Science.gov

Sample records for deaminase cd levels

  1. Syzygium cumini inhibits adenosine deaminase activity and reduces glucose levels in hyperglycemic patients.

    PubMed

    Bopp, A; De Bona, K S; Bellé, L P; Moresco, R N; Moretto, M B

    2009-08-01

    Syzigium cumini (L.) Skeels from the Myrtaceae family is among the most common medicinal plants used to treat diabetes in Brazil. Leaves, fruits, and barks of S. cumini have been used for their hypoglycemic activity. Adenosine deaminase (ADA) is an important enzyme that plays a relevant role in purine and DNA metabolism, immune responses, and peptidase activity. ADA is suggested to be an important enzyme for modulating the bioactivity of insulin, but its clinical significance in diabetes mellitus (DM) has not yet been proven. In this study, we examined the effect of aqueous leaf extracts of S. cumini (L.) (ASC) on ADA activity of hyperglycemic subjects and the activity of total ADA, and its isoenzymes in serum and erythrocytes. The present study indicates that: (i) the ADA activity in hyperglycemic serum was higher than normoglycemic serum and ADA activity was higher when the blood glucose level was more elevated; (ii) ASC (60-1000 microg/mL) in vitro caused a concentration-dependent inhibition of total ADA activity and a decrease in the blood glucose level in serum; (iii) ADA1 and 2 were reduced both in erythrocytes and in hyperglycemic serum. These results suggest that the decrease of ADA activity provoked by ASC may contribute to control adenosine levels and the antioxidant defense system of red cells and could be related to the complex ADA/DPP-IV-CD26 and the properties of dipeptidyl peptidase IV (DPP-IV) inhibitors which serve as important regulators of blood glucose.

  2. Combined QM(DFT)/MM molecular dynamics simulations of the deamination of cytosine by yeast cytosine deaminase (yCD).

    PubMed

    Zhang, Xin; Zhao, Yuan; Yan, Honggao; Cao, Zexing; Mo, Yirong

    2016-05-15

    Extensive combined quantum mechanical (B3LYP/6-31G*) and molecular mechanical (QM/MM) molecular dynamics simulations have been performed to elucidate the hydrolytic deamination mechanism of cytosine to uracil catalyzed by the yeast cytosine deaminase (yCD). Though cytosine has no direct binding to the zinc center, it reacts with the water molecule coordinated to zinc, and the adjacent conserved Glu64 serves as a general acid/base to shuttle protons from water to cytosine. The overall reaction consists of several proton-transfer processes and nucleophilic attacks. A tetrahedral intermediate adduct of cytosine and water binding to zinc is identified and similar to the crystal structure of yCD with the inhibitor 2-pyrimidinone. The rate-determining step with the barrier of 18.0 kcal/mol in the whole catalytic cycle occurs in the process of uracil departure where the proton transfer from water to Glu64 and nucleophilic attack of the resulting hydroxide anion to C2 of the uracil ring occurs synchronously. © 2016 Wiley Periodicals, Inc.

  3. Adenosine deaminase activity level as a tool for diagnosing tuberculous pleural effusion.

    PubMed

    Khow-Ean, Nathapol; Booraphun, Suchart; Aekphachaisawat, Noppadol; Sawanyawisuth, Kittisak

    2013-07-04

    The yield for using a pleural fluid culture to diagnose tuberculous pleural effusion (TPE) is low. Adenosine deaminase activity (ADA) has been shown to have good diagnostic value for TPE. The ADA cutoff point for the diagnosis of TPE is unclear. We attempted to determine the ADA level cutoff point for diagnosing of TPE in Thailand, where tuberculosis is endemic. We reviewed the medical records of patients with newly diagnosed pleural effusion aged >15 years who had a pleural fluid ADAlevel and who underwent a pleural biopsy. The study period was from March 1, 2010 to January 31, 2011. The diagnoses of TPE and malignant pleural effusion (MPE) were based on pathological findings. The diagnostic cutoff level for using ADA to diagnose TPE was determined. Forty-eight patients met study criteria. Of those, 18 patients (37.5%) were diagnosed with TPE. The mean ADA level was significantly higher among patients in the TPE group than in the MPE group (38.2 vs 14.8 U/l, p < 0.001). The cutoff level of 17.5 U/l gave sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio of 88.9%, 73.3%, 3.33, and 0.15, respectively. An ADA level >17.5 U/l had good diagnostic values among TPE patients in our study.

  4. Selective killing of lung cancer cells using carcinoembryonic antigen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD).

    PubMed

    Qiu, Yuan; Peng, Gui-Lin; Liu, Qi-Cai; Li, Fu-Li; Zou, Xu-Sen; He, Jian-Xing

    2012-03-01

    The application of gene therapy in cancer treatment is limited by non-specific targeting. In the present study, we constructed a recombinant plasmid, containing a carcinoembryonic antigen (CEA) promoter and double suicide genes thymidine kinase (TK) and cytosine deaminase (CD), henceforth referred to as pCEA-TK/CD. Our results showed that the CEA promoter can specifically drive target gene expression in CEA-positive lung cancer cells. In the presence of prodrugs 5-flucytosine and ganciclovir, pCEA-TK/CD transfection decreased inhibitory concentration 50 and increased apoptosis and cyclomorphosis. Our result suggests that gene therapy using pCEA-TK/CD may be a promising new approach for treating lung cancer.

  5. Antigenicity of UV radiation-induced murine tumors correlates positively with the level of adenosine deaminase activity.

    PubMed

    Aukerman, S L; Fidler, I J

    1987-01-01

    The specific activities of adenosine deaminase (ADA) in 16 murine tumor cell lines derived from seven UV light-induced neoplasms (melanoma and fibrosarcoma) were determined. In each case, the specific activity of ADA correlated positively with the antigenicity of the tumor cells. Highly antigenic cell lines that regress upon introduction into syngeneic hosts had on average 4- to 6-fold higher ADA specific activities than cell lines of low antigenicity that grow progressively in syngeneic hosts. The antigenic differences are probably not related to intracellular cAMP levels, as the level of cAMP differed only 2-fold between the two groups of cell lines.

  6. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    PubMed Central

    Magalhães-Cardoso, Maria Teresa; Ferreirinha, Fátima; Dias, Ana Sofia; Pelletier, Julie

    2014-01-01

    Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders. PMID:25210228

  7. Cryptococcal pleuritis containing a high level of adenosine deaminase in a patient with AIDS: a case report.

    PubMed

    Yoshino, Yusuke; Kitazawa, Takatoshi; Tatsuno, Keita; Ota, Yasuo; Koike, Kazuhiko

    2010-01-01

    Cryptococcal infection is the 4th most common opportunistic infection in patients with acquired immune deficiency syndrome (AIDS). Although pleural effusion alone is an unusual presentation, we present a case of cryptococcal pleuritis in an AIDS patient which was initially difficult to discriminate from tuberculous pleuritis because of the high level of pleural adenosine deaminase (ADA). Cryptococcus neoformans was detected in the culture of the pleural effusion after the initiation of antituberculous treatment. High levels of ADA in the pleural fluid can be observed in patients with cryptococcal pleuritis, and longer incubation of pleural fluid should be performed in all patients who present with pleuritis associated with a high ADA level as the only significant finding.

  8. In vivo kinetics of transduced cells in peripheral T cell-directed gene therapy: role of CD8+ cells in improved immunological function in an adenosine deaminase (ADA)-SCID patient.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Kobayashi, I; Yamada, M; Tame, A; Furuta, H; Okano, M; Egashira, M; Niikawa, N; Kobayashi, K; Sakiyama, Y

    1999-08-15

    We previously reported successful peripheral T cell-directed gene therapy in a boy with adenosine deaminase (ADA)-SCID. In the present study, to better understand the reconstitutive effect of this gene therapy on his immunological system, we investigated the in vivo kinetics and functional subsets of T cells in PBL. Apparent immunological improvements were obtained after infusion of transduced cells at more than 4 x 108 cells/kg/therapy/3 mo. Frequency of ADAcDNA-integrated cells in PBL, ADA activity in PBL and clinical improvement showed good correlation, even though CD8+ cells gradually became predominant in PBL. On the basis that polyethylene glycol (PEG)-ADA was maintained at the same dosage as before gene therapy, we consider that his immunological improvement resulted from the gene therapy itself. Most CD3+ cells in PBL after gene therapy expressed TCRalphabeta. Analysis of TCR repertoire based on TCR V region usage revealed no expansion of limited clones in his PBL. The T cell subset cells CD8+CDw60+ and CD8+CD27+CD45RA-, which are reported to provide substantial help to B cells, were maintained throughout the gene therapy. Furthermore, his reconstituted peripheral T cells helped normal B cells to produce substantial IgG in vitro. Expression of both Th1- and Th2-type cytokine genes was induced in his reconstituted T cells at the same comparably high level as in normal subjects. Collectively, these results provide evidence of persistent and distinct functions of transduced cells in this patient's PBL after gene therapy.

  9. Diagnostic value of sputum adenosine deaminase (ADA) level in pulmonary tuberculosis

    PubMed Central

    Binesh, Fariba; Jalali, Hadi; Zare, Mohammad Reza; Behravan, Farhad; Tafti, Arefeh Dehghani; Behnaz, Fatemah; Tabatabaee, Mohammad; Shahcheraghi, Seyed Hossein

    2016-01-01

    Introduction Tuberculosis is still a considerable health problem in many countries. Rapid diagnosis of this disease is important, and adenosine deaminase (ADA) has been used as a diagnostic test. The aim of this study was to assess the diagnostic value of ADA in the sputum of patients with pulmonary tuberculosis. Methods The current study included 40 patients with pulmonary tuberculosis (culture positive, smear ±) and 42 patients with non tuberculosis pulmonary diseases (culture negative). ADA was measured on all of the samples. Results The median value of ADA in non-tuberculosis patients was 2.94 (4.2) U/L and 4.01 (6.54) U/L in tuberculosis patients, but this difference was not statistically significant (p=0.100). The cut-off point of 3.1 U/L had a sensitivity of 61% and a specificity of 53%, the cut-off point of 2.81 U/L had a sensitivity of 64% and a specificity of 50% and the cut-off point of 2.78 U/L had a sensitivity of 65% and a specificity of 48%. The positive predictive values for cut-off points of 3.1, 2.81 and 2.78 U/L were 55.7%, 57.44% and 69.23%, respectively. The negative predictive values for the abovementioned cut-off points were 56.75%, 57.14% and 55.88%, respectively. Conclusion Our results showed that sputum ADA test is neither specific nor sensitive. Because of its low sensitivity and specificity, determination of sputum ADA for the diagnosis of pulmonary tuberculosis is not recommended. PMID:27482515

  10. Optimal functional levels of activation-induced deaminase specifically require the Hsp40 DnaJa1

    PubMed Central

    Orthwein, Alexandre; Zahn, Astrid; Methot, Stephen P; Godin, David; Conticello, Silvestro G; Terada, Kazutoyo; Di Noia, Javier M

    2012-01-01

    The enzyme activation-induced deaminase (AID) deaminates deoxycytidine at the immunoglobulin genes, thereby initiating antibody affinity maturation and isotype class switching during immune responses. In contrast, off-target DNA damage caused by AID is oncogenic. Central to balancing immunity and cancer is AID regulation, including the mechanisms determining AID protein levels. We describe a specific functional interaction between AID and the Hsp40 DnaJa1, which provides insight into the function of both proteins. Although both major cytoplasmic type I Hsp40s, DnaJa1 and DnaJa2, are induced upon B-cell activation and interact with AID in vitro, only DnaJa1 overexpression increases AID levels and biological activity in cell lines. Conversely, DnaJa1, but not DnaJa2, depletion reduces AID levels, stability and isotype switching. In vivo, DnaJa1-deficient mice display compromised response to immunization, AID protein and isotype switching levels being reduced by half. Moreover, DnaJa1 farnesylation is required to maintain, and farnesyltransferase inhibition reduces, AID protein levels in B cells. Thus, DnaJa1 is a limiting factor that plays a non-redundant role in the functional stabilization of AID. PMID:22085931

  11. Aqueous seed extract of Syzygium cumini inhibits the dipeptidyl peptidase IV and adenosine deaminase activities, but it does not change the CD26 expression in lymphocytes in vitro.

    PubMed

    Bellé, Luziane Potrich; Bitencourt, Paula Eliete Rodrigues; Abdalla, Faida Husein; Bona, Karine Santos de; Peres, Alessandra; Maders, Liési Diones Konzen; Moretto, Maria Beatriz

    2013-03-01

    Syzygium cumini (Sc) have been intensively studied in the last years due its beneficial effects including anti-diabetic and anti-inflammatory potential. Thus, the aim of this study was to evaluate the effect of aqueous seed extract of Sc (ASc) in the activity of enzymes involved in lymphocyte functions. To perform this study, we isolated lymphocytes from healthy donors. Lymphocytes were exposed to 10, 30, and 100 mg/mL of ASc during 4 and 6 h and adenosine deaminase (ADA), dipeptidyl peptidase IV (DPP-IV), and acetylcholinesterase (AChE) activities as well as CD26 expression and cellular viability were evaluated. ASc inhibited the ADA and DPP-IV activities without alteration in the CD26 expression (DPP-IV protein). No alterations were observed in the AChE activity or in the cell viability. These results indicate that the inhibition of the DPP-IV and ADA activities was dependent on the time of exposition to ASc. We suggest that ASc exhibits immunomodulatory properties probably via the pathway of DPP-IV-ADA complex, contributing to the understanding of these proceedings in the purinergic signaling.

  12. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria.

    PubMed

    Carlos, Mendoza-Hernández José; Stefani, Perea-Vélez Yazmin; Janette, Arriola-Morales; Melani, Martínez-Simón Sara; Gabriela, Pérez-Osorio

    2016-01-01

    This study poses a methodology in order to simultaneously quantify ACC deaminase and IAA levels in the same culture medium. Ten bacterial strains isolated from plant rhizosphere naturally settled in mining residues were chosen. These bacterial strains were characterized as PGPB, and all of them showed at least three characteristics (indole-3 acetic acid and siderophore production, ACC deaminase enzyme activity, and inorganic phosphate solubilization). Taxonomic identification showed that the strains belong to Enterobacter, Serratia, Klebsiella, and Escherichia genera. Similarly, both the ACC deaminase enzyme activity and the IAA synthesis in the presence of Cu, As, Pb, Ni, Cd, and Mn were measured. The results showed that both the ACC deaminase enzyme activity and the IAA synthesis were higher with the Pb, As, and Cu treatments than with the Escherichia N16, Enterobacter K131, Enterobacter N9, and Serratia K120 control treatments. On the other hand, Ni, Cd, and Mn negatively affected both the ACC deaminase enzyme activity and the IAA production on every bacterium except on the Klebsiella Mc173 strain. Serratia K120 bacterium got a positive correlation between ACC deaminase and IAA in the presence of every heavy metal, and it also promoted Helianthus annuus plant growth, showing a potential use in phytoremediation systems.

  13. Increased expression with differential subcellular location of cytidine deaminase APOBEC3G in human CD4(+) T-cell activation and dendritic cell maturation.

    PubMed

    Oliva, Harold; Pacheco, Rodrigo; Martinez-Navio, José M; Rodríguez-García, Marta; Naranjo-Gómez, Mar; Climent, Núria; Prado, Carolina; Gil, Cristina; Plana, Montserrat; García, Felipe; Miró, José M; Franco, Rafael; Borras, Francesc E; Navaratnam, Naveenan; Gatell, José M; Gallart, Teresa

    2016-08-01

    APOBEC3G (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3G; A3G) is an innate defense protein showing activity against retroviruses and retrotransposons. Activated CD4(+) T cells are highly permissive for HIV-1 replication, whereas resting CD4(+) T cells are refractory. Dendritic cells (DCs), especially mature DCs, are also refractory. We investigated whether these differences could be related to a differential A3G expression and/or subcellular distribution. We found that A3G mRNA and protein expression is very low in resting CD4(+) T cells and immature DCs, but increases strongly following T-cell activation and DC maturation. The Apo-7 anti-A3G monoclonal antibody (mAb), which was specifically developed, confirmed these differences at the protein level and disclosed that A3G is mainly cytoplasmic in resting CD4(+) T cells and immature DCs. Nevertheless, A3G translocates to the nucleus in activated-proliferating CD4(+) T cells, yet remaining cytoplasmic in matured DCs, a finding confirmed by immunoblotting analysis of cytoplasmic and nuclear fractions. Apo-7 mAb was able to immunoprecipitate endogenous A3G allowing to detect complexes with numerous proteins in activated-proliferating but not in resting CD4(+) T cells. The results show for the first time the nuclear translocation of A3G in activated-proliferating CD4(+) T cells.

  14. [Gene therapy for adenosine deaminase deficiency].

    PubMed

    Sakiyama, Yukio; Ariga, Tadashi; Ohtsu, Makoto

    2005-03-01

    A four year-old boy with adenosine deaminase (ADA-) deficient severe combined immunodeficiency(SCID) receiving PEG-ADA was treated under a gene therapy protocol targeting peripheral blood lymphocytes (PBLs) in 1995. After eleven infusions of autologous PBLs transduced with retroviral vector LASN encoding ADAcDNA, he exhibited increased levels of the CD8+ T lymphocytes, serum immunoglobulin, specific antibodies and delayed type hypersensitivity skin tests. Follow-up studies also provided evidence of long-term persistence and function of transduced PBLs with improvement in the immune function. However, the therapeutic effect of this gene therapy has been difficult to assess because of the concomitant treatment of PEG-ADA. Two ADA-SCID patients have been currently treated with autologous bone marrow CD34+ cells engineered with a retroviral vector GCsapM-ADA after discontinuation of PEG-ADA. The restoration of intracellular ADA enzymatic activity in lymphocytes and granulocytes resulted in correction of the systemic toxicity and liver function in the absence of PEG-ADA treatment. Both patients are at home where they are clinically well, and they do not experience adversed effect, with follow up being 12 months after CD34+ cells gene therapy.

  15. A 30-year-old female Behçet’s disease patient with recurrent pleural and pericardial effusion and elevated adenosine deaminase levels: case report

    PubMed Central

    Choi, Joon Young; Kim, Sung-Hwan; Kwok, Seung-Ki; Jung, Jung Im; Lee, Kyo-Young; Kim, Tae-Jung

    2016-01-01

    Behçet’s disease is a systemic disease which may involve various organs. We describe a case of a patient diagnosed as pleuropericardial involvement of Behçet’s disease. A 30-year-old woman visited our clinic presented with left pleuritic chest pain for s days. She had been diagnosed as Behçet’s disease and admitted to our clinic due to pericardial and pleural effusion repeatedly in past two years. In the previous studies, effusion analysis revealed to be lympho-dominant exudate with high adenosine deaminase level. Acid-fast bacilli (AFB) culture and polymerase chain reaction (PCR) for mycobacterial tuberculosis (M.TB) were negative in the pericardial tissue, and pathologic finding showed mild endothelitis with micro-thrombi formation in the lumen. The patient had been treated with antituberculous medication for a year. In the current admission, chest computed tomography (CT) again showed left pleural effusion without other significant lesion. Pleural fluid analysis was similar with the previous study. Video-assisted thoracoscopic pleural biopsy was performed to obtain the definite diagnosis. Pathology confirmed the diagnosis as pleuropericardial involvement of Behçet’s disease, and we treated the patient with oral steroid in the out-patient department. Pleuropericardial involvement of Behçet’s disease may mimic TB pleurisy or pericarditis due to high adenosine deaminase (ADA) level in effusion analysis. Clinicians should keep in mind that Behçet’s disease may manifest as pleural or pericardial effusion, and pathologic confirmation could be helpful for the definite diagnosis. PMID:27499994

  16. [Changes of CD34(+) and CD71(+)CD45(-) cell levels in bone marrow of MDS and AA patients].

    PubMed

    Yan, Zhen-Yu; Tian, Xu; Li, Ying; Yang, Mei-Rong; Zhang, Song; Wang, Xie-Ming; Zhang, Hai-Xia; Cheng, Nai-Yao

    2014-04-01

    This study was aimed to investigate the changes of CD34(+) and CD71(+)CD45(-) cell levels in MDS and AA patients. A total of 25 cases MDS and 43 cases of AA (18 cases SAA and 25 cases of NSAA) from January 2010 to October 2013 in the Department of Hematology, affiliated hospital of Hebei United University were enrolled in this study. The complete blood count, bone marrow smears, bone marrow biopsy, karyotype analysis and bone marrow blood cell immune genotyping (mainly the proportion of CD34(+) cells, CD71(+)CD45(-) cells in nucleated cells) were carried out for all patients; the changes of CD34(+) and CD71(+)CD45(-) cell levels in patients with MDS and AA (SAA NSAA) were compared; the differences of white blood cell count, platelet count and hemoglobin concentration in patients with count of CD71(+)CD45(-) ≥ 15% or <15% were analyzed. The results showed that the count of CD34(+) in MDS group was higher than that in AA (NSAA and SAA) group (P < 0.05). The count of CD71(+)CD45(-) cells in MDS group was higher than that in SAA (P < 0.05), there was no significant difference between NSAA group and MDS group. In MDS group with CD71(+)CD45(-) ≥ 15%, the platelet count was significantly higher than that in NSAA group (P < 0.05); and there was no statistical difference for leukocyte, platelet count and hemoglobin level between MDS and NSAA group with CD71(+)CD45(-) <15% (P > 0.05). It is concluded that the count of CD34(+) cells in MDS patients is significantly higher than that in AA and SAA patients. The count of CD71(+)CD45(-) cells in MDS group is significantly higher than that of SAA group. The platelet count in MDS patients with CD71(+)CD45(-) cells ≥ 15% is significantly higher than that of the NSAA group.

  17. Radioimmunochemical quantitation of human adenosine deaminase.

    PubMed Central

    Daddona, P E; Frohman, M A; Kelley, W N

    1979-01-01

    Markedly reduced or absent adenosine deaminase activity in man is associated with an autosomal recesive form of severe conbined immunodeficiency disease. To further define the genetic nature of this enzyme defect, we have quantitated immunologically active adenosine deaminase (CRM) in the hemolysate of homozygous deficient patients and their heterozygous parents. A highly specific radioimmunoassay was developed capable of detecting 0.05% of normal erythrocyte adenosine deaminase. Hemolysates from nine heterozygotes (five families) showed a wide range in CRM (32--100% of normal) and variable absolute specific activities with several being at least 1 SD BELOW THE NORMAL MEAN. Hemolysates from four unrelated patients showed less than 0.09% adenosine deaminase activity with CRM ranging from less than 0.06 to 5.6% of the normal mean. In conclusion, heterozygote and homozygote hemolysates from five of the eight families analyzed revealed variable levels of CRM suggesting heterogeneous genetic alteration or expression of the silent or defective allele(s) of adenosine deaminase. PMID:468994

  18. Annexin V-targeted enzyme prodrug therapy using cytosine deaminase in combination with 5-fluorocytosine.

    PubMed

    Van Rite, Brent D; Harrison, Roger G

    2011-08-01

    A fusion protein, consisting of cytosine deaminase (CD) linked to human annexin V, was created for use in an enzyme prodrug therapy targeted to the tumor vasculature and associated cancer cells in the primary tumor and distant metastases. The major finding of this study is that the CD-annexin V fusion protein in combination with the prodrug 5-fluorocytosine has significant cytotoxic activity against endothelial cells and two breast cancer cells lines in vitro that expose phosphatidylserine on their surface. The cytotoxicity experiments verified this novel enzyme prodrug system has the ability to produce therapeutic levels of 5-fluorouracil and thus appears promising.

  19. Molecular basis for paradoxical carriers of adenosine deaminase (ADA) deficiency that show extremely low levels of ADA activity in peripheral blood cells without immunodeficiency.

    PubMed

    Ariga, T; Oda, N; Sanstisteban, I; Arredondo-Vega, F X; Shioda, M; Ueno, H; Terada, K; Kobayashi, K; Hershfield, M S; Sakiyama, Y

    2001-02-01

    Adenosine deaminase (ADA) deficiency causes an autosomal recessive form of severe combined immunodeficiency and also less severe phenotypes, depending to a large degree on genotype. In general, ADA activity in cells of carriers is approximately half-normal. Unexpectedly, healthy first-degree relatives of two unrelated ADA-deficient severe combined immunodeficient patients (mother and brother in family I; mother in family II) had only 1-2% of normal ADA activity in PBMC, lower than has previously been found in PBMC of healthy individuals with so-called "partial ADA deficiency." The level of deoxyadenosine nucleotides in erythrocytes of these paradoxical carriers was slightly elevated, but much lower than levels found in immunodeficient patients with ADA deficiency. ADA activity in EBV-lymphoblastoid cell lines (LCL) and T cell lines established from these carriers was 10-20% of normal. Each of these carriers possessed two mutated ADA alleles. Expression of cloned mutant ADA cDNAs in an ADA-deletion strain of Escherichia coli indicated that the novel mutations G239S and M310T were responsible for the residual ADA activity. ADA activity in EBV-LCL extracts of the paradoxical carriers was much more labile than ADA from normal EBV-LCL. Immunoblotting suggested that this lability was due to denaturation rather than to degradation of the mutant protein. These results further define the threshold level of ADA activity necessary for sustaining immune function.

  20. Neuroprotective effects of adenosine deaminase in the striatum

    PubMed Central

    Tamura, Risa; Satoh, Yasushi; Nonoyama, Shigeaki; Nishida, Yasuhiro; Nibuya, Masashi

    2016-01-01

    Adenosine deaminase (ADA) is a ubiquitous enzyme that catabolizes adenosine and deoxyadenosine. During cerebral ischemia, extracellular adenosine levels increase acutely and adenosine deaminase catabolizes the increased levels of adenosine. Since adenosine is a known neuroprotective agent, adenosine deaminase was thought to have a negative effect during ischemia. In this study, however, we demonstrate that adenosine deaminase has substantial neuroprotective effects in the striatum, which is especially vulnerable during cerebral ischemia. We used temporary oxygen/glucose deprivation (OGD) to simulate ischemia in rat corticostriatal brain slices. We used field potentials as the primary measure of neuronal damage. For stable and efficient electrophysiological assessment, we used transgenic rats expressing channelrhodopsin-2, which depolarizes neurons in response to blue light. Time courses of electrically evoked striatal field potential (eFP) and optogenetically evoked striatal field potential (optFP) were recorded during and after oxygen/glucose deprivation. The levels of both eFP and optFP decreased after 10 min of oxygen/glucose deprivation. Bath-application of 10 µg/ml adenosine deaminase during oxygen/glucose deprivation significantly attenuated the oxygen/glucose deprivation-induced reduction in levels of eFP and optFP. The number of injured cells decreased significantly, and western blot analysis indicated a significant decrease of autophagic signaling in the adenosine deaminase-treated oxygen/glucose deprivation slices. These results indicate that adenosine deaminase has protective effects in the striatum. PMID:26746865

  1. Combined evaluation of adenosine deaminase level and histopathological findings from pleural biopsy with Cope’s needle for the diagnosis of tuberculous pleurisy

    PubMed Central

    Behrsin, Rodolfo Fred; Junior, Cyro Teixeira da Silva; Cardoso, Gilberto Perez; Barillo, Jorge Luiz; de Souza, Joeber Bernardo Soares; de Araújo, Elizabeth Giestal

    2015-01-01

    Introduction: Closed needle pleural biopsy (CNPB) has historically been the gold standard procedure for the diagnosis of pleural tuberculosis. Adenosine deaminase (ADA) is an efficient biomarker for tuberculosis that is measurable in pleural fluids. Objective: We compared the diagnostic accuracy of the pleural ADA (P-ADA) level and histopathological findings of CNPB specimens in patients with pleural tuberculosis. Methods: This prospective study consisted of two groups of examinations with a proven diagnosis of pleural effusion. The P-ADA level was measured in 218 patients with pleural effusion due to a number of causes, and 157 CNPB specimens underwent histopathological analysis. Results: CNPBs were performed in patients with tuberculosis (n=122) and other diseases: adenocarcinoma (n=23), lymphoma (n=5), systemic lupus erythematosus (n=4), squamous cell carcinoma (n=2), and small cell lung cancer (n=1). According to the ROC curve, the optimal cut-off value of the P-ADA level (Giusti and Galanti colorimetric method) was equal to or greater than 40.0 U/L. The diagnostic accuracy of the P-ADA test was 83.0%, and that of histopathological examination of the CNPB tissue, was 78.8% (AUC=0.293, P=0.7695). The association between the P-ADA assay and pleural histopathology was 24.41 (P<0.0001). The tetrachoric correlation coefficient was 0.563 (high correlation). Conclusion: In Brazil and other countries with a high incidence of tuberculosis, P-ADA activity is an accurate test for the diagnosis of tuberculous pleural effusions, and its use should be encouraged. The high diagnostic performance of the P-ADA test could to aid the diagnosis of pleural tuberculosis and render CNPB unnecessary. PMID:26261621

  2. In silico structural and functional analysis of Mesorhizobium ACC deaminase.

    PubMed

    Pramanik, Krishnendu; Soren, Tithi; Mitra, Soumik; Maiti, Tushar Kanti

    2017-02-11

    Nodulation is one of the very important processes of legume plants as it is the initiating event of fixing nitrogen. Although ethylene has essential role in normal plant metabolism but it has also negative impact on plants particularly in nodule formation in legume plants. It is also produced due to a variety of biotic or abiotic stresses. 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase is a rhizobial enzyme which cleaves ACC (immediate precursor of ethylene) into α-ketobutyrate and ammonia. As a result, the level of ethylene from the plant cells is decreased and the negative impact of ethylene on nodule formation is reduced. ACC deaminase is widely studied in several plant growth promoting rhizobacterial (PGPR) strains including many legume nodulating bacteria like Mesorhizobium sp. It is an important symbiotic nitrogen fixer belonging to the class - alphaproteobacteria under the order Rhizobiales. ACC deaminase has positive role in Legume-rhizobium symbiosis. Rhizobial ACC deaminase has the potentiality to reduce the adverse effects of ethylene, thereby triggering the nodulation process. The present study describes an in silico comparative structural (secondary structure prediction, homology modeling) and functional analysis of ACC deaminase from Mesorhizobium spp. to explore physico-chemical properties using a number of bio-computational tools. M. loti was selected as a representative species of Mesorhizobium genera for 3D modelling of ACC deaminase protein. Correlation by the phylogenetic relatedness on the basis of both ACC deaminase enzymes and respective acdS genes of different strains of Mesorhizobium has also studied.

  3. Why Does Escherichia coli Grow More Slowly on Glucosamine than on N-Acetylglucosamine? Effects of Enzyme Levels and Allosteric Activation of GlcN6P Deaminase (NagB) on Growth Rates

    PubMed Central

    Álvarez-Añorve, Laura I.; Calcagno, Mario L.; Plumbridge, Jacqueline

    2005-01-01

    Wild-type Escherichia coli grows more slowly on glucosamine (GlcN) than on N-acetylglucosamine (GlcNAc) as a sole source of carbon. Both sugars are transported by the phosphotransferase system, and their 6-phospho derivatives are produced. The subsequent catabolism of the sugars requires the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase, which is encoded by nagB, and degradation of GlcNAc also requires the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase. We investigated various factors which could affect growth on GlcN and GlcNAc, including the rate of GlcN uptake, the level of induction of the nag operon, and differential allosteric activation of GlcN6P deaminase. We found that for strains carrying a wild-type deaminase (nagB) gene, increasing the level of the NagB protein or the rate of GlcN uptake increased the growth rate, which showed that both enzyme induction and sugar transport were limiting. A set of point mutations in nagB that are known to affect the allosteric behavior of GlcN6P deaminase in vitro were transferred to the nagB gene on the Escherichia coli chromosome, and their effects on the growth rates were measured. Mutants in which the substrate-induced positive cooperativity of NagB was reduced or abolished grew even more slowly on GlcN than on GlcNAc or did not grow at all on GlcN. Increasing the amount of the deaminase by using a nagC or nagA mutation to derepress the nag operon improved growth. For some mutants, a nagA mutation, which caused the accumulation of the allosteric activator GlcNAc6P and permitted allosteric activation, had a stronger effect than nagC. The effects of the mutations on growth in vivo are discussed in light of their in vitro kinetics. PMID:15838023

  4. [Adenosine deaminase in experimental trypanosomiasis: future implications].

    PubMed

    Pérez-Aguilar, Mary Carmen; Rondón-Mercado, Rocío

    2015-09-01

    The adenosine deaminase represents a control point in the regulation of extracellular adenosine levels, thus playing a critical role in the modulation of purinergic responses to certain pathophysiological events. Several studies have shown that serum and plasma enzyme levels are elevated in some diseases caused by microorganisms, which may represent a compensatory mechanism due to the elevated levels of adenosine and the release of inflammatory mediators. Recent research indicates that adenosine deaminase activity decreases and affects hematological parameters of infected animals with Trypanosoma evansi, so that such alterations could have implications in the pathogenesis of the disease. In addition, the enzyme has been detected in this parasite; allowing the inference that it could be associated with the vital functions of the same, similar to what occurs in mammals. This knowledge may be useful in the association of chemotherapy with specific inhibitors of the enzyme in future studies.

  5. Purine metabolism in adenosine deaminase deficiency.

    PubMed Central

    Mills, G C; Schmalstieg, F C; Trimmer, K B; Goldman, A S; Goldblum, R M

    1976-01-01

    Purine and pyrimidine metabolites were measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, EC 3.5.4.4) deficiency. Adenosine and adenine were measured using newly devised ion exchange separation techniques and a sensitive fluorescence assay. Plasma adenosine levels were increased, whereas adenosine was normal in erythrocytes and not detectable in urine. Increased amounts of adenine were found in erythrocytes and urine as well as in the plasma. Erythrocyte adenosine 5'-monophosphate and adenosine diphosphate concentrations were normal, but adenosine triphosphate content was greatly elevated. Because of the possibility of pyrimidine starvation, pyrimidine nucleotides (pyrimidine coenzymes) in erythrocytes and orotic acid in urine were measured. Pyrimidine nucleotide concentrations were normal, while orotic acid was not detected. These studies suggest that the immune deficiency associated with adenosine deaminase deficiency may be related to increased amounts of adenine, adenosine, or adenine nucleotides. PMID:1066699

  6. Electronic Level Alignment in Multicomponent CdSe/CdTe Nanostructures from First Principles

    NASA Astrophysics Data System (ADS)

    Yang, Shenyuan; Prendergast, David; Neaton, Jeffrey

    2010-03-01

    Inorganic CdSe/CdTe nanorod heterojunctions, with type-II level alignment and band gaps in the solar spectrum, comprise ideal model components of nanostructure-based solar cells. Here we perform density functional theory calculations on CdSe/CdTe nanowire heterojunctions, exploring how the electronic properties of their nanoscale interfaces are affected by quantum confinement, and mechanical and electrical boundary conditions. Many-body perturbation theory within the GW approximation is used to predict quantitative bulk band gaps and infer bulk level alignment. We find that band offsets at bulk epitaxial interfaces are quite sensitive to biaxial strain due to lattice mismatch. The computed band gaps of small linear nanorod heterojunctions increase with decreasing diameter due to quantum confinement, but band offsets are seen to be largely unaffected. In the core/shell nanorod heterojunctions, band offsets are strongly dependent on strain and confinement, both of which can be tuned by the core size and shell thickness.

  7. Extended yrast level schemes in ^121,123Cd

    NASA Astrophysics Data System (ADS)

    Walters, W. B.; Chiara, C. J.

    2010-11-01

    New level structures for ^121,123Cd will be presented that were determined in the study of the ^64Ni- and ^76Ge-induced fission of ^238U at Gammasphere [1]. A number of transitions were previously observed by Hwang et al. from which yrast levels were identified with maximum proposed spins of 27/2- and 23/2- in ^121,123Cd, respectively [2]. If the additional transitions have stretched E2 multipolarity, these level structures would be extended to 31/2- at 4083 keV, and 35/2- at 5365 keV in ^121,123Cd, respectively. These level sequences will be compared to existing levels in the lighter odd-mass Cd nuclei and the isomeric structures and calculations in the heavier odd-mass Cd nuclei.[4pt] [1] C. J. Chiara, I. Stefanescu, A. A. Hecht, R. V. F. Janssens, W. B. Walters, R. Broda, M. P. Carpenter, B. Fornal, G. Gúrdal, C. R. Hoffman, N. Hoteling, B. P. Kay, F. G. Kondev, W. Kr'olas, T. Lauritsen, C. J. Lister, E. A. McCutchan, T. Pawlat, D. Seweryniak, N. Sharp, J. R. Stone, N. J. Stone, X. Wang, A. Wóhr, J. Wrzesinski, S. Zhu, to be submitted for publication in Phys. Rev. C.[0pt] [2] J. K. Hwang et al., J. Phys. G: Nucl. Part. Phys. 28, L9 (2002).

  8. Alterations in levels of CD28-/CD8+ suppressor cell precursor and CD45RO+/CD4+ memory T lymphocytes in the peripheral blood of multiple sclerosis patients.

    PubMed Central

    Crucian, B; Dunne, P; Friedman, H; Ragsdale, R; Pross, S; Widen, R

    1995-01-01

    A comprehensive peripheral blood immunophenotype analysis of 16 multiple sclerosis (MS) patients was performed by three-color flow cytometric analysis, and the results were compared with those for age-matched healthy controls. The cell subsets quantified included T cells (CD3+), B cells (CD19+), NK cells (CD56+), CD4+ and CD8+ T cells, cytotoxic (CD28+) and suppressor precursor (CD28-) CD8+ T cells, CD45RA+ and CD45RO+ T cells (CD4+ and CD8+), and CD5+ T and B cells. Analysis of MS patients' peripheral blood revealed essentially normal levels of total T, B, and NK cells. In agreement with results obtained by other investigators, it was found that MS patients had an increased CD4/CD8 ratio, primarily due to a decrease in CD8+ T cells. MS patients were found to have a significantly decreased level of suppressor precursor (CD28-) CD8+ T cells compared with that of controls but to have normal levels of cytotoxic (CD28+) CD8+ T cells. These data indicate that MS patients do not have a general decrease in CD8+ T cells but that they have a specific decrease in the suppressor precursor subset only and normal levels of cytotoxic CD8+ T cells. MS patients also had a significant increase in memory (CD45RO+) CD4+ T cells and displayed a trend towards a decrease in naive (CD45RA+) T cells in the peripheral blood. PMID:7697540

  9. Serum CD14 levels in polytraumatized and severely burned patients.

    PubMed Central

    Krüger, C; Schütt, C; Obertacke, U; Joka, T; Müller, F E; Knöller, J; Köller, M; König, W; Schönfeld, W

    1991-01-01

    Recently it has been demonstrated that the CD14 molecule which is expressed on monocytes and macrophages serves as a receptor for lipopolysaccharide (LPS) bound to LPS-binding protein (LBP) and thus mediates LPS-induced tumour necrosis factor (TNF) production. Here we report that CD14 is found as a soluble (s) molecule in serum. In healthy volunteers sCD14 levels (mean +/- s.e.m.) were 3.7 +/- 0.05 micrograms/ml (n = 30, 25-50 years of age) as determined by ELISA (detection limit 20 ng/ml serum) using two monoclonal antibodies in a sandwich technique. In polytraumatized patients (n = 16) significantly decreased levels (1.7 +/- 0.3) were detected immediately after the trauma, which increased to 4.9 +/- 0.3 micrograms/ml within the first 6 days post trauma. sCD14 remained elevated during the first 14 days post trauma in patients with the most severe injuries (injury severity score greater than 45 points), whereas a return to normal levels was observed in patients with an injury score of less than 45 points. In addition, the levels of the high-density lipoproteins that partially inactivate free endotoxin are significantly decreased post trauma. No correlation between parameters of inflammation (C3a and neopterin levels, leucocyte counts, amount of band cells), liver function and sCD14 levels was established. Comparable to polytraumatized patients, increased sCD14 serum levels were observed in five patients with burn trauma (burned area greater than 35%) within the second week post trauma when clinical signs of septicaemia were evident. PMID:1713813

  10. ACTIVATION OF A CRYPTIC D-SERINE DEAMINASE (DSD) GENE FROM PSEUDOMONAS CEPACIA 17616

    EPA Science Inventory

    D-serine inhibits growth of P. cepacia 17616; however, resistant mutants able to express an ordinarily cryptic D-serine deaminase (dsd) gene were isolated readily. The resistant strains formed high levels of a D-serine deaminase active on D-threonine as well as D-serine. IS eleme...

  11. Genetics Home Reference: adenosine monophosphate deaminase deficiency

    MedlinePlus

    ... that can affect the muscles used for movement ( skeletal muscles ). In many affected individuals, AMP deaminase deficiency does ... called AMP deaminase. This enzyme is found in skeletal muscles , where it plays a role in producing energy. ...

  12. Analysis of the CD161-expressing cell quantities and CD161 expression levels in peripheral blood natural killer and T cells of systemic lupus erythematosus patients.

    PubMed

    Lin, Yi-Lung; Lin, Shih-Chang

    2017-02-01

    Expressed on the cell surface of most of NK cells and some T cells, CD161 has been shown to deliver inhibitory signal in human NK cells. To determine whether the CD161-expressing cell quantities and the cell surface expression levels of CD161 in NK and T cells were altered in systemic lupus erythematosus (SLE) patients, we analyzed the CD3, CD56 and CD161 expression patterns of peripheral blood lymphocytes by flow cytometric analysis to identify different NK and T cell subpopulations. The cell surface expression levels of CD161 were estimated by the mean florescence intensities (MFIs) of CD161. It was found that SLE patients had lower frequencies of CD161+CD56+CD3- and CD161+CD56+CD3+ cells among the lymphocyte population than normal controls, whereas the frequencies of CD161-CD56+CD3- and CD161+CD56-CD3+ cells were not statistically different between two groups. In addition, SLE patients also had decreased absolute counts of all CD161-expressing NK cells and T cells and had reduced frequencies of CD161+ cells in CD56+CD3-, CD56+CD3+ and CD56-CD3+ cell populations. Moreover, SLE patients had reduced MFIs of CD161 in CD161+CD56+CD3+ and CD161+CD56-CD3+, but not CD161+CD56+CD3-, cell populations. Our results indicated that CD161-expressing cell frequency and the CD161 expression levels were reduced in some NK and T cell subpopulations of SLE patients, suggesting possible important role of CD161 and CD161-expressing immune cells in the SLE pathogenesis.

  13. Adenosine deaminase deficiency with normal immune function. An acidic enzyme mutation.

    PubMed Central

    Daddona, P E; Mitchell, B S; Meuwissen, H J; Davidson, B L; Wilson, J M; Koller, C A

    1983-01-01

    In most instances, marked deficiency of the purine catabolic enzyme adenosine deaminase results in lymphopenia and severe combined immunodeficiency disease. Over a 2-yr period, we studied a white male child with markedly deficient erythrocyte and lymphocyte adenosine deaminase activity and normal immune function. We have documented that (a) adenosine deaminase activity and immunoreactive protein are undetectable in erythrocytes, 0.9% of normal in lymphocytes, 4% in cultured lymphoblasts, and 14% in skin fibroblasts; (b) plasma adenosine and deoxyadenosine levels are undetectable and deoxy ATP levels are only slightly elevated in lymphocytes and in erythrocytes; (c) no defect in deoxyadenosine metabolism is present in the proband's cultured lymphoblasts; (d) lymphoblast adenosine deaminase has normal enzyme kinetics, absolute specific activity, S20,w, pH optimum, and heat stability; and (e) the proband's adenosine deaminase exhibits a normal apparent subunit molecular weight but an abnormal isoelectric pH. In contrast to the three other adenosine deaminase-deficient healthy subjects who have been described, the proband is unique in demonstrating an acidic, heat-stable protein mutation of the enzyme that is associated with less than 1% lymphocyte adenosine deaminase activity. Residual adenosine deaminase activity in tissues other than lymphocytes may suffice to metabolize the otherwise lymphotoxic enzyme substrate(s) and account for the preservation of normal immune function. Images FIGURE 1 FIGURE 2 FIGURE 3 PMID:6603477

  14. Circulating levels of the innate and humoral immune regulators CD14 and CD23 are associated with adult glioma.

    PubMed

    Zhou, Mi; Wiemels, Joseph L; Bracci, Paige M; Wrensch, Margaret R; McCoy, Lucie S; Rice, Terri; Sison, Jennette D; Patoka, Joseph S; Wiencke, John K

    2010-10-01

    Allergy history has been consistently inversely associated with glioma risk. Two serologic markers, soluble CD23 (sCD23) and soluble CD14 (sCD14), are part of the innate and adaptive humoral immune systems and modulate allergic responses in opposite directions, with sCD23 enhancing and sCD14 blunting inflammatory responses. We measured sCD23 and sCD14 in serum from blood that was drawn at a single time point from 1,079 glioma patients postdiagnosis and 736 healthy controls. Glioma was strongly associated with high sCD14 [highest versus lowest quartile odds ratio (OR), 3.94; 95% confidence interval (95% CI), 2.98-5.21] and low sCD23 (lowest versus highest quartile OR, 2.5; 95% CI, 1.89-3.23). Results were consistent across glioma histologic types and grades, but were strongest for glioblastoma. Whereas temozolomide treatment was not associated with either sCD14 or sCD23 levels among cases, those taking dexamethasone had somewhat lower sCD23 levels than those not taking dexamethasone. However, sCD23 was associated with case status regardless of dexamethasone treatment. These results augment the long-observed association between allergies and glioma and support a role for the innate and adaptive humoral functions of the immune system, in particular immunoregulatory proteins, in gliomagenesis.

  15. CD26 Expression on T Helper Populations and sCD26 Serum Levels in Patients with Rheumatoid Arthritis

    PubMed Central

    Cordero, Oscar J.; Varela-Calviño, Rubén; López-González, Tania; Calviño-Sampedro, Cristina; Viñuela, Juan E.; Mouriño, Coral; Hernández-Rodríguez, Íñigo; Rodríguez-López, Marina; Aspe de la Iglesia, Bruno; Pego, José María

    2015-01-01

    We studied dipeptidyl peptidase IV (DPP-IV, CD26) expression in different T helper cells and serum soluble DPP-IV/sCD26 levels in rheumatoid arthritis (RA) patients, correlated these with disease activity score (DAS), and examined how they were affected by different therapies, conventional or biological (anti-TNF, anti-CD20 and anti-IL6R or Ig-CTLA4). The percentage of CD4+CD45R0+CD26- cells was greatly reduced in patients (up to 50%) when compared with healthy subjects. Three other subsets of CD4 cells, including a CD26high Th1-associated population, changed variably with therapies. Data from these subsets (frequency and staining density) significantly correlated with DAS28 or DAS28 components but different in each group of patients undergoing the different therapies. Th17 and Th22 subsets were implicated in RA as independent CCR4+ and CCR4- populations each, with distinct CD26 expression, and were targeted with varying efficiency by each therapy. Serum DPP-IV activity rather than sCD26 levels was lower in RA patients compared to healthy donors. DPP-IV and sCD26 serum levels were found related to specific T cell subsets but not to disease activity. We conclude that, according to their CD26 expression, different cell subsets could serve to monitor RA course, and an uncharacterized T helper CD26- subset, not targeted by therapies, should be monitored for early diagnosis. PMID:26177310

  16. Quantitative changes in adenosine deaminase isoenzymes in human colorectal adenocarcinomas.

    PubMed

    ten Kate, J; Wijnen, J T; van der Goes, R G; Quadt, R; Griffioen, G; Bosman, F T; Khan, P M

    1984-10-01

    Several reports have suggested that a decrease or absence of adenosine deaminase complexing protein (ADCP) is consistently associated with cancer. However, in other studies, decreased as well as increased ADCP levels were found. In the present study, we investigated ADCP levels in 37 colorectal adenocarcinomas and correlated the results with clinicopathological characteristics in individual carcinomas. The levels of adenosine deaminase (EC 3.5.4.4) and soluble ADCP were determined in tissue samples by, respectively, a spectrophotometric assay and an ADCP specific radioimmunoassay. The values in the individual tumors were compared with their histological characteristics, such as degree of differentiation, nuclear grading, and the preoperative plasma carcinoembryonic antigen levels in the patients. It was found that ADCP was decreased in about a third of the tumors but unaltered or even increased in others. However, there was an overall 40% increase of the adenosine deaminase activity in the tumors compared to normal tissue. There seems to be no simple correlation between any of the clinicopathological parameters and the ADCP or adenosine deaminase levels. Methods detecting ADCP at single cell level might be helpful in exploring its potential use as a cancer-associated marker.

  17. Expansion of CD3+CD4-CD8- T cell population expressing high levels of IL-5 in Omenn's syndrome.

    PubMed Central

    Melamed, I; Cohen, A; Roifman, C M

    1994-01-01

    Omenn's syndrome is a fatal, autosomal-recessive combined immune deficiency characterized by several erythematous exfoliative eruptions, lymphadenopathy, hepatosplenomegaly, and elevated eosinophil count. In some of these patients an expansion of CD3+CD4-CD8- double negative (DN) T cell population was observed. We show here that the DN population represents a clonal expansion of T cells which preferentially use V beta 14 in their T cell receptor complex. Using polymerase chain reaction, we show that patient's DN cells express spontaneously high levels of IL-5, thus possibly explaining the abundance of eosinophils in this disorder. The increase of IgE observed in patients with Omenn's syndrome is unlikely to be related to IL-4 production, as IL-4 levels in patient samples were low. However, patient's low expression of interferon-gamma (IFN-gamma), which has been reported to inhibit IgE production, may explain the elevated levels of IgE in this patient. The results thus highlight the importance of the inhibitory effect of IFN-gamma on regulation of IgE production. Images Fig. 4 Fig. 5 Fig. 6 PMID:8287598

  18. Guanine Deaminase Functions as Dihydropterin Deaminase in the Biosynthesis of Aurodrosopterin, a Minor Red Eye Pigment of Drosophila*

    PubMed Central

    Kim, Jaekwang; Park, Sang Ick; Ahn, Chiyoung; Kim, Heuijong; Yim, Jeongbin

    2009-01-01

    Dihydropterin deaminase, which catalyzes the conversion of 7,8-dihydropterin to 7,8-dihydrolumazine, was purified 5850-fold to apparent homogeneity from Drosophila melanogaster. Its molecular mass was estimated to be 48 kDa by gel filtration and SDS-PAGE, indicating that it is a monomer under native conditions. The pI value, temperature, and optimal pH of the enzyme were 5.5, 40 °C, and 7.5, respectively. Interestingly the enzyme had much higher activity for guanine than for 7,8-dihydropterin. The specificity constant (kcat/Km) for guanine (8.6 × 106 m−1·s−1) was 860-fold higher than that for 7,8-dihydropterin (1.0 × 104 m−1·s−1). The structural gene of the enzyme was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis as CG18143, located at region 82A1 on chromosome 3R. The cloned and expressed CG18143 exhibited both 7,8-dihydropterin and guanine deaminase activities. Flies with mutations in CG18143, SUPor-P/Df(3R)A321R1 transheterozygotes, had severely decreased activities in both deaminases compared with the wild type. Among several red eye pigments, the level of aurodrosopterin was specifically decreased in the mutant, and the amount of xanthine and uric acid also decreased considerably to 76 and 59% of the amounts in the wild type, respectively. In conclusion, dihydropterin deaminase encoded by CG18143 plays a role in the biosynthesis of aurodrosopterin by providing one of its precursors, 7,8-dihydrolumazine, from 7,8-dihydropterin. Dihydropterin deaminase also functions as guanine deaminase, an important enzyme for purine metabolism. PMID:19567870

  19. The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase.

    PubMed

    Chang, Da-Young; Yoo, Seung-Wan; Hong, Youngtae; Kim, Sujeong; Kim, Se Joong; Yoon, Sung-Hwa; Cho, Kyung-Gi; Paek, Sun Ha; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2010-10-15

    Suicide genes have recently emerged as an attractive alternative therapy for the treatment of various types of intractable cancers. The efficacy of suicide gene therapy relies on efficient gene delivery to target tissues and the localized concentration of final gene products. Here, we showed a potential ex vivo therapy that used mesenchymal stem cells (MSCs) as cellular vehicles to deliver a bacterial suicide gene, cytosine deaminase (CD) to brain tumors. MSCs were engineered to produce CD enzymes at various levels using different promoters. When co-cultured, CD-expressing MSCs had a bystander, anti-cancer effect on neighboring C6 glioma cells in proportion to the levels of CD enzymes that could convert a nontoxic prodrug, 5-fluorocytosine (5-FC) into cytotoxic 5-fluorouracil (5-FU) in vitro. Consistent with the in vitro results, for early stage brain tumors induced by intracranial inoculation of C6 cells, transplantation of CD-expressing MSCs reduced tumor mass in proportion to 5-FC dosages. However, for later stage, established tumors, a single treatment was insufficient, but only multiple transplantations were able to successfully repress tumor growth. Our findings indicate that the level of total CD enzyme activity is a critical parameter that is likely to affect the clinical efficacy for CD gene therapy. Our results also highlight the potential advantages of autograftable MSCs compared with other types of allogeneic stem cells for the treatment of recurrent glioblastomas through repetitive treatments.

  20. Increasing CACNA1C expression in placenta containing high Cd level: an implication of Cd toxicity.

    PubMed

    Phuapittayalert, Laorrat; Saenganantakarn, Phisid; Supanpaiboon, Wisa; Cheunchoojit, Supaporn; Hipkaeo, Wiphawi; Sakulsak, Natthiya

    2016-12-01

    Cadmium (Cd) has known to produce many adverse effects on organs including placenta. Many essential transporters are involved in Cd transport pathways such as DMT-1, ZIP as well as L-VDCC. Fourteen pregnant women participated and were divided into two groups: high and low Cd-exposed (H-Cd, L-Cd) groups on the basis of their residential areas, Cd concentrations in the blood (B-Cd), urine (U-Cd), and placenta (P-Cd). The results showed that the B-Cd and U-Cd were significantly increased in H-Cd group (p < 0.05). Interestingly, the P-Cd in H-Cd group was elevated (p < 0.05) and positively related to their B-Cd and U-Cd values (p < 0.05). However, the mean cord blood Cd (C-Cd) concentration in H-Cd group was not significantly increased about 2.5-fold when comparing to L-Cd group. To determine the Cd accumulation in placental tissues, metallothionein-1A (MT-1A) and metallothionein-2A (MT-2A) expressions were used as biomarkers. The results revealed that mean MT-1A and MT-2A mRNAs and MT-1/2 proteins were up-regulated in H-Cd group (p < 0.05). In addition, the Ca channel alpha 1C (CACNA1C) mRNA and protein expressions were noticeably elevated in H-Cd group (p < 0.05). From these findings, we suggested that CACNA1C might be implicated in Cd transport in human placenta.

  1. Multivalent Induction of Biodegradative Threonine Deaminase

    PubMed Central

    Yui, Yoshiki; Watanabe, Yasuyoshi; Ito, Seiji; Shizuta, Yutaka; Hayaishi, Osamu

    1977-01-01

    To determine the inducer(s) of the biodegradative threonine deaminase in Escherichia coli, the effects of various amino acids on the synthesis of this enzyme were investigated. The complex medium used hitherto for the enzyme induction can be completely replaced by a synthetic medium composed of 18 natural amino acids. In this synthetic medium, the omission of each of the seven amino acids threonine, serine, aspartic acid, methionine, valine, leucine, and arginine resulted in the greatest loss of enzyme formation. These seven amino acids did not significantly influence the uptake of other amino acids into the cells. Furthermore, they did not stimulate the conversion of inactive enzyme into an active form, since they did not affect the enzyme level in cells in which protein synthesis was inhibited by chloramphenicol. Threonine, serine, aspartic acid, and methionine failed to stimulate enzyme production in cells in which messenger ribonucleic acid synthesis was arrested by rifampin, whereas valine, leucine, and arginine stimulated enzyme synthesis under the same conditions. Therefore, the first four amino acids appear to act as inducers of the biodegradative threonine deaminase in E. coli and the last three amino acids appear to be amplifiers of enzyme production. The term “multivalent induction” has been proposed for this type of induction, i.e., enzyme induction only by the simultaneous presence of several amino acids. PMID:334736

  2. Elevated levels of peripheral blood CD14(bright) CD16+ and CD14(dim) CD16+ monocytes may contribute to the development of retinopathy in patients with juvenile onset type 1 diabetes.

    PubMed

    Ryba-Stanisławowska, Monika; Myśliwska, Jolanta; Juhas, Ulana; Myśliwiec, Małgorzata

    2015-09-01

    The study aimed to analyze the CD14(bright) CD16(+) and CD14(dim) CD16(+) monocyte subsets in juvenile-onset complication-free diabetes mellitus type 1 in the context of their association with microvascular complications. 61 children with type 1 diabetes and 30 healthy individuals were enrolled in a study. CD14(bright) CD16(+) and CD14(dim) CD16(+) monocytes were quantified in peripheral blood by means of flow cytometry. At the time of sampling blood glucose concentration was taken along with biochemical measurement of renal function, CRP and glycosylated hemoglobin. The Spearman's correlations were used to compare the relationship between CD16(+) monocyte subsets and the clinical parameters that can predict the development of microangiopathies. The flow cytometric analysis of monocyte subsets in peripheral blood of analyzed subjects revealed that the numbers of CD14(bright) CD16(+) and CD14(dim) CD16(+) monocytes were significantly higher in patients with type 1 diabetes than in the healthy individuals. As to the relationship between CD16(+) monocyte subsets and the clinical parameters that can predict development of microangiopathies, it was shown that both CD16(+) subsets were associated with increased risk of retinopathy development, defined as retinopathy development value. Elevated levels of intermediate CD14(bright) CD16(+) and non-classical CD14(dim) CD16(+) monocytes predict development of diabetic retinopathy in patients with type 1 diabetes.

  3. Role of Therapeutic Plasma Exchange in Treatment of Tumefactive Multiple Sclerosis-Associated Low CD4 and CD8 Levels

    PubMed Central

    Lew, Kristen; Mewada, Nishith; Ramanujam, Sahana; Hassanzadeh, Bahareh; Donahue, John E.; Peddareddygari, Leema Reddy; Moser, Robert; Kososky, Charles; Grewal, Raji P.

    2016-01-01

    We report a 35-year-old healthy male who developed central nervous system inflammatory demyelinating disease consistent with tumefactive multiple sclerosis. About 2 weeks after onset of symptoms and prior to initiation of therapy, the patient had lymphopenia and low CD4 and CD8 levels. His lymphocyte count was 400 cells/µl (850–3,900 cells/µl), CD4 was 193 cells/µl (490–1,740 cells/µl) and CD8 was 103 cells/µl (180–1,170 cells/µl). He was treated with intravenous methylprednisolone followed by therapeutic plasma exchange, the levels of CD4 and CD8 normalized, and ultimately, he recovered completely. PMID:27721782

  4. Bacterial Ammeline Metabolism via Guanine Deaminase

    PubMed Central

    Seffernick, Jennifer L.; Dodge, Anthony G.; Sadowsky, Michael J.; Bumpus, John A.; Wackett, Lawrence P.

    2010-01-01

    Melamine toxicity in mammals has been attributed to the blockage of kidney tubules by insoluble complexes of melamine with cyanuric acid or uric acid. Bacteria metabolize melamine via three consecutive deamination reactions to generate cyanuric acid. The second deamination reaction, in which ammeline is the substrate, is common to many bacteria, but the genes and enzymes responsible have not been previously identified. Here, we combined bioinformatics and experimental data to identify guanine deaminase as the enzyme responsible for this biotransformation. The ammeline degradation phenotype was demonstrated in wild-type Escherichia coli and Pseudomonas strains, including E. coli K12 and Pseudomonas putida KT2440. Bioinformatics analysis of these and other genomes led to the hypothesis that the ammeline deaminating enzyme was guanine deaminase. An E. coli guanine deaminase deletion mutant was deficient in ammeline deaminase activity, supporting the role of guanine deaminase in this reaction. Two guanine deaminases from disparate sources (Bradyrhizobium japonicum USDA 110 and Homo sapiens) that had available X-ray structures were purified to homogeneity and shown to catalyze ammeline deamination at rates sufficient to support bacterial growth on ammeline as a sole nitrogen source. In silico models of guanine deaminase active sites showed that ammeline could bind to guanine deaminase in a similar orientation to guanine, with a favorable docking score. Other members of the amidohydrolase superfamily that are not guanine deaminases were assayed in vitro, and none had substantial ammeline deaminase activity. The present study indicated that widespread guanine deaminases have a promiscuous activity allowing them to catalyze a key reaction in the bacterial transformation of melamine to cyanuric acid and potentially contribute to the toxicity of melamine. PMID:20023034

  5. Functional characterization of human CD34+ cells that express low or high levels of the membrane antigen CD111 (nectin 1).

    PubMed

    Belaaloui, G; Imbert, A-M; Bardin, F; Tonnelle, C; Dubreuil, P; Lopez, M; Chabannon, C

    2003-06-01

    Nectins are recently described adhesion molecules that are widely expressed on many tissues, including the hematopoietic tissue. Nectin 1 (CD111) is expressed on a higher proportion of mobilized peripheral blood (mPB) than cord blood (CB) CD34+ cells, and of CD34+/CD38+ cells when compared with CD34+/CD38- cells. We studied functional properties of human CB and mPB CD34+ cells that express low or high levels of CD111. CD34+/CD111(dim) cells contain a higher proportion of cells in G0/G1 phase than CD34+/CD111(bright) cells. CD34+/CD111(bright) cells contain more erythroid progenitors: CFU-E, than their counterparts, which on the opposite contain more HPP-CFC. Limiting dilution analyses demonstrate a higher frequency of immature progenitors: cobblestone-area colony-forming cells, CD34+/CD111(dim) than in CD34+/CD111(bright) cells. In vitro differentiation assays demonstrate a higher frequency of B-, T- and dendritic-cell precursors, but less NK-cell precursors in CD34+/CD111(dim) cells. Evaluation of engraftment in NOD-SCID mice shows that SCID repopulating cells are more frequent among mPB CD34+/CD111(dim) cells. Liquid culture of CD34+/CD111(dim) cells with erythropoietin shows that CD111 expression increases simultaneously with CD36, following CD71 and before glycophorin A expression. In conclusion, immature human hematopoietic progenitors express low levels of CD111 on their surface. During erythroid differentiation CD34+ cells acquire higher levels of the CD111 antigen.

  6. Accumulation and localization of cadmium in potato (Solanum tuberosum) under different soil Cd levels.

    PubMed

    Chen, Zhifan; Zhao, Ye; Gu, Lei; Wang, Shuifeng; Li, Yongliang; Dong, Fangli

    2014-06-01

    Phytoavailability and uptake mechanism of Cd in edible plant tissues grown on metal polluted agricultural soils has become a growing concern worldwide. Uptake, transport, accumulation and localization of cadmium in potato organs under different soil Cd levels were investigated using inductively-coupled plasma mass spectrometry and energy dispersive X-ray microanalysis. Results indicated that Cd contents in potato organs increased with increasing soil Cd concentrations, and the order of Cd contents in different organs was leaves > stems/roots > tubers. Root-to-stem Cd translocation coefficients ranged from 0.89 to 1.81. Cd localization in potato tissues suggested that leaves and stems should be the main compartment of Cd storage and uptake. Although low concentrations of Cd migrated from the root to tuber, Cd accumulation in the tuber exceeded the standard for food security. Therefore, the planting of potato plants in farmland containing Cd should be closely evaluated due to its potential to present health risks.

  7. Deep level transient spectroscopy investigation of deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact

    NASA Astrophysics Data System (ADS)

    Wang, Zhao; Li, Bing; Zheng, Xu; Xie, Jing; Huang, Zheng; Liu, Cai; Feng, Liang-Huan; Zheng, Jia-Gui

    2010-02-01

    Deep levels in Cds/CdTe thin film solar cells have a potent influence on the electrical property of these devices. As an essential layer in the solar cell device structure, back contact is believed to induce some deep defects in the CdTe thin film. With the help of deep level transient spectroscopy (DLTS), we study the deep levels in CdS/CdTe thin film solar cells with Te:Cu back contact. One hole trap and one electron trap are observed. The hole trap H1, localized at Ev + 0.128 eV, originates from the vacancy of Cd (VCd). The electron trap E1, found at Ec -0.178 eV, is considered to be correlated with the interstitial Cuj+ in CdTe.

  8. Increased serum IL-2R levels in coeliac disease are related to CD4 but not CD8 antigens.

    PubMed

    Blanco, A; Garrote, J A; Arranz, E; Alonso, M; Clavo, C

    1992-11-01

    Forty-three coeliac children, ranging from 1 year and 3 months to 14 years and 9 months, were studied. Twenty-eight patients were in an active phase of the disease, and 15 were in remission. The criteria of coeliac disease (CD) activity were established according to the results of IgA anti-endomysial antibodies (IgA-AEm). Interleukin 2 receptor (IL-2R) and CD4 and CD8 antigens were measured in serum samples by an ELISA technique using two noncompetitive monoclonal antibodies. Antigliadin antibodies of IgG (IgG-AGA) and IgA (IgA-AGA) classes were also measured. The AEm-positive coeliac patient group showed values of 1,860 +/- 948 U/ml for IL-2R, 430 +/- 228 U/ml for CD8, and 36.8 +/- 25.1 U/ml for CD4. AEm-negative patients showed values of 980 +/- 436 U/ml, 350 +/- 243 U/ml, and 24.1 +/- 20 U/ml, respectively. IL-2R levels were the only ones significantly elevated (p < 0.005) in the active coeliac group. On the other hand, IgG-AGA and IgA-AGA were both clearly increased (p < 0.001). IL-2R levels in active coeliac patients correlated with CD4 levels (p < 0.05), but not with CD8, IgG-AGA, and IgA-AGA levels. We also found a surprising negative correlation between AEm antibodies of IgA2 class with both IL-2R (r = 0.471; p < 0.05) and CD8 (r = 0.616; p < 0.05). The results show that in CD there is a lymphocyte activation affecting mainly CD4+ cells and not correlated with serum AGA levels, suggesting an independence of both immunological phenomena and probably with different locations of origin.

  9. Dual targeting of tumor angiogenesis and chemotherapy by endostatin-cytosine deaminase-uracil phosphoribosyltransferase.

    PubMed

    Chen, Chun-Te; Yamaguchi, Hirohito; Lee, Hong-Jen; Du, Yi; Lee, Heng-Huan; Xia, Weiya; Yu, Wen-Hsuan; Hsu, Jennifer L; Yen, Chia-Jui; Sun, Hui-Lung; Wang, Yan; Yeh, Edward T H; Hortobagyi, Gabriel N; Hung, Mien-Chie

    2011-08-01

    Several antiangiogenic drugs targeting VEGF/VEGF receptor (VEGFR) that were approved by the Food and Drug Administration for many cancer types, including colorectal and lung cancer, can effectively reduce tumor growth. However, targeting the VEGF signaling pathway will probably influence the normal function of endothelial cells in maintaining homeostasis and can cause unwanted adverse effects. Indeed, emerging experimental evidence suggests that VEGF-targeting therapy induced less tumor cell-specific cytotoxicity, allowing residual cells to become more resistant and eventually develop a more malignant phenotype. We report an antitumor therapeutic EndoCD fusion protein developed by linking endostatin (Endo) to cytosine deaminase and uracil phosphoribosyltransferase (CD). Specifically, Endo possesses tumor antiangiogenesis activity that targets tumor endothelial cells, followed by CD, which converts the nontoxic prodrug 5-fluorocytosine (5-FC) to the cytotoxic antitumor drug 5-fluorouracil (5-FU) in the local tumor area. Moreover, selective targeting of tumor sites allows an increasing local intratumoral concentration of 5-FU, thus providing high levels of cytotoxic activity. We showed that treatment with EndoCD plus 5-FC, compared with bevacizumab plus 5-FU treatment, significantly increased the 5-FU concentration around tumor sites and suppressed tumor growth and metastasis in human breast and colorectal orthotropic animal models. In addition, in contrast to treatment with bevacizumab/5-FU, EndoCD/5-FC did not induce cardiotoxicity leading to heart failure in mice after long-term treatment. Our results showed that, compared with currently used antiangiogenic drugs, EndoCD possesses potent anticancer activity with virtually no toxic effects and does not increase tumor invasion or metastasis. Together, these findings suggest that EndoCD/5-FC could become an alternative option for future antiangiogenesis therapy.

  10. Endogenous APOBEC3A DNA cytosine deaminase is cytoplasmic and nongenotoxic.

    PubMed

    Land, Allison M; Law, Emily K; Carpenter, Michael A; Lackey, Lela; Brown, William L; Harris, Reuben S

    2013-06-14

    APOBEC3A (A3A) is a myeloid lineage-specific DNA cytosine deaminase with a role in innate immunity to foreign DNA. Previous studies have shown that heterologously expressed A3A is genotoxic, suggesting that monocytes may have a mechanism to regulate this enzyme. Indeed, we observed no significant cytotoxicity when interferon was used to induce the expression of endogenous A3A in CD14(+)-enriched primary cells or the monocytic cell line THP-1. In contrast, doxycycline-induced A3A in HEK293 cells caused major cytotoxicity at protein levels lower than those observed when CD14(+) cells were stimulated with interferon. Immunofluorescent microscopy of interferon-stimulated CD14(+) and THP-1 cells revealed that endogenous A3A is cytoplasmic, in stark contrast to stably or transiently transfected A3A, which has a cell-wide localization. A3A constructs engineered to be cytoplasmic are also nontoxic in HEK293 cells. These data combine to suggest that monocytic cells use a cytoplasmic retention mechanism to control A3A and avert genotoxicity during innate immune responses.

  11. Multi-level 3D implementation of thermo-pneumatic pumping on centrifugal microfluidic CD platforms.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Soin, Norhayati; Abdul Kahar, Maria Kahar Bador; Madou, Marc

    2013-01-01

    Thermo-pneumatic (TP) pumping is a method employing the principle of expanding heated air to transfer fluids back towards the CD center on the centrifugal microfluidic CD platform. While the TP features are easy to fabricate as no moving parts are involved, it consumes extra real estate on the CD, and because heating is involved, it introduces unnecessary heating to the fluids on the CD. To overcome these limitations, we introduce a multi-level 3D approach and implement forced convection heating. In a multi-level 3D CD, the TP features are relocated to a separate top level, while the microfluidic process remains on a lower bottom level. This allows for heat shielding of the fluids in the microfluidic process level, and also improve usage of space on the CD. To aid in future implementations of TP pumping on a multi-level 3D CD, studies on the effect of heat source setting, and the effect of positioning the TP feature (it distance from the CD center) on CD surface heating are also presented. In this work, we successfully demonstrate a multi-level 3D approach to implement TP pumping on the microfluidic CD platform.

  12. Low perceived social support is associated with CD8+CD57+ lymphocyte expansion and increased TNF-α levels.

    PubMed

    Copertaro, Alfredo; Bracci, Massimo; Manzella, Nicola; Barbaresi, Mariella; Copertaro, Benedetta; Santarelli, Lory

    2014-01-01

    Social support has been supposed to have a positive impact on the function of the immune system. However, the relationship between perceived social support and immune function has not yet been fully investigated. In this cross-sectional study, we investigated the link between perceived social support and lymphocyte subpopulations and cytokines. 232 healthy subjects provided a blood sample and completed the Multidimensional Scale of Perceived Social Support (MSPSS) questionnaire. Lymphocyte immunophenotypes and cytokines were determined. Significantly increased CD8+CD57+ lymphocytes and TNF-α levels were found in group with low perceived social support. Multivariate linear regression corrected for possible confounders confirmed a significant role of perceived social support in predicting the number of CD8+CD57+ lymphocyte and TNF-α levels. This study supports the association between perceived social support and immune function. In particular, poor social support may be related to a state of chronic inflammation sustained by CD8+CD57+ lymphocyte expansion and increased TNF-α levels.

  13. Rescue of the Orphan Enzyme Isoguanine Deaminase

    PubMed Central

    Hitchcock, Daniel S.; Fedorov, Alexander A.; Fedorov, Elena V.; Dangott, Lawrence J.; Almo, Steven C.; Raushel, Frank M.

    2011-01-01

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are kcat = 49 s-1, Km = 72 μM, and kcat/Km = 6.7 × 105 M-1 s-1. The kinetic constant for the deamination of cytosine are kcat = 45 s-1, Km = 302 μM, and kcat/Km = 1.5 × 105 M-1 s-1. Under these reaction conditions isoguanine is the better substrate for cytosine deaminase. The three dimensional structure of CDA was determined with isoguanine in the active site. PMID:21604715

  14. Genetics Home Reference: adenosine deaminase 2 deficiency

    MedlinePlus

    ... This Page Bras J, Guerreiro R, Santo GC. Mutant ADA2 in vasculopathies. N Engl J Med. 2014 ... M, Anikster Y, King MC, Levy-Lahad E. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy. ...

  15. Biphasic Dependence of Glioma Survival and Cell Migration on CD44 Expression Level.

    PubMed

    Klank, Rebecca L; Decker Grunke, Stacy A; Bangasser, Benjamin L; Forster, Colleen L; Price, Matthew A; Odde, Thomas J; SantaCruz, Karen S; Rosenfeld, Steven S; Canoll, Peter; Turley, Eva A; McCarthy, James B; Ohlfest, John R; Odde, David J

    2017-01-03

    While several studies link the cell-surface marker CD44 to cancer progression, conflicting results show both positive and negative correlations with increased CD44 levels. Here, we demonstrate that the survival outcomes of genetically induced glioma-bearing mice and of high-grade human glioma patients are biphasically correlated with CD44 level, with the poorest outcomes occurring at intermediate levels. Furthermore, the high-CD44-expressing mesenchymal subtype exhibited a positive trend of survival with increased CD44 level. Mouse cell migration rates in ex vivo brain slice cultures were also biphasically associated with CD44 level, with maximal migration corresponding to minimal survival. Cell simulations suggest that cell-substrate adhesiveness is sufficient to explain this biphasic migration. More generally, these results highlight the potential importance of non-monotonic relationships between survival and biomarkers associated with cancer progression.

  16. Improving wafer level CD uniformity for logic applications utilizing mask level metrology and process

    NASA Astrophysics Data System (ADS)

    Cohen, Avi; Trautzsch, Thomas; Buttgereit, Ute; Graitzer, Erez; Hanuka, Ori

    2013-09-01

    Critical Dimension Uniformity (CDU) is one of the key parameters necessary to assure good performance and reliable functionality of any integrated circuit (IC). The extension of 193nm based lithography usage combined with design rule shrinkage makes process control, in particular the wafer level CDU control, an extremely important and challenging task in IC manufacturing. In this study the WLCD-CDC closed loop solution offered by Carl Zeiss SMS was examined. This solution aims to improve the wafer level intra-field CDU without the need to run wafer prints and extensive wafer CD metrology. It combines two stand-alone tools: The WLCD tool which measures CD based on aerial imaging technology while applying the exact scanner-used illumination conditions to the photomask and the CDC tool which utilizes an ultra-short femto-second laser to write intra-volume shading elements (Shade-In Elements™) inside the photomask bulk material. The CDC process changes the dose going through the photomask down to the wafer, hence the wafer level intra-field CDU improves. The objective of this study was to evaluate how CDC process is affecting the CD for different type of features and pattern density which are typical for logic and system on chip (SOC) devices. The main findings show that the linearity and proximity behavior is maintained by the CDC process and CDU and CDC Ratio (CDCR) show a linear behavior for the different feature types. Finally, it was demonstrated that the CDU errors of the targeted (critical) feature have been effectively eliminated. In addition, the CDU of all other features have been significantly improved as well.

  17. Locomotor activity, ultrasonic vocalization and oxytocin levels in infant CD38 knockout mice.

    PubMed

    Liu, Hong-Xiang; Lopatina, Olga; Higashida, Chiharu; Tsuji, Takahiro; Kato, Ichiro; Takasawa, Shin; Okamoto, Hiroshi; Yokoyama, Shigeru; Higashida, Haruhiro

    2008-12-19

    Oxytocin (OT), a neurohormone involved in reproduction, plays a critical role in social behavior in a wide range of mammalian species from rodents to humans. The role of CD38 in regulating OT secretion for social behavior has been demonstrated in adult mice, but has not been examined in pups or during development. Separation from the dam induces stress in 7-day-old mouse pups. During such isolation, locomotor activity was higher in CD38 knockout (CD38(-/-)) pups than in wild-type (CD38(+/+)) or heterozygous (CD38(+/-)) controls. The number of ultrasonic vocalizations was lower in CD38(-/-) pups than in CD38(+/+) pups. However, the difference between the two genotypes was less severe than that in OT knockout or OT receptor knockout mice. To explain this, we measured plasma OT levels. The level was not lower in CD38(-/-) pups during the period 1-3 weeks after birth, but was significantly reduced after weaning (>3 weeks). ADP-ribosyl cyclase activities in the hypothalamus and pituitary were markedly lower from 1 week after birth in CD38(-/-) mice and were consistently lower thereafter to the adult stage (2 months old). These results showed that the reduced severity of behavioral abnormalities in CD38(-/-) pups was due to partial compensation by the high level of plasma OT.

  18. Effect of alginate microencapsulation on the catalytic efficiency and in vitro enzyme-prodrug therapeutic efficacy of cytosine deaminase and of recombinant E. coli expressing cytosine deaminase.

    PubMed

    Funaro, Michael G; Nemani, Krishnamurthy V; Chen, Zhihang; Bhujwalla, Zaver M; Griswold, Karl E; Gimi, Barjor

    2016-02-01

    Cytosine deaminase (CD) catalyses the enzymatic conversion of the non-toxic prodrug 5-fluorocytosine (5-FC) to the potent chemotherapeutic form, 5-fluorouracil (5-FU). Intratumoral delivery of CD localises chemotherapy dose while reducing systemic toxicity. Encapsulation in biocompatible microcapsules immunoisolates CD and protects it from degradation. We report on the effect of alginate encapsulation on the catalytic and functional activity of isolated CD and recombinant E. coli engineered to express CD (E. coli(CD)). Alginate microcapsules containing either CD or Escherichia coli(CD) were prepared using ionotropic gelation. Conversion of 5-FC to 5-FU was quantitated in unencapsulated and encapsulated CD/E. coli(CD) using spectrophotometry, with a slower rate of conversion observed following encapsulation. Both encapsulated CD/5-FC and E. coli(CD)/5-FC resulted in cell kill and reduced proliferation of 9 L rat glioma cells, which was comparable to direct 5-FU treatment. Our results show that encapsulation preserves the therapeutic potential of CD and E. coli(CD) is equally effective for enzyme-prodrug therapy.

  19. Efficient, low-cost protein factories: expression of human adenosine deaminase in baculovirus-infected insect larvae.

    PubMed Central

    Medin, J A; Hunt, L; Gathy, K; Evans, R K; Coleman, M S

    1990-01-01

    Human adenosine deaminase (EC 3.5.4.4), a key purine salvage enzyme essential for immune competence, has been overproduced in Spodoptera frugiperda cells and in Trichoplusia ni (cabbage looper) larvae infected with recombinant baculovirus. The coding sequence of human adenosine deaminase was recombined into a baculovirus immediately downstream from the strong polyhedrin gene promoter. Approximately 60 hr after infection of insect cells with the recombinant virus, maximal levels of intracellular adenosine deaminase mRNA, protein, and enzymatic activity were detected. The recombinant human adenosine deaminase represented 10% of the total cellular protein and exhibited a specific activity of 70 units/mg of protein in crude homogenate. This specific activity is 70-350 times greater than that exhibited by the enzyme in homogenates of the two most abundant natural sources of human adenosine deaminase, thymus and leukemic cells. When the recombinant virus was injected into insect larvae, the maximum recombinant enzyme was produced 4 days postinfection and represented about 2% of the total insect protein with a specific activity of 10-25 units/mg of protein. The recombinant human adenosine deaminase was purified to homogeneity from both insect cells and larvae and demonstrated to be identical to native adenosine deaminase purified from human cells with respect to molecular weight, interaction with polyclonal anti-adenosine deaminase antibody, and enzymatic properties. A pilot purification yielded 8-9 mg of homogeneous enzyme from 22 larvae. The production of large quantities of recombinant human adenosine deaminase in insect larvae is inexpensive and rapid and eliminates the need for specialized facilities for tissue culture. This method should be applicable to large-scale production of many recombinant proteins. Images PMID:2181448

  20. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture.

    PubMed

    Saleem, Muhammad; Arshad, Muhammad; Hussain, Sarfraz; Bhatti, Ahmad Saeed

    2007-10-01

    Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into alpha-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.

  1. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2007-07-01

    of Helicases and Deaminases PRINCIPAL INVESTIGATOR: XiaoJiang Chen CONTRACTING ORGANIZATION: University of Southern...SUBTITLE 5a. CONTRACT NUMBER Maintaining Genome Stability: The Role of Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c... deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical, functional, and structural

  2. Maintaining Genome Stability: The Role of Helicases and Deaminases

    DTIC Science & Technology

    2006-07-01

    W81XWH-05-1-0391 TITLE: Maintaining Genome Stability: The Role of Helicases and Deaminases PRINCIPAL INVESTIGATOR: Xiaojiang Chen...Helicases and Deaminases 5b. GRANT NUMBER W81XWH-05-1-0391 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Xiaojiang Chen 5e...crystallize the proteins of deaminases . We will focus on AID and APOBEC3G to obtain purified deaminase proteins for the in vitro biochemical

  3. L-Serine deaminase activity is induced by exposure of Escherichia coli K-12 to DNA-damaging agents.

    PubMed Central

    Newman, E B; Ahmad, D; Walker, C

    1982-01-01

    The synthesis of L-serine deaminase in Escherichia coli K-12 was induced after exposure of cells to a variety of DNA-damaging agents, including UV irradiation, nalidixic acid, and mitomycin C. Synthesis was also induced during growth at high temperature. A mutant constitutive for SOS functions showed an elevated level of L-serine deaminase activity. The response to DNA-damaging agents thus may be mediated via the SOS system. PMID:6813312

  4. Enhancement of soluble CD28 levels in the serum of Graves' disease.

    PubMed

    Sun, Zhongwen; Yi, Lixian; Tao, Hong; Huang, Jingfang; Jin, Zhenghong; Xiao, Yang; Feng, Caiyun; Sun, Jing

    2014-01-01

    Graves' disease is an autoimmune disease of the thyroid gland mediated by T cells. CD28, a member of costimulatory molecules, plays a pivotal role in regulating T-cell responses. Plasma-soluble CD28 is one form of CD28 in peripheral blood. To investigate the concentrations of soluble CD28 in patients with Graves' disease, we used a sensitive dual monoclonal antibody sandwich enzyme-linked immunosorbent assay (ELISA) to detect the soluble form of CD28. Our results suggested that mean concentrations of soluble CD28 in plasma of patients with Graves' disease were 1.79 ±1.52 ng/ml, and levels of soluble CD28 in healthy subjects were only 0.83 ±1.35 ng/ml. Concentrations of soluble CD28 detected in patients with Graves' disease were significantly higher than those of healthy subjects (p < 0.01). Moreover, there was a significant positive correlation between the concentrations of soluble CD28 in plasma and levels of FT3 (r = 0.663), FT4 (r = 0.624) and TRAb (r = 0.728) in serum, but a negative correlation was found between sCD28 levels and TSH (r = -0.726). Through in vitro experiments we observed that engagement of soluble CD28 protein and B7-1/B7-2 molecules expressed on dendritic cells could exert the secretion of cytokine IL-6, which may promote the production of autoantibody and aggravate Graves' disease. Therefore, aberrant elevation of plasma-soluble CD28 in patients with Graves' disease may reflect the dysregulation of immune system, and may serve as a useful biomarker in Graves' disease diagnosis.

  5. Human adenosine deaminase. Distribution and properties.

    PubMed

    Van der Weyden, M B; Kelley, W N

    1976-09-25

    Adenosine deaminase exists in multiple molecular forms in human tissue. One form of the enzyme appears to be "particulate". Three forms of the enzyme are soluble and interconvertible with apparent molecular weights of approximately 36,000, 114,000, and 298,000 (designated small, intermediate, and large, respectively). The small form of adenosine deaminase is convertible to the large form only in the presence of a protein, which has an apparent molecular weight of 200,000 and has no adenosine deaminase activity. This conversion of the small form of the enzyme to the large form occurs at 4 degrees, exhibits a pH optimum of 5.0 to 8.0, and is associated with a loss of conversion activity. The small form of the enzyme predominates in tissue preparations exhibiting the higher enzyme-specific activities and no detectable conversion activity. The large form of adenosine deaminase predominates in tissue extracts exhibiting the lower enzyme specific activities and abundant conversion activity. The small form of adenosine deaminase shows several electrophoretic variants by isoelectric focusing. The electrophoretic heterogeneity observed with the large form of the enzyme is similar to that observed with the small form, with the exception that several additional electrophoretic variants are uniformly identified. No organ specificity is demonstrable for the different electrophoretic forms. The kinetic characteristics of the three soluble molecular species of adenosine deaminase are identical except for pH optimum, which is 5.5 for the intermediate species and 7.0 to 7.4 for the large and small forms.

  6. Yeast Cytosine Deaminase Mutants with Increased Thermostability Impart Sensitivity to 5-Fluorocytosine

    PubMed Central

    Stolworthy, Tiffany S.; Korkegian, Aaron M.; Willmon, Candice L.; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L.; Black, Margaret E.

    2008-01-01

    SUMMARY Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil (5FU), an inhibitor of DNA synthesis and RNA function. Over 150 studies of cytosine deaminase-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of cytosine deaminase are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study we stabilized and extended the half-life of yeast cytosine deaminase (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in the temperature that induces protein unfolding and aggregation in thermal denaturation experiments measured by circular dichroism spectroscopy, and an increase in the half-life of enzyme activity at physiological temperature, as well as more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models. PMID:18291415

  7. Increased levels of soluble CD226 in sera accompanied by decreased membrane CD226 expression on peripheral blood mononuclear cells from cancer patients

    PubMed Central

    Xu, Zhuwei; Zhang, Tao; Zhuang, Ran; Zhang, Yun; Jia, Wei; Song, Chaojun; Yang, Kun; Yang, Angang; Jin, Boquan

    2009-01-01

    Background As a cellular membrane triggering receptor, CD226 is involved in the NK cell- or CTL-mediated lysis of tumor cells of different origin, including freshly isolated tumor cells and tumor cell lines. Here, we evaluated soluble CD226 (sCD226) levels in sera, and membrane CD226 (mCD226) expression on peripheral blood mononuclear cells (PBMC) from cancer patients as well as normal subjects, and demonstrated the possible function and origin of the altered sCD226, which may provide useful information for understanding the mechanisms of tumor escape and for immunodiagnosis and immunotherapy. Results Soluble CD226 levels in serum samples from cancer patients were significantly higher than those in healthy individuals (P < 0.001), while cancer patients exhibited lower PBMC mCD226 expression than healthy individuals (P < 0.001). CD226-Fc fusion protein could significantly inhibit the cytotoxicity of NK cells against K562 cells in a dose-dependent manner. Furthermore, three kinds of protease inhibitors could notably increase mCD226 expression on PMA-stimulated PBMCs and Jurkat cells with a decrease in the sCD226 level in the cell culture supernatant. Conclusion These findings suggest that sCD226 might be shed from cell membranes by certain proteases, and, further, sCD226 may be used as a predictor for monitoring cancer, and more important, a possible immunotherapy target, which may be useful in clinical application. PMID:19490613

  8. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions

    PubMed Central

    Cretenet, Gaspard; Clerc, Isabelle; Matias, Maria; Loisel, Severine; Craveiro, Marco; Oburoglu, Leal; Kinet, Sandrina; Mongellaz, Cédric; Dardalhon, Valérie; Taylor, Naomi

    2016-01-01

    CD4 and CD8 T lymphocyte activation requires the generation of sufficient energy to support new biosynthetic demands. Following T cell receptor (TCR) engagement, these requirements are met by an increased glycolysis, due, at least in part, to induction of the Glut1 glucose transporter. As Glut1 is upregulated on tumor cells in response to hypoxia, we assessed whether surface Glut1 levels regulate the antigen responsiveness of human T lymphocytes in both hypoxic and atmospheric oxygen conditions. Notably, Glut1 upregulation in response to TCR stimulation was significantly higher in T lymphocytes activated under hypoxic as compared to atmospheric oxygen conditions. Furthermore, TCR-stimulated human T lymphocytes sorted on the basis of Glut1-Lo and Glut1-Hi profiles maintained distinct characteristics, irrespective of the oxygen tension. While T cells activated in hypoxia divided less than those activated in atmospheric oxygen, Glut1-Hi lymphocytes exhibited increased effector phenotype acquisition, augmented proliferation, and an inverted CD4/CD8 ratio in both oxygen conditions. Moreover, Glut1-Hi T lymphocytes exhibited a significantly enhanced ability to produce IFN-γ and this secretion potential was completely dependent on continued glycolysis. Thus, Glut1 surface levels identify human T lymphocytes with distinct effector functions in both hypoxic and atmospheric oxygen tensions. PMID:27067254

  9. Push pull microfluidics on a multi-level 3D CD.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-08-21

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.

  10. Circulating levels of soluble CD26 are associated with phobic anxiety in women.

    PubMed

    Emanuele, Enzo; Minoretti, Piercarlo; Martinelli, Valentina; Pesenti, Sara; Olivieri, Valentina; Aldeghi, Alessia; Politi, Pierluigi

    2006-09-30

    Dipeptidyl peptidase IV (DPPIV or CD26) is an ubiquitously expressed protease that could play a role in the pathogenesis of anxiety in view of its capacity to cleave several behaviourally active neuropeptides. Hereto we sought to determine the relationship between phobic anxiety, as measured by the Crown-Crisp index, and circulating levels of soluble CD26 (sCD26) in a large cohort of 1017 Italian women participating in a general health survey. The association between sCD26 levels and phobic anxiety was tested using simple correlation analysis, linear regression and multivariate logistic regression analysis. A highly significant inverse association was found between sCD26 concentrations and anxiety scores both in simple correlation and linear regression analysis. Compared with subjects in the first tertile of sCD26 levels, the age-adjusted odds ratio for scoring >/=6 compared to scoring 0 or 1 was 0.31 (95% CI: 0.18-0.74) for the second and 0.47 (95% CI: 0.34-0.63) for the third tertile. Altogether, our data suggest that reduced plasma sCD26 concentrations could be a marker of high levels of phobic anxiety in women.

  11. Delineating CD4 dependency of HIV-1: Adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality

    PubMed Central

    Beauparlant, David; Rusert, Peter; Magnus, Carsten; Weber, Jacqueline; Uhr, Therese; Clapham, Paul R.; Metzner, Karin J.

    2017-01-01

    A hallmark of HIV-1 infection is the continuously declining number of the virus’ predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur. PMID:28264054

  12. Low Levels of Peripheral CD161++CD8+ Mucosal Associated Invariant T (MAIT) Cells Are Found in HIV and HIV/TB Co-Infection

    PubMed Central

    Wong, Emily B.; Akilimali, Ngomu Akeem; Govender, Pamla; Sullivan, Zuri A.; Cosgrove, Cormac; Pillay, Mona; Lewinsohn, David M.; Bishai, William R.; Walker, Bruce D.; Ndung'u, Thumbi; Klenerman, Paul; Kasprowicz, Victoria O.

    2013-01-01

    Background High expression of CD161 on CD8+ T cells is associated with a population of cells thought to play a role in mucosal immunity. We wished to investigate this subset in an HIV and Mycobacterium tuberculosis (MTB) endemic African setting. Methods A flow cytometric approach was used to assess the frequency and phenotype of CD161++CD8+ T cells. 80 individuals were recruited for cross-sectional analysis: controls (n = 13), latent MTB infection (LTBI) only (n = 14), pulmonary tuberculosis (TB) only (n = 9), HIV only (n = 16), HIV and LTBI co-infection (n = 13) and HIV and TB co-infection (n = 15). The impact of acute HIV infection was assessed in 5 individuals recruited within 3 weeks of infection. The frequency of CD161++CD8+ T cells was assessed prior to and during antiretroviral therapy (ART) in 14 HIV-positive patients. Results CD161++CD8+ T cells expressed high levels of the HIV co-receptor CCR5, the tissue-homing marker CCR6, and the Mucosal-Associated Invariant T (MAIT) cell TCR Vα7.2. Acute and chronic HIV were associated with lower frequencies of CD161++CD8+ T cells, which did not correlate with CD4 count or HIV viral load. ART was not associated with an increase in CD161++CD8+ T cell frequency. There was a trend towards lower levels of CD161++CD8+ T cells in HIV-negative individuals with active and latent TB. In those co-infected with HIV and TB, CD161++CD8+ T cells were found at low levels similar to those seen in HIV mono-infection. Conclusions The frequencies and phenotype of CD161++CD8+ T cells in this South African cohort are comparable to those published in European and US cohorts. Low-levels of this population were associated with acute and chronic HIV infection. Lower levels of the tissue-trophic CD161++ CD8+ T cell population may contribute to weakened mucosal immune defense, making HIV-infected subjects more susceptible to pulmonary and gastrointestinal infections and detrimentally impacting on host defense against TB

  13. Rescue of the Orphan Enzyme Isoguanine Deaminase

    SciTech Connect

    D Hitchcock; A Fedorov; E Fedorov; L Dangott; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k{sub cat} = 49 s{sup -1}, K{sub m} = 72 {micro}M, and k{sub cat}/K{sub m} = 6.7 x 10{sup 5} M{sup -1} s{sup -1}. The kinetic constants for the deamination of cytosine are as follows: k{sub cat} = 45 s{sup -1}, K{sub m} = 302 {micro}M, and k{sub cat}/K{sub m} = 1.5 x 10{sup 5} M{sup -1} s{sup -1}. Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  14. Rescue of the orphan enzyme isoguanine deaminase.

    PubMed

    Hitchcock, Daniel S; Fedorov, Alexander A; Fedorov, Elena V; Dangott, Lawrence J; Almo, Steven C; Raushel, Frank M

    2011-06-28

    Cytosine deaminase (CDA) from Escherichia coli was shown to catalyze the deamination of isoguanine (2-oxoadenine) to xanthine. Isoguanine is an oxidation product of adenine in DNA that is mutagenic to the cell. The isoguanine deaminase activity in E. coli was partially purified by ammonium sulfate fractionation, gel filtration, and anion exchange chromatography. The active protein was identified by peptide mass fingerprint analysis as cytosine deaminase. The kinetic constants for the deamination of isoguanine at pH 7.7 are as follows: k(cat) = 49 s(-1), K(m) = 72 μM, and k(cat)/K(m) = 6.7 × 10(5) M(-1) s(-1). The kinetic constants for the deamination of cytosine are as follows: k(cat) = 45 s(-1), K(m) = 302 μM, and k(cat)/K(m) = 1.5 × 10(5) M(-1) s(-1). Under these reaction conditions, isoguanine is the better substrate for cytosine deaminase. The three-dimensional structure of CDA was determined with isoguanine in the active site.

  15. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase.

    PubMed

    Ali, Shimaila; Charles, Trevor C; Glick, Bernard R

    2014-07-01

    Plant growth and productivity is negatively affected by soil salinity. However, it is predicted that plant growth-promoting bacterial (PGPB) endophytes that contain 1-aminocyclopropane-1-carboxylate (ACC) deaminase (E.C. 4.1.99.4) can facilitate plant growth and development in the presence of a number of different stresses. In present study, the ability of ACC deaminase containing PGPB endophytes Pseudomonas fluorescens YsS6, Pseudomonas migulae 8R6, and their ACC deaminase deficient mutants to promote tomato plant growth in the absence of salt and under two different levels of salt stress (165 mM and 185 mM) was assessed. It was evidence that wild-type bacterial endophytes (P. fluorescens YsS6 and P. migulae 8R6) promoted tomato plant growth significantly even in the absence of stress (salinity). Plants pretreated with wild-type ACC deaminase containing endophytic strains were healthier and grew to a much larger size under high salinity stress compared to plants pretreated with the ACC deaminase deficient mutants or no bacterial treatment (control). The plants pretreated with ACC deaminase containing bacterial endophytes exhibit higher fresh and dry biomass, higher chlorophyll contents, and a greater number of flowers and buds than the other treatments. Since the only difference between wild-type and mutant bacterial endophytes was ACC deaminase activity, it is concluded that this enzyme is directly responsible for the different behavior of tomato plants in response to salt stress. The use of PGPB endophytes with ACC deaminase activity has the potential to facilitate plant growth on land that is not normally suitable for the majority of crops due to their high salt contents.

  16. Expression and characterization of a second L-amino acid deaminase isolated from Proteus mirabilis in Escherichia coli.

    PubMed

    Baek, Jin-Oh; Seo, Jeong-Woo; Kwon, Ohsuk; Seong, Su-Il; Kim, Ik-Hwan; Kim, Chul Ho

    2011-04-01

    L-amino acid deaminases catalyze the deamination of natural L-amino acids. Two types of L-amino acid deaminase have been identified in Proteus species. One exhibits high levels of activity toward a wide range of aliphatic and aromatic L-amino acids, typically L-phenylalanine, whereas the other acts on a relatively narrow range of basic L-amino acids, typically L-histidine. In this study, we cloned, expressed, and characterized a second amino acid deaminase, termed Pm1, from P. mirabilis KCTC 2566. Homology alignment of the deduced amino acid sequence of Pm1 demonstrated that the greatest similarity (96%) was with the L-amino acid deaminase (LAD) of P. vulgaris, and that homology with Pma was relatively low (72%). Also, similar to LAD, Pm1 was most active on L-histidine, indicating that Pm1 belongs to the second type of amino acid deaminase. In agreement with this conclusion, the V(max) and K(m) values of Pm1 were 119.7 (μg phenylpyruvic acid/mg/min) and 31.55 mM phenylalanine, respectively, values lower than those of Pma. The Pml deaminase will be very useful industrially in the preparation of commercially valuable materials including urocanic acid and α-oxoglutarate.

  17. Oncolytic herpes simplex virus expressing yeast cytosine deaminase: relationship between viral replication, transgene expression, prodrug bioactivation.

    PubMed

    Yamada, S; Kuroda, T; Fuchs, B C; He, X; Supko, J G; Schmitt, A; McGinn, C M; Lanuti, M; Tanabe, K K

    2012-03-01

    Yeast cytosine deaminase (yCD) is a well-characterized prodrug/enzyme system that converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), and has been combined with oncolytic viruses. However, in vivo studies of the interactions between 5-FC bioactivation and viral replication have not been previously reported, nor have the kinetics of transgene expression and the pharmacokinetics of 5-FC and 5-FU. We constructed a replication-conditional Herpes simplex virus 1 (HSV-1) expressing yCD and examined cytotoxicity when 5-FC was initiated at different times after viral infection, and observed that earlier 5-FC administration led to greater cytotoxicity than later 5-FC administration in vitro and in vivo. In animal models, 12 days of 5-FC administration was superior to 6 days, but dosing beyond 12 days did not further enhance efficacy. Consistent with the dosing-schedule results, both viral genomic DNA copy number and viral titers were observed to peak on Day 3 after viral injection and gradually decrease thereafter. The virus is replication-conditional and was detected in tumors for as long as 2 weeks after viral injection. The maximum relative extent of yCD conversion of 5-FC to 5-FU in tumors was observed on Day 6 after viral injection and it decreased progressively thereafter. The observation that 5-FU generation within tumors did not lead to appreciable levels of systemic 5-FU (<10 ng ml⁻¹) is important and has not been previously reported. The approaches used in these studies of the relationship between the viral replication kinetics, transgene expression, prodrug administration and anti-tumor efficacy are useful in the design of clinical trials of armed, oncolytic viruses.

  18. The Effect of Acute Exercise upon Adenosin Deaminase Oxidant and Antioxidant Activity

    ERIC Educational Resources Information Center

    Kafkas, M. Emin; Karabulut, Aysun Bay; Sahin, Armagan; Otlu, Onder; Savas, Seyfi; Aytac, Aylin

    2012-01-01

    The purpose of this study was to determine the changes of MDA, glutation (GSH), Adenozine deaminase (ADA) and superoxidase dismutaze (SOD) levels with exercise training in obese middle-aged women (body mass index, MMI [greater than or equal to] 30.0). Twelve obese middle-aged women participated in this study. The descriptive statistics of some of…

  19. Dynamic Change of CD34 Level during the Survival Process of Narrow Pedicle Flap

    PubMed Central

    Wu, Lijun; Zhao, Tianlan; Yu, Daojiang; Chen, Qi; Han, Wenya; Yu, Wenyuan; Sun, Wei

    2015-01-01

    Objective To evaluate the dynamic change of CD34 level during the survival process of narrow pedicle flaps. Methods Twenty-five white pigs were randomly and equally divided into 5 experimental groups. Five different type of narrow pedicle with different length-to-width ratio were employed, and each type of narrow pedicle was covered with 5 different size random flaps and which was classified into A, B, C, D and E for 5 groups. Group A was control group. Each type narrow pedicle with 5 different skin flaps were implanted onto the back of the pigs along the midline of back with a reverse direction. A 0.3 cm×0.3 cm full thickness skin flap in the middle of distal segment was collected and on 3rd, 5th, 7th and 14th days of post-operation. The expression of CD34 was measured by immunohistochemistry and enzyme-linked immunosorbent (ELISA). Results Histological examination showed that with the increasing of length-to-width ratio of the narrow pedicle skin flaps, the expression of CD34 increased in the skin flaps. Increased level of CD34 was found on 3rd day post-operation, and the peak expression was found on 7th day. Persistent high level of CD34 was found until 14th day. Conclusion Increased CD34 level in the distal skin flap, there is the association between CD34 level and ischemia injury. Moreover, CD34 expression plays an important role during the repair processes of pedicle flaps. PMID:26561392

  20. Are increased frequency of macrophage-like and natural killer (NK) cells, together with high levels of NKT and CD4+CD25high T cells balancing activated CD8+ T cells, the key to control Chagas’ disease morbidity?

    PubMed Central

    Vitelli-Avelar, D M; Sathler-Avelar, R; Massara, R L; Borges, J D; Lage, P S; Lana, M; Teixeira-Carvalho, A; Dias, J C P; Elói-Santos, S M; Martins-Filho, O A

    2006-01-01

    The immunological response during early human Trypanosoma cruzi infection is not completely understood, despite its role in driving the development of distinct clinical manifestations of chronic infection. Herein we report the results of a descriptive flow cytometric immunophenotyping investigation of major and minor peripheral blood leucocyte subpopulations in T. cruzi-infected children, characterizing the early stages of the indeterminate clinical form of Chagas’ disease. Our results indicated significant alterations by comparison with uninfected children, including increased values of pre-natural killer (NK)-cells (CD3– CD16+ CD56–), and higher values of proinflammatory monocytes (CD14+ CD16+ HLA-DR++). The higher values of activated B lymphocytes (CD19+ CD23+) contrasted with impaired T cell activation, indicated by lower values of CD4+ CD38+ and CD4+ HLA-DR+ lymphocytes, a lower frequency of CD8+ CD38+ and CD8+ HLA-DR+ cells; a decreased frequency of CD4+ CD25HIGH regulatory T cells was also observed. These findings reinforce the hypothesis that simultaneous activation of innate and adaptive immunity mechanisms in addition to suppression of adaptive cellular immune response occur during early events of Chagas’ disease. Comparative cross-sectional analysis of these immunophenotypes with those exhibited by patients with late chronic indeterminate and cardiac forms of disease suggested that a shift toward high values of macrophage-like cells extended to basal levels of proinflammatory monocytes as well as high values of mature NK cells, NKT and regulatory T cells, may account for limited tissue damage during chronic infection favouring the establishment/maintenance of a lifelong indeterminate clinical form of the disease. On the other hand, development of an adaptive cell-mediated inflammatory immunoprofile characterized by high levels of activated CD8+ cells and basal levels of mature NK cells, NKT and CD4+ CD25HIGH cells might lead to late chronic

  1. Ectopic Epithelial Deaminase in IBD

    DTIC Science & Technology

    2014-05-01

    transducers and activators of transcription 3 (STAT3). We initially hypothesized the deleterious role of AID in colitis , but our new data rather...disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC) is a chronic intestinal disorder that is caused by dysregulated host/microbial...after exposure to dextran sulfate sodium (DSS) that induces acute colitis . During the first budget year, we have successfully collected DNA from

  2. Ectopic Epithelial Deaminase in IBD

    DTIC Science & Technology

    2013-10-01

    Inflammatory bowel disease (IBD) including Crohn’s disease (CD) and ulcerative colitis (UC) is a chronic intestinal disorder that is caused by...mice (carrying non-functional AID) before and after induction of colitis by oral administration of dextran sulfate sodium (DSS). 1c will...epithelial cells in colitis (months 1-18) 2a will develop and expand the mouse colony of RAG1-deficient KI/KI mice (months 1-6). In order to test the

  3. Genetic immunotherapy for hepatocellular carcinoma by endothelial progenitor cells armed with cytosine deaminase.

    PubMed

    Chen, Rong; Yu, Hui; An, Yan-Li; Yu-Jia, Zhen; Teng, Gao-Jun

    2014-02-01

    Endothelial progenitor cells (EPCs) serve as cellular vehicles for targeting cancer cells and are a powerful tool for delivery of therapeutic genes. Cytosine deaminase (CD), a kind of frequent suicide gene which can kill carcinoma cells by converting a non-poisonous pro-drug 5-flucytosine (5-FC) into a poisonous cytotoxic 5-fluorouracil (5-FU). We combined super-paramagnetic iron oxide (SPIO) nanoparticles labeled EPCs with CD gene to treat grafted liver carcinomas and tracked them with 7.0 T Magnetic resonance imaging (MRI). Results showed that the therapeutic EPCs loaded with CD plus 5-Fc provided stronger carcinoma growth suppression compared with treatment using CD alone. The CD/5-Fc significantly inhibited the growth of endothelial cells and induced carcinoma cells apoptosis. These results indicate that EPCs transfected with anti-carcinoma genes can be used in carcinoma therapy as a novel therapeutic modality.

  4. Curcumin improves episodic memory in cadmium induced memory impairment through inhibition of acetylcholinesterase and adenosine deaminase activities in a rat model.

    PubMed

    Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu

    2017-02-01

    Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.

  5. Expression of fas protein on CD4+T cells irradiated by low level He-Ne

    NASA Astrophysics Data System (ADS)

    Nie, Fan; Zhu, Jing; Zhang, Hui-Guo

    2005-07-01

    Objective: To investigate the influence on the Expression of Fas protein on CD4+ T cells irradiated by low level He-Ne laser in the cases of psoriasis. Methods:the expression of CD4+ T Fas protein was determined in the casee of psoriasis(n=5) pre and post-low level laser irradiation(30 min、60min and 120min)by flow cytometry as compared withthe control(n=5). Results:In the cases of psoriasis,the expression of CD4+T FAS protein 21.4+/-3.1% was increased significantly than that of control group 16.8+/-2.1% pre-irradiation, p<0.05in the control,there is no difference between pre and post- irradiation,p>0.05in the cases , the expression of CD4+T Fas protein wae positively corelated to the irradiation times, when the energy density arrived to 22.92J/cm2(60 minutes)and 45.84J/cm2(120minutes), the expression of CD4+ T Fas protein was increased significantly as compared with pre-irradiation,p<0.05.Conclusion: The expression of CD4+T Fas protein may be increased by low level He-Ne laser irradiation ,the uncontrolled status of apoptosis could be corrected.

  6. Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

    PubMed

    Land, Allison M; Wang, Jiayi; Law, Emily K; Aberle, Ryan; Kirmaier, Andrea; Krupp, Annabel; Johnson, Welkin E; Harris, Reuben S

    2015-11-24

    APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.

  7. Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference.

    PubMed

    Mahan, Sheri D; Ireton, Greg C; Stoddard, Barry L; Black, Margaret E

    2004-07-20

    Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.

  8. A Higher Risk of Acute Rejection of Human Kidney Allografts Can Be Predicted from the Level of CD45RC Expressed by the Recipients’ CD8 T Cells

    PubMed Central

    Ordonez, Laurence; Bernard, Isabelle; Chabod, Marianne; Augusto, Jean-François; Lauwers-Cances, Valerie; Cristini, Christelle; Cuturi, Maria-Cristina; Subra, Jean-François; Saoudi, Abdelhadi

    2013-01-01

    Although transplantation is the common treatment for end-stage renal failure, allograft rejection and marked morbidity from the use of immunosuppressive drugs remain important limitations. A major challenge in the field is to identify easy, reliable and noninvasive biomarkers allowing the prediction of deleterious alloreactive immune responses and the tailoring of immunosuppressive therapy in individuals according to the rejection risk. In this study, we first established that the expression of the RC isoform of the CD45 molecule (CD45RC) on CD4 and CD8 T cells from healthy individuals identifies functionally distinct alloreactive T cell subsets that behave differently in terms of proliferation and cytokine secretion. We then investigated whether the frequency of the recipients CD45RC T cell subsets before transplantation would predict acute graft rejection in a cohort of 89 patients who had undergone their first kidney transplantation. We showed that patients exhibiting more than 54.7% of CD8 CD45RChigh T cells before transplantation had a 6 fold increased risk of acute kidney graft rejection. In contrast, the proportions of CD4 CD45RC T cells were not predictive. Thus, a higher risk of acute rejection of human kidney allografts can be predicted from the level of CD45RC expressed by the recipients’ CD8 T cells. PMID:23894540

  9. Identification of two subpopulations of purified human blood B cells, CD27− CD23+ and CD27high CD80+, that strongly express cell surface Toll-like receptor 9 and secrete high levels of interleukin-6

    PubMed Central

    Cognasse, Fabrice; Hamzeh-Cognasse, Hind; Lafarge, Sandrine; Chavarin, Patricia; Pozzetto, Bruno; Richard, Yolande; Garraud, Olivier

    2008-01-01

    B-cell expression of certain Toll-like receptors (TLRs) is important in linking innate and adaptive immune responses in normal and pathological conditions. The expression of TLR9 plays a role in the recognition of conserved pathogen motifs in a manner that is dependent on B-cell localization, deduced from B-cell phenotype. The nature of TLR9 function is unclear. A first step in unravelling the function of this pattern recognition receptor is to discover the precise nature of the cell types that express TLR9. This study used three-colour flow cytometry to characterize the B lymphocytes from human peripheral blood mononuclear cells (PBMCs) that express TLR9 on the surface. We sorted TLR9-positive B and non-B cells from the PBMC population and detected TLR9 expression on naïve and memory B cells. Moreover, we identified two discrete subpopulations of B cells: CD19+ CD27− CD23+ cells and CD19+ CD27high CD80+ cells. These subpopulations expressed high levels of membrane TLR9 and exhibited a strong in vitro response to binding a relevant CpG motif by secreting high levels of interleukin-6 (compared to controls). Our finding that this pattern recognition receptor is expressed on a variety of cell subsets adds to the current understanding of the functional complexity of B-cell membrane TLR9. PMID:18445007

  10. Lithographic CD variation in contact, via, local interconnect, and damascene levels

    NASA Astrophysics Data System (ADS)

    Trouiller, Yorick; Didiergeorges, Anne; Fanget, Gilles L.; Laviron, Cyrille; Comboroure, Corinne; Quere, Yves

    1999-08-01

    The goal of this paper is to understand the optical phenomena at dielectric levels (contact, local interconnect, via and damascene line levels). The purpose is also to quantify the impact of dielectric and resist thickness variations on the CD range with and without Bottom Anti Reflective Coating (BARC). First we will show how all dielectric levels can be reduced to the stack metal/oxide/BARC/resist, and what are the contributions to resist and dielectric thickness range for each levels. Then a simple model will be developed to understand CD variation in this stack: by extending the Perot-Fabry model to the dielectric levels, developed by Brunner for the gate level, we can obtain a simple relation between the CD variation and all parameters (metal, oxide thickness, resist thickness, BARC absorbency). Experimentally CD variations for damascene line level on 0.18 micrometers technology has been measured depending on oxide thickness and resist thickness and can confirm this model. UV5 resist, AR2 BARC from Shipley and Top ARC from JSR have been used for these experiments.

  11. BK Virus Load Associated with Serum Levels of sCD30 in Renal Transplant Recipients

    PubMed Central

    Malik, Salma N.; Al-Saffer, Jinan M.; Jawad, Rana S.

    2016-01-01

    Background. Rejection is the main drawback facing the renal transplant operations. Complicated and overlapping factors, mainly related to the immune system, are responsible for this rejection. Elevated serum levels of sCD30 were frequently recorded as an indicator for renal allograft rejection, while BV virus is considered as one of the most serious consequences for immunosuppressive treatment of renal transplant recipients (RTRs). Aims. This study aimed to determine the association of BK virus load with serum levels of sCD30 in RTRs suffering from nephropathy. Patients and Methods. A total of 50 RTRs with nephropathy and 30 age-matched apparently healthy individuals were recruited for this study. Serum samples were obtained from each participant. Real-time PCR was used to quantify BK virus load in RTRs serum, while ELISA technique was employed to estimate serum levels of sCD30. Results. Twenty-two percent of RTRs had detectable BKV with mean viral load of 1.094E + 06 ± 2.291E + 06. RTRs showed higher mean serum level of sCD30 (20.669 ± 18.713 U/mL) than that of controls (5.517 ± 5.304 U/mL) with significant difference. BK virus load had significant positive correlation with the serum levels of sCD30 in RTRs group. Conclusion. These results suggest that serum levels of sCD30 could be used as an indicator of BK viremia, and accordingly the immunosuppressive regime should be adjusted. PMID:27051424

  12. Elucidation of the time course of adenosine deaminase APOBEC3G and viral infectivity factor vif in HIV-2287-infected infant macaques

    PubMed Central

    Endsley, Aaron N.; Ho, Rodney J.Y.

    2012-01-01

    Background Although the interactions of cellular cytidine deaminase A3G and viral infection factor (vif) of human immunodeficiency virus (HIV) were reported, regulation of A3G after in vivo HIV infection and disease progression is not known. Methods Time courses of plasma virus, CD4+ T lymphocyte Macaca levels, and concentrations of A3G and vif transcripts were determined in infant macaques infected with HIV-2287. These in vivo results were compared with those collected in vitro in HIV-2-infected T cells. Results Human immunodeficiency virus-infected macaques exhibited plasma viremia (≥108 copies/ml) followed by a precipitous CD4+ T-cell (from 40–70 to ≤5%) decline. An initial increase in A3G transcripts coincides with early increases in virus and vif RNA. As virus load continues to increase, A3G RNA decreases but recovers at a later phase as virus level stabilizes. Pearson correlation analysis revealed strong interactions of A3G–CD4, vif–CD4, and A3G–vif. Conclusions There is a time-dependent A3G and vif RNA interaction throughout the course of HIV infection. PMID:22017399

  13. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    SciTech Connect

    Simonds, Brian J.; Kheraj, Vipul; Palekis, Vasilios; Ferekides, Christos; Scarpulla, Michael A.

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  14. Stabilization of Aspergillus parasiticus cytosine deaminase by immobilization on calcium alginate beads improved enzyme operational stability.

    PubMed

    Zanna, H; Nok, A J; Ibrahim, S; Inuwa, H M

    2013-12-01

    Cytosine deaminase (CD) from Aspergillus parasiticus, which has half-life of 1.10 h at 37°C, was stabilized by immobilization on calcium alginate beads. The immobilized CD had pH and temperature optimum of 5 and 50°C respectively. The immobilized enzyme also stoichiometrically deaminated Cytosine and 5-fluorocytosine (5-FC) with the apparent K(M) values of 0.60 mM and 0.65 mM respectively, displaying activation energy of 10.72 KJ/mol. The immobilization of native CD on calcium alginate beads gave the highest yield of apparent enzymatic activity of 51.60% of the original activity and the enzymatic activity was lost exponentially at 37°C over 12 h with a half-life of 5.80 h. Hence, the operational stability of native CD can be improved by immobilization on calcium alginate beads.

  15. Dissecting the Contingent Interactions of Protein Complexes with the Optimized Yeast Cytosine Deaminase Protein-Fragment Complementation Assay.

    PubMed

    Ear, Po Hien; Kowarzyk, Jacqueline; Michnick, Stephen W

    2016-11-01

    Here, we present a detailed protocol for studying in yeast cells the contingent interaction between a substrate and its multisubunit enzyme complex by using a death selection technique known as the optimized yeast cytosine deaminase protein-fragment complementation assay (OyCD PCA). In yeast, the enzyme cytosine deaminase (encoded by FCY1) is involved in pyrimidine metabolism. The PCA is based on an engineered form of yeast cytosine deaminase optimized by directed evolution for maximum activity (OyCD), which acts as a reporter converting the pro-drug 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU), a toxic compound that kills the cell. Cells that have OyCD PCA activity convert 5-FC to 5-FU and die. Using this assay, it is possible to assess how regulatory subunits of an enzyme contribute to the overall interaction between the catalytic subunit and the potential substrates. Furthermore, OyCD PCA can be used to dissect different functions of mutant forms of a protein as a mutant can disrupt interaction with one partner, while retaining interaction with others. As it is scalable to a medium- or high-throughput format, OyCD PCA can be used to study hundreds to thousands of pairwise protein-protein interactions in different deletion strains. In addition, OyCD PCA vectors (pAG413GAL1-ccdB-OyCD-F[1] and pAG415GAL1-ccdB-OyCD-F[2]) have been designed to be compatible with the proprietary Gateway technology. It is therefore easy to generate fusion genes with the OyCD reporter fragments. As an example, we will focus on the yeast cyclin-dependent protein kinase 1 (Cdk1, encoded by CDC28), its regulatory cyclin subunits, and its substrates or binding partners.

  16. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  17. Investigation of deep level defects in CdTe thin films

    SciTech Connect

    Shankar, H.; Castaldini, A.; Dauksta, E.; Medvid, A.; Cavallini, A.

    2014-02-21

    In the past few years, a large body of work has been dedicated to CdTe thin film semiconductors, as the electronic and optical properties of CdTe nanostructures make them desirable for photovoltaic applications. The performance of semiconductor devices is greatly influenced by the deep levels. Knowledge of parameters of deep levels present in as-grown materials and the identification of their origin is the key factor in the development of photovoltaic device performance. Photo Induced Current Transient Spectroscopy technique (PICTS) has proven to be a very powerful method for the study of deep levels enabling us to identify the type of traps, their activation energy and apparent capture cross section. In the present work, we report the effect of growth parameters and LASER irradiation intensity on the photo-electric and transport properties of CdTe thin films prepared by Close-Space Sublimation method using SiC electrical heating element. CdTe thin films were grown at three different source temperatures (630, 650 and 700 °C). The grown films were irradiated with Nd:YAG LASER and characterized by Photo-Induced Current Transient Spectroscopy, Photocurrent measurementand Current Voltage measurements. The defect levels are found to be significantly influenced by the growth temperature.

  18. Progesterone Levels Associate with a Novel Population of CCR5+CD38+ CD4 T Cells Resident in the Genital Mucosa with Lymphoid Trafficking Potential.

    PubMed

    Swaims-Kohlmeier, Alison; Haaland, Richard E; Haddad, Lisa B; Sheth, Anandi N; Evans-Strickfaden, Tammy; Lupo, L Davis; Cordes, Sarah; Aguirre, Alfredo J; Lupoli, Kathryn A; Chen, Cheng-Yen; Ofotukun, Igho; Hart, Clyde E; Kohlmeier, Jacob E

    2016-07-01

    The female genital tract (FGT) provides a means of entry to pathogens, including HIV, yet immune cell populations at this barrier between host and environment are not well defined. We initiated a study of healthy women to characterize resident T cell populations in the lower FGT from lavage and patient-matched peripheral blood to investigate potential mechanisms of HIV sexual transmission. Surprisingly, we observed FGT CD4 T cell populations were primarily CCR7(hi), consistent with a central memory or recirculating memory T cell phenotype. In addition, roughly half of these CCR7(hi) CD4 T cells expressed CD69, consistent with resident memory T cells, whereas the remaining CCR7(hi) CD4 T cells lacked CD69 expression, consistent with recirculating memory CD4 T cells that traffic between peripheral tissues and lymphoid sites. HIV susceptibility markers CCR5 and CD38 were increased on FGT CCR7(hi) CD4 T cells compared with blood, yet migration to the lymphoid homing chemokines CCL19 and CCL21 was maintained. Infection with GFP-HIV showed that FGT CCR7(hi) memory CD4 T cells are susceptible HIV targets, and productive infection of CCR7(hi) memory T cells did not alter chemotaxis to CCL19 and CCL21. Variations of resident CCR7(hi) FGT CD4 T cell populations were detected during the luteal phase of the menstrual cycle, and longitudinal analysis showed the frequency of this population positively correlated to progesterone levels. These data provide evidence women may acquire HIV through local infection of migratory CCR7(hi) CD4 T cells, and progesterone levels predict opportunities for HIV to access these novel target cells.

  19. Influence of deep level defects on carrier lifetime in CdZnTe:In

    SciTech Connect

    Guo, Rongrong; Jie, Wanqi Wang, Ning; Zha, Gangqiang; Xu, Yadong; Wang, Tao; Fu, Xu

    2015-03-07

    The defect levels and carrier lifetime in CdZnTe:In crystal were characterized with photoluminescence, thermally stimulated current measurements, as well as contactless microwave photoconductivity decay (MWPCD) technique. An evaluation equation to extract the recombination lifetime and the reemission time from MWPCD signal is developed based on Hornbeck-Haynes trapping model. An excellent agreement between defect level distribution and carrier reemission time in MWPCD signal reveals the tail of the photoconductivity decay is controlled by the defect level reemission effect. Combining {sup 241}Am gamma ray radiation response measurement and laser beam induced transient current measurement, it predicted that defect level with the reemission time shorter than the collection time could lead to better charge collection efficiency of CdZnTe detector.

  20. N-terminal amino acid sequences of D-serine deaminases of wild-type and operator-constitutive strains of Escherichia coli K-12.

    PubMed Central

    Heincz, M C; McFall, E

    1975-01-01

    The N-terminal amino acid sequences of the D-serine deaminases from strains of Escherichia coli K-12 that harbor wild-type and high-level constitutive catabolite-insensitive operator-initiator regions are identical: Met-Ser-GluNH2-Ser-Gly-Arg-His-Cys. This result indicates that the operator-initiator region is probably distinct from the D-serine deaminase structural gene. Images PMID:1099073

  1. Engineering and optimising deaminase fusions for genome editing

    PubMed Central

    Yang, Luhan; Briggs, Adrian W.; Chew, Wei Leong; Mali, Prashant; Guell, Marc; Aach, John; Goodman, Daniel Bryan; Cox, David; Kan, Yinan; Lesha, Emal; Soundararajan, Venkataramanan; Zhang, Feng; Church, George

    2016-01-01

    Precise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications. PMID:27804970

  2. Deep trap levels in CdS solar cells observed by capacitance measurements

    NASA Astrophysics Data System (ADS)

    Hmurcik, L.; Ketelsen, L.; Serway, R. A.

    1982-05-01

    Capacitance measurements have been carried out as a function of reverse bias voltage and signal frequency on thin-film and single-crystal CdS solar cells. It is shown that such measurements can reveal abrupt changes in C-V plots which are attributed to the presence of deep trapping states. The anomalous change in capacitance occurs when the bias voltage raises a trapping state above the Fermi level; the strength of the anomalies depends on several factors including temperature, signal frequency, and junction properties. Measurements taken on the CdS cells indicate that at least two deep trapping states are present in the partially formed i layer of CdS, which is consistent with results reported by other workers.

  3. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase.

    PubMed

    Li, Zhengyi; Chang, Siping; Ye, Shuting; Chen, Mingyue; Lin, Li; Li, Yuanyuan; Li, Shuying; An, Qianli

    2015-10-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase-mediated reduction of ethylene generation in plants under abiotic stresses is a key mechanism by which bacteria can promote plant growth. Misidentification of ACC deaminase and the ACC deaminase structure gene (acdS) can lead to overestimation of the number of bacteria containing ACC deaminase and their function in ecosystems. Previous non-specific amplification of acdS homologs has led to an overestimation of the horizontal transfer of acdS genes. Here, we designed consensus-degenerate hybrid oligonucleotide primers (acdSf3, acdSr3 and acdSr4) based on differentiating the key residues in ACC deaminases from those of homologs for specific amplification of partial acdS genes. PCR amplification, sequencing and phylogenetic analysis identified acdS genes from a wide range of proteobacteria and actinobacteria. PCR amplification and a genomic search did not find the acdS gene in bacteria belonging to Pseudomonas stutzeri or in the genera Enterobacter, Klebsiella or Bacillus. We showed that differentiating the acdS gene and ACC deaminase from their homologs was crucial for the molecular identification of bacteria containing ACC deaminase and for understanding the evolution of the acdS gene. We provide an effective method for screening and identifying bacteria containing ACC deaminase.

  4. Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell Surface: Looking to Improve Immunotherapy Response.

    PubMed

    Singh, Vijay; Gupta, Damodar; Almasan, Alexandru

    2015-11-01

    Rituximab has been revolutionized and validated CD20 targeting monoclonal antibody. Although, it is widely used for lymphoma therapy and many patients have been benefited. However significant numbers of patients are refractory or developed resistance to current therapies due to low level of CD20 expression and/or availability on cells surface. Thus development of novel anti-CD20 mAbs with great cell killing ability and enhance CD20 levels on cell surface can potentially exploit lymphoma therapy. In this scenario, we are summarizing the recently developed mAbs against CD20 and compounds that have ability to induce CD20 expression at significant level. We also are providing information regarding combination strategy for use of radiation and anti-CD20 mAbs in vitro. However, it will need to be determined by rigorous at pre-clinical and clinic testing. We hope this review will be beneficial for current research in the area of immunotherapy or radio-immunotherapy.

  5. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.

    PubMed

    Long, Aaron; Park, Ji H; Klimova, Nina; Fowler, Carol; Loane, David J; Kristian, Tibor

    2017-01-01

    Several enzymes in cellular bioenergetics metabolism require NAD(+) as an essential cofactor for their activity. NAD(+) depletion following ischemic insult can result in cell death and has been associated with over-activation of poly-ADP-ribose polymerase PARP1 as well as an increase in NAD(+) consuming enzyme CD38. CD38 is an NAD(+) glycohydrolase that plays an important role in inflammatory responses. To determine the contribution of CD38 activity to the mechanisms of post-ischemic brain damage we subjected CD38 knockout (CD38KO) mice and wild-type (WT) mice to transient forebrain ischemia. The CD38KO mice showed a significant amelioration in both histological and neurologic outcome following ischemic insult. Decrease of hippocampal NAD(+) levels detected during reperfusion in WT mice was only transient in CD38KO animals, suggesting that CD38 contributes to post-ischemic NAD(+) catabolism. Surprisingly, pre-ischemic poly-ADP-ribose (PAR) levels were dramatically higher in CD38KO animals compared to WT animals and exhibited reduction post-ischemia in contrast to the increased levels in WT animals. The high PAR levels in CD38 mice were due to reduced expression levels of poly-ADP-ribose glycohydrolase (PARG). Thus, the absence of CD38 activity can not only directly affect inflammatory response, but also result in unpredicted alterations in the expression levels of enzymes participating in NAD(+) metabolism. Although the CD38KO mice showed significant protection against ischemic brain injury, the changes in enzyme activity related to NAD(+) metabolism makes the determination of the role of CD38 in mechanisms of ischemic brain damage more complex.

  6. Serum levels of soluble CD30 in chronic hepatitis B virus infection

    PubMed Central

    FATTOVICH, G; VINANTE, F; GIUSTINA, G; MOROSATO, L; ALBERTI, A; RUOL, A; PIZZOLO, G

    1996-01-01

    There is evidence that both cellular and humoral components of the immune response are required for viral clearance to occur in chronic hepatitis B. Recent studies demonstrated that CD30 molecule, a member of the tumour necrosis factor superfamily of membrane cytokine receptors, is expressed on, and released as a soluble molecule (sCD30) by activated T cells producing T helper 2 (Th2) cytokines, which modulate antibody responses. To better characterize the immunoregulatory mechanisms in chronic hepatitis B virus (HBV) infection, sCD30 values were evaluated by an ELISA in 90 hepatitis B surface (HBsAg)-positive patients with chronic hepatitis, selected on the basis of active viral replication and biochemical activity. At presentation abnormal levels (>20 U/ml) of sCD30 were detected in 57 (63%) out of 90 patients with chronic hepatitis B, and median value was significantly higher in this group of patients compared with that of healthy HBsAg carriers (26.7 versus 10.5 U/ml, P < 0.000 05) and with normal controls (26.7 versus 3 U/ml, P < 0.000 01). Sequential studies of chronic hepatitis B did confirm the association of raised sCD30 levels with the active phase of the illness. On the other hand, a significant decrease was noted when sCD30 levels at diagnosis and after termination of HBV replication and biochemical remission of hepatitis were compared in 10 untreated patients (median, 28 U/ml at entry versus 8 U/ml at remission, P < 0.01) and in six patients responding to interferon-alpha therapy (median, 29.5 U/ml at entry versus 6 U/ml at remission, P < 0.05). The high serum sCD30 levels reported during the active phase of HBsAg-positive chronic hepatitis suggest a certain degree of immune competence of these patients, at least with respect to a Th2-type response. These data are in agreement with recent serologic surveys showing that most chronic hepatitis B patients do demonstrate ongoing humoral immune response to HBV antigens, using novel immunoassays designed to

  7. Low CD36 and LOX-1 Levels and CD36 Gene Subexpression Are Associated with Metabolic Dysregulation in Older Individuals with Abdominal Obesity

    PubMed Central

    Castro-Albarran, Jorge; Sandoval-García, Flavio; Flores-Alvarado, Luis-Javier

    2016-01-01

    Background. Obesity study in the context of scavenger receptors has been linked to atherosclerosis. CD36 and LOX-1 are important, since they have been associated with atherogenic and metabolic disease but not fat redistribution. The aim of our study was to determinate the association between CD36 and LOX-1 in presence of age and abdominal obesity. Methods. This is a cross-sectional study that included 151 healthy individuals, clinically and anthropometrically classified into two groups by age (<30 and ≥30 years old) and abdominal obesity (according to World Health Organization guidelines). We excluded individuals with any chronic and metabolic illness, use of medication, or smoking. Fasting blood samples were taken to perform determination of CD36 mRNA expression by real-time PCR, lipid profile and metabolic and low grade inflammation markers by routine methods, and soluble scavenger receptors (CD36 and LOX-1) by ELISA. Results. Individuals ≥30 years old with abdominal obesity presented high atherogenic index, lower soluble scavenger receptor levels, and subexpression of CD36 mRNA (54% less). On the other hand, individuals <30 years old with abdominal adiposity presented higher levels in the same parameters, except LOX-1 soluble levels. Conclusion. In this study, individuals over 30 years of age presented low soluble scavenger receptors levels pattern and CD36 gene subexpression, which suggest the chronic metabolic dysregulation in abdominal obesity. PMID:27525284

  8. Low CD36 and LOX-1 Levels and CD36 Gene Subexpression Are Associated with Metabolic Dysregulation in Older Individuals with Abdominal Obesity.

    PubMed

    Madrigal-Ruíz, Perla-Monserrat; Navarro-Hernández, Rosa-Elena; Ruíz-Quezada, Sandra-Luz; Corona-Meraz, Fernanda-Isadora; Vázquez-Del Mercado, Mónica; Gómez-Bañuelos, Eduardo; Castro-Albarran, Jorge; Sandoval-García, Flavio; Flores-Alvarado, Luis-Javier; Martín-Marquez, Beatriz-Teresita

    2016-01-01

    Background. Obesity study in the context of scavenger receptors has been linked to atherosclerosis. CD36 and LOX-1 are important, since they have been associated with atherogenic and metabolic disease but not fat redistribution. The aim of our study was to determinate the association between CD36 and LOX-1 in presence of age and abdominal obesity. Methods. This is a cross-sectional study that included 151 healthy individuals, clinically and anthropometrically classified into two groups by age (<30 and ≥30 years old) and abdominal obesity (according to World Health Organization guidelines). We excluded individuals with any chronic and metabolic illness, use of medication, or smoking. Fasting blood samples were taken to perform determination of CD36 mRNA expression by real-time PCR, lipid profile and metabolic and low grade inflammation markers by routine methods, and soluble scavenger receptors (CD36 and LOX-1) by ELISA. Results. Individuals ≥30 years old with abdominal obesity presented high atherogenic index, lower soluble scavenger receptor levels, and subexpression of CD36 mRNA (54% less). On the other hand, individuals <30 years old with abdominal adiposity presented higher levels in the same parameters, except LOX-1 soluble levels. Conclusion. In this study, individuals over 30 years of age presented low soluble scavenger receptors levels pattern and CD36 gene subexpression, which suggest the chronic metabolic dysregulation in abdominal obesity.

  9. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: A model for gene therapy

    SciTech Connect

    Lynch, C.M.; Miller, A.D. ); Clowes, M.M.; Osborne, W.R.A.; Clowes, A.W. )

    1992-02-01

    Gene transfer into vascular smooth muscle cells in animals was examined by using recombinant retroviral vectors containing an Escherichia coli {beta}-galactosidase gene or a human adenosine deaminase gene. Direct gene transfer by infusion of virus into rat carotid arteries was not observed. However, gene transfer by infection of smooth muscle cells in culture and seeding of the transduced cells onto arteries that had been denuded of endothelial cells was successful. Potentially therapeutic levels of human adenosine deaminase activity were detected over 6 months of observation, indicating the utility of vascular smooth muscle cells for gene therapy in humans.

  10. Should legislation regarding maximum Pb and Cd levels in human food also cover large game meat?

    PubMed

    Taggart, Mark A; Reglero, Manuel M; Camarero, Pablo R; Mateo, Rafael

    2011-01-01

    Game meat may be contaminated with metals and metalloids if animals reside in anthropogenically polluted areas, or if ammunition used to kill the game contaminates the meat. Muscle tissue from red deer and wild boar shot in Ciudad Real province (Spain) in 2005-06 was analysed for As, Pb, Cu, Zn, Se and Cd. Samples were collected from hunting estates within and outside an area that has been historically used for mining, smelting and refining various metals and metalloids. Meat destined for human consumption, contained more Pb, As and Se (red deer) and Pb (boar) when harvested from animals that had resided in mined areas. Age related accumulation of Cd, Zn and As (in deer) and Cd, Cu and Se (in boar) was also observed. Two boar meat samples contained high Pb, at 352 and 2408 μg/g d.w., and these were likely to have been contaminated by Pb ammunition. Likewise, 19-84% of all samples (depending on species and sampling area) had Pb levels > 0.1 μg/g w.w., the EU maximum residue level (MRL) for farm reared meat. Between 9 and 43% of samples exceeded comparable Cd limits. Such data highlight a discrepancy between what is considered safe for human consumption in popular farmed meat (chicken, beef, lamb), and what in game may often exist. A risk assessment is presented which describes the number of meals required to exceed current tolerable weekly intakes (PTWIs) for Pb and Cd, and the potential contribution of large game consumption to such intake limit criteria.

  11. The ADA*2 allele of the adenosine deaminase gene (20q13.11) and recurrent spontaneous abortions: an age-dependent association

    PubMed Central

    Nunes, Daniela Prudente Teixeira; Spegiorin, Lígia Cosentino Junqueira Franco; de Mattos, Cinara Cássia Brandão; Oliani, Antonio Helio; Vaz-Oliani, Denise Cristina Mós; de Mattos, Luiz Carlos

    2011-01-01

    OBJECTIVE: Adenosine deaminase acts on adenosine and deoxyadenosine metabolism and modulates the immune response. The adenosine deaminase G22A polymorphism (20q.11.33) influences the level of adenosine deaminase enzyme expression, which seems to play a key role in maintaining pregnancy. The adenosine deaminase 2 phenotype has been associated with a protective effect against recurrent spontaneous abortions in European Caucasian women. The aim of this study was to investigate whether the G22A polymorphism of the adenosine deaminase gene is associated with recurrent spontaneous abortions in Brazilian women. METHODS: A total of 311 women were recruited to form two groups: G1, with a history of recurrent spontaneous abortions (N = 129), and G2, without a history of abortions (N = 182). Genomic DNA was extracted from peripheral blood with a commercial kit and PCR-RFLP analysis was used to identify the G22A genetic polymorphism. Fisher's exact test and odds ratio values were used to compare the proportions of adenosine deaminase genotypes and alleles between women with and without a history of recurrent spontaneous abortion (p<0.05). The differences between mean values for categorical data were calculated using unpaired t tests. The Hardy-Weinberg equilibrium was assessed with a chi-square test. RESULTS: Statistically significant differences were identified for the frequencies of adenosine deaminase genotypes and alleles between the G1 and G2 groups when adjusted for maternal age. CONCLUSIONS: The results suggest that the adenosine deaminase *2 allele is associated with a low risk for recurrent spontaneous abortions, but this association is dependent on older age. PMID:22086524

  12. Effect of Co-planted Purslane (Portulaca Oleracea L.) on Cd Accumulation by Sunflower in Different Levels of Cd Contamination and Salinity: A Pot Study.

    PubMed

    Ashrafi, Ali; Zahedi, Morteza; Soleimani, Mohsen

    2015-01-01

    Heavy metal bioaccumulation can be affected by various crop-weed interactions that potentially exist in agroecosystems. A pot experiment was conducted to evaluate the role of rhizosphere interaction of sunflower and purslane (Portulaca oleracea L.) weed on cadmium (Cd) uptake and its allocation to sunflower grains. The experimental treatments consisted of two cropping systems (mono and mixed culture), two adjusted salinity levels (0 and 0.5% NaCl) and three artificial levels of Cd in soil (Control, 3 and 6 mg kg(-1)). The results showed that the growth of sunflower in the presence of purslane in comparison to mono culture of sunflower led to change of total Cd content and Cd allocated to grains only in saline conditions. Promoting effects of salinity on Cd concentration of grain were alleviated where sunflower was co-planted with purslane. Besides, supply of Zn in grains of co-planted sunflower was strongly affected by salinity. Results of this study revealed that although co-planted purslane could alter conditions in the shared rhizosphere, it had no effect on enhancing Cd uptake by neighboring sunflower directly.

  13. Changes in serum hyaluronic acid levels and expression of CD44 and CD44 mRNA in hepatic sinusoidal endothelial cells after major hepatectomy in cirrhotic rats.

    PubMed

    Saegusa, Shotaro; Isaji, Shuji; Kawarada, Yoshifumi

    2002-06-01

    Serum hyaluronic acid (HA) is widely distributed in connective tissues, and the majority of circulating HA is degraded by hepatic sinusoidal endothelial cells (SECs) via a receptor recycling pathway. Our previous clinical study revealed that monitoring serum HA levels after hepatectomy is useful in predicting the development of liver failure. In the present study, to determine the mechanism of the high HA levels after hepatectomy, especially in patients with liver cirrhosis, expression of the major HA receptor, CD44, and its mRNA was investigated in SECs isolated from rats with thioacetamide-induced liver cirrhosis subjected to 70% hepatectomy (group I) and from rats with a normal liver that were subjected to 70% hepatectomy (group II). The 48-hour postoperative survival rate in group I (13.3%) was significantly lower than in group II (100%). In group II, the expression of CD44 mRNA had increased significantly at 6 hours after hepatectomy, and this was followed by progressive increases in expression of CD44, indicating activation of SEC function. The increased serum HA levels after hepatectomy in group II became normal as CD44 expression increased. By contrast, the expression of CD44 and CD44 mRNA in group I was markedly attenuated after hepatectomy. The very low CD44 expression was followed by a significant and sustained increase in serum HA levels, indicating functional failure of the SECs. These results suggest that the significantly impaired functional reserve of SECs in liver cirrhosis is associated with increased mortality after 70% hepatectomy.

  14. Molecular chemotherapy of pancreatic cancer using novel mutant bacterial cytosine deaminase gene.

    PubMed

    Kaliberova, Lyudmila N; Della Manna, Debbie L; Krendelchtchikova, Valentina; Black, Margaret E; Buchsbaum, Donald J; Kaliberov, Sergey A

    2008-09-01

    The combination of molecular chemotherapy with radiation therapy has the potential to become a powerful approach for treatment of pancreatic cancer. We have developed an adenoviral vector (AdbCD-D314A) encoding a mutant bacterial cytosine deaminase (bCD) gene, which converts the prodrug 5-fluorocytosine (5-FC) into the active drug 5-fluorouracil. The aim of this study was to investigate AdbCD-D314A/5-FC-mediated cytotoxicity in vitro and therapeutic efficacy in vivo alone and in combination with radiation against human pancreatic cancer cells and xenografts. AdbCD-D314A/5-FC-mediated cytotoxicity alone and in combination with radiation was analyzed using crystal violet inclusion and clonogenic survival assays. CD enzyme activity was determined by measuring conversion of [3H]5-FC to [3H]5-fluorouracil after adenoviral infection of pancreatic cancer cells in vitro and pancreatic tumor xenografts by TLC. S.c. pancreatic tumor xenografts were used to evaluate the therapeutic efficacy of AdbCD-D314A/5-FC molecular chemotherapy in combination with radiation therapy. AdbCD-D314A infection resulted in increased 5-FC-mediated pancreatic cancer cell killing that correlated with significantly enhanced CD enzyme activity compared with AdbCDwt encoding wild-type of bCD. Animal studies showed significant inhibition of growth of human pancreatic tumors treated with AdbCD-D314A/5-FC in comparison with AdbCDwt/5-FC. Also, a significantly greater inhibition of growth of Panc2.03 and MIA PaCA-2 tumor xenografts was produced by the combination of AdbCD-D314A/5-FC with radiation compared with either agent alone. The results indicate that the combination of AdbCD-D314A/5-FC molecular chemotherapy with radiation therapy significantly enhanced cytotoxicity of pancreatic cancer cells in vitro and increased therapeutic efficacy against human pancreatic tumor xenografts.

  15. Yeast cytosine deaminase mutants with increased thermostability impart sensitivity to 5-fluorocytosine.

    PubMed

    Stolworthy, Tiffany S; Korkegian, Aaron M; Willmon, Candice L; Ardiani, Andressa; Cundiff, Jennifer; Stoddard, Barry L; Black, Margaret E

    2008-03-28

    Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a 'suicide' gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil, an inhibitor of DNA synthesis and RNA function. Over 150 studies of CD-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of CD are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study, we stabilized and extended the half-life of yeast CD (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated T(m) values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in stability, as well as a more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models.

  16. Investigation of the origin of deep levels in CdTe doped with Bi

    SciTech Connect

    Saucedo, E.; Franc, J.; Elhadidy, H.; Horodysky, P.; Ruiz, C. M.; Bermudez, V.; Sochinskii, N. V.

    2008-05-01

    Combining optical (low temperature photoluminescence), electrical (thermoelectric effect spectroscopy), and structural (synchrotron X-ray powder diffraction) methods, the defect structure of CdTe doped with Bi was studied in crystals with dopant concentration in the range of 10{sup 17}-10{sup 19} at./cm{sup 3}. The semi-insulating state observed in crystals with low Bi concentration is assigned to the formation of a shallow donor level and a deep donor recombination center. Studying the evolution of lattice parameter with temperature, we postulate that the deep center is formed by a Te-Te dimer and their formation is explained by a tetrahedral to octahedral distortion, due to the introduction of Bi in the CdTe lattice. We also shows that this model agrees with the electrical, optical, and transport charge properties of the samples.

  17. Strong enhancement of recombinant cytosine deaminase activity in Bifidobacterium longum for tumor-targeting enzyme/prodrug therapy.

    PubMed

    Hamaji, Yoshinori; Fujimori, Minoru; Sasaki, Takayuki; Matsuhashi, Hitomi; Matsui-Seki, Keiichi; Shimatani-Shibata, Yuko; Kano, Yasunobu; Amano, Jun; Taniguchi, Shun'ichiro

    2007-04-01

    In our previous studies, a strain of the nonpathogenic, anaerobic, intestinal bacterium, Bifidobacterium longum (B. longum), was found to be localized selectively and to proliferate within solid tumors after systemic administration. In addition, B. longum transformed with the shuttle-plasmid encoding the cytosine deaminase (CD) gene expressed active CD, which deaminated the prodrug 5-fluorocytosine (5-FC) to the anticancer agent 5-fluorouracil (5-FU). We also reported antitumor efficacy with the same plasmid in several animal experiments. In this study, we constructed a novel shuttle-plasmid, pAV001-HU-eCD-M968, which included the mutant CD gene with a mutation at the active site to increase the enzymatic activity. In addition, the plasmid-transformed B. longum produces mutant CD and strongly increased (by 10-fold) its 5-FC to 5-FU enzymatic activity. The use of B. longum harboring the new shuttle-plasmid increases the effectiveness of our enzyme/prodrug strategy.

  18. Deep electronic levels in high-pressure Bridgman Cd{sub 1-x}Zn{sub x}Te

    SciTech Connect

    Szeles, C.; Shan, Y.Y.; Lynn, K.G.; Eissler, E.E.

    1995-12-01

    The behavior of deep electronic levels was studied as a function of Zn concentration in CdZnTe crystals grown by the high-pressure Bridgman technique using thermoelectric effect spectroscopy. A significant increase of the thermal ionization energies of hole traps was observed with the increasing Zn content of the ternary compound. The effect explains the stronger hole trapping and the resulting much shorter hole lifetime usually observed in CdZnTe as compared to CdTe. The behavior also suggests increased carrier recombination and explains the strong deterioration of electron collection in detectors fabricated from CdZnTe of high Zn concentration.

  19. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  20. The Multifaceted Roles of RNA Binding in APOBEC Cytidine Deaminase Functions

    PubMed Central

    Prohaska, Kimberly M.; Bennett, Ryan P.; Salter, Jason D.; Smith, Harold C.

    2014-01-01

    Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, a.k.a. APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base-modification nucleic acid editing have been the subject of numerous publications, reviews and speculation. These proteins play diverse roles in host cell defense, protecting cells from invading genetic material, enabling the acquired immune response to antigens and changing protein expression at the level of the genetic code in mRNA or DNA. The amazing power these proteins have for interphase cell functions relies on structural and biochemical properties that are beginning to be understood. At the same time, the substrate selectivity of each member in the family and their regulation remains to be elucidated. This review of the APOBEC family will focus on an open question in regulation, namely what role the interactions of these proteins with RNA have in editing substrate recognition or allosteric regulation of DNA mutagenic and host defense activities. PMID:24664896

  1. Bacteria with ACC deaminase can promote plant growth and help to feed the world.

    PubMed

    Glick, Bernard R

    2014-01-20

    To feed all of the world's people, it is necessary to sustainably increase agricultural productivity. One way to do this is through the increased use of plant growth-promoting bacteria; recently, scientists have developed a more profound understanding of the mechanisms employed by these bacteria to facilitate plant growth. Here, it is argued that the ability of plant growth-promoting bacteria that produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase to lower plant ethylene levels, often a result of various stresses, is a key component in the efficacious functioning of these bacteria. The optimal functioning of these bacteria includes the synergistic interaction between ACC deaminase and both plant and bacterial auxin, indole-3-acetic acid (IAA). These bacteria not only directly promote plant growth, they also protect plants against flooding, drought, salt, flower wilting, metals, organic contaminants, and both bacterial and fungal pathogens. While a considerable amount of both basic and applied work remains to be done before ACC deaminase-producing plant growth-promoting bacteria become a mainstay of plant agriculture, the evidence indicates that with the expected shift from chemicals to soil bacteria, the world is on the verge of a major paradigm shift in plant agriculture.

  2. Comparative studies on Pb and Cd levels in parasites of terrestrial and aquatic animals

    SciTech Connect

    Sures, B.; Taraschewski, H.

    1995-12-31

    Several fish parasites (Acanthocephala, Cestoda, Nematoda) and organs of their respective intermediate and final hosts were analyzed for heavy metals by electrothermal atomic absorption spectrometry (ET-AAS). Pb and Cd were also quantified in the liver fluke Fasciola hepatica as well as in different organs of the large intestinal roundworm Ascaris suum. The levels of these heavy metals in the parasites were compared to those of muscle, liver, kidney and intestine of the respective definitive hosts cattle and swine obtained from a slaughter house. Most parasites accumulated significantly higher levels of metals than their final hosts. This was most conspicuous in acanthocephalans which contained up to 3 {times} 10{sup 3} fold more lead than the muscle of their fish hosts and up to 1.1 {times} 10{sup 4} more lead than the water surrounding the fish. In these helminths cadmium was enriched up to 400 fold compared to the muscle of the fish and up to 2.7 {times} 10{sup 4} compared to the water. In contrast to the accumulation capacity of adult acanthocephalans their larvae contained about 30 to 180 times less Pb and Cd. Thus, the predominant accumulation of both metals appears in the adult worms. The cestodes of fish and the liver flukes of cattle accumulated the metals up to 200 fold compared to the muscle of their hosts. The nematodes did not contain higher levels of the metals than their hosts. Thus, parasites, especially acanthocephalans, seem to be sensitive bioindicators of Pb and Cd in their environments.

  3. CD4(+), CD25(+), FOXP3 (+) T Regulatory Cell Levels in Obese, Asthmatic, Asthmatic Obese, and Healthy Children.

    PubMed

    Donma, Metin; Karasu, Erkut; Ozdilek, Burcu; Turgut, Burhan; Topcu, Birol; Nalbantoglu, Burcin; Donma, Orkide

    2015-08-01

    The aim of this prospective case control study is to determine CD4(+), CD25(+), and FoxP3(+) T regulatory cells (Tregs) and T helper cells (Ths) in obese, asthmatic, asthmatic obese, and healthy children. Obese (n = 40), asthmatic (n = 40), asthmatic obese (n = 40), and healthy children (n = 40) were included in this study. Blood samples collected from children were marked with CD4, CD25, ve Foxp3 in order to detect Tregs and Ths by flow cytometric method. Statistical analyses were performed. p ≤ 0.05 was chosen as meaningful threshold. Tregs exhibiting anti-inflammatory nature were significantly lower in obese (0.16 %; p ≤ 0.001), asthmatic (0.25 %; p ≤ 0.01), and asthmatic obese (0.29 %; p ≤ 0.05) groups than control group (0.38 %). Ths were counted higher in asthma group than control (p ≤ 0.01) and obese (p ≤ 0.001) groups. T cell immunity plays important roles in chronic inflammatory diseases such as obesity and asthma pathogeneses. Decreased numbers of Tregs found in obese, asthmatic, and asthmatic obese children might represent a challenge of these cells.

  4. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  5. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  6. Endothelial Progenitor Cells Combined with Cytosine Deaminase-Endostatin for Suppression of Liver Carcinoma.

    PubMed

    Chen, Rong; Yu, Hui; An, Yan-Li; Chen, Hua-Jun; Jia, ZhenYu; Teng, Gao-Jun

    2016-06-01

    Transplantation of gene transfected endothelial progenitor cells (EPCs) provides a novel method for treatment of human tumors. To study treatment of hepatocellular carcinoma using cytosine deaminase (CD)- and endostatin (ES)-transfected endothelial progenitor cells (EPCs), mouse bone marrow-derived EPCs were cultured and transfected with Lenti6.3-CD-EGFP and Lenti6.3-ES-Monomer-DsRed labeled with superparamagnetic iron oxide (SPIO) nanoparticles. DiD (lipophilic fluorescent dye)-labeled EPCs were injected into normal mice and mice with liver carcinoma. The EPCs loaded with CD-ES were infused into the mice through caudal veins and tumor volumes were measured. The tumor volumes in the EPC + SPIO + CD/5-Fc + ES group were found to be smaller as a result and grew more slowly than those from the EPC + SPIO + LV (lentivirus, empty vector control) group. Survival times were also measured after infusion of the cells into the mice. The median survival time was found to be longer in the EPC + SPIO + CD/5-Fc + ES group than in the others. In conclusion, the EPCs transfected with CD-ES suppressed the liver carcinoma cells in vitro, migrated primarily to the carcinoma, inhibited tumor growth, and also extended the median survival time for the mice with liver carcinoma.

  7. Studies on guanine deaminase and its inhibitors in rat tissue

    PubMed Central

    Kumar, S.; Josan, V.; Sanger, K. C. S.; Tewari, K. K.; Krishnan, P. S.

    1967-01-01

    1. In kidney, but not in rat whole brain and liver, guanine-deaminase activity was localized almost exclusively in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, as in brain and liver, the enzymic activity recovered in the supernatant was higher than that in the whole homogenate. The particulate fractions of kidney, especially the heavy mitochondria, brought about powerful inhibition of the supernatant guanine-deaminase activity. 2. In spleen, as in kidney, guanine-deaminase activity was localized in the 15000g supernatant fraction of iso-osmotic sucrose homogenates. However, the particulate fractions did not inhibit the activity of the supernatant. 3. Guanine-deaminase activity in rat brain was absent from the cerebellum and present only in the cerebral hemispheres. The inhibitor of guanine deaminase was located exclusively in the cerebellum, where it was associated with the particles sedimenting at 5000g from sucrose homogenates. 4. Homogenates of cerebral hemispheres, the separated cortex or the remaining portion of the hemispheres had significantly higher guanine-deaminase activity than homogenates of whole brain. The enzymic activity of the subcellular particulate fractions was nearly the same. 5. Guanine deaminase was purified from the 15000g supernatant of sucrose homogenates of whole brain. The enzyme separated as two distinct fractions, A and B, on DEAE-cellulose columns. 6. The guanine-deaminase activity of the light-mitochondrial fraction of whole brain was fully exposed and solubilized by treatment with Triton X-100, and partially purified. 7. Tested in the form of crude preparations, the inhibitor from kidney did not act on the brain and liver supernatant enzymes and the inhibitor from cerebellum did not act on kidney enzyme, but the inhibitor from liver acted on both brain and kidney enzyme. 8. The inhibitor of guanine deaminase was purified from the heavy mitochondria of whole brain and liver and the 5000g residue of

  8. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome.

    PubMed

    Kasprowicz, Victoria; Schulze Zur Wiesch, Julian; Kuntzen, Thomas; Nolan, Brian E; Longworth, Steven; Berical, Andrew; Blum, Jenna; McMahon, Cory; Reyor, Laura L; Elias, Nahel; Kwok, William W; McGovern, Barbara G; Freeman, Gordon; Chung, Raymond T; Klenerman, Paul; Lewis-Ximenez, Lia; Walker, Bruce D; Allen, Todd M; Kim, Arthur Y; Lauer, Georg M

    2008-03-01

    We monitored expression of PD-1 (a mediator of T-cell exhaustion and viral persistence) on hepatitis C virus (HCV)-specific CD8(+) and CD4(+) T cells from blood and liver during acute and chronic infections and after the resolved infection stage. PD-1 expression on HCV-specific T cells was high early in acute infection irrespective of clinical outcome, and most cells continued to express PD-1 in resolved and chronic stages of infection; intrahepatic expression levels were especially high. Our results suggest that an analysis of PD-1 expression alone is not sufficient to predict infection outcome or to determine T-cell functionality in HCV infection.

  9. CD4 count levels and pattern of respiratory complications in HIV seropositive patients in Calabar, Nigeria.

    PubMed

    Peters, E J; Essien, O E; Immananagha, K K; Inah, G A; Philip-Ephraim, E E; Agbulu, R E

    2007-01-01

    A prospective observational study was carried out to describe the pattern of pulmonary complications in hospitalized patients with Human Immune-deficiency Virus (HIV) infection at the University of Calabar Teaching Hospital, Calabar between January 2005 to December 2006. One hundred and twenty-four patients which consists 60 males and 64 females, aged between 20-60 who met the inclusion criteria formed the subjects for the study. The mean age of the subjects was 34.60 +/-1.2 years. A structured questionnaire was used to obtain the demographic data, clinical information and CD4 lymphocyte count. Radiological analysis of chest was done with the chest X-ray of each subject. Chronic productive cough topped the list of respiratory symptoms (89%) followed by chest pain (74%) and dyspnea (62 %). Lung consolidation was the commonest respiratory sign as seen in 44 % of the cases. Hilar lymphadenopathy was seen in (35 %), Pleural effusion (32%), lung fibrosis (21%) and finger clubbing (15%). The clinical and radiological pattern of most patients with chronic cough was highly suggestive of mycobacterial infection such as tuberculosis, although only 40% of cases had positive acid fast bacilli. The mean CD4 lymphocyte count level was 174.8 +/- 5.4 cells/microlitre and this may be responsible for the respiratory findings as opportunistic lung infections are said to be commoner at CD4 count levels below 200 cells/microlitre. However, four patients had mediasternal masses which may suggest neoplasms. Concerted efforts and continuous evaluation of these patients are needed to determine the spectrum of respiratory illnesses among HIV positive patients in Calabar.

  10. Demonstration of adenosine deaminase activity in human fibroblast lysosomes.

    PubMed Central

    Lindley, E R; Pisoni, R L

    1993-01-01

    Human fibroblast lysosomes, purified on Percoll density gradients, contain an adenosine deaminase (ADA) activity that accounts for approximately 10% of the total ADA activity in GM0010A human fibroblasts. In assays of lysosomal ADA, the conversion of [3H]adenosine into [3H]inosine was proportional to incubation time and the amount of lysosomal material added to reaction mixtures. Maximal activity was observed between pH 7 and 8, and lysosomal ADA displayed a Km of 37 microM for adenosine at 25 degrees C and pH 5.5. Lysosomal ADA was completely inhibited by 2.5 mM Cu2+ or Hg2+ salts, but not by other bivalent cations (Ba2+, Cd2+, Ca2+, Fe2+, Mg2+, Mn2+ and Zn2+). Coformycin (2.5 mM), deoxycoformycin (0.02 mM), 2'-deoxyadenosine (2.5 mM), 6-methylaminopurine riboside (2.5 mM), 2'-3'-isopropylidene-adenosine (2.5 mM) and erythro-9-(2-hydroxy-3-nonyl)adenine (0.2 mM) inhibited lysosomal ADA by > 97%. In contrast, 2.5 mM S-adenosyl-L-homocysteine and cytosine were poor inhibitors. Nearly all lysosomal ADA activity is eluted as a high-molecular-mass protein (> 200 kDa) just after the void volume on a Sephacryl S-200 column, and is very heat-stable, retaining 70% of its activity after incubation at 65 degrees C for 80 min. We speculate that compartmentalization of ADA within lysosomes would allow deamination of adenosine to occur without competition by adenosine kinase, which could assist in maintaining cellular energy requirements under conditions of nutritional deprivation. PMID:8452534

  11. The catalase activity of diiron adenine deaminase

    SciTech Connect

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.; Bagaria, A.; Kumaran, D.; Tichy, S. E.; Gheyi, T.; Zheng, X.; Bain, K.; Groshong, C.; Emtage, S.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometry and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.

  12. Human α(2)β(1)(HI) CD133(+VE) epithelial prostate stem cells express low levels of active androgen receptor.

    PubMed

    Williamson, Stuart C; Hepburn, Anastasia C; Wilson, Laura; Coffey, Kelly; Ryan-Munden, Claudia A; Pal, Deepali; Leung, Hing Y; Robson, Craig N; Heer, Rakesh

    2012-01-01

    Stem cells are thought to be the cell of origin in malignant transformation in many tissues, but their role in human prostate carcinogenesis continues to be debated. One of the conflicts with this model is that cancer stem cells have been described to lack androgen receptor (AR) expression, which is of established importance in prostate cancer initiation and progression. We re-examined the expression patterns of AR within adult prostate epithelial differentiation using an optimised sensitive and specific approach examining transcript, protein and AR regulated gene expression. Highly enriched populations were isolated consisting of stem (α(2)β(1)(HI) CD133(+VE)), transiently amplifying (α(2)β(1)(HI) CD133(-VE)) and terminally differentiated (α(2)β(1)(LOW) CD133(-VE)) cells. AR transcript and protein expression was confirmed in α(2)β(1)(HI) CD133(+VE) and CD133(-VE) progenitor cells. Flow cytometry confirmed that median (±SD) fraction of cells expressing AR were 77% (±6%) in α(2)β(1)(HI) CD133(+VE) stem cells and 68% (±12%) in α(2)β(1)(HI) CD133(-VE) transiently amplifying cells. However, 3-fold lower levels of total AR protein expression (peak and median immunofluorescence) were present in α(2)β(1)(HI) CD133(+VE) stem cells compared with differentiated cells. This finding was confirmed with dual immunostaining of prostate sections for AR and CD133, which again demonstrated low levels of AR within basal CD133(+VE) cells. Activity of the AR was confirmed in prostate progenitor cells by the expression of low levels of the AR regulated genes PSA, KLK2 and TMPRSS2. The confirmation of AR expression in prostate progenitor cells allows integration of the cancer stem cell theory with the established models of prostate cancer initiation based on a functional AR. Further study of specific AR functions in prostate stem and differentiated cells may highlight novel mechanisms of prostate homeostasis and insights into tumourigenesis.

  13. Increased 1-aminocyclopropane-1-carboxylate deaminase activity enhances Agrobacterium tumefaciens-mediated gene delivery into plant cells.

    PubMed

    Someya, Tatsuhiko; Nonaka, Satoko; Nakamura, Kouji; Ezura, Hiroshi

    2013-10-01

    Agrobacterium-mediated transformation is a useful tool for the genetic modification in plants, although its efficiency is low for several plant species. Agrobacterium-mediated transformation has three major steps in laboratory-controlled experiments: the delivery of T-DNA into plant cells, the selection of transformed plant cells, and the regeneration of whole plants from the selected cells. Each of these steps must be optimized to improve the efficiency of Agrobacterium-mediated plant transformation. It has been reported that increasing the number of cells transformed by T-DNA delivery can improve the frequency of stable transformation. Previously, we demonstrated that a reduction in ethylene production by plant cells during cocultivation with A. tumefaciens-expressing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase resulted in increased T-DNA delivery into the plant cells. In this study, to further improve T-DNA delivery by A. tumefaciens, we modified the expression cassette of the ACC deaminase gene using vir gene promoter sequences. The ACC deaminase gene driven by the virD1 promoter was expressed at a higher level, resulting in a higher ACC deaminase activity in this A. tumefaciens strain than in the strain with the lac promoter used in a previous study. The newly developed A. tumefaciens strain improves the delivery of T-DNA into Solanum lycopersicum (tomato) and Erianthus ravennae plants and thus may be a powerful tool for the Agrobacterium-mediated genetic engineering of plants.

  14. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas

    PubMed Central

    Chung, Taemoon; Na, Juri; Kim, Young-il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy. PMID:27446484

  15. Dihydropyrimidine Dehydrogenase Is a Prognostic Marker for Mesenchymal Stem Cell-Mediated Cytosine Deaminase Gene and 5-Fluorocytosine Prodrug Therapy for the Treatment of Recurrent Gliomas.

    PubMed

    Chung, Taemoon; Na, Juri; Kim, Young-Il; Chang, Da-Young; Kim, Young Il; Kim, Hyeonjin; Moon, Ho Eun; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key; Kim, Sung-Soo; Suh-Kim, Haeyoung; Paek, Sun Ha; Youn, Hyewon

    2016-01-01

    We investigated a therapeutic strategy for recurrent malignant gliomas using mesenchymal stem cells (MSC), expressing cytosine deaminase (CD), and prodrug 5-Fluorocytosine (5-FC) as a more specific and less toxic option. MSCs are emerging as a novel cell therapeutic agent with a cancer-targeting property, and CD is considered a promising enzyme in cancer gene therapy which can convert non-toxic 5-FC to toxic 5-Fluorouracil (5-FU). Therefore, use of prodrug 5-FC can minimize normal cell toxicity. Analyses of microarrays revealed that targeting DNA damage and its repair is a selectable option for gliomas after the standard chemo/radio-therapy. 5-FU is the most frequently used anti-cancer drug, which induces DNA breaks. Because dihydropyrimidine dehydrogenase (DPD) was reported to be involved in 5-FU metabolism to block DNA damage, we compared the survival rate with 5-FU treatment and the level of DPD expression in 15 different glioma cell lines. DPD-deficient cells showed higher sensitivity to 5-FU, and the regulation of DPD level by either siRNA or overexpression was directly related to the 5-FU sensitivity. For MSC/CD with 5-FC therapy, DPD-deficient cells such as U87MG, GBM28, and GBM37 showed higher sensitivity compared to DPD-high U373 cells. Effective inhibition of tumor growth was also observed in an orthotopic mouse model using DPD- deficient U87MG, indicating that DPD gene expression is indeed closely related to the efficacy of MSC/CD-mediated 5-FC therapy. Our results suggested that DPD can be used as a biomarker for selecting glioma patients who may possibly benefit from this therapy.

  16. Inhibition of tumor growth by polyarginine-fused mutant cytosine deaminase.

    PubMed

    Wang, Wenfei; Zhang, Nan; Zhao, Tingting; Liu, Mingyao; Zhang, Tong; Li, Deshan

    2015-02-01

    Gene-directed enzyme-prodrug therapy is a method whereby cancerous tumors are selectively eradicated with minimal impact to healthy tissue. Due to its thermostability, E. coli cytosine deaminase (bCD) is one of the most widely used enzyme-prodrug combinations. However, wild-type bCD (wtbCD) displays a relatively poor turnover of 5-fluorocytosine (5-FC), and also has low permeability as a hexamer macromolecule (∼ 300 kDa), like many other therapeutic proteins. To improve these shortcomings, site-specific mutagenesis was performed by infusing the bCD with R9, a typical and highly effective cell-penetrating peptide. The results obtained by flow cytometry and confocal microscopy showed that the R9 efficiently delivered the enhanced green fluorescent proteins (EGFP) into the human liver hepatocellular carcinoma (HepG2) cells, and gathered at the nucleus, while EGFP alone did not have this ability. The penetrating efficiency of R9-EGPF was time and dose dependent. The results obtained by Western blot showed that R9-bCD, but not bCD proteins alone, could be uptaken into HepG2 cells. In vitro experiments showed that polyarginine enhanced the cytotoxicity of bCD, and R9-bCDmut had a stronger cytotoxicity than R9-bCD proteins. In vivo experiments also showed that R9-bCD and R9-bCDmut could prolong the survival time of tumor mice for 8-10 days. Future therapeutic applications of cell-permeable R9-bCDmut fusion proteins together with a systemic administration of 5-FC prodrug could result in profound anti-tumor activities.

  17. High levels of functional endopeptidase 24.11 (CD10) activity on human thymocytes: preferential expression on immature subsets.

    PubMed Central

    Mari, B; Breittmayer, J P; Guerin, S; Belhacene, N; Peyron, J F; Deckert, M; Rossi, B; Auberger, P

    1994-01-01

    Although it is now well established that cells of the immune system express most of the exopeptidases described so far, little information is available concerning the identification and the characterization of the peptidases associated with the surface of human thymocytes. In the present study we have focused on CD10 expression on thymocytes using both FACS and enzymatic analysis. Unfractionated intact human thymocytes were shown to express significant levels of CD10-specific enzymatic activity, as assessed by the hydrolysis of the neutral endopeptidase (NEP) substrate Suc-Ala-Ala-Phe-pNA and of D-Ala2-Leu-enkephalin, a typical NEP substrate. CD10 activity was abolished by specific NEP inhibitors, including thiorphan, retrothiorphan and phosphoramidon. Moreover, high performance liquid chromatography (HPLC) analysis showed that intact thymocytes and purified NEP hydrolysed thymopentin, a thymic factor known to induce the maturation of prothymocytes into thymocytes. Finally, CD 10/NEP was preferentially associated with CD3- CD3low and immature CD4- CD8- thymocytes. The data demonstrate for the first time that human thymocytes express functional NEP and suggest a role for this enzyme in the maturation of human thymocytes. PMID:7959879

  18. Altered AMP deaminase activity may extend postmortem glycolysis.

    PubMed

    England, E M; Matarneh, S K; Scheffler, T L; Wachet, C; Gerrard, D E

    2015-04-01

    Postmortem energy metabolism drives hydrogen accumulation in muscle and results in a fairly constant ultimate pH. Extended glycolysis results in adverse pork quality and may be possible with greater adenonucleotide availability postmortem. We hypothesized that slowing adenonucleotide removal by reducing AMP deaminase activity would extend glycolysis and lower the ultimate pH of muscle. Longissimus muscle samples were incorporated into an in vitro system that mimics postmortem glycolysis with or without pentostatin, an AMP deaminase inhibitor. Pentostatin lowered ultimate pH and increased lactate and glucose 6-phosphate with time. Based on these results and that AMPK γ3(R200Q) mutated pigs (RN⁻) produce low ultimate pH pork, we hypothesized AMP deaminase abundance and activity would be lower in RN⁻ muscle than wild-type. RN⁻ muscle contained lower AMP deaminase abundance and activity. These data show that altering adenonucleotide availability postmortem can extend postmortem pH decline and suggest that AMP deaminase activity may, in part, contribute to the low ultimate pH observed in RN⁻ pork.

  19. ADA (adenosine deaminase) gene therapy enters the competition

    SciTech Connect

    Culliton, B.J.

    1990-08-31

    Around the world, some 70 children are members of a select and deadly club. Born with an immune deficiency so severe that they will die of infection unless their immune systems can be repaired, they have captured the attention of would-be gene therapists who believe that a handful of these kids--the 15 or 20 who lack functioning levels of the enzyme adenosine deaminase (ADA)--could be saved by a healthy ADA gene. A team of gene therapists is ready to put the theory to the test. In April 1987, a team of NIH researchers headed by R. Michael Blaese and W. French Anderson came up with the first formal protocol to introduce a healthy ADA gene into an unhealthy human. After 3 years of line-by-line scrutiny by five review committees, they have permission to go ahead. Two or three children will be treated in the next year, and will be infused with T lymphocytes carrying the gene for ADA. If the experiment works, the ADA gene will begin producing normal amounts of ADA. An interesting feature of ADA deficiency, that makes it ideal for initial gene studies, is that the amount of ADA one needs for a healthy immune system is quite variable. Hence, once inside a patient's T cells, the new ADA gene needs only to express the enzyme in moderate amounts. No precise gene regulation is necessary.

  20. Adenosine deaminase complexing protein (ADCP) immunoreactivity in colorectal adenocarcinoma.

    PubMed

    ten Kate, J; van den Ingh, H F; Khan, P M; Bosman, F T

    1986-04-15

    Immunoreactive adenosine deaminase complexing protein (ADCP) was studied in 91 human colorectal adenocarcinomas. The expression of ADCP was correlated with that of secretory component (SC) and carcinoembryonic antigen (CEA), with the histological grade and the Dukes' stage of the carcinomas. The histological grade was scored semi-quantitatively according to 5 structural and 4 cytological variables. ADCP expression was observed in 3 different staining patterns, namely: (1) diffuse cytoplasmic (77% of the carcinomas); (2) granular cytoplasmic (13%); and (3) membrane-associated (66%). These patterns were observed alone or in combination. Eleven percent of the carcinomas exhibited no ADCP immunoreactivity. Linear regression analysis showed that the expression of ADCP correlates with that of SC and CEA. However, no significant correlation emerged between the histological parameters or the Dukes' stage and any of the immunohistological parameters. Comparison of the histological characteristics of carcinomas exhibiting little or no ADCP immunoreactivity with those showing extensive immunoreactivity, showed that membranous ADCP immunoreactivity occurs more frequently in well-differentiated carcinomas. Structural parameters showed a better correlation with membranous ADCP expression than the cytological variables. It is concluded that membranous expression of ADCP and CEA are indicators of a high level of differentiation as reflected primarily in the structural characteristics of the tumor.

  1. Circulating promyelocytes and low levels of CD16 expression on polymorphonuclear leukocytes accompany early-onset periodontitis.

    PubMed Central

    Nemoto, E; Nakamura, M; Shoji, S; Horiuchi, H

    1997-01-01

    Early-onset periodontitis (EOP) is characterized by rapidly progressive alveolar bone loss, chemotactic defects of neutrophils, and significant familial aggregation. We found immature myeloid lineage cells, defined as promyelocytes, in the peripheral blood in patients with EOP. A hematological examination of peripheral blood cells showed normal reference values regarding cell proportions. Flow cytometry revealed significantly lower expression of CD16, a glycosylphosphatidylinositol (GPI)-anchored protein, on peripheral neutrophils in patients compared with those in age- and sex-matched healthy controls, whereas the levels of CD11a and CD11b expression were similar. The chemotactic response of neutrophils was lower toward not only formyl-methionyl-leucyl-phenylalanine but also complement fragment C5a than that of healthy controls. The expression of another GPI-anchored protein, CD14, was equally expressed by controls and patients. Therefore, the low level of CD16 expression was not due to the incomplete synthesis of the GPI anchor. GPI anchors of CD16 on neutrophils from controls and patients were both partially resistant to phosphatidylinositol-specific phospholipase C. The presence of promyelocytes in peripheral blood, low expression of CD16, and low chemotactic response of neutrophils suggest that patients with EOP have an abnormal maturation system in myeloid lineage cells in the bone marrow, which may be associated with the onset and course of EOP. PMID:9284170

  2. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    PubMed

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  3. Circadian rhythm in circulating CD16-positive natural killer (NK) cells in macaque monkeys, implication of plasma cortisol levels.

    PubMed

    Terao, Keiji; Suzuki, Juri; Ohkura, Satoshi

    2002-10-01

    The daily change in both percentage and absolute number of circulating major lymphocyte subset was determined with young Japanese monkeys and rhesus monkeys. The blood sample was collected at four hour-intervals beginning at 16:00 for 24 hours under the condition of applying tethering system by which blood samples could be collected without restraint. During the dark period (from 20:00 to 08:00), the number of peripheral lymphocytes increased and that of granulocytes decreased, resulting in no significant change in the number of total peripheral white blood cells. The absolute number of CD4+ T, CD8+ T, and CD20+ B cells showed the significant daily change similar to that in number of peripheral lymphocytes, indicating no proportional change in these subsets. The typical proportional change was observed in CD16+ natural killer (NK) cells and the percentage of CD16+ cells decreased during dark period (from 20:00 to 04:00) and increased in the morning (from 08:00 to 12:00). The NK activity determined by killing K562 target cells showed the same changing pattern as that of percentage in CD16+ NK cells. The changing pattern of both percentage and activity of NK cells was consistent with that of plasma cortisol levels. In addition, the intravenous injection of 300 g/kg of cortisol induced increase in plasma cortisol levels and decrease in percentage of CD16+ NK cells during the first 60 min after cortisol injection. These results strongly suggest that the levels of peripheral functional CD16+ NK cells might be directly regulated by plasma cortisol level in macaque monkeys.

  4. Landau level splitting in Cd3As2 under high magnetic fields.

    PubMed

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-13

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  5. Identification, expression, and characterization of Escherichia coli guanine deaminase.

    PubMed

    Maynes, J T; Yuan, R G; Snyder, F F

    2000-08-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.

  6. Identification, Expression, and Characterization of Escherichia coli Guanine Deaminase

    PubMed Central

    Maynes, Jason T.; Yuan, Richard G.; Snyder, Floyd F.

    2000-01-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a Km of 15 μM with guanine and a kcat of 3.2 s−1. The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3′ from an open reading frame which shows homology to a bacterial purine base permease. PMID:10913105

  7. Levels at Streamflow Gaging Stations--A CD-ROM Based Training Class

    USGS Publications Warehouse

    Nolan, K. Michael; Jacobson, Nathan; Erickson, Robert; Landon, Stanley

    2003-01-01

    Streamgages record the elevation of the water surface above some reference surface, or datum. This datum is assumed to remain unchanged throughout the life of the gage. However, the elevation of gages and their supporting structures often change over time as a result of earthmovement, floods, ice, and debris. The surveying practice of leveling is used to establish datum for new gage structures and to check for vertical movement of those structures over time. Vertical changes in gage structures can affect stage-discharge relations and, thus, could result in incorrect discharge determinations. Datum checks are used to correct stage-discharge relations and allow the USGS to document gage datum throughout the life of a gage. This training presentation describes methods currently used by the U.S. Geological Survey to run levels at gaging stations. The presentation is narrated, but you control the pace of the presentation. If the computer you are using can view 'MPEG' videos you will be able to take advantage of videos found within the presentation. A test, found at the end of the presentation, can be taken to assess how well you understood the training material. The class is registered as class SW1307 with the National Training Center of the U.S. Geologcial Survey. The presentation was developed using Macromedia Director 8.5(1) and is contained in the file 'WRI-4002.exe', which should auto-launch after the CD-ROM is inserted in the PC. The program only runs on a windows-based personal computer (PC). A sound card and speakers are necessary to take advantage of the narration that accompanies the presentation. Text of narrations is provided, if you are unable to listen to the narrations. Instructions for installing and running the presentation are included in the file ' Intro.html'. The file 'Intro.html' is on the CD-ROM containing the presentation and is available from the presentation's help menu.

  8. Mutation of Escherichia coli cytosine deaminase significantly enhances molecular chemotherapy of human glioma.

    PubMed

    Kaliberov, S A; Market, J M; Gillespie, G Y; Krendelchtchikova, V; Della Manna, D; Sellers, J C; Kaliberova, L N; Black, M E; Buchsbaum, D J

    2007-07-01

    Combined treatment using adenoviral (Ad)-directed enzyme/prodrug therapy and radiation therapy has the potential to become a powerful method of cancer therapy. We have developed an Ad vector encoding a mutant bacterial cytosine deaminase (bCD) gene (AdbCD-D314A), which has a higher affinity for cytosine than wild-type bCD (bCDwt). The purpose of this study was to evaluate cytotoxicity in vitro and therapeutic efficacy in vivo of the combination of AdbCD-D314A with the prodrug 5-fluorocytosine (5-FC) and ionizing radiation against human glioma. The present study demonstrates that AdbCD-D314A infection resulted in increased 5-FC-mediated cell killing, compared with AdbCDwt. Furthermore, a significant increase in cytotoxicity following AdbCD-D314A and radiation treatment of glioma cells in vitro was demonstrated as compared to AdbCDwt. Animal studies showed significant inhibition of subcutaneous or intracranial tumor growth of D54MG glioma xenografts by the combination of AdbCD-D314A/5-FC with ionizing radiation as compared with either agent alone, and with AdbCDwt/5-FC plus radiation. The results suggest that the combination of AdbCD-D314A/5-FC with radiation produces markedly increased cytotoxic effects in cancer cells in vitro and in vivo. These data indicate that combined treatment with this novel mutant enzyme/prodrug therapy and radiotherapy provides a promising approach for cancer therapy.

  9. Cytosine Deaminase/5-Fluorocytosine Exposure Induces Bystander and Radiosensitization Effects in Hypoxic Glioblastoma Cells in vitro

    SciTech Connect

    Chen, Jennifer K.; Hu, Lily J.; Wang Dongfang; Lamborn, Kathleen R.; Deen, Dennis F. . E-mail: dennisdeen@juno.com

    2007-04-01

    Purpose: Treatment of glioblastoma (GBM) is limited by therapeutic ratio; therefore, successful therapy must be specifically cytotoxic to cancer cells. Hypoxic cells are ubiquitous in GBM, and resistant to radiation and chemotherapy, and, thus, are logical targets for gene therapy. In this study, we investigated whether cytosine deaminase (CD)/5-fluorocytosine (5-FC) enzyme/prodrug treatment induced a bystander effect (BE) and/or radiosensitization in hypoxic GBM cells. Methods and Materials: We stably transfected cells with a gene construct consisting of the SV40 minimal promoter, nine copies of a hypoxia-responsive element, and the yeast CD gene. During hypoxia, a hypoxia-responsive element regulates expression of the CD gene and facilitates the conversion of 5-FC to 5-fluorouracil, a highly toxic antimetabolite. We used colony-forming efficiency (CFE) and immunofluorescence assays to assess for BE in co-cultures of CD-expressing clone cells and parent, pNeo- or green fluorescent protein-stably transfected GBM cells. We also investigated the radiosensitivity of CD clone cells treated with 5-FC under hypoxic conditions, and we used flow cytometry to investigate treatment-induced cell cycle changes. Results: Both a large BE and radiosensitization occurred in GBM cells under hypoxic conditions. The magnitude of the BE depended on the number of transfected cells producing CD, the functionality of the CD, the administered concentration of 5-FC, and the sensitivity of cell type to 5-fluorouracil. Conclusion: Hypoxia-inducible CD/5-FC therapy in combination with radiation therapy shows both a pronounced BE and a radiosensitizing effect under hypoxic conditions.

  10. High interindividual variability in the CD4/CD8 T cell ratio and natalizumab concentration levels in the cerebrospinal fluid of patients with multiple sclerosis

    PubMed Central

    Harrer, A; Pilz, G; Wipfler, P; Oppermann, K; Sellner, J; Hitzl, W; Haschke-Becher, E; Afazel, S; Rispens, T; van der Kleij, D; Trinka, E; Kraus, J

    2015-01-01

    Strongly decreased leucocyte counts and a reduced CD4/CD8 T cell ratio in the cerebrospinal fluid (CSF) of natalizumab (NZB)-treated multiple sclerosis (MS) patients may have implications on central nervous (CNS) immune surveillance. With regard to NZB-associated progressive multi-focal leucoencephalopathy, we aimed at delineating a relationship between free NZB, cell-bound NZB, adhesion molecule (AM) expression and the treatment-associated shift in the CSF T cell ratio. Peripheral blood (PB) and CSF T cells from 15 NZB-treated MS patients, and CSF T cells from 10 patients with non-inflammatory neurological diseases and five newly diagnosed MS patients were studied. Intercellular adhesion molecule-1 (ICAM-1), leucocyte function antigen-1 (LFA-1), very late activation antigen-4 (VLA-4), NZB saturation levels, and T cell ratios were analysed by flow cytometry. NZB concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Lower NZB saturation levels (P < 0·02) and a higher surface expression of ICAM-1 and LFA-1 (P < 0·001) were observed on CSF CD8 T cells. CSF T cell ratios (0·3–2·1) and NZB concentrations (0·01–0·42 µg/ml) showed a pronounced interindividual variance. A correlation between free NZB, cell-bound NZB or AM expression levels and the CSF T cell ratio was not found. Extremely low NZB concentrations and a normalized CSF T cell ratio were observed in one case. The differential NZB saturation and AM expression of CSF CD8 T cells may contribute to their relative enrichment in the CSF. The reduced CSF T cell ratio appeared sensitive to steady-state NZB levels, as normalization occurred quickly. The latter may be important concerning a fast reconstitution of CNS immune surveillance. PMID:25603898

  11. Unique properties of Plasmodium falciparum porphobilinogen deaminase.

    PubMed

    Nagaraj, Viswanathan Arun; Arumugam, Rajavel; Gopalakrishnan, Bulusu; Jyothsna, Yeleswarapu Sri; Rangarajan, Pundi N; Padmanaban, Govindarajan

    2008-01-04

    The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.

  12. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism.

  13. N-terminal and C-terminal cytosine deaminase domain of APOBEC3G inhibit hepatitis B virus replication

    PubMed Central

    Lei, Yan-Chang; Tian, Yong-Jun; Ding, Hong-Hui; Wang, Bao-Ju; Yang, Yan; Hao, You-Hua; Zhao, Xi-Ping; Lu, Meng-Ji; Gong, Fei-Li; Yang, Dong-Liang

    2006-01-01

    AIM: To investigate the effect of human apolipoprotein B mRNA-editing enzyme catalytic-polypeptide 3G (APOBEC3G) and its N-terminal or C-terminal cytosine deaminase domain-mediated antiviral activity against hepatitis B virus (HBV) in vitro and in vivo. METHODS: The mammalian hepatoma cells HepG2 and HuH7 were cotransfected with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vector and 1.3-fold-overlength HBV DNA as well as the linear monomeric HBV of genotype B and C. For in vivo study, an HBV vector-based mouse model was used in which APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain expression vectors were co-delivered with 1.3-fold-overlength HBV DNA via high-volume tail vein injection. Levels of hepatitis B virus surface antigen (HBsAg) and hepatitis B virus e antigen (HBeAg) in the media of the transfected cells and in the sera of mice were determined by ELISA. The expression of hepatitis B virus core antigen (HBcAg) in the transfected cells was determined by Western blot analysis. Core-associated HBV DNA was examined by Southern blot analysis. Levels of HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by quantitative PCR and quantitative RT-PCR analysis, respectively. RESULTS: Human APOBEC3G exerted an anti-HBV activity in a dose-dependent manner in HepG2 cells, and comparable suppressive effects were observed on genotype B and C as that of genotype A. Interestingly, the N-terminal or C-terminal cytosine deaminase domain alone could also inhibit HBV replication in HepG2 cells as well as Huh7 cells. Consistent with in vitro results, the levels of HBsAg in the sera of mice were dramatically decreased, with more than 50 times decrease in the levels of serum HBV DNA and core-associated RNA in the liver of mice treated with APOBEC3G and its N-terminal or C-terminal cytosine deaminase domain as compared to the controls. CONCLUSION: Our findings provide probably the

  14. Levels of regulatory T cells CD69(+)NKG2D(+)IL-10(+) are increased in patients with autoimmune thyroid disorders.

    PubMed

    Rodríguez-Muñoz, Ana; Vitales-Noyola, Marlen; Ramos-Levi, Ana; Serrano-Somavilla, Ana; González-Amaro, Roberto; Marazuela, Mónica

    2016-03-01

    Regulatory T (Treg) cells play an important role in the pathogenesis of autoimmune thyroid disorders (AITD). New subsets of CD4(+)CD69(+) and CD4(+)NKG2D(+) T lymphocytes that behave as regulatory cells have been recently reported. The role of these immunoregulatory lymphocytes has not been previously explored in AITD. We analyzed by multi-parametric flow cytometry different Treg cell subsets in peripheral blood from 32 patients with AITD and 19 controls, and in thyroid tissue from seven patients. The suppressive activity was measured by an assay of inhibition of lymphocyte activation. We found a significant increased percentage of CD4(+)CD69(+)IL-10(+), CD4(+)CD69(+)NKG2D(+), and CD4(+)CD69(+)IL-10(+)NKG2D(+) cells, in peripheral blood from GD patients compared to controls. The increase in CD4(+)CD69(+)IL-10(+) and CD4(+)CD69(+)IL-10(+)NKG2D(+) T cells was especially remarkable in patients with active Graves' ophthalmopathy (GO), and a significant positive correlation between GO activity and CD4(+)CD69(+)IL-10(+) or CD4(+)CD69(+)IL-10(+)NKG2D(+) cells was also found. In addition, these cells were increased in patients with a more severe and/or prolonged disease. Thyroid from AITD patients showed an increased proportion of CD69(+) regulatory T cells subpopulations compared to autologous peripheral blood. The presence of CD69(+), NKG2D(+), and IL-10(+) cells was confirmed by immunofluorescence microscopy. In vitro functional assays showed that CD69(+) Treg cells exerted an important suppressive effect on the activation of T effector cells in controls, but not in AITD patients. Our findings suggest that the levels of CD69(+) regulatory lymphocytes are increased in AITD patients, but they are apparently unable to down-modulate the autoimmune response and tissue damage.

  15. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    PubMed

    Chua, Caroline Lin Lin; Brown, Graham V; Hamilton, John A; Molyneux, Malcolm E; Rogerson, Stephen J; Boeuf, Philippe

    2013-01-01

    In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages) can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163) is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03) and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004) and in placental blood (r = -0.259, p = 0.0001). These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  16. Adenosine potentiates the therapeutic effects of neural stem cells expressing cytosine deaminase against metastatic brain tumors.

    PubMed

    Kang, Wonyoung; Seol, Ho Jun; Seong, Dong-Ho; Kim, Jandi; Kim, Yonghyun; Kim, Seung U; Nam, Do-Hyun; Joo, Kyeung Min

    2013-09-01

    Tumor-tropic properties of neural stem cells (NSCs) provide a novel approach with which to deliver targeting therapeutic genes to brain tumors. Previously, we developed a therapeutic strategy against metastatic brain tumors using a human NSC line (F3) expressing cytosine deaminase (F3.CD). F3.CD converts systemically administered 5-fluorocytosine (5-FC), a blood-brain barrier permeable nontoxic prodrug, into the anticancer agent 5-fluorouracil (5-FU). In this study, we potentiated a therapeutic strategy of treatment with nucleosides in order to chemically facilitate the endogenous conversion of 5-FU to its toxic metabolite 5-FU ribonucleoside (5-FUR). In vitro, 5-FUR showed superior cytotoxic activity against MDA-MB-435 cancer cells when compared to 5-FU. Although adenosine had little cytotoxic activity, the addition of adenosine significantly potentiated the in vitro cytotoxicity of 5-FU. When MDA-MB‑435 cells were co-cultured with F3.CD cells, F3.CD cells and 5-FC inhibited the growth of MDA-MB-435 cells more significantly in the presence of adenosine. Facilitated 5-FUR production by F3.CD was confirmed by an HPLC analysis of the conditioned media derived from F3.CD cells treated with 5-FC and adenosine. In vivo systemic adenosine treatment also significantly potentiated the therapeutic effects of F3.CD cells and 5-FC in an MDA-MB-435 metastatic brain tumor model. Simple adenosine addition improved the antitumor activity of the NSCs carrying the therapeutic gene. Our results demonstrated an increased therapeutic potential, and thereby, clinical applicability of NSC-based gene therapy.

  17. Cell membrane CD44v6 levels in squamous cell carcinoma of the lung: association with high cellular proliferation and high concentrations of EGFR and CD44v5.

    PubMed

    Ruibal, Álvaro; Aguiar, Pablo; Del Río, María Carmen; Nuñez, Matilde Isabel; Pubul, Virginia; Herranz, Michel

    2015-02-18

    Membranous CD44v6 levels in tumors and surrounding samples obtained from 94 patients with squamous cell lung carcinomas were studied and compared to clinical stage, cellular proliferation, membranous CD44v5 levels, epidermal growth factor receptor EGFR and cytoplasmatic concentrations of CYFRA 21.1. CD44v6 positive values were observed in 33/38 non-tumor samples and in 76/94 tumor samples, but there were not statistically significant differences between both subgroups. In CD44v6 positive tumor samples, CD44v6 was not associated with clinical stage, histological grade, ploidy and lymph node involvement, but significant association was found with high cellular proliferation. Likewise, CD44v6 positive tumors had significantly higher levels of EGFR and CD44v5. In patients with squamous cell lung carcinomas and clinical stage I, positive CD44v6 cases were associated with the same parameters. Furthermore, positive CD44v5 squamous tumors were associated significantly with histological grade III and lower levels of CYFRA21.1. Our findings support the value of CD44v6 as a possible indicator of poor outcome in patients with squamous lung carcinomas.

  18. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    NASA Astrophysics Data System (ADS)

    Pousset, J.; Farella, I.; Gambino, S.; Cola, A.

    2016-03-01

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron and hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.

  19. Direct ex vivo analysis of human CD4(+) memory T cell activation requirements at the single clonotype level.

    PubMed

    Bitmansour, Arlene D; Douek, Daniel C; Maino, Vernon C; Picker, Louis J

    2002-08-01

    CD4(+) memory T cells continuously integrate signals transmitted through the TCR and costimulatory molecules, only responding when the intensity of such signals exceeds an intrinsic activation threshold. Recent data suggest that these activation thresholds can be regulated independently of TCR specificity, and that threshold tuning may constitute a major mechanism for controlling T cell effector activity. In this work we take advantage of the profound clonotypic hierarchies of the large human CD4(+) T cell response to CMV to study activation thresholds of fresh (unexpanded) memory T cells at the clonotypic level. We identified dominant responses to CMV matrix determinants mediated by single TCRB sequences within particular TCR-Vbeta families. The specific response characteristics of these single, Ag-specific, TCRB-defined clonotypes could be unequivocally determined in fresh PBMC preparations by cytokine flow cytometry with gating on the appropriate Vbeta family. These analyses revealed 1) optimal peptides capable of eliciting specific responses by themselves at doses as low as 2 pg/ml, with each log increase in dose eliciting ever-increasing frequencies of responding cells over a 4- to 5-log range; 2) significant augmentation of response frequencies at all submaximal peptide doses by CD28- and CD49d-mediated costimulation; 3) differential dose response and costimulatory characteristics for IFN-gamma and IL-2 responses; and 4) no association of activation requirements with the CD27-defined CD4(+) T cell memory differentiation pathway. Taken together these data confirm that triggering heterogeneity exists within individual CD4(+) memory T cell clonotypes in vivo and demonstrate that such single clonotypes can manifest qualitatively different functional responses depending on epitope dose and relative levels of costimulation.

  20. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants

    PubMed Central

    Singh, Rajnish P.; Shelke, Ganesh M.; Kumar, Anil; Jha, Prabhat N.

    2015-01-01

    1-aminocyclopropane-1-carboxylate deaminase (ACCD), a pyridoxal phosphate-dependent enzyme, is widespread in diverse bacterial and fungal species. Owing to ACCD activity, certain plant associated bacteria help plant to grow under biotic and abiotic stresses by decreasing the level of “stress ethylene” which is inhibitory to plant growth. ACCD breaks down ACC, an immediate precursor of ethylene, to ammonia and α-ketobutyrate, which can be further metabolized by bacteria for their growth. ACC deaminase is an inducible enzyme whose synthesis is induced in the presence of its substrate ACC. This enzyme encoded by gene AcdS is under tight regulation and regulated differentially under different environmental conditions. Regulatory elements of gene AcdS are comprised of the regulatory gene encoding LRP protein and other regulatory elements which are activated differentially under aerobic and anaerobic conditions. The role of some additional regulatory genes such as AcdB or LysR may also be required for expression of AcdS. Phylogenetic analysis of AcdS has revealed that distribution of this gene among different bacteria might have resulted from vertical gene transfer with occasional horizontal gene transfer (HGT). Application of bacterial AcdS gene has been extended by developing transgenic plants with ACCD gene which showed increased tolerance to biotic and abiotic stresses in plants. Moreover, distribution of ACCD gene or its homolog's in a wide range of species belonging to all three domains indicate an alternative role of ACCD in the physiology of an organism. Therefore, this review is an attempt to explore current knowledge of bacterial ACC deaminase mediated physiological effects in plants, mode of enzyme action, genetics, distribution among different species, ecological role of ACCD and, future research avenues to develop transgenic plants expressing foreign AcdS gene to cope with biotic and abiotic stressors. Systemic identification of regulatory circuits

  1. Landau level splitting in Cd3As2 under high magnetic fields

    PubMed Central

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-01-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry. PMID:26165390

  2. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    PubMed Central

    Li, Ruolin; Wang, Junli; Wang, Xinfeng; Wang, Maoshui

    2016-01-01

    OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1) patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2) patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01). The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01) at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%); a specificity of 73.7% (56.9-86.6%); positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the pleural space

  3. Plasma levels of soluble CD27: a simple marker to monitor immune activation during potent antiretroviral therapy in HIV-1-infected subjects

    PubMed Central

    DE MILITO, A; ALEMAN, S; MARENZI, R; SÖNNERBORG, A; FUCHS, D; ZAZZI, M; CHIODI, F

    2002-01-01

    Plasma levels of soluble CD27 (sCD27) are elevated in diseases characterized by T cell activation and are used as a marker of immune activation. We assessed the usefulness of determining plasma sCD27 as a marker for monitoring immune activation in HIV-1-infected patients treated with highly active antiretroviral therapy (HAART). A first cross-sectional examination of 68 HIV-1-infected and 18 normal subjects showed high levels of sCD27 in HIV-1 infection; plasma sCD27 was correlated to HIV-1 viraemia and inversely correlated to CD4+ T cell count. Twenty-six HIV-1-infected patients undergoing HAART were studied at baseline and after 6, 12, 18 and 24 months of therapy. Seven additional patients under HAART were analysed at baseline, during and after interruption of therapy. In the total population, HAART induced a significant and progressive reduction, but not a normalization, of plasma levels of sCD27 after 24 months. A full normalization of plasma sCD27 was observed in the virological responders (undetectable HIV-1 RNA at months 18 and 24) and also in patients with moderate immunodeficiency at baseline (CD4+ T cell count >200 cells/mm3). Changes in plasma neopterin paralleled the changes in sCD27 but only baseline sCD27 levels were predictive of a greater increase in CD4+ T cell count during the follow-up. Discontinuation of therapy resulted in a rapid increase of sCD27 plasma levels associated with viraemia rebound and drop in CD4+ T cell count. Our findings suggest that plasma sCD27 may represent an alternative and simple marker to monitor immune activation during potent antiretroviral therapy. HIV-1-induced immune activation can be normalized by HAART in successfully treated patients where the disease is not advanced. PMID:11966765

  4. Interim Report of the Committee for Teaching English to C-D Level Pupils in Primary Schools

    ERIC Educational Resources Information Center

    Harari, Esther

    1975-01-01

    This report concerns teaching English in Israeli schools to culturally deprived C-D level students. Discussion centers on problems of dropping out of the program, problems of grouping by achievement, and suggested solutions to these. (Available from English Inspectorate, Ministry of Education and Culture, P. O. Box 292, Jerusalem, Israel.) (CHK)

  5. Student Interactions with CD-ROM Storybooks: A Look at Potential Relationships between Multiple Intelligence Strengths and Levels of Interaction

    ERIC Educational Resources Information Center

    Huffman, Celia A.

    2012-01-01

    This study looked at the potential relationship that may exist between students' intelligence strengths, in particular their spatial and kinesthetic strengths, and their combined cognitive and metacognitive levels of interaction with a CD-ROM storybook. The multiple intelligence strengths of a sample of students, measured via the MIDAS/My…

  6. Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer

    PubMed Central

    Deng, Long-Ying; Wang, Jian-Ping; Gui, Zhi-Fu; Shen, Li-Zong

    2011-01-01

    AIM: To evaluate bacterial cytosine deaminase (bCD) mutant D314A and 5-fluorocytosine (5-FC) for treatment of colon cancer in a mouse model. METHODS: Recombinant lentivirus vectors that contained wild-type bCD gene (bCDwt), and bCD mutant D314A gene (bCD-D314A) with green fluorescence protein gene were constructed and used to infect human colon carcinoma LoVo cells, to generate stable transfected cells, LoVo/null, LoVo/bCDwt or LoVo/bCD-D314A. These were injected subcutaneously into Balb/c nude mice to establish xenograft models. Two weeks post-LoVo cell inoculation, PBS or 5-FC (500 mg/kg) was administered by intraperitoneal (i.p.) injection once daily for 14 d. On the day after LoVo cell injection, mice were monitored daily for tumor volume and survival. RESULTS: Sequence analyses confirmed the construction of recombinant lentiviral plasmids that contained bCDwt or bCD-D314A. The lentiviral vector had high efficacy for gene delivery, and RT-PCR showed that bCDwt or bCD-D314A gene was transferred to LoVo cells. Among these treatment groups, gene delivery or 5-FC administration alone had no effect on tumor growth. However, bCDwt/5-FC or bCD-D314A/5-FC treatment inhibited tumor growth and prolonged survival of mice significantly (P < 0.05). Importantly, the tumor volume in the bCD-D314A/5-FC-treated group was lower than that in the bCDwt/5-FC group (P < 0.05), and bCD-D314A plus 5-FC significantly prolonged survival of mice in comparison with bCDwt plus 5-FC (P < 0.05). CONCLUSION: The bCD mutant D314A enhanced significantly antitumor activity in human colon cancer xenograft models, which provides a promising approach for human colon carcinoma therapy. PMID:21734808

  7. Preclinical demonstration of lentiviral vector-mediated correction of immunological and metabolic abnormalities in models of adenosine deaminase deficiency.

    PubMed

    Carbonaro, Denise A; Zhang, Lin; Jin, Xiangyang; Montiel-Equihua, Claudia; Geiger, Sabine; Carmo, Marlene; Cooper, Aaron; Fairbanks, Lynette; Kaufman, Michael L; Sebire, Neil J; Hollis, Roger P; Blundell, Michael P; Senadheera, Shantha; Fu, Pei-Yu; Sahaghian, Arineh; Chan, Rebecca Y; Wang, Xiaoyan; Cornetta, Kenneth; Thrasher, Adrian J; Kohn, Donald B; Gaspar, H Bobby

    2014-03-01

    Gene transfer into autologous hematopoietic stem cells by γ-retroviral vectors (gRV) is an effective treatment for adenosine deaminase (ADA)-deficient severe combined immunodeficiency (SCID). However, current gRV have significant potential for insertional mutagenesis as reported in clinical trials for other primary immunodeficiencies. To improve the efficacy and safety of ADA-SCID gene therapy (GT), we generated a self-inactivating lentiviral vector (LV) with a codon-optimized human cADA gene under the control of the short form elongation factor-1α promoter (LV EFS ADA). In ADA(-/-) mice, LV EFS ADA displayed high-efficiency gene transfer and sufficient ADA expression to rescue ADA(-/-) mice from their lethal phenotype with good thymic and peripheral T- and B-cell reconstitution. Human ADA-deficient CD34(+) cells transduced with 1-5 × 10(7) TU/ml had 1-3 vector copies/cell and expressed 1-2x of normal endogenous levels of ADA, as assayed in vitro and by transplantation into immune-deficient mice. Importantly, in vitro immortalization assays demonstrated that LV EFS ADA had significantly less transformation potential compared to gRV vectors, and vector integration-site analysis by nrLAM-PCR of transduced human cells grown in immune-deficient mice showed no evidence of clonal skewing. These data demonstrated that the LV EFS ADA vector can effectively transfer the human ADA cDNA and promote immune and metabolic recovery, while reducing the potential for vector-mediated insertional mutagenesis.

  8. Adenosine Deaminase Inhibition Prevents Clostridium difficile Toxin A-Induced Enteritis in Mice ▿

    PubMed Central

    de Araújo Junqueira, Ana Flávia Torquato; Dias, Adriana Abalen Martins; Vale, Mariana Lima; Spilborghs, Graziela Machado Gruner Turco; Bossa, Aline Siqueira; Lima, Bruno Bezerra; Carvalho, Alex Fiorini; Guerrant, Richard Littleton; Ribeiro, Ronaldo Albuquerque; Brito, Gerly Anne

    2011-01-01

    Toxin A (TxA) is able to induce most of the classical features of Clostridium difficile-associated disease in animal models. The objective of this study was to determine the effect of an inhibitor of adenosine deaminase, EHNA [erythro-9-(2-hydroxy-3-nonyl)-adenine], on TxA-induced enteritis in C57BL6 mice and on the gene expression of adenosine receptors. EHNA (90 μmol/kg) or phosphate-buffered saline (PBS) was injected intraperitoneally (i.p.) 30 min prior to TxA (50 μg) or PBS injection into the ileal loop. A2A adenosine receptor agonist (ATL313; 5 nM) was injected in the ileal loop immediately before TxA (50 μg) in mice pretreated with EHNA. The animals were euthanized 3 h later. The changes in the tissue were assessed by the evaluation of ileal loop weight/length and secretion volume/length ratios, histological analysis, myeloperoxidase assay (MPO), the local expression of inducible nitric oxide synthase (NOS2), pentraxin 3 (PTX3), NF-κB, tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) by immunohistochemistry and/or quantitative reverse transcription-PCR (qRT-PCR). The gene expression profiles of A1, A2A, A2B, and A3 adenosine receptors also were evaluated by qRT-PCR. Adenosine deaminase inhibition, by EHNA, reduced tissue injury, neutrophil infiltration, and the levels of proinflammatory cytokines (TNF-α and IL-1β) as well as the expression of NOS2, NF-κB, and PTX3 in the ileum of mice injected with TxA. ATL313 had no additional effect on EHNA action. TxA increased the gene expression of A1 and A2A adenosine receptors. Our findings show that the inhibition of adenosine deaminase by EHNA can prevent Clostridium difficile TxA-induced damage and inflammation possibly through the A2A adenosine receptor, suggesting that the modulation of adenosine/adenosine deaminase represents an important tool in the management of C. difficile-induced disease. PMID:21115723

  9. Levels of circulating myeloid subpopulations and of heme oxygenase-1 do not predict CD4+ T cell recovery after the initiation of antiretroviral therapy for HIV disease

    PubMed Central

    2014-01-01

    The level (or frequency) of circulating monocyte subpopulations such as classical (CD14hiCD16-) and non-classical (CD14dimCD16+) monocytes varies during the course of HIV disease progression and antiretroviral therapy (ART). We hypothesized that such variation and/or differences in the degree to which these cells expressed the immunoregulatory enzyme, heme oxygenase-1 (HO-1), would be associated with CD4+ T cell recovery after the initiation of ART. This hypothesis was tested in a cross-sectional study of four groups of HIV-infected subjects, including those who were seronegative, untreated virologic controllers [detectable viral load (VL) of <1000 copies/mL], untreated virologic non-controllers [VL > 10,000 copies/mL], and ART-mediated virologic controllers [VL < 75 copies/mL]. A longitudinal analysis of ART-treated subjects was also performed along with regression analysis to determine which biomarkers were associated with and/or predictive of CD4+ T cell recovery. Suppressive ART was associated with increased levels of classical monocyte subpopulations (CD14hiCD16-) and decreased levels of non-classical monocyte populations (CD14dimCD16+). Among peripheral blood mononuclear cells (PBMCs), HO-1 was found to be most highly up-regulated in CD14+ monocytes after ex vivo stimulation. Neither the levels of monocyte subpopulations nor of HO-1 expression in CD14+ monocytes were significantly associated with the degree of CD4+ T cell recovery. Monocyte subpopulations and HO-1 gene expression were, however, restored to normal levels by suppressive ART. These results suggest that the level of circulating monocyte subpopulations and their expression of HO-1 have no evident relationship to CD4+ T cell recovery after the initiation of ART. PMID:25180041

  10. Metabolic and functional consequences of inhibiting adenosine deaminase during renal ischemia in rats.

    PubMed Central

    Stromski, M E; van Waarde, A; Avison, M J; Thulin, G; Gaudio, K M; Kashgarian, M; Shulman, R G; Siegel, N J

    1988-01-01

    The concentrations of renal ATP have been measured by 31P-nuclear magnetic resonance (NMR) before, during, and after bilateral renal artery occlusion. Using in vivo NMR, the initial postischemic recovery of ATP increased with the magnitude of the residual nucleotide pool at the end of ischemia. ATP levels after 120 min of reflow correlated with functional recovery at 24 h. In the present study the effect of blocking the degradation of ATP during ischemia upon the postischemic restoration of ATP was investigated. Inhibition of adenosine deaminase by 80% with the tight-binding inhibitor 2'-deoxycoformycin led to a 20% increase in the residual adenine nucleotide pool. This increased the ATP initial recovery after 45 min of ischemia from 52% (in controls) to 62% (in the treated animals), as compared to the basal levels. The inhibition also caused an accelerated postischemic restoration of cellular ATP so that at 120 min it was 83% in treated rats vs. 63% in untreated animals. There was a corresponding improvement in the functional recovery from the insult (increase of 33% in inulin clearance 24 h after the injury). Inhibition of adenosine deaminase during ischemia results in a injury similar to that seen after a shorter period of insult. PMID:3263396

  11. Pollution of mycological surfaces in hospital emergency departments correlates positively with blood NKT CD3+ 16+ 56+ and negatively with CD4+ cell levels of their staff

    PubMed Central

    Suska, Milena; Kiepura, Anna; Winnicka, Izabela; Leszczyński, Paweł; Bielawska-Drózd, Agata; Cieślik, Piotr; Kubiak, Leszek; Depczyńska, Daria; Brewczyńska, Aleksandra; Skopińska-Różewska, Ewa; Kocik, Janusz

    2016-01-01

    The aim of the present study was the assessment of the putative influence of yeast and filamentous fungi in healthcare and control (office) workplaces (10 of each kind) on immune system competence measured by NK (natural killer), CD4+, and NKT (natural killer T lymphocyte) cell levels in the blood of the personnel employed at these workplaces. Imprints from floors and walls were collected in winter. The blood was taken in spring the following year, from 40 men, 26 to 53 years old, healthcare workers of hospital emergency departments (HED), who had been working for at least five years in their current positions, and from 36 corresponding controls, working in control offices. Evaluation of blood leukocyte subpopulations was done by flow cytometry. The qualitative analysis of the surface samples revealed a prevalence of strains belonging to Aspergillus spp. and Penicillium spp. genus. There was no statistically significant difference between the level of NKT; however, the percentage of NK cells was lower in the blood of HED workers than in the blood of offices personnel. Spearman analysis revealed the existence of positive correlation (r = 0.4677, p = 0.002) between the total CFU/25 cm2 obtained by imprinting method from walls and floors of HED and the percentage of NKT (CD3+16+56+) lymphocytes collected from the blood of their personnel, and negative correlation (r = –0. 3688, p = 0.019) between this parameter of fungal pollution and the percentage of CD4+ lymphocytes in the blood of HED staff. No other correlations were found. PMID:27095925

  12. Circulating CD36 and fractalkine levels are associated with vulnerable plaque progression in patients with unstable angina pectoris.

    PubMed

    Li, Rui Jian; Yang, Ming; Li, Ji Fu; Xue, Li; Chen, Yu Guo; Chen, Wen Qiang

    2014-11-01

    The chemokine, fractalkine, independently enhances the vulnerability of coronary atherosclerotic plaques. The present study investigated the combined effects of CD36 and fractalkine on coronary plaque progression in patients with unstable angina pectoris. In the present study, 120 unstable angina pectoris patients undergoing coronary angiography and intravascular ultrasound were divided into two groups: an intermediate lesion group (lumen diameter stenosis 50-70%, 80 patients) and a severe lesion group (at least one lesion with lumen diameter stenosis > 70%, 40 patients). The control group consisted of 40 healthy age- and sex-matched subjects. Concentrations of CD36 and fractalkine were measured by enzyme-linked immunosorbent assay. Major adverse cardiovascular events were monitored over a 2-year follow up. Intravascular ultrasound showed that patients with severe lesions had more calcified and mixed plaques, and a larger plaque area and plaque burden than patients with intermediate lesions (P < 0.05-0.01). More patients with severe lesions underwent stent deployment (P < 0.05) than those with intermediate lesions. CD36 and fractalkine concentrations were significantly higher in the severe lesion patients (P < 0.05), and both had significant positive correlations (P < 0.05) with the plaque burden of atherosclerotic lesions. Using the matched nested case-control study, we found that CD36 and fractalkine levels were higher in patients with recurrent major adverse cardiovascular events than controls (P < 0.05). In conclusion, CD36 and fractalkine both promote, and might synergistically enhance, the progression of coronary atherosclerotic plaques.

  13. Attenuation of exercise vasodilatation by adenosine deaminase in anaesthetized dogs.

    PubMed Central

    Goonewardene, I P; Karim, F

    1991-01-01

    1. In dogs anaesthetized with sodium pentobarbitone and artificially ventilated, the gracilis muscles were vascularly isolated and perfused at a constant flow of 28.4 +/- 4.6 ml min-1 (100 g muscle tissue)-1 (99.8 +/- 4.5% of maximum free flow, means +/- standard error of the mean (S.E.M.), n = 9). 2. Three to five minutes of electrical stimulation of the cut peripheral end of the obturator nerve (4 Hz, 6 V, 0.2 ms) resulted in muscle contraction (0.61 +/- 0.14 kg (100 g)-1 during solvent infusion and 0.56 +/- 0.10 kg (100 g)-1 during intra-arterial adenosine deaminase infusion (50 U min-1) and an immediate decrease in arterial perfusion pressure from 184.5 +/- 8.1 mmHg to 148.2 +/- 5.7 mmHg (18.7 +/- 3.4% decrease) during solvent infusion, and from 193.5 +/- 7.16 to 142.0 +/- 10.2 mmHg (25.4 +/- 6.1% decrease) during adenosine deaminase infusion 10 s after the commencement of muscle stimulation. After about 5 min of muscle contractions, the arterial perfusion pressure decreased to 120.8 +/- 7.8 mmHg (32.9 +/- 5.8% decrease) during solvent infusion, and to 152.8 +/- 11.2 mmHg (20.9 +/- 5.3% decrease) during adenosine deaminase infusion (i.e. 37.9 +/- 6.2% attenuation of the fall in arterial perfusion pressure). The time taken for 90% recovery of the arterial perfusion pressure was 72.1 +/- 10.9 s during solvent infusion, and 51.5 +/- 9.3 s during adenosine deaminase infusion (P less than 0.05). 3. Adenosine (2 x 10(-3) mol l-1) infusion in the resting muscle during solvent infusion (final concentration in arterial blood 1.3 x 10(-4) +/- 6.0 x 10(-5) mol l-1) resulted in a 34.8 +/- 7.2% fall in arterial perfusion pressure but a fall of only 7.2 +/- 1.8% during adenosine deaminase infusion (50 U min-1; P less than 0.05; n = 5) indicating that adenosine deaminase infused at 50 U min-1 was more than adequate to metabolize endogenous adenosine produced during muscle contractions. 4. These data suggest that adenosine contributes about 40% to the sustained

  14. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction

  15. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    SciTech Connect

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the

  16. Deep levels in high resistive CdTe and CdZnTe explored by photo-Hall effect and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Musiienko, Artem; Grill, Roman; Hlídek, Pavel; Moravec, Pavel; Belas, Eduard; Zázvorka, Jakub; Korcsmáros, Gabriel; Franc, Jan; Vasylchenko, Igor

    2017-01-01

    High resistive CdTe and CdZnTe single crystals were measured by photo-Hall effect spectroscopy (PHES) and photoluminescence spectroscopy (PL) with the aim of discovering the position of deep levels (DLs) in the band gap. Illumination in the range of 0.65-1.77 eV, room temperature, and DC electrical measurements were used in the case of PHES. Low temperature (4 K) photoluminescence spectra were recorded in the spectral range above 0.47 eV. Eight samples, both n-type and p-type, were studied and typical shapes of spectra were collected, compared and interpreted for both spectroscopy methods. It was shown that a simple single-level model of PHES often fails in the interpretation of DLs distant from the midgap. Eight DLs with the energy E c - 0.65 eV, E c - 0.8 eV, E c - 0.9 eV, E c - (1.10-1.15) eV, E v + 0.70 eV, E v + 0.85 eV, E v + 1.0 eV, and E c - 1.25 eV were interpreted. A memory effect characterized by a relaxation time of about 60 s was observed at the 0.8 eV level and allowed us to determine the 1.7 × 10-17 cm2 capture cross-section of electrons on this level. It is argued that PHES is a convenient complementary method to identify and characterize DLs, including DLs inaccessible by thermal emission techniques. DLs observed by PHES were consistently verified by PL.

  17. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+.

    PubMed

    Mitra, R S; Gray, R H; Chin, B; Bernstein, I A

    1975-03-01

    Cells of Escherichia coli strain B develop large intracellular vacuoles and exhibit an abnormally long lag phase when inoculated into a defined medium to glucose and salts containing 3 times 10-6 M Cd2+. Early in this lag, about 95% of the cells fail to form colonies when plated on nutrient broth-NaCl-agar. Prior to the initiation of proliferation, the morphology of these cells becomes normal. They regain viability in the absence of deoxyribonucleic acid replication. The rate and extent of growth are normal once proliferation begins. This reversible phenomenon of accommodation to a growth-inhibiting concentration of Cd2+ does not appear to result from a selection of mutant cells. Cells which are proliferating in the presence of Cd2+ accumulate the ion to a very high concentration. In membranes and 31% in the cytoplasm. In unaccommodated cells, the figures are 2%, 75%, and 23%, respectively. The activity of alkaline phosphatase, a zinc-metalloenzyme which is inhibited by cadmum and is located between cell wall and membrane, is not abnormally low in accommodated cells, suggesting that the cadmim is compartmentalized in these cells. Molecular sieve chromatography of cell extracts shows that the Cd2+ is associated with two classes of macromolecules. It appears that accommodation of E. coli to the presence of Cd2+ involves exclusion of the ion from the cell and reversal of damage caused by prior exposure to the ion.

  18. Molecular mechanisms of accommodation in Escherichia coli to toxic levels of Cd2+.

    PubMed Central

    Mitra, R S; Gray, R H; Chin, B; Bernstein, I A

    1975-01-01

    Cells of Escherichia coli strain B develop large intracellular vacuoles and exhibit an abnormally long lag phase when inoculated into a defined medium to glucose and salts containing 3 times 10-6 M Cd2+. Early in this lag, about 95% of the cells fail to form colonies when plated on nutrient broth-NaCl-agar. Prior to the initiation of proliferation, the morphology of these cells becomes normal. They regain viability in the absence of deoxyribonucleic acid replication. The rate and extent of growth are normal once proliferation begins. This reversible phenomenon of accommodation to a growth-inhibiting concentration of Cd2+ does not appear to result from a selection of mutant cells. Cells which are proliferating in the presence of Cd2+ accumulate the ion to a very high concentration. In membranes and 31% in the cytoplasm. In unaccommodated cells, the figures are 2%, 75%, and 23%, respectively. The activity of alkaline phosphatase, a zinc-metalloenzyme which is inhibited by cadmum and is located between cell wall and membrane, is not abnormally low in accommodated cells, suggesting that the cadmim is compartmentalized in these cells. Molecular sieve chromatography of cell extracts shows that the Cd2+ is associated with two classes of macromolecules. It appears that accommodation of E. coli to the presence of Cd2+ involves exclusion of the ion from the cell and reversal of damage caused by prior exposure to the ion. Images PMID:1090597

  19. Bystander cytotoxicity in human medullary thyroid carcinoma cells mediated by fusion yeast cytosine deaminase and 5-fluorocytosine.

    PubMed

    Kucerova, Lucia; Matuskova, Miroslava; Hlubinova, Kristina; Bohovic, Roman; Feketeova, Lucia; Janega, Pavol; Babal, Pavel; Poturnajova, Martina

    2011-12-01

    In our work, we have evaluated efficiency of gene-directed enzyme/prodrug therapy (GDEPT) based on combination of fusion yeast cytosine deaminase (yCD) and 5-fluorocytosine (5FC) on model human medullary thyroid carcinoma (MTC) cell line TT. We determined the efficiency of this GDEPT approach in suicide and bystander cytotoxicity induction. We have shown significant bystander effect in vitro and 5FC administration resulted in potent antitumor effect in vivo. Furthermore, we have unraveled high efficiency of cell-mediated GDEPT, when human mesenchymal stromal cells (MSC) were used as delivery vehicles in direct cocultures in vitro. Nevertheless, effector MSC exhibited inhibitory effect on TT cell proliferation and abrogated TT xenotransplant growth in vivo. We suggest that yCD/5FC combination represents another experimental treatment modality to be tested in MTC and our data further support the exploration of MSC antitumor potential for future use in metastatic MTC therapy.

  20. Increased levels of adenosine and ecto 5'-nucleotidase (CD73) activity precede renal alterations in experimental diabetic rats.

    PubMed

    Oyarzún, C; Salinas, C; Gómez, D; Jaramillo, K; Pérez, G; Alarcón, S; Podestá, L; Flores, C; Quezada, C; San Martín, R

    The pathogenesis of diabetic nephropathy (DN) has not been clearly established, making diagnosis and patient management difficult. Recent studies using experimental diabetic models have implicated adenosine signaling with renal cells dysfunction. Therefore, the study of the biochemical mechanisms that regulate extracellular adenosine availability during DN is of emerging interest. Using streptozotocin-induced diabetic rats we demonstrated that urinary levels of adenosine were early increased. Further analyses showed an increased expression of the ecto 5'-nucleotidase (CD73), which hydrolyzes AMP to adenosine, at the renal proximal tubules and a higher enzymatic activity in tubule extracts. These changes precede the signs of diabetic kidney injury recognized by significant proteinuria, morphological alterations and the presence of the renal fibrosis markers alpha smooth muscle actin and fibronectin, collagen deposits and thickening of the glomerular basement membrane. In the proximal tubule cell line HK2 we identified TGF-β as a key modulator of CD73 activity. Importantly, the increased activity of CD73 could be screened in urinary sediments from diabetic rats. In conclusion, the increase of CD73 activity is a key component in the production of high levels of adenosine and emerges as a new tool for the early diagnosis of tubular injury in diabetic kidney disease.

  1. A 24-Year Enzyme Replacement Therapy in an Adenosine-deaminase-Deficient Patient.

    PubMed

    Tartibi, Hana M; Hershfield, Michael S; Bahna, Sami L

    2016-01-01

    Severe combined immunodeficiency (SCID) is a fatal childhood disease unless immune reconstitution is performed early in life, with either hematopoietic stem cell transplantation or gene therapy. One of its subtypes is caused by adenosine deaminase (ADA) enzyme deficiency, which leads to the accumulation of toxic metabolites that impair lymphocyte development and function. With the development of polyethylene glycol-conjugated adenosine deaminase (PEG-ADA) enzyme replacement therapy, many ADA-deficient children with SCID who could not receive a hematopoietic stem cell transplantation or gene therapy survived and had longer and healthier lives. We report a 24-year course of treatment in a patient who was diagnosed with ADA deficiency at 4 months of age. The patient was treated with PEG-ADA, which was the only therapy available for him. The patient's plasma ADA level was regularly monitored and the PEG-ADA dose adjusted accordingly. This treatment has resulted in near-normalization of lymphocyte counts, and his clinical course has been associated with only minor to moderate infections. Thus far, he has had no manifestations of autoimmune or lymphoproliferative disorders. This patient is among the longest to be maintained on PEG-ADA enzyme replacement therapy.

  2. Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects

    PubMed Central

    2014-01-01

    Background Cardiovascular disease (CVD) results from a combination of abnormalities in lipoprotein metabolism, oxidative stress, chronic inflammation, and susceptibility to thrombosis. Atherosclerosis is the major cause of CVD. CD36 has been shown to play a critical role in the development of atherosclerotic lesions by its capacity to bind and promote endocytosis of oxidized low-density lipoprotein (oxLDL) and is implicated in the formation of foam cells. The purpose of this research was to evaluate whether there is an association of sCD36 and oxLDL levels with cardiovascular risk factors in young subjects. Methods A total of 188 subjects, 18 to 25 years old, 133 normal-weight and 55 obese subjects from the state of Guerrero, Mexico were recruited in the study. The lipid profile and glucose levels were measured by enzymatic colorimetric assays. Enzyme-linked immunosorbant assays (ELISA) for oxLDL and sCD36 were performed. Statistical analyses of data were performed with Wilcoxon- Mann Whitney and chi-square tests as well as with multinomial regression. Results TC, LDL-C, TG, oxLDL and sCD36 levels were higher in obese subjects than in normal-weight controls, as well as, monocyte and platelet counts (P < 0.05). Obese subjects had 5.8 times higher risk of sCD36 in the third tertil (>97.8 ng/mL) than normal-weight controls (P = 0.014), and 7.4 times higher risk of oxLDL levels in third tertile (>48 U/L) than control group. The subjects with hypercholesterolemia, hypertriglyceridemia, fasting impaired LDL-C had a higher risk of oxLDL levels in the third tertile (>48 U/L) than the control group (P < 0.05). Conclusions Circulating CD36 and oxLDL levels are associated with cardiovascular risk factors in young subjects and may be potential early markers for cardiovascular disease (CVD). PMID:24766787

  3. Expression of human adenosine deaminase in murine hematopoietic cells.

    PubMed Central

    Belmont, J W; MacGregor, G R; Wager-Smith, K; Fletcher, F A; Moore, K A; Hawkins, D; Villalon, D; Chang, S M; Caskey, C T

    1988-01-01

    Multiple replication-defective retrovirus vectors were tested for their ability to transfer and express human adenosine deaminase in vitro and in vivo in a mouse bone marrow transplantation model. High-titer virus production was obtained from vectors by using both a retrovirus long terminal repeat promoter and internal transcriptional units with human c-fos and herpes virus thymidine kinase promoters. After infection of primary murine bone marrow with one of these vectors, human adenosine deaminase was detected in 60 to 85% of spleen colony-forming units and in the blood of 14 of 14 syngeneic marrow transplant recipients. This system offers the opportunity to assess methods for increasing efficiency of gene transfer, for regulation of expression of foreign genes in hematopoietic progenitors, and for long-term measurement of the stability of expression in these cells. Images PMID:3072474

  4. Adenosine Deaminases Acting on RNA, RNA Editing, and Interferon Action

    PubMed Central

    George, Cyril X.; Gan, Zhenji; Liu, Yong

    2011-01-01

    Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein–RNA interactions. PMID:21182352

  5. Severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Hussain, Waqar; Batool, Asma; Ahmed, Tahir Aziz; Bashir, Muhammad Mukarram

    2012-03-01

    Severe Combined Immunodeficiency is the term applied to a group of rare genetic disorders characterised by defective or absent T and B cell functions. Patients usually present in first 6 months of life with respiratory/gastrointestinal tract infections and failure to thrive. Among the various types of severe combined immunodeficiency, enzyme deficiencies are relatively less common. We report the case of a 6 years old girl having severe combined immunodeficiency due to adenosine deaminase deficiency.

  6. Polymorphous crystallization and diffraction of threonine deaminase from Escherichia coli.

    PubMed

    Gallagher, D T; Eisenstein, E; Fisher, K E; Zondlo, J; Chinchilla, D; Yu, H D; Dill, J; Winborne, E; Ducote, K; Xiao, G; Gilliland, G L

    1998-05-01

    The biosynthetic threonine deaminase from Escherichia coli, an allosteric tetramer with key regulatory functions, has been crystallized in several crystal forms. Two distinct forms, both belonging to either space group P3121 or P3221, with different sized asymmetric units that both contain a tetramer, grow under identical conditions. Diffraction data sets to 2.8 A resolution (native) and 2. 9 A resolution (isomorphous uranyl derivative) have been collected from a third crystal form in space group I222.

  7. Bacterial Modulation of Plant Ethylene Levels

    PubMed Central

    Gamalero, Elisa; Glick, Bernard R.

    2015-01-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  8. Enhancement of anti-tumor activity of Newcastle disease virus by the synergistic effect of cytosine deaminase.

    PubMed

    Lv, Zheng; Zhang, Tian-Yuan; Yin, Jie-Chao; Wang, Hui; Sun, Tian; Chen, Li-Qun; Bai, Fu-Liang; Wu, Wei; Ren, Gui-Ping; Li, De-Shan

    2013-01-01

    This study was conducted to investigate enhancement of anti-tumor effects of the lentogenic Newcastle disease virus Clone30 strain (NDV rClone30) expressing cytosine deaminase (CD) gene against tumor cells and in murine groin tumor-bearing models. Cytotoxic effects of the rClone30-CD/5-FC on the HepG2 cell line were examined by an MTT method. Anti-tumor activity of rClone30-CD/5-FC was examined in H22 tumor-bearing mice. Compared to the rClone30-CD virus treatment alone, NDV rClone30-CD/5-FC at 0.1 and 1 MOIs exerted significant cytotoxic effects (P<0.05) on HepG2 cells. For treatment of H22 tumor-bearing mice, recombinant NDV was injected together with 5-FC given by either intra-tumor injection or tail vein injection. When 5-FC was administered by intra-tumor injection, survival for the rClone30-CD/5-FC-treated mice was 4/6 for 80 days period vs 1/6 , 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC and saline alone, respectively. When 5-FC was given by tail vein injection, survival for the rClone30-CD/5-FC-treated mice was 3/6 vs 2/6 , 0/6 and 0/6 for the mice treated with rClone30-CD, 5-FC or saline alone, respectively. In this study, NDV was used for the first time to deliver the suicide gene for cancer therapy. Incorporation of the CD gene in the lentogenic NDV genome together with 5-FC significantly enhances cell death of HepG2 tumor cells in vitro, decreases tumor volume and increases survival of H22 tumor-bearing mice in vivo.

  9. Direct Observation of Landau Level Resonance and Mass Generation in Dirac Semimetal Cd3As2 Thin Films.

    PubMed

    Yuan, Xiang; Cheng, Peihong; Zhang, Longqiang; Zhang, Cheng; Wang, Junyong; Liu, Yanwen; Sun, Qingqing; Zhou, Peng; Zhang, David Wei; Hu, Zhigao; Wan, Xiangang; Yan, Hugen; Li, Zhiqiang; Xiu, Faxian

    2017-03-02

    Three-dimensional topological Dirac semimetals have hitherto stimulated unprecedented research interests as a new class of quantum materials. Breaking certain types of symmetries has been proposed to enable the manipulation of Dirac fermions, and that was soon realized by external modulations such as magnetic fields. However, an intrinsic manipulation of Dirac states, which is more efficient and desirable, remains a significant challenge. Here, we report a systematic study of quasi-particle dynamics and band evolution in Cd3As2 thin films with controlled chromium (Cr) doping by both magneto-infrared spectroscopy and electrical transport. We observe the √B relation of inter-Landau-level resonance in Cd3As2, an important signature of ultrarelativistic massless state inaccessible in previous optical experiments. A crossover from quantum to quasi-classical behavior makes it possible to directly probe the mass of Dirac fermions. Importantly, Cr doping allows for a Dirac mass acquisition and topological phase transition enabling a desired dynamic control of Dirac fermions. Corroborating with the density-functional theory calculations, we show that the mass generation can be explained by the explicit C4 rotation symmetry breaking and the resultant Dirac gap engineering through Cr substitution for Cd atoms. The manipulation of the system symmetry and Dirac mass in Cd3As2 thin films provides a tuning knob to explore the exotic states stemming from the parent phase of Dirac semimetals.

  10. Study on abnormal intra-field CD uniformity induced by Efese-tilt application upon complex leveling scheme

    NASA Astrophysics Data System (ADS)

    Deng, Guogui; Hao, Jingan; Cai, Boxiu; Xing, Bin; Yao, Xin; Zhang, Qiang; Li, Tianhui; Lin, Yi-Shih; Wu, Qiang; Shi, Xuelong

    2014-03-01

    Critical dimension uniformity (CDU) of hole layer is becoming more and more crucial and tightened alongside with the technology node being driven into 28 nm and beyond, since the critical dimension (CD) variation of 2-dimensional (2D) hole pattern is intrinsically harder to control than that of 1D pattern (line/space). As the process window becomes more marginal with the more advanced technology node, although at the cost of contrast loss, EFESE tilt (focus drilling method) is one handy trick for its DOF enhancement capability (1-3). We observed an abnormal up to 6 nm ADI CD trend-down in Y-direction (exposure scan direction) in the strictly repeated via-hole patterns within an about 8 mm x 6 mm chip in condition 1 wafer with pre-layer patterns (short as C1 wafer) where EFESE tilt is applied. No CD trend-down or trend up in X-direction. This C1 hole layer uses EFESE tilt to improve DOF. This CD trend-down phenomenon is thoroughly investigated and a model of "effective EFESE tilt" is proposed and verified. Based on the model, we made a further step into the assessment of another focus drilling method, i.e. EFESE High Range (HR) and evaluate its performance under the same complex leveling scheme. Through all this analysis, we give an insight of the safety zone for applying EFESE tilt for future reference.

  11. Retrovirus-mediated transduction of a cytosine deaminase gene preserves the stemness of mesenchymal stem cells.

    PubMed

    Park, Jin Sung; Chang, Da-Young; Kim, Ji-Hoi; Jung, Jin Hwa; Park, JoonSeong; Kim, Se-Hyuk; Lee, Young-Don; Kim, Sung-Soo; Suh-Kim, Haeyoung

    2013-02-22

    Human mesenchymal stem cells (MSCs) have emerged as attractive cellular vehicles to deliver therapeutic genes for ex-vivo therapy of diverse diseases; this is, in part, because they have the capability to migrate into tumor or lesion sites. Previously, we showed that MSCs could be utilized to deliver a bacterial cytosine deaminase (CD) suicide gene to brain tumors. Here we assessed whether transduction with a retroviral vector encoding CD gene altered the stem cell property of MSCs. MSCs were transduced at passage 1 and cultivated up to passage 11. We found that proliferation and differentiation potentials, chromosomal stability and surface antigenicity of MSCs were not altered by retroviral transduction. The results indicate that retroviral vectors can be safely utilized for delivery of suicide genes to MSCs for ex-vivo therapy. We also found that a single retroviral transduction was sufficient for sustainable expression up to passage 10. The persistent expression of the transduced gene indicates that transduced MSCs provide a tractable and manageable approach for potential use in allogeneic transplantation.

  12. Enhancing VSV oncolytic activity with an improved cytosine deaminase suicide gene strategy.

    PubMed

    Leveille, S; Samuel, S; Goulet, M-L; Hiscott, J

    2011-06-01

    Oncolytic viruses (OVs) are promising therapeutic agents for cancer treatment, with recent studies emphasizing the combined use of chemotherapeutic compounds and prodrug suicide gene strategies to improve OV efficacy. In the present study, the synergistic activity of recombinant vesicular stomatitis virus (VSV)-MΔ51 virus expressing the cytosine deaminase/uracil phosphoribosyltransferase (CD::UPRT) suicide gene and 5-fluorocytosine (5FC) prodrug was investigated in triggering tumor cell oncolysis. In a panel of VSV-sensitive and -resistant cells-prostate PC3, breast MCF7 and TSA, B-lymphoma Karpas and melanoma B16-F10-the combination treatment increased killing of non-infected bystander cells in vitro via the release of 5FC toxic derivatives. In addition, we showed a synergistic effect on cancer cell killing with VSV-MΔ51 and the active form of the drug 5-fluorouracil. Furthermore, by monitoring VSV replication at the tumor site and maximizing 5FC bioavailability, we optimized the treatment regimen and improved survival of animals bearing TSA mammary adenocarcinoma. Altogether, this study emphasizes the potency of the VSV-CD::UPRT and 5FC combination, and demonstrates the necessity of optimizing each step of a multicomponent therapy to design efficient treatment.

  13. A molecular dynamics exploration of the catalytic mechanism of yeast cytosine deaminase.

    PubMed

    Yao, Lishan; Sklenak, Stepan; Yan, Honggao; Cukier, Robert I

    2005-04-21

    Yeast cytosine deaminase (yCD), a zinc metalloenzyme of significant biomedical interest, is investigated by a series of molecular dynamics simulations in its free form and complexed with its reactant (cytosine), product (uracil), several reaction intermediates, and an intermediate analogue. Quantum chemical calculations, used to construct a model for the catalytic Zn ion with its ligands (two cysteines, a histidine, and one water) show, by comparison with crystal structure data, that the cysteines are deprotonated and the histidine is monoprotonated. The simulations suggest that Glu64 plays a critical role in the catalysis by yCD. The rotation of the Glu64 side-chain carboxyl group that can be protonated or deprotonated permits it to act as a proton shuttle between the Zn-bound water and cytosine and subsequent reaction intermediates. Free energy methods are used to obtain the barriers for these rotations, and they are sufficiently small to permit rotation on a nanosecond time scale. In the course of the reaction, cytosine reorients to a geometry to favor nucleophilic attack by a Zn-bound hydroxide. A stable position for a reaction product, ammonia, was located in the active site, and the free energy of exchange with a water molecule was evaluated. The simulations also reveal small motions of the C-terminus and the loop that contains Phe114 that may be important for reactant binding and product release.

  14. The effects of a CD-ROM textbook on student achievement and cognition-level attainment of undergraduate biology students

    NASA Astrophysics Data System (ADS)

    Ludrick, Brad Burton

    Purpose of the study. This study was designed to measure the effects of CD-ROM textbook integration on student achievement and student cognition-level-attainment for undergraduate general biology students. Four sections of general biology were selected as the study group. Two sections served as the experimental group receiving CD-ROM textbook integration. The remaining two sections served as the control group, and were taught biological content utilizing a traditional textbook. Procedure. This study employed a pre-experimental research design, static group comparison (Ary, Jacobs, & Razavieh, 1996: 331), to determine if a CD-ROM textbook had significant effects on student cognition-level-attainment and content achievement of undergraduate biology students. The study was conducted during the 2001 spring semester at Southeastern Oklahoma State University. The duration of the treatment was approximately sixteen weeks. Four sections of general biology (N = 101) were selected as the study group. Two of the four sections of general biology (n = 48) were randomly selected by the researcher via coin toss to serve as the experimental group, Group A, and were taught biological content utilizing a CD-ROM Textbook. The remaining two sections of general biology (n = 53) served as the control group, Group B, and were taught biological content utilizing a traditional textbook. Various statistical tests were used in analysis of the data. The ten null hypotheses were tested at the .05 level of significance. The Statistical Package for the Social Sciences program (SPSS), version 9.0 (SPSS, 1999), was used to process the data. Results. The results determined by this study were the overall effects of the CD-ROM textbook did not significantly differ from the effects of the traditional textbook on student content achievement and cognition-level-attainment. Conclusions. The utilization of CD-ROM textbook instruction is not superior at improving student achievement of biology content, as

  15. 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation.

    PubMed

    Barnawal, Deepti; Bharti, Nidhi; Maji, Deepamala; Chanotiya, Chandan Singh; Kalra, Alok

    2012-09-01

    Ocimum sanctum grown as rain-fed crop, is known to be poorly adapted to waterlogged conditions. Many a times the crop suffers extreme damages because of anoxia and excessive ethylene generation due to waterlogging conditions present under heavy rain. The usefulness of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing plant growth promoting rhizobacteria was investigated under waterlogging stress. The comparison of herb yield and stress induced biochemical changes of waterlogged and non-waterlogged plants with and without ACC deaminase-containing microbiological treatments were monitored in this study. Ten plant growth promoting rhizobacteria strains containing ACC-deaminase were isolated and characterized. Four selected isolates Fd2 (Achromobacter xylosoxidans), Bac5 (Serratia ureilytica), Oci9 (Herbaspirillum seropedicae) and Oci13 (Ochrobactrum rhizosphaerae) had the potential to protect Ocimum plants from flood induced damage under waterlogged glass house conditions. Pot experiments were conducted to evaluate the potential of these ACC deaminase-containing selected strains for reducing the yield losses caused by waterlogging conditions. Bacterial treatments protected plants from waterlogging induced detrimental changes like stress ethylene production, reduced chlorophyll concentration, higher lipid peroxidation, proline concentration and reduced foliar nutrient uptake. Fd2 (A. xylosoxidans) induced maximum waterlogging tolerance as treated waterlogged plants recorded maximum growth and herb yield (46.5% higher than uninoculated waterlogged plants) with minimum stress ethylene levels (53% lower ACC concentration as compared to waterlogged plants without bacterial inoculation) whereas under normal non-waterlogged conditions O. rhizosphaerae was most effective in plant growth promotion.

  16. A Ser29Leu substitution in the cytosine deaminase Fca1p is responsible for clade-specific flucytosine resistance in Candida dubliniensis.

    PubMed

    McManus, Brenda A; Moran, Gary P; Higgins, Judy A; Sullivan, Derek J; Coleman, David C

    2009-11-01

    The population structure of the opportunistic yeast pathogen Candida dubliniensis is composed of three main multilocus sequence typing clades (clades C1 to C3), and clade C3 predominantly consists of isolates from the Middle East that exhibit high-level resistance (MIC(50) > or = 128 microg/ml) to the fungicidal agent flucytosine (5FC). The close relative of C. dubliniensis, C. albicans, also exhibits clade-specific resistance to 5FC, and resistance is most commonly mediated by an Arg101Cys substitution in the FUR1 gene encoding uracil phosphoribosyltransferase. Broth microdilution assays with fluorouracil (5FU), the toxic deaminated form of 5FC, showed that both 5FC-resistant and 5FC-susceptible C. dubliniensis isolates exhibited similar 5FU MICs, suggesting that the C. dubliniensis cytosine deaminase (Fca1p) encoded by C. dubliniensis FCA1 (CdFCA1) may play a role in mediating C. dubliniensis clade-specific 5FC resistance. Amino acid sequence analysis of the CdFCA1 open reading frame (ORF) identified a homozygous Ser29Leu substitution in all 12 5FC-resistant isolates investigated which was not present in any of the 9 5FC-susceptible isolates examined. The tetracycline-inducible expression of the CdFCA1 ORF from a 5FC-susceptible C. dubliniensis isolate in two separate 5FC-resistant clade C3 isolates restored susceptibility to 5FC, demonstrating that the Ser29Leu substitution was responsible for the clade-specific 5FC resistance and that the 5FC resistance encoded by FCA1 genes with the Ser29Leu transition is recessive. Quantitative real-time PCR analysis showed no significant difference in CdFCA1 expression between 5FC-susceptible and 5FC-resistant isolates in either the presence or the absence of subinhibitory concentrations of 5FC, suggesting that the Ser29Leu substitution in the CdFCA1 ORF is the sole cause of 5FC resistance in clade C3 C. dubliniensis isolates.

  17. Point Defects in Pb-, Bi-, and In-Doped CdZnTe Detectors: Deep-Level Transient Spectroscopy (DLTS) Measurements

    NASA Astrophysics Data System (ADS)

    Gul, R.; Keeter, K.; Rodriguez, R.; Bolotnikov, A. E.; Hossain, A.; Camarda, G. S.; Kim, K. H.; Yang, G.; Cui, Y.; Carcelen, V.; Franc, J.; Li, Z.; James, R. B.

    2012-03-01

    We studied, by current deep-level transient spectroscopy (I-DLTS), point defects induced in CdZnTe detectors by three dopants: Pb, Bi, and In. Pb-doped CdZnTe detectors have a new acceptor trap at around 0.48 eV. The absence of a VCd trap suggests that all Cd vacancies are compensated by Pb interstitials after they form a deep-acceptor complex [[PbCd]+-V{Cd/2-}]-. Bi-doped CdZnTe detectors had two distinct traps: a shallow trap at around 36 meV and a deep donor trap at around 0.82 eV. In detectors doped with In, we noted three well-known traps: two acceptor levels at around 0.18 eV (A-centers) and 0.31 eV (VCd), and a deep trap at around 1.1 eV.

  18. Does provision of point-of-care CD4 technology and early knowledge of CD4 levels affect early initiation and retention on antiretroviral treatment in HIV-positive pregnant women in the context of Option B+ for PMTCT?

    PubMed

    Mangwiro, Alexio-Zambezi; Makomva, Kudzai; Bhattacharya, Antoinette; Bhattacharya, Gaurav; Gotora, Tendai; Owen, Mila; Mushavi, Angela; Mangwanya, Douglas; Zinyowera, Sekesai; Rusakaniko, Simbarashe; Mugurungi, Owen; Zizhou, Simukai; Busumani, William; Masuka, Nyasha

    2014-11-01

    Evidence for Elimination (E4E) is a collaborative project established in 2012 as part of the INSPIRE (INtegrating and Scaling up PMTCT through Implementation REsearch) initiative. E4E is a cluster-randomized trial with 2 arms; Standard of care and "POC Plus" [in which point-of-care (POC) CD4 devices and related counseling support are provided]; aimed at improving retention-in-care of HIV-infected pregnant women and mothers. In November 2013, Zimbabwe adopted Option B+ for HIV-positive pregnant women under which antiretroviral treatment eligibility is no longer based on CD4 count. However, Ministry of Health and Child Care guidelines still require baseline and 6-monthly CD4 testing for treatment monitoring, until viral load testing becomes widely available. Considering the current limited capacity for viral-load testing, the significant investments in CD4 testing already made and the historical reliance on CD4 by health care workers for determining eligibility for antiretroviral treatment, E4E seeks to compare the impact of the provision of POC CD4 technology and early knowledge of CD4 levels on retention-in-care at 12 months, with the current standard of routine, laboratory-based CD4 testing. The study also compares rates of initiation and time-to-initiation between the 2 arms and according to level of maternal CD4 count, the cost of retaining HIV-positive pregnant women in care and the acceptability and feasibility of POC CD4 in the context of Option B+. Outcome measures are derived from routine health systems data. E4E will provide data on POC CD4 testing and retention-in-care associated with Option B+ and serve as an early learning platform to inform implementation of Option B+ in Zimbabwe.

  19. An efficient approach to identify ilvA mutations reveals an amino-terminal catalytic domain in biosynthetic threonine deaminase from Escherichia coli.

    PubMed Central

    Fisher, K E; Eisenstein, E

    1993-01-01

    High-level expression of the regulatory enzyme threonine deaminase in Escherichia coli strains grown on minimal medium that are deficient in the activities of enzymes needed for branched-chain amino acid biosynthesis result in growth inhibition, possibly because of the accumulation of toxic levels of alpha-ketobutyrate, the product of the committed step in isoleucine biosynthesis. This condition affords a means for selecting genetic variants of threonine deaminase that are deficient in catalysis by suppression of growth inhibition. Strains harboring mutations in ilvA that decreased the catalytic activity of threonine deaminase were found to grow more rapidly than isogenic strains containing wild-type ilvA. Modification of the ilvA gene to introduce additional unique, evenly spaced restriction enzyme sites facilitated the identification of suppressor mutations by enabling small DNA fragments to be subcloned for sequencing. The 10 mutations identified in ilvA code for enzymes with significantly reduced activity relative to that of wild-type threonine deaminase. Values for their specific activities range from 40% of that displayed by wild-type enzyme to complete inactivation as evidenced by failure to complement an ilvA deletion strain to isoleucine prototrophy. Moreover, some mutant enzymes showed altered allosteric properties with respect to valine activation and isoleucine inhibition. The location of the 10 mutations in the 5' two-thirds of the ilvA gene is consistent with suggestions that threonine deaminase is organized functionally with an amino-terminal domain that is involved in catalysis and a carboxy-terminal domain that is important for regulation. Images PMID:8407838

  20. AEG-1 expression correlates with CD133 and PPP6c levels in human glioma tissues

    PubMed Central

    Guo, Jia; Chen, Xin; Xi, Ruxing; Chang, Yuwei; Zhang, Xuanwei; Zhang, Xiaozhi

    2014-01-01

    Abstract Astrocyte elevated gene-1 (AEG-1) is associated with tumor genesis and progression in a variety of human cancers. This study aimed to explore the significance of AEG-1 in glioma and investigate whether it correlated with radioresistance of glioma cells. Immunohistochemical staining showed that the intensity of AEG-1, CD133 and PPP6c protein expression in glioma tissues increased significantly, mainly in the cytoplasm. The expression rate of AEG-1, CD133 and PPP6c were 85.9% (67/78), 60.3% (47/78) and 65.8% (51/78), respectively. AEG-1 expression was correlated with age (r = 0.227, P = 0.045), clinical stage (r = 0.491, P<0.001) and clinical grade (r = 0.450, P<0.001). No correlation was found between AEG-1 expression and other clinicopathologic parameters (P>0.05). The expression of AEG-1 was positively correlated with the expression of CD133 (r = 0.240, P  =  0.035) and PPP6c (r =  0.250, P  =  0.027). In addition, retrieved data on TCGA implied co-occurrence of genomic alterations of AEG-1 and PPP6c in glioblastoma. Our findings indicate that AEG-1 is positively correlated with CD133 and AEG-1 expression. It may play an important role in the progression of glioma and may serve as potential novel marker of chemoresistance and radioresistance. PMID:25332711

  1. Does adenosine deaminase activity play a role in the early diagnosis of ectopic pregnancy?

    PubMed

    Turkmen, G G; Karçaaltıncaba, D; Isık, H; Fidancı, V; Kaayalp, D; Tımur, H; Batıoglu, S

    2016-01-01

    Early diagnosis of ectopic pregnancy (EP) is important due to life-threatening consequences in the first trimester of pregnancy. In this study we aimed to investigate the role of adenosine deaminase (ADA) activity in the prediction of EP. Forty-one patients with unruptured ectopic pregnancy comprised the case group and forty-two first trimester pregnant women with shown foetal heart beating in ultrasound comprised the control group. The mean ADA level in EP (10.9 ± 3.0 IU/L) was higher than that in control group (9.2 ± 3.6 IU/L) (p = 0.018). Receiver operating characteristics or ROC curve identified ADA value of 10.95 IU/L as optimal threshold for the prediction of EP with 56% sensitivity and 67% specificity. High ADA levels are valuable in the early diagnosis of EP. However more comprehensive studies are required.

  2. α1Proteinase Inhibitor Regulates CD4+ Lymphocyte Levels and Is Rate Limiting in HIV-1 Disease

    PubMed Central

    Bristow, Cynthia L.; Babayeva, Mariya A.; LaBrunda, Michelle; Mullen, Michael P.; Winston, Ronald

    2012-01-01

    Background The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLECS), it acts not as a proteinase, but as a receptor for α1proteinase inhibitor (α1PI, α1antitrypsin, SerpinA1). Binding of α1PI to HLECS forms a motogenic complex. We previously demonstrated that α1PI deficiency attends HIV-1 disease and that α1PI augmentation produces increased numbers of immunocompetent circulating CD4+ lymphocytes. Herein we investigated the mechanism underlying the α1PI deficiency that attends HIV-1 infection. Methods and Findings Active α1PI in HIV-1 subjects (median 17 µM, n = 35) was significantly below normal (median 36 µM, p<0.001, n = 30). In HIV-1 uninfected subjects, CD4+ lymphocytes were correlated with the combined factors α1PI, HLECS+ lymphocytes, and CXCR4+ lymphocytes (r2 = 0.91, p<0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with >220 CD4 cells/µl, CD4+ lymphocytes were correlated solely with active α1PI (r2 = 0.93, p<0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α1PI. Chimpanzee α1PI differs from human α1PI by a single amino acid within the 3F5-binding epitope. Unlike human α1PI, chimpanzee α1PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4+ lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α1PI immune complexes correlated with decreased CD4+ lymphocytes in HIV-1 subjects. Conclusions This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to

  3. Unchanged Levels of Soluble CD14 and IL-6 Over Time Predict Serious Non-AIDS Events in HIV-1-Infected People.

    PubMed

    Sunil, Meena; Nigalye, Maitreyee; Somasunderam, Anoma; Martinez, Maria Laura; Yu, Xiaoying; Arduino, Roberto C; Utay, Netanya S; Bell, Tanvir K

    2016-12-01

    HIV-1-infected persons have increased risk of serious non-AIDS events (SNAEs) despite suppressive antiretroviral therapy. Increased circulating levels of soluble CD14 (sCD14), soluble CD163 (sCD163), and interleukin-6 (IL-6) at a single time point have been associated with SNAEs. However, whether changes in these biomarker levels predict SNAEs in HIV-1-infected persons is unknown. We hypothesized that greater decreases in inflammatory biomarkers would be associated with fewer SNAEs. We identified 39 patients with SNAEs, including major cardiovascular events, end stage renal disease, decompensated cirrhosis, non-AIDS-defining malignancies, and death of unknown cause, and age- and sex-matched HIV-1-infected controls. sCD14, sCD163, and IL-6 were measured at study enrollment (T1) and proximal to the event (T2) or equivalent duration in matched controls. Over ∼34 months, unchanged rather than decreasing levels of sCD14 and IL-6 predicted SNAEs. Older age and current illicit substance abuse, but not HCV coinfection, were associated with SNAEs. In a multivariate analysis, older age, illicit substance use, and unchanged IL-6 levels remained significantly associated with SNAEs. Thus, the trajectories of sCD14 and IL-6 levels predict SNAEs. Interventions to decrease illicit substance use may decrease the risk of SNAEs in HIV-1-infected persons.

  4. Human neural stem cells transduced with IFN-beta and cytosine deaminase genes intensify bystander effect in experimental glioma.

    PubMed

    Ito, S; Natsume, A; Shimato, S; Ohno, M; Kato, T; Chansakul, P; Wakabayashi, T; Kim, S U

    2010-05-01

    Previously, we have shown that the genetically modified human neural stem cells (NSCs) show remarkable migratory and tumor-tropic capability to track down brain tumor cells and deliver therapeutic agents with significant therapeutic benefit. Human NSCs that were retrovirally transduced with cytosine deaminase (CD) gene showed remarkable 'bystander killer effect' on the glioma cells after application of the prodrug, 5-fluorocytosine (5-FC). Interferon-beta (IFN-beta) is known for its antiproliferative effects in a variety of cancers. In our pilot clinical trial in glioma, the IFN-beta gene has shown potent antitumor activity in patients with malignant glioma. In the present study, we sought to examine whether human NSCs genetically modified to express both CD and IFN-beta genes intensified antitumor effect on experimental glioma. In vitro studies showed that CD/IFN-beta-expressing NSCs exerted a remarkable bystander effect on human glioma cells after the application of 5-FC, as compared with parental NSCs and CD-expressing NSCs. In animal models with human glioma orthotopic xenograft, intravenously infused CD/IFN-beta-expressing NSCs produced striking antitumor effect after administration of the prodrug 5-FC. Furthermore, the same gene therapy regimen prolonged survival periods significantly in the experimental animals. The results of the present study indicate that the multimodal NSC-based treatment strategy might have therapeutic potential against gliomas.

  5. Computational modeling and functional analysis of Herpes simplex virus type-1 thymidine kinase and Escherichia coli cytosine deaminase fusion protein

    SciTech Connect

    Zhang, Jufeng; Wang, Zhanli; Wei, Fang; Qiu, Wei; Zhang, Liangren; Huang, Qian . E-mail: qhuang@sjtu.edu.cn

    2007-08-17

    Herpes simplex virus type-1 thymidine kinase (HSV-1TK) and Escherichia coli cytosine deaminase (CD) fusion protein was designed using InsightII software. The structural rationality of the fusion proteins incorporating a series of flexible linker peptide was analyzed, and a suitable linker peptide was chosen for further investigated. The recombinant plasmid containing the coding regions of HSV-1TK and CD cDNA connected by this linker peptide coding sequence was generated and subsequently transfected into the human embryonic kidney 293 cells (HEK293). The Western blotting indicated that the recombinant fusion protein existed as a dimer with a molecular weight of approximately 90 kDa. The toxicity of the prodrug on the recombinant plasmid-transfected human lung cancer cell line NCIH460 was evaluated, which showed that TKglyCD-expressing cells conferred upon cells prodrug sensitivities equivalent to that observed for each enzyme independently. Most noteworthy, cytotoxicity could be enhanced by concurrently treating TKglyCD-expressing cells with prodrugs GCV and 5-FC. The results indicate that we have successfully constructed a HSV-1TKglyCD fusion gene which might have a potential application for cancer gene therapy.

  6. A High Level of Soluble CD40L Is Associated with P. aeruginosa Infection in Patients with Cystic Fibrosis

    PubMed Central

    Jaime-Pérez, José Carlos; Cordero-Pérez, Paula; Galindo-Rodríguez, Gabriela; Muñoz-Espinosa, Linda Elsa; Villarreal-Villarreal, César Daniel; Mercado-Longoria, Roberto

    2016-01-01

    Objective The aim of this study was to evaluate whether the concentration of sCD40L, a product of platelet activation, correlates with the presence of Pseudomonas aeruginosa in the airway of patients with cystic fibrosis (CF) and to determine its possible clinical association. Methods Sixty patients with CF, ranging in age from 2 months to 36 years, were studied. The demographics, cystic fibrosis transmembrane conductance regulator (CFTR) genotype, spirometry measurements, radiographic and tomographic scans, platelet count in peripheral blood, sCD40L, IL-6, TNF-α and ICAM1 data were collected. Infection-colonization of the airway was evaluated using sputum and throat swab cultures; the levels of anti-Pseudomonas aeruginosa antibodies (Anti-PaAb) were evaluated. Results Patients with CF and chronic colonization had anti-PaAb values of 11.6 ± 2.1 ELISA units (EU) and sCD40L in plasma of 1530.9 ±1162.3 pg/mL; those with intermittent infection had 5.7 ± 2.7 EU and 2243.6 ± 1475.9 pg/mL; and those who were never infected had 3.46 ± 1.8 EU (p≤0.001) and 1008.1 ± 746.8 pg/mL (p≤0.01), respectively. The cutoff value of sCD40L of 1255 pg/mL was associated with an area under the ROC (receiver operating characteristic curve) of 0.84 (95% CI, 0.71 to 0.97), reflecting P. aeruginosa infection with a sensitivity of 73% and a specificity of 89%. Lung damage was determined using the Brasfield Score, the Bhalla Score, and spirometry (FVC%, FEV1%) and found to be significantly different among the groups (p≤0.001). Conclusion Circulating sCD40L levels are increased in patients with cystic fibrosis and P. aeruginosa infection. Soluble CD40L appears to reflect infection and provides a tool for monitoring the evolution of lung deterioration. PMID:28030642

  7. IL-2 Modulates the TCR Signaling Threshold for CD8 but Not CD4 T Cell Proliferation on a Single-Cell Level.

    PubMed

    Au-Yeung, Byron B; Smith, Geoffrey Alexander; Mueller, James L; Heyn, Cheryl S; Jaszczak, Rebecca Garrett; Weiss, Arthur; Zikherman, Julie

    2017-03-15

    Lymphocytes integrate Ag and cytokine receptor signals to make cell fate decisions. Using a specific reporter of TCR signaling that is insensitive to cytokine signaling, Nur77-eGFP, we identify a sharp, minimal threshold of cumulative TCR signaling required for proliferation in CD4 and CD8 T cells that is independent of both Ag concentration and affinity. Unexpectedly, IL-2 reduces this threshold in CD8 but not CD4 T cells, suggesting that integration of multiple mitogenic inputs may alter the minimal requirement for TCR signaling in CD8 T cells. Neither naive CD4 nor naive CD8 T cells are responsive to low doses of IL-2. We show that activated CD8 T cells become responsive to low doses of IL-2 more quickly than CD4 T cells, and propose that this relative delay in turn accounts for the differential effects of IL-2 on the minimal TCR signaling threshold for proliferation in these populations. In contrast to Nur77-eGFP, c-Myc protein expression integrates mitogenic signals downstream of both IL-2 and the TCR, yet marks an invariant minimal threshold of cumulative mitogenic stimulation required for cell division. Our work provides a conceptual framework for understanding the regulation of clonal expansion of CD8 T cells by subthreshold TCR signaling in the context of mitogenic IL-2 signals, thereby rendering CD8 T cells exquisitely dependent upon environmental cues. Conversely, CD4 T cell proliferation requires an invariant minimal intensity of TCR signaling that is not modulated by IL-2, thereby restricting responses to low-affinity or low-abundance self-antigens even in the context of an inflammatory milieu.

  8. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus.

    PubMed

    Zhang, Yan-Feng; He, Lin-Yan; Chen, Zhao-Jin; Wang, Qing-Ya; Qian, Meng; Sheng, Xia-Fang

    2011-03-01

    One hundred Cu-resistant-endophytic bacteria were isolated from Cu-tolerant plants grown on Cu mine wasteland, of which, eight Cu-resistant and 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing endophytic bacteria were obtained based on the ACC deaminase activity of the bacteria and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) as well as siderophores and mineral phosphate solubilization. Ralstonia sp. J1-22-2, Pantoea agglomerans Jp3-3, and Pseudomonas thivervalensis Y1-3-9 with higher ACC deaminase activity (ranging from 213 to 370 μM α-ketobutyrate mg(-1)h(-1)) were evaluated for promoting plant growth and Cu uptake of rape grown in quartz sand containing 0, 2.5, and 5 mg kg(-1) of Cu in pot experiments. The eight bacteria were found to exhibit different multiple heavy metal resistance characteristics, to show different levels of ACC deaminase activity and to produce indole acetic acid. Seven bacteria produced siderophores and solubilized inorganic phosphate. Pot experiments showed that inoculation with the strains (J1-22-2, Jp3-3, and Y1-3-9) was found to increase the biomass of rape. Increases in above-ground tissue Cu contents of rape cultivated in 2.5 and 5 mg kg(-1) of Cu-contaminated substrates varied from 9% to 31% and from 3 to 4-fold respectively in inoculated-rape plants compared to the uninoculated control. The maximum Cu uptake of rape was observed after inoculation with P. agglomerans Jp3-3. The results show that metal-resistant and plant growth promoting endophytic bacteria play an important role in plant growth and Cu uptake which may provide a new endophytic bacterial-assisted phytoremediation of Cu-contaminated environment.

  9. Hematopoietic stem cell gene therapy for adenosine deaminase deficient-SCID.

    PubMed

    Aiuti, Alessandro; Brigida, Immacolata; Ferrua, Francesca; Cappelli, Barbara; Chiesa, Robert; Marktel, Sarah; Roncarolo, Maria-Grazia

    2009-01-01

    Gene therapy is a highly attractive strategy for many types of inherited disorders of the immune system. Adenosine deaminase (ADA) deficient-severe combined immunodeficiency (SCID) has been the target of several clinical trials based on the use of hematopoietic stem/progenitor cells engineered with retroviral vectors. The introduction of a low intensity conditioning regimen has been a crucial factor in achieving stable engrafment of hematopoietic stem cells and therapeutic levels of ADA-expressing cells. Recent studies have demonstrated that gene therapy for ADA-SCID has favorable safety profile and is effective in restoring normal purine metabolism and immune functions. Stem cell gene therapy combined with appropriate conditioning regimens might be extended to other genetic disorders of the hematopoietic system.

  10. Non-infectious lung disease in patients with adenosine deaminase deficient severe combined immunodeficiency.

    PubMed

    Booth, C; Algar, V E; Xu-Bayford, J; Fairbanks, L; Owens, C; Gaspar, H B

    2012-06-01

    Adenosine deaminase deficiency is a disorder of purine metabolism manifesting severe combined immunodeficiency (ADA-SCID) and systemic abnormalities. Increased levels of the substrate deoxyadenosine triphosphate (dATP) lead to immunodeficiency and are associated in a murine model with pulmonary insufficiency. We compared a cohort of patients with ADA-SCID and X-linked SCID and found that despite similar radiological and respiratory findings, positive microbiology is significantly less frequent in ADA-SCID patients (p < 0.0005), suggesting a metabolic pathogenesis for the lung disease. Clinicians should be aware of this possibility and correct metabolic abnormalities either through enzyme replacement or haematopoietic stem cell transplant, in addition to treating infectious complications.

  11. Correlation between tumor histology, steroid receptor status, and adenosine deaminase complexing protein immunoreactivity in ovarian cancer.

    PubMed

    Rao, B R; Slotman, B J; Geldof, A A; Dinjens, W N

    1990-01-01

    Adenosine deaminase complexing protein (ADCP) immunoreactivity was investigated in 40 ovarian tumors and correlated with clinicopathologic parameters, including tumor steroid receptor content. Ten (29%) of 34 common epithelial ovarian carcinomas showed ADCP reactivity. Reactivity for ADCP was seen more frequently in mucinous (100%; p less than 0.001), well-differentiated (73%; p less than 0.001) and Stage I (56%; p less than 0.05) ovarian carcinomas. Furthermore, tumors that contained high levels of androgen receptors and tumors that did not contain estrogen receptors were more frequently ADCP positive (p less than 0.05). However, after stratifying for histologic grade, no correlation between ADCP reactivity and receptor status was found. Determination of ADCP reactivity appears to be of limited value in ovarian cancer.

  12. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Soares, Cláudio R. F. S.; McConkey, Brendan J.; Glick, Bernard R.

    2014-01-01

    The main objective of this work is the study of the phylogeny, evolution and ecological importance of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, the activity of which represents one of the most important and studied mechanisms used by plant growth–promoting microorganisms. The ACC deaminase gene and its regulatory elements presence in completely sequenced organisms was verified by multiple searches in diverse databases, and based on the data obtained a comprehensive analysis was conducted. Strain habitat, origin and ACC deaminase activity were taken into account when analyzing the results. In order to unveil ACC deaminase origin, evolution and relationships with other closely related pyridoxal phosphate (PLP) dependent enzymes a phylogenetic analysis was also performed. The data obtained show that ACC deaminase is mostly prevalent in some Bacteria, Fungi and members of Stramenopiles. Contrary to previous reports, we show that ACC deaminase genes are predominantly vertically inherited in various bacterial and fungal classes. Still, results suggest a considerable degree of horizontal gene transfer events, including interkingdom transfer events. A model for ACC deaminase origin and evolution is also proposed. This study also confirms the previous reports suggesting that the Lrp-like regulatory protein AcdR is a common mechanism regulating ACC deaminase expression in Proteobacteria, however, we also show that other regulatory mechanisms may be present in some Proteobacteria and other bacterial phyla. In this study we provide a more complete view of the role for ACC deaminase than was previously available. The results show that ACC deaminase may not only be related to plant growth promotion abilities, but may also play multiple roles in microorganism's developmental processes. Hence, exploring the origin and functioning of this enzyme may be the key in a variety of important agricultural and biotechnological applications. PMID:24905353

  13. Flow cytometry analysis of adenosine deaminase (ADA) expression: a simple and reliable tool for the assessment of ADA-deficient patients before and after gene therapy.

    PubMed

    Otsu, Makoto; Hershfield, Michael S; Tuschong, Laura M; Muul, Linda M; Onodera, Masafumi; Ariga, Tadashi; Sakiyama, Yukio; Candotti, Fabio

    2002-02-10

    Clinical gene therapy trials for adenosine deaminase (ADA) deficiency have shown limited success of corrective gene transfer into autologous T lymphocytes and CD34(+) cells. In these trials, the levels of gene transduction and expression in hematopoietic cells have been assessed by DNA- or RNA-based assays and measurement of ADA enzyme activity. Although informative, these methods are rarely applied to clonal analysis. The results of these assays therefore provide best estimates of transduction efficiency and gene expression in bulk populations based on the assumption that gene transfer and expression are uniformly distributed among transduced cells. As a useful additional tool for evaluation of ADA gene expression, we have developed a flow cytometry (fluorescence-activated cell sorting, FACS) assay capable of estimating the levels of intracellular ADA on a single-cell basis. We validated this technique with T cell lines and peripheral blood mononuclear cells (PBMCs) from ADA-deficient patients that showed severely reduced levels of ADA expression (ADA-dull) by FACS and Western blot analyses. After retrovirus-mediated ADA gene transfer, these cells showed clearly distinguishable populations exhibiting ADA expression (ADA-bright), thus allowing estimation of transduction efficiency. By mixing ADA-deficient and normal cells and using enzymatic amplification, we determined that our staining procedure could detect as little as 5% ADA-bright cells. This technique, therefore, will be useful to quickly assess the expression of ADA in hematopoietic cells of severe combined immunodeficient patients and represents an important tool for the follow-up of patients treated in clinical gene transfer protocols.

  14. Antitumor therapy mediated by 5-fluorocytosine and a recombinant fusion protein containing TSG-6 hyaluronan binding domain and yeast cytosine deaminase.

    PubMed

    Park, Joshua I; Cao, Limin; Platt, Virginia M; Huang, Zhaohua; Stull, Robert A; Dy, Edward E; Sperinde, Jeffrey J; Yokoyama, Jennifer S; Szoka, Francis C

    2009-01-01

    Matrix attachment therapy (MAT) is an enzyme prodrug strategy that targets hyaluronan in the tumor extracellular matrix to deliver a prodrug converting enzyme near the tumor cells. A recombinant fusion protein containing the hyaluronan binding domain of TSG-6 (Link) and yeast cytosine deaminase (CD) with an N-terminal His(x6) tag was constructed to test MAT on the C26 colon adenocarcinoma in Balb/c mice that were given 5-fluorocytosine (5-FC) in the drinking water. LinkCD was expressed in Escherichia coli and purified by metal-chelation affinity chromatography. The purified LinkCD fusion protein exhibits a K(m) of 0.33 mM and V(max) of 15 microM/min/microg for the conversion of 5-FC to 5-fluorouracil (5-FU). The duration of the enzyme activity for LinkCD was longer than that of CD enzyme at 37 degrees C: the fusion protein retained 20% of its initial enzyme activity after 24 h, and 12% after 48 h. The LinkCD fusion protein can bind to a hyaluronan oligomer (12-mer) at a K(D) of 55 microM at pH 7.4 and a K(D) of 5.32 microM at pH 6.0 measured using surface plasmon resonance (SPR). To evaluate the antitumor effect of LinkCD/5-FC combination therapy in vivo, mice received intratumoral injections of LinkCD on days 11 and 14 after C26 tumor implantation and the drinking water containing 10 mg/mL of 5-FC starting on day 11. To examine if the Link domain by itself was able to reduce tumor growth, we included treatment groups that received LinkCD without 5-FC and Link-mtCD (a functional mutant that lacks cytosine deaminase activity) with 5-FC. Animals that received LinkCD/5-FC treatment showed significant tumor size reduction and increased survival compared to the CD/5-FC treatment group. Treatment groups that were unable to produce 5-FU had no effect on the tumor growth despite receiving the fusion protein that contained the Link domain. The results indicate that a treatment regime consisting of a fusion protein containing the Link domain, the active CD enzyme, and the

  15. β decay of semi-magic 130Cd: Revision and extension of the level scheme of 130In

    NASA Astrophysics Data System (ADS)

    Jungclaus, A.; Grawe, H.; Nishimura, S.; Doornenbal, P.; Lorusso, G.; Simpson, G. S.; Söderström, P.-A.; Sumikama, T.; Taprogge, J.; Xu, Z. Y.; Baba, H.; Browne, F.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Inabe, N.; Isobe, T.; Jung, H. S.; Kameda, D.; Kim, G. D.; Kim, Y.-K.; Kojouharov, I.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Li, Z.; Sakurai, H.; Schaffner, H.; Shimizu, Y.; Steiger, K.; Suzuki, H.; Takeda, H.; Vajta, Zs.; Watanabe, H.; Wu, J.; Yagi, A.; Yoshinaga, K.; Benzoni, G.; Bönig, S.; Chae, K. Y.; Coraggio, L.; Daugas, J.-M.; Drouet, F.; Gadea, A.; Gargano, A.; Ilieva, S.; Itaco, N.; Kondev, F. G.; Kröll, T.; Lane, G. J.; Montaner-Pizá, A.; Moschner, K.; Mücher, D.; Naqvi, F.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Wendt, A.

    2016-08-01

    The β decay of the semi-magic nucleus 130Cd has been studied at the RIBF facility at the RIKEN Nishina Center. The high statistics of the present experiment allowed for a revision of the established level scheme of 130In and the observation of additional β feeding to high-lying core-excited states in 130In. The experimental results are compared to shell-model calculations employing a model space consisting of the full major N =50 - 82 neutron and Z =28 - 50 proton shells and the NA-14 interaction, and good agreement is found.

  16. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  17. Bacterial cytosine deaminase mutants created by molecular engineering show improved 5-fluorocytosine-mediated cell killing in vitro and in vivo.

    PubMed

    Fuchita, Michi; Ardiani, Andressa; Zhao, Lei; Serve, Kinta; Stoddard, Barry L; Black, Margaret E

    2009-06-01

    Cytosine deaminase is used in combination with 5-fluorocytosine as an enzyme-prodrug combination for targeted genetic cancer treatment. This approach is limited by inefficient gene delivery and poor prodrug conversion activities. Previously, we reported individual point mutations within the substrate binding pocket of bacterial cytosine deaminase (bCD) that result in marginal improvements in the ability to sensitize cells to 5-fluorocytosine (5FC). Here, we describe an expanded random mutagenesis and selection experiment that yielded enzyme variants, which provide significant improvement in prodrug sensitization. Three of these mutants were evaluated using enzyme kinetic analyses and then assayed in three cancer cell lines for 5FC sensitization, bystander effects, and formation of 5-fluorouracil metabolites. All variants displayed 18- to 19-fold shifts in substrate preference toward 5FC, a significant reduction in IC(50) values and improved bystander effect compared with wild-type bCD. In a xenograft tumor model, the best enzyme mutant was shown to prevent tumor growth at much lower doses of 5FC than is observed when tumor cells express wild-type bCD. Crystallographic analyses of this construct show the basis for improved activity toward 5FC, and also how two different mutagenesis strategies yield closely related but mutually exclusive mutations that each result in a significant alteration of enzyme specificity.

  18. Thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell apoptosis in breast cancer cells.

    PubMed

    Kong, H; Tao, L; Qi, K; Wang, Y; Li, Q; Du, J; Huang, Z

    2013-09-01

    The present study was conducted to explore the efficacy of suicide gene therapy with thymidine kinase (TK) in combination with cytosine deaminase (CD) for breast cancer. The expression of CD/TK was detected in the infected cells by RT-PCR. The killing effect on MCF-7 cells following treatment was analyzed by MTT assay. The morphological characteristics of the cells were observed by electron microscopy, and the distribution of the cell cycle was analyzed by flow cytometry. Caspase‑3 and -8 activities were detected by absorption spectrometry. Cytotoxic assays showed that cells transfected with CD/TK became more sensitive to the prodrugs. Morphological features characteristic of apoptosis were noted in the MCF‑7 cells via electron microscopy. The experimental data showed that the proportion of MCF-7 cells during the different phases of the cell cycle varied significantly following treatment with the prodrugs. The activity of caspase‑3 gradually increased following treatment with increasing concentrations of the prodrugs. We conclude that the TK/ganciclovir and CD/5-fluorocytosine suicide gene system used here induces apoptosis in breast cancer cells, and provides a promising treatment modality for breast cancer.

  19. Cytosine deaminase-expressing human neural stem cells inhibit tumor growth in prostate cancer-bearing mice.

    PubMed

    Lee, Hong Jun; Doo, Seung Whan; Kim, Dae Hong; Cha, Young Joo; Kim, Jae Heon; Song, Yun Seob; Kim, Seung U

    2013-07-10

    Prostate cancer is the most common malignancy among men. Prostate cancer-related deaths are largely attributable to the development of hormone resistance in the tumor. No effective chemotherapy has yet been developed for advanced prostate cancer. It is desirable if a drug can be delivered directly and specifically to prostate cancer cells. Stem cells have selective migration ability toward cancer cells and therapeutic genes can be easily transduced into stem cells. In one form of gene therapy for cancer, the stem cells carry a gene encoding an enzyme that transforms an inert prodrug into a toxic product. Cytosine deaminase (CD) transforms the pro-drug 5-fluorocytosine into highly cytotoxic 5-fluorouracil (5-FU). The migration of the genetically modified stem cells was monitored by molecular magnetic resonance imaging, after labeling the stem cells with fluorescent magnetic nanoparticles (MNPs). Human neural stem cells encoding CD (HB1.F3.CD) were prepared and labeled with MNP. In tumor-bearing C57B mice, systemically transplanted HB1.F3.CD stem cells migrated toward the tumor and in combination with prodrug 5-FC, the volume of tumor implant was significantly reduced. These findings may contribute to development of a new selective chemotherapeutic strategy against prostate cancer.

  20. The expression levels of CD44v6 are correlated with the invasiveness of hepatocellular carcinoma in vitro, but do not appear to be clinically significant.

    PubMed

    Mima, Kosuke; Okabe, Hirohisa; Ishimoto, Takatsugu; Hayashi, Hiromitsu; Nakagawa, Shigeki; Kuroki, Hideyuki; Miyake, Keisuke; Takamori, Hiroshi; Beppu, Toru; Baba, Hideo

    2012-05-01

    The finding that the expression of a variant isoform of CD44 induced a metastatic phenotype in locally growing tumor cells has attracted considerable attention. A number of studies have analyzed the expression of CD44v6 in human tumors of different origins. However, the findings of these studies have been controversial. Therefore, in the present study, we assessed the association between CD44v6 expression and the invasive capacity of hepatocellular carcinoma (HCC) cell lines and also investigated the clinical significance of CD44v6 in 150 HCC patients by immunohistochemical analysis. The HCC cell lines with a high CD44v6 expression, including HLF, HLE and SK HEP-1, showed high invasive potential, whereas those with a low CD44v6 expression, including PLC/PRF/5 and HuH1, showed low invasiveness. Despite these observations, we did not find any significant correlation between CD44v6 expression and clinicopathological factors in patients. By contrast, there was a weak correlation between a low CD44v6 expression and vascular invasion in HCC patients (P=0.080). Kaplan-Meier curves revealed that a high CD44v6 expression was not significantly associated with disease-free survival (P=0.736) or overall survival (P=0.736). Our study suggests that the expression levels of CD44v6 are correlated with the invasiveness of HCC in vitro, but do not appear to be clinically significant. Future experiments should investigate the role of the various CD44 isoforms, including the CD44 standard isoform, in HCC cell lines and in patients with HCC.

  1. Immune memory in CD4+ CD45RA+ T cells.

    PubMed Central

    Richards, D; Chapman, M D; Sasama, J; Lee, T H; Kemeny, D M

    1997-01-01

    This study addresses the question of whether human peripheral CD4+ CD45RA+ T cells possess antigen-specific immune memory. CD4+ CD45RA+ T cells were isolated by a combination of positive and negative selection. Putative CD4+ CD45RA+ cells expressed CD45RA (98.9%) and contained < 0.1% CD4+ CD45RO+ and < 0.5% CD4+ CD45RA+ CD45RO+ cells. Putative CD45RO+ cells expressed CD45RO (90%) and contained 9% CD45RA+ CD45RO+ and < 0.1% CD4+ CD45RA+ cells. The responder frequency of Dermatophagoides pteronyssinus-stimulated CD4+ CD45RA+ and CD4+ CD45RO+ T cells was determined in two atopic donors and found to be 1:11,314 and 1:8031 for CD4+ CD45RA+ and 1:1463 and 1:1408 for CD4+ CD45RO+ T cells. The responder frequencies of CD4+ CD45RA+ and CD4+ CD45RO+ T cells from two non-atopic, but exposed, donors were 1:78031 and 1:176,903 for CD4+ CD45RA+ and 1:9136 and 1:13,136 for CD4+ CD45RO+ T cells. T cells specific for D. pteronyssinus were cloned at limiting dilution following 10 days of bulk culture with D. pteronyssinus antigen. Sixty-eight clones were obtained from CD4+ CD45RO+ and 24 from CD4+ CD45RA+ T cells. All clones were CD3+ CD4+ CD45RO+ and proliferated in response to D. pteronyssinus antigens. Of 40 clones tested, none responded to Tubercule bacillus purified protein derivative (PPD). No difference was seen in the pattern of interleukin-4 (IL-4) or interferon-gamma (IFN-gamma) producing clones derived from CD4+ CD45RA+ and CD4+ CD45RO+ precursors, although freshly isolated and polyclonally activated CD4+ CD45RA+ T cells produced 20-30-fold lower levels of IL-4 and IFN-gamma than their CD4+ CD45RO+ counterparts. Sixty per cent of the clones used the same pool of V beta genes. These data support the hypothesis that immune memory resides in CD4+ CD45RA+ as well as CD4+ CD45RO+ T cells during the chronic immune response to inhaled antigen. PMID:9301520

  2. Increased Serum CD14 Level Is Associated with Depletion of TNF-α in Monocytes in Migraine Patients during Interictal Period

    PubMed Central

    Michalak, Slawomir; Kalinowska-Lyszczarz, Alicja; Wegrzyn, Danuta; Niezgoda, Adam; Losy, Jacek; Osztynowicz, Krystyna; Kozubski, Wojciech

    2017-01-01

    The aim of the present study was to investigate the levels of circulating CD14 in relation to the expression of tumor necrosis factor alpha (TNF-α) in monocytes, and serum levels of TNF-α and macrophage inflammatory protein-1 (MIP-1) in migraine patients. Numerous studies revealed controversial changes in the components of the immune system during attacks and the interictal period in migraine patients. Our study included 40 migraineurs and 39 controls. The levels of TNF-α, MIP-1 and CD14 were measured in peripheral monocytes and in sera with the Enzyme-Linked Immunosorbent Assay (ELISA) method, and the monocyte expression of TNF-α was also analysed by immunostaining. Serum CD14 concentrations were higher and the expression of TNF-α in monocytes was decreased in migraineurs. The serum MIP-1 level correlated with Verbal Rating Scale (VRS); the MIP-1:CD14 ratio in monocytes correlated with Visual Analogue Scale (VAS); the MIP-1:CD14 ratio correlated with Migraine Severity (MIGSEV)-Pain scores; and serum CD14 concentration correlated with migraine duration in years. Increased serum CD14 and depletion of TNF-α in monocytes can orchestrate other components of the immune system during the interictal period. PMID:28208835

  3. HIV-1 Vif Versus the APOBEC3 Cytidine Deaminases: An Intracellular Duel Between Pathogen and Host Restriction Factors

    PubMed Central

    Wissing, Silke; Galloway, Nicole L. K.; Greene, Warner C.

    2010-01-01

    The Vif protein of HIV is essential for the effective propagation of this pathogenic retrovirus in vivo. Vif acts by preventing virion encapsidation of two potent antiviral factors, the APOBEC3G and APOBEC3F cytidine deaminases. Decreased encapsidation in part involves Vif-mediated recruitment of a ubiquitin E3 ligase complex that promotes polyubiquitylation and proteasome-mediated degradation of APOBEC3G/F. The resultant decline in intracellular levels of these enzymes leads to decreased encapsidation of APOBECG/F into budding virions. This review discusses recent advances in our understanding of the dynamic interplay of Vif with the antiviral APOBEC3 enzymes. PMID:20538015

  4. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway.

    PubMed

    Yang, Yang; Hu, Shuai; Liu, Jie; Cui, Yun; Fan, Yu; Lv, Tianjing; Liu, Libo; Li, Jun; He, Qun; Han, Wenke; Yu, Wei; Sun, Yin; Jin, Jie

    2017-02-20

    Previous studies by our group have shown that low intra-prostatic dihydrotestosterone (DHT) induced BPH epithelial cells (BECs) to recruit CD8+ T cells. However, the influence of the recruited CD8+ T cells on BECs under a low androgen level is still unknown. Here, we found CD8+ T cells have the capacity to promote proliferation of BECs in low androgen condition. Mechanism dissection revealed that interaction between CD8+ T cells and BECs through secretion of CCL5 might promote the phosphorylation of STAT5 and a higher expression of CCND1 in BECs. Suppressed CCL5/STAT5 signals via CCL5 neutralizing antibody or STAT5 inhibitor Pimozide led to reverse CD8+ T cell-enhanced BECs proliferation. IHC analysis from Finasteride treated patients showed PCNA expression in BECs was highly correlated to the level of CD8+ T cell infiltration and the expression of CCL5. Consequently, our data indicated infiltrating CD8+ T cells could promote the proliferation of BECs in low androgen condition via modulation of CCL5/STAT5/CCND1 signaling. The increased secretion of CCL5 from the CD8+ T cells/BECs interaction might help BECs survive in a low DHT environment. Targeting these signals may provide a new potential therapeutic approach to better treat BPH patients who failed the therapy of 5α-reductase inhibitors.

  5. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway

    PubMed Central

    Yang, Yang; Hu, Shuai; Liu, Jie; Cui, Yun; Fan, Yu; Lv, Tianjing; Liu, Libo; Li, Jun; He, Qun; Han, Wenke; Yu, Wei; Sun, Yin; Jin, Jie

    2017-01-01

    Previous studies by our group have shown that low intra-prostatic dihydrotestosterone (DHT) induced BPH epithelial cells (BECs) to recruit CD8+ T cells. However, the influence of the recruited CD8+ T cells on BECs under a low androgen level is still unknown. Here, we found CD8+ T cells have the capacity to promote proliferation of BECs in low androgen condition. Mechanism dissection revealed that interaction between CD8+ T cells and BECs through secretion of CCL5 might promote the phosphorylation of STAT5 and a higher expression of CCND1 in BECs. Suppressed CCL5/STAT5 signals via CCL5 neutralizing antibody or STAT5 inhibitor Pimozide led to reverse CD8+ T cell-enhanced BECs proliferation. IHC analysis from Finasteride treated patients showed PCNA expression in BECs was highly correlated to the level of CD8+ T cell infiltration and the expression of CCL5. Consequently, our data indicated infiltrating CD8+ T cells could promote the proliferation of BECs in low androgen condition via modulation of CCL5/STAT5/CCND1 signaling. The increased secretion of CCL5 from the CD8+ T cells/BECs interaction might help BECs survive in a low DHT environment. Targeting these signals may provide a new potential therapeutic approach to better treat BPH patients who failed the therapy of 5α-reductase inhibitors. PMID:28216616

  6. Laser photobleaching leads to a fluorescence grade adenosine deaminase.

    PubMed

    Parola, A H; Caiolfa, V R; Bar, I; Rosenwaks, S

    1989-09-01

    The enzyme adenosine deaminase (adenosine aminohydrolase EC 3.5.4.4) from calf intestinal mucosa is commercially available at high purity grade yet, at the sensitivity at which fluorescence studies may be undertaken, a nonpeptidic fluorescence is detectable at lambda exmax = 350 nm and lambda emmax = 420 nm. A sevenfold decrease of this nonpeptidic fluorescence was obtained upon irradiation by the third harmonic (355 nm) of a Nd:YAG laser for 16 min, at 5 mJ/pulse, with a pulse width of 6 ns at a repetition rate of 10 Hz. The decline of fluorescence was accompanied by a negligible loss of enzymatic activity. Moreover, the integrity of the protein was ascertained by (i) its fluorescence (lambda exmax = 305 nm, lambda emmax = 335 nm) and lifetime distribution and (ii) its kinetics in the presence of the substrate adenosine and two inhibitors, all of which remained essentially unaltered. Laser photobleaching is a simple way to achieve a fluorescence grade adenosine deaminase.

  7. Soluble levels of CD27 and CD30 are associated with risk of non-Hodgkin lymphoma in three Chinese prospective cohorts

    PubMed Central

    Bassig, Bryan A.; Shu, Xiao-Ou; Koh, Woon-Puay; Gao, Yu-Tang; Purdue, Mark P.; Butler, Lesley M.; Adams-Haduch, Jennifer; Xiang, Yong-Bing; Kemp, Troy J.; Wang, Renwei; Pinto, Ligia A.; Zheng, Tongzhang; Ji, Bu-Tian; Hosgood, H. Dean; Hu, Wei; Yang, Gong; Zhang, Heping; Chow, Wong-Ho; Kim, Christopher; Seow, Wei Jie; Zheng, Wei; Yuan, Jian-Min; Lan, Qing; Rothman, Nathaniel

    2015-01-01

    Prospective studies conducted in Western populations have suggested that alterations in soluble CD27 (sCD27) and soluble CD30 (sCD30), two markers indicative of B-cell activation, are associated with risk of non-Hodgkin lymphoma (NHL). Given that the characteristics of NHL in East Asia differ from the West, and mechanistic commonalities between these populations with respect to the role of intermediate endpoint biomarkers in lymphomagenesis have not been explored, we conducted a pooled nested case-control study from three prospective studies of Chinese men and women including 218 NHL cases and 218 individually matched controls. Compared to the lowest quartile, ORs (95% CIs) for the 2nd, 3rd, and 4th quartiles of sCD27 were 1.60 (0.83-3.09), 1.94 (0.98-3.83), and 4.45 (2.25-8.81), respectively (ptrend = 0.000005). The corresponding ORs for sCD30 were 1.74 (0.85-3.58), 1.86 (0.94-3.67), and 5.15 (2.62-10.12) (ptrend = 0.0000002). These associations remained statistically significant in individuals diagnosed with NHL 10 or more years after blood draw. Notably, the magnitude of the associations with NHL risk was very similar to those in Western populations in previous studies. These findings of the similar association between sCD27 or sCD30 and NHL risk across different populations support an important underlying mechanism of B-cell activation in lymphomagenesis. PMID:26095604

  8. Diminished CD4+/CD25+ T cell and increased IFN-gamma levels occur in dogs vaccinated with Leishmune in an endemic area for visceral leishmaniasis.

    PubMed

    de Lima, Valéria Marçal Felix; Ikeda, Fabiana Augusta; Rossi, Cláudio N; Feitosa, Mary Marcondes; Vasconcelos, Rosemeride Oliveira; Nunes, Caris Maroni; Goto, Hiro

    2010-06-15

    The Leishmune vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Araçatuba, São Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P<0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune.

  9. Evaluation of soluble CD200 levels in type 2 diabetic foot and nephropathic patients: Association with disease activity

    PubMed Central

    Arik, Hasan Onur; Yalcin, Arzu Didem; Celik, Betul; Seyman, Derya; Tetik, Gulsum; Gursoy, Bensu; Kose, Sukran; Gumuslu, Saadet

    2014-01-01

    Background CD200 (OX-2) is a novel immune-effective molecule, existing in a cell membrane-bound form, as well as in a soluble form in serum (s OX-2), which acts to regulate inflammatory and acquired immune responses. Material/Methods We planned this study to evaluate the sOX-2 levels of type 2 diabetic foot (group B), and compare it with that of healthy controls (group A). The patient group had the following values: DM period: 27.9±10.3 year [mean ±SD], HbA1c: 9.52±2.44% [mean ±SD]. Results Blood samples for sCD200 measurement were always taken in the morning between 8 and 10 A.M.. The results were reported as means of duplicate measurements. Concentrations of sOX-2 in the serum samples were quantified using an ELISA kit. Serum hs-CRP levels were measured using an hs-CRP assay kit. The sOX-2 level in group B was 173.8±3.1 and in group A was 70.52±1.2 [p<0.0001). In subgroup analysis of T2DM-DFI patients, we noticed that sOX-2 levels were higher in WGS (Wagner grading system) I and II patients than in WGS III and IV patients. The HbA1c, BUN, creatinine, hs-CRP levels, and sedimentation rates were higher in the patient group (p<0.0001, p<0.001, p<0.001, p<0.005, and p<0.0001, respectively). Conclusions We suggest that there are vascular, immunologic, and neurologic components in DFI, whereas autoimmune diseases and inflammatory skin disorders have only an immunologic component. This is possibly evidence of a pro-inflammatory effect seen in DFI as a vascular complication. PMID:24964809

  10. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery.

    PubMed

    Bakırdere, Sezgin; Bölücek, Cemal; Yaman, Mehmet

    2016-03-01

    In the present study, levels of metal contamination caused by former lead mining area were figured out. For this purpose, Pb, Cd, Cu, Ni, and Mn were determined not only in sediment samples taken from different places of the mining area but also in some plants taken around the mining place. In the digestion of plant samples, dry ashing procedure was applied. Flame atomic absorption spectrophotometer (FAAS) was used in the determination of analytes of interest. All the parameters in digestion and detection procedures were optimized to obtain efficient digestion and high sensitivities for analytes. Standard addition and direct calibration methods were applied to find whether there was any matrix interference to affect the determination of analytes. Mn concentration was found to be the highest for each sample analyzed. Lead concentration was found to be between 41 and 249 mg/kg in soil/sediment samples and between 2.2 and 1003 mg/kg in plant samples. The highest contamination levels for all of the analytes with the exception of Cd were found in current sediment sample.

  11. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency.

    PubMed

    Bax, Bridget E; Bain, Murray D; Fairbanks, Lynette D; Webster, A David B; Ind, Philip W; Hershfield, Michael S; Chalmers, Ronald A

    2007-10-01

    Adenosine deaminase (ADA) deficiency is an inherited disorder which leads to elevated cellular levels of deoxyadenosine triphosphate (dATP) and systemic accumulation of its precursor, 2-deoxyadenosine. These metabolites impair lymphocyte function, and inactivate S-adenosylhomocysteine hydrolase (SAHH) respectively, leading to severe immunodeficiency. Enzyme replacement therapy with polyethylene glycol-conjugated ADA is available, but its efficacy is reduced by anti-ADA neutralising antibody formation. We report here carrier erythrocyte encapsulated native ADA therapy in an adult-type ADA deficient patient. Encapsulated enzyme is protected from antigenic responses and therapeutic activities are sustained. ADA-loaded autologous carrier erythrocytes were prepared using a hypo-osmotic dialysis procedure. Over a 9-yr period 225 treatment cycles were administered at 2-3 weekly intervals. Therapeutic efficacy was determined by monitoring immunological and metabolic parameters. After 9 yr of therapy, erythrocyte dATP concentration ranged between 24 and 44 micromol/L (diagnosis, 234) and SAHH activity between 1.69 and 2.29 nmol/h/mg haemoglobin (diagnosis, 0.34). Erythrocyte ADA activities were above the reference range of 40-100 nmol/h/mg haemoglobin (0 at diagnosis). Initial increases in absolute lymphocyte counts were not sustained; however, despite subnormal circulating CD20(+) cell numbers, serum immunoglobulin levels were normal. The patient tolerated the treatment well. The frequency of respiratory problems was reduced and the decline in the forced expiratory volume in 1 s and vital capacity reduced compared with the 4 yr preceding carrier erythrocyte therapy. Carrier erythrocyte-ADA therapy in an adult patient with ADA deficiency was shown to be metabolically and clinically effective.

  12. Melamine Deaminase and Atrazine Chlorohydrolase: 98 Percent Identical but Functionally Different

    PubMed Central

    Seffernick, Jennifer L.; de Souza, Mervyn L.; Sadowsky, Michael J.; Wackett, Lawrence P.

    2001-01-01

    The gene encoding melamine deaminase (TriA) from Pseudomonas sp. strain NRRL B-12227 was identified, cloned into Escherichia coli, sequenced, and expressed for in vitro study of enzyme activity. Melamine deaminase displaced two of the three amino groups from melamine, producing ammeline and ammelide as sequential products. The first deamination reaction occurred more than 10 times faster than the second. Ammelide did not inhibit the first or second deamination reaction, suggesting that the lower rate of ammeline hydrolysis was due to differential substrate turnover rather than product inhibition. Remarkably, melamine deaminase is 98% identical to the enzyme atrazine chlorohydrolase (AtzA) from Pseudomonas sp. strain ADP. Each enzyme consists of 475 amino acids and differs by only 9 amino acids. AtzA was shown to exclusively catalyze dehalogenation of halo-substituted triazine ring compounds and had no activity with melamine and ammeline. Similarly, melamine deaminase had no detectable activity with the halo-triazine substrates. Melamine deaminase was active in deamination of a substrate that was structurally identical to atrazine, except for the substitution of an amino group for the chlorine atom. Moreover, melamine deaminase and AtzA are found in bacteria that grow on melamine and atrazine compounds, respectively. These data strongly suggest that the 9 amino acid differences between melamine deaminase and AtzA represent a short evolutionary pathway connecting enzymes catalyzing physiologically relevant deamination and dehalogenation reactions, respectively. PMID:11274097

  13. Increased sensitivity of glioma cells to 5-fluorocytosine following photo-chemical internalization enhanced nonviral transfection of the cytosine deaminase suicide gene.

    PubMed

    Wang, Frederick; Zamora, Genesis; Sun, Chung-Ho; Trinidad, Anthony; Chun, Changho; Kwon, Young Jik; Berg, Kristian; Madsen, Steen J; Hirschberg, Henry

    2014-05-01

    Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.

  14. Cloning and high level expression of the biologically active extracellular domain of Macaca mulatta CD40 in Pichia pastoris.

    PubMed

    Zhu, Shengyun; Wan, Lin; Yang, Hao; Cheng, Jingqiu; Lu, Xiaofeng

    2016-03-01

    The CD40-mediated immune response contributes to a wide variety of chronic inflammatory diseases. CD40 antagonists have potential as novel therapies for immune disorders. However, the CD40 pathway has not been well characterized in the rhesus monkey Macaca mulatta, which is a valuable animal model for human immune disease. An 834 bp transcript was cloned from peripheral blood mononuclear cells (PBMCs) of rhesus monkey using specific primers designed according to the predicted sequence of M. mulatta CD40 (mmCD40) in GenBank. Sequence analysis demonstrated that mmCD40 is highly homologous to human CD40 (hCD40), with an amino acid sequence identity of 94%. Genes encoding the extracellular domain of mmCD40 and the Fc fragment of the hIgG1 were inserted into a pPIC9K plasmid to produce mmCD40Ig by Pichia pastoris. Approximately 15-20 mg of the mmCD40Ig protein with ∼90% purity could be recovered from 1 L of culture. The purified mmCD40Ig protein can form dimers and can specifically bind CD40L-positive cells. Additionally, the mmCD40Ig protein can bind hCD40L protein in phosphate buffered saline and form a stable combination in a size-exclusion chromatography assay using a Superdex 200 column. Moreover, mmCD40Ig is as efficient as M. mulatta CTLA4Ig (mmCTLA4Ig) to suppress Con A-stimulated lymphocyte proliferation. Additionally, mmCD40Ig only showed mild immunosuppressive activity in a one-way mixed lymphocyte reaction (MLR) system. These results suggest that mmCD40Ig secreted by P. pastoris was productive and functional, and it could be used as a tool for pathogenesis and therapies for chronic inflammatory diseases in a M. mulatta model.

  15. The effect of therapeutic drugs and other pharmacologic agents on activity of porphobilinogen deaminase, the enzyme that is deficient in intermittent acute porphyria.

    PubMed

    Tishler, P V

    1999-01-01

    Drugs and toxins precipitate life-threatening acute attacks in patients with intermittent acute porphyria. These materials may act by directly inhibiting enzyme activity, thus further reducing porphobilinogen (PBG) deaminase activity below the ca. 50% level that results from the gene defect. To test this, we studied the effects of drugs that precipitate acute attacks (lead, phenobarbital, griseofulvin, phenytoin, sulfanilamide, sulfisoxazole, 17alpha-ethinyl estradiol, 5beta-pregnan-3alpha-ol-20-one), drugs that are safe (lithium, magnesium, chlorpromazine, promethazine), and those with uncertain effects (ethyl alcohol, imipramine, diazepam, haloperidol) on activity of PBG deaminase in vitro and in vivo. In the in vitro studies, of PBG deaminase from human erythrocytes from normals and individuals with IAP, only lead (> or = .01 mM) inhibited enzyme activity. Chlorpromazine (> or = .01 mM), promethazine (> or = .01 mM) and imipramine (1 mM) seemed to increase enzyme activity. In most in vivo experiments, male rats were injected intraperitoneally with test material twice daily for 3 days and once on day four; and erythrocyte and hepatic PBG deaminase activity was assayed thereafter. Effects on enzyme activity were observed only with 17alpha-ethinyl estradiol (0.05 microg/kg/day; reduction of 11% in erythrocyte enzyme [NS], and of 20% in liver enzyme [P=.02]), and imipramine (12.5 mg/kg/day; reduction in erythrocyte enzyme activity of 13% [P<.001]). Rats given lead acetate in their drinking water (10 mg/ml) for the first 60 days of life, resulting in high blood and liver lead levels, had increased erythrocyte PBG deaminase (167% of control; P=.004). Thus, enzyme inhibition by lead in vitro was not reflected in a similar in vivo inhibition. The only inhibitory effects in vivo, with ethinyl estradiol and imipramine, appear to be mild and biologically inconsequential. We conclude that inhibition of PBG deaminase activity by materials that precipitate acute attacks is an

  16. Suppression subtractive hybridization (SSH)-based method for estimating Cd-induced differences in gene expression at cultivar level and identification of genes induced by Cd in two water spinach cultivars.

    PubMed

    Huang, Baifei; Xin, Junliang; Yang, Zhongyi; Zhou, Yihui; Yuan, Jiangang; Gong, Yulian

    2009-10-14

    The abilities to accumulate cadmium (Cd) are different among cultivars (cv.) in many species. The characteristic of Cd concentration among cultivars is heritable and is probably controlled by genes, but rather limited information about the relevant genes in vegetable crops has been published. In the present study, a suppression subtractive hybridization (SSH) approach was used to identify genes induced by Cd in two water spinach (an important vegetable in southern China) cultivars that differ in Cd accumulation in their edible parts. The two cultivars were cv. Qiangkunqinggu (QK), a low Cd accumulative cultivar and cv. Taiwan 308 (TW), a high Cd accumulative cultivar. In the construction of QK and TW libraries, the plants without Cd treatment were taken as drivers and the plants exposed to 6 mg L(-1) Cd for 24 h as testers. Four hundred clones were sequenced, and 164 nonrepeated sequences (112 from the QK library and 52 from the TW library) were assigned to being functional genes or proteins. A tremendous difference in Cd-induced gene expressions between the two libraries was observed. In the QK library, genes implicated in disease/defense comprised one of the largest sets (20.6%), whereas the proportion was only 8.8% in the TW library. An MT3 gene (Q5), a wound inductive gene (Q22), an antioxidation relevant gene (Q34), a lectin gene (Q45), an f-box family protein gene (Q319), a 20S proteasome subunit gene (T17), a multidrug resistance associated protein gene (T156), and a cationic amino acid transporter gene (T218) were selected to compare semiquantitatively their expression between cv. QK and cv. TW using the RT-PCR method, and obvious differences were detected. The relationships between the identified differences in the expressions of the genes and the Cd accumulation of the two cultivars were discussed, and it was concluded that the SSH approach is useful for finding the difference in expression of Cd-induced gene even at the cultivar level and is applicable

  17. Adenine arabinoside inhibition of adenovirus replication enhanced by an adenosine deaminase inhibitor.

    PubMed

    Wigand, R

    1979-01-01

    The inhibition of adenovirus multiplication by adenine arabinoside was determined by yield reduction in one-step multiplication cycle. Inhibition was greatly enhanced by an adenosine deaminase inhibitor (2-deoxycoformycin) in concentrations down to 10 ng/ml. Adenovirus types from four subgroups showed similar results. However, the enhancing effect of adenosine deaminase inhibitor was great in HeLa cells, moderate in human fibroblasts, and negligible in Vero cells. This difference could be explained by different concentrations of adenosine deaminase found in cell homogenates.

  18. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488.

    PubMed

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed.

  19. Southern blight disease of tomato control by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Paenibacillus lentimorbus B-30488

    PubMed Central

    Dixit, Ritu; Agrawal, Lalit; Gupta, Swati; Kumar, Manoj; Yadav, Sumit; Chauhan, Puneet Singh; Nautiyal, Chandra Shekhar

    2016-01-01

    abstract Tomato cultivation is highly susceptible for soil born diseases and among them southern blight disease caused by Scelerotium rolfsii is very common. For its management use of chemical fungicides is not very successful as their spores are able to survive for many years in the soil. As an alternative eco-friendly approach to control the disease antagonistic microbes are being characterized.Among them plant growth promoting rhizobacteria Paenibacillus lentimorbus B-30488 (B-30488) with antagonistic properties, multiple PGP attributes stress tolerance and ACC deaminase enzyme activity is characterized to decipher its mode of action against S. rolfsii under in vitro and in vivo conditions. In vitro results obtained from this study clearly demonstrate that B-30488 has ability to show antagonistic properties under different abiotic stresses against S. rolfsii. Similar results were also obtained from in vivo experiments where B-30488 inoculation has efficiently controlled the disease caused by S. rolfsii and improve the plant growth. Deleterious enhanced ethylene level in S. rolfsii infected plants was also ameliorated by inoculation of ACC deaminase producing B-30488. The ACC accumulation, ACO and ACS activities were also modulated in S. rolfsii infected plants. Results from defense enzymes and other biochemical attributes were also support the role of B-30488 inoculation in ameliorating the biotic stress caused by S. rolfsii in tomato plants. These results were further validated by pathogen related gene expression analysis by real time PCR. Overall results from the present study may be concluded that ACC deaminase producing B-30488 has ability to control the southern blight disease caused by S. rolfsii and commercial bioinoculant package may be developed. PMID:26825539

  20. TLR9 Ligand (CpG Oligodeoxynucleotide) Induces CLL B-Cells to Differentiate into CD20(+) Antibody-Secreting Cells.

    PubMed

    Ghamlouch, Hussein; Ouled-Haddou, Hakim; Guyart, Aude; Regnier, Aline; Trudel, Stéphanie; Claisse, Jean-François; Fuentes, Vincent; Royer, Bruno; Marolleau, Jean-Pierre; Gubler, Brigitte

    2014-01-01

    B-cell chronic lymphocytic leukemia (CLL) is the most frequent adult leukemia in the Western world. It is a heterogeneous disease characterized by clonal proliferation and the accumulation of CD5(+) mature B lymphocytes. However, the normal counterpart from which the latter cells arise has not yet been identified. CD27 expression and gene expression profiling data suggest that CLL cells are related to memory B-cells. In vitro, memory B-cells differentiate into plasma cells when stimulated with CpG oligodeoxynucleotide (CpG). The objective of the present study was therefore to investigate the ability of CpG, in the context of CD40 ligation, to induce the differentiation of CLL B-cells into antibody-secreting cells (ASCs). CD20(+)CD38(-) CLL B-cells were stimulated with a combination of CpG, CD40 ligand and cytokines (CpG/CD40L/c) in a two-step, 7-day culture system. We found that the CpG/CD40L/c culture system prompted CLL B-cells to differentiate into CD19(+)CD20(+)CD27(+)CD38(-)ASCs. These cells secreted large amounts of IgM and had the same shape as plasma cells. However, only IgMs secreted by ASCs that had differentiated from unmutated CLL B-cells were poly/autoreactive. Class-switch recombination (CSR) to IgG and IgA was detected in cells expressing the activation-induced cytidine deaminase gene (AICDA). Although these ASCs expressed high levels of the transcription factors PRDM1 (BLIMP1), IRF4, and XBP1s, they did not downregulate expression of PAX5. Our results suggest that CLL B-cells can differentiate into ASCs, undergo CSR and produce poly/autoreactive antibodies. Furthermore, our findings may be relevant for (i) identifying the normal counterpart of CLL B-cells and (ii) developing novel treatment strategies in CLL.

  1. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa

    PubMed Central

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305

  2. Inoculation of Soil with Plant Growth Promoting Bacteria Producing 1-Aminocyclopropane-1-Carboxylate Deaminase or Expression of the Corresponding acdS Gene in Transgenic Plants Increases Salinity Tolerance in Camelina sativa.

    PubMed

    Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R; Zhou, Rong; Hegedus, Dwayne D

    2016-01-01

    Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30-50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content.

  3. In utero exposure to benzene increases embryonic c-Myb and Pim-1 protein levels in CD-1 mice

    SciTech Connect

    Wan, Joanne; Winn, Louise M.

    2008-05-01

    Benzene is a known human leukemogen, but its role as an in utero leukemogen remains controversial. Epidemiological studies have correlated parental exposure to benzene with an increased incidence of childhood leukemias. We hypothesize that in utero exposure to benzene may cause leukemogenesis by affecting the embryonic c-Myb/Pim-1 signaling pathway and that this is mediated by oxidative stress. To investigate this hypothesis, pregnant CD-1 mice were treated with either 800 mg/kg of benzene or corn oil (i.p.) on days 10 and 11 of gestation and in some cases pretreated with 25 kU/kg of PEG-catalase. Phosphorylated and total embryonic c-Myb and Pim-1 protein levels were assessed using Western blotting and maternal and embryonic oxidative stress were assessed by measuring reduced to oxidized glutathione ratios. Our results show increased oxidative stress at 4 and 24 h after exposure, increased phosphorylated Pim-1 protein levels 4 h after benzene exposure, and increased Pim-1 levels at 24 and 48 h after benzene exposure. Embryonic c-Myb levels were elevated at 24 h after exposure. PEG-catalase pretreatment prevented benzene-mediated increases in embryonic c-Myb and Pim-1 protein levels, and benzene-induced oxidative stress. These results support a role for ROS in c-Myb and Pim-1 alterations after in utero benzene exposure.

  4. Hypoxia imaging predicts success of hypoxia-induced cytosine deaminase/5-fluorocytosine gene therapy in a murine lung tumor model.

    PubMed

    Lee, B-F; Lee, C-H; Chiu, N-T; Hsia, C-C; Shen, L-H; Shiau, A-L

    2012-04-01

    Tc-99m-HL91 is a hypoxia imaging biomarker. The aim of this study was to investigate the value of Tc-99m-HL91 imaging for hypoxia-induced cytosine deaminase (CD)/5-fluorocytosine (5-FC) gene therapy in a murine lung tumor model. C57BL/6 mice were implanted with Lewis lung carcinoma cells transduced with the hypoxia-inducible promoter-driven CD gene (LL2/CD) or luciferase gene (LL2/Luc) serving as the control. When tumor volumes reached 100 mm(3), pretreatment images were acquired after injection of Tc-99m-HL91. The mice were divided into low and high hypoxic groups based on the tumor-to-non-tumor ratio of Tc-99m-HL91. They were injected daily with 5-FC (500 mg kg(-1)) or the vehicle for 1 week. When tumor volumes reached 1000 mm(3), autoradiography and histological examinations were performed. Treatment with 5-FC delayed tumor growth and enhanced the survival of mice bearing high hypoxic LL2/CD tumors. The therapeutic effect of hypoxia-induced CD/5-FC gene therapy was more pronounced in high hypoxic tumors than in low hypoxic tumors. This study provides the first evidence that Tc-99m-HL91 can serve as an imaging biomarker for predicting the treatment responses of hypoxia-regulated CD/5-FC gene therapy in animal tumor models. Our results suggest that hypoxia imaging using Tc-99m-HL91 has the predictive value for the success of hypoxia-directed treatment regimens.

  5. Apoptosis induction in Jurkat cells and sCD95 levels in women's sera are related with the risk of developing cervical cancer

    PubMed Central

    Aguilar-Lemarroy, Adriana; Romero-Ramos, Jose E; Olimon-Andalon, Vicente; Hernandez-Flores, Georgina; Lerma-Diaz, Jose M; Ortiz-Lazareno, Pablo C; Morgan-Villela, Gilberto; del Toro-Arreola, Susana; Bravo-Cuellar, Alejandro; Jave-Suarez, Luis F

    2008-01-01

    Background Currently, there is clear evidence that apoptosis plays an important role in the development and progression of tumors. One of the best characterized apoptosis triggering systems is the CD95/Fas/APO-1 pathway; previous reports have demonstrated high levels of soluble CD95 (sCD95) in serum of patients with some types of cancer. Cervical cancer is the second most common cancer among women worldwide. As a first step in an attempt to design a minimally invasive test to predict the risk of developing cervical cancer in patients with precancerous lesions, we used a simple assay based on the capacity of human serum to induce apoptosis in Jurkat cells. We evaluated the relationship between sCD95 levels and the ability to induce apoptosis in Jurkat cells in cervical cancer patients and controls. Methods Jurkat cells were exposed to serum from 63 women (20 healthy volunteers, 21 with cervical intraepithelial neoplasia grade I [CIN 1] and 22 with cervical-uterine carcinoma). The apoptotic rate was measured by flow cytometry using Annexin-V-Fluos and Propidium Iodide as markers. Serum levels of sCD95 and soluble CD95 ligand (sCD95L) were measured by ELISA kits. Results We found that serum from almost all healthy women induced apoptosis in Jurkat cells, while only fifty percent of the sera from women with CIN 1 induced cell death in Jurkat cells. Interestingly, only one serum sample from a patient with cervical-uterine cancer was able to induce apoptosis, the rest of the sera protected Jurkat cells from this killing. We were able to demonstrate that elimination of Jurkat cells was mediated by the CD95/Fas/Apo-1 apoptotic pathway. Furthermore, the serum levels of sCD95 measured by ELISA were significantly higher in women with cervical cancer. Conclusion Our results demonstrate that there is a strong correlation between low levels of sCD95 in serum of normal women and higher apoptosis induction in Jurkat cells. We suggest that an analysis of the apoptotic rate induced

  6. Serum IL8 and mRNA level of CD11b in circulating neutrophils are increased in clinically amyopathic dermatomyositis with active interstitial lung disease.

    PubMed

    Zou, Jing; Chen, Jie; Yan, Qingran; Guo, Qiang; Bao, Chunde

    2016-01-01

    The objective of this study is to assess serum IL8 and the potential activity of circulating neutrophils on relative messenger RNA (mRNA) levels and their relationship with disease activity in clinically amyopathic dermatomyositis (CADM) associated with interstitial lung disease (ILD). We studied 18 CADM patients and compared them with 18 classic dermatomyositis (DM) patients and 18 healthy control subjects. Serum IL8 level and mRNA expressions of neutrophils (chemokine (C-X-C motif) receptor 1 (CXCR1), cluster of differentiation molecule 11b (CD11b), cluster of differentiation 64 (CD64), myeloid cell leukemia 1 (MCL1), interleukin-18 (IL18)) were detected. The overproduction of serum IL8 level was most significant in the CADM group with active period. The mRNA expressions of CD11b, IL18, and MCL1 were greatly increased in the neutrophils in patients with CADM compared with DM or healthy controls. Up-expressions of CD11b, IL18, and MCL1 were detected in the neutrophils in CADM patients of active period compared with remission period. A positive correlation was found between CD11b mRNA level and high-resolution computed tomography (HRCT) score, in CADM associated with ILD. Serum IL8 level and mRNA levels of CD11b, MCL1, and IL18 in circulating neutrophils are related with the disease activity of CADM-ILD. The mRNA level of CD11b is positively correlated with HRCT score in CADM-ILD.

  7. Retinoic acid promotes mouse splenic B cell surface IgG expression and maturation stimulated by CD40 and IL-4

    PubMed Central

    Chen, Qiuyan; Ross, A Catharine

    2008-01-01

    Retinoic acid (RA) increases antibody production in vivo but its role in B-cell activation is unclear. In a model of purified mouse splenic B cells stimulated by CD40 coreceptor (as a surrogate of T cell co-stimulation), IL-4, a principal Th-2 cytokine, and ligation of the B-cell antigen receptor, CD40 engagement or IL-4 alone induced B-cell activation indicated by increased Igγ1 germline transcripts, cell proliferation, and surface (s)IgG1 expression, while triple stimulation with the combination of anti-CD40/IL-4/anti-μ synergized to heighten B-cell activation. Although RA was growth inhibitory for anti-CD40-activated B cells, RA increased the proportion of B cells that had more differentiated phenotypes, such as expression of higher level of activation-induced deaminase, Blimp-1, CD138/syndecan-1 and sIgG1. Overall, RA can promote B-cell maturation at the population level by increasing the number of sIgG1 and CD138 expressing cells, which may be related to the potentiation of humoral immunity in vivo. PMID:18082674

  8. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene.

    PubMed

    Chalikonda, S; Kivlen, M H; O'Malley, M E; Eric Dong, X D; McCart, J A; Gorry, M C; Yin, X-Y; Brown, C K; Zeh, H J; Guo, Z S; Bartlett, D L

    2008-02-01

    In this study, we assessed the ability of a highly tumor-selective oncolytic vaccinia virus armed with a yeast cytosine deaminase gene to infect and lyse human and murine ovarian tumors both in vitro and in vivo. The virus vvDD-CD could infect, replicate in and effectively lyse both human and mouse ovarian cancer cells in vitro. In two different treatment schedules involving either murine MOSEC or human A2780 ovarian carcinomatosis models, regional delivery of vvDD-CD selectively targeted tumor cells and ovarian tissue, effectively delaying the development of either tumor or ascites and leading to significant survival advantages. Oncolytic virotherapy using vvDD-CD in combination with the prodrug 5-fluorocytosine conferred an additional long-term survival advantage upon tumor-bearing immunocompetent mice. These findings demonstrate that a tumor-selective oncolytic vaccinia combined with gene-directed enzyme prodrug therapy is a highly effective strategy for treating advanced ovarian cancers in both syngeneic mouse and human xenograft models. Given the biological safety, tumor selectivity and oncolytic potency of this armed oncolytic virus, this dual therapy merits further investigation as a promising new treatment for metastatic ovarian cancer.

  9. Greek Mythology: Literature Curriculum, Levels C-D [Grades Three and Four]; Teacher's Guide.

    ERIC Educational Resources Information Center

    Oregon Univ., Eugene. Oregon Elementary English Project.

    This curriculum guide is intended to introduce elementary school students to Greek mythology. The authors suggest that the selections be presented by the teacher as lively and imaginative stories; the more abstract aspects of the myths should be largely ignored until students reach the junior high school level. In addition to the myths themselves,…

  10. Quantitation of cytosine deaminase mRNA by real-time reverse transcription polymerase chain reaction: a sensitive method for assessing 5-fluorocytosine toxicity in vitro.

    PubMed

    Miller, C Ryan; Gustin, Allen N; Buchsbaum, Donald J; Vickers, Selwyn M; Manne, Upender; Grizzle, William E; Cloud, Gretchen A; Diasio, Robert B; Johnson, Martin R

    2002-02-15

    Cytosine deaminase/5-fluorocytosine (CD/5-FC) is a promising strategy for local cancer gene therapy. We hypothesized that CD expression within tumor cells would be directly related to efficacy and that quantitation of markers of CD expression such as mRNA, protein, and enzyme activity would therefore facilitate prediction of 5-FC toxicity. These three markers were thus quantitated by real-time quantitative reverse transcription polymerase chain reaction (Q-RT-PCR), semiquantitative immunocytochemistry (ICC), and 5-[(3)H]FC enzyme assay, respectively. Results with human colon (LS174T) cancer cells infected with a replication-incompetent adenovirus encoding CD (AdCMVCD) demonstrated a significant correlation between CD mRNA and enzyme activity up to 24 h postinfection. A direct correlation was found between CD dose (AdCMVCD PFU/cell) and CD mRNA and protein expression (P < 0.002) in both LS174T and BxPC-3 pancreatic cancer cells, but the relationship with enzyme activity was less strong in LS174T cells (P = 0.09). A remarkable concordance existed among Q-RT-PCR, ICC and enzyme assays with both cell lines. Importantly, CD dose and mRNA and protein expression inversely correlated with 5-FC IC(50) (P < 0.02). Quantitation of CD markers also facilitated identification of factors governing differential susceptibility to CD/5-FC. These results suggest that Q-RT-PCR will be useful for monitoring transgene expression in future studies using improved CD-based expression vectors and may also be useful in predicting the response to CD/5-FC therapy, which is likely to be heterogeneous in the patient population.

  11. AMP-deaminase from thymus of patients with myasthenia gravis.

    PubMed

    Rybakowska, I; Szydłowska, M; Szrok, S; Bakuła, S; Kaletha, K

    2015-01-01

    Myasthenia gravis (MG) is characterized clinically by skeletal muscle fatigue following the excessive exercise. Interestingly most of MG patients manifest parallely also some abnormalities of the thymus.AMP-deaminase (AMPD) from human thymus was not a subject of studies up to now. In this paper, mRNA expression and some physico-chemical and immunological properties of AMPD purified from the thymus of MG patients were described. Experiments performed identified the liver isozyme (AMPD2) as the main isoform of AMPD expressed in this organ. The activity of AMPD found in this organ was higher than in other human non-(skeletal) muscle tissues indicating on role the enzyme may play in supplying of guanylates required for the intensive multiplication of thymocytes.

  12. Late-onset adenosine deaminase deficiency presenting with Heck's disease.

    PubMed

    Artac, Hasibe; Göktürk, Bahar; Bozdemir, Sefika Elmas; Toy, Hatice; van der Burg, Mirjam; Santisteban, Ines; Hershfield, Michael; Reisli, Ismail

    2010-08-01

    Focal epithelial hyperplasia, also known as Heck's disease, is a rare but distinctive entity of viral etiology with characteristic clinical and histopathological features. It is a benign, asymptomatic disease of the oral mucosa caused by human papilloma viruses (HPV). Previous studies postulated an association between these lesions and immunodeficiency. Genetic deficiency of adenosine deaminase (ADA) results in varying degrees of immunodeficiency, including neonatal onset severe combined immunodeficiency (ADA-SCID), and milder, later onset immunodeficiency. We report a 12-year-old girl with the late onset-ADA deficiency presenting with Heck's disease. Our case report should draw attention to the possibility of immunodeficiency in patients with HPV-induced focal epithelial hyperplasia.

  13. Photodynamic therapy-driven induction of suicide cytosine deaminase gene.

    PubMed

    Bil, Jacek; Wlodarski, Pawel; Winiarska, Magdalena; Kurzaj, Zuzanna; Issat, Tadeusz; Jozkowicz, Alicja; Wegiel, Barbara; Dulak, Jozef; Golab, Jakub

    2010-04-28

    Photodynamic therapy (PDT) of tumors is associated with induction of hypoxia that results in activation of hypoxia-inducible factors (HIFs). Several observations indicate that increased HIFs transcriptional activity in tumor cells is associated with cytoprotective responses that limit cytotoxic effectiveness of PDT. Therefore, we decided to examine whether this cytoprotective mechanism could be intentionally used for designing more efficient tumor cell cytotoxicity. To this end we transfected tumor cells with a plasmid vector carrying a suicide cytosine deaminase gene driven by a promoter containing hypoxia response elements (HRE). The presence of such a genetic molecular beacon rendered tumor cells sensitive to cytotoxic effects of a non-toxic prodrug 5-fluorocytosine (5-FC). The results of this study provides a proof of concept that inducible cytoprotective mechanisms can be exploited to render tumor cells more susceptible to cytotoxic effects of prodrugs activated by products of suicide genes.

  14. Genetically engineered stem cells expressing cytosine deaminase and interferon-β migrate to human lung cancer cells and have potentially therapeutic anti-tumor effects.

    PubMed

    Yi, Bo-Rim; O, Si-Na; Kang, Nam-Hee; Hwang, Kyung-A; Kim, Seung U; Jeung, Eui-Bae; Kim, Yun-Bae; Heo, Gang-Joon; Choi, Kyung-Chul

    2011-10-01

    Recent studies have shown that genetically engineered stem cells (GESTECs) produce suicide enzymes that convert non-toxic pro-drugs to toxic metabolites which selectively migrate toward tumor sites and reduce tumor growth. In the present study, we evaluated whether these GESTECs are capable of migrating to lung cancer cells and examined the potential therapeutic efficacy of gene-directed enzyme pro-drug therapy against lung cancer cells in vitro. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to lung cancer cells. GESTECs [i.e., HB1.F3.CD or HB1.F3.CD.interferon-β (IFN-β)] engineered to express a suicide gene, cytosine deaminase (CD), selectively migrated toward lung cancer cells. Treatment of a human non-small cell lung carcinoma cell line (A549, a lung carcinoma derived from human lung epithelial cells) with the pro-drug 5-fluorocytosine (5-FC) in the presence of HB1.F3.CD or HB1.F3.CD.IFN-β cells resulted in the inhibition of lung cancer cell growth. Based on the data presented herein, we suggest that GESTECs expressing CD may have a potent advantage for selective treatment of lung cancers. Furthermore, GESTECs expressing fusion genes (i.e., CD and IFN-β) may have a synergic antitumor effect on lung cancer cells.

  15. Exploring Resonance Levels and Nanostructuring in the PbTe-CdTe System and Enhancement of the Thermoelectric Figure of Merit

    SciTech Connect

    Ahn, Kyunghan; Han, Mi-Kyung; He, Jiaqing; Androulakis, John; Ballikaya, Sedat; Uher, Ctirad; Dravid, Vinayak; Kanatzidis, Mercouri G.

    2010-04-14

    We explored the effect of Cd substitution on the thermoelectric properties of PbTe in an effort to test a theoretical hypothesis that Cd atoms on Pb sites of the rock salt lattice can increase the Seebeck coefficient via the formation of a resonance level in the density of states near the Fermi energy. We find that the solubility of Cd is less than previously reported, and CdTe precipitation occurs to create nanostructuring, which strongly suppresses the lattice thermal conductivity. We present detailed characterization including structural and spectroscopic data, transmission electron microscopy, and thermoelectric transport properties of samples of PbTe-x% CdTe-0.055% PbI2 (x = 1, 3, 5, 7, 10), PbTe-1% CdTe-y% PbI2 (y = 0.03, 0.045, 0.055, 0.08, 0.1, 0.2), PbTe-5% CdTe-y% PbI2 (y = 0.01, 0.03, 0.055, 0.08), and PbTe-1% CdTe-z% Sb (z = 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6). All samples follow the Pisarenko relationship, and no enhancement of the Seebeck coefficient was observed that could be attributed to a resonance level or a distortion in the density of states. A maximum ZT of 1.2 at 720 K was achieved for the PbTe-1% CdTe-0.055% PbI2 sample arising from a high power factor of 17 μW/(cm K2) and a very low lattice thermal conductivity of 0.5 W/(m K) at 720 K.

  16. Role of glutamate 64 in the activation of the prodrug 5-fluorocytosine by yeast cytosine deaminase.

    PubMed

    Wang, Jifeng; Sklenak, Stepan; Liu, Aizhuo; Felczak, Krzysztof; Wu, Yan; Li, Yue; Yan, Honggao

    2012-01-10

    Yeast cytosine deaminase (yCD) catalyzes the hydrolytic deamination of cytosine to uracil as well as the deamination of the prodrug 5-fluorocytosine (5FC) to the anticancer drug 5-fluorouracil. In this study, the role of Glu64 in the activation of the prodrug 5FC was investigated by site-directed mutagenesis, biochemical, nuclear magnetic resonance (NMR), and computational studies. Steady-state kinetics studies showed that the mutation of Glu64 causes a dramatic decrease in k(cat) and a dramatic increase in K(m), indicating Glu64 is important for both binding and catalysis in the activation of 5FC. (19)F NMR experiments showed that binding of the inhibitor 5-fluoro-1H-pyrimidin-2-one (5FPy) to the wild-type yCD causes an upfield shift, indicating that the bound inhibitor is in the hydrated form, mimicking the transition state or the tetrahedral intermediate in the activation of 5FC. However, binding of 5FPy to the E64A mutant enzyme causes a downfield shift, indicating that the bound 5FPy remains in an unhydrated form in the complex with the mutant enzyme. (1)H and (15)N NMR analysis revealed trans-hydrogen bond D/H isotope effects on the hydrogen of the amide of Glu64, indicating that the carboxylate of Glu64 forms two hydrogen bonds with the hydrated 5FPy. ONIOM calculations showed that the wild-type yCD complex with the hydrated form of the inhibitor 1H-pyrimidin-2-one is more stable than the initial binding complex, and in contrast, with the E64A mutant enzyme, the hydrated inhibitor is no longer favored and the conversion has a higher activation energy, as well. The hydrated inhibitor is stabilized in the wild-type yCD by two hydrogen bonds between it and the carboxylate of Glu64 as revealed by (1)H and (15)N NMR analysis. To explore the functional role of Glu64 in catalysis, we investigated the deamination of cytosine catalyzed by the E64A mutant by ONIOM calculations. The results showed that without the assistance of Glu64, both proton transfers before and

  17. Improvement of radiopurity level of enriched 116CdWO4 and ZnWO4 crystal scintillators by recrystallization

    NASA Astrophysics Data System (ADS)

    Barabash, A. S.; Belli, P.; Bernabei, R.; Borovlev, Yu. A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kobychev, V. V.; Konovalov, S. I.; Laubenstein, M.; Mokina, V. M.; Polischuk, O. G.; Safonova, O. E.; Shlegel, V. N.; Tretyak, V. I.; Tupitsyna, I. A.; Umatov, V. I.; Zhdankov, V. N.

    2016-10-01

    As low as possible radioactive contamination of a detector plays a crucial role to improve sensitivity of a double beta decay experiment. The radioactive contamination of a sample of 116CdWO4 crystal scintillator by thorium was reduced by a factor ≈10, down to the level 0.01 mBq/kg (228Th), by exploiting the recrystallization procedure. The total alpha activity of uranium and thorium daughters was reduced by a factor ≈3, down to 1.6 mBq/kg. No change in the specific activity (the total α activity and 228Th) was observed in a sample of ZnWO4 crystal produced by recrystallization after removing ≈0.4 mm surface layer of the crystal.

  18. Macrophage entry mediated by HIV Envs from brain and lymphoid tissues is determined by the capacity to use low CD4 levels and overall efficiency of fusion

    SciTech Connect

    Thomas, Elaine R.; Dunfee, Rebecca L.; Stanton, Jennifer; Bogdan, Derek; Taylor, Joann; Kunstman, Kevin; Bell, Jeanne E.; Wolinsky, Steven M.; Gabuzda, Dana . E-mail: dana_gabuzda@dfci.harvard.edu

    2007-03-30

    HIV infects macrophages and microglia in the central nervous system (CNS), which express lower levels of CD4 than CD4+ T cells in peripheral blood. To investigate mechanisms of HIV neurotropism, full-length env genes were cloned from autopsy brain and lymphoid tissues from 4 AIDS patients with HIV-associated dementia (HAD). Characterization of 55 functional Env clones demonstrated that Envs with reduced dependence on CD4 for fusion and viral entry are more frequent in brain compared to lymphoid tissue. Envs that mediated efficient entry into macrophages were frequent in brain but were also present in lymphoid tissue. For most Envs, entry into macrophages correlated with overall fusion activity at all levels of CD4 and CCR5. gp160 nucleotide sequences were compartmentalized in brain versus lymphoid tissue within each patient. Proline at position 308 in the V3 loop of gp120 was associated with brain compartmentalization in 3 patients, but mutagenesis studies suggested that P308 alone does not contribute to reduced CD4 dependence or macrophage-tropism. These results suggest that HIV adaptation to replicate in the CNS selects for Envs with reduced CD4 dependence and increased fusion activity. Macrophage-tropic Envs are frequent in brain but are also present in lymphoid tissues of AIDS patients with HAD, and entry into macrophages in the CNS and other tissues is dependent on the ability to use low receptor levels and overall efficiency of fusion.

  19. Adenosine Deaminase-2–Induced Hyperpermeability in Human Retinal Vascular Endothelial Cells Is Suppressed by MicroRNA-146b-3p

    PubMed Central

    Samra, Yara A.; Saleh, Heba M.; Hussein, Khaled A.; Elsherbiny, Nehal M.; Ibrahim, Ahmed S.; Elmasry, Khaled; Fulzele, Sadanand; El-Shishtawy, Mamdouh M.; Eissa, Laila A.; Al-Shabrawey, Mohamed; Liou, Gregory I.

    2017-01-01

    Purpose We recently demonstrated that adenosine deaminase-2 (ADA2) contributes to diabetic retinopathy (DR) via up-regulating the production of inflammatory cytokines in macrophages. Also, microRNA (miR)-146b-3p has the ability to inhibit ADA2. The goal of this study was to investigate the potential role of ADA2 and therapeutic benefit of miR-146b-3p in retinal inflammation and endothelial barrier dysfunction during diabetes. Methods Adenosine deaminase-2 activity was determined by colorimetric method in diabetic human vitreous. Human monocyte cell line U937 was differentiated into macrophages and then treated with amadori glycated albumin (AGA), and conditioned medium (CM) was used to assess the changes in ADA2 activity and TNF-α and IL-6 levels by ELISA. Also, macrophages were transfected with miR-146b-3p before treatment with AGA. Permeability of human retinal endothelial cells (hRECs) was assessed by electric cell-substrate impedance sensing (ECIS) after treatment with macrophage CM. Zonula occludens (ZO)-1 was examined by immuno-fluorescence in hRECs. Leukocyte adhesion was assessed in hRECs by measuring myeloperoxidase (MPO) activity and intercellular adhesion molecule-1 (ICAM-1) expression. Results Adenosine deaminase-2 activity was significantly increased in diabetic human vitreous. ADA2 activity and TNF-α and IL-6 levels were significantly increased in human macrophages by AGA treatment. Amadori glycated albumin–treated macrophage CM significantly increased hREC permeability, disrupted ZO-1 pattern, and increased leukocyte adhesion to hRECs through up-regulating ICAM-1. All these changes were reversed by miR-146b-3p. Conclusions Adenosine deaminase-2 is implicated in breakdown of the blood–retinal barrier (BRB) in DR through macrophages-derived cytokines. Therefore, inhibition of ADA2 by miR-146b-3p might be a useful tool to preserve BRB function in DR. PMID:28170537

  20. Germline variants in ETV6 underlie reduced platelet formation, platelet dysfunction and increased levels of circulating CD34+ progenitors

    PubMed Central

    Poggi, Marjorie; Canault, Matthias; Favier, Marie; Turro, Ernest; Saultier, Paul; Ghalloussi, Dorsaf; Baccini, Veronique; Vidal, Lea; Mezzapesa, Anna; Chelghoum, Nadjim; Mohand-Oumoussa, Badreddine; Falaise, Céline; Favier, Rémi; Ouwehand, Willem H.; Fiore, Mathieu; Peiretti, Franck; Morange, Pierre Emmanuel; Saut, Noémie; Bernot, Denis; Greinacher, Andreas; BioResource, NIHR; Nurden, Alan T.; Nurden, Paquita; Freson, Kathleen; Trégouët, David-Alexandre; Raslova, Hana; Alessi, Marie-Christine

    2017-01-01

    Variants in ETV6, which encodes a transcription repressor of the E26 transformation-specific family, have recently been reported to be responsible for inherited thrombocytopenia and hematologic malignancy. We sequenced the DNA from cases with unexplained dominant thrombocytopenia and identified six likely pathogenic variants in ETV6, of which five are novel. We observed low repressive activity of all tested ETV6 variants, and variants located in the E26 transformation-specific binding domain (encoding p.A377T, p.Y401N) led to reduced binding to corepressors. We also observed a large expansion of megakaryocyte colony-forming units derived from variant carriers and reduced proplatelet formation with abnormal cytoskeletal organization. The defect in proplatelet formation was also observed in control CD34+ cell-derived megakaryocytes transduced with lentiviral particles encoding mutant ETV6. Reduced expression levels of key regulators of the actin cytoskeleton CDC42 and RHOA were measured. Moreover, changes in the actin structures are typically accompanied by a rounder platelet shape with a highly heterogeneous size, decreased platelet arachidonic response, and spreading and retarded clot retraction in ETV6 deficient platelets. Elevated numbers of circulating CD34+ cells were found in p.P214L and p.Y401N carriers, and two patients from different families suffered from refractory anemia with excess blasts, while one patient from a third family was successfully treated for acute myeloid leukemia. Overall, our study provides novel insights into the role of ETV6 as a driver of cytoskeletal regulatory gene expression during platelet production, and the impact of variants resulting in platelets with altered size, shape and function and potentially also in changes in circulating progenitor levels. PMID:27663637

  1. Mapping Zn, Cu and Cd contents at the small catchment level after dispersion of contaminants by agricultural practices

    NASA Astrophysics Data System (ADS)

    Vidal Vázquez, E.; Mirás-Avalos, J. M.; Paz-Ferreiro, J.

    2009-04-01

    Dispersion of trace metals into the rural environment through the use of sewage sludge, fertilizers and manure has been worldwide reported. In El Abelar (Coruña province, Spain), pig slurry was discharged during years intensively into an agricultural field by means of a device which constituted a point source of contamination. The application point was located near the head of an elementary basin, so that slurry was dispersed by runoff into neighboring grassland and maize fields. In addition, diffuse pollution was also present in the study area as a consequence of cattle grazing. Water quality was monitored during and after slurry application at the outlet of a small catchment (about 10.7 ha in surface) draining the study fields. High levels of nutrients, including heavy metals, were found in drainage water. The main objectives of this paper are to determine the spatial variability of Cu, Zn and Cd as extracted by NO3H, EDTA and Ca2Cl and to evaluate the risk of accumulation of these heavy metals at the small catchment level. A set of 55 soil samples were taken from the top soil layer (0-20 cm) of the studied catchment, following a random sampling scheme. Fe, Mn, Cu, Zn and Cd contents were determined i) after digestion by nitric acid in a microwave (USEPA-SW-846 3051) ii) after extraction with EDTA and iii) after extraction with Cl2Ca. Element contents in the extracts were determined by ICP-MS. Summary statistics indicate that variability in Cu, Zn and Cd contents over the study area was very high. For example, after NO3H digestion Zn contents ranged from 29.66 to 141.77 3 mg kg-1 and Cu contents varied from 10.45 to 72.7 3 mg kg-1. High Cu and Zn contents result from accumulation as a consequence of slurry discharge. Also, some hot spots with high levels of Cd (> 3 mg kg-1 after NO3H) with respect to background values were recorded. Geostatistics provides all necessary tools to analyze the spatial variability of soil properties over a landscape. The spatial

  2. A low level of dietary selenium has both beneficial and toxic effects and is protective against Cd-toxicity in the least killifish Heterandria formosa.

    PubMed

    Xie, Lingtian; Wu, Xing; Chen, Hongxing; Dong, Wu; Cazan, Alfy Morales; Klerks, Paul L

    2016-10-01

    As an essential element, selenium (Se) is beneficial at low levels yet toxic at high levels. The present study assessed the effects of dietary exposure to Se in the least killifish Heterandria formosa, and investigated how this exposure influences the effects of a subsequent exposure to cadmium (Cd). The fish were pre-exposed to an environmentally relevant concentration (2 μg g(-1) dry wt) of dietary selenite (Se(4+)) or seleno-l-methionine (Se-Met) for 10 d. The same fish were then exposed to 0.5 mg L(-1) of Cd for 5 d. Both Se(IV) and Se-Met rapidly accumulated in H. formosa. Results for the two Se species were generally similar in this study. Fish exposed to Se had lower levels of lipid peroxidation (measured as levels of thiobarbituric acid reactive substances or TBARS) and a higher catalase (CAT) activity. In contrast, their Na(+)/K(+)-ATPase activity was reduced. The Cd exposure resulted in an increase in lipid peroxidation and decreases in the activities of catalase and Na(+)/K(+)-ATPase. The Cd-exposed H. formosa that were pre-exposed to Se had lower Cd body burdens, less lipid peroxidation, and higher catalase activity, than did fish not pre-exposed to Se. The Se exposure did not have a protective effect on the Cd-induced reduction in Na(+)/K(+)-ATPase activity. These results clearly demonstrate that a Se-enriched diet reduces some (but not all) forms of Cd-toxicity and that Se can simultaneously have beneficial and detrimental effects, making it difficult to predict the net outcome of changes in dietary Se levels for fish.

  3. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L.

    PubMed

    Sarathambal, Chinnathambi; Khankhane, Premraj Jagoji; Gharde, Yogita; Kumar, Bhumesh; Varun, Mayank; Arun, Sellappan

    2017-04-03

    In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.

  4. Interaction of endothelial progenitor cells expressing cytosine deaminase in tumor tissues and 5-fluorocytosine administration suppresses growth of 5-fluorouracil-sensitive liver cancer in mice.

    PubMed

    Torimura, Takuji; Ueno, Takato; Taniguchi, Eitaro; Masuda, Hiroshi; Iwamoto, Hideki; Nakamura, Toru; Inoue, Kinya; Hashimoto, Osamu; Abe, Mitsuhiko; Koga, Hironori; Barresi, Vincenza; Nakashima, Emi; Yano, Hirohisa; Sata, Michio

    2012-03-01

    The drug delivery system to tumors is a critical factor in upregulating the effect of anticancer drugs and reducing adverse events. Recent studies indicated selective migration of bone marrow-derived endothelial progenitor cells (EPC) into tumor tissues. Cytosine deaminase (CD) transforms nontoxic 5-fluorocytosine (5-FC) into the highly toxic 5-fluorouracil (5-FU). We investigated the antitumor effect of a new CD/5-FC system with CD cDNA transfected EPC for hepatocellular carcinoma (HCC) in mice. We used human hepatoma cell lines (HuH-7, HLF, HAK1-B, KYN-2, KIM-1) and a rat EPC cell line (TR-BME-2). Escherichia coli CD cDNA was transfected into TR-BME-2 (CD-TR-BME). The inhibitory effect of 5-FU on the proliferation of hepatoma cell lines and the inhibitory effect of 5-FU secreted by CD-TR-BME and 5-FC on the proliferation of co-cultured hepatoma cells were evaluated by a tetrazolium-based assay. In mouse subcutaneous xenograft models of KYN-2 and HuH-7, CD-TR-BME was transplanted intravenously followed by 5-FC injection intraperitoneally. HuH-7 cells were the most sensitive to 5-FU and KYN-2 cells were the most resistant. CD-TR-BME secreted 5-FU and inhibited HuH-7 proliferation in a 5-FC dose-dependent manner. CD-TR-BME were recruited into the tumor tissues and some were incorporated into tumor vessels. Tumor growth of HuH-7 was significantly suppressed during 5-FC administration. No bodyweight loss, ALT abnormality or bone marrow suppression was observed. These findings suggest that our new CD/5-FC system with CD cDNA transfected EPC could be an effective and safe treatment for suppression of 5-FU-sensitive HCC growth.

  5. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency

    PubMed Central

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G.; Puck, Jennifer M.; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R.; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia

    2016-01-01

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34+-enriched cell fraction that contained CD34+ cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3+, CD4+, and CD8+), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481. PMID:27129325

  6. Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Cicalese, Maria Pia; Ferrua, Francesca; Castagnaro, Laura; Pajno, Roberta; Barzaghi, Federica; Giannelli, Stefania; Dionisio, Francesca; Brigida, Immacolata; Bonopane, Marco; Casiraghi, Miriam; Tabucchi, Antonella; Carlucci, Filippo; Grunebaum, Eyal; Adeli, Mehdi; Bredius, Robbert G; Puck, Jennifer M; Stepensky, Polina; Tezcan, Ilhan; Rolfe, Katie; De Boever, Erika; Reinhardt, Rickey R; Appleby, Jonathan; Ciceri, Fabio; Roncarolo, Maria Grazia; Aiuti, Alessandro

    2016-07-07

    Adenosine deaminase (ADA) deficiency is a rare, autosomal-recessive systemic metabolic disease characterized by severe combined immunodeficiency (SCID). The treatment of choice for ADA-deficient SCID (ADA-SCID) is hematopoietic stem cell transplant from an HLA-matched sibling donor, although <25% of patients have such a donor available. Enzyme replacement therapy (ERT) partially and temporarily relieves immunodeficiency. We investigated the medium-term outcome of gene therapy (GT) in 18 patients with ADA-SCID for whom an HLA-identical family donor was not available; most were not responding well to ERT. Patients were treated with an autologous CD34(+)-enriched cell fraction that contained CD34(+) cells transduced with a retroviral vector encoding the human ADA complementary DNA sequence (GSK2696273) as part of single-arm, open-label studies or compassionate use programs. Overall survival was 100% over 2.3 to 13.4 years (median, 6.9 years). Gene-modified cells were stably present in multiple lineages throughout follow up. GT resulted in a sustained reduction in the severe infection rate from 1.17 events per person-year to 0.17 events per person-year (n = 17, patient 1 data not available). Immune reconstitution was demonstrated by normalization of T-cell subsets (CD3(+), CD4(+), and CD8(+)), evidence of thymopoiesis, and sustained T-cell proliferative capacity. B-cell function was evidenced by immunoglobulin production, decreased intravenous immunoglobulin use, and antibody response after vaccination. All 18 patients reported infections as adverse events; infections of respiratory and gastrointestinal tracts were reported most frequently. No events indicative of leukemic transformation were reported. Trial details were registered at www.clinicaltrials.gov as #NCT00598481.

  7. Elevated granzyme B+ B-cell level in SIV-infection correlate with viral load and low CD4 T-cell count

    PubMed Central

    Kotb, Ahmad; Klippert, Antonina; Daskalaki, Maria; Sauermann, Ulrike; Stahl-Hennig, Christiane; Neumann, Berit

    2017-01-01

    Granzyme B-expressing (GrB+) B cells are thought to contribute to immune dysfunctions in HIV patients, but so far their exact role is unknown. This report demonstrates for the first time the existence of GrB+ B cells in SIV-infected rhesus macaques, which represent the most commonly used nonhuman primate model for HIV research. Similar to HIV patients, we found significantly higher frequencies of these cells in the blood of chronically SIV-infected rhesus monkeys compared with uninfected healthy ones. These frequencies correlated with plasma viral load and inversely with absolute CD4 T-cell counts. When investigating GrB+ B cells in different compartments, levels were highest in blood, spleen and bone marrow, but considerably lower in lymph nodes and tonsils. Analysis of expression of various surface markers on this particular B-cell subset in SIV-infected macaques revealed differences between the phenotype in macaques and in humans. GrB+ B cells in SIV-infected rhesus macaques exhibit an elevated expression of CD5, CD10, CD25 and CD27, while expression of CD19, CD185 and HLA-DR is reduced. In contrast to human GrB+ B cells, we did not observe a significantly increased expression of CD43 and CD86. B-cell receptor stimulation in combination with IL-21 of purified B cells from healthy animals led to the induction of GrB expression. Furthermore, initial functional analyses indicated a regulatory role on T-cell proliferation. Overall, our data pave the way for longitudinal analyses including studies on the functionality of GrB+ B cells in the nonhuman primate model for AIDS. PMID:27779180

  8. Genetic heterogeneity in Cornelia de Lange syndrome (CdLS) and CdLS-like phenotypes with observed and predicted levels of mosaicism

    PubMed Central

    Ansari, Morad; Poke, Gemma; Ferry, Quentin; Williamson, Kathleen; Aldridge, Roland; Meynert, Alison M; Bengani, Hemant; Chan, Cheng Yee; Kayserili, Hülya; Avci, Şahin; Hennekam, Raoul C M; Lampe, Anne K; Redeker, Egbert; Homfray, Tessa; Ross, Alison; Falkenberg Smeland, Marie; Mansour, Sahar; Parker, Michael J; Cook, Jacqueline A; Splitt, Miranda; Fisher, Richard B; Fryer, Alan; Magee, Alex C; Wilkie, Andrew; Barnicoat, Angela; Brady, Angela F; Cooper, Nicola S; Mercer, Catherine; Deshpande, Charu; Bennett, Christopher P; Pilz, Daniela T; Ruddy, Deborah; Cilliers, Deirdre; Johnson, Diana S; Josifova, Dragana; Rosser, Elisabeth; Thompson, Elizabeth M; Wakeling, Emma; Kinning, Esther; Stewart, Fiona; Flinter, Frances; Girisha, Katta M; Cox, Helen; Firth, Helen V; Kingston, Helen; Wee, Jamie S; Hurst, Jane A; Clayton-Smith, Jill; Tolmie, John; Vogt, Julie; Tatton–Brown, Katrina; Chandler, Kate; Prescott, Katrina; Wilson, Louise; Behnam, Mahdiyeh; McEntagart, Meriel; Davidson, Rosemarie; Lynch, Sally-Ann; Sisodiya, Sanjay; Mehta, Sarju G; McKee, Shane A; Mohammed, Shehla; Holden, Simon; Park, Soo-Mi; Holder, Susan E; Harrison, Victoria; McConnell, Vivienne; Lam, Wayne K; Green, Andrew J; Donnai, Dian; Bitner-Glindzicz, Maria; Donnelly, Deirdre E; Nellåker, Christoffer; Taylor, Martin S; FitzPatrick, David R

    2014-01-01

    Background Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. Methods We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. Results Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as ‘NIPBL-like’. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. Conclusions Future diagnostic testing in ‘mutation-negative’ CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues. PMID:25125236

  9. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Belimov, A A; Safronova, V I; Sergeyeva, T A; Egorova, T N; Matveyeva, V A; Tsyganov, V E; Borisov, A Y; Tikhonovich, I A; Kluge, C; Preisfeld, A; Dietz, K J; Stepanok, V V

    2001-07-01

    Fifteen bacterial strains containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase were isolated from the rhizoplane of pea (Pisum sativum L.) and Indian mustard (Brassica juncea L.) grown in different soils and a long-standing sewage sludge contaminated with heavy metals. The isolated strains were characterized and assigned to various genera and species, such as Pseudomonas brassicacearum, Pseudomonas marginalis, Pseudomonas oryzihabitans, Pseudomonas putida, Pseudomonas sp., Alcaligenes xylosoxidans, Alcaligenes sp., Variovorax paradoxus, Bacillus pumilus, and Rhodococcus sp. by determination of 16S rRNA gene sequences. The root elongation of Indian mustard and rape (Brassica napus var. oleifera L.) germinating seedlings was stimulated by inoculation with 8 and 13 isolated strains, respectively. The bacteria were tolerant to cadmium toxicity and stimulated root elongation of rape seedlings in the presence of 300 microM CdCl2 in the nutrient solution. The effect of ACC-utilising bacteria on root elongation correlated with the impact of aminoethoxyvinylglycine and silver ions, chemical inhibitors of ethylene biosynthesis. A significant improvement in the growth of rape caused by inoculation with certain selected strains was also observed in pot experiments, when the plants were cultivated in cadmium-supplemented soil. The biomass of pea cv. Sparkle and its ethylene sensitive mutant E2 (sym5), in particular, was increased through inoculation with certain strains of ACC-utilising bacteria in pot experiments in quartz sand culture. The beneficial effect of the bacteria on plant growth varied significantly depending on individual bacterial strains, plant genotype, and growth conditions. The results suggest that plant growth promoting rhizobacteria containing ACC deaminase are present in various soils and offer promise as a bacterial inoculum for improvement of plant growth, particularly under unfavourable environmental conditions.

  10. Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil.

    PubMed

    Kamala-Kannan, Seralathan; Lee, Kui-Jae; Park, Seung-Moon; Chae, Jong-Chan; Yun, Bong-Sik; Lee, Yong Hoon; Park, Yool-Jin; Oh, Byung-Taek

    2010-04-01

    The enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase cleaves the ethylene precursor ACC into alpha-ketobutyrate and ammonia. The decreased level of ethylene allows the plant to be more resistant to a wide environmental stress including plant pathogens. In the present study, we characterized the ACC deaminase activity of a Pseudomonas entomophila strain PS-PJH isolated from the red pepper rhizosphere region of red pepper grown at Jinan, Korea. The isolate produced 23.8 +/- 0.4 micromol of alpha-ketobutyrate/mg of protein/h during ACC deamination under in vitro conditions. Polymerase chain reaction for acdS gene showed that the isolated P. entomophila strain PS-PJH carry sequences similar to the known acdS genes. Results of the multiple sequence alignment revealed >99% identity (nucleotide and amino acid) with acdS gene of Pseudomonas putida strains AM15 and UW4. The isolated bacteria promoted 43.3 and 34.1% of growth in Raphanus sativus and Lactuca sativa plants, respectively. Based on the 16S-23S internal transcribed spacer region sequences, the isolate was identified as P. entomophila. To the best of our knowledge this is the first study to report the acdS gene in P. entomophila.

  11. Cortisol increases CXCR4 expression but does not affect CD62L and CCR7 levels on specific T cell subsets in humans.

    PubMed

    Besedovsky, Luciana; Linz, Barbara; Dimitrov, Stoyan; Groch, Sabine; Born, Jan; Lange, Tanja

    2014-06-01

    Glucocorticoids are well known to affect T cell migration, leading to a redistribution of the cells from blood to the bone marrow, accompanied by a concurrent suppression of lymph node homing. Despite numerous studies in this context, with most of them employing synthetic glucocorticoids in nonphysiological doses, the mechanisms of this redistribution are not well understood. Here, we investigated in healthy men the impact of cortisol at physiological concentrations on the expression of different migration molecules on eight T cell subpopulations in vivo and in vitro. Hydrocortisone (cortisol, 22 mg) infused during nocturnal rest when endogenous cortisol levels are low, compared with placebo, differentially reduced numbers of T cell subsets, with naive CD4(+) and CD8(+) subsets exhibiting the strongest reduction. Hydrocortisone in vivo and in vitro increased CXCR4 expression, which presumably mediates the recruitment of T cells to the bone marrow. Expression of the lymph node homing receptor CD62L on total CD3(+) and CD8(+) T cells appeared reduced following hydrocortisone infusion. However, this was due to a selective extravasation of CD62L(+) T cell subsets, as hydrocortisone affected neither CD62L expression on a subpopulation level nor CD62L expression in vitro. Corresponding results in the opposite direction were observed after blocking of endogenous cortisol synthesis by metyrapone. CCR7, another lymph node homing receptor, was also unaffected by hydrocortisone in vitro. Thus, cortisol seems to redirect T cells to the bone marrow by upregulating their CXCR4 expression, whereas its inhibiting effect on T cell homing to lymph nodes is apparently regulated independently of the expression of classical homing receptors.

  12. The NK Cell Response to Mouse Cytomegalovirus Infection Affects the Level and Kinetics of the Early CD8+ T-Cell Response

    PubMed Central

    Mitrović, Maja; Arapović, Jurica; Jordan, Stefan; Fodil-Cornu, Nassima; Ebert, Stefan; Vidal, Silvia M.; Krmpotić, Astrid; Reddehase, Matthias J.

    2012-01-01

    Natural killer (NK) cells and CD8+ T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8+ T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8+ T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8+ T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8+ T cells has only a minor effect on the early control of wild-type MCMV, CD8+ T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8+ T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8+ T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H–m157 interaction. PMID:22156533

  13. The use of transplanted cultured tropical oysters (Saccostrea commercialis) to monitor Cd levels in North Queensland coastal waters (Australia).

    PubMed

    Olivier, Frédérique; Ridd, Michael; Klumpp, David

    2002-10-01

    Bivalves are commonly used to detect metal pollution in the marine environment. Commercially cultured Milky oysters (Saccostrea commercialis) were transplanted in various sites along the North Queensland coast and analyzed for two metals of potentially anthropogenic origin (Cd, Zn). To provide additional information, naturally occurring Black Lip oysters (Saccostrea echinata) were also collected at the transplantation sites. The study demonstrated that the oysters species transplanted are good bioindicators of these metal concentrations in tropical waters, sensitive to variations in the environment at concentrations which are much smaller than pollution signals commonly reported for temperate waters. Three transplant experiments were carried out from May 1999 to February 2000. Milky oysters transplanted to offshore areas (Orpheus Is., Kelso Reef) accumulated Cd in the soft parts whereas oysters sampled from cages placed in Ross Creek and the Herbert River estuaries showed a decrease in Cd concentration, which resulted from an increase in dry weight. Dry weight appeared to be an important covariant affecting Cd concentration in the oysters whereas it does not unambiguously affect Zn concentrations. For the duration of the experiments, oysters sampled from the Magnetic Is. reference site showed effectively constant Cd concentrations and total Cd contents which indicates that any seasonal cycle affecting metal concentration is weak. It was found that Cd accumulation in oysters increased as ambient dissolved Cd concentration decreased, from which it was concluded that for these oysters, the predominant source of Cd was from the particulate phase rather than the dissolved phase.

  14. Effects of genetically engineered stem cells expressing cytosine deaminase and interferon-beta or carboxyl esterase on the growth of LNCaP rrostate cancer cells.

    PubMed

    Yi, Bo-Rim; Hwang, Kyung-A; Kim, Yun-Bae; Kim, Seung U; Choi, Kyung-Chul

    2012-09-28

    The risk of prostate cancer has been increasing in men by degrees. To develop a new prostate cancer therapy, we used a stem cell-derived gene directed prodrug enzyme system using human neural stem cells (hNSCs) that have a tumor-tropic effect. These hNSCs were transduced with the therapeutic genes for bacterial cytosine deaminase (CD), alone or in combination with the one encoding human interferon-beta (IFN-β) or rabbit carboxyl esterase (CE) to generate HB1.F3.CD, HB1.F3.CD.IFN-β, and HB1.F3.CE cells, respectively. CD enzyme can convert the prodrug 5-fluorocytosine (5-FC) into the activated form 5-fluorouracil (5-FU). In addition, CE enzyme can convert the prodrug CPT-11 into a toxic agent, SN-38. In our study, the human stem cells were found to migrate toward LNCaP human prostate cancer cells rather than primary cells. This phenomenon may be due to interactions between chemoattractant ligands and receptors, such as VEGF/VEGFR2 and SCF/c-Kit, expressed as cancer and stem cells, respectively. The HB1.F3.CE, HB.F3.CD, or HB1.F3.CD.IFN-β cells significantly reduced the LNCaP cell viability in the presence of the prodrugs 5-FC or CPT-11. These results indicate that stem cells expressing therapeutic genes can be used to develop a new strategy for selectively treating human prostate cancer.

  15. Prolonged prenatal exposure to low-level ozone affects aggressive behaviour as well as NGF and BDNF levels in the central nervous system of CD-1 mice.

    PubMed

    Santucci, Daniela; Sorace, Alberto; Francia, Nadia; Aloe, Luigi; Alleva, Enrico

    2006-01-06

    The long-term effects on isolation-induced aggressive behaviour and central NGF and BDNF levels of gestational exposures to ozone (O(3)) were evaluated in adult CD-1 mice. Females were exposed to O(3), at the dose of 0.0, 0.3 or 0.6 ppm from 30 days prior the formation of breeding pairs until gestational day 17. Litters were fostered at birth to untreated dams and, at adulthood, male offspring underwent five successive daily encounters (15 min each) with a standard opponent of the same strain, sex, weight and age. The encounters on day 1, 3 and 5 were videotaped and agonistic and non-agonistic behavioural items finely scored. O(3)-exposed mice showed a significant increase in freezing and defensive postures, a decrease in nose-sniffing behaviour and reduced progressively the aggressive behavioural profile displayed on day 1. Reduced NGF levels in the hippocampus and increased BDNF in the striatum were also found upon O(3) exposure.

  16. Hydroxycarbamide modulates components involved in the regulation of adenosine levels in blood cells from sickle-cell anemia patients.

    PubMed

    Silva-Pinto, Ana C; Dias-Carlos, Carolina; Saldanha-Araujo, Felipe; Ferreira, Flávia I S; Palma, Patrícia V B; Araujo, Amélia G; Queiroz, Regina H C; Elion, Jacques; Covas, Dimas T; Zago, Marco A; Panepucci, Rodrigo A

    2014-09-01

    Recent studies have demonstrated the role of adenosine (ADO) in sickle-cell anemia (SCA). ADO is produced by CD39 and CD73 and converted to inosine by adenosine deaminase (ADA). We evaluated the effects of hydroxycarbamide (HU) treatment on the modulation of adenosine levels in SCA patients. The expressions of CD39, CD73, and CD26 were evaluated by flow cytometry on blood cells in 15 HU-treated and 17 untreated patients and 10 healthy individuals. RNA was extracted from monocytes, and ADA gene expression was quantified by real-time PCR. ADA activity was also evaluated. We found that ADA transcripts were two times higher in monocytes of HU-treated patients, compared with untreated (P = 0.039). Monocytes of HU-treated patients expressed CD26, while monocytes of controls and untreated patients did not (P = 0.023). In treated patients, a lower percentage of T lymphocytes expressed CD39 compared with untreated (P = 0.003), and the percentage of T regulatory (Treg) cells was reduced in the treated group compared with untreated (P = 0.017) and controls (P = 0.0009). Besides, HU-treated patients displayed increased ADA activity, compared with untreated. Our results indicate a novel mechanism of action of HU mediated by the reduction of adenosine levels and its effects on pathophysiological processes in SCA.

  17. Elevated cerebral cortical CD24 levels in patients and mice with traumatic brain injury: a potential negative role in nuclear factor κb/inflammatory factor pathway.

    PubMed

    Li, Wei; Ling, Hai-Ping; You, Wan-Chun; Liu, Huan-Dong; Sun, Qing; Zhou, Meng-Liang; Shen, Wei; Zhao, Jin-Bing; Zhu, Lin; Hang, Chun-Hua

    2014-02-01

    Increasing evidence indicates that sterile inflammatory response contributes to secondary brain injury following traumatic brain injury (TBI). However, the specific mechanisms remain largely unknown, as is whether CD24, known as an important regulator in the non-infectious inflammatory response, plays a role in secondary brain injury after TBI. Here, the expression of CD24 was detected in samples from patients with TBI by quantitative real-time polymerase chain reaction (PCR), western blotting, immunohistochemistry and immunofluorescence. RNA interference was used to investigate the effects of CD24 on inflammatory response in a mouse model of TBI. Nuclear factor kappa B (NF-κB) DNA-binding activity was measured by electrophoretic mobility shift assay, and the levels of downstream pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and Interleukin 1β (IL-1β) were detected by real-time PCR. The results indicated that both the mRNA and protein levels of CD24 were markedly elevated after TBI in humans and mice, showing a time-dependent expression. The expression of CD24 could be observed in neurons, astrocytes and microglia in both humans and mice. Meanwhile, downregulation of CD24 significantly induced an increase of NF-κB DNA-binding activity and mRNA levels of TNF-α and IL-1β. These findings indicated that CD24 expression could negatively regulate the NF-κB/inflammatory factor pathway after experimental TBI in mice, thus providing a novel target for therapeutic intervention of TBI.

  18. NK depletion results in increased CCL22 secretion and Treg levels in Lewis lung carcinoma via the accumulation of CCL22-secreting CD11b+CD11c+ cells.

    PubMed

    Mailloux, Adam W; Clark, Anna-Maria A; Young, M Rita I

    2010-12-01

    Tumor-induced immune suppression involves the accumulation of suppressive infiltrates in the tumor microenvironment such as regulatory T-cells (Tregs). Previous studies demonstrated that NK-dependant increases in CCL22 secretion selectively recruit Tregs toward murine lungs bearing Lewis Lung Carcinoma (LLC). To extend the in vitro studies, the present studies utilized in vivo depletion of NK cells to ascertain the contribution of NK-derived CCL22 toward total CCL22 and subsequent Treg levels in both normal and LLC-bearing lungs. However, NK depletion had the unexpected effect of increasing both CCL22 secretion and Treg levels in the lungs of NK-depleted LLC-bearing mice. This was concurrent with an increase in tumor burden. Flow cytometry and a series of both immunomagnetic and FACS isolations were used to identify the CCL22-producing cellular fractions in LLC-bearing lungs. A novel CD11b(+)CD11c(+) cell population was identified that accumulates in large numbers in NK-depleted LLC-bearing lung tissue. These CD11b(+)CD11c(+) cells secreted large amounts of CCL22 that may overcompensate for the loss of NK-derived CCL22 in the lungs of NK-depleted LLC-bearing mice. Taken together, these data suggest that NK cells play both a positive and negative role in the regulation of CCL22 secretion and, in turn, the recruitment of Tregs toward LLC-bearing lungs.

  19. Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFα and IL-1β levels in the mouse model of pleurisy induced by carrageenan

    PubMed Central

    Dalmarco, Eduardo Monguilhott; Medeiros, Yara Santos

    2008-01-01

    The mouse model of pleurisy induced by carrageenan is characterized by a significant enhancement of cell migration due to neutrophils 4 h after pleurisy induction. Forty-eight hours after pleurisy induction, a significant increase in cell migration due to mononuclear cells occurs. Recently, studies in our laboratory have demonstrated that cyclosporine A (CsA) inhibits leukocyte migration in the pleural cavity and lungs in the mouse model of pleurisy induced by carrageenan. In the present work we evaluated whether CsA was able to downregulate CD11a/CD18 adhesion molecule in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity in this model. Our results showed that CsA significantly decreased CD11a/CD18 in the lungs, as well as TNFα and IL-1β levels in the fluid leakage of the pleural cavity 4 h and 48 h after pleurisy induction. It is our hypothesis that the inhibitory effect elicited by CsA upon these adhesion molecules may be also be attributed to the downregulation of TNFα and IL-1β cytokines. PMID:19262158

  20. Discovery and Structure Determination of the Orphan Enzyme Isoxanthopterin Deaminase

    SciTech Connect

    Hall, R.S.; Swaminathan, S.; Agarwal, R.; Hitchcock, D.; Sauder, J. M.; Burley, S. K.; Raushel, F. M.

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a (gi|44585104) and NYSGXRC-9236b (gi|44611670), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 {angstrom} resolution (Protein Data Bank entry 2PAJ). This protein folds as a distorted ({beta}/{alpha}){sub 8} barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s{sup -1}, 8.0 {micro}M, and 1.3 x 10{sup 5} M{sup -1} s{sup -1} (k{sub cat}, K{sub m}, and k{sub cat}/K{sub m}, respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site

  1. High Aminopeptidase N/CD13 Levels Characterize Human Amniotic Mesenchymal Stem Cells and Drive Their Increased Adipogenic Potential in Obese Women

    PubMed Central

    Iaffaldano, Laura; Nardelli, Carmela; Raia, Maddalena; Mariotti, Elisabetta; Ferrigno, Maddalena; Quaglia, Filomena; Labruna, Giuseppe; Capobianco, Valentina; Capone, Angela; Maruotti, Giuseppe Maria; Pastore, Lucio; Di Noto, Rosa; Martinelli, Pasquale; Del Vecchio, Luigi

    2013-01-01

    Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human amniotic mesenchymal stem cells (hA-MSCs) have not been characterized in obese women. The aim of this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal weight control (Co-) women, to identify alterations possibly predisposing the fetus to obesity. We enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM prepregnancy body mass index: 40.3/1.8 and 22.4/1.0 kg/m2, respectively), and 32 not pregnant women. hA-MSCs were phenotyped by flow cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P=0.005). Also, serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated with CD13 antigen expression on Ob-hA-MSCs (r2=0.84, P<0.0001). Adipogenesis induction experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as witnessed by higher peroxisome proliferator-activated receptor gamma and aP2 mRNA levels (P=0.05 and P=0.05, respectively), at postinduction day 14 associated with increased CD13 mRNA levels from baseline to day 4 postinduction (P<0.05). Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by influencing the adipogenic potential of hA-MSCs, could be an in utero risk factor for obesity. Our data strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers. PMID:23488598

  2. High aminopeptidase N/CD13 levels characterize human amniotic mesenchymal stem cells and drive their increased adipogenic potential in obese women.

    PubMed

    Iaffaldano, Laura; Nardelli, Carmela; Raia, Maddalena; Mariotti, Elisabetta; Ferrigno, Maddalena; Quaglia, Filomena; Labruna, Giuseppe; Capobianco, Valentina; Capone, Angela; Maruotti, Giuseppe Maria; Pastore, Lucio; Di Noto, Rosa; Martinelli, Pasquale; Sacchetti, Lucia; Del Vecchio, Luigi

    2013-08-15

    Maternal obesity is associated to increased fetal risk of obesity and other metabolic diseases. Human amniotic mesenchymal stem cells (hA-MSCs) have not been characterized in obese women. The aim of this study was to isolate and compare hA-MSC immunophenotypes from obese (Ob-) and normal weight control (Co-) women, to identify alterations possibly predisposing the fetus to obesity. We enrolled 16 Ob- and 7 Co-women at delivery (mean/SEM prepregnancy body mass index: 40.3/1.8 and 22.4/1.0 kg/m2, respectively), and 32 not pregnant women. hA-MSCs were phenotyped by flow cytometry; several maternal and newborn clinical and biochemical parameters were also measured. The expression of membrane antigen CD13 was higher on Ob-hA-MSCs than on Co-hA-MSCs (P = 0.005). Also, serum levels of CD13 at delivery were higher in Ob- versus Co-pregnant women and correlated with CD13 antigen expression on Ob-hA-MSCs (r2 = 0.84, P < 0.0001). Adipogenesis induction experiments revealed that Ob-hA-MSCs had a higher adipogenic potential than Co-hA-MSCs as witnessed by higher peroxisome proliferator-activated receptor gamma and aP2 mRNA levels (P = 0.05 and P = 0.05, respectively), at postinduction day 14 associated with increased CD13 mRNA levels from baseline to day 4 postinduction (P < 0.05). Adipogenesis was similar in the two sets of hA-MSCs after CD13 silencing, whereas it was increased in Co-hA-MSCs after CD13 overexpression. CD13 expression was high also in Ob-h-MSCs from umbilical cords or visceral adipose tissue of not pregnant women. In conclusion, antigen CD13, by influencing the adipogenic potential of hA-MSCs, could be an in utero risk factor for obesity. Our data strengthen the hypothesis that high levels of serum and MSC CD13 are obesity markers.

  3. miR-181b negatively regulates activation-induced cytidine deaminase in B cells.

    PubMed

    de Yébenes, Virginia G; Belver, Laura; Pisano, David G; González, Susana; Villasante, Aranzazu; Croce, Carlo; He, Lin; Ramiro, Almudena R

    2008-09-29

    Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3' untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.

  4. Heme-Biosynthetic Porphobilinogen Deaminase Protects Aspergillus nidulans from Nitrosative Stress

    PubMed Central

    Zhou, Shengmin; Narukami, Toshiaki; Nameki, Misuzu; Ozawa, Tomoko; Kamimura, Yosuke; Hoshino, Takayuki

    2012-01-01

    Microorganisms have developed mechanisms to combat reactive nitrogen species (RNS); however, only a few of the fungal genes involved have been characterized. Here we screened RNS-resistant Aspergillus nidulans strains from fungal transformants obtained by introducing a genomic DNA library constructed in a multicopy vector. We found that the AN0121.3 gene (hemC) encodes a protein similar to the heme biosynthesis enzyme porphobilinogen deaminase (PBG-D) and facilitates RNS-tolerant fungal growth. The overproduction of PBG-D in A. nidulans promoted RNS tolerance, whereas PBG-D repression caused growth that was hypersensitive to RNS. PBG-D levels were comparable to those of cellular protoheme synthesis as well as flavohemoglobin (FHb; encoded by fhbA and fhbB) and nitrite reductase (NiR; encoded by niiA) activities. Both FHb and NiR are hemoproteins that consume nitric oxide and nitrite, respectively, and we found that they are required for maximal growth in the presence of RNS. The transcription of hemC was upregulated by RNS. These results demonstrated that PBG-D is a novel NO-tolerant protein that modulates the reduction of environmental NO and nitrite levels by FHb and NiR. PMID:22038601

  5. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    PubMed

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver.

  6. Assessment of adenosine deaminase (ADA) activity and oxidative stress in patients with chronic tonsillitis.

    PubMed

    Garca, Mehmet Fatih; Demir, Halit; Turan, Mahfuz; Bozan, Nazım; Kozan, Ahmet; Belli, Şeyda Bayel; Arslan, Ayşe; Cankaya, Hakan

    2014-06-01

    To emphasize the effectiveness of adenosine deaminase (ADA) enzyme, which has important roles in the differentiation of lymphoid cells, and oxidative stress in patients with chronic tonsillitis. Serum and tissue samples were obtained from 25 patients who underwent tonsillectomy due to recurrent episodes of acute tonsillitis. In the control group, which also had 25 subjects, only serum samples were taken as obtaining tissue samples would not have been ethically appropriate. ADA enzyme activity, catalase (CAT), carbonic anhydrase (CA), nitric oxide (NO) and malondialdehyde (MDA) were measured in the serum and tissue samples of patients and control group subjects. The serum values of both groups were compared. In addition, the tissue and serum values of patients were compared. Serum ADA activity and the oxidant enzymes MDA and NO values of the patient group were significantly higher than those of the control group (p < 0.001), the antioxidant enzymes CA and CAT values of the patient group were significantly lower than those of the control group (p < 0.001). In addition, while CA, CAT and NO enzyme levels were found to be significantly higher in the tonsil tissue of the patient group when compared to serum levels (p < 0.05), there was no difference between tissue and serum MDA and ADA activity (p > 0.05). Elevated ADA activity may be effective in the pathogenesis of chronic tonsillitis both by impairing tissue structure and contributing to SOR formation.

  7. B cell Rab7 mediates induction of activation-induced cytidine deaminase expression and class-switching in T-dependent and T-independent antibody responses.

    PubMed

    Pone, Egest J; Lam, Tonika; Lou, Zheng; Wang, Rui; Chen, Yuhui; Liu, Dongfang; Edinger, Aimee L; Xu, Zhenming; Casali, Paolo

    2015-04-01

    Class switch DNA recombination (CSR) is central to the maturation of the Ab response because it diversifies Ab effector functions. Like somatic hypermutation, CSR requires activation-induced cytidine deaminase (AID), whose expression is restricted to B cells, as induced by CD40 engagement or dual TLR-BCR engagement (primary CSR-inducing stimuli). By constructing conditional knockout Igh(+/C)γ(1-cre)Rab7(fl/fl) mice, we identified a B cell-intrinsic role for Rab7, a small GTPase involved in intracellular membrane functions, in mediating AID induction and CSR. Igh(+/C)γ(1-cre)Rab7(fl/fl) mice displayed normal B and T cell development and were deficient in Rab7 only in B cells undergoing Igh(C)γ(1-cre) Iγ1-Sγ1-Cγ1-cre transcription, as induced--like Igh germline Iγ1-Sγ1-Cγ1 and Iε-Sε-Cε transcription--by IL-4 in conjunction with a primary CSR-inducing stimulus. These mice could not mount T-independent or T-dependent class-switched IgG1 or IgE responses while maintaining normal IgM levels. Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells showed, in vivo and in vitro, normal proliferation and survival, normal Blimp-1 expression and plasma cell differentiation, as well as intact activation of the noncanonical NF-κB, p38 kinase, and ERK1/2 kinase pathways. They, however, were defective in AID expression and CSR in vivo and in vitro, as induced by CD40 engagement or dual TLR1/2-, TLR4-, TLR7-, or TLR9-BCR engagement. In Igh(+/C)γ(1-cre)Rab7(fl/fl) B cells, CSR was rescued by enforced AID expression. These findings, together with our demonstration that Rab7-mediated canonical NF-κB activation, as critical to AID induction, outline a novel role of Rab7 in signaling pathways that lead to AID expression and CSR, likely by promoting assembly of signaling complexes along intracellular membranes.

  8. Cytotoxic effect of a replication-incompetent adenoviral vector with cytosine deaminase gene driven by L-plastin promoter in hepatocellular carcinoma cells.

    PubMed

    Jung, Kihwa; Kim, Sunja; Lee, Kyumhyang; Kim, Changmin; Chung, Injae

    2007-06-01

    Great expectations are set on gene therapy for the treatment of malignant hepatocellular carcinomas (HCC) in East Asia. Recombinant adenoviral vectors (AV) have been developed in which the L-plastin promoter (LP) regulates the expression of transgenes, in a tumor cell specific manner, resulting in an increase in the therapeutic index. The development of the AdLPCD vector, a replication-incompetent AV, containing a transcription unit of LP and E. coli cytosine deaminase (CD), was reported in our previous work. In the present study, the AdLPCD vector combined with 5-fluorocytosine (5-FC) administration was tested to see if it might have significant utility in the chemosensitization of L-plastin positive HCC. Four HCC cell lines (HepG2, Chang Liver, Huh-7 and SK-Hep-1 cells) were investigated for the expression of LacZ after infecting the cells with the AdLPLacZ vector containing a 2.4 kb fragment of LP and the LacZ gene. Relatively high levels of LP activity were detected in HepG2, followed by Chang Liver cells; whereas, no promoter activity was found in Huh-7 and SK-Hep-1 cells, as determined by AdLPLacZ infection followed by the beta-galactosidase assay. In addition, the results of RT-PCR assays for the detection of endogenous L-plastin mRNA in these cells lines correlated well with those of the beta-galactosidase activity after infection with AdLPLacZ. Based on these data, the cytotoxic effect of AdLPCD/5-FC was evaluated in HepG2 cells. These results indicate that the CD gene delivered by AV could sensitize HepG2 cells to the prodrug, 5-FC. However, the observed effects were insufficient to cause the death of most of cells. This suggests that the screening of patients for an AdLP/5-FC strategy based on AdLPLacZ data might not always guarantee a good therapeutic outcome.

  9. Bacteria associated with yellow lupine grown on a metal-contaminated soil: in vitro screening and in vivo evaluation for their potential to enhance Cd phytoextraction.

    PubMed

    Weyens, N; Gielen, M; Beckers, B; Boulet, J; van der Lelie, D; Taghavi, S; Carleer, R; Vangronsveld, J

    2014-09-01

    In order to stimulate selection for plant-associated bacteria with the potential to improve Cd phytoextraction, yellow lupine plants were grown on a metal-contaminated field soil. It was hypothesised that growing these plants on this contaminated soil, which is a source of bacteria possessing different traits to cope with Cd, could enhance colonisation of lupine with potential plant-associated bacteria that could then be inoculated in Cd-exposed plants to reduce Cd phytotoxicity and enhance Cd uptake. All cultivable bacteria from rhizosphere, root and stem were isolated and genotypically and phenotypically characterised. Many of the rhizobacteria and root endophytes produce siderophores, organic acids, indole-3-acetic acid (IAA) and aminocyclopropane-1-carboxylate (ACC) deaminase, as well as being resistant to Cd and Zn. Most of the stem endophytes could produce organic acids (73.8%) and IAA (74.3%), however, only a minor fraction (up to 0.7%) were Cd or Zn resistant or could produce siderophores or ACC deaminase. A siderophore- and ACC deaminase-producing, highly Cd-resistant Rhizobium sp. from the rhizosphere, a siderophore-, organic acid-, IAA- and ACC deaminase-producing highly Cd-resistant Pseudomonas sp. colonising the roots, a highly Cd- and Zn-resistant organic acid and IAA-producing Clavibacter sp. present in the stem, and a consortium composed of these three strains were inoculated into non-exposed and Cd-exposed yellow lupine plants. Although all selected strains possessed promising in vitro characteristics to improve Cd phytoextraction, inoculation of none of the strains (i) reduced Cd phytotoxicity nor (ii) strongly affected plant Cd uptake. This work highlights that in vitro characterisation of bacteria is not sufficient to predict the in vivo behaviour of bacteria in interaction with their host plants.

  10. CD25(+) Bcl6(low) T follicular helper cells provide help to maturing B cells in germinal centers of human tonsil.

    PubMed

    Li, Haishan; Pauza, C David

    2015-01-01

    The majority of CXCR5(+) PD1(+) CD4(+) T follicular helper (Tfh) cells (>90%) are CD25(-) Bcl6(hi) , while a small subpopulation (<10%) are CD25(+) Bcl6(low) but do not express FoxP3 and are not T regulatory cells. We purified T:B-cell conjugates from tonsils and found they were enriched for the CD25(+) Bcl6(low) Tfh-cell subpopulation. In response to IL-2, these CD25(+) Tfh cells increased expression of costimulatory molecules ICOS or OX40, upregulated transcription factor cMaf, produced cytokines IL-21, IL-17, and IL-10, and raised the levels of antiapoptotic protein Bcl2. Conjugates formed with CD25(+) BCl6(low) Tfh cells included B cells expressing higher levels of activation-induced cytidine deaminase (AID), memory marker CD45RO, surface IgG or IgA, and MHC class II compared to B-cell conjugates including CD25(-) Bcl6(hi) Tfh cells. While IL-2 suppresses early Tfh-cell differentiation, Tfh-cell recognition of antigen-presenting B cells and signaling through the T-cell receptor likely triggers expression of the high-affinity IL-2 receptor and responses to IL-2 including downregulation of Bcl6. CD25 expression on Tfh cells and local production of IL-2 in tonsil or lymph node may support B helper T-cell function during later stages of B-cell maturation and the development of immune memory.

  11. Three-dimensional structure and catalytic mechanism of cytosine deaminase.

    PubMed

    Hall, Richard S; Fedorov, Alexander A; Xu, Chengfu; Fedorov, Elena V; Almo, Steven C; Raushel, Frank M

    2011-06-07

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K(i) of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pK(a) of 6.0, and Zn-CDA has a kinetic pK(a) of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k(cat) and k(cat)/K(m), consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  12. The ONIOM molecular dynamics method for biochemical applications: cytidine deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-03-22

    Abstract We derived and implemented the ONIOM-molecular dynamics (MD) method for biochemical applications. The implementation allows the characterization of the functions of the real enzymes taking account of their thermal motion. In this method, the direct MD is performed by calculating the ONIOM energy and gradients of the system on the fly. We describe the first application of this ONOM-MD method to cytidine deaminase. The environmental effects on the substrate in the active site are examined. The ONIOM-MD simulations show that the product uridine is strongly perturbed by the thermal motion of the environment and dissociates easily from the active site. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  13. Adenosine deaminase in cell transformation. Biophysical manifestation of membrane dynamics.

    PubMed

    Porat, N; Gill, D; Parola, A H

    1988-10-15

    Cell transformation is associated with a dramatic collapse of a graphic fingerprint characteristic of normal cells, as measured by phase fluorimetry. This is demonstrated on adenosine deaminase (ADA, EC 3.5.4.4), an established malignancy marker. ADA activity is known to decrease markedly in chick embryo fibroblasts (CEF) transformed by Rous sarcoma virus. The high affinity between the catalytic small subunit ADA (SS-ADA) and its membranal complexing protein (ADCP) (which abounds on the plasma membrane of CEF) allowed the hybridization of fluorescent labeled SS-ADA with native ADCP on CEF. Multifrequency differential phase fluorimetry responded remarkably to the state of this hybrid membrane protein. The transformation process is shown to have led to increased membrane fluidity and rotational mobility of ADCP as well as to its reduced availability to SS-ADA binding. The hypothesis of protein vertical sinking into the lipid core of the membrane is now given support by our spectroscopic data. Additional models are considered. A regulatory role is thus suggested for the complexing protein, which may also account for (a) reduced ADA activity in transformed cells and (b) detachment, exclusive to normal cells, upon addition of SS-ADA in excess.

  14. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    SciTech Connect

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  15. Functions and Regulation of RNA Editing by ADAR Deaminases

    PubMed Central

    Nishikura, Kazuko

    2010-01-01

    One type of RNA editing converts adenosines to inosines (A→I editing) in double-stranded RNA (dsRNA) substrates. A→I RNA editing is mediated by adenosine deaminase acting on RNA (ADAR) enzymes. A→I RNA editing of protein-coding sequences of a limited number of mammalian genes results in recoding and subsequent alterations of their functions. However, A→I RNA editing most frequently targets repetitive RNA sequences located within introns and 5′ and 3′ untranslated regions (UTRs). Although the biological significance of noncoding RNA editing remains largely unknown, several possibilities, including its role in the control of endogenous short interfering RNAs (esiRNAs), have been proposed. Furthermore, recent studies have revealed that the biogenesis and functions of certain microRNAs (miRNAs) are regulated by the editing of their precursors. Here, I review the recent findings that indicate new functions for A→I editing in the regulation of noncoding RNAs and for interactions between RNA editing and RNA interference mechanisms. PMID:20192758

  16. Adenosine Deaminase Deficiency – More Than Just an Immunodeficiency

    PubMed Central

    Whitmore, Kathryn V.; Gaspar, Hubert B.

    2016-01-01

    Adenosine deaminase (ADA) deficiency is best known as a form of severe combined immunodeficiency (SCID) that results from mutations in the gene encoding ADA. Affected patients present with clinical and immunological manifestations typical of a SCID. Therapies are currently available that can target these immunological disturbances and treated patients show varying degrees of clinical improvement. However, there is now a growing body of evidence that deficiency of ADA has significant impact on non-immunological organ systems. This review will outline the impact of ADA deficiency on various organ systems, starting with the well-understood immunological abnormalities. We will discuss possible pathogenic mechanisms and also highlight ways in which current treatments could be improved. In doing so, we aim to present ADA deficiency as more than an immunodeficiency and suggest that it should be recognized as a systemic metabolic disorder that affects multiple organ systems. Only by fully understanding ADA deficiency and its manifestations in all organ systems can we aim to deliver therapies that will correct all the clinical consequences. PMID:27579027

  17. Distribution of adenosine deaminase complexing protein (ADCP) in human tissues.

    PubMed

    Dinjens, W N; ten Kate, J; van der Linden, E P; Wijnen, J T; Khan, P M; Bosman, F T

    1989-12-01

    The normal distribution of adenosine deaminase complexing protein (ADCP) in the human body was investigated quantitatively by ADCP-specific radioimmunoassay (RIA) and qualitatively by immunohistochemistry. In these studies we used a specific rabbit anti-human ADCP antiserum. In all 19 investigated tissues, except erythrocytes, ADCP was found by RIA in the soluble and membrane fractions. From all tissues the membrane fractions contained more ADCP (expressed per mg protein) than the soluble fractions. High membrane ADCP concentrations were found in skin, renal cortex, gastrointestinal tract, and prostate. Immunoperoxidase staining confirmed the predominant membrane-associated localization of the protein. In serous sweat glands, convoluted tubules of renal cortex, bile canaliculi, gastrointestinal tract, lung, pancreas, prostate gland, salivary gland, gallbladder, mammary gland, and uterus, ADCP immunoreactivity was found confined to the luminal membranes of the epithelial cells. These data demonstrate that ADCP is present predominantly in exocrine glands and absorptive epithelia. The localization of ADCP at the secretory or absorptive apex of the cells suggests that the function of ADCP is related to the secretory and/or absorptive process.

  18. Direct detection of sulfide ions [S2-] in aqueous media based on fluorescence quenching of functionalized CdS QDs at trace levels: analytical applications to environmental analysis.

    PubMed

    Gore, Anil H; Vatre, Sandip B; Anbhule, Prashant V; Han, Sung-Hwan; Patil, Shivajirao R; Kolekar, Govind B

    2013-03-07

    A novel, simple but highly selective fluorescent probe is developed for the direct detection of sulfide ions [S(2-)] based on the fluorescence quenching of the functionalized CdS QDs in aqueous solution at trace levels and successfully applied for quantitation of S(2-) from water samples in a complex matrix exclusive of pretreatment by standard addition method.

  19. Infusing Interactive, Multimedia CD-ROM Technology into the First-Year College-Level Geology Curriculum: Recent Examples from Radford University, United States.

    ERIC Educational Resources Information Center

    Sethi, Parvinder S.; Newbill, Phyllis Leary

    In recent years, several CD-ROM-based instructional technology applications have been developed for use in both high school and college level classrooms. As multimedia authoring techniques evolve as important tools for teaching, it is imperative that teachers and multimedia authors understand the importance of focusing on specifically how the…

  20. Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina.

    PubMed

    Kathiresan, Kandasamy; Saravanakumar, Kandasamy; Sahu, Sunil Kumar; Sivasankaran, Muthu

    2014-06-01

    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis.

  1. Glucosamine-6-phosphate deaminase from beef kidney is an allosteric system of the V-type.

    PubMed

    Lara-Lemus, R; Calcagno, M L

    1998-10-14

    The enzyme glucosamine-6-phosphate deaminase from beef kidney has been purified to homogeneity by allosteric-site affinity chromatography. Its amino acid composition and the N-terminal sequence (1-42), were obtained. The amino acid sequence of this segment is essentially identical to the corresponding regions of the human and hamster glucosamine-6-phosphate deaminases. The beef enzyme is a hexamer of 32.5 kDa subunits; this is nearly 2.5 kDa higher than the molecular mass of the homologous enzyme from Escherichia coli. Beef kidney deaminase exhibits a notable difference from the bacterial enzyme in its allosteric activation by N-acetylglucosamine 6-phosphate This metabolite, which is also is the allosteric activator of the bacterial glucosamine-6-phosphate deaminase, activates the enzyme by increasing its kcat without any change in the Km values for glucosamine 6-phosphate, over a wide range of activator concentration. This observation places beef kidney deaminase in the class of V-type allosteric systems.

  2. Baseline Naive CD4+ T-cell Level Predicting Immune Reconstitution in Treated HIV-infected Late Presenters

    PubMed Central

    Guo, Fu-Ping; Li, Yi-Jia; Qiu, Zhi-Feng; Lv, Wei; Han, Yang; Xie, Jing; Li, Yan-Ling; Song, Xiao-Jing; Du, Shan-Shan; Mehraj, Vikram; Li, Tai-Sheng; Routy, Jean-Pierre

    2016-01-01

    Background: Among HIV-infected patients initiating antiretroviral therapy (ART), early changes in CD4+ T-cell subsets are well described. However, HIV-infected late presenters initiating treatment present with a suboptimal CD4+ T-cell reconstitution and remain at a higher risk for AIDS and non-AIDS events. Therefore, factors associated with CD4+ T-cell reconstitution need to be determined in this population, which will allow designing effective immunotherapeutic strategies. Methods: Thirty-one adult patients with baseline CD4+ T-cell count <350 cells/mm3 exhibiting viral suppression after ART initiation were followed in the HIV/AIDS research center of Peking Union Medical College Hospital in Beijing, China, from October 2002 to September 2013. Changes in T-cell subsets and associated determinants were measured. Results: Median baseline CD4+ T-cell count was 70 cells/mm3. We found a biphasic reconstitution of T-cell subsets and immune activation: a rapid change during the first 6 months followed by a more gradual change over the subsequent 8 years. Baseline CD4+ T-cell count >200 cells/mm3 in comparison to CD4+ T-cell count ≤200 cells/mm3 was associated with more complete immune Reconstitution (77.8% vs. 27.3% respectively; P = 0.017) and normalized CD4/CD8 ratio. We showed that the baseline percentage of naive CD4+ T-cell was a predictive marker for complete immune reconstitution (area under receiver operating characteristic curve 0.907), and 12.4% as cutoff value had a sensitivity of 84.6% and a specificity of 88.2%. Conclusions: Baseline naive CD4+ T-cell percentage may serve as a predictive marker for optimal immune reconstitution during long-term therapy. Such study findings suggest that increasing thymic output should represent an avenue to improve patients who are diagnosed late in the course of infection. PMID:27824000

  3. Activation-induced cytidine deaminase (AID) is localized to subnuclear domains enriched in splicing factors

    SciTech Connect

    Hu, Yi Ericsson, Ida Doseth, Berit Liabakk, Nina B. Krokan, Hans E. Kavli, Bodil

    2014-03-10

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and found that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.

  4. Hereditary overexpression of adenosine deaminase in erythrocytes: Evidence for a cis-acting mutation

    SciTech Connect

    Chen, E.H. ); Tartaglia, A.P. ); Mitchell, B.S. )

    1993-10-01

    Overexpression of adenosine deaminase (ADA) in red blood cells is inherited as an autosomal dominant trait and causes hemolytic anemia. The increased ADA activity in erythrocytes is due to an increase in steady-state levels of ADA mRNA of normal sequence. Increased ADA mRNA may be due to a cis-acting mutation which results in increased transcription or a loss of down-regulation during erythroid differentiation. Alternatively, it is possible that the mutation is in a trans-acting factor which interacts with normal ADA transcriptional elements to cause overexpression in red blood cells. To discriminate between a cis-acting and a trans-acting mutation, the authors took advantage of a highly polymorphic TAAA repeat located at the tail end of an Alu repeat approximately 1.1 kb upstream of the ADA gene. Using PCR to amplify this region, the authors identified five different alleles in 19 members of the family. All 11 affected individuals had an ADA allele with 12 TAAA repeats, whereas none of the 8 normal individuals did. The authors conclude that this disorder results from a cis-acting mutation in the vicinity of the ADA gene. 24 refs., 3 figs.

  5. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  6. Short-term declines in CD4 levels associated with cocaine use in HIV-1 seropositive, minority injecting drug users.

    PubMed Central

    Siddiqui, N. S.; Brown, L. S.; Makuch, R. W.

    1993-01-01

    This study evaluates the association of cocaine use with short-term change in CD4 counts among human immunodeficiency virus type 1 (HIV-1) seropositive, minority injecting drug users prior to the introduction of zidovudine (AZT). Ninety-eight HIV-1 seropositive subjects were recruited from six inner-city, methadone maintenance clinics. A baseline assessment included a short questionnaire regarding drug behavior and quantitation of CD4 cell counts. These measures were repeated on all subjects 3 to 4 months later. Thirty-eight subjects reported using cocaine between baseline and 4-month follow-up evaluations. Males and African Americans were more likely to be cocaine users (P < .01). Cocaine users were more likely to engage in heroin and needle use (P < .001). Cocaine users experienced a significant decline in CD4 cells compared with nonusers (P = .013); no marked difference in CD4 decline was noted between heroin users and nonusers (P = .19). Multivariate analysis showed that a decline in CD4 counts was 2.82 times more likely to occur in cocaine users than in cocaine nonusers (90% two-sided confidence interval of 1.08, 7.37). These findings support the hypothesis of a possible link between cocaine use and short-term CD4 decline in HIV-1 seropositive injecting drug users. PMID:8478971

  7. Autosomal recessive hyper IgM syndrome associated with activation-induced cytidine deaminase gene in three Turkish siblings presented with tuberculosis lymphadenitis - Case report.

    PubMed

    Patiroglu, Turkan; Akar, H Haluk; van der Burg, Mirjam; Unal, Ekrem

    2015-09-01

    The hyper-immunoglobulin M (HIGM) syndrome is a heterogeneous group of genetic disorders characterized by recurrent infections, decreased serum levels of immunoglobulin G (IgG) and IgA, and normal/increased serum levels of IgM. Herein, we describe three Turkish siblings with HIGM syndrome who had a homozygous missense mutation (c.70C>T, p.Arg24Trp) in the activation-induced cytidine deaminase gene which results in autosomal recessive HIGM syndrome. Two of the siblings, sibling 1 and sibling 3, presented with cervical deep abscess and cervical tuberculosis lymphadenitis, respectively.

  8. Effects of a 28-Day Cage-Change Interval on Intracage Ammonia Levels, Nasal Histology, and Perceived Welfare of CD1 Mice

    PubMed Central

    Vogelweid, Catherine M; Zapien, Kathleen A; Honigford, Matthew J; Li, Linghui; Li, Hua; Marshall, Heather

    2011-01-01

    We measured daily intracage ammonia levels and performed weekly assessments of CD1 male, female, and breeder mice housed within disposable, ventilated cages that remained unchanged for 28 d. We tested housing groups comprising 1, 3, or 5 sex-matched mice per cage and breeder pairs with litters. Mice housed in cages with higher concentrations of ammonia developed degeneration and inflammatory lesions in the nasal passages. Mean ammonia exposure levels that caused rhinitis were 181 ppm for 18 d. Ammonia exposures of 93 ppm for 16 d caused necrosis of the olfactory epithelium, whereas 52 ppm for 13 d caused epithelial degeneration. Observers could not detect visible signs of rhinitis or identify cages with elevated ammonia levels, nor did they identify any sick or distressed mice. Observers consistently assigned poorer welfare scores as cages became dirtier. We conclude that we can extend the cage-change interval to at least 28 d for disposable, ventilated caging housing a single CD1 mouse. Cages containing 3 CD1 mice of either sex should be changed biweekly, and cages containing 5 CD1 mice or breeder pairs should be changed at least once weekly. PMID:22330779

  9. Integrin β3 and CD44 levels determine the effects of the OPN-a splicing variant on lung cancer cell growth

    PubMed Central

    Sheu, Gwo-Tarng; Chang, Hui-Yi; Chen, Mei-Yu; Lin, Yu-Ying; Chuang, Cheng-Yen; Hsu, Shih-Lan; Chang, Jinghua Tsai

    2016-01-01

    Osteopontin (OPN), a phosphorylated glycoprotein, is frequently overexpressed in cancer. Among the three OPN isoforms, OPN-a is the most highly expressed in lung cancer cell lines and lung tumors. Overexpression of OPN-a greatly reduced CL1-5 lung adenocarcinoma cell growth, but had no effect on growth in A549 lung adenocarcinoma cells. Examination of the expression of integrins and CD44, which are possible OPN-a receptors, revealed that differences in integrin β3 levels might explain this discrepancy between CL1-5 and A549 cells. When integrin β3 was ectopically expressed in A549 cells, OPN-a inhibited their growth, whereas OPN-a increased cell growth following integrin β3 knockdown in CL1-5 cells. This OPN-a-induced increase in growth appeared to result from activation of the CD44/NFκB pathway. Our results demonstrated that OPN-a inhibits growth of cells with high integrin β3 levels and increases growth via activation of the CD44/NFκB pathway in cells with low integrin β3 levels. Thus, OPN-a, integrin β3, and CD44 interact to affect lung cancer cell growth, and this study may aid in the development of cancer treatment strategies involving these molecules. PMID:27487131

  10. Fermi level stabilization and band edge energies in Cd{sub x}Zn{sub 1−x}O alloys

    SciTech Connect

    Detert, Douglas M.; Tom, Kyle B.; Dubon, Oscar D.; Battaglia, Corsin; Javey, Ali; Denlinger, Jonathan D.; Lim, Sunnie H. N.; Anders, André; Yu, Kin M.; Walukiewicz, Wladek

    2014-06-21

    We have measured the band edge energies of Cd{sub x}Zn{sub 1−x}O thin films as a function of composition by three independent techniques: we determine the Fermi level stabilization energy by pinning the Fermi level with ion irradiation, measure the binding energy of valence band states and core levels by X-ray photoelectron spectroscopy, and probe shifts in the conduction band and valence band density of states using soft X-ray absorption and emission spectroscopy, respectively. The three techniques find consensus in explaining the origin of compositional trends in the optical-bandgap narrowing upon Cd incorporation in wurtzite ZnO and widening upon Zn incorporation in rocksalt CdO. The conduction band minimum is found to be stationary for both wurtzite and rocksalt alloys, and a significant upward rise of the valence band maximum accounts for the majority of these observed bandgap changes. Given these band alignments, alloy disorder scattering is found to play a negligible role in decreasing the electron mobility for all alloys. These band alignment details, combined with the unique optical and electrical properties of the two phase regimes, make CdZnO alloys attractive candidates for photoelectrochemical water splitting applications.

  11. Factors associated with the level of CD4 cell counts at HIV diagnosis in a French cohort: a quantile regression approach.

    PubMed

    Bruneau, Léa; Billaud, Eric; Raffi, François; Hanf, Matthieu

    2017-03-01

    The consensus definition of late presentation for human immunodeficiency virus patient based on a CD4 threshold of 350 cells/mm(3) has limitations concerning risk factors identification since there is growing biomedical justification for earlier initiation of treatment. The objective was to overcome this problem by simultaneously determining factors associated with different levels of CD4 counts at the time of diagnosis. Between January 2000 and July 2014, 1179 patients with a first human immunodeficiency virus diagnosis and entering care in a French human immunodeficiency virus reference center were enrolled. Factors associated with each 5 percentile from 5th to 95th quantile of CD4 counts at diagnosis were simultaneously studied in a multivariable quantile regression model. At each of the quantiles, the factors identified as negatively associated with CD4 count at diagnosis were older age, male sex , foreign patients, hepatitis B virus or hepatitis C virus co-infection, employment status, non-MSM transmission, heterosexual transmission, suburban and rural's place of residence and earlier period of diagnosis. Association with CD4 count was not uniformly significant, most factors being significant for some quantiles. The only significant determinant for all quantiles was being born in a foreign country. These results are particularly helpful in the context of human immunodeficiency virus clinical care, management and prevention.

  12. Specific CEA-producing colorectal carcinoma cell killing with recombinant adenoviral vector containing cytosine deaminase gene

    PubMed Central

    Shen, Li-Zong; Wu, Wen-Xi; Xu, De-Hua; Zheng, Zhong-Cheng; Liu, Xin-Yuan; Ding, Qiang; Hua, Yi-Bing; Yao, Kun

    2002-01-01

    AIM: To kill CEA positive colorectal carcinoma cells specifically using the E coli cytosine deaminase (CD) suicide gene, a new replication-deficient recombinant adenoviral vector was constructed in which CD gene was controlled under CEA promoter and its in vitro cytotoxic effects were evaluated. METHODS: Shuttle plasmid containing CD gene and regulatory sequence of the CEA gene was constructed and recombined with the right arm of adenovirus genome DNA in 293 cell strain. Dot blotting and PCR were used to identify positive plaques. The purification of adenovirus was performed with ultra-concentration in CsCl step gradients and the titration was measured with plaque formation assay. Cytotoxic effects were assayed with MTT method, The fifty percent inhibition concentration (IC50) of 5-FC was calculated using a curve-fitting parameter. The human colorectal carcinoma cell line, which was CEA-producing, and the CEA-nonproducing Hela cell line were applied in cytological tests. An established recombinant adenovirus vector AdCMVCD, in which the CD gene was controlled under CMV promoter, was used as virus control. Quantitative results were expressed as the mean ± SD of the mean. Statistical analysis was performed using ANOVA test. RESULTS: The desired recombinant adenovirus vector was named AdCEACD. The results of dot blotting and PCR showed that the recombinant adenovirus contained CEA promoter and CD gene. Virus titer was about 5.0 × 1014 pfu/L-1 after purification. The CEA-producing Lovo cells were sensitive to 5-FC and had the same cytotoxic effect after infection with AdCEACD and AdCMVCD (The IC50 values of 5-FC in parent Lovo cells, Lovo cells infected with 100 M.O.I AdCEACD and Lovo cells infected with 10 M.O.I AdCMVCD were > 15000, 216.5 ± 38.1 and 128.8 ± 25.4 μmol•L⁻¹, P < 0.001, respectively), and the cytotoxicity of 5-FC increased accordingly when the M.O.I of adenoviruses were enhanced (The value of IC50 of 5-FC was reduced to 27.9 ± 4.2 μmol•L-1

  13. Selective antitumor effect of neural stem cells expressing cytosine deaminase and interferon-beta against ductal breast cancer cells in cellular and xenograft models.

    PubMed

    Yi, Bo-Rim; Hwang, Kyung-A; Aboody, Karen S; Jeung, Eui-Bae; Kim, Seung U; Choi, Kyung-Chul

    2014-01-01

    Due to their inherent tumor-tropic properties, genetically engineered stem cells may be advantageous for gene therapy treatment of various human cancers, including brain, liver, ovarian, and prostate malignancies. In this study, we employed human neural stem cells (HB1.F3; hNSCs) transduced with genes expressing Escherichia coli cytosine deaminase (HB1.F3.CD) and human interferon-beta (HB1.F3.CD.IFN-β) as a treatment strategy for ductal breast cancer. CD can convert the prodrug 5-fluorocytosine (5-FC) to its active chemotherapeutic form, 5-fluorouracil (5-FU), which induces a tumor-killing effect through DNA synthesis inhibition. IFN-β also strongly inhibits tumor growth by the apoptotic process. RT-PCR confirmed that HB1.F3.CD cells expressed CD and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β. A modified transwell migration assay showed that HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward MCF-7 and MDA-MB-231 human breast cancer cells. In hNSC-breast cancer co-cultures the viability of breast cancer cells which were significantly reduced by HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. The tumor inhibitory effect was greater with the HB1.F3.CD.IFN-β cells, indicating an additional effect of IFN-β to 5-FU. In addition, the tumor-tropic properties of these hNSCs were found to be attributed to chemoattractant molecules secreted by breast cancer cells, including stem cell factor (SCF), c-kit, vascular endothelial growth factor (VEGF), and VEGF receptor 2. An in vivo assay performed using MDA-MB-231/luc breast cancer mammary fat pad xenografts in immunodeficient mice resulted in 50% reduced tumor growth and increased long-term survival in HB1.F3.CD and HB1.F3.CD.IFN-β plus 5-FC treated mice relative to controls. Our results suggest that hNSCs genetically modified to express CD and/or IFN-β genes can be used as a novel targeted cancer gene therapy.

  14. [Studying the dynamics of the levels CD4+CD25+, CD4+ HLA-DR4 + and CD4+CD95+ cells in the semen of men with oligosymptomatic forms of chronic urogenital infection complicated infertility under the influence of fortege].

    PubMed

    Tsiporenko, S Iu

    2013-09-01

    The markers of activating of lymphocytes in sperm of men with the oligosymptomatic forms of chronic urogenital infection depending on fertility. It is set that the increasing of correlation of CD25/CD95 brings to growth of pathological forms of spermatozoa and, consequently, to the decline of impregnating ability of men. Fortege application leads to the normalization of this correlation and a reduction of pathological forms of sperm and thus to the increasing of the fertilizing potential.

  15. Inhibition of G-Protein βγ Signaling Decreases Levels of Messenger RNAs Encoding Proinflammatory Cytokines in T Cell Receptor-Stimulated CD4+ T Helper Cells

    PubMed Central

    Hynes, Thomas R.; Yost, Evan A.; Hartle, Cassandra M.; Ott, Braden J.

    2015-01-01

    Background: Inhibition of G-protein βγ (Gβγ) signaling was found previously to enhance T cell receptor (TCR)-stimulated increases in interleukin 2 (IL-2) mRNA in CD4+ T helper cells, suggesting that Gβγ might be a useful drug target for treating autoimmune diseases, as low dose IL-2 therapy can suppress autoimmune responses. Because IL-2 may counteract autoimmunity in part by shifting CD4+ T helper cells away from the Type 1 T helper cell (TH1) and TH17 subtypes towards the TH2 subtype, the purpose of this study was to determine if blocking Gβγ signaling affected the balance of TH1, TH17, and TH2 cytokine mRNAs produced by CD4+ T helper cells. Methods: Gallein, a small molecule inhibitor of Gβγ, and siRNA-mediated silencing of the G-protein β1 subunit (Gβ1) were used to test the effect of blocking Gβγ on mRNA levels of cytokines in primary human TCR-stimulated CD4+ T helper cells. Results: Gallein and Gβ1 siRNA decreased interferon-γ (IFN-γ) and IL-17A mRNA levels in TCR-stimulated CD4+ T cells grown under TH1-promoting conditions. Inhibiting Gβγ also decreased mRNA levels of STAT4, which plays a positive role in TH1 differentiation and IL-17A production. Moreover, mRNA levels of the STAT4-regulated TH1-associated proteins, IL-18 receptor β chain (IL-18Rβ), mitogen-activated protein kinase kinase kinase 8 (MAP3K8), lymphocyte activation gene 3 (LAG-3), natural killer cell group 7 sequence (NKG7), and oncostatin M (OSM) were also decreased upon Gβγ inhibition. Gallein also increased IL-4, IL-5, IL-9, and IL-13 mRNA levels in TCR-stimulated memory CD4+ T cells grown in TH2-promoting conditions. Conclusions: Inhibiting Gβγ to produce these shifts in cytokine mRNA production might be beneficial for patients with autoimmune diseases such as rheumatoid arthritis (RA), Crohn’s disease (CD), psoriasis, multiple sclerosis (MS), and Hashimoto’s thyroiditis (HT), in which both IFN-γ and IL-17A are elevated. PMID:27095999

  16. Alirocumab, a Therapeutic Human Antibody to PCSK9, Does Not Affect CD81 Levels or Hepatitis C Virus Entry and Replication into Hepatocytes

    PubMed Central

    Ramanathan, Aarti; Gusarova, Viktoria; Stahl, Neil; Gurnett-Bander, Anne; Kyratsous, Christos A.

    2016-01-01

    Background Proprotein convertase subtilisin/kexin type 9 (PSCK9) is secreted mainly from the liver and binds to the low-density lipoprotein receptor (LDLR), reducing LDLR availability and thus resulting in an increase in LDL-cholesterol. While the LDLR has been implicated in the cell entry process of the hepatitis C virus (HCV), overexpression of an artificial non-secreted, cell membrane-bound form of PCSK9 has also been shown to reduce surface expression of CD81, a major component of the HCV entry complex, leading to concerns that pharmacological inhibition of PCSK9 may increase susceptibility to HCV infection by increasing either CD81 or LDLR availability. Here, we evaluated effects of PCSK9 and PCSK9 blockade on CD81 levels and HCV entry with a physiologically relevant model using native secreted PCSK9 and a monoclonal antibody to PCSK9, alirocumab. Methods and Results Flow cytometry and Western blotting of human hepatocyte Huh-7 cells showed that, although LDLR levels were reduced when cells were exposed to increasing PCSK9 concentrations, there was no correlation between total or surface CD81 levels and the presence and amount of soluble PCSK9. Moreover, inhibiting PCSK9 with the monoclonal antibody alirocumab did not affect expression levels of CD81. In an in vitro model of HCV entry, addition of soluble PCSK9 or treatment with alirocumab had no effect on the ability of either lentiviral particles bearing the HCV glycoproteins or JFH-1 based cell culture virus to enter hepatocytes. Consistent with these in vitro findings, no differences were observed in hepatic CD81 levels using in vivo mouse models, including Pcsk9-/- mice compared with wild-type controls and hyperlipidemic mice homozygous for human Pcsk9 and heterozygous for Ldlr deletion, treated with either alirocumab or isotype control antibody. Conclusion These results suggest that inhibition of PCSK9 with alirocumab has no effect on CD81 and does not result in increased susceptibility to HCV entry

  17. Neopterin and Soluble CD14 Levels as Indicators of Immune Activation in Cases with Indeterminate Pattern and True Positive HIV-1 Infection

    PubMed Central

    Uysal, Hayriye Kırkoyun; Sohrabi, Pari; Habip, Zafer; Saribas, Suat; Kocazeybek, Emre; Seyhan, Fatih; Calışkan, Reyhan; Bonabi, Esad; Yuksel, Pelin; Birinci, Ilhan; Uysal, Omer; Kocazeybek, Bekir

    2016-01-01

    Background We aimed to evaluate the roles of the plasma immune activation biomarkers neopterin and soluble CD14 (sCD14) in the indirect assessment of the immune activation status of patients with the indeterminate HIV-1 (IHIV-1) pattern and a true HIV-1-positive infection (PCG). Methods This cross-sectional and descriptive study included eighty-eight patients with the IHIV-1 pattern, 100 patients in the PCG, and 100 people in a healthy control group (HCG). Neopterin and sCD14 levels were determined by competitive and sandwich ELISA methods, respectively. Results Mean neopterin and sCD14 levels among those with the IHIV-1 pattern were significantly lower than among the PCG (p < 0.001 and p = 0.001, respectively), but they were similiar to those in the HCG (p = 0.57 and p = 0.66, respectively. Mean neopterin and sCD14 levels among the PCG were found to be significantly higher than among those with the IHIV-1 pattern (p < 0.001 and p = 0.001, respectively) and among those in the HCG (p = 0.001, p < 0.001, respectively). Neopterin did not have adequate predictive value for identifying those in the PCG (area under the curve [AUC] = 0.534; 95% CI, 0.463–0.605; p = 0.4256); sCD14 also had poor predictive value but high specificity (100%) for identifying those in the PCG (AUC = 0.627; 95% CI, 0.556–0.694; p = 0.0036). Conclusions While low levels of these two biomarkers were detected among those with the IHIV-1 pattern, they were found in high levels among those in the PCG. These two markers obviously cannot be used as a sceening test because they have low sensitivies. Taken together, we suggest that neopterin and sCD14 may be helpful because they both have high specificity (92%-100%) as indirect non-specific markers for predicting the immune activation status of individuals, whether or not they have true positive HIV-1. PMID:27031691

  18. Effect of hyperoxic and hyperbaric conditions on the adenosinergic pathway and CD26 expression in rat.

    PubMed

    Bruzzese, Laurie; Rostain, Jean-Claude; Née, Laëtitia; Condo, Jocelyne; Mottola, Giovanna; Adjriou, Nabil; Mercier, Laurence; Berge-Lefranc, Jean-Louis; Fromonot, Julien; Kipson, Nathalie; Lucciano, Michel; Durand-Gorde, Josée-Martine; Jammes, Yves; Guieu, Régis; Ruf, Jean; Fenouillet, Emmanuel

    2015-07-15

    The nucleoside adenosine acts on the nervous and cardiovascular systems via the A2A receptor (A2AR). In response to oxygen level in tissues, adenosine plasma concentration is regulated in particular via its synthesis by CD73 and via its degradation by adenosine deaminase (ADA). The cell-surface endopeptidase CD26 controls the concentration of vasoactive and antioxidant peptides and hence regulates the oxygen supply to tissues and oxidative stress response. Although overexpression of adenosine, CD73, ADA, A2AR, and CD26 in response to hypoxia is well documented, the effects of hyperoxic and hyperbaric conditions on these elements deserve further consideration. Rats and a murine Chem-3 cell line that expresses A2AR were exposed to 0.21 bar O2, 0.79 bar N2 (terrestrial conditions; normoxia); 1 bar O2 (hyperoxia); 2 bar O2 (hyperbaric hyperoxia); 0.21 bar O2, 1.79 bar N2 (hyperbaria). Adenosine plasma concentration, CD73, ADA, A2AR expression, and CD26 activity were addressed in vivo, and cAMP production was addressed in cellulo. For in vivo conditions, 1) hyperoxia decreased adenosine plasma level and T cell surface CD26 activity, whereas it increased CD73 expression and ADA level; 2) hyperbaric hyperoxia tended to amplify the trend; and 3) hyperbaria alone lacked significant influence on these parameters. In the brain and in cellulo, 1) hyperoxia decreased A2AR expression; 2) hyperbaric hyperoxia amplified the trend; and 3) hyperbaria alone exhibited the strongest effect. We found a similar pattern regarding both A2AR mRNA synthesis in the brain and cAMP production in Chem-3 cells. Thus a high oxygen level tended to downregulate the adenosinergic pathway and CD26 activity. Hyperbaria alone affected only A2AR expression and cAMP production. We discuss how such mechanisms triggered by hyperoxygenation can limit, through vasoconstriction, the oxygen supply to tissues and the production of reactive oxygen species.

  19. High conservation level of CD8(+) T cell immunogenic regions within an unusual H1N2 human influenza variant.

    PubMed

    Komadina, Naomi; Quiñones-Parra, Sergio M; Kedzierska, Katherine; McCaw, James M; Kelso, Anne; Leder, Karin; McVernon, Jodie

    2016-10-01

    Current seasonal influenza vaccines require regular updates due to antigenic drift causing loss of effectiveness and therefore providing little or no protection against novel influenza A subtypes. Next generation vaccines capable of eliciting CD8(+) T cell (CTL) mediated cross-protective immunity may offer a long-term alternative strategy. However, measuring pre- and existing levels of CTL cross-protection in humans is confounded by differences in infection histories across individuals. During 2000-2003, H1N2 viruses circulated persistently in the human population for the first time and we hypothesized that the viral nucleoprotein (NP) contained novel CTL epitopes that may have contributed to the survival of the viruses. This study describes the immunogenic NP peptides of H1N1, H2N2, and H3N2 influenza viruses isolated from humans over the past century, 1918-2003, by comparing this historical dataset to reference NP peptides from H1N2 that circulated in humans during 2000-2003. Observed peptides sequences ranged from highly conserved (15%) to highly variable (12%), with variation unrelated to reported immunodominance. No unique NP peptides which were exclusive to the H1N2 viruses were noted. However, the virus had inherited the NP from a recently emerged H3N2 variant containing novel peptides, which may have assisted its persistence. Any advantage due to this novelty was subsequently lost with emergence of a newer H3N2 variant in 2003. Our approach has potential to provide insight into the population context in which influenza viruses emerge, and may help to inform immunogenic peptide selection for CTL-inducing influenza vaccines. J. Med. Virol. 88:1725-1732, 2016. © 2016 Wiley Periodicals, Inc.

  20. Systemic Cytokine Levels Do Not Predict CD4+ T-Cell Recovery After Suppressive Combination Antiretroviral Therapy in Chronic Human Immunodeficiency Virus Infection

    PubMed Central

    Norris, Philip J.; Zhang, Jinbing; Worlock, Andrew; Nair, Sangeetha V.; Anastos, Kathryn; Minkoff, Howard L.; Villacres, Maria C.; Young, Mary; Greenblatt, Ruth M.; Desai, Seema; Landay, Alan L.; Gange, Stephen J.; Nugent, C. Thomas; Golub, Elizabeth T.; Keating, Sheila M.

    2016-01-01

    Background. Subjects on suppressive combination antiretroviral therapy (cART) who do not achieve robust reconstitution of CD4+ T cells face higher risk of complications and death. We studied participants in the Women's Interagency HIV Study with good (immunological responder [IR]) or poor (immunological nonresponder [INR]) CD4+ T-cell recovery after suppressive cART (n = 50 per group) to determine whether cytokine levels or low-level viral load correlated with INR status. Methods. A baseline sample prior to viral control and 2 subsequent samples 1 and 2 years after viral control were tested. Serum levels of 30 cytokines were measured at each time point, and low-level human immunodeficiency virus (HIV) viral load and anti-HIV antibody levels were measured 2 years after viral suppression. Results. There were minimal differences in cytokine levels between IR and INR subjects. At baseline, macrophage inflammatory protein-3β levels were higher in IR subjects; after 1 year of suppressive cART, soluble vascular endothelial growth factor-R3 levels were higher in IR subjects; and after 2 years of suppressive cART, interferon gamma-induced protein 10 levels were higher in INR subjects. Very low-level HIV viral load and anti-HIV antibody levels did not differ between IR and INR subjects. Conclusions. These results imply that targeting residual viral replication might not be the optimum therapeutic approach for INR subjects. PMID:26966697

  1. Synthesis and characterization of a novel chitosan based E. coli cytosine deaminase nanocomposite for potential application in prodrug enzyme therapy.

    PubMed

    Yata, Vinod Kumar; Ghosh, Siddhartha Sankar

    2011-01-01

    Cytosine deaminase is a non-mammalian enzyme of widespread interest for prodrug enzyme therapy due to its ability to convert prodrug 5-fluorocytosine into anticancer drug 5-fluorouracil. Cytosine deaminase enzyme has been purified to homogeneity from E. coli K-12 MTCC 1302 strain. K(m) values for cytosine and 5-fluorocytosine were found to be 0.26 mM and 1.82 mM, respectively. We developed a chitosan-entrapped cytosine deaminase nanocomposite. Atomic force microscopy and transmission electron microscopy images showed an elongated sphere shape nanocomposite with an average size of 80 nm diameter. Fourier transform infrared spectroscopy and X-ray diffraction results confirmed gel formation and entrapment of cytosine deaminase within the nanocomposite. Sustained release of cytosine deaminase from the nanocomposite up to one week depicted its potential implication in prodrug inducted enzyme therapy.

  2. Synergistic effects of genetically engineered stem cells expressing cytosine deaminase and interferon-β via their tumor tropism to selectively target human hepatocarcinoma cells.

    PubMed

    Yi, B-R; Hwang, K-A; Kang, N-H; Kim, S U; Jeung, E-B; Kim, H-C; Choi, K-C

    2012-09-01

    Stem cells have received a great deal of attention for their clinical and therapeutic potential for treating human diseases and disorders. Recent studies have shown that it is possible to genetically engineered stem cells (GESTECs) to produce suicide enzymes that convert non-toxic prodrugs to toxic metabolites, selectively migrate toward tumor sites and reduce tumor growth. In this study, we evaluated whether these GESTECs are capable of migrating to hepatocarcinoma cells and examined the potential therapeutic efficacy of gene-directed enzyme prodrug therapy against liver cancer cells in cellular and animal models. A modified transwell migration assay was performed to determine the migratory capacity of GESTECs to Hep3B hepatocarcinoma cells. GESTECs, that is, HB1.F3.CD or HB1.F3.CD.interferon-β (IFN-β) cells, engineered to express a suicide gene, cytosine deaminase (CD), selectively migrated toward liver cancer cells. Treatment of Hep3B, human liver cancer cells, with the prodrug 5-fluorocytosine (5-FC) in the presence of HB1.F3.CD or HB1.F3.CD.IFN-β cells resulted in the inhibition of Hep3B cell growth. In a xenografted mouse model injected with hepatocarcinoma, we investigated the therapeutic effect of these stem cells. For 9 weeks, the xenografted mice were treated with HB1.F3.CD or HB1.F3.CD.IFN-β in the presence of 5-FC. A growth of tumor mass was inhibited about 40-50% in the mice treated with GESTECs and a prodrug. In addition, we further confirmed the cytotoxic effect on tumor cells by histological analysis and migratory effect of therapeutic stem cells. Taken together, GESTECs expressing a fusion gene encoding CD and IFN-β may exert a synergistic antitumor effect on this type of tumor.

  3. Autoimmune dysregulation and purine metabolism in adenosine deaminase deficiency.

    PubMed

    Sauer, Aisha Vanessa; Brigida, Immacolata; Carriglio, Nicola; Aiuti, Alessandro

    2012-01-01

    Genetic defects in the adenosine deaminase (ADA) gene are among the most common causes for severe combined immunodeficiency (SCID). ADA-SCID patients suffer from lymphopenia, severely impaired cellular and humoral immunity, failure to thrive, and recurrent infections. Currently available therapeutic options for this otherwise fatal disorder include bone marrow transplantation (BMT), enzyme replacement therapy with bovine ADA (PEG-ADA), or hematopoietic stem cell gene therapy (HSC-GT). Although varying degrees of immune reconstitution can be achieved by these treatments, breakdown of tolerance is a major concern in ADA-SCID. Immune dysregulation such as autoimmune hypothyroidism, diabetes mellitus, hemolytic anemia, and immune thrombocytopenia are frequently observed in milder forms of the disease. However, several reports document similar complications also in patients on long-term PEG-ADA and after BMT or GT treatment. A skewed repertoire and decreased immune functions have been implicated in autoimmunity observed in certain B-cell and/or T-cell immunodeficiencies, but it remains unclear to what extent specific mechanisms of tolerance are affected in ADA deficiency. Herein we provide an overview about ADA-SCID and the autoimmune manifestations reported in these patients before and after treatment. We also assess the value of the ADA-deficient mouse model as a useful tool to study both immune and metabolic disease mechanisms. With focus on regulatory T- and B-cells we discuss the lymphocyte subpopulations particularly prone to contribute to the loss of self-tolerance and onset of autoimmunity in ADA deficiency. Moreover we address which aspects of immune dysregulation are specifically related to alterations in purine metabolism caused by the lack of ADA and the subsequent accumulation of metabolites with immunomodulatory properties.

  4. Inhibition of AMP deaminase as therapeutic target in cardiovascular pathology.

    PubMed

    Zabielska, Magdalena A; Borkowski, Tomasz; Slominska, Ewa M; Smolenski, Ryszard T

    2015-08-01

    AMP deaminase (AMPD; EC 3.5.4.6) catalyzes hydrolysis of the amino group from the adenine ring of AMP resulting in production of inosine 5'-monophosphate (IMP) and ammonia. This reaction helps to maintain healthy cellular energetics by removing excess AMP that accumulates in energy depleted cells. Furthermore, AMPD permits the synthesis of guanine nucleotides from the larger adenylate pool. This enzyme competes with cytosolic 5'-nucleotidases (c5NT) for AMP. Adenosine, a product of c5NT is a vasodilator, antagonizes inotropic effects of catecholamines and exerts anti-platelet, anti-inflammatory and immunosuppressive activities. The ratio of AMPD/c5NT defines the amount of adenosine produced in adenine nucleotide catabolic pathway. Inhibition of AMPD could alter this ratio resulting in increased adenosine production. Besides the potential effect on adenosine production, elevation of AMP due to inhibition of AMPD could also lead to activation of AMP regulated protein kinase (AMPK) with myriad of downstream events including enhanced energetic metabolism, mitochondrial biogenesis and cytoprotection. While the benefits of these processes are well appreciated in cells such as skeletal or cardiac myocytes its role in protection of endothelium could be even more important. Therapeutic use of AMPD inhibition has been limited due to difficulties with obtaining compounds with adequate characteristics. However, endothelium seems to be the easiest target as effective inhibition of AMPD could be achieved at much lower concentration than in the other types of cells. New generation of AMPD inhibitors has recently been established and its testing in context of endothelial and organ protection could provide important basic knowledge and potential therapeutic tools.

  5. Structural and Metabolic Specificity of Methylthiocoformycin for Malarial Adenosine Deaminases

    SciTech Connect

    Ho, M.; Cassera, M; Madrid, D; Ting, L; Tyler, P; Kim, K; Almo, S; Schramm, V

    2009-01-01

    Plasmodium falciparum is a purine auxotroph requiring hypoxanthine as a key metabolic precursor. Erythrocyte adenine nucleotides are the source of the purine precursors, making adenosine deaminase (ADA) a key enzyme in the pathway of hypoxanthine formation. Methylthioadenosine (MTA) is a substrate for most malarial ADAs, but not for human ADA. The catalytic site specificity of malarial ADAs permits methylthiocoformycin (MT-coformycin) to act as a Plasmodium-specific transition state analogue with low affinity for human ADA. The structural basis for MTA and MT-coformycin specificity in malarial ADAs is the subject of speculation. Here, the crystal structure of ADA from Plasmodium vivax (PvADA) in a complex with MT-coformycin reveals an unprecedented binding geometry for 5?-methylthioribosyl groups in the malarial ADAs. Compared to malarial ADA complexes with adenosine or deoxycoformycin, 5?-methylthioribosyl groups are rotated 130 degrees. A hydrogen bonding network between Asp172 and the 3?-hydroxyl of MT-coformycin is essential for recognition of the 5?-methylthioribosyl group. Water occupies the 5?-hydroxyl binding site when MT-coformycin is bound. Mutagenesis of Asp172 destroys the substrate specificity for MTA and MT-coformycin. Kinetic, mutagenic, and structural analyses of PvADA and kinetic analysis of five other Plasmodium ADAs establish the unique structural basis for its specificity for MTA and MT-coformycin. Plasmodium gallinaceum ADA does not use MTA as a substrate, is not inhibited by MT-coformycin, and is missing Asp172. Treatment of P. falciparum cultures with coformycin or MT-coformycin in the presence of MTA is effective in inhibiting parasite growth.

  6. The yellow catfish, Pelteobagrus fulvidraco (Siluriformes) metallothionein cDNA: molecular cloning and transcript expression level in response to exposure to the heavy metals Cd, Cu, and Zn.

    PubMed

    Kim, Jin-Hyoung; Rhee, Jae-Sung; Dahms, Hans-Uwe; Lee, Young-Mi; Han, Kyung-Nam; Lee, Jae-Seong

    2012-10-01

    Metallothionein (MT) has been used extensively as a potential molecular biomarker to detect heavy metal pollution in aquatic organisms. In order to investigate the modulation effect of heavy metals and to establish suitable biomarkers for the monitoring of heavy metal pollution, Pelteobagrus fulvidraco metallothionein gene was characterized as the first report in the family Bagridae. Pf-MT transcript was detected at high levels in liver, gonad, kidney, and brain compared to other tissues. A time-course study in response to waterborne Cd (5 ppm) revealed that a significant increase in the Pf-MT transcript abundance was observed at 6 h in gill, kidney, and liver. These elevated levels were kept for 96 h, implying that Cd distributed fast into different organs and was involved in the tissue-specific induction pattern. We observed a significant Pf-MT transcript increase in liver tissues at 48 h, followed by gill at 12 h and intestine at 48 h after Cd exposure. This indicates hepatic MT expression as a potential biomarker of acute Cd exposure in this species. Cd-binding ability of recombinant Pf-MT protein provided evidence for sensitivity to Cd and other heavy metal exposure. In the case of Zn exposure (1 ppm), a significant increase in Pf-MT transcript abundance was observed at 12 h, and a peak induction level reaching sixfold at 24 h was kept until 48 h, showing similar transcript induction patterns with Cd. A high level of Pf-MT mRNA after exposure to Cu (1 ppm) was observed at 12 h that gradually increased until 96 h with a 12-fold induction, revealing a long-lasting induction and somewhat dissimilar pattern compared to other metals in liver. Our results demonstrate that Pf-MT can be induced by heavy metals in a tissue-specific and metal-specific manner and plays probably a conserved role in metal detoxification. This study provides new information on P. fulvidraco metallothionein gene for the use of biomarkers indicating metal pollution in fish.

  7. [Conformation of adenosine deaminase in complexes with inhibitors: application of selective quenching of fluorescence emission].

    PubMed

    Vermishian, I G; Sharoian, S G; Antonian, A A; Grigorian, N A; Mardanian, S S; Khoetsian, A V; Markarian, Sh A

    2008-01-01

    The effect of inhibitors, 1-deazaadenosine (1-dAdo) and erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA), on the conformation of adenosine deaminase was studied using the method of selective quenching of fluorescence emission by acrylamide, I- and Cs+. Both in free adenosine deaminase and in its complexes with the inhibitors, the wavelength maxima and half-width of the emission characterize the environment of fluorescing tryptophan residues in adenosine deaminase as weak polar with limited access to solvent. The formation of complexes with the ground state inhibitors used did not quench or change the main emission characteristics of tryptophan fluorescence in adenosine deaminase. Small blue shifts of emission maxima were observed upon quenching in all three samples. The Stern-Volmer parameters of tryptophan fluorescence quenching by acrylamide were not essentially influenced by complex formation of the enzyme with the inhibitors: in general, the folding of the enzyme molecule in the complexes is not perturbed. On the contrary, the emission quenching by charged heavy ions, I- and Cs+, in the complexes was hindered in comparison with free adenosine deaminase. In the complex with 1-deazaadenosine, the parameters for quenching by both ions evidence the essential worsening of their interaction with tryptophans. In the complex with erythro-9-(2-hydroxy-3-nonyl)adenine, along with the worse quenching by I-, complete prohibition of quenching by Cs+ was observed. These data indicate that the local environments of fluorescing tryptophan residues is substantially distorted compared with free adenosine deaminase, which leads to their screening from charged heavy ions.

  8. Schistosoma haematobium infection and CD4+ T-cell levels: a cross-sectional study of young South African women.

    PubMed

    Kleppa, Elisabeth; Klinge, Kari F; Galaphaththi-Arachchige, Hashini Nilushika; Holmen, Sigve D; Lillebø, Kristine; Onsrud, Mathias; Gundersen, Svein Gunnar; Taylor, Myra; Ndhlovu, Patricia; Kjetland, Eyrun F

    2015-01-01

    Schistosoma (S.) haematobium causes urogenital schistosomiasis and has been hypothesized to adversely impact HIV transmission and progression. On the other hand it has been hypothesized that HIV could influence the manifestations of schistosomiasis. In this cross-sectional study, we explored the association between urogenital S. haematobium infection and CD4 cell counts in 792 female high-school students from randomly selected schools in rural KwaZulu-Natal, South Africa. We also investigated the association between low CD4 cell counts in HIV positive women and the number of excreted schistosome eggs in urine. Sixteen percent were HIV positive and 31% had signs of urogenital schistosomiasis (as determined by genital sandy patches and / or abnormal blood vessels on ectocervix / vagina by colposcopy or presence of eggs in urine). After stratifying for HIV status, participants with and without urogenital schistosomiasis had similar CD4 cell counts. Furthermore, there was no significant difference in prevalence of urogenital schistosomiasis in HIV positive women with low and high CD4 cell counts. There was no significant difference in the number of eggs excreted in urine when comparing HIV positive and HIV negative women. Our findings indicate that urogenital schistosomiasis do not influence the number of circulating CD4 cells.

  9. Development of an immune function assay by measuring intracellular adenosine triphosphate (iATP) levels in mitogen-stimulated CD4+ T lymphocytes.

    PubMed

    Naderi, Hadi; Najafi, Alireza; Khoshroo, Mohammad; Tajik, Nader

    2016-01-01

    We developed an immune function assay for monitoring CD4+ T cells activity based on changes in intracellular adenosine triphosphate (iATP) levels after phytohemagglutinin (PHA) stimulation. Blood samples were obtained from 40 healthy subjects and 30 RTRs and incubated with 5 µg/mL of PHA for 15-18 hr at 37°C and 5% CO2. Afterward, the CD4+ T cells were separated by antibody-coated magnetic beads and lysed. Then, iATP content in unstimulated and stimulated conditions was measured by luciferin-luciferase reaction using a log-log standard curve. The iATP levels showed significant increase in CD4+ T cells in both healthy persons (mean: 550 ± 142 ng/mL vs. 109 ± 54 ng/mL) and RTRs (mean: 394 ± 160 ng/mL vs. 52 ± 37 ng/mL) after PHA stimulation (P < 0.001). However, the iATP production in RTRs was significantly lower than that in healthy individuals; both prior to and after stimulation with PHA (P < 0.001). No gender-specific difference in iATP production was observed between women and men subjects. This rapid and low-cost assay reflects the degree of immune cell function through assessment of CD4+ T cells activation. Thus, it can be used for evaluation of immune system status in immunodeficient individuals as well as in immunosuppressed transplant recipients who needs drug adjustment.

  10. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1.

    PubMed

    Ngiow, Shin Foong; Young, Arabella; Jacquelot, Nicolas; Yamazaki, Takahiro; Enot, David; Zitvogel, Laurence; Smyth, Mark J

    2015-09-15

    Despite successes, thus far, a significant proportion of the patients treated with anti-PD1 antibodies have failed to respond. We use mouse tumor models of anti-PD1 sensitivity and resistance and flow cytometry to assess tumor-infiltrating immune cells immediately after therapy. We demonstrate that the expression levels of T-cell PD1 (PD1(lo)), myeloid, and T-cell PDL1 (PDL1(hi)) in the tumor microenvironment inversely correlate and dictate the efficacy of anti-PD1 mAb and function of intratumor CD8(+) T cells. In sensitive tumors, we reveal a threshold for PD1 downregulation on tumor-infiltrating CD8(+) T cells below which the release of adaptive immune resistance is achieved. In contrast, PD1(hi) T cells in resistant tumors fail to be rescued by anti-PD1 therapy and remain dysfunctional unless intratumor PDL1(lo) immune cells are targeted. Intratumor Tregs are partly responsible for the development of anti-PD1-resistant tumors and PD1(hi) CD8(+) T cells. Our analyses provide a framework to interrogate intratumor CD8(+) T-cell PD1 and immune PDL1 levels and response in human cancer.

  11. Tunneling splittings in vibronic energy levels of CD3F+ (X∼2 E) studied by high resolution photoelectron spectroscopy and ab initio calculation

    NASA Astrophysics Data System (ADS)

    Dai, Zuyang; Sun, Wei; Wang, Jia; Mo, Yuxiang

    2015-05-01

    The energy levels of CD3F+ (X∼2 E) have been measured up to 1400 cm-1 above the ground vibrational state using the one-photon zero-kinetic energy photoelectron (ZEKE) spectroscopic method. The spin-vibronic energy levels have also been calculated using an ab initio diabatic model. The potential energy surfaces of CD3F+ were calculated from those of CH3F+ using a transformation of the normal coordinates. The calculations show that tunneling splittings of vibrational energy levels exist due to the three equivalent wells caused by the linear-plus-strong quadratic Jahn-Teller coupling. The splittings are smaller than those in CH3F+. The experimental spectrum was assigned based on the fundamental vibrational modes calculated at the energy minimum. The calculated spin-vibronic energy levels are in good agreement with the experimental data. The tunneling splitting pairs for the fundamental vibrations related to the CD3 rock were observed. The first adiabatic ionization energy was determined as 101 534 ± 3 cm-1 or 12.5886 ± 0.0004 eV.

  12. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp90beta phosphorylation.

    PubMed

    Negroni, Luc; Samson, Michel; Guigonis, Jean-Marie; Rossi, Bernard; Pierrefite-Carle, Valérie; Baudoin, Christian

    2007-10-01

    The bacterial cytosine deaminase (CD) gene, associated with the 5-fluorocytosine (5FC) prodrug, is one of the most widely used suicide systems in gene therapy. Introduction of the CD gene within a tumor induces, after 5FC treatment of the animal, a local production of 5-fluorouracil resulting in intratumor chemotherapy. Destruction of the gene-modified tumor is then followed by the triggering of an antitumor immune reaction resulting in the regression of distant wild-type metastasis. The global effects of 5FC on colorectal adenocarcinoma cells expressing the CD gene were analyzed using the proteomic method. Application of 5FC induced apoptosis and 19 proteins showed a significant change in 5FC-treated cells compared with control cells. The up-regulated and down-regulated proteins include cytoskeletal proteins, chaperones, and proteins involved in protein synthesis, the antioxidative network, and detoxification. Most of these proteins are involved in resistance to anticancer drugs and resistance to apoptosis. In addition, we show that the heat shock protein Hsp90beta is phosphorylated on serine 254 upon 5FC treatment. Our results suggest that activation of Hsp90beta by phosphorylation might contribute to tumor regression and tumor immunogenicity. Our findings bring new insights into the mechanism of the anticancer effects induced by CD/5FC treatment.

  13. Enhanced EJ Cell Killing of 125I Radiation by Combining with Cytosine Deaminase Gene Therapy Regulated by Synthetic Radio-Responsive Promoter

    PubMed Central

    Li, Ling; Kang, Lei; Wang, Rong-Fu; Yan, Ping; Zhao, Qian; Yin, Lei; Guo, Feng-qin

    2015-01-01

    Abstract Aim: To investigate the enhancing effect of radionuclide therapy by the therapeutic gene placed under the control of radio-responsive promoter. Methods: The recombinant lentivirus E8-codA-GFP, including a synthetic radiation-sensitive promoter E8, cytosine deaminase (CD) gene, and green fluorescent protein gene, was constructed. The gene expression activated by 125I radiation was assessed by observation of green fluorescence. The ability of converting 5-fluorocytosine (5-FC) to 5-fluorourial (5-FU) by CD enzyme was assessed by high-performance liquid chromatography. The viability of the infected cells exposed to 125I in the presence of 5-FC was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the infected cells exposed to 125I alone served as negative control and 5-FU as positive control. Results: The recombinant lentiviral vector was constructed successfully. On exposure of infected cells to 125I, green fluorescence can be observed and 5-FU can be detected. MTT assay showed that the survival rate for infected cells treated with 125I was lower compared with the 125I control group, but higher than the positive control group. Conclusion: The synthetic promoter E8 can induce the expression of downstream CD gene under 125I radiation, and the tumor killing effect of 125I can be enhanced by combining CD gene therapy with radiosensitive promoter. PMID:26382009

  14. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions.

    PubMed

    Gharaibeh, Mamoun A; Marschner, Bernd; Heinze, Stefanie

    2015-12-01

    Irrigation with wastewater is a promising option to improve crop yields and to reduce pressure on freshwater sources. However, heavy metal concentrations in wastewater may cause health concerns. A greenhouse pot experiment was conducted in order to determine cadmium (Cd) and zinc (Zn) concentrations in sandy soil and plant tissues of tomato (Lycopersicon esculentum L.) and alfalfa (Medicago sativa L.). A 2 × 2 × 4 × 2 factorial treatment arrangement was utilized. Two water sources, fresh (FW) or treated wastewater (TWW), at two salinity levels (1 and 3 dS m(-1)) containing different levels of Cd and Zn were used. Samples were collected after a 90-day growth period. It was observed that the growth of both plants was depressed at the highest metal level (L3). Metal accumulation in plant parts increased with the increase of metal concentration and salinity in irrigation water. At low salinity, water source was the main factor which controlled metal accumulation, whereas, at high salinity, chloride appeared to be the principal factor controlling metal uptake regardless of water source. Metal translocation from roots to shoots increased in TWW-irrigated plants, even in the controls. Tomatoes accumulated Cd up to and above critical levels safe for human consumption, even though Cd concentration in irrigation water did not exceed the current recommended values. Therefore, food production in sandy soils may well pose a health hazard when irrigated with TWW containing heavy metals. Complexation with dissolved organic compounds (DOC) in TWW may be to be the principal factor responsible for increased metal uptake and transfer at low salinity, thereby increasing the risk of heavy metal contamination of food and forage crops.

  15. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions.

    PubMed

    Nelson, Michelle H; Bird, Melanie D; Chu, Chin-Fun; Johnson, Alison J; Friedrich, Brian M; Allman, Windy R; Milligan, Gregg N

    2011-04-01

    CD8(+) T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8(+) T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8(+) T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ(-/-)) or the IFNγ receptor (IFNγR(-/-)) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function. Compared with Tc1 cells, Tc2-like cells produced the type 2 cytokines IL-4 and IL-5, exhibited decreased IFNγ secretion, diminished proliferation in vitro, and decreased antigen-specific cytolysis in vivo. Clearance of an ovalbumin-expressing HSV-2 strain (HSV-2 tk(-) OVA) by adoptively transferred Tc2-like cells was delayed relative to Tc1 cell recipients. Because donor Tc2-like cells proliferated in vivo and infiltrated the infected genital epithelium similar to Tc1 cells, the diminished virus clearance by Tc2-like effector cells correlated with reduced expression of critical effector functions. Together, these results suggest that high level expression of protective T cell functions by effector T cells is necessary for optimal clearance of HSV-2 from the genital epithelium. These results have important implications for vaccines designed to elicit CD8(+) T cells against viruses such as HSV-2 that infect the genital tract.

  16. Rapid clearance of herpes simplex virus type 2 by CD8+ T cells requires high level expression of effector T cell functions

    PubMed Central

    Nelson, Michelle H.; Bird, Melanie D.; Chu, Chin-Fun; Johnson, Alison J.; Friedrich, Brian M.; Allman, Windy R.; Milligan, Gregg N.

    2011-01-01

    CD8+ T cells are important for resolution of HSV-2 lesions from the female genital epithelium. It is uncertain whether optimal clearance of viruses such as HSV-2 that cause a limited, non-systemic infection solely requires expression of effector functions by infiltrating CD8+ T lymphocytes, or if the clearance rate is reflective of the expression level of critical effector functions. To address this, CD8+ T cells from normal OT-I mice or OT-I mice deficient in IFNγ (IFNγ−/−) or the IFNγ receptor (IFNγR−/−) were activated in vitro in the presence of IFNγ or IL-4 to generate a series of effector populations (Tc1 and Tc2-like respectively) that secreted different levels of IFNγ and expressed different levels of HSV-specific cytolytic function. Compared with Tc1 cells, Tc2-like cells produced the type 2 cytokines IL-4 and IL-5, exhibited decreased IFNγ secretion, diminished proliferation in vitro, and decreased antigen-specific cytolysis in vivo. Clearance of an ovalbumin-expressing HSV-2 strain (HSV-2 tk− OVA) by adoptively transferred Tc2-like cells was delayed relative to Tc1 cell recipients. Because donor Tc2-like cells proliferated in vivo and infiltrated the infected genital epithelium similar to Tc1 cells, the diminished virus clearance by Tc2-like effector cells correlated with reduced expression of critical effector functions. Together, these results suggest that high level expression of protective T cell functions by effector T cells is necessary for optimal clearance of HSV-2 from the genital epithelium. These results have important implications for vaccines designed to elicit CD8+ T cells against viruses such as HSV-2 that infect the genital tract. PMID:21444117

  17. Unbiased analysis of TCRα/β chains at the single-cell level in human CD8+ T-cell subsets.

    PubMed

    Sun, Xiaoming; Saito, Masumichi; Sato, Yoshinori; Chikata, Takayuki; Naruto, Takuya; Ozawa, Tatsuhiko; Kobayashi, Eiji; Kishi, Hiroyuki; Muraguchi, Atsushi; Takiguchi, Masafumi

    2012-01-01

    T-cell receptor (TCR) α/β chains are expressed on the surface of CD8(+) T-cells and have been implicated in antigen recognition, activation, and proliferation. However, the methods for characterization of human TCRα/β chains have not been well established largely because of the complexity of their structures owing to the extensive genetic rearrangements that they undergo. Here we report the development of an integrated 5'-RACE and multiplex PCR method to amplify the full-length transcripts of TCRα/β at the single-cell level in human CD8(+) subsets, including naive, central memory, early effector memory, late effector memory, and effector phenotypic cells. Using this method, with an approximately 47% and 62% of PCR success rate for TCRα and for TCRβ chains, respectively, we were able to analyze more than 1,000 reads of transcripts of each TCR chain. Our comprehensive analysis revealed the following: (1) chimeric rearrangements of TCRδ-α, (2) control of TCRα/β transcription with multiple transcriptional initiation sites, (3) altered utilization of TCRα/β chains in CD8(+) subsets, and (4) strong association between the clonal size of TCRα/β chains and the effector phenotype of CD8(+) T-cells. Based on these findings, we conclude that our method is a useful tool to identify the dynamics of the TCRα/β repertoire, and provides new insights into the study of human TCRα/β chains.

  18. Energy Band Gap, Intrinsic Carrier Concentration and Fermi Level of CdTe Bulk Crystal between 304 K and 1067 K

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2007-01-01

    Optical transmission measurements were performed on CdTe bulk single crystal. It was found that when a sliced and polished CdTe wafer was used, a white film started to develop when the sample was heated above 530 K and the sample became opaque. Therefore, a bulk crystal of CdTe was first grown in the window area by physical vapor transport; the optical transmission was then measured and from which the energy band gap was derived between 304 and 1067 K. The band gaps of CdTe can be fit well as a function of temperature using the Varshini expression: Eg (e V) = 1.5860 - 5.9117xl0(exp -4) T(sup 2)/(T + 160). Using the band gap data, the high temperature electron-hole equilibrium was calculated numerically by assuming the Kane's conduction band structure and a heavy-hole parabolic valance band. The calculated intrinsic carrier concentrations agree well with the experimental data reported previously. The calculated intrinsic Fermi levels between 270 and 1200 K were also presented.

  19. Low dietary levels of Al, Pb and Cd may affect the non-enzymatic antioxidant capacity in caged honey bees (Apis mellifera).

    PubMed

    Gauthier, Maxime; Aras, Philippe; Jumarie, Catherine; Boily, Monique

    2016-02-01

    Several hypotheses have been proposed to explain the abnormally high mortality rate observed in bee populations in Europe and North America. While studies based on the effects of pesticides are paramount, the metals present in agroecosystems are often overlooked. Sources of metals are linked to the nature of soils and to agricultural practices, namely the use of natural or chemical nutrients as well as residual materials from waste-water treatment sludge. The aim of this study was to investigate the effects of metals on honey bees exposed for 10 days to environmentally realistic concentrations of Al, Pb and Cd (dissolved in syrup). The monitoring of syrup consumption combined with the quantification of metals in bees revealed the following order for metal bioconcentration ratios: Cd > Pb > Al. Alpha-tocopherol, metallothionein-like proteins (MTLPs) and lipid peroxidation were quantified. When bees were exposed to increasing amounts of Cd, a marked augmentation of MTLPs levels was found. Lead (Pb) and Cd caused an increase in α-tocopherol content, while alteration of lipid peroxidation was observed only with Al exposure. These findings raise concerns about the bioavailability and the additional threat posed by metals for pollinators in agricultural areas while providing new insights for potential use of the honey bee as a sentinel species for metal exposure.

  20. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  1. Evaluation of toxic metal (Hg, Cd, Pb), polychlorinated biphenyl (PCBs), and pesticide (DDTs) levels in aromatic herbs collected in selected areas of Southern Italy.

    PubMed

    Storelli, Maria Maddalena

    2014-01-01

    This study provides, for the first time, data regarding levels of toxic metals (Hg, Cd, and Pb) and organochlorine compounds (PCBs and DDTs) in various aromatic herbs as rosemary (Rosmarinus officinalis), sage (Salvia officinalis), laurel (Laurus nobilis), oregano (Origanum vulgare), and spearmint (Mentha viridis) collected in some towns of the Southern Italy with different anthropogenic and population pressure. Metal and organochlorine compound concentrations were determined using atomic absorption spectrophotometer and gas-chromatography mass spectrometer (GC/MS), respectively. Pb emerged as the most abundant element, followed by Cd and Hg, while between organochlorine compounds, PCB concentrations were higher than those of DDTs. The pollutant concentrations were found to vary depending on the different herbs. The highest Pb levels were observed in rosemary (1.66 μg g(-1) dry weight) and sage (1.41 μg g(-1) dry weight), this latter showing also the highest Cd concentrations (0.75 μg g(-1) dry weight). For PCBs, the major concentrations were found in rosemary (2.75 ng g(-1) dry weight) and oregano (2.39 ng g(-1) dry weight). The principal component analysis applied in order to evaluate possible similarities and/or differences in the contamination levels among sampling sites indicated differences area-specific contamination.

  2. Improved cytotoxic effects of Salmonella-producing cytosine deaminase in tumour cells.

    PubMed

    Mesa-Pereira, Beatriz; Medina, Carlos; Camacho, Eva María; Flores, Amando; Santero, Eduardo

    2015-01-01

    In order to increase the cytotoxic activity of a Salmonella strain carrying a salicylate-inducible expression system that controls cytosine deaminase production, we have modified both, the vector and the producer bacterium. First, the translation rates of the expression module containing the Escherichia coli codA gene cloned under the control of the Pm promoter have been improved by using the T7 phage gene 10 ribosome binding site sequence and replacing the original GUG start codon by AUG. Second, to increase the time span in which cytosine deaminase may be produced by the bacteria in the presence of 5-fluorocytosine, a 5-fluorouracyl resistant Salmonella strain has been constructed by deleting its upp gene sequence. This new Salmonella strain shows increased cytosine deaminase activity and, after infecting tumour cell cultures, increased cytotoxic and bystander effects under standard induction conditions. In addition, we have generated a purD mutation in the producer strain to control its intracellular proliferation by the presence of adenine and avoid the intrinsic Salmonella cell death induction. This strategy allows the analysis and comparison of the cytotoxic effects of cytosine deaminase produced by different Salmonella strains in tumour cell cultures.

  3. Intracellular localization of human cytidine deaminase. Identification of a functional nuclear localization signal.

    PubMed

    Somasekaram, A; Jarmuz, A; How, A; Scott, J; Navaratnam, N

    1999-10-01

    The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis.

  4. Metal-induced stress in bivalves living along a gradient of Cd contamination: relating sub-cellular metal distribution to population-level responses.

    PubMed

    Perceval, Olivier; Couillard, Yves; Pinel-Alloul, Bernadette; Giguère, Anik; Campbell, Peter G C

    2004-09-20

    The use of biomarkers to assess the impacts of contaminants on aquatic ecosystems has noticeably increased over the past few years. Few of these studies, however, have contributed to the prediction of ecologically significant effects (i.e., at the population or community levels). The present field study was designed to evaluate the potential of metallothionein (MT) and sub-cellular metal partitioning measurements for predicting toxic effects at higher levels of the biological organization in freshwater bivalves (Pyganodon grandis) chronically exposed to Cd. For that purpose, we quantitatively sampled P. grandis populations in the littoral zone of nine lakes on the Precambrian Canadian Shield during two consecutive summers (1998 and 1999); lakes were characterized by contrasting Cd levels but similar trophic status. We tested relationships between the population status of P. grandis (i.e., growth parameters, density, biomass, secondary production, turnover ratio and cumulative fecundity) and (i) ambient Cd concentrations, (ii) sub-organismal responses (MT concentrations in the gill cytosol of individuals and Cd concentrations in three metal-ligand pools identified as M-HMW, the high molecular weight pool, M-MT, the metallothionein-like pool and M-LMW, the low molecular weight pool) and (iii) ecological confounding factors (food resources, presence of host fishes for the obligatory parasitic larval stage of P. grandis). Our results show that littoral density, live weight, dry viscera biomass, production and cumulative fecundity decreased with increasing concentrations of the free-cadmium ion in the environment (Pearson's r ranging from -0.63 to -0.78). On the other hand, theoretical maximum shell lengths (L( infinity )) in our populations were related to both the dissolved Ca concentration and food quality (sestonic C and N concentrations). Overall, Cd concentrations in the gill cytosolic HMW pool of the individual molluscs were the biomarker response that was most

  5. Inducing salt tolerance in mung bean through coinoculation with rhizobia and plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase.

    PubMed

    Ahmad, Maqshoof; Zahir, Zahir A; Asghar, H Naeem; Asghar, M

    2011-07-01

    Twenty-five strains of plant-growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and 10 strains of rhizobia were isolated from rhizosphere soil samples and nodules of mung bean. They were screened in separate trials under salt-stressed axenic conditions. The three most effective strains of PGPR (Mk1, Pseudomonas syringae ; Mk20, Pseudomonas fluorescens ; and Mk25, Pseudomonas fluorescens biotype G) and Rhizobium phaseoli strains M1, M6, and M9 were evaluated in coinoculation for their growth-promoting activity at three salinity levels (original, 4 dS·m(-1), and 6 dS·m(-1)) under axenic conditions. The results showed that salinity stress significantly reduced plant growth but inoculation with PGPR containing ACC deaminase and rhizobia enhanced plant growth, thus reducing the inhibitory effect of salinity. However, their combined application was more effective under saline conditions, and the combination Mk20 × M6 was the most efficient for improving seedling growth and nodulation. The effect of high ethylene concentrations on plant growth and the performance of these strains for reducing the negative impact of saline stress was also evaluated by conducting a classical triple-response bioassay. The intensity of the classical triple response decreased owing to inoculation with these strains, with the root and shoot lengths of inoculated mung bean seedlings increasing and stem diameter decreasing, which is a typical response to the dilution in a classical triple response bioassay. Thus, coinoculation with PGPR containing ACC deaminase and Rhizobium spp. could be a useful approach for inducing salt tolerance and thus improving growth and nodulation in mung bean under salt-affected conditions.

  6. Effect of hard-drug use on CD4 cell percentage, HIV RNA level, and progression to AIDS-defining class C events among HIV-infected women.

    PubMed

    Thorpe, Lorna E; Frederick, Margaret; Pitt, Jane; Cheng, Irene; Watts, D Heather; Buschur, Shelley; Green, Karen; Zorrilla, Carmen; Landesman, Sheldon H; Hershow, Ronald C

    2004-11-01

    In vitro and animal studies suggest that cocaine and heroin increase HIV replication and suppress immune function, whereas epidemiologic studies are inconclusive regarding their effect on HIV infection progression. The authors prospectively examined the association between illicit-drug use and 4 outcome measures (CD4 cell percentage, HIV RNA level, survival to class C diagnosis of HIV infection, and death) in a national cohort of HIV-infected women. Women enrolled between 1989 and 1995 were followed for 5 years and repeatedly interviewed about illicit ("hard")--drug use. Up to 3 periodic urine screens validated self-reported use. Outcomes were compared between hard-drug users (women using cocaine, heroin, methadone, or injecting drugs) and nonusers, adjusting for age, antiretroviral therapy, number of pregnancies, smoking, and baseline CD4 cell percentage. Of 1148 women, 40% reported baseline hard-drug use during pregnancy. In multivariate analyses, hard-drug use was not associated with change in CD4 cell percentage (P = 0.84), HIV RNA level (P = 0.48), or all-cause mortality (relative hazard = 1.10; 95% confidence interval, 0.61-1.98). Hard-drug users did, however, exhibit a higher risk of developing class C diagnoses (relative hazard = 1.65; 95% confidence interval, 1.00-2.72), especially herpes, pulmonary tuberculosis, and recurrent pneumonia. Hard-drug-using women may have a higher risk for nonfatal opportunistic infections.

  7. Adenosine ecto-deaminase (ecto-ADA) from porcine cerebral cortex synaptic membrane.

    PubMed

    Romanowska, Małgorzata; Ostrowska, Marta; Komoszyński, Michał A

    2007-07-02

    We have purified and investigated the role of adenosine ecto-deaminase (ecto-ADA) in porcine brain synaptic membranes and found a low activity of ecto-ADA in synaptic preparations from the cerebral cortex, hippocampus, striatum and medulla oblongata in the presence of purine transport inhibitors (NBTI, dipyridamole and papaverine). The purification procedure with affinity chromatography on epoxy-Toyopearl gel/purine riboside column as a crucial step of purification allowed a 214-fold purification of synaptic ecto-ADA with a yield of 30%. Gel filtration chromatography revealed a molecular mass estimated at 42.4+/-3.9 kDa. The enzyme had a broad optimum pH and was not affected by mono- and divalent cations. Ecto-ADA revealed a low affinity to adenosine (Ado) and 2'-deoxyadenosine (2'-dAdo) (K(M)=286.30+/-40.38 microM and 287.14+/-46.50 microM, respectively). We compared the affinity of ecto-ADA to the substrates with the physiological and pathological concentrations of the extracellular Ado in brains that do not exceed a low micromolar range even during ischemia and hypoxia, and with the affinity of adenosine receptors to Ado not exceeding a low nanomolar (A(1) and A(2A) receptors) or low micromolar (A(2B) and A(3)) range. Taken together, our data suggest that the role of synaptic ecto-ADA in the regulation of the ecto-Ado level in the brain and in the termination of adenosine receptor signaling is questionable. The porcine brain synapses must have other mechanisms for the ecto-Ado removal from the synaptic cleft and synaptic ecto-ADA may also play an extra-enzymatic role in cell adhesion and non-enzymatic regulation of adenosine receptor activity.

  8. Small-molecule APOBEC3G DNA cytosine deaminase inhibitors based on a 4-amino-1,2,4-triazole-3-thiol scaffold.

    PubMed

    Olson, Margaret E; Li, Ming; Harris, Reuben S; Harki, Daniel A

    2013-01-01

    APOBEC3G (A3G) is a single-stranded DNA cytosine deaminase that functions in innate immunity against retroviruses and retrotransposons. Although A3G can potently restrict Vif-deficient HIV-1 replication by catalyzing excessive levels of G→A hypermutation, sublethal levels of A3G-catalyzed mutation may contribute to the high level of HIV-1 fitness and its incurable prognosis. To chemically modulate A3G catalytic activity with the goal of decreasing the HIV-1 genomic mutation rate, we synthesized and biochemically evaluated a class of 4-amino-1,2,4-triazole-3-thiol small-molecule inhibitors identified by high-throughput screening. This class of compounds exhibits low-micromolar (3.9-8.2 μM) inhibitory potency and remarkable specificity for A3G versus the related cytosine deaminase, APOBEC3A. Chemical modification of inhibitors, A3G mutational screening, and thiol reactivity studies implicate C321, a residue proximal to the active site, as the critical A3G target for this class of molecules.

  9. Human myeloma cells express the CD38 ligand CD31.

    PubMed

    Vallario, A; Chilosi, M; Adami, F; Montagna, L; Deaglio, S; Malavasi, F; Caligaris-Cappio, F

    1999-05-01

    Multiple myeloma (MM) plasma cells (PC) are CD38+. A ligand for CD38 is the adhesion molecule CD31. By flow cytometry and immunocytochemistry we have investigated whether malignant PC co-express CD38 and CD31. All 68 patients studied were CD38+. 14/14 monoclonal gammopathies of undetermined significance (MGUS) and 39/39 plasmacytic MM patients co-expressed CD38 and CD31 at high density. Only 1/11 plasmablastic MM and 1/4 plasma cell leukaemias (PCL) expressed CD31. These data indicated that PC malignancies co-expressed high levels of both CD38 and its ligand CD31, with the exception of plasmablastic MM and PCL.

  10. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.

    PubMed

    Bustos-Jaimes, Ismael; Sosa-Peinado, Alejandro; Rudiño-Piñera, Enrique; Horjales, Eduardo; Calcagno, Mario L

    2002-05-24

    The active site of glucosamine-6-phosphate deaminase from Escherichia coli (GlcN6P deaminase, EC 3.5.99.6) has a complex lid formed by two antiparallel beta-strands connected by a helix-loop segment (158-187). This motif contains Arg172, which is a residue involved in binding the substrate in the active-site, and three residues that are part of the allosteric site, Arg158, Lys160 and Thr161. This dual binding role of the motif forming the lid suggests that it plays a key role in the functional coupling between active and allosteric sites. Previous crystallographic work showed that the temperature coefficients of the active-site lid are very large when the enzyme is in its T allosteric state. These coefficients decrease in the R state, thus suggesting that this motif changes its conformational flexibility as a consequence of the allosteric transition. In order to explore the possible connection between the conformational flexibility of the lid and the function of the deaminase, we constructed the site-directed mutant Phe174-Ala. Phe174 is located at the C-end of the lid helix and its side-chain establishes hydrophobic interactions with the remainder of the enzyme. The crystallographic structure of the T state of Phe174-Ala deaminase, determined at 2.02 A resolution, shows no density for the segment 162-181, which is part of the active-site lid (PDB 1JT9). This mutant form of the enzyme is essentially inactive in the absence of the allosteric activator, N-acetylglucosamine-6-P although it recovers its activity up to the wild-type level in the presence of this ligand. Spectrometric and binding studies show that inactivity is due to the inability of the active-site to bind ligands when the allosteric site is empty. These data indicate that the conformational flexibility of the active-site lid critically alters the binding properties of the active site, and that the occupation of the allosteric site restores the lid conformational flexibility to a functional state.

  11. Vitamin D, d-dimer, Interferon γ, and sCD14 Levels are Independently Associated with Immune Reconstitution Inflammatory Syndrome: A Prospective, International Study☆

    PubMed Central

    Musselwhite, Laura W.; Andrade, Bruno B.; Ellenberg, Susan S.; Tierney, Ann; Belaunzaran-Zamudio, Pablo F.; Rupert, Adam; Lederman, Michael M.; Sanne, Ian; Sierra Madero, Juan G.; Sereti, Irini

    2016-01-01

    To determine the immunological profile most important for IRIS prediction, we evaluated 20 baseline plasma biomarkers in Acquired Immunodeficiency Syndrome (AIDS) patients initiating antiretroviral therapy (ART). Patients were enrolled in a randomized, placebo-controlled ART initiation trial in South Africa and Mexico to test whether maraviroc could prevent IRIS. Participants were classified prospectively as having IRIS within 6 months of ART initiation. Twenty plasma biomarkers were measured at study enrollment for 267 participants. Biomarkers were tested for predicting IRIS with adjustment for covariates chosen through forward stepwise selection. Sixty-two participants developed IRIS and of these 19 were tuberculosis (TB)-IRIS. Baseline levels of vitamin D and higher d-dimer, interferon gamma (IFNγ), and sCD14 were independently associated with risk of IRIS in multivariate analyses. TB-IRIS cases exhibited a distinct biosignature from IRIS related to other pathogens, with increased levels of C-reactive protein (CRP), sCD14, IFNγ, and lower levels of Hb that could be captured by a composite risk score. Elevated markers of Type 1 T helper (Th1) response, monocyte activation, coagulation and low vitamin D were independently associated with IRIS risk. Interventions that decrease immune activation and increase vitamin D levels warrant further study. PMID:26981576

  12. Influence of a Diester Glucocorticoid Spray on the Cortisol Level and the CCR4+ CD4+ Lymphocytes in Dogs with Atopic Dermatitis: Open Study

    PubMed Central

    Fujimura, Masato; Ishimaru, Hironobu

    2014-01-01

    This study investigated the influence of 0.00584% hydrocortisone aceponate spray (HCA; Cortavance Virbac SA, Carros, France) on blood serum cortisol levels and peripheral blood CCR4+ CD4+ T-lymphocyte levels in dogs with atopic dermatitis. Patients were randomly divided into group I (N = 8) and group II (N = 8). The dogs in group I were sprayed with HCA on the affected skin once a day for three weeks. The dogs in group II were treated once a day for 3 days followed by no treatment for 4 days for a total of three weeks. For the dogs in group I and group II the CADESI-03 scores before and after use of HCA showed significant reduction (P < 0.01). The postcortisol level after the use of HCA in group I showed 36.0% decrease and showed significant suppression (P < 0.01). By comparison, the use of HCA on group II did not show decrease in postcortisol levels. There was a tendency of suppression for hypothalamus—pituitary gland—adrenal gland system, but it was not serious influence. In addition, there was no influence on peripheral blood CCR4+ CD4+ lymphocytes percentage in dogs in group I after treatment with HCA. PMID:26464935

  13. Manifestation of the Se, Cd and Mo levels in different components of the peripheral blood of Sprague-Dawley rats poisoned via the respiratory tract.

    PubMed

    Wang, Dong-Fang; Sun, Xuan; Cao, Bing; Wen, Hua; Zhang, Yu; Liu, Duo-Jian; Yan, Lai-Lai; Liu, Ya-Qiong; Lu, Qing-Bin; Wang, Jing-Yu

    2015-01-01

    This study aimed to explore the effects of exogenous element exposure via the respiratory tract on the Se, Cd and Mo concentrations in different components of the peripheral blood in rats as well as to determine the correlations of the three trace elements concentrations among the components. The Sprague-Dawley rats were randomly divided into a control group and several experimental groups treated with different doses. The rats were exposed to a mixed trace element solution through 10 days of intratracheal instillation. The whole blood of all rats was collected and separated into three parts with Percoll density gradient centrifugation. The Se, Cd and Mo levels in whole blood, plasma, red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were determined by inductively coupled plasma mass spectrometry. The concentrations of the three trace elements increased together with the increase of the given doses (P<0.05), except Cd and Mo in the PBMCs. The three trace elements lacked linearity with the exposure doses in the PBMCs (r, 0.249-0.508), while the opposite was the case for the other components of the peripheral blood (r, 0.806-0.934). The correlation coefficients were higher (0.842-0.962) among the whole blood, plasma and RBCs than between PBMCs and other components, such as Se (0.376-0.529), Cd (0.495-0.604) and, especially, Mo (0.160-0.257). In conclusion, PBMCs might provide information about endogenous factors, and whole blood could more accurately reflect the effects of exogenous factors compared to other blood components.

  14. An NK cell line (haNK) expressing high levels of granzyme and engineered to express the high affinity CD16 allele

    PubMed Central

    Jochems, Caroline; Hodge, James W.; Fantini, Massimo; Fujii, Rika; Maurice, Y. Morillon; Greiner, John W.; Padget, Michelle R.; Tritsch, Sarah R.; Tsang, Kwong Yok; Campbell, Kerry S.; Klingemann, Hans; Boissel, Laurent; Rabizadeh, Shahrooz; Soon-Shiong, Patrick; Schlom, Jeffrey

    2016-01-01

    Natural killer (NK) cells are known to play a role in mediating innate immunity, in enhancing adaptive immune responses, and have been implicated in mediating anti-tumor responses via antibody-dependent cell-mediated cytotoxicity (ADCC) by reactivity of CD16 with the Fc region of human IgG1 antibodies. The NK-92 cell line, derived from a lymphoma patient, has previously been well characterized and adoptive transfer of irradiated NK-92 cells has demonstrated safety and shown preliminary evidence of clinical benefit in cancer patients. The NK-92 cell line, devoid of CD16, has now been engineered to express the high affinity (ha) CD16 V158 FcγRIIIa receptor, as well as engineered to express IL-2; IL-2 has been shown to replenish the granular stock of NK cells, leading to enhanced perforin- and granzyme-mediated lysis of tumor cells. The studies reported here show high levels of granzyme in haNK cells, and demonstrate the effects of irradiation of haNK cells on multiple phenotypic markers, viability, IL-2 production, and lysis of a spectrum of human tumor cells. Studies also compare endogenous irradiated haNK lysis of tumor cells with that of irradiated haNK-mediated ADCC using cetuximab, trastuzumab and pertuzumab monoclonal antibodies. These studies thus provide the rationale for the potential use of irradiated haNK cells in adoptive transfer studies for a range of human tumor types. Moreover, since only approximately 10% of humans are homozygous for the high affinity V CD16 allele, these studies also provide the rationale for the use of irradiated haNK cells in combination with IgG1 anti-tumor monoclonal antibodies. PMID:27861156

  15. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia.

    PubMed

    Christiansson, Lisa; Söderlund, Stina; Svensson, Emma; Mustjoki, Satu; Bengtsson, Mats; Simonsson, Bengt; Olsson-Strömberg, Ulla; Loskog, Angelica S I

    2013-01-01

    Immunotherapy (eg interferon α) in combination with tyrosine kinase inhibitors is currently in clinical trials for treatment of chronic myeloid leukemia (CML). Cancer patients commonly have problems with so called immune escape mechanisms that may hamper immunotherapy. Hence, to study the function of the immune system in CML is of interest. In the present paper we have identified immune escape mechanisms in CML with focus on those that directly hamper T cells since these cells are important to control tumor progression. CML patient samples were investigated for the presence of myeloid-derived suppressor cells (MDSCs), expression of programmed death receptor ligand 1/programmed death receptor 1 (PD-L1/PD-1), arginase 1 and soluble CD25. MDSC levels were increased in samples from Sokal high risk patients (p<0.05) and the cells were present on both CD34 negative and CD34 positive cell populations. Furthermore, expression of the MDSC-associated molecule arginase 1, known to inhibit T cells, was increased in the patients (p = 0.0079). Myeloid cells upregulated PD-L1 (p<0.05) and the receptor PD-1 was present on T cells. However, PD-L1 blockade did not increase T cell proliferation but upregulated IL-2 secretion. Finally, soluble CD25 was increased in high risk patients (p<0.0001). In conclusion T cells in CML patients may be under the control of different immune escape mechanisms that could hamper the use of immunotherapy in these patients. These escape mechanisms should be monitored in trials to understand their importance and how to overcome the immune suppression.

  16. Antitumor effects of genetically engineered stem cells expressing yeast cytosine deaminase in lung cancer brain metastases via their tumor-tropic properties.

    PubMed

    Yi, Bo-Rim; Kim, Seung U; Kim, Yun-Bae; Lee, Hong Jun; Cho, Myung-Haing; Choi, Kyung-Chul

    2012-06-01

    Although mortality related with primary tumors is approximately 10%, metastasis leads to 90% of cancer-associated death. The majority of brain metastases result from lung cancer, but the metastatic mechanism remains unclear. In general, chemotherapy for treating brain diseases is disrupted by the brain blood barrier (BBB). As an approach to improve treatment of lung cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs), consisting of neural stem cells (NSCs) expressing a suicide gene. Cytosine deaminase (CD), one of the suicide genes, originating from bacterial (bCD) or yeast (yCD), which can convert the non-toxic prodrug, 5-fluorocytosine (5-FC), into 5-fluorouracil (5-FU), can inhibit cancer cell growth. We examined the therapeutic efficacy and migratory properties of GESTECs expressing yCD, designated as HB1.F3.yCD, in a xenograft mouse model of lung cancer metastasis to the brain. In this model, A549 lung cancer cells were implanted in the right hemisphere of the mouse brain, while CM-DiI pre-stained HB1.F3.yCD cells were implanted in the contralateral brain. Two days after the injection of stem cells, 5-FC was administered via intraperitoneal injection. The tumor-tropic effect of HB1.F3.yCD was evident by fluorescent analysis, in which red-colored stem cells migrated to the lung tumor mass of the contralateral brain. By histological analysis of extracted brain, the therapeutic efficacy of HB1.F3.yCD in the presence of 5-FC was confirmed by the reduction in density and aggressive tendency of lung cancer cells following treatment with 5-FC, compared to a negative control or HB1.F3.yCD injection without 5-FC. Taken together, these results indicate that HB1.F3.yCD expressing a suicide gene may be a new therapeutic strategy for lung cancer metastases to the brain in the presence of a prodrug.

  17. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer

    PubMed Central

    Wilber, Andrew; Hargrove, Phillip W.; Kim, Yoon-Sang; Riberdy, Janice M.; Sankaran, Vijay G.; Papanikolaou, Eleni; Georgomanoli, Maria; Anagnou, Nicholas P.; Orkin, Stuart H.; Nienhuis, Arthur W.

    2011-01-01

    β-Thalassemia major results from severely reduced or absent expression of the β-chain of adult hemoglobin (α2β2;HbA). Increased levels of fetal hemoglobin (α2γ2;HbF), such as occurs with hereditary persistence of HbF, ameliorate the severity of β-thalassemia, raising the potential for genetic therapy directed at enhancing HbF. We used an in vitro model of human erythropoiesis to assay for enhanced production of HbF after gene delivery into CD34+ cells obtained from mobilized peripheral blood of normal adults or steady-state bone marrow from patients with β-thalassemia major. Lentiviral vectors encoding (1) a human γ-globin gene with or without an insulator, (2) a synthetic zinc-finger transcription factor designed to interact with the γ-globin gene promoters, or (3) a short-hairpin RNA targeting the γ-globin gene repressor, BCL11A, were tested. Erythroid progeny of normal CD34+ cells demonstrated levels of HbF up to 21% per vector copy. For β-thalassemic CD34+ cells, similar gene transfer efficiencies achieved HbF production ranging from 45% to 60%, resulting in up to a 3-fold increase in the total cellular Hb content. These observations suggest that both lentiviral-mediated γ-globin gene addition and genetic reactivation of endogenous γ-globin genes have potential to provide therapeutic HbF levels to patients with β-globin deficiency. PMID:21156846

  18. A Study on the Serum Adenosine Deaminase Activity in Patients with Typhoid Fever and Other Febrile Illnesses

    PubMed Central

    Ketavarapu, Sameera; Ramani G., Uma; Modi, Prabhavathi

    2013-01-01

    Background: Adenosine Deaminase (ADA) has been suggested to be an important enzyme which is associated with the cell mediated immunity, but its clinical significance in typhoid fever has not yet been characterized. The present study was taken up to evaluate the serum ADA activity in patients of typhoid fever. The levels of ADA were also measured in the patients who were suffering from other febrile illnesses. Material and Method: This was a case control study. The subjects who were included in this study were divided into 3 groups. Group A consisted of 50 normal healthy individuals who served as the controls. Group B consisted of 50 patients, both males and females of all age groups, who were suffering from culture positive typhoid fever. Group C consisted of 50 patients who were suffering from febrile illnesses other than typhoid fever like viral fever, gastro enteritis, malaria, tonsillitis, upper respiratory tract infections, etc. The serum levels of ADA were estimated in all the subjects who were under study. Results: The serum ADA level was found to be increased in the patients of typhoid fever as compared to that in those with other febrile illnesses and in the controls. Conclusion: From the present study, it can be concluded that there was a statistically significant increase in the serum ADA levels in the patients with typhoid. PMID:23730630

  19. Syzygium cumini extract decrease adenosine deaminase, 5'nucleotidase activities and oxidative damage in platelets of diabetic patients.

    PubMed

    De Bona, Karine S; Bellé, Luziane P; Sari, Marcel H; Thomé, Gustavo; Schetinger, Maria R C; Morsch, Vera M; Boligon, Aline; Athayde, Margareth L; Pigatto, Aline S; Moretto, Maria B

    2010-01-01

    Diabetes mellitus, a chronic metabolic disorder, has assumed epidemic proportions and its long-term complications can have devastating consequences. The oxidative stress in diabetes was greatly increased due to prolonged exposure to hyperglycemia and impairment of oxidant/antioxidant equilibrium. Syzygium cumini is being widely used to treat diabetes by the traditional practitioners over many centuries. Adenosine deaminase (ADA) and 5'-Nucleotidase (5'NT) are enzymes of purine nucleoside metabolism that play an important role in the regulation of adenosine (Ado) levels. In this study, we investigated the effect of Syzygium cumini aqueous leaves extract (ASc) on ADA and 5'NT activities and on parameters of oxidative stress under in vitro conditions, using platelets of patients with Type 2 diabetes mellitus. Platelet-Rich Plasma (PRP) was assayed by ADA, 5'NT, Catalase (CAT), Superoxide Dismutase (SOD) activities and Thiobarbituric acid reactive substances (TBARS) levels. We observed that ADA, 5'NT activities and TBARS levels were significantly higher when compared to the control group, and ASc (100 and 200 μg/mL) prevented these effects. Our study demonstrates that ASc was able to remove oxidant species generated in diabetic conditions and modulates in the Ado levels. Then, ASc may promote a compensatory response in platelet function, improving the susceptibility-induced by the diabetes mellitus.

  20. Elevation of serum IgE level and peripheral eosinophil count during T lymphocyte-directed gene therapy for ADA deficiency: implication of Tc2-like cells after gene transduction procedure.

    PubMed

    Kawamura, N; Ariga, T; Ohtsu, M; Yamada, M; Tame, A; Furuta, H; Kobayashi, I; Okano, M; Yanagihara, Y; Sakiyama, Y

    1998-11-01

    We have successfully carried out T-cell-directed gene therapy for a boy with severe combined immunodeficiency due to adenosine deaminase deficiency (ADA SCID) and unexpectedly found an elevation of serum IgE level and peripheral eosinophil count during the course. More than 90% of transduced cells cultured for 7-11 days before infusion into the patient were positive for CD8 and expressed Th2-type cytokine genes such as IL-4, IL-5 and IL-13. Furthermore, CD4(+) T-depleted PBMC (peripheral blood mononuclear cells) from the patient synthesized IgE in vitro by stimulation with IL-4. Collectively, these results suggested that Tc2-like cells in the transduced cells have distinct immunological functions to help IgE synthesis and activate eosinophils.

  1. Possible Footprints of APOBEC3F and/or Other APOBEC3 Deaminases, but Not APOBEC3G, on HIV-1 from Patients with Acute/Early and Chronic Infections

    PubMed Central

    Armitage, Andrew E.; Deforche, Koen; Welch, John J.; Van Laethem, Kristel; Camacho, Ricardo; Rambaut, Andrew

    2014-01-01

    ABSTRACT Members of the apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like-3 (APOBEC3) innate cellular cytidine deaminase family, particularly APOBEC3F and APOBEC3G, can cause extensive and lethal G-to-A mutations in HIV-1 plus-strand DNA (termed hypermutation). It is unclear if APOBEC3-induced mutations in vivo are always lethal or can occur at sublethal levels that increase HIV-1 diversification and viral adaptation to the host. The viral accessory protein Vif counteracts APOBEC3 activity by binding to APOBEC3 and promoting proteasome degradation; however, the efficiency of this interaction varies, since a range of hypermutation frequencies are observed in HIV-1 patient DNA. Therefore, we examined “footprints” of APOBEC3G and APOBEC3F activity in longitudinal HIV-1 RNA pol sequences from approximately 3,000 chronically infected patients by determining whether G-to-A mutations occurred in motifs that were favored or disfavored by these deaminases. G-to-A mutations were more frequent in APOBEC3G-disfavored than in APOBEC3G-favored contexts. In contrast, mutations in APOBEC3F-disfavored contexts were relatively rare, whereas mutations in contexts favoring APOBEC3F (and possibly other deaminases) occurred 16% more often than average G-to-A mutations. These results were supported by analyses of >500 HIV-1 env sequences from acute/early infection. IMPORTANCE Collectively, our results suggest that APOBEC3G-induced mutagenesis is lethal to HIV-1, whereas mutagenesis caused by APOBEC3F and/or other deaminases may result in sublethal mutations that might facilitate viral diversification. Therefore, Vif-specific cytotoxic T lymphocyte (CTL) responses and drugs that manipulate the interplay between Vif and APOBEC3 may have beneficial or detrimental clinical effects depending on how they affect the binding of Vif to various members of the APOBEC3 family. PMID:25165112

  2. Modulation of cAMP levels by high-fat diet and curcumin and regulatory effects on CD36/FAT scavenger receptor/fatty acids transporter gene expression.

    PubMed

    Zingg, Jean-Marc; Hasan, Syeda T; Nakagawa, Kiyotaka; Canepa, Elisa; Ricciarelli, Roberta; Villacorta, Luis; Azzi, Angelo; Meydani, Mohsen

    2017-01-02

    Curcumin, a polyphenol from turmeric (Curcuma longa), reduces inflammation, atherosclerosis, and obesity in several animal studies. In Ldlr(-/-) mice fed a high-fat diet (HFD), curcumin reduces plasma lipid levels, therefore contributing to a lower accumulation of lipids and to reduced expression of fatty acid transport proteins (CD36/FAT, FABP4/aP2) in peritoneal macrophages. In this study, we analyzed the molecular mechanisms by which curcumin (500, 1000, 1500 mg/kg diet, for 4 months) may influence plasma and tissue lipid levels in Ldlr(-/-) mice fed an HFD. In liver, HFD significantly suppressed cAMP levels, and curcumin restored almost normal levels. Similar trends were observed in adipose tissues, but not in brain, skeletal muscle, spleen, and kidney. Treatment with curcumin increased phosphorylation of CREB in liver, what may play a role in regulatory effects of curcumin in lipid homeostasis. In cell lines, curcumin increased the level of cAMP, activated the transcription factor CREB and the human CD36 promoter via a sequence containing a consensus CREB response element. Regulatory effects of HFD and Cur on gene expression were observed in liver, less in skeletal muscle and not in brain. Since the cAMP/protein kinase A (PKA)/CREB pathway plays an important role in lipid homeostasis, energy expenditure, and thermogenesis by increasing lipolysis and fatty acid β-oxidation, an increase in cAMP levels induced by curcumin may contribute to its hypolipidemic and anti-atherosclerotic effects. © 2016 BioFactors, 43(1):42-53, 2017.

  3. A Cytidine Deaminase Edits C to U in Transfer RNAs in Archaea

    PubMed Central

    Randau, Lennart; Stanley, Bradford J.; Kohlway, Andrew; Mechta, Sarah; Xiong, Yong; Söll, Dieter

    2010-01-01

    All canonical transfer RNAs (tRNAs) have a uridine at position 8, involved in maintaining tRNA tertiary structure. However, the hyperthermophilic archaeon Methanopyrus kandleri harbors 30 (out of 34) tRNA genes with cytidine at position 8. Here, we demonstrate C-to-U editing at this location in the tRNA’s tertiary core, and present the crystal structure of a tRNA-specific cytidine deaminase, CDAT8, which has the cytidine deaminase domain linked to a tRNA-binding THUMP domain. CDAT8 is specific for C deamination at position 8, requires only the acceptor stem hairpin for activity, and belongs to a unique family within the “cytidine deaminase–like” superfamily. The presence of this C-to-U editing enzyme guarantees the proper folding and functionality of all M. kandleri tRNAs. PMID:19407206

  4. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    PubMed

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  5. CD27− B-Cells Produce Class Switched and Somatically Hyper-Mutated Antibodies during Chronic HIV-1 Infection

    PubMed Central

    Cagigi, Alberto; Du, Likun; Dang, Linh Vu Phuong; Grutzmeier, Sven; Atlas, Ann; Chiodi, Francesca

    2009-01-01

    Class switch recombination and somatic hypermutation occur in mature B-cells in response to antigen stimulation. These processes are crucial for the generation of functional antibodies. During HIV-1 infection, loss of memory B-cells, together with an altered differentiation of naïve B-cells result in production of low quality antibodies, which may be due to impaired immunoglobulin affinity maturation. In the current study, we evaluated the effect of HIV-1 infection on class switch recombination and somatic hypermutation by studying the expression of activation-induced cytidine deaminase (AID) in peripheral B-cells from a cohort of chronically HIV-1 infected patients as compared to a group of healthy controls. In parallel, we also characterized the phenotype of B-cells and their ability to produce immunoglobulins in vitro. Cells from HIV-1 infected patients showed higher baseline levels of AID expression and increased IgA production measured ex-vivo and upon CD40 and TLR9 stimulation in vitro. Moreover, the percentage of CD27−IgA+ and CD27−IgG+ B-cells in blood was significantly increased in HIV-1 infected patients as compared to controls. Interestingly, our results showed a significantly increased number of somatic hypermutations in the VH genes in CD27− cells from patients. Taken together, these results show that during HIV-1 infection, CD27− B-cells can also produce class switched and somatically hypermutated antibodies. Our data add important information for the understanding of the mechanisms underlying the loss of specific antibody production observed during HIV-1 infection. PMID:19412542

  6. Effects of iron supplementation on blood adenine deaminase activity and oxidative stress in Trypanosoma evansi infection of rats.

    PubMed

    Bottari, Nathieli B; Baldissera, Matheus D; Tonin, Alexandre A; França, Raqueli T; Zanini, Danieli; Leal, Marta L R; Lopes, Sonia T A; Schetinger, Maria Rosa C; Morsch, Vera M; Monteiro, Silvia G; Guarda, Naiara S; Moresco, Rafael N; Aires, Adelina R; Stefani, Lenita M; Da Silva, Aleksandro S

    2014-12-01

    The aim of this study was to assess the effects of iron supplementation on oxidative stress and on the activity of the adenosine deaminase (ADA) in rats experimentally infected by Trypanosoma evansi. For this purpose, 20 rats were divided into four experimental groups with five animals each as follows: groups A and B were composed by healthy animals, while animals from groups C and D were infected by T. evansi. Additionally, groups B and D received two subcutaneous doses of iron (60 mg kg(-1)) within an interval of 5 days. Blood samples were drawn on day 8 post infection in order to assess hematological and biochemical variables. Among the main results are: (1) animals from group C showed reduced erythrogram (with tendency to anemia); however the same results were not observed for group D; this might be a direct effect of free iron on trypanosomes which helped to reduce the parasitemia and the damage to erythrocytes caused by the infection; (2) iron supplementation was able to reduce NOx levels by inhibiting iNOS, and thus, providing an antioxidant action and, indirectly, reducing the ALT levels in groups Band D; (3) increase FRAP levels in group D; (4) reduce ADA activity in serum and erythrocytes in group C; however, this supplementation (5) increased the protein oxidation in groups B and D, as well as group C (positive control). Therefore, iron showed antioxidant and oxidant effects on animals that received supplementation; and it maintained the activity of E-ADA stable in infected/supplemented animals.

  7. Cytomegalovirus Replication in Semen Is Associated with Higher Levels of Proviral HIV DNA and CD4+ T Cell Activation during Antiretroviral Treatment

    PubMed Central

    Massanella, Marta; Richman, Douglas D.; Little, Susan J.; Spina, Celsa A.; Vargas, Milenka V.; Lada, Steven M.; Daar, Eric S.; Dube, Michael P.; Haubrich, Richard H.; Morris, Sheldon R.; Smith, Davey M.

    2014-01-01

    ABSTRACT Asymptomatic cytomegalovirus (CMV) replication occurs frequently in the genital tract in untreated HIV-infected men and is associated with increased immune activation and HIV disease progression. To determine the connections between CMV-associated immune activation and the size of the viral reservoir, we evaluated the interactions between (i) asymptomatic seminal CMV replication, (ii) levels of T cell activation and proliferation in blood, and (iii) the size and transcriptional activity of the HIV DNA reservoir in blood from 53 HIV-infected men on long-term antiretroviral therapy (ART) with suppressed HIV RNA in blood plasma. We found that asymptomatic CMV shedding in semen was associated with significantly higher levels of proliferating and activated CD4+ T cells in blood (P < 0.01). Subjects with detectable CMV in semen had approximately five times higher average levels of HIV DNA in blood CD4+ T cells than subjects with no CMV. There was also a trend for CMV shedders to have increased cellular (multiply spliced) HIV RNA transcription (P = 0.068) compared to participants without CMV, but it is unclear if this transcription pattern is associated with residual HIV replication. In multivariate analysis, the presence of seminal plasma CMV (P = 0.04), detectable 2-long terminal repeat (2-LTR), and lower nadir CD4+ (P < 0.01) were independent predictors of higher levels of proviral HIV DNA in blood. Interventions aimed at reducing seminal CMV and associated immune activation may be important for HIV curative strategies. Future studies of anti-CMV therapeutics will help to establish causality and determine the mechanisms underlying these described associations. IMPORTANCE Almost all individuals infected with HIV are also infected with cytomegalovirus (CMV), and the replication dynamics of the two viruses likely influence each other. This study investigated interactions between asymptomatic CMV replication within the male genital tract, levels of inflammation in

  8. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion.

    PubMed

    Shimatani, Zenpei; Kashojiya, Sachiko; Takayama, Mariko; Terada, Rie; Arazoe, Takayuki; Ishii, Hisaki; Teramura, Hiroshi; Yamamoto, Tsuyoshi; Komatsu, Hiroki; Miura, Kenji; Ezura, Hiroshi; Nishida, Keiji; Ariizumi, Tohru; Kondo, Akihiko

    2017-03-27

    We applied a fusion of CRISPR-Cas9 and activation-induced cytidine deaminase (Target-AID) for point mutagenesis at genomic regions specified by single guide RNAs (sgRNAs) in two crop plants. In rice, we induced multiple herbicide-resistance point mutations by multiplexed editing using herbicide selection, while in tomato we generated marker-free plants with homozygous heritable DNA substitutions, demonstrating the feasibility of base editing for crop improvement.

  9. Gene therapy for severe combined immunodeficiency due to adenosine deaminase deficiency.

    PubMed

    Montiel-Equihua, Claudia A; Thrasher, Adrian J; Gaspar, H Bobby

    2012-02-01

    The severe combined immunodeficiency caused by the absence of adenosine deaminase (SCID-ADA) was the first monogenic disorder for which gene therapy was developed. Over 30 patients have been treated worldwide using the current protocols, and most of them have experienced clinical benefit; importantly, in the absence of any vector-related complications. In this document, we review the progress made so far in the development and establishment of gene therapy as an alternative form of treatment for ADA-SCID patients.

  10. Potentially therapeutic levels of anti-sickling globin gene expression following lentivirus-mediated gene transfer in sickle cell disease bone marrow CD34+ cells.

    PubMed

    Urbinati, Fabrizia; Hargrove, Phillip W; Geiger, Sabine; Romero, Zulema; Wherley, Jennifer; Kaufman, Michael L; Hollis, Roger P; Chambers, Christopher B; Persons, Derek A; Kohn, Donald B; Wilber, Andrew

    2015-05-01

    Sickle cell disease (SCD) can be cured by allogeneic hematopoietic stem cell transplant. However, this is only possible when a matched donor is available, making the development of gene therapy using autologous hematopoietic stem cells a highly desirable alternative. We used a culture model of human erythropoiesis to directly compare two insulated, self-inactivating, and erythroid-specific lentiviral vectors, encoding for γ-globin (V5m3-400) or a modified β-globin (βAS3-FB) for production of antisickling hemoglobin (Hb) and correction of red cell deformability after deoxygenation. Bone marrow CD34+ cells from three SCD patients were transduced using V5m3-400 or βAS3-FB and compared with mock-transduced SCD or healthy donor CD34+ cells. Lentiviral transduction did not impair cell growth or differentiation, as gauged by proliferation and acquisition of erythroid markers. Vector copy number averaged approximately one copy per cell, and corrective globin mRNA levels were increased more than sevenfold over mock-transduced controls. Erythroblasts derived from healthy donor and mock-transduced SCD cells produced a low level of fetal Hb that was increased to 23.6 ± 4.1% per vector copy for cells transduced with V5m3-400. Equivalent levels of modified normal adult Hb of 17.6 ± 3.8% per vector copy were detected for SCD cells transduced with βAS3-FB. These levels of antisickling Hb production were sufficient to reduce sickling of terminal-stage red blood cells upon deoxygenation. We concluded that the achieved levels of fetal Hb and modified normal adult Hb would likely prove therapeutic to SCD patients who lack matched donors.

  11. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells

    PubMed Central

    Tewalt, Eric F.; Cohen, Jarish N.; Rouhani, Sherin J.; Guidi, Cynthia J.; Qiao, Hui; Fahl, Shawn P.; Conaway, Mark R.; Bender, Timothy P.; Tung, Kenneth S.; Vella, Anthony T.; Adler, Adam J.; Chen, Lieping

    2012-01-01

    Lymphatic endothelial cells (LECs) induce peripheral tolerance by direct presentation to CD8 T cells (TCD8). We demonstrate that LECs mediate deletion only via programmed cell death-1 (PD-1) ligand 1, despite expressing ligands for the CD160, B- and T-lymphocyte attenuator, and lymphocyte activation gene-3 inhibitory pathways. LECs induce activation and proliferation of TCD8, but lack of costimulation through 4-1BB leads to rapid high-level expression of PD-1, which in turn inhibits up-regulation of the high-affinity IL-2 receptor that is necessary for TCD8 survival. Rescue of tyrosinase-specific TCD8 by interference with PD-1 or provision of costimulation results in autoimmune vitiligo, demonstrating that LECs are significant, albeit suboptimal, antigen-presenting cells. Because LECs express numerous peripheral tissue antigens, lack of costimulation coupled to rapid high-level up-regulation of inhibitory receptors may be generally important in systemic peripheral tolerance. PMID:22993390

  12. Evaluation of adenosine deaminase assay for analyzing T-lymphocyte density in vitro.

    PubMed

    Kainthla, Rani Poonam; Kashyap, Rajpal Singh; Prasad, Sweta; Purohit, Hemant J; Taori, Giridhar M; Daginawala, Hatim F

    2006-01-01

    The proliferative capacity of T cells in response to various stimuli is commonly determined by radioactive assay based on incorporation of [3H]thymidine ([3H]TdR) into newly synthesized DNA. In order to assess techniques for application in laboratories where radioactive facilities are not present, an alternative method was tested. As an alternative, T-cell proliferation was measured by spectrophotometrically analyzing the presence of an enzyme adenosine deaminase in lymphocytes and also using a standard XTT assay. Jurkat (human) T-cell line (clone E6.1) was used for lymphocyte population. The Jurkat cell concentration was adjusted according to different cell densities and enzyme activity was determined. Cells were also seeded in complete medium up to 72 h and harvested for estimation of enzyme activity. A significant correlation between the standard cell-proliferation assay and adenosine deaminase assay was observed. The present study indicates that the assay of adenosine deaminase is a reliable and accurate method for measuring proliferation of T lymphocytes.

  13. Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae.

    PubMed

    Hartzog, Phillip E; Nicholson, Bradly P; McCusker, John H

    2005-07-30

    We describe positive/negative selectable cytosine deaminase MX cassettes for use in Saccharomyces cerevisiae. The basis of positive selection for cytosine deaminase (Fcy1) activity is that (a) fcy1 strains are unable to grow on medium containing cytosine as a sole nitrogen source and (b) fcy1 ura3 strains are unable to grow on medium containing cytosine as the sole pyrimidine source. Conversely, as 5-fluorocytosine (5FC) is toxic to cytosine deaminase-producing cells, fcy1 strains are resistant to 5FC. FCY1MX and FCA1MX cassettes, containing open reading frames (ORFs) of S. cerevisiae FCY1 and Candida albicans FCA1, respectively, were constructed and used to disrupt targeted genes in S. cerevisiae fcy1 strains. In addition, new direct repeat cassettes, kanPR, FCA1PR, FCY1PR and CaURA3PR, were developed to allow efficient deletion of target genes in cells containing MX3 repeats. Finally, the FCY1- and FCA1MX3 or PR direct repeat cassettes can be readily recycled after 5FC counter-selection on both synthetic and rich media.

  14. Magnetic nanoparticle hyperthermia induced cytosine deaminase expression in microencapsulated E. coli for enzyme-prodrug therapy.

    PubMed

    Nemani, Krishnamurthy V; Ennis, Riley C; Griswold, Karl E; Gimi, Barjor

    2015-06-10

    Engineered bacterial cells that are designed to express therapeutic enzymes under the transcriptional control of remotely inducible promoters can mediate the de novo conversion of non-toxic prodrugs to their cytotoxic forms. In situ cellular expression of enzymes provides increased stability and control of enzyme activity as compared to isolated enzymes. We have engineered Escherichia coli (E. coli), designed to express cytosine deaminase at elevated temperatures, under the transcriptional control of thermo-regulatory λpL-cI857 promoter cassette which provides a thermal switch to trigger enzyme synthesis. Enhanced cytosine deaminase expression was observed in cultures incubated at 42°C as compared to 30°C, and enzyme expression was further substantiated by spectrophotometric assays indicating enhanced conversion of 5-fluorocytosine to 5-fluorouracil. The engineered cells were subsequently co-encapsulated with magnetic iron oxide nanoparticles in immunoprotective alginate microcapsules, and cytosine deaminase expression was triggered remotely by alternating magnetic field-induced hyperthermia. The combination of 5-fluorocytosine with AMF-activated microcapsules demonstrated tumor cell cytotoxicity comparable to direct treatment with 5-fluorouracil chemotherapy. Such enzyme-prodrug therapy, based on engineered and immunoisolated E. coli, may ultimately yield an improved therapeutic index relative to monotherapy, as AMF mediated hyperthermia might be expected to pre-sensitize tumors to chemotherapy under appropriate conditions.

  15. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases.

    PubMed

    Kim, Daesik; Lim, Kayeong; Kim, Sang-Tae; Yoon, Sun-Heui; Kim, Kyoungmi; Ryu, Seuk-Min; Kim, Jin-Soo

    2017-04-10

    Cas9-linked deaminases, also called base editors, enable targeted mutation of single nucleotides in eukaryotic genomes. However, their off-target activity is largely unknown. Here we modify digested-genome sequencing (Digenome-seq) to assess the specificity of a programmable deaminase composed of a Cas9 nickase (nCas9) and the deaminase APOBEC1 in the human genome. Genomic DNA is treated with the base editor and a mixture of DNA-modifying enzymes in vitro to produce DNA double-strand breaks (DSBs) at uracil-containing sites. Off-target sites are then computationally identified from whole genome sequencing data. Testing seven different single guide RNAs (sgRNAs), we find that the rAPOBEC1-nCas9 base editor is highly specific, inducing cytosine-to-uracil conversions at only 18 ± 9 sites in the human genome for each sgRNA. Digenome-seq is sensitive enough to capture off-target sites with a substitution frequency of 0.1%. Notably, off-target sites of the base editors are often different from those of Cas9 alone, calling for independent assessment of their genome-wide specificities.

  16. Adenosine Deaminases Acting on RNA (ADARs) are both Antiviral and Proviral Dependent upon the Virus

    PubMed Central

    Samuel, Charles E.

    2010-01-01

    A-to-I RNA editing, the deamination of adenosine (A) to inosine (I) that occurs in regions of RNA with double-stranded character, is catalyzed by a family of Adenosine Deaminases Acting on RNA (ADARs). In mammals there are three ADAR genes. Two encode proteins that possess demonstrated deaminase activity: ADAR1, which is interferon-inducible, and ADAR2 which is constitutively expressed. ADAR3, by contrast, has not yet been shown to bean active enzyme. The specificity of the ADAR1 and ADAR2 deaminases ranges from highly site-selective to non-selective, dependent on the duplex structure of the substrate RNA. A-to-I editing is a form of nucleotide substitution editing, because I is decoded as guanosine (G) instead of A by ribosomes during translation and by polymerases during RNA-dependent RNA replication. Additionally, A-to-I editing can alter RNA structure stability as I:U mismatches are less stable than A:U base pairs. Both viral and cellular RNAs are edited by ADARs. A-to-I editing is of broad physiologic significance. Among the outcomes of A-to-I editing are biochemical changes that affect how viruses interact with their hosts, changes that can lead to either enhanced or reduced virus growth and persistence dependent upon the specific virus. PMID:21211811

  17. Various effects of fluorescent bacteria of the genus Pseudomonas containing ACC deaminase on wheat seedling growth.

    PubMed

    Magnucka, Elżbieta G; Pietr, Stanisław J

    2015-12-01

    The study evaluates the effect of rhizobacteria having 1-aminocyclopropane-1-carboxylate deaminase (ACCd) on the development of wheat seedlings. This enzyme has been proposed to play a key role in microbe-plant association. Three fluorescent pseudomonads containing this deaminase were selected from 70 strains of pseudomonads isolated from rhizosphere of wheat (Triticum aestivum L.) and rape (Brassica napus L.). These bacteria, varied significantly in the ability to both biosynthesize auxins and hydrolyze ACC. Among them, Pseudomonas brassicacearum subsp. brassicacearum strain RZ310 presented the highest activities of ACC deaminase during 96h of growth in liquid Dworkin and Foster (DF) salt medium. Additionally, this rape rhizosphere strain did not produce indoles. Two other isolates, Pseudomonas sp. PO283 and Pseudomonas sp. PO366, secreted auxins only in the presence of their precursor. Phylogenetic analysis of the 16S rRNA gene and four other protein-encoding genes indicated that these wheat rhizosphere isolates belonged to the fluorescent Pseudomonas group. Moreover, the effects of these strains on wheat seedling growth under in vitro conditions were markedly dependent on both their cell suspensions used to grain inoculation and nutrient conditions. Strains tested had beneficial influence on wheat seedlings mainly at low cell densities. In addition, access to nutrients markedly changed bacteria action on cereal growth. Their presence generally favored the positive effects of pseudomonads on length and the estimated biomasses of wheat coleoptiles. Despite these general rules, impacts of each isolate on the growth parameters of cereal seedlings were unique.

  18. Beyond SHM and CSR: AID and related cytidine deaminases in the host response to viral infection.

    PubMed

    Rosenberg, Brad R; Papavasiliou, F Nina

    2007-01-01

    As the primary effector of immunoglobulin somatic hypermutation (SHM) and class switch recombination (CSR), activation-induced cytidine deaminase (AID) serves an important function in the adaptive immune response. Recent advances have demonstrated that AID and a group of closely related cytidine deaminases, the APOBEC3 proteins, also act in the innate host response to viral infection. Antiviral activity was first attributed to APOBEC3G as a potent inhibitor of HIV. It is now apparent that the targets of the APOBEC3 proteins extend beyond HIV, with family members acting against a wide variety of viruses as well as host-encoded retrotransposable genetic elements. Although it appears to function through a different mechanism, AID also possesses antiviral properties. Independent of its antibody diversification functions, AID protects against transformation by Abelson murine leukemia virus (Ab-MLV), an oncogenic retrovirus. Additionally, AID has been implicated in the host response to other pathogenic viruses. These emerging roles for the AID/APOBEC cytidine deaminases in viral infection suggest an intriguing evolutionary connection of innate and adaptive immune mechanisms.

  19. Serum sCD163 Levels Are Associated with Type 2 Diabetes Mellitus and Are Influenced by Coffee and Wine Consumption: Results of the Di@bet.es Study

    PubMed Central

    Rojo-Martínez, Gemma; Maymó-Masip, Elsa; Rodríguez, M. Mar; Solano, Esther; Goday, Albert; Soriguer, Federico; Valdés, Sergio; Chaves, Felipe Javier; Delgado, Elías; Colomo, Natalia; Hernández, Pilar

    2014-01-01

    Objective Serum levels of soluble TNF-like weak inducer of apoptosis (sTWEAK) and its scavenger receptor CD163 (sCD163) have been linked to insulin resistance. We analysed the usefulness of these cytokines as biomarkers of type 2 diabetes in a Spanish cohort, together with their relationship to food consumption in the setting of the Di@bet.es study. Research Design and Methods This is a cross-sectional, matched case-control study of 514 type 2 diabetes subjects and 517 controls with a Normal Oral Glucose Tolerance Test (NOGTT), using data from the Di@bet.es study. Study variables included clinical and demographic structured survey, food frequency questionnaire and physical examination. Serum concentrations of sTWEAK and sCD163 were measured by ELISA. Linear regression analysis determined which variables were related to sTWEAK and sCD163 levels. Logistic regression analysis was used to estimate odd ratios of presenting type 2 diabetes. Results sCD163 concentrations and sCD163/sTWEAK ratio were 11.0% and 15.0% higher, respectively, (P<0.001) in type 2 diabetes than in controls. Following adjustment for various confounders, the OR for presenting type 2 diabetes in subjects in the highest vs the lowest tertile of sCD163 was [(OR), 2,01 (95%CI, 1,46–2,97); P for trend <0.001]. Coffee and red wine consumption was negatively associated with serum levels of sCD163 (P = 0.0001 and; P = 0.002 for coffee and red wine intake, respectively). Conclusions High circulating levels of sCD163 are associated with type 2 diabetes in the Spanish population. The association between coffee and red wine intake and these biomarkers deserves further study to confirm its potential role in type 2 diabetes. PMID:24978196

  20. Deep level transient spectroscopy of hole traps related to CdTe self-assembled quantum dots embedded in ZnTe matrix

    NASA Astrophysics Data System (ADS)

    Zielony, E.; Placzek-Popko, E.; Dyba, P.; Gumienny, Z.; Dobaczewski, L.; Karczewski, G.

    2011-12-01

    The capacitance—voltage (C-V) and deep level transient spectroscopy (DLTS) measurements have been performed on a Schottky structure containing self-assembled CdTe quantum dots (QDs) embedded in ZnTe (p-type) matrix. A characteristic step on the C-V curve due to charge accumulation on QD states as well as QD related DLTS signal were found. Thermal activation energy of 0.1 eV was obtained from Arrhenius plot related to the signal. This energy level can be related either to the hole emission from the defects accompanying QD formation or to the hole emission from the QD states to the ZnTe valence band.

  1. On the relation between deep level compensation, resistivity and electric field in semi-insulating CdTe:Cl radiation detectors

    NASA Astrophysics Data System (ADS)

    Cola, Adriano; Farella, Isabella; Pousset, Jeremy; Valletta, Antonio

    2016-12-01

    A compensation model for semi-insulating CdTe:Cl based on a single dominant deep level 0.725 eV above the valence band is proposed. The model is corroborated by experimental evidence: resistivity measurements as a function of temperature on bulk crystals and stationary electric field distributions in Ohmic/Schottky radiation detectors, obtained by the Pockels effect. The latter are in close agreement with the numerical solutions of transport equations when considering the deep centre concentration in the range 2 - 4 × 1012 cm-3, and a compensation ratio R = 2.1, this one being consistent with an original ambipolar analysis of resistivity. More generally, the approach elucidates the role of electrical contacts and deep levels in controlling the electric fields in devices based on compensated materials.

  2. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G.

    PubMed

    Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda

    2017-02-01

    The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4(+) T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart.

  3. RNA editing enzyme adenosine deaminase is a restriction factor for controlling measles virus replication that also is required for embryogenesis

    PubMed Central

    Ward, Simone V.; George, Cyril X.; Welch, Megan J.; Liou, Li-Ying; Hahm, Bumsuk; Lewicki, Hanna; de la Torre, Juan C.; Samuel, Charles E.; Oldstone, Michael B.

    2011-01-01

    Measles virus (MV), a member of the family Paramyxoviridae and an exclusively human pathogen, is among the most infectious viruses. A progressive fatal neurodegenerative complication, subacute sclerosing panencephalitis (SSPE), occurs during persistent MV infection of the CNS and is associated with biased hypermutations of the viral genome. The observed hypermutations of A-to-G are consistent with conversions catalyzed by the adenosine deaminase acting on RNA (ADAR1). To evaluate the role of ADAR1 in MV infection, we selectively disrupted expression of the IFN-inducible p150 ADAR1 isoform and found it caused embryonic lethality at embryo day (E) 11–E12. We therefore generated p150-deficient and WT mouse embryo fibroblast (MEF) cells stably expressing the MV receptor signaling lymphocyte activation molecule (SLAM or CD150). The p150−/− but not WT MEF cells displayed extensive syncytium formation and cytopathic effect (CPE) following infection with MV, consistent with an anti-MV role of the p150 isoform of ADAR1. MV titers were 3 to 4 log higher in p150−/− cells compared with WT cells at 21 h postinfection, and restoration of ADAR1 in p150−/− cells prevented MV cytopathology. In contrast to infection with MV, p150 disruption had no effect on vesicular stomatitis virus, reovirus, or lymphocytic choriomeningitis virus replication but protected against CPE resulting from infection with Newcastle disease virus, Sendai virus, canine distemper virus, and influenza A virus. Thus, ADAR1 is a restriction factor in the replication of paramyxoviruses and orthomyxoviruses. PMID:21173229

  4. The small heat shock protein 27 is a key regulator of CD8+ CD57+ lymphocyte survival.

    PubMed

    Wood, Karen L; Voss, Oliver H; Huang, Qin; Parihar, Arti; Mehta, Neeraj; Batra, Sanjay; Doseff, Andrea I

    2010-05-15

    Differences in CD8(+)CD57(-) and CD8(+)CD57(+) lymphocyte lifespan have been documented. Lower numbers and shorter lifespan are characteristic of CD8(+)CD57(+) in normal individuals. However, CD8(+)CD57(+) are expanded in certain disease states including T cell large granular leukemia and other hematologic malignancies. The mechanisms responsible for the differences in CD8(+)CD57(-) and CD8(+)CD57(+) lifespan remain elusive. In this study, we demonstrate that the small heat shock protein (Hsp) 27 is a key regulator of CD8(+)CD57(+) lymphocyte lifespan. We found that Hsp27 expression is significantly lower in CD8(+)CD57(+) than in CD8(+)CD57(-) lymphocytes. In contrast, Hsp60 and Hsp70 are expressed at comparable levels. Unlike other antiapoptotic Bcl-2-like molecules, the expression of Hsp27 tightly correlates with CD8(+)CD57(+) and CD8(+)CD57(-) lifespan. We demonstrate that Hsp27 overexpression in CD8(+)CD57(+) lymphocytes to levels found normally in CD8(+)CD57(-) lymphocytes decreased apoptosis. Accordingly, silencing of Hsp27 in CD8(+)CD57(-) lymphocytes increased apoptosis. Collectively these results demonstrate that Hsp27 is a critical regulator of normal CD8(+)CD57(+) lifespan supporting its use as a marker of lifespan in this lineage, and suggest a mechanism responsible for the decreased apoptosis and clonal expansion characteristic of certain disease states.

  5. Persistent Low-Level Replication of SIVΔnef Drives Maturation of Antibody and CD8 T Cell Responses to Induce Protective Immunity against Vaginal SIV Infection

    PubMed Central

    Gillis, Jacqueline; Wong, Fay E.; Yu, Yi; Camp, Jeremy V.; Li, Qingsheng; Connole, Michelle; Li, Yuan; Lifson, Jeffrey D.; Li, Wenjun; Keele, Brandon F.; Kozlowski, Pamela A.; Desrosiers, Ronald C.; Haase, Ashley T.

    2016-01-01

    Defining the correlates of immune protection conferred by SIVΔnef, the most effective vaccine against SIV challenge, could enable the design of a protective vaccine against HIV infection. Here we provide a comprehensive assessment of immune responses that protect against SIV infection through detailed analyses of cellular and humoral immune responses in the blood and tissues of rhesus macaques vaccinated with SIVΔnef and then vaginally challenged with wild-type SIV. Despite the presence of robust cellular immune responses, animals at 5 weeks after vaccination displayed only transient viral suppression of challenge virus, whereas all macaques challenged at weeks 20 and 40 post-SIVΔnef vaccination were protected, as defined by either apparent sterile protection or significant suppression of viremia in infected animals. Multiple parameters of CD8 T cell function temporally correlated with maturation of protection, including polyfunctionality, phenotypic differentiation, and redistribution to gut and lymphoid tissues. Importantly, we also demonstrate the induction of a tissue-resident memory population of SIV-specific CD8 T cells in the vaginal mucosa, which was dependent on ongoing low-level antigenic stimulation. Moreover, we show that vaginal and serum antibody titers inversely correlated with post-challenge peak viral load, and we correlate the accumulation and affinity maturation of the antibody response to the duration of the vaccination period as well as to the SIVΔnef antigenic load. In conclusion, maturation of SIVΔnef-induced CD8 T cell and antibody responses, both propelled by viral persistence in the gut mucosa and secondary lymphoid tissues, results in protective immune responses that are able to interrupt viral transmission at mucosal portals of entry as well as potential sites of viral dissemination. PMID:27959961

  6. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis.

    PubMed

    Starrett, Gabriel J; Luengas, Elizabeth M; McCann, Jennifer L; Ebrahimi, Diako; Temiz, Nuri A; Love, Robin P; Feng, Yuqing; Adolph, Madison B; Chelico, Linda; Law, Emily K; Carpenter, Michael A; Harris, Reuben S

    2016-09-21

    Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of 'APOBEC signature' mutations in cancer.

  7. The DNA cytosine deaminase APOBEC3H haplotype I likely contributes to breast and lung cancer mutagenesis

    PubMed Central

    Starrett, Gabriel J.; Luengas, Elizabeth M.; McCann, Jennifer L.; Ebrahimi, Diako; Temiz, Nuri A.; Love, Robin P.; Feng, Yuqing; Adolph, Madison B.; Chelico, Linda; Law, Emily K.; Carpenter, Michael A.; Harris, Reuben S

    2016-01-01

    Cytosine mutations within TCA/T motifs are common in cancer. A likely cause is the DNA cytosine deaminase APOBEC3B (A3B). However, A3B-null breast tumours still have this mutational bias. Here we show that APOBEC3H haplotype I (A3H-I) provides a likely solution to this paradox. A3B-null tumours with this mutational bias have at least one copy of A3H-I despite little genetic linkage between these genes. Although deemed inactive previously, A3H-I has robust activity in biochemical and cellular assays, similar to A3H-II after compensation for lower protein expression levels. Gly105 in A3H-I (versus Arg105 in A3H-II) results in lower protein expression levels and increased nuclear localization, providing a mechanism for accessing genomic DNA. A3H-I also associates with clonal TCA/T-biased mutations in lung adenocarcinoma suggesting this enzyme makes broader contributions to cancer mutagenesis. These studies combine to suggest that A3B and A3H-I, together, explain the bulk of ‘APOBEC signature' mutations in cancer. PMID:27650891

  8. Regulation of 5'-adenosine monophosphate deaminase in the freeze tolerant wood frog, Rana sylvatica

    PubMed Central

    Dieni, Christopher A; Storey, Kenneth B

    2008-01-01

    Background The wood frog, Rana sylvatica, is one of a few vertebrate species that have developed natural freeze tolerance, surviving days or weeks with 65–70% of its total body water frozen in extracellular ice masses. Frozen frogs exhibit no vital signs and their organs must endure multiple stresses, particularly long term anoxia and ischemia. Maintenance of cellular energy supply is critical to viability in the frozen state and in skeletal muscle, AMP deaminase (AMPD) plays a key role in stabilizing cellular energetics. The present study investigated AMPD control in wood frog muscle. Results Wood frog AMPD was subject to multiple regulatory controls: binding to subcellular structures, protein phosphorylation, and effects of allosteric effectors, cryoprotectants and temperature. The percentage of bound AMPD activity increased from 20 to 35% with the transition to the frozen state. Bound AMPD showed altered kinetic parameters compared with the free enzyme (S0.5 AMP was reduced, Hill coefficient fell to ~1.0) and the transition to the frozen state led to a 3-fold increase in S0.5 AMP of the bound enzyme. AMPD was a target of protein phosphorylation. Bound AMPD from control frogs proved to be a low phosphate form with a low S0.5 AMP and was phosphorylated in incubations that stimulated PKA, PKC, CaMK, or AMPK. Bound AMPD from frozen frogs was a high phosphate form with a high S0.5 AMP that was reduced under incubation conditions that stimulated protein phosphatases. Frog muscle AMPD was activated by Mg·ATP and Mg·ADP and inhibited by Mg·GTP, KCl, NaCl and NH4Cl. The enzyme product, IMP, uniquely inhibited only the bound (phosphorylated) enzyme from muscle of frozen frogs. Activators and inhibitors differentially affected the free versus bound enzyme. S0.5 AMP of bound AMPD was also differentially affected by high versus low assay temperature (25 vs 5°C) and by the presence/absence of the natural cryoprotectant (250 mM glucose) that accumulates during freezing

  9. Synergistic effect of therapeutic stem cells expressing cytosine deaminase and interferon-beta via apoptotic pathway in the metastatic mouse model of breast cancer.

    PubMed

    Yi, Bo-Rim; Kim, Seung U; Choi, Kyung-Chul

    2016-02-02

    As an approach to improve treatment of breast cancer metastasis to the brain, we employed genetically engineered stem cells (GESTECs, HB1.F3 cells) consisting of neural stem cells (NSCs) expressing cytosine deaminase and the interferon-beta genes, HB1.F3.CD and HB1.F3.CD.IFN-β. In this model, MDA-MB-231/Luc breast cancer cells were implanted in the right hemisphere of the mouse brain, while pre-stained GESTECs with redfluorescence were implanted in the contralateral brain. Two days after stem cells injection, 5-fluorocytosine (5-FC) was administrated via intraperitoneal injection. Histological analysis of extracted brain confirmed the therapeutic efficacy of GESTECs in the presence of 5-FC based on reductions in density and aggressive tendency of breast cancer cells, as well as pyknosis, karyorrhexis, and karyolysis relative to a negative control. Additionally, expression of PCNA decreased in the stem cells treated group. Treatment of breast cancer cells with 5-fluorouracil (5-FU) increased the expression of pro-apoptotic and anti-proliferative factor, BAX and p21 protein through phosphorylation of p53 and p38. Moreover, analysis of stem cell migratory ability revealed that MDA-MB-231 cells endogenously secreted VEGF, and stem cells expressed their receptor (VEGFR2). To confirm the role of VEGF/VEGFR2 signaling in tumor tropism of stem cells, samples were treated with the VEGFR2 inhibitor, KRN633. The number of migrated stem cells decreased significantly in response to KRN633 due to Erk1/2 activation and PI3K/Akt inhibition. Taken together, these results indicate that treatment with GESTECs, particularly HB1.F3.CD.IFN-β co-expressing CD.IFN-β, may be a useful strategy for treating breast cancer metastasis to the brain in the presence of a prodrug.

  10. CEA Level, Radical Surgery, CD56 and CgA Expression Are Prognostic Factors for Patients With Locoregional Gastrin-Independent GNET.

    PubMed

    Li, Yuan; Bi, Xinyu; Zhao, Jianjun; Huang, Zhen; Zhou, Jianguo; Li, Zhiyu; Zhang, Yefan; Li, Muxing; Chen, Xiao; Hu, Xuhui; Chi, Yihebali; Zhao, Dongbing; Zhao, Hong; Cai, Jianqiang

    2016-05-01

    Gastrin-independent gastric neuroendocrine tumors (GNETs) are highly malignant. Radical resections and lymphadenectomy are considered to be the only possible curative treatment for these tumors. However, the prognosis of gastrin-independent GNETs is not well defined. In this study, we identified prognostic factors of locoregional gastrin-independent GNETs.All patients diagnosed with locoregional gastrin-independent GNETs between 2000 and 2014 were included in this retrospective study. Clinical characteristics, blood tests, pathological characteristics, treatments, and follow-up data of the patients were collected and analyzed.Of the 66 patients diagnosed with locoregional gastrin-independent GNETs, 57 (86.4%) received radical resections, 7 (10.6%) with palliative resection, 1 (1.5%) with gastrojejunostomy, and 1 (1.5%) with exploration surgeries. The median survival time for these patients was 19.0 months (interquartile range, 11.0-38.0). The 1-, 3-, and 5-year survival rates were 72%, 34%, and 28%, respectively. Multivariate analysis indicated that carcinoembryonic antigen (CEA) level (P = 0.04), radical resection (P = 0.04), and positive Cluster of Differentiation 56 (CD56) expression (P = 0.016) were significant prognostic factors on overall survival rate. Further univariate and multivariate analysis of 57 patients who received radical resections found that CgA expression (P = 0.35) and CEA level (P = 0.33) are independent prognostic factors.Gastrin-independent GNETs had poor prognosis. Serum CEA level, radical surgery, CD56 and CgA expression are markers to evaluate the survival of patients with locoregional gastrin-independent GNETs.

  11. CD23 surface density on B cells is associated with IgE levels and determines IgE-facilitated allergen uptake, as well as activation of allergen-specific T cells

    PubMed Central

    Selb, Regina; Eckl-Dorna, Julia; Neunkirchner, Alina; Schmetterer, Klaus; Marth, Katharina; Gamper, Jutta; Jahn-Schmid, Beatrice; Pickl, Winfried F.; Valenta, Rudolf; Niederberger, Verena

    2017-01-01

    Background Increasing evidence suggests that the low-affinity receptor for IgE, CD23, plays an important role in controlling the activity of allergen-specific T cells through IgE-facilitated allergen presentation. Objective We sought to determine the number of CD23 molecules on immune cells in allergic patients and to investigate whether the number of CD23 molecules on antigen-presenting cells is associated with IgE levels and influences allergen uptake and allergen-specific T-cell activation. Methods Numbers of CD23 molecules on immune cells of allergic patients were quantified by using flow cytometry with QuantiBRITE beads and compared with total and allergen-specific IgE levels, as well as with allergen-induced immediate skin reactivity. Allergen uptake and allergen-specific T-cell activation in relation to CD23 surface density were determined by using flow cytometry in combination with confocal microscopy and T cells transfected with the T-cell receptor specific for the birch pollen allergen Bet v 1, respectively. Defined IgE-allergen immune complexes were formed with human monoclonal allergen-specific IgE and Bet v 1. Results In allergic patients the vast majority of CD23 molecules were expressed on naive IgD+ B cells. The density of CD23 molecules on B cells but not the number of CD23+ cells correlated with total IgE levels (RS = 0.53, P = .03) and allergen-induced skin reactions (RS = 0.63, P = .008). Uptake of allergen-IgE complexes into B cells and activation of allergen-specific T cells depended on IgE binding to CD23 and were associated with CD23 surface density. Addition of monoclonal IgE to cultured PBMCs significantly (P = .04) increased CD23 expression on B cells. Conclusion CD23 surface density on B cells of allergic patients is correlated with allergen-specific IgE levels and determines allergen uptake and subsequent activation of T cells. PMID:27372566

  12. Infection with Marek’s disease virus induces high levels of CD8a/a cells in chickens resistant to Marek’s disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The CD8a/a cells have non-traditional roles. CD8a/a cells (T'' cells) usually recognize monomorphic antigen like bacterial lipids presented by non-traditional class I glycoproteins such as BF1 (minor) or Rfp-Y. CD8a/a cells have also been implicated in natural killing with approximately 80% of NK ...

  13. A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.)

    PubMed Central

    Liu, Guoyuan; Li, Xue; Guo, Liping; Zhang, Xuexian; Qi, Tingxiang; Wang, Hailin; Tang, Huini; Qiao, Xiuqin; Zhang, Jinfa; Xing, Chaozhu; Wu, Jianyong

    2017-01-01

    The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cellular functions and biological processes including fertility restoration to cytoplasmic male sterility (CMS) in plants. In this study, we identified 227 and 211 DYW deaminase-coding PPR genes for the cultivated tetraploid cotton species G. hirsutum and G. barbadense (2n = 4x = 52), respectively, as well as 126 and 97 DYW deaminase-coding PPR genes in the ancestral diploid species G. raimondii and G. arboreum (2n = 26), respectively. The 227 G. hirsutum PPR genes were predicted to encode 52–2016 amino acids, 203 of which were mapped onto 26 chromosomes. Most DYW deaminase genes lacked introns, and their proteins were predicted to target the mitochondria or chloroplasts. Additionally, the DYW domain differed from the complete DYW deaminase domain, which contained part of the E domain and the entire E+ domain. The types and number of DYW tripeptides may have been influenced by evolutionary processes, with some tripeptides being lost. Furthermore, a gene ontology analysis revealed that DYW deaminase functions were mainly related to binding as well as hydrolase and transferase activities. The G. hirsutum DYW deaminase expression profiles varied among different cotton tissues and developmental stages, and no differentially expressed DYW deaminase-coding PPRs were directly associated with the male sterility and restoration in the CMS-D2 system. Our current study provides an important piece of information regarding the structural and evolutionary characteristics of Gossypium DYW-containing PPR genes coding for deaminases and will be useful for characterizing the DYW deaminase gene

  14. Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth.

    PubMed

    Jalili, Farzad; Khavazi, Kazem; Pazira, Ebrahim; Nejati, Alireza; Rahmani, Hadi Asadi; Sadaghiani, Hasan Rasuli; Miransari, Mohammad

    2009-04-01

    Salinity stress is of great importance in arid and semi-arid areas of the world due to its impact in reducing crop yield. Under salinity stress, the amount of 1-aminocyclopropane-1-carboxylate (ACC), a precursor for ethylene production in plants, increases. Here, we conducted research under the hypothesis that isolated ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida can alleviate the stressful effects of salinity on canola (Brassica napus L.) growth. The experiments were conducted in the Soil and Water Research Institute, Tehran, Iran. Seven experimental stages were conducted to isolate and characterize ACC deaminase-producing Pseudomonas fluorescens strains and to determine factors enhancing their growth and, consequently, their effects on the germination of canola seeds. Under salinity stress, in 14% of the isolates, ACC deaminase activity was observed, indicating that they were able to utilize ACC as the sole N-source. Bacterial strains differed in their ability to synthesize auxin and hydrogen cyanide compounds, as well as in their ACC deaminase activity. Under salinity stress, the rate of germinating seeds inoculated with the strains of ACC deaminase-producing Pseudomonas fluorescens and Pseudomonas putida, and seedling growth was significantly higher. These results indicate the significance of soil biological activities, including the activities of plant growth-promoting bacteria, in the alleviation of soil stresses such as salinity on plant growth.

  15. Mycobacterium tuberculosis ESAT6 and CPF10 Induce Adenosine Deaminase 2 mRNA Expression in Monocyte-Derived Macrophages

    PubMed Central

    Bae, Mi Jung; Ryu, Suyeon; Kim, Ha-Jeong; Cha, Seung Ick

    2017-01-01

    Background Delayed hypersensitivity plays a large role in the pathogenesis of tuberculous pleural effusion (TPE). Macrophages infected with live Mycobacterium tuberculosis (MTB) increase the levels of adenosine deaminase2 (ADA2) in the pleural fluid of TPE patients. However, it is as yet unclear whether ADA2 can be produced by macrophages when challenged with MTB antigens alone. This study therefore evaluated the levels of ADA2 mRNA expression, using monocyte-derived macrophages (MDMs) stimulated with MTB antigens. Methods Purified monocytes from the peripheral blood mononuclear cells of healthy volunteers were differentiated into macrophages using granulocyte-macrophage colony-stimulating factor (GM-CSF) or macrophage colony-stimulating factor (M-CSF). The MDMs were stimulated with early secretory antigenic target protein 6 (ESAT6) and culture filtrate protein 10 (CFP10). The mRNA expression levels for the cat eye syndrome chromosome region, candidate 1 (CECR1) gene encoding ADA2 were then measured. Results CECR1 mRNA expression levels were significantly higher in MDMs stimulated with ESAT6 and CFP10, than in the unstimulated MDMs. When stimulated with ESAT6, M-CSF-treated MDMs showed more pronounced CECR1 mRNA expression than GM-CSF-treated MDMs. Interferon-γ decreased the ESAT6- and CFP10-induced CECR1 mRNA expression in MDMs. CECR1 mRNA expression levels were positively correlated with mRNA expression of tumor necrosis factor α and interleukin 10, respectively. Conclusion ADA2 mRNA expression increased when MDMs were stimulated with MTB antigens alone. This partly indicates that pleural fluid ADA levels could increase in patients with culture-negative TPE. Our results may be helpful in improving the understanding of TPE pathogenesis. PMID:28119750

  16. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    SciTech Connect

    Lim, B.; Apperley, J.F.; Orkin, S.H.; Williams, D.A. )

    1989-11-01

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy.

  17. PEG-ADA: an alternative to haploidentical bone marrow transplantation and an adjunct to gene therapy for adenosine deaminase deficiency.

    PubMed

    Hershfield, M S

    1995-01-01

    PEG-ADA is a long-circulating form of adenosine deaminase (ADA) that has been in use for > 8 years as replacement therapy for severe combined immunodeficiency disease due to ADA deficiency. Treatment with PEG-ADA almost completely corrects metabolic abnormalities, allowing the recovery of a variable degree of immune function. Although not normal, the level of function achieved has in most cases been sufficient to protect against opportunistic and life-threatening infections. PEG-ADA has been used as an alternative for patients who lack an HLA-identical bone marrow donor, but are judged to be at too high a risk for undergoing HLA-haploidentical marrow transplantation. To date, mortality and morbidity with PEG-ADA have been less than for the latter procedure. PEG-ADA has also been an important adjunct to attempts to develop somatic cell gene therapy for ADA deficiency, although its continued use poses a problem for evaluation of the benefit of gene therapy. As a true "orphan drug" developed to treat a very small patient population, the cost per patient of PEG-ADA is very high.

  18. High-yield production of apoplast-directed human adenosine deaminase in transgenic tobacco BY-2 cell suspensions.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2015-01-01

    Adenosine deaminase (ADA) deficiency, where a deleterious mutation in the ADA gene of patients results in a dysfunctional immune system, is ultimately caused by an absence of ADA. Over the last 25 years the disease has been treated with PEG-ADA, made from purified bovine ADA coupled with polyethylene glycol (PEG). However, it is thought that an enzyme replacement therapy protocol based on recombinant human ADA would probably be a more effective treatment. With this end in mind, a human ADA cDNA was inserted into plant expression vectors used to transform tobacco plant cell suspensions. Transgenic calli expressing constructs containing apoplast-directing signals showed significantly higher levels of recombinant ADA expression than calli transformed with cytosolic constructs. The most significant ADA activities, however, were measured in the media of transgenic cell suspensions prepared from high expressing transformed calli: where incorporation of a signal for arabinogalactan addition to ADA led to a recombinant protein yield of approximately 16 mg L(-1) , a 336-fold increase over ADA produced by cell suspensions transformed with a cytosolic construct.

  19. Human amniotic fluid-derived stem cells expressing cytosine deaminase and thymidine kinase inhibits the growth of breast cancer cells in cellular and xenograft mouse models.

    PubMed

    Kang, N-H; Hwang, K-A; Yi, B-R; Lee, H J; Jeung, E-B; Kim, S U; Choi, K-C

    2012-06-01

    As human amniotic fluid-derived stem cells (hAFSCs) are capable of multiple lineage differentiation, extensive self-renewal and tumor targeting, they may be valuable for clinical anticancer therapies. In this study, we used hAFSCs as vehicles for targeted delivery of therapeutic suicide genes to breast cancer cells. hAFSCs were engineered to produce AF2.CD-TK cells in order to express two suicide genes encoding bacterial cytosine deaminase (CD) and herpes simplex virus thymidine kinase (HSV-TK) that convert non-toxic prodrugs, 5-fluorocytosine (5-FC) and mono-phosphorylate ganciclovir (GCV-MP), into cytotoxic metabolites, 5-fluorouracil (5-FU) and triphosphate ganciclovir (GCV-TP), respectively. In cell viability test in vitro, AF2.CD-TK cells inhibited the growth of MDA-MB-231 human breast cancer cells in the presence of the 5-FC or GCV prodrugs, or a combination of these two reagents. When the mixture of 5-FC and GCV was treated together, an additive cytotoxic effect was observed in the cell viability. In animal experiments using female BALB/c nude mouse xenografts, which developed by injecting MDA-MB-231 cells, treatment with AF2.CD-TK cells in the presence of 5-FC and GCV significantly reduced tumor volume and weight to the same extent seen in the mice treated with 5-FU. Histopathological and fluorescent staining assays further showed that AF2.CD-TK cells were located exactly at the site of tumor formation. Furthermore, breast tissues treated with AF2.CD-TK cells and two prodrugs maintained their normal structures (for example, the epidermis and reticular layers) while breast tissue structures in 5-FU-treated mice were almost destroyed by the potent cytotoxicity of the drug. Taken together, these results indicate that AF2.CD-TK cells can serve as excellent vehicles in a novel therapeutic cell-based gene-directed prodrug system to selectively target breast malignancies.

  20. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains.

    PubMed

    Hayes, Michael L; Giang, Karolyn; Berhane, Beniam; Mulligan, R Michael

    2013-12-20

    Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.

  1. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    PubMed

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  2. Plasma Membrane Tetraspanin CD81 Complexes with Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR), and Its Levels Are Reduced by PCSK9.

    PubMed

    Le, Quoc-Tuan; Blanchet, Matthieu; Seidah, Nabil G; Labonté, Patrick

    2015-09-18

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in plasma cholesterol regulation through modulation of low density lipoprotein receptor (LDLR) levels. Naturally occurring mutations can lead to hyper- or hypocholesterolemia in human. Recently, we reported that PCSK9 was also able to modulate CD81 in Huh7 cells. In the present study, several gain-of-function and loss-of-function mutants as well as engineered mutants of PCSK9 were compared for their ability to modulate the cell surface expression of LDLR and CD81. Although PCSK9 gain-of-function D374Y enhanced the degradation both receptors, D374H and D129N seemed to only reduce LDLR levels. In contrast, mutations in the C-terminal hinge-cysteine-histidine-rich domain segment primarily affected the PCSK9-induced CD81 degradation. Furthermore, when C-terminally fused to an ACE2 transmembrane anchor, the secretory N-terminal catalytic or hinge-cysteine-histidine-rich domain domains of PCSK9 were able to reduce CD81 and LDLR levels. These data confirm that PCSK9 reduces CD81 levels via an intracellular pathway as reported for LDLR. Using immunocytochemistry, a proximity ligation assay, and co-immunoprecipitation, we found that the cell surface level of PCSK9 was enhanced upon overexpression of CD81 and that both PCSK9 and LDLR interact with this tetraspanin protein. Interestingly, using CHO-A7 cells lacking LDLR expression, we revealed that LDLR was not required for the degradation of CD81 by PCSK9, but its presence strengthened the PCSK9 effect.

  3. CD56brightCD16- NK Cells Produce Adenosine through a CD38-Mediated Pathway and Act as Regulatory Cells Inhibiting Autologous CD4+ T Cell Proliferation.

    PubMed

    Morandi, Fabio; Horenstein, Alberto L; Chillemi, Antonella; Quarona, Valeria; Chiesa, Sabrina; Imperatori, Andrea; Zanellato, Silvia; Mortara, Lorenzo; Gattorno, Marco; Pistoia, Vito; Malavasi, Fabio

    2015-08-01

    Recent studies suggested that human CD56(bright)CD16(-) NK cells may play a role in the regulation of the immune response. Since the mechanism(s) involved have not yet been elucidated, in the present study we have investigated the role of nucleotide-metabolizing enzymes that regulate the extracellular balance of nucleotides/nucleosides and produce the immunosuppressive molecule adenosine (ADO). Peripheral blood CD56(dim)CD16(+) and CD56(bright)CD16(-) NK cells expressed similar levels of CD38. CD39, CD73, and CD157 expression was higher in CD56(bright)CD16(-) than in CD56(dim)CD16(+) NK cells. CD57 was mostly expressed by CD56(dim)CD16(+) NK cells. CD203a/PC-1 expression was restricted to CD56(bright)CD16(-) NK cells. CD56(bright)CD16(-) NK cells produce ADO and inhibit autologous CD4(+) T cell proliferation. Such inhibition was 1) reverted pretreating CD56(bright)CD16(-) NK cells with a CD38 inhibitor and 2) increased pretreating CD56(bright)CD16(-) NK cells with a nucleoside transporter inhibitor, which increase extracellular ADO concentration. CD56(bright)CD16(-) NK cells isolated from the synovial fluid of juvenile idiopathic arthritis patients failed to inhibit autologous CD4(+) T cell proliferation. Such functional impairment could be related to 1) the observed reduced CD38/CD73 expression, 2) a peculiar ADO production kinetics, and 3) a different expression of ADO receptors. In contrast, CD56(bright)CD16(-) NK cells isolated from inflammatory pleural effusions display a potent regulatory activity. In conclusion, CD56(bright)CD16(-) NK cells act as "regulatory cells" through ADO produced by an ectoenzymes network, with a pivotal role of CD38. This function may be relevant for the modulation of the immune response in physiological and pathological conditions, and it could be impaired during autoimmune/inflammatory diseases.

  4. The effects of carnosine on oxidative DNA damage levels and in vitro lifespan in human peripheral blood derived CD4+T cell clones.

    PubMed

    Hyland, P; Duggan, O; Hipkiss, A; Barnett, C; Barnett, Y

    2000-12-20

    Carnosine (beta-alanyl-L-histidine), an abundant naturally-occurring dipeptide has been shown to exhibit anti-ageing properties towards cultured cells, possibly due in part to its antioxidant/free radical scavenging abilities. In this paper the results of an investigation on the effects of carnosine, at the physiological concentration of 20 mM, on oxidative DNA damage levels and in vitro lifespan in peripheral blood derived human CD4+ T cell clones are reported. Under the culture conditions used (20% O(2)) long term culture with carnosine resulted in a significant increase in the lifespan of a clone derived from a healthy young subject. No such extension was observed when a T cell clone from a healthy old SENIEUR donor was similarly cultured. Culture with carnosine from the midpoint of each clone's lifespan did not have any effect on longevity, independent of donor age. Oxidative DNA damage levels were measured in the clones at various points in their lifespans. Carnosine acted as a weak antioxidant, with levels of oxidative DNA damage being lower in T cells grown long term in the presence of carnosine. The possibility that carnosine might confer anti-ageing effects to T cells under physiological oxygen tensions would appear to be worthy of further investigation.

  5. Evaluation of toluene exposure via drinking water on levels of regional brain biogenic monoamines and their metabolites in CD-1 mice

    SciTech Connect

    Hsieh, G.C.; Sharma, R.P.; Parker, R.D.; Coulombe, R.A. Jr. )

    1990-10-01

    Toluene, a potentially neurotoxic substance, is found in trace amounts in groundwater. Adult male CD-1 mice were continuously fed drinking water ad libitum containing 0, 17, 80, and 405 mg/liter toluene. After a 28-day treatment, animals were tested for endogenous levels of the biogenic monoamines norepinephrine (NE), dopamine (DA), and serotonin (5-HT) and their respective metabolites, 3-methoxy-4-hydroxymandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), in six discrete brain regions. The maximum toluene-induced increases of biogenic amines and their metabolites generally occurred at a toluene concentration of 80 mg/liter. In the hypothalamus, a major NE-containing compartment, the concentrations of NE significantly increased by 51, 63, and 34% in groups dosed with 17, 80, and 405 mg/liter, respectively. Significant increases of NE were also observed in the medulla oblongata and midbrain. Concomitantly, concentrations of VMA increased in various brain regions. Concentrations of DA were significantly higher in the corpus striatum and hypothalamus. Alterations in levels of DA metabolites, DOPAC and HVA, were marginal. Toluene significantly increased concentrations of 5-HT in all dissected brain regions, except cerebellum, and increased the 5-HIAA levels in the hypothalamus, corpus striatum, and cerebral cortex.

  6. Transcriptional pausing and stalling causes multiple clustered mutations by human activation-induced deaminase

    PubMed Central

    Canugovi, Chandrika; Samaranayake, Mala; Bhagwat, Ashok S.

    2009-01-01

    Transcription of the rearranged immunoglobulin gene and expression of the enzyme activation-induced deaminase (AID) are essential for somatic hypermutations of this gene during antibody maturation. While AID acts as a single-strand DNA-cytosine deaminase creating U · G mispairs that lead to mutations, the role played by transcription in this process is less clear. We have used in vitro transcription of the kan gene by the T7 RNA polymerase (RNAP) in the presence of AID and a genetic reversion assay for kanamycin-resistance to investigate the causes of multiple clustered mutations (MCMs) during somatic hypermutations. We find that, depending on transcription conditions, AID can cause single-base substitutions or MCMs. When wild-type RNAP is used for transcription at physiologically relevant concentrations of ribonucleoside triphosphates (NTPs), few MCMs are found. In contrast, slowing the rate of elongation by reducing the NTP concentration or using a mutant RNAP increases several-fold the percent of revertants containing MCMs. Arresting the elongation complexes by a quick removal of NTPs leads to formation of RNA-DNA hybrids (R-loops). Treatment of these structures with AID results in a high percentage of KanR revertants with MCMs. Furthermore, selecting for transcription elongation complexes stalled near the codon that suffers mutations during acquisition of kanamycin-resistance results in an overwhelming majority of revertants with MCMs. These results show that if RNAP II pauses or stalls during transcription of immunoglobulin gene, AID is likely to promote MCMs. As changes in physiological conditions such as occurrence of certain DNA primary or secondary structures or DNA adducts are known to cause transcriptional pausing and stalling in mammalian cells, this process may cause MCMs during somatic hypermutation.—Canugovi, C., Samaranayake, M., Bhagwat, A. S. Transcriptional pausing and stalling causes multiple clustered mutations by human activation

  7. The organotin-induced thymus atrophy, characterized by depletion of CD4+ CD8+ thymocytes, is preceded by a reduction of the immature CD4- CD8+ TcR alpha beta-/low CD2high thymoblast subset.

    PubMed Central

    Pieters, R H; Bol, M; Lam, B W; Seinen, W; Penninks, A H

    1992-01-01

    Thymic changes in the rat induced by the thymus atrophy-inducing organotin compound di-n-butyltin dichloride (DBTC) were examined using FACS analyses. The number of CD4+CD8+ thymocytes was reduced by DBTC treatment from Day 2 onwards and reached minimum level on Days 4 and 5 after dosing. On these days the CD4-CD8- and both the CD4-CD8+ and CD4+CD8- subsets were not affected. On Day 2 we observed a reduced proportion of transferrin receptor (CD71)-positive CD4-OX44- cells, representing the cycling immature CD4-CD8+ cells, and of CD71+OX44- cells, representing the cycling CD4+CD8+ cells, but not of CD71+CD4-CD8- cells. When compared to controls, the FSChigh cell population of DBTC-treated rats contained less CD4-OX44- and OX44- cells, which were further characterized as CD2high and T-cell receptor (TcR)alpha beta- low. Moreover, fewer TcR alpha beta high cells were detected in the OX44- thymoblast subset of DBTC-treated rats. The number of CD4-CD8- thymoblasts appeared marginally decreased while the numbers of CD4+OX44+ cells, representing mature CD4+ cells, were not affected. These data indicate that DBTC causes a preferential initial depletion of immature CD4-CD8+CD2high TcR alpha beta-low thymoblasts. This initial event may result in a decreased formation of CD4+CD8+ thymoblasts and of small CD4+CD8+ thymocytes. These characteristics of the initially depleted subset indicate a specific anti-proliferative effect of DBTC and may give clues for the mechanism involved in the induction of thymus atrophy. PMID:1353062

  8. T-cell lines from 2 patients with adenosine deaminase (ADA) deficiency showed the restoration of ADA activity resulted from the reversion of an inherited mutation.

    PubMed

    Ariga, T; Oda, N; Yamaguchi, K; Kawamura, N; Kikuta, H; Taniuchi, S; Kobayashi, Y; Terada, K; Ikeda, H; Hershfield, M S; Kobayashi, K; Sakiyama, Y

    2001-05-01

    Inherited deficiency of adenosine deaminase (ADA) results in one of the autosomal recessive forms of severe combined immunodeficiency. This report discusses 2 patients with ADA deficiency from different families, in whom a possible reverse mutation had occurred. The novel mutations were identified in the ADA gene from the patients, and both their parents were revealed to be carriers. Unexpectedly, established patient T-cell lines, not B-cell lines, showed half-normal levels of ADA enzyme activity. Reevaluation of the mutations in these T-cell lines indicated that one of the inherited ADA gene mutations was reverted in both patients. At least one of the patients seemed to possess the revertant cells in vivo; however, the mutant cells might have overcome the revertant after receiving ADA enzyme replacement therapy. These findings may have significant implications regarding the prospects for stem cell gene therapy for ADA deficiency.

  9. Ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) activities in prostate cancer patients: influence of Gleason score, treatment and bone metastasis.

    PubMed

    Battisti, Vanessa; Maders, Liési D K; Bagatini, Margarete D; Battisti, Iara E; Bellé, Luziane P; Santos, Karen F; Maldonado, Paula A; Thomé, Gustavo R; Schetinger, Maria R C; Morsch, Vera M

    2013-04-01

    The relation between adenine nucleotides and cancer has already been described in literature. Considering that the enzymes ectonucleotide pyrophosphatase/phosphodiesterase (E-NPP) and adenosine deaminase (ADA) act together to control nucleotide levels, we aimed to investigate the role of these enzymes in prostate cancer (PCa). E-NPP and ADA activities were determined in serum and platelets of PCa patients and controls. We also verified the influence of the Gleason score, bone metastasis and treatment in the enzyme activities. Platelets and serum E-NPP activity increased, whereas ADA activity in serum decreased in PCa patients. In addition, Gleason score, metastasis and treatment influenced E-NPP and ADA activities. We may propose that E-NPP and ADA are involved in the development of PCa. Moreover, E-NPP and ADA activities are modified in PCa patients with distinct Gleason score, with bone metastasis, as well as in patients under treatment.

  10. Significance of the D-serine-deaminase and D-serine metabolism of Staphylococcus saprophyticus for virulence.

    PubMed

    Korte-Berwanger, Miriam; Sakinc, Türkan; Kline, Kimberly; Nielsen, Hailyn V; Hultgren, Scott; Gatermann, Sören G

    2013-12-01

    Staphylococcus saprophyticus is the only species of Staphylococcus that is typically uropathogenic and possesses a gene coding for a D-serine-deaminase (DsdA). As D-serine is prevalent in urine and toxic or bacteriostatic to many bacteria, it is not surprising that the D-serine-deaminase gene is found in the genome of uropathogens. It has been suggested that D-serine-deaminase or the ability to respond to or to metabolize D-serine is important for virulence. For uropathogenic Escherichia coli (UPEC), a high intracellular D-serine concentration affects expression of virulence factors. S. saprophyticus is able to grow in the presence of high D-serine concentrations; however, its D-serine metabolism has not been described. The activity of the D-serine-deaminase was verified by analyzing the formation of pyruvate from D-serine in different strains with and without D-serine-deaminase. Cocultivation experiments were performed to show that D-serine-deaminase confers a growth advantage to S. saprophyticus in the presence of D-serine. Furthermore, in vivo coinfection experiments showed a disadvantage for the ΔdsdA mutant during urinary tract infection. Expression analysis of known virulence factors by reverse transcription-quantitative PCR (RT-qPCR) showed that the surface-associated lipase Ssp is upregulated in the presence of D-serine. In addition, we show that S. saprophyticus is able to use D-serine as the sole carbon source, but interestingly, D-serine had a negative effect on growth when glucose was also present. Taken together, D-serine metabolism is associated with virulence in S. saprophyticus, as at least one known virulence factor is upregulated in the presence of D-serine and a ΔdsdA mutant was attenuated in virulence murine model of urinary tract infection.

  11. Maize haplotype with a helitron-amplified cytidine deaminase gene copy

    PubMed Central

    Xu, Jian-Hong; Messing, Joachim

    2006-01-01

    Background Genetic maps are based on recombination of orthologous gene sequences between different strains of the same species. Therefore, it was unexpected to find extensive non-collinearity of genes between different inbred strains of maize. Interestingly, disruption of gene collinearity can be caused among others by a rolling circle-type copy and paste mechanism facilitated by Helitrons. However, understanding the role of this type of gene amplification has been hampered by the lack of finding intact gene sequences within Helitrons. Results By aligning two haplotypes of the z1C1 locus of maize we found a Helitron that contains two genes, one encoding a putative cytidine deaminase and one a hypothetical protein with part of a 40S ribosomal protein. The cytidine deaminase gene, called ZmCDA3, has been copied from the ZmCDA1 gene on maize chromosome 7 about 4.5 million years ago (mya) after maize was formed by whole-genome duplication from two progenitors. Inbred lines contain gene copies of both progenitors, the ZmCDA1 and ZmCDA2 genes. Both genes diverged when the progenitors of maize split and are derived from the same progenitor as the rice OsCDA1 gene. The ZmCDA1 and ZmCDA2 genes are both transcribed in leaf and seed tissue, but transcripts of the paralogous ZmCDA3 gene have not been found yet. Based on their protein structure the maize CDA genes encode a nucleoside deaminase that is found in bacterial systems and is distinct from the mammalian RNA and/or DNA modifying enzymes. Conclusion The conservation of a paralogous gene sequence encoding a cytidine deaminase gene over 4.5 million years suggests that Helitrons could add functional gene sequences to new chromosomal positions and thereby create new haplotypes. However, the function of such paralogous gene copies cannot be essential because they are not present in all maize strains. However, it is interesting to note that maize hybrids can outperform their inbred parents. Therefore, certain haplotypes may

  12. Synthesis of conformationally locked carbocyclic 1,3-diazepinone nucleosides as inhibitors of cytidine deaminase

    PubMed Central

    Ludek, Olaf R.; Schroeder, Gottfried K.; Wolfenden, Richard; Marquez, Victor E.

    2009-01-01

    We synthesized a series of carbocyclic nucleoside inhibitors of cytidine deaminase (CDA) based on a seven-membered 1,3-diazepin-2-one moiety. In the key step, the seven-membered ring was formed by a ringclosing- metathesis reaction. Therefore, the bis-allylurea moiety had to be protected by benzoylation in order to obtain an orientation suitable for ring closure. To our surprise, the analogue built on a flexible sugar template (4) showed a 100-fold stronger inhibition of CDA than the derivative with the preferred southconformation. PMID:18776552

  13. Threonine deaminase from extremely halophilic bacteria - Cooperative substrate kinetics and salt dependence.

    NASA Technical Reports Server (NTRS)

    Lieberman, M. M.; Lanyi, J. K.

    1972-01-01

    The effect of salt on the activity, stability, and allosteric properties of catabolic threonine deaminase from Halobacterium cutirubrum was studied. The enzyme exhibits sigmoidal kinetics with the substrate, threonine. The Hill slope is 1.55 at pH 10. The enzyme is activated by ADP at low substrate concentrations. In the presence of this effector, sigmoidal kinetics are no longer observed. At pH 10, in the absence of ADP, enzyme activity increases with increasing NaCl concentration from 0 to 4 M.

  14. Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels.

    PubMed

    Kochenderfer, James N; Somerville, Robert P T; Lu, Tangying; Shi, Victoria; Bot, Adrian; Rossi, John; Xue, Allen; Goff, Stephanie L; Yang, James C; Sherry, Richard M; Klebanoff, Christopher A; Kammula, Udai S; Sherman, Marika; Perez, Arianne; Yuan, Constance M; Feldman, Tatyana; Friedberg, Jonathan W; Roschewski, Mark J; Feldman, Steven A; McIntyre, Lori; Toomey, Mary Ann; Rosenberg, Steven A

    2017-03-14

    Purpose T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 (CAR-19) have potent activity against acute lymphoblastic leukemia, but fewer results supporting treatment of lymphoma with CAR-19 T cells have been published. Patients with lymphoma that is chemotherapy refractory or relapsed after autologous stem-cell transplantation have a grim prognosis, and new treatments for these patients are clearly needed. Chemotherapy administered before adoptive T-cell transfer has been shown to enhance the antimalignancy activity of adoptively transferred T cells. Patients and Methods We treated 22 patients with advanced-stage lymphoma in a clinical trial of CAR-19 T cells preceded by low-dose chemotherapy. Nineteen patients had diffuse large B-cell lymphoma, two patients had follicular lymphoma, and one patient had mantle cell lymphoma. Patients received a single dose of CAR-19 T cells 2 days after a low-dose chemotherapy conditioning regimen of cyclophosphamide plus fludarabine. Results The overall remission rate was 73% with 55% complete remissions and 18% partial remissions. Eleven of 12 complete remissions are ongoing. Fifty-five percent of patients had grade 3 or 4 neurologic toxicities that completely resolved. The low-dose chemotherapy conditioning regimen depleted blood lymphocytes and increased serum interleukin-15 (IL-15). Patients who achieved a remission had a median peak blood CAR(+) cell level of 98/μL and those who did not achieve a remission had a median peak blood CAR(+) cell level of 15/μL ( P = .027). High serum IL-15 levels were associated with high peak blood CAR(+) cell levels ( P = .001) and remissions of lymphoma ( P < .001). Conclusion CAR-19 T cells preceded by low-dose chemotherapy induced remission of advanced-stage lymphoma, and high serum IL-15 levels were associated with the effectiveness of this treatment regimen. CAR-19 T cells will likely become an important treatment for patients with relapsed lymphoma.

  15. Pleural effusion: Role of pleural fluid cytology, adenosine deaminase level, and pleural biopsy in diagnosis

    PubMed Central

    Biswas, Biswajit; Sharma, Sudershan Kumar; Negi, Rameshwar Singh; Gupta, Neelam; Jaswal, Virender Mohan Singh; Niranjan, Narsimhalu

    2016-01-01

    Objective: The present study is designed to evaluate the role of pleural fluid analysis in diagnosing pleural diseases and to study the advantages and disadvantages of thoracocentasis and pleural biopsy. Materials and Methods: We prospectively included 66 consecutive indoor patients over a duration of 1 year. Pleural fluid was collected and cytological smears were made from the fluid. Plural biopsy was done in the same patient by Cope needle. Adequate pleural biopsy tissue yielding specific diagnosis was obtained in 47 (71.2%) cases. Results: Tuberculosis was the commonest nonneoplastic lesion followed by chronic nonspecific pleuritis comprising 60% and 33.3% of the nonneoplastic cases respectively and tuberculosis was predominantly diagnosed in the younger age group. Majority (70.8%) of malignancy cases were in the age group of >50-70. Adenocarcinoma was found to be the commonest (66.7%) malignant neoplasm in the pleurae followed by small-cell carcinoma (20.8%). Conclusion: Pleural biopsy is a useful and minimally invasive procedure. It is more sensitive and specific than pleural fluid smears. PMID:27756990

  16. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    PubMed

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  17. Suppression of the growth of human colorectal cancer cells by therapeutic stem cells expressing cytosine deaminase and interferon-β via their tumor-tropic effect in cellular and xenograft mouse models.

    PubMed

    Yi, Bo-Rim; Park, Min-Ah; Lee, Hye-Rim; Kang, Nam-Hee; Choi, Kelvin J; Kim, Seung U; Choi, Kyung-Chul

    2013-06-01

    Genetically engineered stem cells (GESTECs) exhibit a potent therapeutic efficacy via their strong tumor tropism toward cancer cells. In this study, we introduced the human parental neural stem cells, HB1.F3, with the human interferon beta (IFN-β) gene which is a typical cytokine gene that has an antitumor effect and the cytosine deaminase (CD) gene from Escherichia coli (E. coli) that could convert the non-toxic prodrug, 5-fluorocytosine (5-FC), to a toxic metabolite, 5-fluorouracil (5-FU). Two types of stem cells expressing the CD gene (HB1.F3.CD cells) and both the CD and human IFN-β genes (HB1.F3.CD.IFN-β) were generated. The present study was performed to examine the migratory and therapeutic effects of these GESTECs against the colorectal cancer cell line, HT-29. When co-cultured with colorectal cancer cells in the presence of 5-FC, HB1.F3.CD and HB1.F3.CD.IFN-β cells exhibited the cytotoxicity on HT-29 cells via the bystander effect. In particular, HB1.F3.CD.IFN-β cells showed the synergistic cytotoxic activity of 5-FU and IFN-β. We also confirmed the migration ability of HB1.F3.CD and HB1.F3.CD.IFN-β cells toward HT-29 cells by a modified migration assay in vitro, where chemoattractant factors secreted by HT-29 cells attracted the GESTECs. In a xenograft mouse model, the volume of tumor mass was decreased up to 56% in HB1.F3.CD injected mice while the tumor mass was greatly inhibited about 76% in HB1.F3.CD.IFN-β injected mice. The therapeutic treatment by these GESTECs is a novel strategy where the combination of the migration capacity of stem cells as a vector for therapeutic genes towards colorectal cancer and a synergistic antitumor effect of CD and IFN-β genes can selectively target this type of cancer.

  18. CD Rainbows

    ERIC Educational Resources Information Center

    Ouseph, P. J.

    2007-01-01

    Several papers have been published on the use of a CD as a grating for undergraduate laboratories and/or for high school and college class demonstrations. Four years ago "The Physics Teacher" had a spectacular cover picture showing emission spectrum as viewed through a CD with no coating. That picture gave the impetus to develop a system that can…

  19. The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections

    PubMed Central

    Vieira, Valdimara C.; Soares, Marcelo A.

    2013-01-01

    The APOBEC family of proteins comprises deaminase enzymes that edit DNA and/or RNA sequences. The APOBEC3 subgroup plays an important role on the innate immune system, acting on host defense against exogenous viruses and endogenous retroelements. The role of APOBEC3 proteins in the inhibition of viral infection was firstly described for HIV-1. However, in the past few years many studies have also shown evidence of APOBEC3 action on other viruses associated with human diseases, including HTLV, HCV, HBV, HPV, HSV-1, and EBV. APOBEC3 inhibits these viruses through a series of editing-dependent and independent mechanisms. Many viruses have evolved mechanisms to counteract APOBEC effects, and strategies that enhance APOBEC3 activity constitute a new approach for antiviral drug development. On the other hand, novel evidence that editing by APOBEC3 constitutes a source for viral genetic diversification and evolution has emerged. Furthermore, a possible role in cancer development has been shown for these host enzymes. Therefore, understanding the role of deaminases on the immune response against infectious agents, as well as their role in human disease, has become pivotal. This review summarizes the state-of-the-art knowledge of the impact of APOBEC enzymes on human viruses of distinct families and harboring disparate replication strategies. PMID:23865062

  20. How We Manage Adenosine Deaminase-Deficient Severe Combined Immune Deficiency (ADA SCID).

    PubMed

    Kohn, Donald B; Gaspar, H Bobby

    2017-02-14

    Adenosine deaminase-deficient severe combined immune deficiency (ADA SCID) accounts for 10-15% of cases of human SCID. From what was once a uniformly fatal disease, the prognosis for infants with ADA SCID has improved greatly based on the development of multiple therapeutic options, coupled with more frequent early diagnosis due to implementation of newborn screening for SCID. We review the various treatment approaches for ADA SCID including allogeneic hematopoietic stem cell transplantation (HSCT) from a human leukocyte antigen-matched sibling or family member or from a matched unrelated donor or a haplo-identical donor, autologous HSCT with gene correction of the hematopoietic stem cells (gene therapy-GT), and enzyme replacement therapy (ERT) with polyethylene glycol-conjugated adenosine deaminase. Based on growing evidence of safety and efficacy from GT, we propose a treatment algorithm for patients with ADA SCID that recommends HSCT from a matched family donor, when available, as a first choice, followed by GT as the next option, with allogeneic HSCT from an unrelated or haplo-identical donor or long-term ERT as other options.

  1. Improved method for effective screening of ACC (1-aminocyclopropane-1-carboxylate) deaminase producing microorganisms.

    PubMed

    Patil, Chandrashekhar; Suryawanshi, Rahul; Koli, Sunil; Patil, Satish

    2016-12-01

    Aminocyclopropane-1-carboxylate deaminase (ACCD) producing microorganisms support plant growth under a variety of biotic and abiotic stress conditions such as drought, soil salinity, flooding, heavy metal pollution and phyto-pathogen attack. Available screening methods for ACCD give idea only about its primary microbial ACCD activity than the actual potential. In the present investigation, we have simply improved screening method by incorporating pH indicator dyes (phenol red and bromothymol blue) in ACC containing medium. This modification is based on the basic principle that ACCD action releases ammonia which can be detected by color change and zone around the bacterial colony. High color intensity and zone around the colony indicates most potent producer, colony showing only a color change indicates moderate potential and no change in colony color indicates least efficiency. Enzymatic bioassays as well as root elongation studies revealed that ACC-deaminase activity of Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Bacillus subtilis clearly corresponds to their growth on dye incorporated ACC medium. This method could be used to complement the existing screening methods and to speed up the targeted isolation of agriculturally important microorganisms.

  2. Expression of a functional human adenosine deaminase in transgenic tobacco plants.

    PubMed

    Singhabahu, Sanjeewa; George, John; Bringloe, David

    2013-06-01

    An inherited disorder, adenosine deaminase deficiency is a form of severe combined immunodeficiency, which is ultimately caused by an absence of adenosine deaminase (ADA), a key enzyme of the purine salvage pathway. The absence of ADA-activity in sufferers eventually results in a dysfunctional immune system due to the build-up of toxic metabolites. To date, this has been treated with mixed success, using PEG-ADA, made from purified bovine ADA coupled to polyethylene glycol. It is likely, however, that an enzyme replacement therapy protocol based on recombinant human ADA would be a more effective treatment for this disease. Therefore, as a preliminary step to produce biologically active human ADA in transgenic tobacco plants a human ADA cDNA has been inserted into a plant expression vector under the control of the CaMV 35S promoter and both human and TMV 5' UTR control regions. Plant vector expression constructs have been used to transform tobacco plants via Agrobacterium-mediated transformation. Genomic DNA, RNA and protein blot analyses have demonstrated the integration of the cDNA construct into the plant nuclear genome and the expression of recombinant ADA mRNA and protein in transgenic tobacco leaves. Western blot analysis has also revealed that human and recombinant ADA have a similar size of approximately 41 kDa. ADA-specific activities of between 0.001 and 0.003 units per mg total soluble protein were measured in crude extracts isolated from transformed tobacco plant leaves.

  3. Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase

    SciTech Connect

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.

  4. Diagnostic Value of Adenosine Deaminase and Its Isoforms in Type II Diabetes Mellitus

    PubMed Central

    Larijani, Bagher; Heshmat, Ramin; Ebrahimi-Rad, Mina; Khatami, Shohreh; Valadbeigi, Shirin

    2016-01-01

    Background and Aims. In the present study, we have investigated the activity of adenosine deaminase (ADA) as a diagnostic marker in type 2 (or II) diabetes mellitus (T2DM). Design and Methods. The deaminase activity of ADA1 and ADA2 was determined in serum from 33 patients with type 2 (or II) diabetes mellitus and 35 healthy controls. We also determined the proportion of glycated hemoglobin (HbA1c). Results. Our results showed significant differences between total serum ADA (tADA) and ADA2 activities in the diabetic groups with HbA1c < 8 (%) and HbA1c ≥ 8 (%) with respect to the values in healthy individuals (p < 0.001). ADA2 activity in patients with high HbA1c was found to be much higher than that in patients with low HbA1c (p = 0.0001). In addition, total ADA activity showed a significant correlation with HbA1c (r = 0.6, p < 0.0001). Conclusions. Total serum ADA activity, specially that due to ADA2, could be useful test for the diagnosis of type 2 (or II) diabetes mellitus. PMID:28050278

  5. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction.

    PubMed

    Gaspar, H Bobby; Cooray, Samantha; Gilmour, Kimberly C; Parsley, Kathryn L; Zhang, Fang; Adams, Stuart; Bjorkegren, Emma; Bayford, Jinhua; Brown, Lucinda; Davies, E Graham; Veys, Paul; Fairbanks, Lynette; Bordon, Victoria; Petropoulou, Theoni; Petropolou, Theoni; Kinnon, Christine; Thrasher, Adrian J

    2011-08-24

    Genetic defects in the purine salvage enzyme adenosine deaminase (ADA) lead to severe combined immunodeficiency (SCID) with profound depletion of T, B, and natural killer cell lineages. Human leukocyte antigen-matched allogeneic hematopoietic stem cell transplantation (HSCT) offers a successful treatment option. However, individuals who lack a matched donor must receive mismatched transplants, which are associated with considerable morbidity and mortality. Enzyme replacement therapy (ERT) for ADA-SCID is available, but the associated suboptimal correction of immunological defects leaves patients susceptible to infection. Here, six children were treated with autologous CD34-positive hematopoietic bone marrow stem and progenitor cells transduced with a conventional gammaretroviral vector encoding the human ADA gene. All patients stopped ERT and received mild chemotherapy before infusion of gene-modified cells. All patients survived, with a median follow-up of 43 months (range, 24 to 84 months). Four of the six patients recovered immune function as a result of engraftment of gene-corrected cells. In two patients, treatment failed because of disease-specific and technical reasons: Both restarted ERT and remain well. Of the four reconstituted patients, three remained off enzyme replacement. Moreover, three of these four patients discontinued immunoglobulin replacement, and all showed effective metabolic detoxification. All patients remained free of infection, and two cleared problematic persistent cytomegalovirus infection. There were no adverse leukemic side effects. Thus, gene therapy for ADA-SCID is safe, with effective immunological and metabolic correction, and may offer a viable alternative to conventional unrelated donor HSCT.

  6. Identification of function and mechanistic insights of guanine deaminase from Nitrosomonas europaea: role of the C-terminal loop in catalysis.

    PubMed

    Bitra, Aruna; Hussain, Bhukya; Tanwar, Ajay Singh; Anand, Ruchi

    2013-05-21

    NE0047 from Nitrosomonas europaea has been annotated as a zinc-dependent deaminase; however, the substrate specificity is unknown because of the low level of structural similarity and sequence identity compared to other family members. In this study, the function of NE0047 was established as a guanine deaminase (catalytic efficiency of 1.2 × 10(5) M(-1) s(-1)), exhibiting secondary activity towards ammeline. The structure of NE0047 in the presence of the substrate analogue 8-azaguanine was also determined to a resolution of 1.9 Å. NE0047 crystallized as a homodimer in an asymmetric unit. It was found that the extreme nine-amino acid C-terminal loop forms an active site flap; in one monomer, the flap is in the closed conformation and in the other in the open conformation with this loop region exposed to the solvent. Calorimetric data obtained using the full-length version of the enzyme fit to a sequential binding model, thus supporting a cooperative mode of ligand occupancy. In contrast, the mutant form of the enzyme (ΔC) with the deletion of the extreme nine amino acids follows an independent model of ligand occupancy. In addition, the ΔC mutant also does not exhibit any enzyme activity. Therefore, we propose that the progress of the reaction is communicated via changes in the conformation of the C-terminal flap and the closed form of the enzyme is the catalytically active form, while the open form allows for product release. The catalytic mechanism of deamination was also investigated, and we found that the mutagenesis of the highly conserved active site residues Glu79 and Glu143 resulted in a complete loss of activity and concluded that they facilitate the reaction by serving as proton shuttles.

  7. Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil.

    PubMed

    Siddikee, Md Ashaduzzaman; Chauhan, Puneet S; Anandham, R; Han, Gwang-Hyun; Sa, Tongmin

    2010-11-01

    In total, 140 halotolerant bacterial strains were isolated from both the soil of barren fields and the rhizosphere of six naturally growing halophytic plants in the vicinity of the Yellow Sea, near the city of Incheon in the Republic of Korea. All of these strains were characterized for multiple plant growth promoting traits, such as the production of indole acetic acid (IAA), nitrogen fixation, phosphorus (P) and zinc (Zn) solubilization, thiosulfate (S2O3) oxidation, the production of ammonia (NH3), and the production of extracellular hydrolytic enzymes such as protease, chitinase, pectinase, cellulase, and lipase under in vitro conditions. From the original 140 strains tested, on the basis of the latter tests for plant growth promotional activity, 36 were selected for further examination. These 36 halotolerant bacterial strains were then tested for 1- aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Twenty-five of these were found to be positive, and to be exhibiting significantly varying levels of activity. 16S rRNA gene sequencing analyses of the 36 halotolerant strains showed that they belong to 10 different bacterial genera: Bacillus, Brevibacterium, Planococcus, Zhihengliuella, Halomonas, Exiguobacterium, Oceanimonas, Corynebacterium, Arthrobacter, and Micrococcus. Inoculation of the 14 halotolerant bacterial strains to ameliorate salt stress (150 mM NaCl) in canola plants produced an increase in root length of between 5.2% and 47.8%, and dry weight of between 16.2% and 43%, in comparison with the uninoculated positive controls. In particular, three of the bacteria, Brevibacterium epidermidis RS15, Micrococcus yunnanensis RS222, and Bacillus aryabhattai RS341, all showed more than 40% increase in root elongation and dry weight when compared with uninoculated saltstressed canola seedlings. These results indicate that certain halotolerant bacteria, isolated from coastal soils, have a real potential to enhance plant growth under saline stress

  8. Host response to polyomavirus infection is modulated by RNA adenosine deaminase ADAR1 but not by ADAR2.

    PubMed

    George, Cyril X; Samuel, Charles E

    2011-08-01

    Adenosine deaminases acting on RNA (ADARs) catalyze the C-6 deamination of adenosine (A) to produce inosine (I), which behaves as guanine (G), thereby altering base pairing in RNAs with double-stranded character. Two genes, adar1 and adar2, are known to encode enzymatically active ADARs in mammalian cells. Furthermore, two size forms of ADAR1 are expressed by alternative promoter usage, a short (p110) nuclear form that is constitutively made and a long (p150) form that is interferon inducible and present in both the cytoplasm and nucleus. ADAR2 is also a constitutively expressed nuclear protein. Extensive A-to-G substitution has been described in mouse polyomavirus (PyV) RNA isolated late times after infection, suggesting modification by ADAR. To test the role of ADAR in PyV infection, we used genetically null mouse embryo fibroblast cells deficient in either ADAR1 or ADAR2. The single-cycle yields and growth kinetics of PyV were comparable between adar1(-/-) and adar2(-/-) genetic null fibroblast cells. While large T antigen was expressed to higher levels in adar1(-/-) cells than adar2(-/-) cells, less difference was seen in VP1 protein expression levels between the two knockout MEFs. However, virus-induced cell killing was greatly enhanced in PyV-infected adar1(-/-) cells compared to that of adar2(-/-) cells. Complementation with p110 protected cells from PyV-induced cytotoxicity. UV-irradiated PyV did not display any enhanced cytopathic effect in adar1(-/-) cells. Reovirus and vesicular stomatitis virus single-cycle yields were comparable between adar1(-/-) and adar2(-/-) cells, and neither reovirus nor VSV showed enhanced cytotoxicity in adar1(-/-)-infected cells. These results suggest that ADAR1 plays a virus-selective role in the host response to infection.

  9. 1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals.

    PubMed

    Han, Yunlei; Wang, Rui; Yang, Zhirong; Zhan, Yuhua; Ma, Yao; Ping, Shuzhen; Zhang, Liwen; Lin, Min; Yan, Yongliang

    2015-07-01

    1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.

  10. The retroviral hypermutation specificity of APOBEC3F and APOBEC3G is governed by the C-terminal DNA cytosine deaminase domain.

    PubMed

    Haché, Guylaine; Liddament, Mark T; Harris, Reuben S

    2005-03-25

    The human proteins APOBEC3F and APOBEC3G restrict retroviral infection by deaminating cytosine residues in the first cDNA strand of a replicating virus. These proteins have two putative deaminase domains, and it is unclear whether one or both catalyze deamination, unlike their homologs, AID and APOBEC1, which are well characterized single domain deaminases. Here, we show that only the C-terminal cytosine deaminase domain of APOBEC3F and -3G governs retroviral hypermutation. A chimeric protein with the N-terminal cytosine deaminase domain from APOBEC3G and the C-terminal cytosine deaminase domain from APOBEC3F elicited a dinucleotide hypermutation preference nearly indistinguishable from that of APOBEC3F. This 5'-TC-->TT mutational specificity was confirmed in a heterologous Escherichia coli-based mutation assay, in which the 5'-CC-->CT dinucleotide hypermutation preference of APOBEC3G also mapped to the C-terminal deaminase domain. An N-terminal APOBEC3G deletion mutant displayed a preference indistinguishable from that of the full-length protein, and replacing the C-terminal deaminase domain of APOBEC3F with AID resulted in an AID-like mutational signature. Together, these data indicate that only the C-terminal domain of APOBEC3F and -3G dictates the retroviral minus strand 5'-TC and 5'-CC dinucleotide hypermutation preferences, respectively, leaving the N-terminal domain to perform other aspects of retroviral restriction.

  11. Genetic variation in CD36, HBA, NOS3 and VCAM1 is associated with chronic haemolysis level in sickle cell anaemia: a longitudinal study.

    PubMed

    Coelho, Andreia; Dias, Alexandra; Morais, Anabela; Nunes, Baltazar; Ferreira, Emanuel; Picanço, Isabel; Faustino, Paula; Lavinha, João

    2014-03-01

    Chronic haemolysis stands out as one of the hallmarks of sickle cell anaemia, a clinically heterogeneous autosomal recessive monogenic anaemia. However, the genetic architecture of this sub-phenotype is still poorly understood. Here, we report the results of an association study between haemolysis biomarkers (serum LDH, total bilirubin and reticulocyte count) and the inheritance of 41 genetic