to-ring (d, π*) charge-transfer excited state at higher energy.

  14. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.

  15. Influence of the Reaction Temperature on the Nature of the Active and Deactivating Species During Methanol-to-Olefins Conversion over H-SAPO-34

    PubMed Central

    2017-01-01

    The selectivity toward lower olefins during the methanol-to-olefins conversion over H-SAPO-34 at reaction temperatures between 573 and 773 K has been studied with a combination of operando UV–vis diffuse reflectance spectroscopy and online gas chromatography. It was found that the selectivity toward propylene increases in the temperature range of 573–623 K, while it decreases in the temperature range of 623–773 K. The high degree of incorporation of olefins, mainly propylene, into the hydrocarbon pool affects the product selectivity at lower reaction temperatures. The nature and dynamics of the active and deactivating hydrocarbon species with increasing reaction temperature were revealed by a non-negative matrix factorization of the time-resolved operando UV–vis diffuse reflectance spectra. The active hydrocarbon pool species consist of mainly highly methylated benzene carbocations at temperatures between 573 and 598 K, of both highly methylated benzene carbocations and methylated naphthalene carbocations at 623 K, and of only methylated naphthalene carbocations at temperatures between 673 and 773 K. The operando spectroscopy results suggest that the nature of the active species also influences the olefin selectivity. In fact, monoenylic and highly methylated benzene carbocations are more selective to the formation of propylene, whereas the formation of the group of low methylated benzene carbocations and methylated naphthalene carbocations at higher reaction temperatures (i.e., 673 and 773 K) favors the formation of ethylene. At reaction temperatures between 573 and 623 K, catalyst deactivation is caused by the gradual filling of the micropores with methylated naphthalene carbocations, while between 623 and 773 K the formation of neutral poly aromatics and phenanthrene/anthracene carbocations are mainly responsible for catalyst deactivation, their respective contribution increasing with increasing reaction temperature. Methanol pulse experiments at different temperatures demonstrate the dynamics between methylated benzene and methylated naphthalene carbocations. It was found that methylated naphthalene carbocations species are deactivating and block the micropores at low reaction temperatures, while acting as the active species at higher reaction temperatures, although they give rise to the formation of extended hydrocarbon deposits. PMID:28824823

  16. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.

    PubMed

    Gusev, Andrey A; Psarras, Antonios C; Triantafyllidis, Konstantinos S; Lappas, Angelos A; Diddams, Paul A

    2017-10-21

    ZSM-5-containing catalytic additives are widely used in oil refineries to boost light olefin production and improve gasoline octanes in the Fluid Catalytic Cracking (FCC) process. Under the hydrothermal conditions present in the FCC regenerator (typically >700 °C and >8% steam), FCC catalysts and additives are subject to deactivation. Zeolites (e.g., Rare Earth USY in the base catalyst and ZSM-5 in Olefins boosting additives) are prone to dealumination and partial structural collapse, thereby losing activity, micropore surface area, and undergoing changes in selectivity. Fresh catalyst and additives are added at appropriate respective levels to the FCC unit on a daily basis to maintain overall targeted steady-state (equilibrated) activity and selectivity. To mimic this process under accelerated laboratory conditions, a commercial P/ZSM-5 additive was hydrothermally equilibrated via a steaming process at two temperatures: 788 °C and 815 °C to simulate moderate and more severe equilibration industrial conditions, respectively. n -Dodecane was used as probe molecule and feed for micro-activity cracking testing at 560 °C to determine the activity and product selectivity of fresh and equilibrated P-doped ZSM-5 additives. The fresh/calcined P/ZSM-5 additive was very active in C 12 cracking while steaming limited its activity, i.e., at catalyst-to-feed (C/F) ratio of 1, about 70% and 30% conversion was obtained with the fresh and steamed additives, respectively. A greater activity drop was observed upon increasing the hydrothermal deactivation severity due to gradual decrease of total acidity and microporosity of the additives. However, this change in severity did not result in any selectivity changes for the LPG (liquefied petroleum gas) olefins as the nature (Brønsted-to-Lewis ratio) of the acid/active sites was not significantly altered upon steaming. Steam deactivation of ZSM-5 had also no significant effect on aromatics formation which was enhanced at higher conversion levels. Coke remained low with both fresh and steam-deactivated P/ZSM-5 additives.

  17. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search.

    PubMed

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-03-01

    Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI.

  18. Ethical challenges of deactivation of cardiac devices in advanced heart failure.

    PubMed

    Chamsi-Pasha, Hassan; Chamsi-Pasha, Mohammed A; Albar, Mohammed Ali

    2014-06-01

    More than 23 million adults worldwide have heart failure (HF). Although survival after heart failure diagnosis has improved over time, mortality from heart failure remains high. At the end of life, the chronic HF patient often becomes increasingly symptomatic, and may have other life-limiting comorbidities as well. Multiple trials have shown a clear mortality benefit with the use of implantable cardioverter defibrillators (ICDs) in patients with cardiomyopathy and ventricular arrhythmia. However, patients who have an ICD may be denied the chance of a sudden cardiac death, and instead are committed to a slower terminal decline, with frequent DC shocks that can be painful and decrease the quality of life, greatly contributing to their distress and that of their families during this period. While patients with ICDs are routinely counseled with regard to the benefits of ICDs, they have a poor understanding of the options for device deactivation and related ethical and legal implications. Deactivating an ICD or not performing a generator change is both legal and ethical, and is supported by guidelines from both sides of the Atlantic. Patient autonomy is paramount, and no patient is committed to any therapy that they no longer wish to receive. Left ventricular assist devices (LVADs) were initially used as bridge in patients awaiting heart transplantation, but they are currently implanted as destination therapy (DT) in patients with end-stage heart failure who have failed to respond to optimal medical therapy and who are ineligible for cardiac transplantation. The decision-making process for initiation and deactivation of LVAD is becoming more and more ethically and clinically challenging, particularly for elderly patients.

  19. Quantification of Load Dependent Brain Activity in Parametric N-Back Working Memory Tasks using Pseudo-continuous Arterial Spin Labeling (pCASL) Perfusion Imaging.

    PubMed

    Zou, Qihong; Gu, Hong; Wang, Danny J J; Gao, Jia-Hong; Yang, Yihong

    2011-04-01

    Brain activation and deactivation induced by N-back working memory tasks and their load effects have been extensively investigated using positron emission tomography (PET) and blood-oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). However, the underlying mechanisms of BOLD fMRI are still not completely understood and PET imaging requires injection of radioactive tracers. In this study, a pseudo-continuous arterial spin labeling (pCASL) perfusion imaging technique was used to quantify cerebral blood flow (CBF), a well understood physiological index reflective of cerebral metabolism, in N-back working memory tasks. Using pCASL, we systematically investigated brain activation and deactivation induced by the N-back working memory tasks and further studied the load effects on brain activity based on quantitative CBF. Our data show increased CBF in the fronto-parietal cortices, thalamus, caudate, and cerebellar regions, and decreased CBF in the posterior cingulate cortex and medial prefrontal cortex, during the working memory tasks. Most of the activated/deactivated brain regions show an approximately linear relationship between CBF and task loads (0, 1, 2 and 3 back), although several regions show non-linear relationships (quadratic and cubic). The CBF-based spatial patterns of brain activation/deactivation and load effects from this study agree well with those obtained from BOLD fMRI and PET techniques. These results demonstrate the feasibility of ASL techniques to quantify human brain activity during high cognitive tasks, suggesting its potential application to assessing the mechanisms of cognitive deficits in neuropsychiatric and neurological disorders.

  20. Brain processing of rectal sensation in adolescents with functional defecation disorders and healthy controls.

    PubMed

    Mugie, S M; Koppen, I J N; van den Berg, M M; Groot, P F C; Reneman, L; de Ruiter, M B; Benninga, M A

    2018-03-01

    Decreased sensation of urge to defecate is often reported by children with functional constipation (FC) and functional nonretentive fecal incontinence (FNRFI). The aim of this cross-sectional study was to evaluate cerebral activity in response to rectal distension in adolescents with FC and FNRFI compared with healthy controls (HCs). We included 15 adolescents with FC, 10 adolescents with FNRFI, and 15 young adult HCs. Rectal barostat was performed prior to functional magnetic resonance imaging (fMRI) to determine individual pressure thresholds for urge sensation. Subjects received 2 sessions of 5 × 30 seconds of barostat stimulation during the acquisition of blood oxygenation level-dependent fMRI. Functional magnetic resonance imaging signal differences were analyzed using SPM8 in Matlab. Functional constipation and FNRFI patients had higher thresholds for urgency than HCs (P < .001). During rectal distension, FC patients showed activation in the anterior cingulate cortex, dorsolateral prefrontal cortex, inferior parietal lobule, and putamen. No activations were observed in controls and FNRFI patients. Functional nonretentive fecal incontinence patients showed deactivation in the hippocampus, parahippocampal gyrus, fusiform gyrus (FFG), lingual gyrus, posterior parietal cortex, and precentral gyrus. In HCs, deactivated areas were detected in the hippocampus, amygdala, FFG, insula, thalamus, precuneus, and primary somatosensory cortex. In contrast, no regions with significant deactivation were detected in FC patients. Children with FC differ from children with FNRFI and HCs with respect to patterns of cerebral activation and deactivation during rectal distension. Functional nonretentive fecal incontinence patients seem to resemble HCs when it comes to brain processing of rectal distension. © 2017 John Wiley & Sons Ltd.

  1. Aging and the interaction of sensory cortical function and structure.

    PubMed

    Peiffer, Ann M; Hugenschmidt, Christina E; Maldjian, Joseph A; Casanova, Ramon; Srikanth, Ryali; Hayasaka, Satoru; Burdette, Jonathan H; Kraft, Robert A; Laurienti, Paul J

    2009-01-01

    Even the healthiest older adults experience changes in cognitive and sensory function. Studies show that older adults have reduced neural responses to sensory information. However, it is well known that sensory systems do not act in isolation but function cooperatively to either enhance or suppress neural responses to individual environmental stimuli. Very little research has been dedicated to understanding how aging affects the interactions between sensory systems, especially cross-modal deactivations or the ability of one sensory system (e.g., audition) to suppress the neural responses in another sensory system cortex (e.g., vision). Such cross-modal interactions have been implicated in attentional shifts between sensory modalities and could account for increased distractibility in older adults. To assess age-related changes in cross-modal deactivations, functional MRI studies were performed in 61 adults between 18 and 80 years old during simple auditory and visual discrimination tasks. Results within visual cortex confirmed previous findings of decreased responses to visual stimuli for older adults. Age-related changes in the visual cortical response to auditory stimuli were, however, much more complex and suggested an alteration with age in the functional interactions between the senses. Ventral visual cortical regions exhibited cross-modal deactivations in younger but not older adults, whereas more dorsal aspects of visual cortex were suppressed in older but not younger adults. These differences in deactivation also remained after adjusting for age-related reductions in brain volume of sensory cortex. Thus, functional differences in cortical activity between older and younger adults cannot solely be accounted for by differences in gray matter volume. (c) 2007 Wiley-Liss, Inc.

  2. Carbon Dioxide Exposure Resulting From Hood Protective Equipment Used in Joint Arthroplasty Surgery.

    PubMed

    Patel, Suhani; Fine, Janelle M; Lim, Michael J; Copp, Steven N; Rosen, Adam S; West, John B; Prisk, G Kim

    2017-08-01

    To protect both the surgeon and patient during procedures, hooded protection shields are used during joint arthroplasty procedures. Headache, malaise, and dizziness, consistent with increased carbon dioxide (CO 2 ) exposure, have been anecdotally reported by surgeons using hoods. We hypothesized that increased CO 2 concentrations were causing reported symptoms. Six healthy subjects (4 men) donned hooded protection, fan at the highest setting. Arm cycle ergometry at workloads of 12 and 25 watts (W) simulated workloads encountered during arthroplasty. Inspired O 2 and CO 2 concentrations at the nares were continuously measured at rest, 12 W, and 25 W. At each activity level, the fan was deactivated and the times for CO 2 to reach 0.5% and 1.0% were measured. At rest, inspired CO 2 was 0.14% ± 0.04%. Exercise had significant effect on CO 2 compared with rest (0.26% ± 0.08% at 12 W, P = .04; 0.31% ± 0.05% at 25 W, P = .003). Inspired CO 2 concentration increased rapidly with fan deactivation, with the time for CO 2 to increase to 0.5% and 1.0% after fan deactivation being rapid but variable (0.5%, 12 ± 9 seconds; 1%, 26 ± 15 seconds). Time for CO 2 to return below 0.5% after fan reactivation was 20 ± 37 seconds. During simulated joint arthroplasty, CO 2 remained within Occupational Safety and Health Administration (OSHA) standards with the fan at the highest setting. With fan deactivation, CO 2 concentration rapidly exceeds OSHA standards. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men.

    PubMed

    Schulte, Tilman; Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf

    2012-02-01

    Alcohol dependence is associated with inhibitory control deficits, possibly related to abnormalities in frontoparietal cortical and midbrain function and connectivity. We examined functional connectivity and microstructural fiber integrity between frontoparietal and midbrain structures using a Stroop Match-to-Sample task with functional magnetic resonance imaging and diffusion tensor imaging in 18 alcoholic and 17 control subjects. Manipulation of color cues and response repetition sequences modulated cognitive demands during Stroop conflict. Despite similar lateral frontoparietal activity and functional connectivity in alcoholic and control subjects when processing conflict, control subjects deactivated the posterior cingulate cortex (PCC), whereas alcoholic subjects did not. Posterior cingulum fiber integrity predicted the degree of PCC deactivation in control but not alcoholic subjects. Also, PCC activity was modulated by executive control demands: activated during response switching and deactivated during response repetition. Alcoholics showed the opposite pattern: activation during repetition and deactivation during switching. Here, in alcoholic subjects, greater deviations from the normal PCC activity correlated with higher amounts of lifetime alcohol consumption. A functional dissociation of brain network connectivity between the groups further showed that control subjects exhibited greater corticocortical connectivity among middle cingulate, posterior cingulate, and medial prefrontal cortices than alcoholic subjects. In contrast, alcoholic subjects exhibited greater midbrain-orbitofrontal cortical network connectivity than control subjects. Degree of microstructural fiber integrity predicted robustness of functional connectivity. Thus, even subtle compromise of microstructural connectivity in alcoholism can influence modulation of functional connectivity and underlie alcohol-related cognitive impairment. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Bacterial spore inactivation induced by cold plasma.

    PubMed

    Liao, Xinyu; Muhammad, Aliyu Idris; Chen, Shiguo; Hu, Yaqin; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-04-05

    Cold plasma has emerged as a non-thermal technology for microbial inactivation in the food industry over the last decade. Spore-forming microorganisms pose challenges for microbiological safety and for the prevention of food spoilage. Inactivation of spores induced by cold plasma has been reported by several studies. However, the exact mechanism of spore deactivation by cold plasma is poorly understood; therefore, it is difficult to control this process and to optimize cold plasma processing for efficient spore inactivation. In this review, we summarize the factors that affect the resistance of spores to cold plasma, including processing parameters, environmental elements, and spore properties. We then describe possible inactivation targets in spore cells (e.g., outer structure, DNA, and metabolic proteins) that associated with inactivation by cold plasma according to previous studies. Kinetic models of the sporicidal activity of cold plasma have also been described here. A better understanding of the interaction between spores and cold plasma is essential for the development and optimization of cold plasma technology in food the industry.

  5. In situ ohmic contact formation for n-type Ge via non-equilibrium processing

    NASA Astrophysics Data System (ADS)

    Prucnal, S.; Frigerio, J.; Napolitani, E.; Ballabio, A.; Berencén, Y.; Rebohle, L.; Wang, M.; Böttger, R.; Voelskow, M.; Isella, G.; Hübner, R.; Helm, M.; Zhou, S.; Skorupa, W.

    2017-11-01

    Highly scaled nanoelectronics requires effective channel doping above 5 × 1019 cm-3 together with ohmic contacts with extremely low specific contact resistivity. Nowadays, Ge becomes very attractive for modern optoelectronics due to the high carrier mobility and the quasi-direct bandgap, but n-type Ge doped above 5 × 1019 cm-3 is metastable and thus difficult to be achieved. In this letter, we report on the formation of low-resistivity ohmic contacts in highly n-type doped Ge via non-equilibrium thermal processing consisting of millisecond-range flash lamp annealing. This is a single-step process that allows for the formation of a 90 nm thick NiGe layer with a very sharp interface between NiGe and Ge. The measured carrier concentration in Ge is above 9 × 1019 cm-3 with a specific contact resistivity of 1.2 × 10-6 Ω cm2. Simultaneously, both the diffusion and the electrical deactivation of P are fully suppressed.

  6. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.

    PubMed

    Rodrigues, Ana Cristina; Felby, Claus; Gama, Miguel

    2014-03-01

    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be recovered by recycling the liquid phase. In the early stage of the process, enzyme adsorb to the substrate, then gradually returning to the solution as the saccharification proceeds. At 50°C, normally regarded as an acceptable operational temperature for saccharification, the enzymes (Celluclast) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Heavy Metals Effect on Cyanobacteria Synechocystis aquatilis Study Using Absorption, Fluorescence, Flow Cytometry, and Photothermal Measurements

    NASA Astrophysics Data System (ADS)

    Dudkowiak, A.; Olejarz, B.; Łukasiewicz, J.; Banaszek, J.; Sikora, J.; Wiktorowicz, K.

    2011-04-01

    The toxic effect of six heavy metals on cyanobacteria Synechocystis aquatilis was studied by absorption, fluorescence, flow cytometry, and photothermal measurements. This study indicates that at the concentration used, the cyanobacteria are more sensitive to silver, copper, and mercury than to cadmium, lead, and zinc metals. Disregarding the decrease in the yields of the related radiative processes caused by photochemical processes and/or damage to phycobilisomes, no changes were detected in the efficiency of thermal deactivation processes within a few microseconds, which can indicate the lack of disturbances in the photosynthetic light reaction and the lack of damage to the photosystem caused by the heavy metal ions in the concentrations used. The results demonstrate that the relative values of fluorescence yield as well as promptly generated heat calculated for the metal-affected and unaffected (reference) bacteria are sensitive indicators of environmental pollution with heavy metal ions, whereas the complementary methods proposed could be used as a noninvasive and fast procedure for in vivo assessment of their toxicity.

  8. Catalysts and process development for two-stage liquefaction. First quarterly report, January 1, 1992--March 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronauer, D.C.; Swanson, A.J.; Sajkowski, D.J.

    Research under way in this project centers upon developing and evaluating catalysts and process improvements for coal liquefaction in the two-stage, close-coupled catalytic process. The project is being carried out under contract to the United States Department of Energy. As discussed in the previous quarterly report, promising results were obtained by liquefying Illinois No. 6 bituminous and Black Thunder subbituminous coals using oil-soluble catalysts Molyvan L and molybdenum octoate. In this quarter, the liquefaction of Black Thunder coal was continued. Runs were made in catalytic/thermal (C/T) mode with supported AMOCAT{trademark} 1C (NiMo) and AMOCAT{trademark} 1B (Mo) catalysts. Although the initialmore » performance in these runs was good (90% conversion with no resid production), both catalysts deactivated rapidly. Spent catalysts showed severe coke deposition as well as formation of a calcium-rich shell on the catalyst surface. Overall, C/T liquefaction is not a good process option for Black Thunder coal.« less

  9. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes.

    PubMed

    Qi, Ji; Chen, Chao; Zhang, Xiaoyan; Hu, Xianglong; Ji, Shenglu; Kwok, Ryan T K; Lam, Jacky W Y; Ding, Dan; Tang, Ben Zhong

    2018-05-10

    Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles' photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.

  10. Implementation of a Peltier-based cooling device for localized deep cortical deactivation during in vivo object recognition testing

    NASA Astrophysics Data System (ADS)

    Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David

    2012-02-01

    While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.

  11. Random one-of-N selector

    DOEpatents

    Kronberg, J.W.

    1993-04-20

    An apparatus for selecting at random one item of N items on the average comprising counter and reset elements for counting repeatedly between zero and N, a number selected by the user, a circuit for activating and deactivating the counter, a comparator to determine if the counter stopped at a count of zero, an output to indicate an item has been selected when the count is zero or not selected if the count is not zero. Randomness is provided by having the counter cycle very often while varying the relatively longer duration between activation and deactivation of the count. The passive circuit components of the activating/deactivating circuit and those of the counter are selected for the sensitivity of their response to variations in temperature and other physical characteristics of the environment so that the response time of the circuitry varies. Additionally, the items themselves, which may be people, may vary in shape or the time they press a pushbutton, so that, for example, an ultrasonic beam broken by the item or person passing through it will add to the duration of the count and thus to the randomness of the selection.

  12. Deactivation of cisplatin-resistant human lung/ovary cancer cells with pyropheophorbide-α methyl ester-photodynamic therapy.

    PubMed

    Qian, Guanhua; Wang, Li; Zheng, Xueling; Yu, Tinghe

    2017-12-02

    The aim of this study was to determine whether photodynamic therapy (PDT) alone or combined with cisplatin (DDP), can deactivate cisplatin-resistant cancer cells. Human cancer cell lines A549 and SKOV3, and chemoresistant sublines A549/DDP and SKOV3/DDP, were subjected to PDT, DDP, or PDT combined with DDP. Cell viability and apoptosis were analyzed, and then intracellular reactive oxygen species (ROS) and proteins related to apoptosis were determined. PDT caused cell death, and PDT combined with DDP led to the highest percentage of dead cells in 4 cell lines; similar results were detected in ROS; a quantification evaluation manifested that the combined effect was addition. DDP increased the percentage of apoptotic cells, and the ROS level in A549 and SKOV3 cells, which was not observed in A549/DDP and SKOV3/DDP cells. Western blot revealed an increase of caspase 3 and Bax, and a decrease of Bcl-2, demonstrating the occurrence of apoptosis. The data suggest that PDT can efficiently deactivate resistant cells and enhance the action of DDP against resistant cancer cells.

  13. Random one-of-N selector

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for selecting at random one item of N items on the average comprising counter and reset elements for counting repeatedly between zero and N, a number selected by the user, a circuit for activating and deactivating the counter, a comparator to determine if the counter stopped at a count of zero, an output to indicate an item has been selected when the count is zero or not selected if the count is not zero. Randomness is provided by having the counter cycle very often while varying the relatively longer duration between activation and deactivation of the count. The passive circuit components of the activating/deactivating circuit and those of the counter are selected for the sensitivity of their response to variations in temperature and other physical characteristics of the environment so that the response time of the circuitry varies. Additionally, the items themselves, which may be people, may vary in shape or the time they press a pushbutton, so that, for example, an ultrasonic beam broken by the item or person passing through it will add to the duration of the count and thus to the randomness of the selection.

  14. Activation-deactivation of self-healing in supramolecular rubbers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Maes, Florine; Montarnal, Damien; Cantournet, Sabine; Tournilhac, Francois; Leibler, Ludwik; Mines-Paristech Cnrs (Umr7633) Team; Espci-Paristech Cnrs (Umr7167) Team

    2011-03-01

    Self-healing materials have the ability to restore autonomously their structural integrity after damage. Such a remarkable property was obtained recently in supramolecular rubbers formed by a network of small molecules associated via hydrogen bonds. Here we explore this self-healing through an original tack experiment where two parts of supramolecular rubber are brought into contact and then separated. These experiments reveal that a strong self-healing ability is activated by damage even though the surfaces of a molded part are weakly self-adhesive. In our testing conditions, a five minute contact between crack faces is sufficient to recover most mechanical properties of the bulk while days are required to obtain such adhesion levels with melt-pressed surfaces. We show that the deactivation of this self-healing ability seems unexpectedly slow as compared to the predicted dynamics of supramolecular networks. Fracture faces stored apart at room temperature still self-heal after days but are fully deactivated within hours by annealing. Combining these results with microstructural observations gives us a deeper insight into the mechanisms involved in this self-healing process.

  15. Catalyst activity maintenance study for the liquid phase dimethyl ether process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, X.D.; Toseland, B.A.; Underwood, R.P.

    1995-12-31

    The co-production of dimethyl ether (DME) and methanol from syngas is a process of considerable commercial attractiveness. DME coproduction can double the productivity of a LPMEOH process when using coal-derived syngas. This in itself may offer chemical producers and power companies increased flexibility and more profitable operation. DME is also known as a clean burning liquid fuel; Amoco and Haldor-Topsoe have recently announced the use of DME as an alternative diesel fuel. Moreover, DME can be an interesting intermediate in the production of chemicals such as olefins and vinyl acetate. The current APCl liquid phase dimethyl ether (LPDME) process utilizesmore » a physical mixture of a commercial methanol synthesis catalyst and a dehydration catalyst (e.g., {gamma}-alumina). While this arrangement provides a synergy that results in much higher syngas conversion per pass compared to the methanol-only process, the stability of the catalyst system suffers. The present project is aimed at reducing catalyst deactivation both by understanding the cause(s) of catalyst deactivation and by developing modified catalyst systems. This paper describes the current understanding of the deactivation mechanism.« less

  16. Effect of Feedstock and Catalyst Impurities on the Methanol‐to‐Olefin Reaction over H‐SAPO‐34

    PubMed Central

    Vogt, Charlotte; Ruiz‐Martínez, Javier

    2016-01-01

    Abstract Operando UV/Vis spectroscopy with on‐line mass spectrometry was used to study the effect of different types of impurities on the hydrocarbon pool species and the activity of H‐SAPO‐34 as a methanol‐to‐olefins (MTO) catalyst. Successive reaction cycles with different purity feedstocks were studied, with an intermittent regeneration step. The combined study of two distinct impurity types (i.e., feed and internal impurities) leads to new insights into MTO catalyst activation and deactivation mechanisms. In the presence of low amounts of feed impurities, the induction and active periods of the process are prolonged. Feed impurities are thus beneficial in the formation of the initial hydrocarbon pool, but also aid in the unwanted formation of deactivating coke species by a separate, competing mechanism favoring coke species over olefins. Further, feedstock impurities strongly influence the location of coke deposits, and thus influence the deactivation mechanism, whereas a study of the organic impurities retained after calcination reveals that these species are less relevant for catalyst activity and function as “seeds” for coke formation only. PMID:28163792

  17. Deactivation of Cellulase at the Air-Liquid Interface Is the Main Cause of Incomplete Cellulose Conversion at Low Enzyme Loadings.

    PubMed

    Bhagia, Samarthya; Dhir, Rachna; Kumar, Rajeev; Wyman, Charles E

    2018-01-22

    Amphiphilic additives such as bovine serum albumin (BSA) and Tween have been used to improve cellulose hydrolysis by cellulases. However, there has been a lack of clarity to explain their mechanism of action in enzymatic hydrolysis of pure or low-lignin cellulosic substrates. In this work, a commercial Trichoderma reesei enzyme preparation and the amphiphilic additives BSA and Tween 20 were applied for hydrolysis of pure Avicel cellulose. The results showed that these additives only had large effects on cellulose conversion at low enzyme to substrate ratios when the reaction flasks were shaken. Furthermore, changes in the air-liquid interfacial area profoundly affected cellulose conversion, but surfactants reduced or prevented cellulase deactivation at the air-liquid interface. Not shaking the flasks or adding low amounts of surfactant resulted in near theoretical cellulose conversion at low enzyme loadings given enough reaction time. At low enzyme loadings, hydrolysis of cellulose in lignocellulosic biomass with low lignin content suffered from enhanced enzyme deactivation at the air-liquid interface.

  18. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV-vis Spectroscopy.

    PubMed

    Goetze, Joris; Meirer, Florian; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Ruiz-Martínez, Javier; Weckhuysen, Bert M

    2017-06-02

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV-vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV-vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature.

  19. Insights into the Activity and Deactivation of the Methanol-to-Olefins Process over Different Small-Pore Zeolites As Studied with Operando UV–vis Spectroscopy

    PubMed Central

    2017-01-01

    The nature and evolution of the hydrocarbon pool (HP) species during the Methanol-to-Olefins (MTO) process for three small-pore zeolite catalysts, with a different framework consisting of large cages interconnected by small eight-ring windows (CHA, DDR, and LEV) was studied at reaction temperatures between 350 and 450 °C using a combination of operando UV–vis spectroscopy and online gas chromatography. It was found that small differences in cage size, shape, and pore structure of the zeolite frameworks result in the generation of different hydrocarbon pool species. More specifically, it was found that the large cage of CHA results in the formation of a wide variety of hydrocarbon pool species, mostly alkylated benzenes and naphthalenes. In the DDR cage, 1-methylnaphthalene is preferentially formed, while the small LEV cage generally contains fewer hydrocarbon pool species. The nature and evolution of these hydrocarbon pool species was linked with the stage of the reaction using a multivariate analysis of the operando UV–vis spectra. In the 3-D pore network of CHA, the reaction temperature has only a minor effect on the performance of the MTO catalyst. However, for the 2-D pore networks of DDR and LEV, an increase in the applied reaction temperature resulted in a dramatic increase in catalytic activity. For all zeolites in this study, the role of the hydrocarbon species changes with reaction temperature. This effect is most clear in DDR, in which diamantane and 1-methylnaphthalene are deactivating species at a reaction temperature of 350 °C, whereas at higher temperatures diamantane formation is not observed and 1-methylnaphthalene is an active species. This results in a different amount and nature of coke species in the deactivated catalyst, depending on zeolite framework and reaction temperature. PMID:28603658

  20. Distributions of Irritative Zones Are Related to Individual Alterations of Resting-State Networks in Focal Epilepsy

    PubMed Central

    Song, Yinchen; Sanganahalli, Basavaraju G.; Hyder, Fahmeed; Lin, Wei-Chiang; Riera, Jorge J.

    2015-01-01

    Alterations in the connectivity patterns of the fMRI-based resting-state networks (RSNs) have been reported in several types of epilepsies. Evidence pointed out these alterations might be associated with the genesis and propagation of interictal epileptiform discharges (IEDs). IEDs also evoke blood-oxygen-level dependent (BOLD) responses, which have been used to delineate irritative zones during preoperative work-up. Therefore, one may expect a relationship between the topology of the IED-evoked BOLD response network and the altered spatial patterns of the RSNs. In this study, we used EEG recordings and fMRI data obtained simultaneously from a chronic model of focal epilepsy in Wistar rats to verify our hypothesis. We found that IED-evoked BOLD response networks comprise both cortical and subcortical structures with a rat-dependent topology. In all rats, IEDs evoke both activation and deactivation types of BOLD responses. Using a Granger causality method, we found that in many cases areas with BOLD deactivation have directed influences on areas with activation (p<0.05). We were able to predict topological properties (i.e., focal/diffused, unilateral/bilateral) of the IED-evoked BOLD response network by performing hierarchical clustering analysis on major spatial features of the RSNs. All these results suggest that IEDs and disruptions in the RSNs found previously in humans may be different manifestations of the same transient events, probably reflecting altered consciousness. In our opinion, the shutdown of specific nodes of the default mode network may cause uncontrollable excitability in other functionally connected brain areas. We conclude that IED-evoked BOLD responses (i.e., activation and deactivation) and alterations of RSNs are intrinsically related, and speculate that an understanding of their interplay is necessary to discriminate focal epileptogenesis and network propagation phenomena across different brain modules via hub-based connectivity. PMID:26226628

  1. Engineering New Catalysts for In-Process Elimination of Tars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felix, Larry G.

    2012-09-30

    The key objective of this project was to develop a new and more efficient methodology for engineering and economically producing optimized robust catalysts for the reduction or elimination of tars in biomass gasification. Whereas current catalyst technology typically disposes thin layers of catalytically-active material onto rigid supports via wet chemistry-based methods, this project investigated novel thermal methods for directly incorporating catalytically active materials onto robust supports as well as novel approaches for incorporating catalytically active materials on and/or within an otherwise inert refractory support material which is then subsequently formed and processed to create a catalytically-active material on all exposedmore » surfaces. Specifically, the focus of this engineered catalyst development was on materials which were derived from, or otherwise related to, olivine-like minerals, due to the inherent attrition resistance and moderate catalytic properties exhibited by natural olivine when used in a fluidized bed biomass gasifier. Task 1 of this project successfully demonstrated the direct thermal impregnation of catalytically-active materials onto an olivine substrate, with the production of a Ni-olivine catalyst. Nickel and nickel oxide were thermally impregnated onto an olivine substrate and when reduced were shown to demonstrate improved catalytic activity over the baseline olivine material and equal the tar-decomposing performance of Ni-olivine catalysts prepared by conventional wet impregnation. Task 2 involved coordination with our subcontracted project partners to further develop and characterize catalyst formulations and to optimize activity and production methods. Within this task, several significant new materials were developed. NexTech Materials developed a sintered ceramic nickel-magnesium-silicate catalyst that demonstrated superb catalytic activity and high resistance to deactivation by H2S. Alfred University developed both supported and integrated (bulk) catalysts via a glass-ceramic processing route which were shown to exhibit excellent catalytic activity and superior resistance to attrition deactivation. With the discovery of these active, robust, glass-based catalysts, and with the permission of the project officer, the investigation of waste-based materials as originally proposed for Task 3 and pilot-scale testing proposed in Task 5 were deferred indefinitely in favor of further investigation of the glass-ceramic based catalyst materials. This choice was justified in part because during FY 2006 and through FY 2007, funding restrictions imposed by congressional budget choices significantly reduced funding for DOE biomass-related projects. Funding for this project was limited to what had been authorized which slowed the pace of project work at GTI so that our project partners could continue in their work. Thereafter, project work was allowed to resume and with restored funding, the project continued and concentrated on the development and testing of glass-ceramic catalysts in bulk or supported formats. Work concluded with a final development devoted to increasing the surface area of glass-ceramic catalysts in the form of microspheres. Following that development, project reporting was completed and the project was concluded.« less

  2. The effect of nanofiber based filter morphology on bacteria deactivation during water filtration

    NASA Astrophysics Data System (ADS)

    Kimmer, Dusan; Vincent, Ivo; Lev, Jaroslav; Kalhotka, Libor; Mikula, Premysl; Korinkova, Radka; Sambaer, Wannes; Zatloukal, Martin

    2013-04-01

    Procedures permitting to prepare homogeneous functionalized nanofibre structures based on polyurethanes modified by phthalocyanines (PCs) by employing a suitable combination of variables during the electrospinning process are presented. Compared are filtration and bacteria deactivation properties of open and planar nanostructures with PCs embedded into polyurethane chain by a covalent bond protecting the release of active organic compound during the filtration process. Finding that the morphology of functionalized nanofibre structures have an effect on bacterial growth was confirmed by microbiological and physico-chemical analyses, such as the inoculation in a nutrient agar culture medium and flow cytometry.

  3. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.; Peral, Jose

    1991-01-01

    The following subject areas are covered: (1) design and construction of continuous flow photoreactor for study of oxidation of trace atmospheric contaminants; (2) establishment of kinetics of acetone oxidation including adsorption equilibration, variation of oxidation rate with acetone concentration and water (inhibitor), and variation of rate and apparent quantum yield with light intensity; (3) exploration of kinetics of butanol oxidation, including rate variation with concentration of butanol, and lack of inhibition by water; and (4) exploration of kinetics of catalyst deactivation during oxidation of butanol, including deactivation rate, influence of dark conditions, and establishment of photocatalytic regeneration of activity in alcohol-free air.

  4. Porous Core-Shell Nanostructures for Catalytic Applications

    NASA Astrophysics Data System (ADS)

    Ewers, Trevor David

    Porous core-shell nanostructures have recently received much attention for their enhanced thermal stability. They show great potential in the field of catalysis, as reactant gases can diffuse in and out of the porous shell while the core particle is protected from sintering, a process in which particles coalesce to form larger particles. Sintering is a large problem in industry and is the primary cause of irreversible deactivation. Despite the obvious advantages of high thermal stability, porous core-shell nanoparticles can be developed to have additional interactive properties from the combination of the core and shell together, rather than just the core particle alone. This dissertation focuses on developing new porous core-shell systems in which both the core and shell take part in catalysis. Two types of systems are explored; (1) yolk-shell nanostructures with reducible oxide shells formed using the Kirkendall effect and (2) ceramic-based porous oxide shells formed using sol-gel chemistry. Of the Kirkendall-based systems, Au FexOy and Cu CoO were synthesized and studied for catalytic applications. Additionally, ZnO was explored as a potential shelling material. Sol-gel work focused on optimizing synthetic methods to allow for coating of small gold particles, which remains a challenge today. Mixed metal oxides were explored as a shelling material to make dual catalysts in which the product of a reaction on the core particle becomes a reactant within the shell.

  5. AuRu/meso-Mn2O3: A Highly Active and Stable Catalyst for Methane Combustion

    NASA Astrophysics Data System (ADS)

    Han, Z.; Fang, J. Y.; Xie, S. H.; Deng, J. G.; Liu, Y. X.; Dai, H. X.

    2018-05-01

    Three-dimensionally ordered mesoporous Mn2O3 (meso-Mn2O3) and its supported Au, Ru, and AuRu alloy (0.49 wt% Au/meso-Mn2O3, 0.48 wt% Ru/meso-Mn2O3, and 0.97 wt% AuRu/meso-Mn2O3 (Au/Ru molar ratio = 0.98)) nanocatalysts were prepared using the KIT-6-templating and polyvinyl alcohol-protected reduction methods, respectively. Physicochemical properties of the samples were characterized by means of numerous techniques, and their catalytic activities were evaluated for the combustion of methane. It is found that among all of the samples, 0.48 wt% Ru/meso-Mn 2O3 and 0.97 wt% AuRu/meso-Mn2O3 performed the best (the reaction temperature (T90% ) at 90% methane conversion was 530-540°C), but the latter showed a better thermal stability than the former. The partial deactivation of 0.97 wt% AuRu/meso-Mn2O3 due to H2O or CO2 introduction was reversible. It is concluded that the good catalytic activity and thermal stability of 0.97 wt% AuRu/meso-Mn2O3 was associated with the high dispersion of AuRu alloy NPs (2-5 nm) on the surface of meso-Mn2O3 and good low-temperature reducibility.

  6. Synthesis and evaluation of energetic materials

    NASA Astrophysics Data System (ADS)

    Santhosh, G.

    Over the years new generations of propellants and explosives are being developed. High performance and pollution prevention issues have become the subject of interest in recent years. Desired properties of these materials are a halogen-free, nitrogen and oxygen rich molecular composition with high density and a positive heat of formation. The dinitramide anion is a new oxy anion of nitrogen and forms salts with variety of metal, organic and inorganic cations. Particular interest is in ammonium dinitramide (ADN, NH4N(NO 2)2) which is a potentially useful energetic oxidizer. ADN is considered as one of the most promising substitutes for ammonium perchlorate (AP, NH4ClO4) in currently used composite propellants. It is unique among energetic materials in that it has no carbon or chlorine; its combustion products are not detrimental to the atmosphere. Unquestionable advantage of ADN over AP is the significant improvement in the performance of solid rocket motors by 5-15%. The present thesis is centered on the experimental results along with discussion of some of the most pertinent aspects related to the synthesis and characterization of few dinitramide salts. The chemistry, mechanism and kinetics of the formation of dinitramide salts by nitration of deactivated amines are investigated. The evaluation of the thermal and spectral properties along with the adsorption and thermal decomposition characteristics of the dinitramide salts are also explored in this thesis.

  7. Infrared imaging for tumor detection using antibodies conjugated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Levy, Arie; Gannot, Israel

    2008-04-01

    Thermography is a well known approach for cost effective early detection of concourse tumors. However, till now - more than 5 decades after its introduction - it is not considered as a primary tool for cancer early detection, mainly because its poor performance compared to other techniques. This work offers a new thermographic approach for tumor detection which is based on the use of antibody conjugated magnetic nanoparticles ("MNP") as a tumor specific marker. Wename this method "Thermal Beacon Thermography" ("TBT"), and it has the potential to provide considerable advantages over conventional thermographic approach. TBT approach is based on the fact that MNP are producing heat when subjected to an alternating magnetic field ("AMF"). Once these particles are injected to the patient blood stream, they specifically accumulate at the tumor site, providing a local heat source at the tumor that can be activated and deactivated by external control. This heat source can be used as a "thermal beacon" in order to detect and locate tumor by detecting temperature changes at the skin surface using an IR camera and comparing them to a set of pre-calculated numerical predictions. Experiments were conducted using an in vitro tissue model together with industrial inductive heating system and an IR camera. The results shows that this approach can specifically detect small tumor phantom (D=1.5mm) which was embedded below the surface of the tissue phantom.

  8. The real-time fMRI neurofeedback based stratification of Default Network Regulation Neuroimaging data repository.

    PubMed

    McDonald, Amalia R; Muraskin, Jordan; Dam, Nicholas T Van; Froehlich, Caroline; Puccio, Benjamin; Pellman, John; Bauer, Clemens C C; Akeyson, Alexis; Breland, Melissa M; Calhoun, Vince D; Carter, Steven; Chang, Tiffany P; Gessner, Chelsea; Gianonne, Alyssa; Giavasis, Steven; Glass, Jamie; Homann, Steven; King, Margaret; Kramer, Melissa; Landis, Drew; Lieval, Alexis; Lisinski, Jonathan; Mackay-Brandt, Anna; Miller, Brittny; Panek, Laura; Reed, Hayley; Santiago, Christine; Schoell, Eszter; Sinnig, Richard; Sital, Melissa; Taverna, Elise; Tobe, Russell; Trautman, Kristin; Varghese, Betty; Walden, Lauren; Wang, Runtang; Waters, Abigail B; Wood, Dylan C; Castellanos, F Xavier; Leventhal, Bennett; Colcombe, Stanley J; LaConte, Stephen; Milham, Michael P; Craddock, R Cameron

    2017-02-01

    This data descriptor describes a repository of openly shared data from an experiment to assess inter-individual differences in default mode network (DMN) activity. This repository includes cross-sectional functional magnetic resonance imaging (fMRI) data from the Multi Source Interference Task, to assess DMN deactivation, the Moral Dilemma Task, to assess DMN activation, a resting state fMRI scan, and a DMN neurofeedback paradigm, to assess DMN modulation, along with accompanying behavioral and cognitive measures. We report technical validation from n=125 participants of the final targeted sample of 180 participants. Each session includes acquisition of one whole-brain anatomical scan and whole-brain echo-planar imaging (EPI) scans, acquired during the aforementioned tasks and resting state. The data includes several self-report measures related to perseverative thinking, emotion regulation, and imaginative processes, along with a behavioral measure of rapid visual information processing. Technical validation of the data confirms that the tasks deactivate and activate the DMN as expected. Group level analysis of the neurofeedback data indicates that the participants are able to modulate their DMN with considerable inter-subject variability. Preliminary analysis of behavioral responses and specifically self-reported sleep indicate that as many as 73 participants may need to be excluded from an analysis depending on the hypothesis being tested. The present data are linked to the enhanced Nathan Kline Institute, Rockland Sample and builds on the comprehensive neuroimaging and deep phenotyping available therein. As limited information is presently available about individual differences in the capacity to directly modulate the default mode network, these data provide a unique opportunity to examine DMN modulation ability in relation to numerous phenotypic characteristics. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Environmental Impact Analysis Process. Final Environmental Assessment. Deactivation of 6594th Test Group, Hickam Air Force Base, Hawaii

    DTIC Science & Technology

    1986-08-01

    affected area is along Kamehameha Highway at the Makalapa Gate, where 24-hour volumes are about 18,500, and peak a.m. traffic is about 1,500 (Station...AFB NUMBER OF VEHICLES PEAK-HOUR STATION NUMBER LOCATION AM PM 24-HOUR TOTAL 1. 3-C Kamehameha and Nimitz Highways at Elliot...3,222 3:30-4:30 3,898 23,996 4. 5-B Kamehameha Highway at Redford Drive (Makalapa Gate – inbound/outbound) 11:00-12:00 1,532 3:30-4:30

  10. Composition and structure of pyrophoric nickel catalysts according to X-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Osadchaya, T. Yu.; Afineevskii, A. V.; Prozorov, D. A.; Kochetkov, S. P.; Rumyantsev, R. N.; Lukin, M. V.

    2017-01-01

    The properties of a nickel catalyst obtained by treatment of nickel-aluminum alloy with sodium hydroxide in the presence of H2O2 and additionally stabilized with increased pressure were studied. Additional stabilization decreased the catalyst activity by 25%, but gave a more distinct picture for an XRD analysis of the active catalyst surface and decreased the time of deactivation of the dehydrated catalyst with air oxygen. The catalyst stabilization was explained by the displacement of water, decrease in the pore size, and surface inhomogeneity.

  11. Visual Space and Object Space in the Cerebral Cortex of Retinal Disease Patients

    PubMed Central

    Spileers, Werner; Wagemans, Johan; Op de Beeck, Hans P.

    2014-01-01

    The lower areas of the hierarchically organized visual cortex are strongly retinotopically organized, with strong responses to specific retinotopic stimuli, and no response to other stimuli outside these preferred regions. Higher areas in the ventral occipitotemporal cortex show a weak eccentricity bias, and are mainly sensitive for object category (e.g., faces versus buildings). This study investigated how the mapping of eccentricity and category sensitivity using functional magnetic resonance imaging is affected by a retinal lesion in two very different low vision patients: a patient with a large central scotoma, affecting central input to the retina (juvenile macular degeneration), and a patient where input to the peripheral retina is lost (retinitis pigmentosa). From the retinal degeneration, we can predict specific losses of retinotopic activation. These predictions were confirmed when comparing stimulus activations with a no-stimulus fixation baseline. At the same time, however, seemingly contradictory patterns of activation, unexpected given the retinal degeneration, were observed when different stimulus conditions were directly compared. These unexpected activations were due to position-specific deactivations, indicating the importance of investigating absolute activation (relative to a no-stimulus baseline) rather than relative activation (comparing different stimulus conditions). Data from two controls, with simulated scotomas that matched the lesions in the two patients also showed that retinotopic mapping results could be explained by a combination of activations at the stimulated locations and deactivations at unstimulated locations. Category sensitivity was preserved in the two patients. In sum, when we take into account the full pattern of activations and deactivations elicited in retinotopic cortex and throughout the ventral object vision pathway in low vision patients, the pattern of (de)activation is consistent with the retinal loss. PMID:24505449

  12. Plasticity of spatial hearing: behavioural effects of cortical inactivation

    PubMed Central

    Nodal, Fernando R; Bajo, Victoria M; King, Andrew J

    2012-01-01

    The contribution of auditory cortex to spatial information processing was explored behaviourally in adult ferrets by reversibly deactivating different cortical areas by subdural placement of a polymer that released the GABAA agonist muscimol over a period of weeks. The spatial extent and time course of cortical inactivation were determined electrophysiologically. Muscimol-Elvax was placed bilaterally over the anterior (AEG), middle (MEG) or posterior ectosylvian gyrus (PEG), so that different regions of the auditory cortex could be deactivated in different cases. Sound localization accuracy in the horizontal plane was assessed by measuring both the initial head orienting and approach-to-target responses made by the animals. Head orienting behaviour was unaffected by silencing any region of the auditory cortex, whereas the accuracy of approach-to-target responses to brief sounds (40 ms noise bursts) was reduced by muscimol-Elvax but not by drug-free implants. Modest but significant localization impairments were observed after deactivating the MEG, AEG or PEG, although the largest deficits were produced in animals in which the MEG, where the primary auditory fields are located, was silenced. We also examined experience-induced spatial plasticity by reversibly plugging one ear. In control animals, localization accuracy for both approach-to-target and head orienting responses was initially impaired by monaural occlusion, but recovered with training over the next few days. Deactivating any part of the auditory cortex resulted in less complete recovery than in controls, with the largest deficits observed after silencing the higher-level cortical areas in the AEG and PEG. Although suggesting that each region of auditory cortex contributes to spatial learning, differences in the localization deficits and degree of adaptation between groups imply a regional specialization in the processing of spatial information across the auditory cortex. PMID:22547635

  13. Reconstructed Serine 288 in the Left Flipper Region of the Rat P2X7 Receptor Stabilizes Nonsensitized States.

    PubMed

    Ishchenko, Yevheniia; Novosolova, Nataliia; Khafizov, Kamil; Bart, Geneviève; Timonina, Arina; Fayuk, Dmitriy; Skorinkin, Andrei; Giniatullin, Rashid

    2017-07-05

    Serine 275, a conserved residue of the left flipper region of ATP-gated P2X3 receptors, plays a key role in both agonist binding and receptor desensitization. It is conserved in most of the P2X receptors except P2X7 and P2X6. By combining experimental patch-clamp and modeling approaches, we explored the role of the corresponding residue in the rat P2X7 receptor (rP2X7) by replacing the phenylalanine at position 288 with serine and characterizing the membrane currents generated by either the wild-type (WT) or the mutated rP2X7 receptor. F288S, an rP2X7 mutation, slowed the deactivation subsequent to 2 and 20 s applications of 1 mM ATP. F288S also prevented sensitization (a progressive current growth) observed with the WT in response to a 20 s application of 1 mM ATP. Increasing the ATP concentration to 5 mM promoted sensitization also in the mutated rP2X7 receptor, accelerating the deactivation rate to typical WT values. YO-PRO1 uptake in cells expressing either the WT or the F288S P2X7 receptor was consistent with recorded membrane current data. Interestingly, in the human P2X7 (hP2X7) receptor, substitution Y288S did not change the deactivation rate, while the Y288F mutant generated a "rat-like" phenotype with a fast deactivation rate. Our combined experimental, kinetic, and molecular modeling data suggest that the rat F288S novel phenotype is due to a slower rate of ATP binding and/or unbinding and stabilization of nonsensitized receptor states.

  14. Fischer-Tropsch Synthesis: XANES Investigation of Hydrogen Chloride Poisoned Iron and Cobalt-Based Catalysts at the K-Edges of Cl, Fe, and Co

    DOE PAGES

    Pendyala, Venkat Ramana Rao; Jacobs, Gary; Ma, Wenping; ...

    2016-07-23

    The effect of co-fed hydrogen chloride (HCl) in syngas on the performance of iron and cobalt-based Fischer-Tropsch (FT) catalysts was investigated in our earlier studies [ACS Catal. 5 (2015) 3124-3136 and DOE final report 2011; Catal. Lett. 144 (2014) 1127-1133]. For an iron catalyst, lower HCl concentrations (< 2.0 ppmw of HCl)) in syngas did not significantly affect the activity, whereas rapid deactivation occurred at higher concentrations (~20 ppmw). With cobalt catalysts, even low concentrations of HCl (100 ppbw) caused catalyst deactivation, and the deactivation rate increased with increasing HCl concentration in the syngas. The deactivation of the catalysts ismore » explained by the chloride being adsorbed on the catalyst surface to (1) block the active sites and/or (2) electronically modify the sites. In this study, XANES spectroscopy was employed to investigate HCl poisoning mechanism on the iron and cobalt catalysts. Cl K-edge normalized XANES results indicate that Cl is indeed present on the catalyst following HCl poisoning and exhibits a structure similar to the family of compounds MCl; two main peaks are formed, with the second peak consisting of a main peak and a higher energy shoulder. At the Co K and Fe K edges, the white line was observed to be slightly increased relative to the same catalyst under clean conditions. There is then the additional possibility that Cl adsorption may act in part to intercept electron density from the FT metallic function (e.g.,cobalt or iron carbide). If so, this would result in less back-donation and therefore hinder the scission of molecules such as CO.« less

  15. Auditory Cortex Basal Activity Modulates Cochlear Responses in Chinchillas

    PubMed Central

    León, Alex; Elgueda, Diego; Silva, María A.; Hamamé, Carlos M.; Delano, Paul H.

    2012-01-01

    Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea. PMID:22558383

  16. Functional MRI mapping of visual function and selective attention for performance assessment and presurgical planning using conjunctive visual search

    PubMed Central

    Parker, Jason G; Zalusky, Eric J; Kirbas, Cemil

    2014-01-01

    Background Accurate mapping of visual function and selective attention using fMRI is important in the study of human performance as well as in presurgical treatment planning of lesions in or near visual centers of the brain. Conjunctive visual search (CVS) is a useful tool for mapping visual function during fMRI because of its greater activation extent compared with high-capacity parallel search processes. Aims The purpose of this work was to develop and evaluate a CVS that was capable of generating consistent activation in the basic and higher level visual areas of the brain by using a high number of distractors as well as an optimized contrast condition. Materials and methods Images from 10 healthy volunteers were analyzed and brain regions of greatest activation and deactivation were determined using a nonbiased decomposition of the results at the hemisphere, lobe, and gyrus levels. The results were quantified in terms of activation and deactivation extent and mean z-statistic. Results The proposed CVS was found to generate robust activation of the occipital lobe, as well as regions in the middle frontal gyrus associated with coordinating eye movements and in regions of the insula associated with task-level control and focal attention. As expected, the task demonstrated deactivation patterns commonly implicated in the default-mode network. Further deactivation was noted in the posterior region of the cerebellum, most likely associated with the formation of optimal search strategy. Conclusion We believe the task will be useful in studies of visual and selective attention in the neuroscience community as well as in mapping visual function in clinical fMRI. PMID:24683515

  17. Evaluation of Settler Tank Thermal Stability during Solidification and Disposition to ERDF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, David E.; Delegard, Calvin H.; Schmidt, Andrew J.

    2015-03-30

    Ten 16-foot-long and 20-inch diameter horizontal tanks currently reside in a stacked 2×5 (high) array in the ~20,000-gallon water-filled Weasel Pit of the 105-KW Fuel Storage Basin on the US-DOE Hanford Site. These ten tanks are part of the Integrated Water Treatment System used to manage water quality in the KW Basin and are called “settler” tanks because of their application in removing particles from the KW Basin waters. Based on process knowledge, the settler tanks are estimated to contain about 124 kilograms of finely divided uranium metal, 22 kg of uranium dioxide, and another 55 kg of other radioactivemore » sludge. The Sludge Treatment Project (STP), managed by CH2MHill Plateau Remediation Company (CHPRC) is charged with managing the settler tanks and arranging for their ultimate disposal by burial in ERDF. The presence of finely divided uranium metal in the sludge is of concern because of the potential for thermal runaway reaction of the uranium metal with water and the formation of flammable hydrogen gas as a product of the uranium-water reaction. Thermal runaway can be instigated by external heating. The STP commissioned a formal Decision Support Board (DSB) to consider options and provide recommendations to manage and dispose of the settler tanks and their contents. Decision criteria included consideration of the project schedule and longer-term deactivation, decontamination, decommissioning, and demolition (D4) of the KW Basin. The DSB compared the alternatives and recommended in-situ grouting, size-reduction, and ERDF disposal as the best of six candidate options for settler tank treatment and disposal. It is important to note that most grouts contain a complement of Portland cement as the binding agent and that Portland cement curing reactions generate heat. Therefore, concern is raised that the grouting of the settler tank contents may produce heating sufficient to instigate thermal runaway reactions in the contained uranium metal sludge.« less

  18. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  19. X-ray Absorption Spectroscopy Investigation of Iodine Capture by Silver-Exchanged Mordenite

    DOE PAGES

    Abney, Carter W.; Nan, Yue; Tavlarides, Lawrence L.

    2017-03-29

    Capture of radioactive iodine is a significant consideration during reprocessing of spent nuclear fuel and disposal of legacy wastes. While silver-exchanged mordenite (AgZ) is widely regarded as a benchmark material for assessing iodine adsorption performance, previous research efforts have largely focused on bulk material properties rather than the underpinning molecular interactions that achieve effective iodine capture. As a result, the fundamental understanding necessary to identify and mitigate deactivation pathways for the recycle of AgZ is not available. In this paper, we applied X-ray Absorption Fine Structure (XAFS) spectroscopy to investigate AgZ following activation, adsorption of iodine, regeneration, and recycle, observingmore » no appreciable degradation in performance due to the highly controlled conditions under which the AgZ was maintained. Fits of the extended XAFS (EXAFS) data reveal complete formation of Ag 0 nanoparticles upon treatment with H 2, and confirm the formation of α-AgI within the mordenite channels in addition to surface γ/β-AgI nanoparticles following iodine exposure. Analysis of the nanoparticle size and fractional composition of α-AgI to γ/β-AgI supports ripening of surface nanoparticles as a function of recycle. Finally, this work provides a foundation for future investigation of AgZ deactivation under conditions relevant to spent nuclear fuel reprocessing.« less

  20. Biochemical characterization of a halotolerant feruloyl esterase from Actinomyces spp.: refolding and activity following thermal deactivation.

    PubMed

    Hunt, Cameron J; Tanksale, Akshat; Haritos, Victoria S

    2016-02-01

    Ferulic acid esterases (FAE, EC. 3.1.1.73) hydrolyse the linkage between hemicellulose and lignin and thus have potential for use in mild enzymatic pretreatment of biomass as an alternative to thermochemical approaches. Here, we report the characterization of a novel FAE (ActOFaeI) obtained from the bacterium, Actinomyces sp. oral which was recombinantly expressed in Escherichia coli BL21 in two forms: with and without its putative signal peptide. The truncated form was found to have <10 % relative activity compared to the full length and was more prone to aggregation after purification. The enzyme with retained peptide demonstrated 2 to 4-fold higher activity against methyl caffeate and methyl p-coumarate, with specific activities of 477.6 and 174.4 U mg(-1) respectively, than the equivalent activities of the benchmark FAE from Aspergillus niger A and B. ActOFaeI retained activity over a broad pH range with a maximum at 9 but >90 % relative activity at pH 6.5 and an optimum reaction temperature of 30 °C. ActOFaeI increased activity by 15% in high salt conditions (1000 mMNaCl) and its thermal unfolding temperature improved from 41.5 °C in standard buffer to 74 °C in the presence of 2500 mM sodium malonate. ActOFaeI also released ferulic acid from destarched wheat bran when combined with a xylanase preparation. After treatment above the thermal denaturation temperature followed by cooling to room temperature, ActOFaeI demonstrated spontaneous refolding into an active state. ActOFaeI displays many useful characteristics for enzymatic pretreatment of lignocellulose and contributes to our understanding of this important family.

  1. Magnesium oxide prepared via metal-chitosan complexation method: Application as catalyst for transesterification of soybean oil and catalyst deactivation studies

    NASA Astrophysics Data System (ADS)

    Almerindo, Gizelle I.; Probst, Luiz F. D.; Campos, Carlos E. M.; de Almeida, Rusiene M.; Meneghetti, Simoni M. P.; Meneghetti, Mario R.; Clacens, Jean-Marc; Fajardo, Humberto V.

    2011-10-01

    A simple method to prepare magnesium oxide catalysts for biodiesel production by transesterification reaction of soybean oil with ethanol is proposed. The method was developed using a metal-chitosan complex. Compared to the commercial oxide, the proposed catalysts displayed higher surface area and basicity values, leading to higher yield in terms of fatty acid ethyl esters (biodiesel). The deactivation of the catalyst due to contact with CO2 and H2O present in the ambient air was verified. It was confirmed that the active catalytic site is a hydrogenocarbonate adsorption site.

  2. Continuous tank reactors in series: an improved alternative in the removal of phenolic compounds with immobilized peroxidase.

    PubMed

    Gómez, E; Máximo, M F; Montiel, M C; Gómez, M; Murcia, M D; Ortega, S

    2012-01-01

    Immobilized derivatives of soybean peroxidase, covalently bound to a glass support, were used in a continuous stirred tank reactor in series, in order to study the removal of two phenolic compounds: phenol and 4-chlorophenol. The use of two reactors in series, rather than one continuous tank, improved the removal efficiencies of phenol and 4-chlorophenol. The distribution of different amounts of enzyme between the two tanks showed that the relative distributions influenced the removal efficiency reached and the degree of the enzyme deactivation. The highest removal percentages were reached at the outlet of the second tank for a distribution of 50% of the enzyme in each tank. However, with a distribution of 75% in the first tank and 25% in the second, the elimination percentage in the second tank was slightly lower than in the previous case, and the effects of deactivation of the enzyme in the first tank were less pronounced. In all the distributions assayed it was observed that the first tank acts as a filter for the second one, which receives a feed with a smaller load of phenolic compounds, thus diminishing enzyme deactivation in the second tank.

  3. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    NASA Astrophysics Data System (ADS)

    Peccati, Francesca; Mai, Sebastian; González, Leticia

    2017-03-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C-Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'.

  4. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    PubMed

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  5. Insights into the deactivation of 5-bromouracil after ultraviolet excitation

    PubMed Central

    2017-01-01

    5-Bromouracil is a nucleobase analogue that can replace thymine in DNA strands and acts as a strong radiosensitizer, with potential applications in molecular biology and cancer therapy. Here, the deactivation of 5-bromouracil after ultraviolet irradiation is investigated in the singlet and triplet manifold by accurate quantum chemistry calculations and non-adiabatic dynamics simulations. It is found that, after irradiation to the bright ππ* state, three main relaxation pathways are, in principle, possible: relaxation back to the ground state, intersystem crossing (ISC) and C–Br photodissociation. Based on accurate MS-CASPT2 optimizations, we propose that ground-state relaxation should be the predominant deactivation pathway in the gas phase. We then employ different electronic structure methods to assess their suitability to carry out excited-state dynamics simulations. MRCIS (multi-reference configuration interaction including single excitations) was used in surface hopping simulations to compute the ultrafast ISC dynamics, which mostly involves the 1nOπ* and 3ππ* states. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320905

  6. Inactivation of Escherichia coli on anatase and rutile nanoparticles using UV and fluorescent light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caratto, V.; CNR-SPIN, Corso Perrone 24, 16156 Genova; Aliakbarian, B.

    2013-06-01

    Highlights: ► Photocatalytic deactivation of Escherichia coli in presence of TiO{sub 2} nanoparticles ► The presence of catalyst is less important when the radiation is in the UV range ► Rutile has an higher efficiency respect to anatase under visible light. - Abstract: The photocatalytic deactivation of Escherichia coli HB101 by two different structures of TiO{sub 2}, rutile and anatase (used separately and in a 1:1 mixture), was examined. The microorganism was deposited on a filter membrane containing 520 mg/m{sup 2} of TiO{sub 2} and then irradiated by a neon lamp. In order to study the rate of deactivation ofmore » the microorganism we studied four different exposure times: 20, 40, 60 and 90 min. The results showed that rutile has an antimicrobial activity higher than anatase, while the mixture had values near to the average between them in every condition. The highest difference in the inactivation capacity of the two structures is observable at shorter times. The effect of the different crystal phases was evaluated by Scanning Electron Microscopy.« less

  7. Periaqueductal grey stimulation induced panic-like behaviour is accompanied by deactivation of the deep cerebellar nuclei.

    PubMed

    Moers-Hornikx, Véronique M P; Vles, Johan S H; Lim, Lee Wei; Ayyildiz, Mustafa; Kaplan, Suleyman; Gavilanes, Antonio W D; Hoogland, Govert; Steinbusch, Harry W M; Temel, Yasin

    2011-03-01

    Until recently, the cerebellum was primarily considered to be a structure involved in motor behaviour. New anatomical and clinical evidence has shown that the cerebellum is also involved in higher cognitive functions and non-motor behavioural changes. Functional imaging in patients with anxiety disorders and in cholecystokinin tetrapeptide-induced panic-attacks shows activation changes in the cerebellum. Deep brain stimulation of the dorsolateral periaqueductal grey (dlPAG) and the ventromedial hypothalamus (VMH) in rats has been shown to induce escape behaviour, which mimics a panic attack in humans. We used this animal model to study the neuronal activation in the deep cerebellar nuclei (DCbN) using c-Fos immunohistochemistry. c-Fos expression in the DCbN decreased significantly after inducing escape behaviour by stimulation of the dlPAG and the VMH, indicating that the DCbN were deactivated. This study demonstrates that the DCbN are directly or indirectly involved in panic attacks. We suggest that the cerebellum plays a role in the selection of relevant information, and that deactivation of the cerebellar nuclei is required to allow inappropriate behaviour to occur, such as panic attacks.

  8. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    PubMed

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  9. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan.

    PubMed

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz Ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract.

  10. Mathematical Models of Cobalt and Iron Ions Catalyzed Microwave Bacterial Deactivation

    PubMed Central

    Benjamin, Earl; Reznik, Aron; Benjamin, Ellis; Williams, Arthur L.

    2007-01-01

    Time differences for Enterococcus faecalis, Staphylococcus aureus, and Escherichia coli survival during microwave irradiation (power 130 W) in the presence of aqueous cobalt and iron ions were investigated. Measured dependencies had “bell” shape forms with maximum bacterial viability between 1 – 2 min becoming insignificant at 3 minutes. The deactivation time for E. faecalis, S. aureus and E.coli in the presence of metal ions were smaller compared to a water control (4–5 min). Although various sensitivities to the metal ions were observed, S. aureus and E. coli and were the most sensitive for cobalt and iron, respectively. The rapid reduction of viable bacteria during microwave treatment in the presence of metal ions could be explained by increased metal ion penetration into bacteria. Additionally, microwave irradiation may have increased the kinetic energy of the metal ions resulting in lower survival rates. The proposed mathematical model for microwave heating took into account the “growth” and “death” factors of the bacteria, forming second degree polynomial functions. Good relationships were found between the proposed mathematical models and the experimental data for bacterial deactivation (coefficient of correlation 0.91 – 0.99). PMID:17911658

  11. Deactivation of Pt/VC proton exchange membrane fuel cell cathodes by SO2, H2S and COS

    NASA Astrophysics Data System (ADS)

    Gould, Benjamin D.; Baturina, Olga A.; Swider-Lyons, Karen E.

    Sulfur contaminants in air pose a threat to the successful operation of proton exchange membrane fuel cells (PEMFCs) via poisoning of the Pt-based cathodes. The deactivation behavior of commercial Pt on Vulcan carbon (Pt/VC) membrane electrode assemblies (MEAs) is determined when exposed to 1 ppm (dry) of SO 2, H 2S, or COS in air for 3, 12, and 24 h while held at a constant potential of 0.6 V. All the three sulfur compounds cause the same deactivation behavior in the fuel cell cathodes, and the polarization curves of the poisoned MEAs have the same decrease in performance. Sulfur coverages after multiple exposure times (3, 12, and 24 h) are determined by cyclic voltammetry (CV). As the exposure time to sulfur contaminants increases from 12 to 24 h, the sulfur coverage of the platinum saturates at 0.45. The sulfur is removed from the cathodes and their activity is partially restored both by cyclic voltammetry, as shown by others, and by successive polarization curves. Complete recovery of fuel cell performance is not achieved with either technique, suggesting that sulfur species permanently affect the surface of the catalyst.

  12. The fate of completed intentions.

    PubMed

    Anderson, Francis T; Einstein, Gilles O

    2017-04-01

    The goal of this research was to determine whether and how people deactivate prospective memory (PM) intentions after they have been completed. One view proposes that PM intentions can be deactivated after completion, such that they no longer come to mind and interfere with current tasks. Another view is that now irrelevant completed PM intentions exhibit persisting activation, and continue to be retrieved. In Experiment 1, participants were given a PM intention embedded within the ongoing task during Phase 1, after which participants were told either that the PM task had been completed or suspended until later. During Phase 2, participants were instructed to perform only the ongoing task and were periodically prompted to report their thoughts. Critically, the PM targets from Phase 1 reappeared in Phase 2. All of our measures, including thoughts reported about the PM task, supported the existence of persisting activation. In Experiment 2, we varied conditions that were expected to mitigate persisting activation. Despite our best attempts to promote deactivation, we found evidence for the persistence of spontaneous retrieval in all groups after intentions were completed. The theoretical and practical implications of this potential dark side to spontaneous retrieval are discussed.

  13. Use of Hydrogen Peroxide Vapor for Deactivation of Mycobacterium tuberculosis in a Biological Safety Cabinet and a Room▿

    PubMed Central

    Hall, Leslie; Otter, Jonathan A.; Chewins, John; Wengenack, Nancy L.

    2007-01-01

    Mycobacterium tuberculosis is an important human pathogen that is routinely cultured in clinical and research laboratories. M. tuberculosis can contaminate surfaces and is highly resistant to disinfection. We investigated whether hydrogen peroxide vapor (HPV) is effective for the deactivation of M. tuberculosis on experimentally contaminated surfaces in a biological safety cabinet (BSC) and a room. Biological indicators (BIs) consisting of an ∼3-log10 inoculum of M. tuberculosis on stainless steel discs and a 6-log10 inoculum of Geobacillus stearothermophilus were exposed to HPV in BSC time course experiments and at 10 locations during room experiments. In three separate BSC experiments, M. tuberculosis BIs were transferred to growth media at 15-min intervals during a 180-min HPV exposure period. No M. tuberculosis BIs grew following 30 min of HPV exposure. In three separate room experiments, M. tuberculosis and G. stearothermophilus BIs were exposed to HPV for 90, 120, and 150 min, respectively. BIs for both microorganisms were deactivated in all 10 locations following 90 min of HPV exposure. HPV provides an alternative to traditional decontamination methods, such as formaldehyde fumigation, for laboratories and other areas contaminated with M. tuberculosis. PMID:17166957

  14. Determination of lytic enzyme activities of indigenous Trichoderma isolates from Pakistan

    PubMed Central

    Asad, Saeed Ahmad; Tabassum, Ayesha; Hameed, Abdul; Hassan, Fayyaz ul; Afzal, Aftab; Khan, Sabaz Ali; Ahmed, Rafiq; Shahzad, Muhammad

    2015-01-01

    Abstract This study investigated lytic enzyme activities in three indigenous Trichoderma strains namely, Trichoderma asperellum, Trichoderma harzianum and Trichoderma sp. Native Trichoderma strains and a virulent strain of Rhizoctonia solani isolated from infected bean plants were also included in the study. Enzyme activities were determined by measuring sugar reduction by dinitrosalicylic acid (DNS) method using suitable substrates. The antagonists were cultured in minimal salt medium with the following modifications: medium A (1 g of glucose), medium B (0.5 g of glucose + 0.5 g of deactivated R. solani mycelia), medium C (1.0 g of deactivated respective antagonist mycelium) and medium D (1 g of deactivated R. solani mycelia). T asperellum showed presence of higher amounts of chitinases, β-1, 3-glucanases and xylanases in extracellular protein extracts from medium D as compared to medium A. While, the higher activities of glucosidases and endoglucanses were shown in medium D extracts by T. harzianum. β-glucosidase activities were lower compared with other enzymes; however, activities of the extracts of medium D were significantly different. T. asperellum exhibited maximum inhibition (97.7%). On the other hand, Trichoderma sp. did not show any effect on mycelia growth of R. solani on crude extract. PMID:26691463

  15. Extending the upper temperature range of gas chromatography with all-silicon microchip columns using a heater/clamp assembly.

    PubMed

    Ghosh, Abhijit; Johnson, Jacob E; Nuss, Johnathan G; Stark, Brittany A; Hawkins, Aaron R; Tolley, Luke T; Iverson, Brian D; Tolley, H Dennis; Lee, Milton L

    2017-09-29

    Miniaturization of gas chromatography (GC) instrumentation is of interest because it addresses current and future issues relating to compactness, portability and field application. While incremental advancements continue to be reported in GC with columns fabricated in microchips (referred to in this paper as "microchip columns"), the current performance is far from acceptable. This lower performance compared to conventional GC is due to factors such as pooling of the stationary phase in corners of non-cylindrical channels, adsorption of sensitive compounds on incompletely deactivated surfaces, shorter column lengths and less than optimum interfacing to injector and detector. In this work, a GC system utilizing microchip columns was developed that solves the latter challenge, i.e., microchip interfacing to injector and detector. A microchip compression clamp was constructed to heat the microchip (i.e., primary heater), and seal the injector and detector fused silica interface tubing to the inlet and outlet ports of the microchip channels with minimum extra-column dead volume. This clamp allowed occasional operation up to 375°C and routine operation up to 300°C. The compression clamp was constructed of a low expansion alloy, Kovar™, to minimize leaking due to thermal expansion mismatch at the interface during repeated thermal cycling, and it was tested over several months for more than one hundred injections without forming leaks. A 5.9m long microcolumn with rectangular cross section of 158μm×80μm, which approximately matches a 100μm i.d. cylindrical fused silica column, was fabricated in a silicon wafer using deep reactive ion etching (DRIE) and high temperature fusion bonding; finally, the channel was coated statically with a 1% vinyl, 5% phenyl, 94% methylpolysiloxane stationary phase. High temperature separations of C10-C40 n-alkanes and a commercial diesel sample were demonstrated using the system under both temperature programmed GC (TPGC) and thermal gradient GC (TGGC) conditions. TGGC analysis of a complex essential oil sample was also demonstrated. Addition of a secondary heater and polyimide insulation proved to be helpful in achieving the desired elution temperature without having to raise the primary heater temperature above 300°C for high boiling point compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Caffeine impact on working memory-related network activation patterns in early stages of cognitive decline.

    PubMed

    Haller, Sven; Montandon, Marie-Louise; Rodriguez, Cristelle; Moser, Dominik; Toma, Simona; Hofmeister, Jeremy; Giannakopoulos, Panteleimon

    2017-04-01

    Recent evidence indicates that caffeine may have a beneficial effect on cognitive decline and dementia. The current investigation assessed the effect of acute caffeine administration on working memory during the earliest stage of cognitive decline in elderly participants. The study includes consecutive 45 elderly controls and 18 individuals with mild cognitive impairment (MCI, 71.6 ± 4.7 years, 7 females). During neuropsychological follow-up at 18 months, 24 controls remained stable (sCON, 70.0 ± 4.3 years, 11 women), while the remaining 21 showed subtle cognitive deterioration (dCON, 73.4 ± 5.9 years, 14 women). All participants underwent an established 2-back working task in a crossover design of 200 mg caffeine versus placebo. Data analysis included task-related general linear model and functional connectivity tensorial independent component analysis. Working memory behavioral performances did not differ between sCON and dCON, while MCI was slower and less accurate than both control groups (p < 0.05). The dCON group had a less pronounced effect of acute caffeine administration essentially restricted to the right hemisphere (p < 0.05 corrected) and reduced default mode network (DMN) deactivation compared to sCON (p < 0.01 corrected). dCON cases are characterized by decreased sensitivity to caffeine effects on brain activation and DMN deactivation. These complex fMRI patterns possibly reflect the instable status of these cases with intact behavioral performances despite already existing functional alterations in neocortical circuits.

  17. Inside out: a neuro-behavioral signature of free recall dynamics.

    PubMed

    Shapira-Lichter, Irit; Vakil, Eli; Glikmann-Johnston, Yifat; Siman-Tov, Tali; Caspi, Dan; Paran, Daphna; Hendler, Talma

    2012-07-01

    Free recall (FR) is a ubiquitous internally-driven retrieval operation that crucially affects our day-to-day life. The neural correlates of FR, however, are not sufficiently understood, partly due to the methodological challenges presented by its emerging property and endogenic nature. Using fMRI and performance measures, the neuro-behavioral correlates of FR were studied in 33 healthy participants who repeatedly encoded and retrieved word-lists. Retrieval was determined either overtly via verbal output (Experiment 1) or covertly via motor responses (Experiment 2). Brain activation during FR was characterized by two types of performance-based parametric analyses of retrieval changes over time. First was the elongation in inter response time (IRT) assumed to represent the prolongation of memory search over time, as increased effort was needed. Using a derivative of this parameter in whole brain analysis revealed the default mode network (DMN): longer IRT within FR blocks correlated with less deactivation of the DMN, representing its greater recruitment. Second was the increased number of words retrieved in repeated encoding-recall cycles, assumed to represent the learning process. Using this parameter in whole brain analysis revealed increased deactivation in the DMN (i.e., less recruitment). Together our results demonstrate the naturally occurring dynamics in the recruitment of the DMN during utilization of internally generated processes during FR. The contrasting effects of increased and decreased recruitment of the DMN following dynamics in memory search and learning, respectively, supports the idea that with learning FR is less dependent on neural operations of internally-generated processes such as those initially needed for memory search. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The criminal use of improvised and re-activated firearms in Great Britain and Northern Ireland.

    PubMed

    Warlow, Thomas A

    2007-11-01

    Following the Hungerford Massacre the British Government imposed additional strict firearms legislation in 1988 that involved several classes of arms being placed into the prohibited category. By way of compensation a scheme was introduced to allow the unrestricted possession and transfer of the newly prohibited arms, other firearms and "prohibited weapons", if de-activated to a standard acceptable to the Secretary of State. Approved standards for firearm de-activation were drawn up in 1989. The inspection of the de-activated arms was devolved to the two Gun Barrel Proof Houses at London and Birmingham, as otherwise the task of inspecting the thousands of guns involved would have overloaded the firearms section at the Huntingdon Forensic Science Service Laboratory, who were already dealing with criminal firearms cases submitted by 41 of the 43 police forces throughout England and Wales, as well as providing technical assistance to the Home Office and Government Ministers. Members of the Gun Trade made representations to the Minister involved during the initial stages of setting up the official de-activation standards. This resulted in some measure of compromise in the range and nature of the de-activation requirements. Although it was clear that some individuals possessing the necessary skill and equipment might attempt to restore the odd weapon to a working condition, the scheme appeared to work reasonably well for the next few years. However, over the passage of time, criminal casework submissions to the Huntingdon Laboratory from industrial city areas along the M62 corridor of northern England revealed a steadily growing trend in the use of re-activated arms, which in a significant number of cases involved the use of fully automatic weapons. At first, the nature of the re-activation processes used to restore these arms was quite crude. However, with the passage of time a steady improvement in the machining and welding skills used by the some of the culprits involved became more and more apparent, as was a move by them to bulk restoration. The use of restored arms in serious and often drug related crime, spread to the other mainland British cities, and eventually to Northern Ireland. More rigorous de-activation standards were introduced in 1995 to help counter this perceived threat, particularly in respect of handguns and full-automatic weapons. Blank cartridge pistols and air cartridge pistols were also being modified to allow their use with bulleted ammunition in the commission of criminal offences. As a result all air cartridge guns were placed into the prohibited weapons category in 2003, and the possession of imitation firearms in a public place without good reason, also became an offence. The Government is now considering further legislation, which will affect the sale of replica firearms and cartridge reloading equipment and materials.

  19. Benefits of detailed models of muscle activation and mechanics

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    Recent biophysical and physiological studies identified some of the detailed mechanisms involved in excitation-contraction coupling, muscle contraction, and deactivation. Mathematical models incorporating these mechanisms allow independent estimates of key parameters, direct interplay between basic muscle research and the study of motor control, and realistic model behaviors, some of which are not accessible to previous, simpler, models. The existence of previously unmodeled behaviors has important implications for strategies of motor control and identification of neural signals. New developments in the analysis of differential equations make the more detailed models feasible for simulation in realistic experimental situations.

  20. Radon detection

    DOEpatents

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.

    1994-01-25

    A detector for atmospheric radon using a long range alpha detector as its sensing element is described. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding. 3 figures.

  1. Radon detection

    DOEpatents

    MacArthur, Duncan W.; Allander, Krag S.; Bounds, John A.

    1994-01-01

    A detector for atmospheric radon using a long range alpha detector as its sensing element. An electrostatic filter removes ions from ambient air, while allowing radon atoms to pass into a decay cavity. Here, radon atoms are allowed to decay, creating air ions. These air ions are drawn by a fan through a second electrostatic filter which can be activated or deactivated, and into the long range alpha detector. With the second electrostatic filter activated, no air ions are allowed to pass, and the signal output from the long range alpha detector consists of only the electronic background. With the second electrostatic filter deactivated, air ions and cosmic rays will be detected. The cosmic ray contribution can be minimized by shielding.

  2. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    PubMed

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  3. Influence of trace substances on methanation catalysts used in dynamic biogas upgrading.

    PubMed

    Jürgensen, Lars; Ehimen, Ehiaze Augustine; Born, Jens; Holm-Nielsen, Jens Bo; Rooney, David

    2015-02-01

    The aim of this work was to study the possible deactivation effects of biogas trace ammonia concentrations on methanation catalysts. It was found that small amounts of ammonia led to a slight decrease in the catalyst activity. A decrease in the catalyst deactivation by carbon formation was also observed, with ammonia absorbed on the active catalyst sites. This was via a suppression of the carbon formation and deposition on the catalyst, since it requires a higher number of active sites than for the methanation of carbon oxides. From the paper findings, no special pretreatment for ammonia removal from the biogas fed to a methanation process is required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Stable Hydrogen Production from Ethanol through Steam Reforming Reaction over Nickel-Containing Smectite-Derived Catalyst

    PubMed Central

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-01-01

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2. PMID:25547495

  5. Fast characterization of cheeses by dynamic headspace-mass spectrometry.

    PubMed

    Pérès, Christophe; Denoyer, Christian; Tournayre, Pascal; Berdagué, Jean-Louis

    2002-03-15

    This study describes a rapid method to characterize cheeses by analysis of their volatile fraction using dynamic headspace-mass spectrometry. Major factors governing the extraction and concentration of the volatile components were first studied. These components were extracted from the headspace of the cheeses in a stream of helium and concentrated on a Tenax TA trap. They were then desorbed by heating and injected directly into the source of a mass spectrometer via a short deactivated silica transfer line. The mass spectra of the mixture of volatile components were considered as fingerprints of the analyzed substances. Forward stepwise factorial discriminant analysis afforded a limited number of characteristic mass fragments that allowed a good classification of the batches of cheeses studied.

  6. Magnetized poly(STY-co-DVB) as a matrix for immobilizing microbial lipase to be used in biotransformation

    NASA Astrophysics Data System (ADS)

    Bento, H. B. S.; de Castro, H. F.; de Oliveira, P. C.; Freitas, L.

    2017-03-01

    Magnetized hydrophobic polymeric particles were prepared by suspension polymerization of styrene and divinylbenzene with the addition of magnetite (Fe3O4) functionalized with oleic acid (OA). The magnetic poly(STY-co-DVB) particles were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that the magnetic polymer particles fulfill the requirements for being used as matrix in the immobilization of microbial lipase from Candida rugosa by physical adsorption. The resulted immobilized derivative presented high catalytic activity in both aqueous and non-aqueous media. A comparative study between free and immobilized lipases showed a similar biochemical behavior, but with better hydrolytic activity at a pH range of 8.0-8.5. The patterns of heat stability indicated that the immobilization process also stabilizes the enzyme by a 50-fold improvement of thermal stability parameters (thermal deactivation and half-life time). Data on olive oil hydrolytic activities indicated that the Michaelis-Menten equation can be used to adjust data so as to calculate Km and Vmax, which attained values of 1766 mM and 5870 μM g-1 min-1, respectively. Such values indicated that the immobilized system was subjected to mass transfer limitations. High operational stability (t ½=1014 h) was achieved under repetitive batch runs in ester synthesis. The results indicated that the magnetized support particles can be very promising carriers for immobilizing enzymes in biotransformation reactions.

  7. Excited-State Dynamics of Biological Molecules in Solution: Photoinduced Charge Transfer in Oxidatively Damaged DNA and Deactivation of Violacein in Viscous Solvents

    NASA Astrophysics Data System (ADS)

    Beckstead, Ashley Ann

    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (<0.5 ps), and back electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these results to similar observations of viscosity-dependent excited-state decay rates in other molecules. I also consider the relevance of violacein's excited-state properties to the hypothesized sunscreening role of violacein. Overall, the studies presented in this dissertation illustrate how ultrafast spectroscopic techniques can be used to unravel complex biomolecular excited-state dynamics in solution.

  8. SA54. The Structure of Embodied Emotions in Schizophrenia

    PubMed Central

    Hong, Seok Jin; Snodgress, Matthew A.; Nichols, Heathman S.; Nummenmaa, Lauri; Glerean, Enrico; Park, Sohee

    2017-01-01

    Abstract Background: Past research suggests a disconnection between experienced emotions and bodily sensations in individuals with schizophrenia (SZ), but mechanisms underlying abnormal embodiment of emotions in SZ are unknown. There might be an overall reduction in emotion-related bodily sensations, but it is also possible that the spatial distribution of bodily sensations associated with emotions may be altered in SZ. We hypothesized the presence of a more coherent underlying structure giving rise to embodied emotions in healthy controls (HC) compared to SZ. Methods: Fifteen SZ and 15 demographically matched HC (bootstrapped from a possible 300 HC) were asked to complete the emBODY task (Nummenmaa et al., 2014). In the emBODY task, participants were asked to shade in where they felt sensations (activation and deactivation) on the outline of a human body when presented with an emotion word. Fourteen emotion words were presented sequentially. From activation and deactivation data, body maps of emotions were generated and 2 separate principal components analyses (PCA) were conducted, one for each group to determine the multivariate structure of embodied emotions. Results: The pattern of principal components for HC differed significantly from that of the SZ group. SZ showed more diffuse components with lesser magnitude than the HC. Moreover, the variance that accounts for these dimensions was significantly reduced for SZ. This suggests anomalous embodied emotion in SZ. In this PCA framework, a particular set of innate constructs is thought to yield the activation and deactivation maps of emotions on the body. Our results imply that the complexity of this set in SZ is highly deviant from that of the HC. Conclusion: Quantitative modeling of the underlying structure of self-reported embodied emotion provided novel insight into altered emotional experience in SZ. Our findings illustrate radically different bodily maps of emotions in SZ compared to HC. Bodily sensations are not only different in intensity but also in where they are felt in SZ. While an important first step, our analysis was exploratory and limited by the small sample size. Future direction includes probing the specific contents of the underlying dimensions that give rise to embodied emotions.

  9. Deactivation of Pd particles supported on Nb 2O 5/Cu 3Au(1 0 0): SFG and TPD studies from UHV to 100 mbar

    NASA Astrophysics Data System (ADS)

    Höbel, Frank; Bandara, Athula; Rupprechter, Günther; Freund, Hans-Joachim

    2006-02-01

    Structural changes that occur on Pd-Nb 2O 5/Cu 3Au(1 0 0) model catalysts upon thermal annealing were followed by sum frequency generation (SFG) and temperature-programmed desorption (TPD) using CO as probe molecule. SFG experiments were performed both under ultrahigh vacuum and mbar pressure. Heating the catalyst to temperatures above 300 K lead to an irreversible 50% decrease in the CO adsorption capacity and modified the remaining adsorption sites. Alterations of the phase between resonant and non-resonant SFG signals upon annealing indicate a change in the electronic structure of the surface, which excludes Pd sintering or migration of Nb 2O 5 over Pd particles to cause the observed effect and rather suggests the formation of "mixed Pd-NbO x" sites. The same changes in surface properties also occur during CO hydrogenation at 1 bar and high temperature, pointing to an involvement of "mixed Pd-NbO x" sites in catalytic reactions.

  10. Solvent- and DNA-Controlled Phototriggered Linkage Isomerization in a Ruthenium Sulfoxide Complex Incorporating Dipyrido[3,2-a:2',3'-c]phenazine (dppz).

    PubMed

    Phapale, Daulat; Ghosh, Rajib; Das, Dipanwita

    2017-06-05

    A new tris-heteroleptic complex [Ru(bpy)(dppz)(OSO)](ClO 4 ), [1](ClO 4 ) (bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine and OSO = 2-methylsulfinylbenzoate), was synthesized and characterized to control the photochromic Ru-S → Ru-O linkage isomerization. Details isomerization kinetics studied by UV-visible absorption spectroscopy and cyclic voltammetry revealed that efficient photochromic S → O isomerization and thermal O → S reversal take place in solvents like propylene carbonate (PC), methanol, and dichloromethane. Strikingly, photoisomerization of [1](ClO 4 ) is arrested in water although is active in the analogous compound [Ru(bpy) 2 (OSO)](ClO 4 ). Effective excited state deactivation through dark 3 MLCT state involving dppz ligand of [1](ClO 4 ) switches off photochromism in aqueous medium. Interestingly, the photochromism is activated in aqueous solution in the presence of DNA which shields the dppz localized dark state through intercalation. Ultrafast transient absorption spectroscopic measurement sheds light on the differential behavior of photochromism in aqueous and nonaqueous solvents.

  11. Graphene oxide/MnO2 nanocomposite as destructive adsorbent of nerve-agent simulants in aqueous media

    NASA Astrophysics Data System (ADS)

    Šťastný, Martin; Tolasz, Jakub; Štengl, Václav; Henych, Jiří; Žižka, David

    2017-08-01

    Graphene oxide/MnO2 nanocomposite was prepared by thermal hydrolysis of potassium permanganate (KMnO4) and 2-chloroacetamide aqueous solutions with graphene oxide (GO) suspension. The synthesized samples were characterized by specific surface area (BET) and porosity determination (BJH), X-ray Diffraction (XRD) and high-resolution electron microscopes (HRSEM, HRTEM). These nanocomposites were used in an experimental evaluation of their adsorption activity with nerve agent simulants dimethyl methyl phosphonate (DMMP) and triethyl phosphate (TEP) in aqueous media. The nanocomposites exhibited enhanced adsorptive degradation ability compared to pure manganese oxide (MnO2) and GO. The GO amount in the nanocomposites affected their degradation activity substantially. The best adsorption efficiency was observed for samples with moderate GO amount. Three methods were used to observe the mechanism of the nerve-agent simulants deactivation: Gas chromatography with mass spectrometry (GC-MS), High-Performance Liquid Chromatography (HPLC) and in situ Infrared spectroscopy (FTIR). It was shown that the hydrolysis on the surface of prepared nanocomposites yields volatile primary alcohols (methanol and ethanol) as the main hydrolysis products.

  12. Origin of High Electronic Quality in Solar Cell Absorber CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Yin, Wanjian; Shi, Tingting; Wei, Suhua; Yan, Yanfa

    Thin-film solar cells based on CH3NH3PbI3 halide perovskites have recently shown remarkable performance. First-principle calculations and molecular dynamic simulations show that the structure of pristine CH3NH3PbI3 is much more disordered than the inorganic archetypal thin-film semiconductor CdTe. However, the structural disorders from thermal fluctuation, point defects and grain boundaries introduce rare deep defect states within the bandgaps; therefore, the material has high electronic quality. We have further shown that this unusually high electronic quality is attributed to the unique electronic structures of halide perovskite: the strong coupling between cation lone-pair Pb s orbitals and anion p orbitals and the large atomic size of constitute cation atoms. We further found that although CH3NH3PbI3 GBs do not introduce a deep gap state, the defect level close to the VBM can still act as a shallow hole trap state. Cl and O can spontaneously segregate into GBs and passivate those defect levels and deactivate the trap state.

  13. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    PubMed

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-08

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hollow glass for insulating layers

    NASA Astrophysics Data System (ADS)

    Merticaru, Andreea R.; Moagar-Poladian, Gabriel

    1999-03-01

    Common porous materials, some of which will be considered in the chapters of this book, include concrete, paper, ceramics, clays, porous semiconductors, chromotography materials, and natural materials like coral, bone, sponges, rocks and shells. Porous materials can also be reactive, such as in charcoal gasification, acid rock dissolution, catalyst deactivation and concrete. This study continues the investigations about the properties of, so-called, hollow glass. In this paper is presented a computer simulation approach in which the thermo-mechanical behavior of a 3D microstructure is directly computed. In this paper a computer modeling approach of porous glass is presented. One way to test the accuracy of the reconstructed microstructures is to computed their physical properties and compare to experimental measurement on equivalent systems. In this view, we imagine a new type of porous type of glass designed as buffer layer in multilayered printed boards in ICs. Our glass is a variable material with a variable pore size and surface area. The porosity could be tailored early from the deposition phases that permitting us to keep in a reasonable balance the dielectric constant and thermal conductivity.

  15. Neural Correlates of Success and Failure Signals During Neurofeedback Learning.

    PubMed

    Radua, Joaquim; Stoica, Teodora; Scheinost, Dustin; Pittenger, Christopher; Hampson, Michelle

    2018-05-15

    Feedback-driven learning, observed across phylogeny and of clear adaptive value, is frequently operationalized in simple operant conditioning paradigms, but it can be much more complex, driven by abstract representations of success and failure. This study investigates the neural processes involved in processing success and failure during feedback learning, which are not well understood. Data analyzed were acquired during a multisession neurofeedback experiment in which ten participants were presented with, and instructed to modulate, the activity of their orbitofrontal cortex with the aim of decreasing their anxiety. We assessed the regional blood-oxygenation-level-dependent response to the individualized neurofeedback signals of success and failure across twelve functional runs acquired in two different magnetic resonance sessions in each of ten individuals. Neurofeedback signals of failure correlated early during learning with deactivation in the precuneus/posterior cingulate and neurofeedback signals of success correlated later during learning with deactivation in the medial prefrontal/anterior cingulate cortex. The intensity of the latter deactivations predicted the efficacy of the neurofeedback intervention in the reduction of anxiety. These findings indicate a role for regulation of the default mode network during feedback learning, and suggest a higher sensitivity to signals of failure during the early feedback learning and to signals of success subsequently. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Kinetic Contributions to Gating by Interactions Unique to N-methyl-d-aspartate (NMDA) Receptors*

    PubMed Central

    Borschel, William F.; Cummings, Kirstie A.; Tindell, LeeAnn K.; Popescu, Gabriela K.

    2015-01-01

    Among glutamate-gated channels, NMDA receptors produce currents that subside with unusually slow kinetics, and this feature is essential to the physiology of central excitatory synapses. Relative to the homologous AMPA and kainate receptors, NMDA receptors have additional intersubunit contacts in the ligand binding domain that occur at both conserved and non-conserved sites. We examined GluN1/GluN2A single-channel currents with kinetic analyses and modeling to probe these class-specific intersubunit interactions for their role in glutamate binding and receptor gating. We found that substitutions that eliminate such interactions at non-conserved sites reduced stationary gating, accelerated deactivation, and imparted sensitivity to aniracetam, an AMPA receptor-selective positive modulator. Abolishing unique contacts at conserved sites also reduced stationary gating and accelerated deactivation. These results show that contacts specific to NMDA receptors, which brace the heterodimer interface within the ligand binding domain, stabilize actively gating receptor conformations and result in longer bursts and slower deactivations. They support the view that the strength of the heterodimer interface modulates gating in both NMDA and non-NMDA receptors and that unique interactions at this interface are responsible in part for basic differences between the kinetics of NMDA and non-NMDA currents at glutamatergic synapses. PMID:26370091

  17. The dynamic range of response set activation during action sequencing.

    PubMed

    Behmer, Lawrence P; Crump, Matthew J C

    2017-03-01

    We show that theories of response scheduling for sequential action can be discriminated on the basis of their predictions for the dynamic range of response set activation during sequencing, which refers to the momentary span of activation states for completed and to-be-completed actions in a response set. In particular, theories allow that future actions in a plan are partially activated, but differ with respect to the width of the range, which refers to the number of future actions that are partially activated. Similarly, theories differ on the width of the range for recently completed actions that are assumed to be rapidly deactivated or gradually deactivated in a passive fashion. We validate a new typing task for measuring momentary activation states of actions across a response set during action sequencing. Typists recruited from Amazon Mechanical Turk copied a paragraph by responding to a "go" signal that usually cued the next letter but sometimes cued a near-past or future letter (n-3, -2, -1, 0, +2, +3). The activation states for producing letters across go-signal positions can be inferred from RTs and errors. In general, we found evidence of graded parallel activation for future actions and rapid deactivation of more distal past actions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Common and distinct neural mechanisms of the fundamental dimensions of social cognition.

    PubMed

    Han, Mengfei; Bi, Chongzeng; Ybarra, Oscar

    2016-01-01

    In the present study, we used a valence classification task to investigate the common and distinct neural basis of the two fundamental dimensions of social cognition (agency and communion) using functional magnetic resonance imaging (fMRI). The results showed that several brain areas associated with mentalizing, along with the inferior parietal gyrus in the mirror system, showed overlap in response to both agentic and communal words. These findings suggest that both content categories are related to the neural basis of social cognition; further, several areas in the default mode network (DMN) showed similar deactivations between agency and communion, reflecting task-induced deactivation (TID). In terms of distinct activations, the findings indicated greater deactivations for communal than agentic content in the ventral anterior cingulate (vACC) and medial orbitofrontal cortex (mOFC). Communion also showed greater activation in some visual areas compared to agentic content, including occipital gyrus, lingual gyrus, and fusiform gyrus. These activations may reflect greater allocation of attentional resources to visual areas when processing communal content, or inhibition of cognitive activity irrelevant to task performance. If so, this suggests greater attention and engagement with communion-related content. The present research thus suggests common and differential activations for agency- versus communion-related content.

  19. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study.

    PubMed

    Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli

    2014-01-01

    Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  20. Reuse performance of granular-activated carbon and activated carbon fiber in catalyzed peroxymonosulfate oxidation.

    PubMed

    Yang, Shiying; Li, Lei; Xiao, Tuo; Zhang, Jun; Shao, Xueting

    2017-03-01

    Recently, activated carbon was investigated as an efficient heterogeneous metal-free catalyst to directly activate peroxymonosulfate (PMS) for degradation of organic compounds. In this paper, the reuse performance and the possible deactivation reasons of granular-activated carbon (GAC) and activated carbon fiber (ACF) in PMS activation were investigated. As results indicated, the reusability of GAC, especially in the presence of high PMS dosage, was relatively superior to ACF in catalyzed PMS oxidation of Acid Orange 7 (AO7), which is much more easily adsorbed by ACF than by GAC. Pre-oxidation experiments were studied and it was demonstrated that PMS oxidation on ACF would retard ACF's deactivation to a big extent. After pre-adsorption with AO7, the catalytic ability of both GAC and ACF evidently diminished. However, when methanol was employed to extract the AO7-spent ACF, the catalytic ability could recover quite a bit. GAC and ACF could also effectively catalyze PMS to degrade Reactive Black 5 (RB5), which is very difficult to be adsorbed even by ACF, but both GAC and ACF have poor reuse performance for RB5 degradation. The original organic compounds or intermediate products adsorbed by GAC or ACF would be possibly responsible for the deactivation.

  1. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands.

    PubMed

    Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D

    2015-11-03

    In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named "Bone Marrow (BM) Soup", was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and "deactivated BM Soup" were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the 'deactivated BM Soup' was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies.

  2. Towards a Model of Cold Denaturation of Proteins

    NASA Astrophysics Data System (ADS)

    Sanchez, Isaac

    2010-10-01

    Proteins/enzymes can undergo cold denaturation or cold deactivation. In the active or natured state, a protein exists in a unique folded/ordered state. In the deactivated (denatured) state, a protein unfolds and exists in a disordered expanded state. This protein folding/unfolding or order/disorder transition can be triggered by a temperature change. What seems paradoxical is that the active (ordered) state can be induced by heating, or equivalently, the disordered inactive state can be induced by cooling. This is equivalent to an Ising spin model passing from a disordered array of spins to an ordered array by increasing temperature! Hydrogels and their corresponding polyelectrolyte chains behave similarly, i.e., the swollen disordered state can be induced by cooling while the more ordered collapsed or globular state is induced by heating (an entropically driven phase transition). In a living cell at the physiological temperature of 37 C, activation and deactivation of proteins is triggered by local environmental changes in pH, salinity, etc. The important physics is that the denaturation temperature can be moved up or down relative to 37 C by these stimuli. Moving the transition temperature up can destabilize the active protein while moving it down leads to stabilization. An analytical polymer model will be described that exhibits cold denaturation behavior.

  3. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer.

    PubMed

    Hamlet, Christina; Fauci, Lisa J; Tytell, Eric D

    2015-11-21

    Animals move through their environments using muscles to produce force. When an animal׳s nervous system activates a muscle, the muscle produces different amounts of force depending on its length, its shortening velocity, and its time history of force production. These muscle forces interact with forces from passive tissue properties and forces from the external environment. Using an integrative computational model that couples an elastic, actuated model of an anguilliform, lamprey-like swimmer with a surrounding Navier-Stokes fluid, we study the effects of this coupling between the muscle force and the body motion. Swimmers with different forms of this coupling can achieve similar motions, but use different amounts of energy. The velocity dependence is the most important property of the ones we considered for reducing energy costs and helping us to stabilize oscillations. These effects are strongly influenced by how rapidly the muscle deactivates; if force decays too slowly, muscles on opposite sides of the body end up fighting each other, increasing energy cost. Work-dependent deactivation, an effect that causes a muscle to deactivate more rapidly if it has recently produced mechanical work, works together with the velocity dependence to reduce the energy cost of swimming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High Intracellular Chloride Slows the Decay of Glycinergic Currents

    PubMed Central

    Pitt, Samantha J.; Sivilotti, Lucia G.; Beato, Marco

    2009-01-01

    The time course of currents mediated by native and recombinant glycine receptors was examined with a combination of rapid agonist applications to outside-out patches and single-channel recording. The deactivation time constant of currents evoked by brief, saturating pulses of glycine is profoundly affected by the chloride concentration on the intracellular side of the cell membrane. Deactivation was threefold slower when intracellular chloride was increased from a low level (10 mm), similar to that observed in living mature neurons, to 131 mm (“symmetrical” chloride, often used in pipette internal solutions). Single-channel analysis revealed that high chloride has its greatest effect on the channel closing rate, slowing it by a factor of 2 compared with the value we estimated in the cell-attached mode (in which the channels are at physiological intracellular chloride concentrations). The same effect of chloride was observed when glycinergic evoked synaptic currents were recorded from juvenile rat spinal motoneurons in vitro, because the decay time constant was reduced from ∼7ms to ∼3 ms when cells were dialyzed with 10 mm chloride intracellular recording solution. Our results indicate that the time course of glycinergic synaptic inhibition in intact neurons is much faster than is estimated by measurements in symmetrical chloride and can be modulated by changes in intracellular chloride concentration in the range that can occur in physiological or pathological conditions. PMID:18987182

  5. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  6. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    DOE PAGES

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; ...

    2017-12-06

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995).more » The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.« less

  7. Acute stress shifts the balance between controlled and automatic processes in prospective memory.

    PubMed

    Möschl, Marcus; Walser, Moritz; Plessow, Franziska; Goschke, Thomas; Fischer, Rico

    2017-10-01

    In everyday life we frequently rely on our abilities to postpone intentions until later occasions (prospective memory; PM) and to deactivate completed intentions even in stressful situations. Yet, little is known about the effects of acute stress on these abilities. In the present work we investigated the impact of acute stress on PM functioning under high task demands. (1) Different from previous studies, in which intention deactivation required mostly low processing demands, we used salient focal PM cues to induce high processing demands during intention-deactivation phases. (2) We systematically manipulated PM-monitoring demands in a nonfocal PM task that required participants to monitor for either one or six specific syllables that could occur in ongoing-task words. Eighty participants underwent the Trier Social Stress Test, a standardized stress induction protocol, or a standardized control situation, before performing a computerized PM task. Our primary interests were whether PM performance, PM-monitoring costs, aftereffects of completed intentions and/or commission-error risk would differ between stressed and non-stressed individuals and whether these effects would differ under varying task demands. Results revealed that PM performance and aftereffects of completed intentions during subsequent performance were not affected by acute stress induction, replicating previous findings. Under high demands on intention deactivation (focal condition), however, acute stress produced a nominal increase in erroneous PM responses after intention completion (commission errors). Most importantly, under high demands on PM monitoring (nonfocal condition), acute stress led to a substantial reduction in PM-monitoring costs. These findings support ideas of selective and demand-dependent effects of acute stress on cognitive functioning. Under high task demands, acute stress might induce a shift in processing strategy towards resource-saving behavior, which seems to increase the efficiency of PM performance (reduced monitoring costs), but might increase initial susceptibility to automatic response activation after intention completion. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Macroscopic kinetics of pentameric ligand gated ion channels: comparisons between two prokaryotic channels and one eukaryotic channel.

    PubMed

    Laha, Kurt T; Ghosh, Borna; Czajkowski, Cynthia

    2013-01-01

    Electrochemical signaling in the brain depends on pentameric ligand-gated ion channels (pLGICs). Recently, crystal structures of prokaryotic pLGIC homologues from Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus (GLIC) in presumed closed and open channel states have been solved, which provide insight into the structural mechanisms underlying channel activation. Although structural studies involving both ELIC and GLIC have become numerous, thorough functional characterizations of these channels are still needed to establish a reliable foundation for comparing kinetic properties. Here, we examined the kinetics of ELIC and GLIC current activation, desensitization, and deactivation and compared them to the GABAA receptor, a prototypic eukaryotic pLGIC. Outside-out patch-clamp recordings were performed with HEK-293T cells expressing ELIC, GLIC, or α1β2γ2L GABAA receptors, and ultra-fast ligand application was used. In response to saturating agonist concentrations, we found both ELIC and GLIC current activation were two to three orders of magnitude slower than GABAA receptor current activation. The prokaryotic channels also had slower current desensitization on a timescale of seconds. ELIC and GLIC current deactivation following 25 s pulses of agonist (cysteamine and pH 4.0 buffer, respectively) were relatively fast with time constants of 24.9 ± 5.1 ms and 1.2 ± 0.2 ms, respectively. Surprisingly, ELIC currents evoked by GABA activated very slowly with a time constant of 1.3 ± 0.3 s and deactivated even slower with a time constant of 4.6 ± 1.2 s. We conclude that the prokaryotic pLGICs undergo similar agonist-mediated gating transitions to open and desensitized states as eukaryotic pLGICs, supporting their use as experimental models. Their uncharacteristic slow activation, slow desensitization and rapid deactivation time courses are likely due to differences in specific structural elements, whose future identification may help uncover mechanisms underlying pLGIC gating transitions.

  9. Mechanistic Basis for Type 2 Long QT Syndrome Caused by KCNH2 Mutations that Disrupt Conserved Arginine Residue in the Voltage Sensor

    PubMed Central

    McBride, Christie M.; Smith, Ashley M.; Smith, Jennifer L.; Reloj, Allison R.; Velasco, Ellyn J.; Powell, Jonathan; Elayi, Claude S.; Bartos, Daniel C.; Burgess, Don E.

    2013-01-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (IKr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing IKr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (IKv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients’ genotypes) mostly corrected the changes in IKv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing IKr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease IKr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient. PMID:23546015

  10. Mechanistic basis for type 2 long QT syndrome caused by KCNH2 mutations that disrupt conserved arginine residues in the voltage sensor.

    PubMed

    McBride, Christie M; Smith, Ashley M; Smith, Jennifer L; Reloj, Allison R; Velasco, Ellyn J; Powell, Jonathan; Elayi, Claude S; Bartos, Daniel C; Burgess, Don E; Delisle, Brian P

    2013-05-01

    KCNH2 encodes the Kv11.1 channel, which conducts the rapidly activating delayed rectifier K+ current (I Kr) in the heart. KCNH2 mutations cause type 2 long QT syndrome (LQT2), which increases the risk for life-threatening ventricular arrhythmias. LQT2 mutations are predicted to prolong the cardiac action potential (AP) by reducing I Kr during repolarization. Kv11.1 contains several conserved basic amino acids in the fourth transmembrane segment (S4) of the voltage sensor that are important for normal channel trafficking and gating. This study sought to determine the mechanism(s) by which LQT2 mutations at conserved arginine residues in S4 (R531Q, R531W or R534L) alter Kv11.1 function. Western blot analyses of HEK293 cells transiently expressing R531Q, R531W or R534L suggested that only R534L inhibited Kv11.1 trafficking. Voltage-clamping experiments showed that R531Q or R531W dramatically altered Kv11.1 current (I Kv11.1) activation, inactivation, recovery from inactivation and deactivation. Coexpression of wild type (to mimic the patients' genotypes) mostly corrected the changes in I Kv11.1 activation and inactivation, but deactivation kinetics were still faster. Computational simulations using a human ventricular AP model showed that accelerating deactivation rates was sufficient to prolong the AP, but these effects were minimal compared to simply reducing I Kr. These are the first data to demonstrate that coexpressing wild type can correct activation and inactivation dysfunction caused by mutations at a critical voltage-sensing residue in Kv11.1. We conclude that some Kv11.1 mutations might accelerate deactivation to cause LQT2 but that the ventricular AP duration is much more sensitive to mutations that decrease I Kr. This likely explains why most LQT2 mutations are nonsense or trafficking-deficient.

  11. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH.

    PubMed

    Uzun, Habibullah; Kim, Daekyun; Karanfil, Tanju

    2018-09-01

    In this study, the effect of chlorine dioxide (ClO 2 ) oxidation on the deactivation of wastewater (WW)-derived N-nitrosodimethylamine (NDMA) precursors was investigated under various conditions (i.e., ClO 2 application pH, dose and contact time). At pH 6.0, decreases in NDMA formation potentials (FPs) or occurrences (under uniform formation conditions [UFC]) were relatively low (<25%) with ClO 2 oxidation regardless of WW-impact. A negative removal was also observed after ClO 2 oxidation in some of the non-impacted waters. However, NDMA FP removals were significant (up to ~85%) under the same oxidation conditions in WW-impacted waters at pH 7.8. This indicates that the majority of WW-derived NDMA precursors can be deactivated with ClO 2 oxidation above neutral pH. This was attributed to the better oxidative reaction of ClO 2 with amines that have lone pair electrons to be shared at higher oxidation pH conditions. In addition, relatively short oxidation periods with ClO 2 (i.e., ≤10 min) or low Ct (concentration × time, ~10 mg ∗ min/L) values were sufficient for the deactivation of WW-derived NDMA precursors. ClO 2 oxidation was effective in freshly WW-impacted waters. Natural attenuation processes (e.g., sorption, biodegradation, etc.) can change the reactivity of WW-derived NDMA precursors for oxidation with ClO 2 . The effect of ClO 2 on the removal of THM precursors was low (<25%) and independent of oxidation conditions. Given the low formation of regulated THMs and HAAs, ClO 2 oxidation presents a viable option for the simultaneous control of NDMA and regulated DBP formation during water treatment, especially for utilities treating WW-impacted water sources. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Lei; Zhu, Sha; Zhang, Lei; Feng, Pei-Jian; Yao, Xi-Kuang; Qian, Cheng-Gen; Zhang, Can; Jiang, Xi-Qun; Shen, Qun-Dong

    2016-02-01

    Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution.Healthy weight loss represents a real challenge when obesity is increasing in prevalence. Herein, we report a conjugated polymer nanocarrier for smart deactivation of lipase and thus balancing calorie intake. After oral administration, the nanocarrier is sensitive to lipase in the digestive tract and releases orlistat, which deactivates the enzyme and inhibits fat digestion. It also creates negative feedback to control the release of itself. The nanocarrier smartly regulates activity of the lipase cyclically varied between high and low levels. In spite of high fat diet intervention, obese mice receiving a single dose of the nanocarrier lose weight over eight days, whereas a control group continues the tendency to gain weight. Daily intragastric administration of the nanocarrier leads to lower weight of livers or fat pads, smaller adipocyte size, and lower total cholesterol level than that of the control group. Near-infrared fluorescence of the nanocarrier reveals its biodistribution. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06721a

  13. Cloud droplet size distribution broadening during diffusional growth: ripening amplified by deactivation and reactivation

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Kollias, Pavlos; Shaw, Raymond A.; Vogelmann, Andrew M.

    2018-05-01

    Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in situ measurements and 3-D dynamic models.

  14. Evaluating the combustion reactivity of drop tube furnace and thermogravimetric analysis coal chars with a selection of metal additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katherine Le Manquais; Colin E. Snape; Ian McRobbie

    Opportunities exist for effective coal combustion additives that can reduce the carbon content of pulverized fuel ash (PFA) to below 6%, thereby making it saleable for filler/building material applications without the need for postcombustion treatment. However, with only limited combustion data currently available for the multitude of potential additives, catalytic performance under pulverized fuel (PF) boiler conditions has received relatively little attention. This paper therefore compares the reactivity of catalyzed bituminous coal chars from thermogravimetric analysis (TGA) with those generated by devolatilization in a drop tube furnace (DTF). The principal aim was to explore the fundamental chemistry behind the chosenmore » additives' relative reactivities. Accordingly, all eight of the investigated additives increased the TGA burnout rate of the TGA and DTF chars, with most of the catalysts demonstrating consistent reactivity levels across chars from both devolatilization methods. Copper(I) chloride, silver chloride, and copper nitrate were thus identified as the most successful additives tested, but it proved difficult to establish a definitive reactivity ranking. This was largely due to the use of physical mixtures for catalyst dispersion, the relatively narrow selection of additives examined, and the inherent variability of the DTF chars. Nevertheless, one crucial exception to normal additive behavior was discovered, with copper(I) chloride perceptibly deactivating during devolatilization in the DTF, even though it remained the most effective catalyst tested. As a prolonged burnout at over 1000{sup o}C was required to replicate this deactivation effect on the TGA, the phenomenon could not be detected by typical testing procedures. Subsequently, a comprehensive TGA study showed no obvious relationship between the catalyst-induced reductions in the reaction's apparent activation energy and the samples recorded burnout rates.« less

  15. Effect of G Protein–Coupled Receptor Kinase 1 (Grk1) Overexpression on Rod Photoreceptor Cell Viability

    PubMed Central

    Whitcomb, Tiffany; Sakurai, Keisuke; Brown, Bruce M.; Young, Joyce E.; Sheflin, Lowell; Dlugos, Cynthia; Craft, Cheryl M.; Kefalov, Vladimir J.

    2010-01-01

    Purpose. Photoreceptor rhodopsin kinase (Rk, G protein–dependent receptor kinase 1 [Grk1]) phosphorylates light-activated opsins and channels them into an inactive complex with visual arrestins. Grk1 deficiency leads to human retinopathy and heightened susceptibility to light-induced photoreceptor cell death in the mouse. The goal of this study was to determine whether excess Grk1 activity is protective against photoreceptor cell death. Methods. Grk1-overexpressing transgenic mice (Grk1+) were generated by using a bacterial artificial chromosome (BAC) construct containing mouse Grk1, along with its flanking sequences. Quantitative reverse transcription-PCR, immunoblot analysis, immunostaining, and activity assays were combined with electrophysiology and morphometric analysis, to evaluate Grk1 overexpression and its effect on physiologic and morphologic retinal integrity. Morphometry and nucleosome release assays measured differences in resistance to photoreceptor cell loss between control and transgenic mice exposed to intense light. Results. Compared with control animals, the Grk1+ transgenic line had approximately a threefold increase in Grk1 transcript and immunoreactive protein. Phosphorylated opsin immunochemical staining and in vitro phosphorylation assays confirmed proportionately higher Grk1 enzyme activity. Grk1+ mice retained normal rod function, normal retinal appearance, and lacked evidence of spontaneous apoptosis when reared in cyclic light. In intense light, Grk1+ mice showed photoreceptor damage, and their susceptibility was more pronounced than that of control mice with prolonged exposure times. Conclusions. Enhancing visual pigment deactivation does not appear to protect against apoptosis; however, excess flow of opsin into the deactivation pathway may actually increase susceptibility to stress-induced cell death similar to some forms of retinal degeneration. PMID:19834036

  16. Default mode network deactivation to smoking cue relative to food cue predicts treatment outcome in nicotine use disorder.

    PubMed

    Wilcox, Claire E; Claus, Eric D; Calhoun, Vince D; Rachakonda, Srinivas; Littlewood, Rae A; Mickey, Jessica; Arenella, Pamela B; Goodreau, Natalie; Hutchison, Kent E

    2018-01-01

    Identifying predictors of treatment outcome for nicotine use disorders (NUDs) may help improve efficacy of established treatments, like varenicline. Brain reactivity to drug stimuli predicts relapse risk in nicotine and other substance use disorders in some studies. Activity in the default mode network (DMN) is affected by drug cues and other palatable cues, but its clinical significance is unclear. In this study, 143 individuals with NUD (male n = 91, ages 18-55 years) received a functional magnetic resonance imaging scan during a visual cue task during which they were presented with a series of smoking-related or food-related video clips prior to randomization to treatment with varenicline (n = 80) or placebo. Group independent components analysis was utilized to isolate the DMN, and temporal sorting was used to calculate the difference between the DMN blood-oxygen-level dependent signal during smoke cues and that during food cues for each individual. Food cues were associated with greater deactivation compared with smoke cues in the DMN. In correcting for baseline smoking and other clinical variables, which have been shown to be related to treatment outcome in previous work, a less positive Smoke - Food difference score predicted greater smoking at 6 and 12 weeks when both treatment groups were combined (P = 0.005, β = -0.766). An exploratory analysis of executive control and salience networks demonstrated that a more positive Smoke - Food difference score for executive control network predicted a more robust response to varenicline relative to placebo. These findings provide further support to theories that brain reactivity to palatable cues, and in particular in DMN, may have a direct clinical relevance in NUD. © 2017 Society for the Study of Addiction.

  17. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop.

    PubMed

    Shivhare, Devendra; Mueller-Cajar, Oliver

    2017-07-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice ( Oryza sativa ) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. In Vitro Characterization of Thermostable CAM Rubisco Activase Reveals a Rubisco Interacting Surface Loop1[OPEN

    PubMed Central

    Shivhare, Devendra

    2017-01-01

    To maintain metabolic flux through the Calvin-Benson-Bassham cycle in higher plants, dead-end inhibited complexes of Rubisco must constantly be engaged and remodeled by the molecular chaperone Rubisco activase (Rca). In C3 plants, the thermolability of Rca is responsible for the deactivation of Rubisco and reduction of photosynthesis at moderately elevated temperatures. We reasoned that crassulacean acid metabolism (CAM) plants must possess thermostable Rca to support Calvin-Benson-Bassham cycle flux during the day when stomata are closed. A comparative biochemical characterization of rice (Oryza sativa) and Agave tequilana Rca isoforms demonstrated that the CAM Rca isoforms are approximately10°C more thermostable than the C3 isoforms. Agave Rca also possessed a much higher in vitro biochemical activity, even at low assay temperatures. Mixtures of rice and agave Rca form functional hetero-oligomers in vitro, but only the rice isoforms denature at nonpermissive temperatures. The high thermostability and activity of agave Rca mapped to the N-terminal 244 residues. A Glu-217-Gln amino acid substitution was found to confer high Rca activity to rice Rca. Further mutational analysis suggested that Glu-217 restricts the flexibility of the α4-β4 surface loop that interacts with Rubisco via Lys-216. CAM plants thus promise to be a source of highly functional, thermostable Rca candidates for thermal fortification of crop photosynthesis. Careful characterization of their properties will likely reveal further protein-protein interaction motifs to enrich our mechanistic model of Rca function. PMID:28546437

  19. Pt-Zn Clusters on Stoichiometric MgO(100) and TiO2(110): Dramatically Different Sintering Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dadras, Mostafa J.; Shen, Lu; Alexandrova, Anastassia N.

    2015-03-02

    Zn was suggested to be a promising additive to Pt in the catalysis of dehydrogenation reactions. In this work, mixed Pt-Zn clusters deposited on two simple oxides, MgO(100) and TiO2(110), were investigated. The stability of these systems against cluster sintering, one of the major mechanisms of catalyst deactivation, is simulated using a Metropolis Monte Carlo scheme under the assumption of the Ostwald ripening mechanism. Particle migration, association to and dissociation from clusters, and evaporation and redeposition of monomers were all included in the simulations. Simulations are done at several high temperatures relevant to reactions of catalytic dehydrogenation. The effect ofmore » temperature is included via both the Metropolis algorithm and the Boltzmann-weighted populations of the global and thermally accessible local minima on the density functional theory potential energy surfaces of clusters of all sizes and compositions up to tetramers. On both surfaces, clusters are shown to sinter quite rapidly. However, the resultant compositions of the clusters most resistant to sintering are quite different on the two supports. On TiO2(110), Pt and Zn appear to phase separate, preferentially forming clusters rich in just one or the other metal. On MgO(100), Pt and Zn remain well-mixed and form a range of bimetallic clusters of various compositions that appear relatively stable. However, Zn is more easily lost from MgO through evaporation. These phenomena were rationalized by several means of chemical bonding analysis.« less

  20. System and method of cylinder deactivation for optimal engine torque-speed map operation

    DOEpatents

    Sujan, Vivek A; Frazier, Timothy R; Follen, Kenneth; Moon, Suk-Min

    2014-11-11

    This disclosure provides a system and method for determining cylinder deactivation in a vehicle engine to optimize fuel consumption while providing the desired or demanded power. In one aspect, data indicative of terrain variation is utilized in determining a vehicle target operating state. An optimal active cylinder distribution and corresponding fueling is determined from a recommendation from a supervisory agent monitoring the operating state of the vehicle of a subset of the total number of cylinders, and a determination as to which number of cylinders provides the optimal fuel consumption. Once the optimal cylinder number is determined, a transmission gear shift recommendation is provided in view of the determined active cylinder distribution and target operating state.

  1. Training Efficiency and Transfer Success in an Extended Real-Time Functional MRI Neurofeedback Training of the Somatomotor Cortex of Healthy Subjects

    PubMed Central

    Auer, Tibor; Schweizer, Renate; Frahm, Jens

    2015-01-01

    This study investigated the level of self-regulation of the somatomotor cortices (SMCs) attained by an extended functional magnetic resonance imaging (fMRI) neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal (FS) was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line general linear model analysis determining the fMRI percent signal changes in the SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e., the neurofeedback paradigm without the presentation of the FS. Group results show a distinct increase in feedback performance (FP) in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the FP showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left- and right-hand imagery, with a slight indication of more ipsilateral deactivation in the early right-hand trainings. PMID:26500521

  2. Thermal and Denaturation Studies of the Time-Resolved Fluorescence Decay of Human Superoxide Dismutase

    NASA Astrophysics Data System (ADS)

    Silva, Norberto De Jesus

    Previous studies have shown that time-resolved fluorescence decay of various single tryptophan proteins is best described by a distribution of fluorescence lifetimes rather than one or two lifetimes. The thermal dependence of the lifetime distributions is consistent with the hypothesis that proteins fluctuate between a hierarchy of many conformational substates. With this scenario as a theoretical framework, the correlations between protein dynamic and structure are investigated by studying the time-resolved fluorescence and anisotropy decay of the single tryptophan (Trp) residue of human superoxide dismutase (HSOD) over a wide range of temperatures and at different denaturant concentrations. First, it is demonstrated that the center of the lifetime distribution can characterize the average deactivation environment of the excited Trp-protein system. A qualitative model is introduced to explain the time-resolved fluorescence decay of HSOD in 80% glycerol over a wide range of temperatures. The dynamical model features isoenergetic conformational substates separated by a hierarchy of energy barriers. The HSOD system is also investigated as a function of denaturant concentration in aqueous solution. As a function of guanidine hydrochloride (GdHCl), the width of the fluorescence lifetime distribution of HSOD displays a maximum which is not coincident with the fully denatured form of HSOD at 6.5M GdHCl. Furthermore, the width for the fully denatured form of HSOD is greater than that of the native form. This is consistent with the scenario that more conformational substates are being created upon denaturation of HSOD. HSOD is a dimeric protein and it was observed that the width of the lifetime distribution of HSOD at intermediate GdHCl concentrations increased with decreasing protein concentration. In addition, the secondary structure of HSOD at intermediate GdHCl concentration does not change with protein concentration. These results suggest that HSOD display structural microheterogeneity which is consistent with the hypothesis of conformational substates. Further analysis show that, during denaturation, the monomeric form of HSOD is an intermediate which displays native-like secondary structure and fluctuating tertiary structure; i.e., the monomeric form of HSOD is a molten globule.

  3. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2018-01-26

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  4. Understanding of catalyst deactivation caused by sulfur poisoning and carbon deposition in steam reforming of liquid hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Xie, Chao

    2011-12-01

    The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production. Steam reforming of Norpar13 (a liquid hydrocarbon fuel from Exxon Mobile) without and with sulfur was performed on various metal catalysts (Rh, Ru, Pt, Pd, and Ni) supported on different materials (Al2O3, CeO2, SiO2, MgO, and CeO2- Al2O3). A number of characterization techniques were applied to study the physicochemical properties of these catalysts before and after the reactions. Especially, X-ray absorption near edge structure (XANES) spectroscopy was intensively used to investigate the nature of sulfur and carbon species in the used catalysts to reveal the catalyst deactivation mechanism. Among the tested noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalyst is the most sulfur tolerant. Al2O3 and CeO2 are much better than SiO2 and MgO as the supports for the Rh catalyst to reform sulfur-containing hydrocarbons. The good sulfur tolerance of Rh/Al2O3 can be attributed to the acidic nature of the Al2O3 support and its small Rh crystallites (1-3 nm) as these characteristics facilitate the formation of electron-deficient Rh particles with high sulfur tolerance. The good catalytic performance of Rh/CeO2 in the presence of sulfur can be ascribed to the promotion effect of CeO2 on carbon gasification, which significantly reduced the carbon deposition on the Rh/CeO2catalyst. Steam reforming of Norpar13 in the absence and presence of sulfur was further carried out over CeO2-Al2O3 supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 °C. Both monometallic catalysts rapidly deactivated at 550 °C, iv and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 °C dramatically improved the sulfur tolerance of the Rh catalyst. Sulfur K-edge XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The superior sulfur tolerance of the Rh/CeO2-Al2O3 catalyst at 800 °C may be associated with its capability in sulfur oxidation. It is very likely that the oxygenshielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh through inhibiting direct rhodium-sulfur interaction. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic ones at 550 °C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 °C probably due to the severe carbon deposition on the bimetallic catalyst. The last part of this work focuses on the influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbon fuels over CeO2-Al2O3 supported monometallic Ni and Rh catalysts at 800 ºC. Though abundant carbon deposits can accumulate on the pure CeO2-Al2O3 support due to fuel thermal cracking, the metal addition substantially mitigated the carbon deposition in the sulfur-free reaction. The presence of sulfur increased the carbon deposition on both catalysts, which has a much more significant impact for the Ni catalyst. Our results indicate that (I) the presence of sulfur can suppress carbon gasification and promote the formation of graphitic carbon on reforming catalysts, and (II) the Rh catalyst possesses stronger capability to maintain carbon gasification activity than the Ni catalyst in the presence of sulfur.

  5. Lunar Soil Erosion Physics for Landing Rockets on the Moon

    NASA Technical Reports Server (NTRS)

    Clegg, Ryan N.; Metzger, Philip T.; Huff, Stephen; Roberson, Luke B.

    2008-01-01

    To develop a lunar outpost, we must understand the blowing of soil during launch and landing of the new Altair Lander. For example, the Apollo 12 Lunar Module landed approximately 165 meters from the deactivated Surveyor Ill spacecraft, scouring its surfaces and creating numerous tiny pits. Based on simulations and video analysis from the Apollo missions, blowing lunar soil particles have velocities up to 2000 m/s at low ejection angles relative to the horizon, reach an apogee higher than the orbiting Command and Service Module, and travel nearly the circumference of the Moon [1-3]. The low ejection angle and high velocity are concerns for the lunar outpost.

  6. Brain activation during human male ejaculation revisited.

    PubMed

    Georgiadis, Janniko R; Reinders, A A T Simone; Van der Graaf, Ferdinand H C E; Paans, Anne M J; Kortekaas, Rudie

    2007-04-16

    In a prior [O]-H2O positron emission tomographic study we reported brain regions involved in human male ejaculation. Here, we used another, more recently acquired data set to evaluate the methodological approach of this previous study, and discovered that part of the reported activation pattern was not related to ejaculation. With a new analysis of these ejaculation data, we now demonstrate ejaculation-related activations in the deep cerebellar nuclei (dentate nucleus), anterior vermis, pons, and ventrolateral thalamus, and, most importantly, ejaculation-related deactivations throughout the prefrontal cortex. This revision offers a new and more accurate insight into the brain regions involved in human male ejaculation.

  7. Bioluminescent Reaction by Immobilized Luciferase

    NASA Astrophysics Data System (ADS)

    Tanaka, Ryuta; Takahama, Eriko; Iinuma, Masataka; Ikeda, Takeshi; Kadoya, Yutaka; Kuroda, Akio

    We have investigated an effect of immobilization of luciferase molecules at the optical fiber end on a bioluminescent reaction. The time dependence of measured count rates of emitted photons has been analyzed by fitting with numerical solution of differential equations including the effect of the product-inhibitor and the deactivation of the luciferase. Through the analysis, we have successfully extracted kinetic constants such as, reaction rate, number of active luciferase molecules, etc. Ratio of active molecules to total luciferase molecules in immobilization was one order of magnitude lower than that in solution. The reaction rate of the bioluminescent process was also different from the one of free luciferase in solution.

  8. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This messaging and high level status is the only data generated for operator display. To enhance situational awareness of the operator, the Web-based Procedure Display (WebPD) provides a novel approach to the issues of procedure display and execution tracking. For this demonstration, the procedure was initiated and monitored from the ground. As the Timeliner sequences executed, their high level execution status was transmitted to ground, for WebPD consumption.

  9. Mechanistic Study of CO 2 Photoreduction with H 2 O on Cu/TiO 2 Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianjun; Zhao, Cunyu; Miller, Jeffrey T.

    2016-12-15

    Cu/TiO2 composites are extensively studied for photocatalytic reduction of CO2 with H2O, but the roles of Cu species (Cu2+, Cu+, or Cu0) is not well understood, and the photocatalyst deactivation mechanism is seldom addressed. In this work, we have employed in situ techniques, i.e., X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), to explore the surface chemistry of Cu/TiO2 composites under CO2 photoreduction environment. We found that the air-calcined Cu/TiO2 (Cu/Ti(air)) surface was dominated by isolated Cu2+ sites, while the one post-treated with H2 at 200 °C (Cu/Ti(H2)) was rich in Cu+ and oxygen vacancy (VO).more » Cu/Ti(H2) showed more than 50% higher activity than Cu/Ti(air) for CO2 photoreduction to CO, mainly resulting from the synergy of Cu+, OH groups, and VO that could scavenge holes to enhance electron transfer, provide CO2 adsorption sites, and facilitate the activation and conversion of the adsorbed CO2 (HCO3– and CO2–). Meanwhile, the consumption of OH groups and Cu+ active sites by holes may result in the deactivation of Cu/Ti(H2). Moreover, in situ XAS results directly demonstrated that (1) the photoinduced oxidation of Cu+ to Cu2+ changed the surrounding environments of Cu by increasing the coordination number; (2) thermal treatment by H2 could not fully recover the OH and Cu+ sites to their original states; and (3) adding hole scavengers (e.g., methanol) maintained or even increased the more active Cu+ species from the photoreduction of Cu2+, thus leading to a higher and more stable CO2 reduction activity. Findings in this work and the application of in situ XAS technique will help develop a more efficient photocatalyst for CO2 photoreduction and advance the understanding of the reaction mechanism and surface chemistry.« less

  10. Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases

    PubMed Central

    Barbatti, Mario; Aquino, Adélia J. A.; Szymczak, Jaroslaw J.; Nachtigallová, Dana; Hobza, Pavel; Lischka, Hans

    2010-01-01

    A comprehensive effort in photodynamical ab initio simulations of the ultrafast deactivation pathways for all five nucleobases adenine, guanine, cytosine, thymine, and uracil is reported. These simulations are based on a complete nonadiabatic surface-hopping approach using extended multiconfigurational wave functions. Even though all five nucleobases share the basic internal conversion mechanisms, the calculations show a distinct grouping into purine and pyrimidine bases as concerns the complexity of the photodynamics. The purine bases adenine and guanine represent the most simple photodeactivation mechanism with the dynamics leading along a diabatic ππ* path directly and without barrier to the conical intersection seam with the ground state. In the case of the pyrimidine bases, the dynamics starts off in much flatter regions of the ππ* energy surface due to coupling of several states. This fact prohibits a clear formation of a single reaction path. Thus, the photodynamics of the pyrimidine bases is much richer and includes also nπ* states with varying importance, depending on the actual nucleobase considered. Trapping in local minima may occur and, therefore, the deactivation time to the ground state is also much longer in these cases. Implications of these findings are discussed (i) for identifying structural possibilities where singlet/triplet transitions can occur because of sufficient retention time during the singlet dynamics and (ii) concerning the flexibility of finding other deactivation pathways in substituted pyrimidines serving as candidates for alternative nucleobases. PMID:21115845

  11. New insights into differential baroreflex control of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Fadel, P. J.; Stromstad, M.; Wray, D. W.; Smith, S. A.; Raven, P. B.; Secher, N. H.

    2003-01-01

    Recent data indicate that bilateral carotid sinus denervation in patients results in a chronic impairment in the rapid reflex control of blood pressure during orthostasis. These findings are inconsistent with previous human experimental investigations indicating a minimal role for the carotid baroreceptor-cardiac reflex in blood pressure control. Therefore, we reexamined arterial baroreflex [carotid (CBR) and aortic baroreflex (ABR)] control of heart rate (HR) using newly developed methodologies. In 10 healthy men, 27 +/- 1 yr old, an abrupt decrease in mean arterial pressure (MAP) was induced nonpharmacologically by releasing a unilateral arterial thigh cuff (300 Torr) after 9 min of resting leg ischemia under two conditions: 1) ABR and CBR deactivation (control) and 2) ABR deactivation. Under control conditions, cuff release decreased MAP by 13 +/- 1 mmHg, whereas HR increased 11 +/- 2 beats/min. During ABR deactivation, neck suction was gradually applied to maintain carotid sinus transmural pressure during the initial 20 s after cuff release (suction). This attenuated the increase in HR (6 +/- 1 beats/min) and caused a greater decrease in MAP (18 +/- 2 mmHg, P < 0.05). Furthermore, estimated cardiac baroreflex responsiveness (DeltaHR/DeltaMAP) was significantly reduced during suction compared with control conditions. These findings suggest that the carotid baroreceptors contribute more importantly to the reflex control of HR than previously reported in healthy individuals.

  12. Sex-specific neural activity when resolving cognitive interference in individuals with or without prior internalizing disorders.

    PubMed

    Wang, Zhishun; Jacobs, Rachel H; Marsh, Rachel; Horga, Guillermo; Qiao, Jianping; Warner, Virginia; Weissman, Myrna M; Peterson, Bradley S

    2016-03-30

    The processing of cognitive interference is a self-regulatory capacity that is impaired in persons with internalizing disorders. This investigation was to assess sex differences in the neural correlates of cognitive interference in individuals with and without an illness history of an internalizing disorder. We compared functional magnetic resonance imaging blood-oxygenation-level-dependent responses in both males (n=63) and females (n=80) with and without this illness history during performance of the Simon task. Females deactivated superior frontal gyrus, inferior parietal lobe, and posterior cingulate cortex to a greater extent than males. Females with a prior history of internalizing disorder also deactivated these regions more compared to males with that history, and they additionally demonstrated greater activation of right inferior frontal gyrus. These group differences were represented in a significant sex-by-illness interaction in these regions. These deactivated regions compose a task-negative or default mode network, whereas the inferior frontal gyrus usually activates when performing an attention-demanding task and is a key component of a task-positive network. Our findings suggest that a prior history of internalizing disorders disproportionately influences functioning of the default mode network and is associated with an accompanying activation of the task-positive network in females during the resolution of cognitive interference. Copyright © 2016. Published by Elsevier Ireland Ltd.

  13. Identification of the active components in Bone Marrow Soup: a mitigator against irradiation-injury to salivary glands

    PubMed Central

    Fang, Dongdong; Hu, Shen; Liu, Younan; Quan, Vu-Hung; Seuntjens, Jan; Tran, Simon D.

    2015-01-01

    In separate studies, an extract of soluble intracellular contents from whole bone marrow cells, named “Bone Marrow (BM) Soup”, was reported to either improve cardiac or salivary functions post-myocardial infarction or irradiation (IR), respectively. However, the active components in BM Soup are unknown. To demonstrate that proteins were the active ingredients, we devised a method using proteinase K followed by heating to deactivate proteins and for safe injections into mice. BM Soup and “deactivated BM Soup” were injected into mice that had their salivary glands injured with 15Gy IR. Control mice received either injections of saline or were not IR. Results at week 8 post-IR showed the ‘deactivated BM Soup’ was no better than injections of saline, while injections of native BM Soup restored saliva flow, protected salivary cells and blood vessels from IR-damage. Protein arrays detected several angiogenesis-related factors (CD26, FGF, HGF, MMP-8, MMP-9, OPN, PF4, SDF-1) and cytokines (IL-1ra, IL-16) in BM Soup. In conclusion, the native proteins (but not the nucleic acids, lipids or carbohydrates) were the therapeutic ingredients in BM Soup for functional salivary restoration following IR. This molecular therapy approach has clinical potential because it is theoretically less tumorigenic and immunogenic than cell therapies. PMID:26526154

  14. Implementing heterogeneous catalytic dechlorination technology for remediating TCE-contaminated groundwater.

    PubMed

    Davie, Matthew G; Cheng, Hefa; Hopkins, Gary D; Lebron, Carmen A; Reinhard, Martin

    2008-12-01

    To transition catalytic reductive dechlorination (CRD) into practice, it is necessary to demonstrate the effectiveness, robustness, and economic competitiveness of CRD-based treatment systems. A CRD system scaled up from previous laboratory studies was tested for remediating groundwater contaminated with 500-1200 microg L(-1) trichloroethylene (TCE) at Edwards Air Force Base (AFB), California. Groundwater was pumped from a treatment well at 2 gal min(-1), amended with hydrogen to 0.35 mg L(-1) and contacted for 2.3 min with 20 kg eggshell-coated Pd on alumina beads (2% Pd by wt) packed in a fixed-bed reactor, and then returned to the aquifer. Operation was continuous for 23 h followed a 1 h regeneration cycle. After regeneration, TCE removal was 99.8% for 4 to 9 h and then declined to 98.3% due to catalyst deactivation. The observed catalyst deactivation was tentatively attributed to formation of sulfidic compounds; modeling of catalyst deactivation kinetics suggests the presence of sulfidic species equivalent to 2-4 mg L(-1) hydrogen sulfide in the reactor water. Over the more than 100 day demonstration period, TCE concentrations in the treated groundwater were reduced by >99% to an average concentration of 4.1 microg L(-1). The results demonstrate CRD as a viable treatment alternative technically and economically competitive with activated carbon adsorption and other conventional physicochemical treatmenttechnologies.

  15. Nattokinase-promoted tissue plasminogen activator release from human cells.

    PubMed

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  16. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis.

    PubMed

    Zhou, Jun; Lv, Siying; Zhang, Dan; Xia, Fei; Hu, Wenhao

    2017-03-03

    It has been long recognized that, in chemical glycosylation, the anomeric reactivity of glycosyl donor can be influenced greatly by protecting groups. As opposed to the effects of protecting groups, we report herein a finding on how O-glycosyl substituent can affect the reactivity of oligosaccharyl donor, which in turn should have impact on convergent assembly of oligosaccharide. During our synthetic efforts toward Pichia holstii oligomannoside, a type of α-1,3-linked dimannosyl thioglycosides was found to exhibit unexpected low reactivity toward the activation of NIS/TMSOTf. This observation prompted us to perform a series of comparative reactivity studies, which attributed the donor deactivation to the presence of 3-O-glycosyl substituent, by comparison with O-acetyl group and O-glycosidic linkages at C-4/C-6 positions. To rationalize the unusual phenomenon, we hypothesize that O-glycosyl moiety at C-3 could destabilize the oxocarbenium ion intermediate by additionally increasing the O2-C2-C3-O3 torsional strain, which was further supported by DFT calculation of the hypothetical 4 H 3 -like oxocarbeniums. The observed deactivating influence provides a basis for estimation of donor reactivity and logical selection of synthetic strategy in oligosaccharide synthesis. Following this finding, we opted to use an iterative strategy for the synthesis of targeted pentamannoside 1 by using monomeric thiomannosides that ensured sufficient reactivity.

  17. ELONGATED UPPERMOST INTERNODE Encodes a Cytochrome P450 Monooxygenase That Epoxidizes Gibberellins in a Novel Deactivation Reaction in RiceW⃞

    PubMed Central

    Zhu, Yongyou; Nomura, Takahito; Xu, Yonghan; Zhang, Yingying; Peng, Yu; Mao, Bizeng; Hanada, Atsushi; Zhou, Haicheng; Wang, Renxiao; Li, Peijin; Zhu, Xudong; Mander, Lewis N.; Kamiya, Yuji; Yamaguchi, Shinjiro; He, Zuhua

    2006-01-01

    The recessive tall rice (Oryza sativa) mutant elongated uppermost internode (eui) is morphologically normal until its final internode elongates drastically at the heading stage. The stage-specific developmental effect of the eui mutation has been used in the breeding of hybrid rice to improve the performance of heading in male sterile cultivars. We found that the eui mutant accumulated exceptionally large amounts of biologically active gibberellins (GAs) in the uppermost internode. Map-based cloning revealed that the Eui gene encodes a previously uncharacterized cytochrome P450 monooxygenase, CYP714D1. Using heterologous expression in yeast, we found that EUI catalyzed 16α,17-epoxidation of non-13-hydroxylated GAs. Consistent with the tall and dwarfed phenotypes of the eui mutant and Eui-overexpressing transgenic plants, respectively, 16α,17-epoxidation reduced the biological activity of GA4 in rice, demonstrating that EUI functions as a GA-deactivating enzyme. Expression of Eui appeared tightly regulated during plant development, in agreement with the stage-specific eui phenotypes. These results indicate the existence of an unrecognized pathway for GA deactivation by EUI during the growth of wild-type internodes. The identification of Eui as a GA catabolism gene provides additional evidence that the GA metabolism pathway is a useful target for increasing the agronomic value of crops. PMID:16399803

  18. Bayesian network analysis revealed the connectivity difference of the default mode network from the resting-state to task-state

    PubMed Central

    Wu, Xia; Yu, Xinyu; Yao, Li; Li, Rui

    2014-01-01

    Functional magnetic resonance imaging (fMRI) studies have converged to reveal the default mode network (DMN), a constellation of regions that display co-activation during resting-state but co-deactivation during attention-demanding tasks in the brain. Here, we employed a Bayesian network (BN) analysis method to construct a directed effective connectivity model of the DMN and compared the organizational architecture and interregional directed connections under both resting-state and task-state. The analysis results indicated that the DMN was consistently organized into two closely interacting subsystems in both resting-state and task-state. The directed connections between DMN regions, however, changed significantly from the resting-state to task-state condition. The results suggest that the DMN intrinsically maintains a relatively stable structure whether at rest or performing tasks but has different information processing mechanisms under varied states. PMID:25309414

  19. Effect of intramolecular charge transfer on fluorescence and singlet oxygen production of phthalocyanine analogues.

    PubMed

    Vachova, Lenka; Novakova, Veronika; Kopecky, Kamil; Miletin, Miroslav; Zimcik, Petr

    2012-10-14

    Intramolecular charge transfer (ICT) was studied on a series of magnesium, metal-free and zinc complexes of unsymmetrical tetrapyrazinoporphyrazines and tribenzopyrazinoporphyrazines bearing two dialkylamino substituents (donors) and six alkylsulfanyl or aryloxy substituents (non-donors). The dialkylamino substituents were responsible for ICT that deactivated excited states and led to considerable decrease of fluorescence and singlet oxygen quantum yields. Photophysical and photochemical properties were compared to corresponding macrocycles that do not bear any donor centers. The data showed high feasibility of ICT in the tetrapyrazinoporphyrazine macrocycle and significantly lower efficiency of this deactivation process in the tribenzopyrazinoporphyrazine type molecules. Considerable effect of non-donor peripheral substituents on ICT was also described. The results imply that tetrapyrazinoporphyrazines may be more suitable for development of new molecules investigated in applications based on ICT.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stair, Peter C.

    The research took advantage of our capabilities to perform in-situ and operando Raman spectroscopy on complex systems along with our developing expertise in the synthesis of uniform, supported metal oxide materials to investigate relationships between the catalytically active oxide composition, atomic structure, and support and the corresponding chemical and catalytic properties. The project was organized into two efforts: 1) Synthesis of novel catalyst materials by atomic layer deposition (ALD). 2) Spectroscopic and chemical investigations of coke formation and catalyst deactivation. ALD synthesis was combined with conventional physical characterization, Raman spectroscopy, and probe molecule chemisorption to study the effect of supportedmore » metal oxide composition and atomic structure on acid-base and catalytic properties. Operando Raman spectroscopy studies of olefin polymerization leading to coke formation and catalyst deactivation clarified the mechanism of coke formation by acid catalysts.« less

  1. Bacterial decontamination using ambient pressure nonthermal discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birmingham, J.G.; Hammerstrom, D.J.

    2000-02-01

    Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemicalmore » and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.« less

  2. Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere.

    PubMed

    Yoshida, Kenta; Bright, Alexander N; Ward, Michael R; Lari, Leonardo; Zhang, Xudong; Hiroyama, Tomoki; Boyes, Edward D; Gai, Pratibha L

    2014-10-24

    The gas injection line of the latest spherical aberration-corrected environmental transmission electron microscope has been modified for achieving real-time/atomic-scale observations in moisturised gas atmospheres for the first time. The newly developed Wet-TEM system is applied to platinum carbon electrode catalysts to investigate the effect of water molecules on the platinum/carbon interface during deactivation processes such as sintering and corrosion. Dynamic in situ movies obtained in dry and 24% moisturised nitrogen environments visualize the rapid rotation, migration and agglomeration of platinum nanoparticles due to the physical adsorption of water and the hydroxylation of the carbon surface. The origin of the long-interconnected aggregation of platinum nanoparticles was discovered to be a major deactivation process in addition to conventional carbon corrosion.

  3. Pd-PEPPSI-IPent-SiO2 : A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow.

    PubMed

    Price, Gregory A; Hassan, Abbas; Chandrasoma, Nalin; Bogdan, Andrew R; Djuric, Stevan W; Organ, Michael G

    2017-10-16

    A silica-supported precatalyst, Pd-PEPPSI-IPent-SiO 2 , has been prepared and evaluated for its proficiency in the Negishi cross-coupling of hindered and electronically deactivated coupling partners. The precatalyst Pd-PEPPSI-IPent loaded onto packed bed columns shows high catalytic activity for the room-temperature coupling of deactivated/hindered biaryl partners. Also for the first time, the flowed Csp 3 -Csp 2 coupling of secondary alkylzinc reagents to (hetero)aromatics has been achieved with high selectivity with Pd-PEPPSI-IPent-SiO 2 . These couplings required residence times as short as 3 minutes to effect completion of these challenging transformations with excellent selectivity for the nonrearranged product. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Final Report of “Collaborative research: Fundamental science of low temperature plasma-biological material interactions” (Award# DE-SC0005105)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David

    2014-09-24

    Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasmamore » (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.« less

  5. A light hydrocarbon fuel processor producing high-purity hydrogen

    NASA Astrophysics Data System (ADS)

    Löffler, Daniel G.; Taylor, Kyle; Mason, Dylan

    This paper discusses the design process and presents performance data for a dual fuel (natural gas and LPG) fuel processor for PEM fuel cells delivering between 2 and 8 kW electric power in stationary applications. The fuel processor resulted from a series of design compromises made to address different design constraints. First, the product quality was selected; then, the unit operations needed to achieve that product quality were chosen from the pool of available technologies. Next, the specific equipment needed for each unit operation was selected. Finally, the unit operations were thermally integrated to achieve high thermal efficiency. Early in the design process, it was decided that the fuel processor would deliver high-purity hydrogen. Hydrogen can be separated from other gases by pressure-driven processes based on either selective adsorption or permeation. The pressure requirement made steam reforming (SR) the preferred reforming technology because it does not require compression of combustion air; therefore, steam reforming is more efficient in a high-pressure fuel processor than alternative technologies like autothermal reforming (ATR) or partial oxidation (POX), where the combustion occurs at the pressure of the process stream. A low-temperature pre-reformer reactor is needed upstream of a steam reformer to suppress coke formation; yet, low temperatures facilitate the formation of metal sulfides that deactivate the catalyst. For this reason, a desulfurization unit is needed upstream of the pre-reformer. Hydrogen separation was implemented using a palladium alloy membrane. Packed beds were chosen for the pre-reformer and reformer reactors primarily because of their low cost, relatively simple operation and low maintenance. Commercial, off-the-shelf balance of plant (BOP) components (pumps, valves, and heat exchangers) were used to integrate the unit operations. The fuel processor delivers up to 100 slm hydrogen >99.9% pure with <1 ppm CO, <3 ppm CO 2. The thermal efficiency is better than 67% operating at full load. This fuel processor has been integrated with a 5-kW fuel cell producing electricity and hot water.

  6. Thermal denaturation: is solid-state fermentation really a good technology for the production of enzymes?

    PubMed

    Muller dos Santos, Marcelo; Souza da Rosa, Alexandre; Dal'Boit, Silvia; Mitchell, David A; Krieger, Nadia

    2004-07-01

    The potential for thermal denaturation to cause enzyme losses during solid-state fermentation processes for the production of enzymes was examined, using the protease of Penicillium fellutanum as a model system. The frequency factor and activation energies for the first-order denaturation of this enzyme were determined as 3.447 x 10(59) h(-1) and 364,070 Jmol(-1), respectively. These values were incorporated into a mathematical model of enzyme deactivation, which was used to investigate the consequences of subjecting this protease to temporal temperature profiles reported in the literature for mid-height in a 34 cm high packed-bed bioreactor of 150 mm diameter. In this literature source, temperature profiles were measured for 5, 15 and 25 liters per minute of air and enzyme activities were measured as a function of time. The enzyme activity profiles predicted by the model were distributed similarly, one relative to the other, as had been found in the experimental study, with substantial amounts of denaturation being predicted when the substrate temperature exceeded 40 degrees C, which occurred at the lower two airflow rates. A mathematical model of a well-mixed bioreactor was used to explore the difficulties that would be faced at large scale. It suggests that even with airflows as high as one volume per volume per minute, up to 85% of the enzyme produced by the microorganism can be denatured by the end of the fermentation. This work highlights the extra care that must be taken in scaling up solid-state fermentation processes for the production of thermolabile products. Copyright 2003 Elsevier Ltd.

  7. Identification of ectodomain regions contributing to gating, deactivation, and resensitization of purinergic P2X receptors.

    PubMed

    Zemkova, Hana; He, Mu-Lan; Koshimizu, Taka-aki; Stojilkovic, Stanko S

    2004-08-04

    The P2X receptors (P2XRs) are a family of ligand-gated channels activated by extracellular ATP through a sequence of conformational transitions between closed, open, and desensitized states. In this study, we examined the dependence of the activity of P2XRs on ectodomain structure and agonist potency. Experiments were done in human embryonic kidney 293 cells expressing rat P2X2aR, P2X2bR, and P2X3R, and chimeras having the V60-R180 or V60-F301 ectodomain sequences of P2X3R instead of the I66-H192 or I66-Y310 sequences of P2X2aR and P2X2bR. Chimeric P2X2a/V60-F301X3R and P2X2b/V60-F301X3R inherited the P2X3R ligand-selective profile, whereas the potency of agonists for P2X2a/V60-R180X3R was in between those observed at parental receptors. Furthermore, P2X2a/V60-F301X3R and P2X2a/V60-R180X3R desensitized in a P2X2aR-specific manner, and P2X2b/V60-F301X3R desensitized with rates comparable with those of P2X2bR. In striking contrast to parental receptors, the rates of decay in P2X2a/V60-F301X3R and P2X2b/V60-F301X3R currents after agonist withdrawal were 15- to 200-fold slower. For these chimeras, the decays in currents were not dependent on duration of stimuli and reflected both continuous desensitization and deactivation of receptors. Also, participation of deactivation in closure of channels inversely correlated with potency of agonists to activate receptors. The delay in deactivation was practically abolished in P2X2a/V60-R180X3R-expressing cells. However, the recovery from desensitization of P2X2a/V60-F301X3R and P2X2a/V60-R180X3R was similar and substantially delayed compared with that of parental receptors. These results indicate that both ectodomain halves participate in gating, but that the C and N halves influence the stability of open and desensitized conformation states, respectively, which in turn reflects on rates of receptor deactivation and resensitization.

  8. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence.

    PubMed

    Vidal, Ana C; Banca, Paula; Pascoal, Augusto G; Cordeiro, Gustavo; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel

    2018-01-01

    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used a functional magnetic resonance imaging block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction (n = 20, with balanced left/right lesion sites). Results Analysis of 10 right hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right hemispheric stroke. Left hemispheric stroke was, in general, characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts is novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.

  9. Bilateral versus ipsilesional cortico-subcortical activity patterns in stroke show hemispheric dependence.

    PubMed

    Vidal, A Cristina; Banca, Paula; Pascoal, Augusto G; Santo, Gustavo C; Sargento-Freitas, João; Gouveia, Ana; Castelo-Branco, Miguel

    2017-01-01

    Background Understanding of interhemispheric interactions in stroke patients during motor control is an important clinical neuroscience quest that may provide important clues for neurorehabilitation. In stroke patients, bilateral overactivation in both hemispheres has been interpreted as a poor prognostic indicator of functional recovery. In contrast, ipsilesional patterns have been linked with better motor outcomes. Aim We investigated the pathophysiology of hemispheric interactions during limb movement without and with contralateral restraint, to mimic the effects of constraint-induced movement therapy. We used neuroimaging to probe brain activity with such a movement-dependent interhemispheric modulation paradigm. Methods We used an fMRI block design during which the plegic/paretic upper limb was recruited/mobilized to perform unilateral arm elevation, as a function of presence versus absence of contralateral limb restriction ( n = 20, with balanced left/right lesion sites). Results Analysis of 10 right-hemispheric stroke participants yielded bilateral sensorimotor cortex activation in all movement phases in contrast with the unilateral dominance seen in the 10 left-hemispheric stroke participants. Superimposition of contralateral restriction led to a prominent shift from activation to deactivation response patterns, in particular in cortical and basal ganglia motor areas in right-hemispheric stroke. Left-hemispheric stroke was in general characterized by reduced activation patterns, even in the absence of restriction, which induced additional cortical silencing. Conclusion The observed hemispheric-dependent activation/deactivation shifts are novel and these pathophysiological observations suggest short-term neuroplasticity that may be useful for hemisphere-tailored neurorehabilitation.

  10. Static and Dynamic Characteristics of Cerebral Blood Flow During the Resting State in Schizophrenia

    PubMed Central

    Kindler, Jochen; Jann, Kay; Homan, Philipp; Hauf, Martinus; Walther, Sebastian; Strik, Werner; Dierks, Thomas; Hubl, Daniela

    2015-01-01

    Background: The cerebral network that is active during rest and is deactivated during goal-oriented activity is called the default mode network (DMN). It appears to be involved in self-referential mental activity. Atypical functional connectivity in the DMN has been observed in schizophrenia. One hypothesis suggests that pathologically increased DMN connectivity in schizophrenia is linked with a main symptom of psychosis, namely, misattribution of thoughts. Methods: A resting-state pseudocontinuous arterial spin labeling (ASL) study was conducted to measure absolute cerebral blood flow (CBF) in 34 schizophrenia patients and 27 healthy controls. Using independent component analysis (ICA), the DMN was extracted from ASL data. Mean CBF and DMN connectivity were compared between groups using a 2-sample t test. Results: Schizophrenia patients showed decreased mean CBF in the frontal and temporal regions (P < .001). ICA demonstrated significantly increased DMN connectivity in the precuneus (x/y/z = −16/−64/38) in patients than in controls (P < .001). CBF was not elevated in the respective regions. DMN connectivity in the precuneus was significantly correlated with the Positive and Negative Syndrome Scale scores (P < .01). Conclusions: In schizophrenia patients, the posterior hub—which is considered the strongest part of the DMN—showed increased DMN connectivity. We hypothesize that this increase hinders the deactivation of the DMN and, thus, the translation of cognitive processes from an internal to an external focus. This might explain symptoms related to defective self-monitoring, such as auditory verbal hallucinations or ego disturbances. PMID:24327756

  11. Structural and Functional Analysis of Two New Positive Allosteric Modulators of GluA2 Desensitization and Deactivation

    PubMed Central

    Timm, David E.; Benveniste, Morris; Weeks, Autumn M.; Nisenbaum, Eric S.

    2011-01-01

    At the dimer interface of the extracellular ligand-binding domain of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors a hydrophilic pocket is formed that is known to interact with two classes of positive allosteric modulators, represented by cyclothiazide and the ampakine 2H,3H,6aH-pyrrolidino(2,1–3′,2′)1,3-oxazino(6′,5′-5,4)benzo(e)1,4-dioxan-10-one (CX614). Here, we present structural and functional data on two new positive allosteric modulators of AMPA receptors, phenyl-1,4-bis-alkylsulfonamide (CMPDA) and phenyl-1,4-bis-carboxythiophene (CMPDB). Crystallographic data show that these compounds bind within the modulator-binding pocket and that substituents of each compound overlap with distinct moieties of cyclothiazide and CX614. The goals of the present study were to determine 1) the degree of modulation by CMPDA and CMPDB of AMPA receptor deactivation and desensitization; 2) whether these compounds are splice isoform-selective; and 3) whether predictions of mechanism of action could be inferred by comparing molecular interactions between the ligand-binding domain and each compound with those of cyclothiazide and CX614. CMPDB was found to be more isoform-selective than would be predicted from initial binding assays. It is noteworthy that these new compounds are both more potent and more effective and may be more clinically relevant than the AMPA receptor modulators described previously. PMID:21543522

  12. The role of left prefrontal cortex in language and memory

    PubMed Central

    Gabrieli, John D. E.; Poldrack, Russell A.; Desmond, John E.

    1998-01-01

    This article reviews attempts to characterize the mental operations mediated by left inferior prefrontal cortex, especially the anterior and inferior portion of the gyrus, with the functional neuroimaging techniques of positron emission tomography and functional magnetic resonance imaging. Activations in this region occur during semantic, relative to nonsemantic, tasks for the generation of words to semantic cues or the classification of words or pictures into semantic categories. This activation appears in the right prefrontal cortex of people known to be atypically right-hemisphere dominant for language. In this region, activations are associated with meaningful encoding that leads to superior explicit memory for stimuli and deactivations with implicit semantic memory (repetition priming) for words and pictures. New findings are reported showing that patients with global amnesia show deactivations in the same region associated with repetition priming, that activation in this region reflects selection of a response from among numerous relative to few alternatives, and that activations in a portion of this region are associated specifically with semantic relative to phonological processing. It is hypothesized that activations in left inferior prefrontal cortex reflect a domain-specific semantic working memory capacity that is invoked more for semantic than nonsemantic analyses regardless of stimulus modality, more for initial than for repeated semantic analysis of a word or picture, more when a response must be selected from among many than few legitimate alternatives, and that yields superior later explicit memory for experiences. PMID:9448258

  13. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JOHNSTON GA

    2008-01-15

    Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individual waste packages, greatly improving the efficiency of the cleanup operation. The cleanup and stabilization of the 241-2 Liquid Effluent Treatment Facility reduced radiological risks to the environment and Hanford site workers. It was recognized as a success by regulatory agencies, the media, the DOE-client, and stakeholders. The 241-Z D&D Project demonstrated management excellence in adapting to significant changes in project direction, fostered a safety culture that amassed impressive results on this high-hazard job, maintained excellent communications with the client and stakeholders, and developed and implemented unique cleanup techniques.« less

  14. Luminescence Decay Times and Bimolecular Quenching: An Ultrafast Kinetics Experiment

    ERIC Educational Resources Information Center

    Demas, J. N.

    1976-01-01

    Describes the theory, apparatus, and procedure for an experiment that measures the bimolecular quenching constant for the deactivation of an excited ruthenium ion complex using dissolved oxygen. (MLH)

  15. Altered cerebral activity associated with topiramate and its withdrawal in patients with epilepsy with language impairment: An fMRI study using the verb generation task.

    PubMed

    Tang, Yingying; Xia, Wei; Yu, Xiaofeng; Zhou, Bo; Wu, Xintong; Lui, Su; Luo, Chunyan; Huang, Xiaoqi; Ouyang, Luo; Chen, Qin; Gong, Qiyong; Zhou, Dong

    2016-06-01

    Topiramate (TPM) is well recognized for its negative effects on language in healthy volunteers and patients with epilepsy. The aim of this study was to investigate the brain activation and deactivation patterns in TPM-treated patients with epilepsy with language impairment and their dynamic alteration during TPM withdrawal using functional magnetic resonance imaging (fMRI) with the verb generation task (VGT). Twelve patients with epilepsy experiencing subjective language disfluency after TPM add-on treatment (TPM-on) and thirty sex- and age-matched healthy controls (HCs) were recruited. All subjects received a battery of neuropsychological tests and an fMRI scan with the VGT. Withdrawal of TPM was attempted in all patients. Only six patients reached complete withdrawal without seizure relapses (TPM-off), and these patients underwent a reassessment of neuropsychological and neuroimaging tests. The neuropsychological tests demonstrated objective language impairments in TPM-on patients. Compared with the HCs, the bilateral medial prefrontal cortex and the posterior midline and lateral parts of the default mode network (DMN) (including the bilateral posterior cingulate cortex (PCC), the right medial prefrontal cortex, the right angular gyrus, the right inferior temporal gyrus, and the bilateral supramarginal gyrus) in TPM-on patients failed to deactivate during the VGT. Their task-induced activation patterns were largely similar to those of the HCs. After TPM withdrawal, partial improvement of both task-induced deactivation of the DMN (the left parahippocampal gyrus and the bilateral PCC) and task-related activation of the language network (the right middle frontal gyrus and the left superior occipital gyrus) was identified along with partial improvement of neuropsychological tests. Task-induced deactivation is a more sensitive neuroimaging biomarker for the impaired language performance in patients administered TPM than task-induced activation. Disruption and reorganization of the balance between the DMN and the cortical language networks are found along with reversible TPM-related language impairment. These results may suggest an underlying brain mechanism by which TPM affects cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Photon hormesis deactivates alpha-particle induced bystander effects between zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ng, C. Y. P.; Cheng, S. H.; Yu, K. N.

    2017-04-01

    In the present work, we studied the effects of low-dose X-ray photons on the alpha-particle induced bystander effects between embryos of the zebrafish, Danio rerio. The effects on the naive whole embryos were studied through quantification of apoptotic signals (amounts of cells undergoing apoptosis) at 24 h post fertilization (hpf) using vital dye acridine orange staining, followed by counting the stained cells under a fluorescent microscope. We report data showing that embryos at 5 hpf subjected to a 4.4 mGy alpha-particle irradiation could release a stress signal into the medium, which could induce bystander effect in partnered naive embryos sharing the same medium. We also report that the bystander effect was deactivated when the irradiated embryos were subjected to a concomitant irradiation of 10 or 14 mGy of X-rays, but no such deactivation was achieved if the concomitant X-ray dose dropped to 2.5 or 5 mGy. In the present study, the significant drop in the amount of apoptotic signals on the embryos having received 4.4 mGy alpha particles together X-rays irradiation from 2.5 or 5 mGy to 10 or 14 mGy, together with the deactivation of RIBE with concomitant irradiation of 10 or 14 mGy of X-rays supported the participation of photon hormesis with an onset dose between 5 and 10 mGy, which might lead to removal of aberrant cells through early apoptosis or induction of high-fidelity DNA repair. As we found that photons and alpha particles could have opposite biological effects when these were simultaneously irradiated onto living organisms, these ionizing radiations could be viewed as two different environmental stressors, and the resultant effects could be regarded as multiple stressor effects. The present work presented the first study on a multiple stressor effect which occurred on bystander organisms. In other words, this was a non-targeted multiple stressor effect. The photon hormesis could also explain some failed attempts to observe neutron-induced bystander effects in previous studies, as neutron sources invariably emit neutrons with concomitant gamma-ray photons, which is often referred to as gamma-ray contamination.

  17. Neural correlates of reward processing in healthy siblings of patients with schizophrenia

    PubMed Central

    Hanssen, Esther; van der Velde, Jorien; Gromann, Paula M.; Shergill, Sukhi S.; de Haan, Lieuwe; Bruggeman, Richard; Krabbendam, Lydia; Aleman, André; van Atteveldt, Nienke

    2015-01-01

    Deficits in motivational behavior and psychotic symptoms often observed in schizophrenia (SZ) may be driven by dysfunctional reward processing (RP). RP can be divided in two different stages; reward anticipation and reward consumption. Aberrant processing during reward anticipation seems to be related to SZ. Studies in patients with SZ have found less activation in the ventral striatum (VS) during anticipation of reward, but these findings do not provide information on effect of the genetic load on reward processing. Therefore, this study investigated RP in healthy first-degree relatives of SZ patients. The sample consisted of 94 healthy siblings of SZ patients and 57 healthy controls. Participants completed a classic RP task, the Monetary Incentive Delay task, during functional magnetic resonance imaging (fMRI). As expected, there were no behavioral differences between groups. In contrast to our expectations, we found no differences in any of the anticipatory reward related brain areas (region of interest analyses). Whole-brain analyses did reveal group differences during both reward anticipation and reward consumption; during reward anticipation siblings showed less deactivation in the insula, posterior cingulate cortex (PCC) and medial frontal gyrus (MFG) than controls. During reward consumption siblings showed less deactivation in the PCC and the right MFG compared to controls and activation in contrast to deactivation in controls in the precuneus and the left MFG. Exclusively in siblings, MFG activity correlated positively with subclinical negative symptoms. These regions are typically associated with the default mode network (DMN), which normally shows decreases in activation during task-related cognitive processes. Thus, in contrast to prior literature in patients with SZ, the results do not point to altered brain activity in classical RP brain areas, such as the VS. However, the weaker deactivation found outside the reward-related network in siblings could indicate reduced task-related suppression (i.e., hyperactivation) of the DMN. The presence of DMN hyperactivation during reward anticipation and reward consumption might indicate that siblings of patients with SZ have a higher baseline level of DMN activation and possible abnormal network functioning. PMID:26441601

  18. Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep.

    PubMed

    Guldimann, Kathrin; Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-02-01

    Animal welfare concerns have raised an interest in animal affective states. These states also play an important role in the proximate control of behaviour. Due to their potential to modulate short-term emotional reactions, one specific focus is on long-term affective states, that is, mood. These states can be assessed by using non-verbal cognitive judgement bias paradigms. Here, we conducted a spatial variant of such a test on 24 focal animals that were kept under either unpredictable, stimulus-poor or predictable, stimulus-rich housing conditions to induce differential mood states. Based on functional near-infrared spectroscopy, we measured haemodynamic frontal brain reactions during 10 s in which the sheep could observe the configuration of the cognitive judgement bias trial before indicating their assessment based on the go/no-go reaction. We used (generalised) mixed-effects models to evaluate the data. Sheep from the unpredictable, stimulus-poor housing conditions took longer and were less likely to reach the learning criterion and reacted slightly more optimistically in the cognitive judgement bias test than sheep from the predictable, stimulus-rich housing conditions. A frontal cortical increase in deoxy-haemoglobin [HHb] and a decrease in oxy-haemoglobin [O2Hb] were observed during the visual assessment of the test situation by the sheep, indicating a frontal cortical brain deactivation. This deactivation was more pronounced with the negativity of the test situation, which was reflected by the provenance of the sheep from the unpredictable, stimulus-poor housing conditions, the proximity of the cue to the negatively reinforced cue location, or the absence of a go reaction in the trial. It seems that (1) sheep from the unpredictable, stimulus-poor in comparison to sheep from the predictable, stimulus-rich housing conditions dealt less easily with the test conditions rich in stimuli, that (2) long-term housing conditions seemingly did not influence mood--which may be related to the difficulty of tracking a constant long-term state in the brain--and that (3) visual assessment of an emotional stimulus leads to frontal brain deactivation in sheep, specifically if that stimulus is negative. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven R. Sherman

    Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/ormore » to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium treatment within the EBR-II primary sodium cooling system and related systems.« less

  20. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  1. Comparison of point-of-care-compatible lysis methods for bacteria and viruses.

    PubMed

    Heiniger, Erin K; Buser, Joshua R; Mireles, Lillian; Zhang, Xiaohong; Ladd, Paula D; Lutz, Barry R; Yager, Paul

    2016-09-01

    Nucleic acid sample preparation has been an especially challenging barrier to point-of-care nucleic acid amplification tests in low-resource settings. Here we provide a head-to-head comparison of methods for lysis of, and nucleic acid release from, several pathogenic bacteria and viruses-methods that are adaptable to point-of-care usage in low-resource settings. Digestion with achromopeptidase, a mixture of proteases and peptidoglycan-specific hydrolases, followed by thermal deactivation in a boiling water bath, effectively released amplifiable nucleic acid from Staphylococcus aureus, Bordetella pertussis, respiratory syncytial virus, and influenza virus. Achromopeptidase was functional after dehydration and reconstitution, even after eleven months of dry storage without refrigeration. Mechanical lysis methods proved to be effective against a hard-to-lyse Mycobacterium species, and a miniature bead-mill, the AudioLyse, is shown to be capable of releasing amplifiable DNA and RNA from this species. We conclude that point-of-care-compatible sample preparation methods for nucleic acid tests need not introduce amplification inhibitors, and can provide amplification-ready lysates from a wide range of bacterial and viral pathogens. Copyright © 2016. Published by Elsevier B.V.

  2. Optical and electrochemical characteristics of Ir(III) complexes with metalated 4-(4-bromophenyl)-2-methyl-1,3-thiazole and isocyanide, ethylenediamine, and diethyldithiocarbamate ligands

    NASA Astrophysics Data System (ADS)

    Katlenok, E. A.; Kinzhalov, M. A.; Eremina, A. A.; Balashev, K. P.

    2017-05-01

    The influence of donor-acceptor properties of tert-butyl-, 2.6-dimethylphenyl-, and 4-bromophenyl-isocyanides (BuNC, XylNC, BpNC), ethylenediamine (En), and diethyldithiocarbamate ions (Dtc-) on the 1H and 13C NMR, IR, optical, and electrochemical characteristics of Ir(III) complexes with metalated 4-(4-bromophenyl)-2-methyl-1,3-thiazole is studied. Enhancement of the donor properties of BpNC, XylNC, BuNC, En, and Dtc- ligands leads to a bathochromic shift of metal-to-ligand charge transfer (MLCT) bands and to a decrease in the difference between the one-electron oxidation and reduction potentials of complexes. The bathochromic shift of the low-temperature phosphorescence of complexes in frozen (77 K) solutions with increasing donor properties of BpNC, XylNC, BuNC, En, and Dtc-ligands is caused by a decrease in the admixture of MLCT to the intraligand excited state of {Ir(bptz)2}. Quenching of the phosphorescence of complexes in liquid solutions is attributed to the thermally-induced population of excited d- d* states with subsequent nonradiative deactivation.

  3. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  4. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, Tony J

    2010-09-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotlet, M.; Mudalige, K.; Habuchi, S.

    HcRed is a dimeric intrinsically fluorescent protein with origins in the sea anemone Heteractis crispa. This protein exhibits deep red absorption and emission properties. Using a combination of ensemble and single molecule methods and by varying environmental parameters such as temperature and pH, we found spectroscopic evidence for the presence of two ground state conformers, trans and cis chromophores that are in thermal equilibrium and that follow different excited-state pathways upon exposure to light. The photocycle of HcRed appears to be a combination of both kindling proteins and bright emitting GFP/GFP-like proteins: the trans chromophore undergoes light driven isomerization followedmore » by radiative relaxation with a fluorescence lifetime of 0.5 ns. The cis chromophore exhibits a photocycle similar to bright GFPs and GFP-like proteins such as enhanced GFP, enhanced YFP or DsRed, with radiative relaxation with a fluorescence lifetime of 1.5 ns, singlet-triplet deactivation on a microsecond time scale and solvent controlled protonation/deprotonation in tens of microseconds. Using single molecule spectroscopy, we identify trans and cis conformers at the level of individual moieties and show that it is possible that the two conformers can coexist in a single protein due to the dimeric nature of HcRed.« less

  6. Selective Fragmentation of Biorefinery Corncob Lignin into p-Hydroxycinnamic Esters with a Supported ZnMoO4 Catalyst.

    PubMed

    Wang, Shuizhong; Gao, Wa; Li, Helong; Xiao, Ling-Ping; Sun, Run-Cang; Song, Guoyong

    2018-04-16

    Lignin is the largest renewable resource of bio-aromatics, and catalytic fragmentation of lignin into phenolic monomers is increasingly recognized as an important starting point for lignin valorization. Herein, we reported zinc molybdate (ZnMoO4) supported on MCM-41 can catalyze fragmentation of biorefinery technical lignin, enzymatic mild acidolysis lignin and native lignin derived from corncob, to give lignin oily products containing 15 to 37.8 wt% phenolic monomers, in which the high selectivities towards methyl coumarate 1 and methyl ferulate 2 were obtained (up to 78%). The effects of some key parameters such as the influences of solvent, reaction temperature, time, H2 pressure and catalyst dosage were examined in view of activity and selectivity. The loss of zinc atom in catalyst is appointed as a primary cause of deactivation, and catalytic activity and selectivity can be well-preserved for at least six times by thermal calcination. The high selectivity to compounds 1 and 2 make them easily separated and purified from lignin oily product, thus providing sustainable monomers for preparation of functional polyetheresters and polyesters. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE PAGES

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...

    2017-08-18

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  8. Sulfur-Tolerant Molybdenum Carbide Catalysts Enabling Low-Temperature Stabilization of Fast Pyrolysis Bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin

    Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less

  9. Moesin and myosin phosphatase confine neutrophil orientation in a chemotactic gradient

    PubMed Central

    Liu, Xiaowen; Yang, Tao; Suzuki, Koya; Tsukita, Sachiko; Ishii, Masaru; Zhou, Shuping; Wang, Gang; Cao, Luyang; Qian, Feng; Taylor, Shalina; Oh, Myung-Jin; Levitan, Irena; Ye, Richard D.; Carnegie, Graeme K.; Malik, Asrar B.

    2015-01-01

    Neutrophils respond to invading bacteria by adopting a polarized morphology, migrating in the correct direction, and engulfing the bacteria. How neutrophils establish and precisely orient this polarity toward pathogens remains unclear. Here we report that in resting neutrophils, the ERM (ezrin, radixin, and moesin) protein moesin in its active form (phosphorylated and membrane bound) prevented cell polarization by inhibiting the small GTPases Rac, Rho, and Cdc42. Attractant-induced activation of myosin phosphatase deactivated moesin at the prospective leading edge to break symmetry and establish polarity. Subsequent translocation of moesin to the trailing edge confined the formation of a prominent pseudopod directed toward pathogens and prevented secondary pseudopod formation in other directions. Therefore, both moesin-mediated inhibition and its localized deactivation by myosin phosphatase are essential for neutrophil polarization and effective neutrophil tracking of pathogens. PMID:25601651

  10. Neural Mechanisms Underlying Paradoxical Performance for Monetary Incentives Are Driven by Loss Aversion

    PubMed Central

    Chib, Vikram S.; De Martino, Benedetto; Shimojo, Shinsuke; O'Doherty, John P.

    2012-01-01

    Summary Employers often make payment contingent on performance in order to motivate workers. We used fMRI with a novel incentivized skill task to examine the neural processes underlying behavioral responses to performance-based pay. We found that individuals' performance increased with increasing incentives; however, very high incentive levels led to the paradoxical consequence of worse performance. Between initial incentive presentation and task execution, striatal activity rapidly switched between activation and deactivation in response to increasing incentives. Critically, decrements in performance and striatal deactivations were directly predicted by an independent measure of behavioral loss aversion. These results suggest that incentives associated with successful task performance are initially encoded as a potential gain; however, when actually performing a task, individuals encode the potential loss that would arise from failure. PMID:22578508

  11. Catalytic combustion of methane over commercial catalysts in presence of ammonia and hydrogen sulphide.

    PubMed

    Hurtado, Paloma; Ordóñez, Salvador; Vega, Aurelio; Díez, Fernando V

    2004-05-01

    The performance of different commercially available catalysts (supported Pd, Pt, Rh, bimetallic Pd-Pt, and Cr-Cu-Ti oxide catalyst) for the oxidation of methane, alone and in presence of ammonia and hydrogen sulphide is studied in this work. Catalysts performance was evaluated both in terms of activity and resistance to poisoning. The main conclusions are that supported Pd and Rh, present the highest activities for methane oxidation, both alone and in presence of ammonia, whereas they are severely poisoned in presence of H2S. Pt and Cr-Cu-Ti are less active but more sulphur resistant, but their activity is lower than the residual activity of sulphur-deactivated Pd and Rh catalysts. The Pd-Pt catalyst exhibits low activity and it is quickly deactivated in presence of hydrogen sulphide.

  12. [Influence of mediator diffusion on trigger mode of a synapse].

    PubMed

    Vasilev, A N; Kulish, M V

    2014-01-01

    The model of postsynaptic membrane activation, is proposed in the paper. This model takes into account inhomogeneity of mediator's space distribution in the region of the synaptic cleft as well as nonlinear nature of interaction between the mediator and receptors on the postsynaptic membrane. Based on equations of this model stationary solutions are calculated for mediator distribution in the synaptic cleft and the number of activated receptors. Kinetics of reactions for activation and deactivation of receptors is analyzed within the concept of a trigger mode of the synapse. It is shown that activation-deactivation processes and redistribution of the mediator in the cleft can be interpreted as successive transitions between two stationary states of the system. Time of transitions between these states is found and its dependence on system parameters (in particular on the width of the synaptic cleft) is analyzed.

  13. Changes in default mode network as automaticity develops in a categorization task.

    PubMed

    Shamloo, Farzin; Helie, Sebastien

    2016-10-15

    The default mode network (DMN) is a set of brain regions in which blood oxygen level dependent signal is suppressed during attentional focus on the external environment. Because automatic task processing requires less attention, development of automaticity in a rule-based categorization task may result in less deactivation and altered functional connectivity of the DMN when compared to the initial learning stage. We tested this hypothesis by re-analyzing functional magnetic resonance imaging data of participants trained in rule-based categorization for over 10,000 trials (Helie et al., 2010) [12,13]. The results show that some DMN regions are deactivated in initial training but not after automaticity has developed. There is also a significant decrease in DMN deactivation after extensive practice. Seed-based functional connectivity analyses with the precuneus, medial prefrontal cortex (two important DMN regions) and Brodmann area 6 (an important region in automatic categorization) were also performed. The results show increased functional connectivity with both DMN and non-DMN regions after the development of automaticity, and a decrease in functional connectivity between the medial prefrontal cortex and ventromedial orbitofrontal cortex. Together, these results further support the hypothesis of a strategy shift in automatic categorization and bridge the cognitive and neuroscientific conceptions of automaticity in showing that the reduced need for cognitive resources in automatic processing is accompanied by a disinhibition of the DMN and stronger functional connectivity between DMN and task-related brain regions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Brain activation during working memory is altered in patients with type 1 diabetes during hypoglycemia.

    PubMed

    Bolo, Nicolas R; Musen, Gail; Jacobson, Alan M; Weinger, Katie; McCartney, Richard L; Flores, Veronica; Renshaw, Perry F; Simonson, Donald C

    2011-12-01

    To investigate the effects of acute hypoglycemia on working memory and brain function in patients with type 1 diabetes. Using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging during euglycemic (5.0 mmol/L) and hypoglycemic (2.8 mmol/L) hyperinsulinemic clamps, we compared brain activation response to a working-memory task (WMT) in type 1 diabetic subjects (n = 16) with that in age-matched nondiabetic control subjects (n = 16). Behavioral performance was assessed by percent correct responses. During euglycemia, the WMT activated the bilateral frontal and parietal cortices, insula, thalamus, and cerebellum in both groups. During hypoglycemia, activation decreased in both groups but remained 80% larger in type 1 diabetic versus control subjects (P < 0.05). In type 1 diabetic subjects, higher HbA(1c) was associated with lower activation in the right parahippocampal gyrus and amygdala (R(2) = 0.45, P < 0.002). Deactivation of the default-mode network (DMN) also was seen in both groups during euglycemia. However, during hypoglycemia, type 1 diabetic patients deactivated the DMN 70% less than control subjects (P < 0.05). Behavioral performance did not differ between glycemic conditions or groups. BOLD activation was increased and deactivation was decreased in type 1 diabetic versus control subjects during hypoglycemia. This higher level of brain activation required by type 1 diabetic subjects to attain the same level of cognitive performance as control subjects suggests reduced cerebral efficiency in type 1 diabetes.

  15. Costs of female odour in males of the parasitic wasp Lariophagus distinguendus (Hymenoptera: Pteromalidae)

    NASA Astrophysics Data System (ADS)

    Ruther, Joachim; Steiner, Sven

    2008-06-01

    The display of female traits by males is widespread in the animal kingdom. In several species, this phenomenon has been shown to function adaptively as a male mating strategy to deceive sexual rivals (female mimicry). Freshly emerged males of the parasitic wasp Lariophagus distinguendus (Hymenoptera: Pteromalidae) are perceived by other males as if they were females because of a very similar composition of cuticular hydrocarbons which function as a sex pheromone in this species inducing courtship behaviour in males. Within 32 h, however, males deactivate the pheromone and are no longer courted by other males. In this paper, behavioural experiments were performed to test hypotheses on potential costs and benefits associated with the female odour in young males. We did not find any benefits, but demonstrated that young males were significantly more often outrivaled in male-male contests when competing with two older males for a female. Also, young males were significantly more often mounted in homosexual courtship events during these contests. Thus, display of female traits by males is not necessarily beneficial, and in fact, can be disadvantageous. We suggest that these costs have favoured the evolution of the pheromone deactivation mechanism in L. distinguendus males. The function of cuticular hydrocarbons as a female courtship pheromone in L. distinguendus might have evolved secondarily from a primary function relevant for both genders, and the deactivation of the signal in males might have caused a shift of specificity of the chemical signal from the species level to the sex level.

  16. Voltage-sensing domain mode shift is coupled to the activation gate by the N-terminal tail of hERG channels.

    PubMed

    Tan, Peter S; Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I; Hill, Adam P

    2012-09-01

    Human ether-a-go-go-related gene (hERG) potassium channels exhibit unique gating kinetics characterized by unusually slow activation and deactivation. The N terminus of the channel, which contains an amphipathic helix and an unstructured tail, has been shown to be involved in regulation of this slow deactivation. However, the mechanism of how this occurs and the connection between voltage-sensing domain (VSD) return and closing of the gate are unclear. To examine this relationship, we have used voltage-clamp fluorometry to simultaneously measure VSD motion and gate closure in N-terminally truncated constructs. We report that mode shifting of the hERG VSD results in a corresponding shift in the voltage-dependent equilibrium of channel closing and that at negative potentials, coupling of the mode-shifted VSD to the gate defines the rate of channel closure. Deletion of the first 25 aa from the N terminus of hERG does not alter mode shifting of the VSD but uncouples the shift from closure of the cytoplasmic gate. Based on these observations, we propose the N-terminal tail as an adaptor that couples voltage sensor return to gate closure to define slow deactivation gating in hERG channels. Furthermore, because the mode shift occurs on a time scale relevant to the cardiac action potential, we suggest a physiological role for this phenomenon in maximizing current flow through hERG channels during repolarization.

  17. Platinum clusters supported in zeolite LTL: Influence of catalyst morphology on performance in n-hexane reforming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentoft, R.E.; Gates, B.C.; Tsapatsis, M.

    KLTL zeolite-supported platinum catalysts were synthesized from aqueous tetraammineplatinum(II) nitrate solutions and nonacidic KLTL zeolite crystallites, including some with dimensions as little as 300 x 500 {angstrom}. The zeolite crystallites had various morphologies, some being predominantly disk-shaped particles and some predominantly mosaics of rod-like domains with a range of c-dimension lengths. The activity and selectivity of each catalyst were evaluated for dehydrocyclization of n-hexane in the presence of H{sub 2} to form predominantly benzene at conversions of typically 45--90%. The data presented here provide a detailed characterization of the deactivation of such catalysts in the absence of sulfur. EXAFS datamore » show that the platinum in each catalyst was present in clusters of about 20 atoms each, on average. Electron micrographs show that the platinum clusters were nearly evenly dispersed on the surfaces of the zeolite crystallites, including the intracrystalline and extracrystalline surfaces. The catalytic performance was virtually independent of the zeolite channel length, but activity, selectivity, and resistance to deactivation were found to be correlated with the ratio of the surface area external to the crystallite domains to that within the intracrystalline pores. The catalyst performance is dependent on this ratio (which is related to the zeolite morphology) as follows: in comparison with the others, the catalysts with the relatively low fractions of platinum outside the intracrystalline pores are more active, more selective for benzene formation, and more resistant to deactivation.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemelli, Claudia, E-mail: claudia.gemelli@unimore.it; Center for Regenerative Medicine, University of Modena and Reggio Emilia, Via Gottardi 100, 41125 Modena; Martello, Andrea

    Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1 kb sequence of its proximal promoter region. This finding was demonstrated with gene expression studies, Chromatin Immunoprecipitation and luciferase transactivationmore » experiments and confirmed by VDR full length and dominant negative over-expression. In addition, several experiments carried out in human normal monocytes demonstrated that the 1,25(OH)2D3 – VDR – ORM1 pathway plays a functional role inside the macrophage de-activation process and that ORM1 may be considered as a signaling molecule involved in the maintenance of tissue homeostasis and remodeling. - Highlights: • ORM1 is a Vitamin D primary response gene. • VD and its receptor VDR are involved in the de-activation process mediated by human resident macrophages. • The signaling pathway VD-VDR-ORM1 plays an important role in the control of macrophage de-activation process. • ORM1 may be defined as a signaling molecule implicated in the maintenance of tissue homeostasis and remodeling.« less

  19. Electron beam injected into ground generates subsoil x-rays that may deactivate concealed electronics used to trigger explosive devices

    NASA Astrophysics Data System (ADS)

    Retsky, Michael

    2008-04-01

    Explosively formed projectiles (EFP) are a major problem in terrorism and asymmetrical warfare. EFPs are often triggered by ordinary infrared motion detectors. A potential weak link is that such electronics are not hardened to ionizing radiation and can latch-up or enter other inoperative states after exposure to a single short event of ionizing radiation. While these can often be repaired with a power restart, they also can produce shorts and permanent damage. A problem of course is that we do not want to add radiation exposure to the long list of war related hazards. Biological systems are highly sensitive to integrated dosage but show no particular sensitivity to short pulses. There may be a way to generate short pulsed subsoil radiation to deactivate concealed electronics without introducing radiation hazards to military personnel and civilian bystanders. Electron beams of 30 MeV that can be produced by portable linear accelerators (linacs) propagate >20 m in air and 10-12 cm in soil. X-radiation is produced by bremsstrahlung and occurs subsoil beneath the point of impact and is mostly forward directed. Linacs 1.5 m long can produce 66 MWatt pulses of subsoil x-radiation 1 microsecond or less in duration. Untested as yet, such a device could be mounted on a robotic vehicle that precedes a military convoy and deactivates any concealed electronics within 10-20 meters on either side of the road.

  20. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    PubMed

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

  1. Impaired modulation of attention and emotion in schizophrenia.

    PubMed

    Dichter, Gabriel S; Bellion, Carolyn; Casp, Michael; Belger, Aysenil

    2010-05-01

    Fronto-limbic interactions facilitate the generation of task-relevant responses while inhibiting interference from emotionally distracting information. Schizophrenia is associated with deficits in both executive attention and affective regulation. This study aims to elucidate the neural correlates of emotion-attention regulation and shifting in schizophrenia. We employed functional magnetic resonance imaging to probe the fronto-limbic regions in 16 adults with schizophrenia and 13 matched adults with no history of psychiatric illness. Subjects performed a forced-choice visual oddball task where they detected infrequent target circles embedded in a series of infrequent nontarget aversive and neutral pictures and frequent squares. In control participants, target events activated a dorsal frontoparietal network, whereas these regions were deactivated by aversive stimuli. Conversely, ventral frontolimbic brain regions were activated by aversive stimuli and deactivated by target events. In the patient group, regional hemodynamic timecourses revealed not only reduced activation to target and aversive events in dorsal executive and ventral limbic regions, respectively, but also reduced deactivation to target and aversive stimuli in ventral and dorsal regions, respectively, relative to the control group. Patients further showed reduced spatial extent of activation in the right inferior frontal gyrus during the target and aversive conditions. Activation of the anterior cingulate to aversive images was inversely related to severity of avolition and anhedonia symptoms in the schizophrenia group. These results suggest both frontal and limbic dysfunction in schizophrenia as well as aberrant reciprocal inhibitions between these regions during attention-emotion modulation in this disorder.

  2. Effect of ion pairing on the fluorescence of berberine, a natural isoquinoline alkaloid

    NASA Astrophysics Data System (ADS)

    Megyesi, Mónika; Biczók, László

    2007-10-01

    Effect of association with chloride or perchlorate anions on the fluorescence properties of berberine, a cationic isoquinoline alkaloid, has been studied. Interaction with Cl - caused more efficient fluorescence quenching; it significantly accelerated the radiationless deactivation and slowed down the radiative transition. Combined analysis of spectrophotometric, steady-state and time-resolved fluorescence results provided 1.5 × 10 5 M -1 for the equilibrium constant of ion pairing with Cl - in CH 2Cl 2. Both ion pairing and enrichment of the microenvironment of berberine in ions led to excited state quenching in solvents of medium polarity, but only the latter effect was observed in the presence of perchlorates in butyronitrile.

  3. Electronic transport with dielectric confinement in degenerate InN nanowires.

    PubMed

    Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th

    2012-06-13

    In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.

  4. Multi-residue method for the analysis of 85 current-use and legacy pesticides in bed and suspended sediments

    USGS Publications Warehouse

    Smalling, K.L.; Kuivila, K.M.

    2008-01-01

    A multi-residue method was developed for the simultaneous determination of 85 current-use and legacy organochlorine pesticides in a single sediment sample. After microwave-assisted extraction, clean-up of samples was optimized using gel permeation chromatography and either stacked carbon and alumina solid-phase extraction cartridges or a deactivated Florisil column. Analytes were determined by gas chromatography with ion-trap mass spectrometry and electron capture detection. Method detection limits ranged from 0.6 to 8.9 ??g/kg dry weight. Bed and suspended sediments from a variety of locations were analyzed to validate the method and 29 pesticides, including at least 1 from every class, were detected.

  5. Food decontamination using nanomaterials

    USDA-ARS?s Scientific Manuscript database

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  6. In-situ method for treating residual sodium

    DOEpatents

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  7. In-Situ Method for Treating Residual Sodium

    DOEpatents

    Sherman, Steven R.; Henslee, S. Paul

    2005-07-19

    A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

  8. Thermal Analysis Study of Antihypertensive Drugs Telmisartan and Cilazapril

    PubMed Central

    Saber, Refaat Ahmed; Attia, Ali Kamal; Salem, Waheed Mohamed

    2014-01-01

    Purpose: The aim of the present work is to study the thermal analysis of telmisartan and cilazapril. Methods: Thermogravimetry (TGA), derivative thermogravimetry (DTG) and differential thermal analysis (DTA) were used through the work to achieve the thermal analysis study of some antihypertensive drugs, telmisartan and cilazapril. Results: The results led to thermal stability data and also to the interpretation concerning the thermal decomposition. Thermogravimetry data allowed determination of the kinetic parameters such as, activation energy and frequency factor. Conclusion: The simplicity, speed and low operational costs of thermal analysis justify its application in the quality control of pharmaceutical compounds for medications. PMID:24754013

  9. Thermal Analysis of Thermal Protection System of Test Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Kim, Jongmin

    2017-10-01

    In this paper, a thermal analysis of the thermal protection system (TPS) of test launch vehicle (TLV) is explained. TLV is heated during the flight due to engine exhaust plume gas by thermal radiation and a TPS is needed to protect the vehicle from the heating. The thermal analysis of the TPS is conducted to predict the heat flux from plume gas and temperature of the TPS during the flight. To simplify the thermal analysis, plume gas radiation and radiative properties are assumed to be surface radiation and constants, respectively. Thermal conductivity, emissivity and absorptivity of the TPS material are measured. Proper plume conditions are determined from the preliminary analysis and then the heat flux and temperature of the TPS are calculated.

  10. Physico-Geometrical Kinetics of Solid-State Reactions in an Undergraduate Thermal Analysis Laboratory

    ERIC Educational Resources Information Center

    Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki

    2014-01-01

    An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…

  11. MEASURING AND MODELLING METABOLISM

    EPA Science Inventory

    The use of QSAR with potential metabolism (bioactivation or deactivation) is an experimental approach for exploring toxicity pathways and estimating the relative toxicity of chemicals within a pathway. This conference will hear and discuss the potential and limitations of these ...

  12. 49 CFR 195.59 - Abandonment or deactivation of facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....phmsa.dot.gov or contact the NPMS National Repository at 703-317-3073. A digital data format is preferred, but hard copy submissions are acceptable if they comply with the NPMS Standards. In addition to...

  13. 14 CFR 91.217 - Data correspondence between automatically reported pressure altitude data and the pilot's...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radar beacon transponder— (1) When deactivation of that equipment is directed by ATC; (2) Unless, as... operate any automatic pressure altitude reporting equipment associated with a radar beacon transponder or...

  14. DEHYDROGENATION CATALYST FOR PRODUCTION OF MTBE

    EPA Science Inventory

    The objectives of this project were to better understand the effect of different catalyst preparation parameters, the effect of different catalyst treatment parameters, and the mechanism of deactivation. Accordingly, catalysts were made using various preparation methods and with...

  15. 78 FR 4408 - Privacy Act of 1974, as Amended; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... name, social security number, date and place of birth, hair and eye color, height, weight, ethnicity... systems. PIV cards are deactivated within 18 hours of cardholder separation, loss of card, or expiration...

  16. Pulsed radiolysis of model aromatic polymers and epoxy based matrix materials

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Moacanin, J.; Liang, R.; Coulter, D.

    1982-01-01

    Models of primary processes leading to deactivation of energy deposited by a pulse of high energy electrons were derived for epoxy matrix materials and polyl-vinyl naphthalene. The basic conclusion is that recombination of initially formed charged states is complete within 1 nanosecond, and subsequent degradation chemistry is controlled by the reactivity of these excited states. Excited states in both systems form complexes with ground state molecules. These excimers or exciplexes have their characteristics emissive and absorptive properties and may decay to form separated pairs of ground state molecules, cross over to the triplet manifold or emit fluorescence. ESR studies and chemical analyses subsequent to pulse radiolysis were performed in order to estimate bond cleavage probabilities and net reaction rates. The energy deactivation models which were proposed to interpret these data have led to the development of radiation stabilization criteria for these systems.

  17. Protonated serotonin: Geometry, electronic structures and photophysical properties

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  18. Disrupted Functional Connectivity with Dopaminergic Midbrain in Cocaine Abusers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, D.; Tomasi, D.; Volkow, N.D.

    Chronic cocaine use is associated with disrupted dopaminergic neurotransmission but how this disruption affects overall brain function (other than reward/motivation) is yet to be fully investigated. Here we test the hypothesis that cocaine addicted subjects will have disrupted functional connectivity between the midbrain (where dopamine neurons are located) and cortical and subcortical brain regions during the performance of a sustained attention task. We measured brain activation and functional connectivity with fMRI in 20 cocaine abusers and 20 matched controls. When compared to controls, cocaine abusers had lower positive functional connectivity of midbrain with thalamus, cerebellum, and rostral cingulate, and thismore » was associated with decreased activation in thalamus and cerebellum and enhanced deactivation in rostral cingulate. These findings suggest that decreased functional connectivity of the midbrain interferes with the activation and deactivation signals associated with sustained attention in cocaine addicts.« less

  19. Ultrafast excited-state dynamics of kynurenine, a UV filter of the human eye.

    PubMed

    Sherin, Peter S; Grilj, Jakob; Tsentalovich, Yuri P; Vauthey, Eric

    2009-04-09

    The excited-state dynamics of kynurenine (KN) has been examined in various solvents by femtosecond-resolved optical spectroscopy. The lifetime of the S(1) state of KN amounts to 30 ps in aqueous solutions, increases by more than 1 order of magnitude in alcohols, and exceeds 1 ns in aprotic solvents such as DMSO and DMF, internal conversion (IC) being shown to be the main deactivation channel. The IC rate constant is pH independent but increases with temperature with an activation energy of about 7 kJ/mol in all solvents studied. The dependence on the solvent proticity together with the observation of a substantial isotope effect indicates that hydrogen bonds are involved in the rapid nonradiative deactivation of KN in water. These results give new insight into the efficiency of KN as a UV filter and its role in cataractogenesis.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Joel E.; Poplawsky, Jonathan D.; Mazumder, Baishakhi

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using 13C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30–60 13C atoms. These clusters correlate with local increases in Brønsted acid sitemore » density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. Here, this nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.« less

Top