Sample records for deamination

  1. APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA

    PubMed Central

    Schutsky, Emily K.; Nabel, Christopher S.; Davis, Amy K. F.; DeNizio, Jamie E.

    2017-01-01

    Abstract AID/APOBEC family enzymes are best known for deaminating cytosine bases to uracil in single-stranded DNA, with characteristic sequence preferences that can produce mutational signatures in targets such as retroviral and cancer cell genomes. These deaminases have also been proposed to function in DNA demethylation via deamination of either 5-methylcytosine (mC) or TET-oxidized mC bases (ox-mCs), which include 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. One specific family member, APOBEC3A (A3A), has been shown to readily deaminate mC, raising the prospect of broader activity on ox-mCs. To investigate this claim, we developed a novel assay that allows for parallel profiling of activity on all modified cytosines. Our steady-state kinetic analysis reveals that A3A discriminates against all ox-mCs by >3700-fold, arguing that ox-mC deamination does not contribute substantially to demethylation. A3A is, by contrast, highly proficient at C/mC deamination. Under conditions of excess enzyme, C/mC bases can be deaminated to completion in long DNA segments, regardless of sequence context. Interestingly, under limiting A3A, the sequence preferences observed with targeting unmodified cytosine are further exaggerated when deaminating mC. Our study informs how methylation, oxidation, and deamination can interplay in the genome and suggests A3A's potential utility as a biotechnological tool to discriminate between cytosine modification states. PMID:28472485

  2. Zebrafish AID is capable of deaminating methylated deoxycytidines

    PubMed Central

    Abdouni, Hala; King, Justin J.; Suliman, Mussa; Quinlan, Matthew; Fifield, Heather; Larijani, Mani

    2013-01-01

    Activation-induced cytidine deaminase (AID) deaminates deoxycytidine (dC) to deoxyuracil (dU) at immunoglobulin loci in B lymphocytes to mediate secondary antibody diversification. Recently, AID has been proposed to also mediate epigenetic reprogramming by demethylating methylated cytidines (mC) possibly through deamination. AID overexpression in zebrafish embryos was shown to promote genome demethylation through G:T lesions, implicating a deamination-dependent mechanism. We and others have previously shown that mC is a poor substrate for human AID. Here, we examined the ability of bony fish AID to deaminate mC. We report that zebrafish AID was unique among all orthologs in that it efficiently deaminates mC. Analysis of domain-swapped and mutant AID revealed that mC specificity is independent of the overall high-catalytic efficiency of zebrafish AID. Structural modeling with or without bound DNA suggests that efficient deamination of mC by zebrafish AID is likely not due to a larger catalytic pocket allowing for better fit of mC, but rather because of subtle differences in the flexibility of its structure. PMID:23585279

  3. APOBEC3A efficiently deaminates methylated, but not TET-oxidized, cytosine bases in DNA.

    PubMed

    Schutsky, Emily K; Nabel, Christopher S; Davis, Amy K F; DeNizio, Jamie E; Kohli, Rahul M

    2017-07-27

    AID/APOBEC family enzymes are best known for deaminating cytosine bases to uracil in single-stranded DNA, with characteristic sequence preferences that can produce mutational signatures in targets such as retroviral and cancer cell genomes. These deaminases have also been proposed to function in DNA demethylation via deamination of either 5-methylcytosine (mC) or TET-oxidized mC bases (ox-mCs), which include 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. One specific family member, APOBEC3A (A3A), has been shown to readily deaminate mC, raising the prospect of broader activity on ox-mCs. To investigate this claim, we developed a novel assay that allows for parallel profiling of activity on all modified cytosines. Our steady-state kinetic analysis reveals that A3A discriminates against all ox-mCs by >3700-fold, arguing that ox-mC deamination does not contribute substantially to demethylation. A3A is, by contrast, highly proficient at C/mC deamination. Under conditions of excess enzyme, C/mC bases can be deaminated to completion in long DNA segments, regardless of sequence context. Interestingly, under limiting A3A, the sequence preferences observed with targeting unmodified cytosine are further exaggerated when deaminating mC. Our study informs how methylation, oxidation, and deamination can interplay in the genome and suggests A3A's potential utility as a biotechnological tool to discriminate between cytosine modification states. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Microscale Synthesis of 1-Bromo-3-Chloro-5-Iodobenzene: An Improved Deamination of 4-Bromo-2-Chloro-6-Iodoaniline

    ERIC Educational Resources Information Center

    Pelter, Michael W.; Pelter, Libbie S. W.; Colovic, Dusanka; Strug, Regina

    2004-01-01

    The sequence of microscale mixing of 1-bromo-3-chloro-5-iodobenzene along with reductive deamination of 4-bromo-2-chloro-6-iodoaniline is described. This novel deamination approach is beneficial in final product separation and higher product output.

  5. Oxidative deamination of alicyclic primary amines by liver microsomes from rats and rabbits.

    PubMed

    Kurebayashi, H; Tanaka, A; Yamaha, T; Tatahashi, A

    1988-09-01

    1. Substrate selectivity and species difference in the oxidative deamination of the alicyclic primary amines, cyclopentylamine, cyclohexylamine, cycloheptylamine, 1- and 2-aminoindane, and 1- and 2-aminotetralin were studied using liver microsomes from rats and rabbits. 2. The deamination rates of the amines were much greater with liver microsomes from rabbits than from rats. Substrate selectivity resulted in much faster deamination of 1-aminoindane and 1-aminotetralin than of the corresponding 2-amino compounds, especially in rats. 3. When 1-aminoindane and 1-aminotetralin were incubated with rat liver microsomes and NADPH under 18O2, oxygen-18 was incorporated into the deaminated products, 1-indanone and 1-tetralone. The carbinolamine is a key intermediate in the oxidative deamination by rat liver microsomes, indicating the contribution of cytochrome P-450-dependent alpha-C-oxidation to the reaction. 4. Alicyclic primary amines gave type II binding spectra with rat and rabbit liver microsomes, but the spectra appeared to contain type I components. 5. The ratios of the alcohols, cyclohexanol, 2-tetralol and 2-indanol in the deaminated products were high in both rats and rabbits. The ketones were precursors of the alcohols, and substrate selectivity in reduction of the alicyclic ketones with NADPH was similar in both species.

  6. The C-terminal cytidine deaminase domain of APOBEC3G itself undergoes intersegmental transfer for a target search, as revealed by real-time NMR monitoring.

    PubMed

    Kamba, Keisuke; Nagata, Takashi; Katahira, Masato

    2018-01-31

    APOBEC3G (A3G), an anti-human immunodeficiency virus 1 factor, deaminates cytidines. We examined deamination of two cytidines located separately on substrate ssDNA by the C-terminal domain (CTD) of A3G using real-time NMR monitoring. The deamination preference between the two cytidines was lost when either the substrate or non-substrate ssDNA concentration increased. When the non-substrate ssDNA concentration increased, the deamination activity first increased, but then decreased. This indicates that even a single domain, A3G-CTD, undergoes intersegmental transfer for a target search.

  7. Coq6 Is Responsible for the C4-deamination Reaction in Coenzyme Q Biosynthesis in Saccharomyces cerevisiae*

    PubMed Central

    Ozeir, Mohammad; Pelosi, Ludovic; Ismail, Alexandre; Mellot-Draznieks, Caroline; Fontecave, Marc; Pierrel, Fabien

    2015-01-01

    The yeast Saccharomyces cerevisiae is able to use para-aminobenzoic acid (pABA) in addition to 4-hydroxybenzoic acid as a precursor of coenzyme Q, a redox lipid essential to the function of the mitochondrial respiratory chain. The biosynthesis of coenzyme Q from pABA requires a deamination reaction at position C4 of the benzene ring to substitute the amino group with an hydroxyl group. We show here that the FAD-dependent monooxygenase Coq6, which is known to hydroxylate position C5, also deaminates position C4 in a reaction implicating molecular oxygen, as demonstrated with labeling experiments. We identify mutations in Coq6 that abrogate the C4-deamination activity, whereas preserving the C5-hydroxylation activity. Several results support that the deletion of Coq9 impacts Coq6, thus explaining the C4-deamination defect observed in Δcoq9 cells. The vast majority of flavin monooxygenases catalyze hydroxylation reactions on a single position of their substrate. Coq6 is thus a rare example of a flavin monooxygenase that is able to act on two different carbon atoms of its C4-aminated substrate, allowing its deamination and ultimately its conversion into coenzyme Q by the other proteins constituting the coenzyme Q biosynthetic pathway. PMID:26260787

  8. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.

    PubMed

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-02-18

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3' --> 5' order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action.

  9. Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G

    PubMed Central

    Furukawa, Ayako; Nagata, Takashi; Matsugami, Akimasa; Habu, Yuichirou; Sugiyama, Ryuichi; Hayashi, Fumiaki; Kobayashi, Naohiro; Yokoyama, Shigeyuki; Takaku, Hiroshi; Katahira, Masato

    2009-01-01

    Human APOBEC3G exhibits anti-human immunodeficiency virus-1 (HIV-1) activity by deaminating cytidines of the minus strand of HIV-1. Here, we report a solution structure of the C-terminal deaminase domain of wild-type APOBEC3G. The interaction with DNA was examined. Many differences in the interaction were found between the wild type and recently studied mutant APOBEC3Gs. The position of the substrate cytidine, together with that of a DNA chain, in the complex, was deduced. Interestingly, the deamination reaction of APOBEC3G was successfully monitored using NMR signals in real time. Real-time monitoring has revealed that the third cytidine of the d(CCCA) segment is deaminated at an early stage and that then the second one is deaminated at a late stage, the first one not being deaminated at all. This indicates that the deamination is carried out in a strict 3′ → 5′ order. Virus infectivity factor (Vif) of HIV-1 counteracts the anti-HIV-1 activity of APOBEC3G. The structure of the N-terminal domain of APOBEC3G, with which Vif interacts, was constructed with homology modelling. The structure implies the mechanism of species-specific sensitivity of APOBEC3G to Vif action. PMID:19153609

  10. Accumulation of deaminated peptides in anoxic sediments of Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A.; Burdige, David J.; Komada, Tomoko

    2018-02-01

    Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H2, which is ultimately used as a reducing agent by other sediment microbes (e.g. CO2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ∼25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these remnant carbon skeletons may hold important clues about specific microbial processes influencing organic matter remineralization and accumulation.

  11. Repair of DNA damage caused by cytosine deamination in mitochondrial DNA of forensic case samples.

    PubMed

    Gorden, Erin M; Sturk-Andreaggi, Kimberly; Marshall, Charla

    2018-05-01

    DNA sequence damage from cytosine deamination is well documented in degraded samples, such as those from ancient and forensic contexts. This study examined the effect of a DNA repair treatment on mitochondrial DNA (mtDNA) from aged and degraded skeletal samples. DNA extracts from 21 non-probative, degraded skeletal samples (aged 50-70 years) were utilized for the analysis. A portion of each sample extract was subjected to DNA repair using a commercial repair kit, the New England BioLabs' NEBNext FFPE DNA Repair Kit (Ipswich, MA). MtDNA was enriched using PCR and targeted capture in a side-by-side experiment of untreated and repaired DNA. Sequencing was performed using both traditional (Sanger-type; STS) and next-generation sequencing (NGS) methods Although cytosine deamination was evident in the mtDNA sequence data, the observed level of damaged bases varied by sequencing method as well as by enrichment type. The STS PCR amplicon data did not show evidence of cytosine deamination that could be distinguished from background signal in either the untreated or repaired sample set. However, the same PCR amplicons showed 850 C → T/G → A substitutions consistent with cytosine deamination with variant frequencies (VFs) of up to 25% when sequenced using NGS methods The occurrence of base misincorporation due to cytosine deamination was reduced by 98% (to 10) in the NGS amplicon data after repair. The NGS capture data indicated low levels (1-2%) of cytosine deamination in mtDNA fragments that was effectively mitigated by DNA repair. The observed difference in the level of cytosine deamination between the PCR and capture enrichment methods can be attributed to the greater propensity for stochastic effects from the PCR enrichment technique employed (e.g., low template input, increased PCR cycles). Altogether these results indicate that DNA repair may be required when sequencing PCR-amplified DNA from degraded forensic case samples with NGS methods. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  12. [Substrate-inhibitory analysis of monoamine oxidase from hepatopancreas of the octopus Bathypolypus arcticus].

    PubMed

    Basova, I N; Iagodina, O V

    2012-01-01

    Study of the substrate-inhibitory specificity of mitochondrial monoamine oxidase (MAO) of hepatopancreas of the octopus Bathypolypus arcticus revealed distinctive peculiarities of catalytic properties of this enzyme. The studied enzyme, on one hand, like the classic MAO of homoiothermal animals, is able to deaminate tyramine, serotonin, benzylamine, tryptamine, beta-phenylethylamine, while, on the other hand, deaminates histamine and does not deaminate putrescine--classic substrates of diamine oxidase (DAO). Results of the substrate-inhibitory analysis with use of chlorgiline and deprenyl are indirect proofs of the existence in the octopus hepatopancreas of one molecular MAO form. Semicarbazide and pyronine G turned out to be weak irreversible inhibitors, four derivatives of acridine--irreversible inhibitors of the intermediate effectiveness with respect to the octopus hepatopancreas MAO; specificity of action of inhibitors at deamination of different substrates was equal.

  13. [Features of the biochemical action of paraquat on oxidative deamination of biogenic amines and other nitrogen compounds].

    PubMed

    Amanov, K; Mamadiev, M; Khuzhamberdiev, M A; Gorkin, V Z

    1994-01-01

    Intoxication of rats with the herbicide paraquat (1,1-dimethyl-4,4-bipyridilium dichloride) was accompanied by accumulation in lungs, brain, heart, liver or kidney of malonic dialdehyde (MDA) (the compounds reacting with 2-thiobarbituric acid), indicating that the intoxication stimulated lipid peroxidation (LPO) in biomembranes. Treatment of the intoxicated rats with the antioxidant diludin (2,6-dimethyl-3,5-diethoxycarbonyl-1,4-dihydropyridine) or with the nucleophilic reagents sodium ascorbate or thiosulphate normalized the content of MDA in lungs, brain, heart, liver or kidney demonstrating the reversibility of the LPO stimulation caused by paraquat. On incubation of mitochondrial fractions of homogenates of lungs, brain, heart, liver or kidney of the intoxicated rats (as compared with the corresponding fractions from the intact animals) a decrease was noted in deamination of the substrates of monoamine oxidases serotonin, tryptamine, benzylamine, tyramine; at the same time, deamination of glucosamine and gamma-aminobutyric acid was increased and deamination of putrescine and L-lysine appeared. These impairments in deamination of nitrogenous compounds caused by paraquat were reversible. All the impairments were normalized by the treatment of the experimental animals with the antioxidative and nucleophilic reagents; a decrease was noted in the rate of development of the lethal paraquat intoxication and appearance of morphological manifestations of normalization. The data obtained suggest that the reversible, qualitative modification ("transformation") of the monoamine oxidases of the type A might explain the peculiarities of the alterations in deamination of nitrogenous compounds in paraquat intoxication.

  14. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages

    PubMed Central

    Sharma, Shraddha; Patnaik, Santosh K.; Thomas Taggart, R.; Kannisto, Eric D.; Enriquez, Sally M.; Gollnick, Paul; Baysal, Bora E.

    2015-01-01

    The extent, regulation and enzymatic basis of RNA editing by cytidine deamination are incompletely understood. Here we show that transcripts of hundreds of genes undergo site-specific C>U RNA editing in macrophages during M1 polarization and in monocytes in response to hypoxia and interferons. This editing alters the amino acid sequences for scores of proteins, including many that are involved in pathogenesis of viral diseases. APOBEC3A, which is known to deaminate cytidines of single-stranded DNA and to inhibit viruses and retrotransposons, mediates this RNA editing. Amino acid residues of APOBEC3A that are known to be required for its DNA deamination and anti-retrotransposition activities were also found to affect its RNA deamination activity. Our study demonstrates the cellular RNA editing activity of a member of the APOBEC3 family of innate restriction factors and expands the understanding of C>U RNA editing in mammals. PMID:25898173

  15. AID Mediates Hypermutation by Deaminating Single Stranded DNA

    PubMed Central

    Dickerson, Sarah K.; Market, Eleonora; Besmer, Eva; Papavasiliou, F. Nina

    2003-01-01

    Activation-induced deaminase (AID) is a protein indispensable for the diversification of immunoglobulin (Ig) genes by somatic hypermutation (SHM), class switch recombination (CSR), and gene conversion. To date, the precise role of AID in these processes has not been determined. Here we demonstrate that purified, tetrameric AID can deaminate cytidine residues in DNA, but not in RNA. Furthermore, we show that AID will bind and deaminate only single-stranded DNA, which implies a direct, functional link between hypermutation and transcription. Finally, AID does not target mutational hotspots, thus mutational targeting to specific residues must be attributed to different factors. PMID:12756266

  16. Biochemical characterization of an L-tryptophan dehydrogenase from the photoautotrophic cyanobacterium Nostoc punctiforme.

    PubMed

    Ogura, Ryutaro; Wakamatsu, Taisuke; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2014-06-10

    An NAD(+)-dependent l-tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH) was cloned and overexpressed in Escherichia coli. The recombinant NpTrpDH with a C-terminal His6-tag was purified to homogeneity using a Ni-NTA agarose column, and was found to be a homodimer with a molecular mass of 76.1kDa. The enzyme required NAD(+) and NADH as cofactors for oxidative deamination and reductive amination, respectively, but not NADP(+) or NADPH. l-Trp was the preferred substrate for deamination, though l-Phe was deaminated at a much lower rate. The enzyme exclusively aminated 3-indolepyruvate; phenylpyruvate was inert. The pH optima for the deamination of l-Trp and amination of 3-indolpyruvate were 11.0 and 7.5, respectively. For deamination of l-Trp, maximum enzymatic activity was observed at 45°C. NpTrpDH retained more than 80% of its activity after incubation for 30min at pHs ranging from 5.0 to 11.5 or incubation for 10min at temperatures up to 40°C. Unlike l-Trp dehydrogenases from higher plants, NpTrpDH activity was not activated by metal ions. Typical Michaelis-Menten kinetics were observed for NAD(+) and l-Trp for oxidative deamination, but with reductive amination there was marked substrate inhibition by 3-indolepyruvate. NMR analysis of the hydrogen transfer from the C4 position of the nicotinamide moiety of NADH showed that NpTrpDH has a pro-S (B-type) stereospecificity similar to the Glu/Leu/Phe/Val dehydrogenase family. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history.

    PubMed

    Lewis, Charles A; Crayle, Jesse; Zhou, Shuntai; Swanstrom, Ronald; Wolfenden, Richard

    2016-07-19

    The hydrolytic deamination of cytosine and 5-methylcytosine residues in DNA appears to contribute significantly to the appearance of spontaneous mutations in microorganisms and in human disease. In the present work, we examined the mechanism of cytosine deamination and the response of the uncatalyzed reaction to changing temperature. The positively charged 1,3-dimethylcytosinium ion was hydrolyzed at a rate similar to the rate of acid-catalyzed hydrolysis of 1-methylcytosine, for which it furnishes a satisfactory kinetic model and a probable mechanism. In agreement with earlier reports, uncatalyzed deamination was found to proceed at very similar rates for cytosine, 1-methylcytosine, cytidine, and cytidine 5'-phosphate, and also for cytosine residues in single-stranded DNA generated from a phagemid, in which we sequenced an insert representing the gene of the HIV-1 protease. Arrhenius plots for the uncatalyzed deamination of cytosine were linear over the temperature range from 90 °C to 200 °C and indicated a heat of activation (ΔH(‡)) of 23.4 ± 0.5 kcal/mol at pH 7. Recent evidence indicates that the surface of the earth has been cool enough to support life for more than 4 billion years and that life has been present for almost as long. If the temperature at Earth's surface is assumed to have followed Newton's law of cooling, declining exponentially from 100 °C to 25 °C during that period, then half of the cytosine-deaminating events per unit biomass would have taken place during the first 0.2 billion years, and <99.4% would have occurred during the first 2 billion years.

  18. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition

    PubMed Central

    Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V

    2014-01-01

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition. DOI: http://dx.doi.org/10.7554/eLife.02008.001 PMID:24843014

  19. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA.

    PubMed

    Lada, Artem G; Waisertreiger, Irina S-R; Grabow, Corinn E; Prakash, Aishwarya; Borgstahl, Gloria E O; Rogozin, Igor B; Pavlov, Youri I

    2011-01-01

    Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast. Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.

  20. Thermal Inactivation as a Means of Inhibiting the Serum-Associated Deamination of 9-β-d-Arabinofuranosyladenine in Tissue Culture Media

    PubMed Central

    Schwartz, Pauline M.; Shipman, Charles; Carlson, Roger H.; Drach, John C.

    1974-01-01

    9-β-d-Arabinofuranosyladenine (ara-A) was deaminated to 9-β-d-arabinofuranosylhypoxanthine by adenosine deaminase present in fetal bovine serum, newborn calf serum, and calf serum used to supplement tissue culture media. Heating newborn calf serum or calf serum for 12 h at 56 C completely eliminated the enzymatic deamination of ara-A. The deaminase activity associated with fetal bovine serum was more refractory to heating, requiring 24 h for complete inactivation. The nutritive value of heat-inactivated calf serum did not differ significantly from that of unheated serum based on considerations of population doubling times, deoxyribonucleic acid synthesis, and relative cloning efficiencies of KB cells. PMID:4840442

  1. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition.

    PubMed

    Richardson, Sandra R; Narvaiza, Iñigo; Planegger, Randy A; Weitzman, Matthew D; Moran, John V

    2014-04-24

    Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001. Copyright © 2014, Richardson et al.

  2. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.

    PubMed

    Wang, Meng; Rada, Cristina; Neuberger, Michael S

    2010-01-18

    High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.

  3. Hypermutation by intersegmental transfer of APOBEC3G cytidine deaminase.

    PubMed

    Nowarski, Roni; Britan-Rosich, Elena; Shiloach, Tamar; Kotler, Moshe

    2008-10-01

    Deamination of cytidine residues in single-stranded DNA (ssDNA) is an important mechanism by which apolipoprotein B mRNA-editing, catalytic polypeptide-like (APOBEC) enzymes restrict endogenous and exogenous viruses. The dynamic process underlying APOBEC-induced hypermutation is not fully understood. Here we show that enzymatically active APOBEC3G can be detected in wild-type Vif(+) HIV-1 virions, albeit at low levels. In vitro studies showed that single enzyme-DNA encounters result in distributive deamination of adjacent cytidines. Nonlinear translocation of APOBEC3G, however, directed scattered deamination of numerous targets along the DNA. Increased ssDNA concentrations abolished enzyme processivity in the case of short, but not long, DNA substrates, emphasizing the key role of rapid intersegmental transfer in targeting the deaminase. Our data support a model by which APOBEC3G intersegmental transfer via monomeric binding to two ssDNA segments results in dispersed hypermutation of viral genomes.

  4. Mechanism of Enhanced HIV Restriction by Virion Coencapsidated Cytidine Deaminases APOBEC3F and APOBEC3G.

    PubMed

    Ara, Anjuman; Love, Robin P; Follack, Tyson B; Ahmed, Khawaja A; Adolph, Madison B; Chelico, Linda

    2017-02-01

    The APOBEC3 (A3) enzymes, A3G and A3F, are coordinately expressed in CD4 + T cells and can become coencapsidated into HIV-1 virions, primarily in the absence of the viral infectivity factor (Vif). A3F and A3G are deoxycytidine deaminases that inhibit HIV-1 replication by inducing guanine-to-adenine hypermutation through deamination of cytosine to form uracil in minus-strand DNA. The effect of the simultaneous presence of both A3G and A3F on HIV-1 restriction ability is not clear. Here, we used a single-cycle infectivity assay and biochemical analyses to determine if coencapsidated A3G and A3F differ in their restriction capacity from A3G or A3F alone. Proviral DNA sequencing demonstrated that compared to each A3 enzyme alone, A3G and A3F, when combined, had a coordinate effect on hypermutation. Using size exclusion chromatography, rotational anisotropy, and in vitro deamination assays, we demonstrate that A3F promotes A3G deamination activity by forming an A3F/G hetero-oligomer in the absence of RNA which is more efficient at deaminating cytosines. Further, A3F caused the accumulation of shorter reverse transcripts due to decreasing reverse transcriptase efficiency, which would leave single-stranded minus-strand DNA exposed for longer periods of time, enabling more deamination events to occur. Although A3G and A3F are known to function alongside each other, these data provide evidence for an A3F/G hetero-oligomeric A3 with unique properties compared to each individual counterpart. The APOBEC3 enzymes APOBEC3F and APOBEC3G act as a barrier to HIV-1 replication in the absence of the HIV-1 Vif protein. After APOBEC3 enzymes are encapsidated into virions, they deaminate cytosines in minus-strand DNA, which forms promutagenic uracils that induce transition mutations or proviral DNA degradation. Even in the presence of Vif, footprints of APOBEC3-catalyzed deaminations are found, demonstrating that APOBEC3s still have discernible activity against HIV-1 in infected individuals. We undertook a study to better understand the activity of coexpressed APOBEC3F and APOBEC3G. The data demonstrate that an APOBEC3F/APOBEC3G hetero-oligomer can form that has unique properties compared to each APOBEC3 alone. This hetero-oligomer has increased efficiency of virus hypermutation, raising the idea that we still may not fully realize the antiviral mechanisms of endogenous APOBEC3 enzymes. Hetero-oligomerization may be a mechanism to increase their antiviral activity in the presence of Vif. Copyright © 2017 American Society for Microbiology.

  5. Molecular mechanism for generation of antibody memory.

    PubMed

    Shivarov, Velizar; Shinkura, Reiko; Doi, Tomomitsu; Begum, Nasim A; Nagaoka, Hitoshi; Okazaki, Il-Mi; Ito, Satomi; Nonaka, Taichiro; Kinoshita, Kazuo; Honjo, Tasuku

    2009-03-12

    Activation-induced cytidine deaminase (AID) is the essential enzyme inducing the DNA cleavage required for both somatic hypermutation and class switch recombination (CSR) of the immunoglobulin gene. We originally proposed the RNA-editing model for the mechanism of DNA cleavage by AID. We obtained evidence that fulfils three requirements for CSR by this model, namely (i) AID shuttling between nucleus and cytoplasm, (ii) de novo protein synthesis for CSR, and (iii) AID-RNA complex formation. The alternative hypothesis, designated as the DNA-deamination model, assumes that the in vitro DNA deamination activity of AID is representative of its physiological function in vivo. Furthermore, the resulting dU was removed by uracil DNA glycosylase (UNG) to generate a basic site, followed by phosphodiester bond cleavage by AP endonuclease. We critically examined each of these provisional steps. We identified a cluster of mutants (H48A, L49A, R50A and N51A) that had particularly higher CSR activities than expected from their DNA deamination activities. The most striking was the N51A mutant that had no ability to deaminate DNA in vitro but retained approximately 50 per cent of the wild-type level of CSR activity. We also provide further evidence that UNG plays a non-canonical role in CSR, namely in the repair step of the DNA breaks. Taking these results together, we favour the RNA-editing model for the function of AID in CSR.

  6. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  7. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency.

    PubMed

    Vasovcak, P; Krepelova, A; Menigatti, M; Puchmajerova, A; Skapa, P; Augustinakova, A; Amann, G; Wernstedt, A; Jiricny, J; Marra, G; Wimmer, K

    2012-07-01

    Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G→T:A or G:C→A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Unique mutational profile associated with a loss of TDG expression in the rectal cancer of a patient with a constitutional PMS2 deficiency

    PubMed Central

    Vasovcak, P.; Krepelova, A.; Menigatti, M.; Puchmajerova, A.; Skapa, P.; Augustinakova, A.; Amann, G.; Wernstedt, A.; Jiricny, J.; Marra, G.; Wimmer, K.

    2012-01-01

    Cells with DNA repair defects have increased genomic instability and are more likely to acquire secondary mutations that bring about cellular transformation. We describe the frequency and spectrum of somatic mutations involving several tumor suppressor genes in the rectal carcinoma of a 13-year-old girl harboring biallelic, germline mutations in the DNA mismatch repair gene PMS2. Apart from microsatellite instability, the tumor DNA contained a number of C:G → T:A or G:C → A:T transitions in CpG dinucleotides, which often result through spontaneous deamination of cytosine or 5-methylcytosine. Four DNA glycosylases, UNG2, SMUG1, MBD4 and TDG, are involved in the repair of these deamination events. We identified a heterozygous missense mutation in TDG, which was associated with TDG protein loss in the tumor. The CpGs mutated in this patient's tumor are generally methylated in normal colonic mucosa. Thus, it is highly likely that loss of TDG contributed to the supermutator phenotype and that most of the point mutations were caused by deamination of 5-methylcytosine to thymine, which remained uncorrected owing to the TDG deficiency. This case provides the first in vivo evidence of the key role of TDG in protecting the human genome against the deleterious effects of 5-methylcytosine deamination. PMID:22608206

  10. Inhibition of monoamine oxidase by moclobemide: effects on monoamine metabolism and secretion of anterior pituitary hormones and cortisol in healthy volunteers.

    PubMed Central

    Koulu, M; Scheinin, M; Kaarttinen, A; Kallio, J; Pyykkö, K; Vuorinen, J; Zimmer, R H

    1989-01-01

    1. Single oral doses (100, 200 and 300 mg) of moclobemide, a reversible inhibitor of monoamine oxidase (MAO) with predominant effects on the A-type of the enzyme, were administered to eight young, healthy male volunteers in a double-blind, random-order, placebo-controlled study. The investigation was thereafter continued in an open fashion by administering a single 10 mg dose of the MAO-B inhibitor deprenyl to the same subjects. 2. Deamination of catecholamines was powerfully and dose-dependently inhibited by moclobemide, as evidenced by up to 40% decreases in the urinary excretion of deaminated catecholamine metabolites, corresponding increases in the excretion of non-deaminated, methylated metabolites, and up to 79% average decreases in the plasma concentration of 3,4-dihydroxyphenylglycol (DHPG), a deaminated metabolite of noradrenaline (NA), and up to 75% average decreases in the plasma concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC), a deaminated metabolite of dopamine. The urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA) was only slightly reduced. In contrast, deprenyl, in a dose which almost totally inhibited MAO-B activity in blood platelets, did not appreciably affect the plasma concentrations of DHPG or DOPAC. 3. Due to the rapid, reversible, dose-dependent and MAO-A specific effect of moclobemide on plasma concentrations of DHPG, it is suggested that DHPG in plasma may be a useful indicator of the magnitude and duration of MAO-A inhibition in man. 4. Sympatho-adrenal function at rest was not significantly altered by moclobemide, as judged by unchanged plasma catecholamine concentrations and stable blood pressure and heart rate recordings. 5. Monoamine oxidase type B activity in blood platelets was slightly (less than 30%) and transiently inhibited after moclobemide. 6. The secretion of prolactin was dose-dependently stimulated by moclobemide, whereas the plasma concentrations of growth hormone (hGH) and cortisol remained unchanged. PMID:2469451

  11. Putrescine catabolism in mammalian brain

    PubMed Central

    Seiler, N.; Al-Therib, M. J.

    1974-01-01

    In contrast with putrescine (1,4-diaminobutane), which is a substrate of diamine oxidase, monoacetylputrescine is oxidatively deaminated both in vitro and in vivo by monoamine oxidase. The product of this reaction is N-acetyl-γ-aminobutyrate. The existence of a degradative pathway in mammalian brain for putrescine is shown, which comprises acetylation of putrescine, oxidative deamination of monoacetylputrescine to N-acetyl-γ-aminobutyrate, transformation of N-acetyl-γ-aminobutyrate to γ-aminobutyrate and degradation of γ-aminobutyrate to CO2 via the tricarboxylic acid cycle. PMID:4156831

  12. Hydrolysis of N3-methyl-2'-deoxycytidine: model compound for reactivity of protonated cytosine residues in DNA.

    PubMed

    Sowers, L C; Sedwick, W D; Shaw, B R

    1989-11-01

    Protonation of cytosine residues at physiological pH may occur in DNA as a consequence of both alkylation and aberrant base-pair formation. When cytosine derivatives are protonated, they undergo hydrolysis reactions at elevated rates and can either deaminate to form the corresponding uracil derivatives or depyrimidinate generating abasic sites. The kinetic parameters for reaction of protonated cytosine are derived by studying the hydrolysis of N3-methyl-2'-deoxycytidine (m3dC), a cytosine analogue which is predominantly protonated at physiological pH. Both deamination and depyrimidimation reaction rates are shown to be linearly dependent upon the fraction of protonated molecules. We present here thermodynamic parameters which allow determination of hydrolysis rates of m3dC as functions of pH and temperature. Protonation of cytosine residues in DNA, as induced by aberrant base-pair formation or base modification, may accelerate the rate of both deamination and depyrimidation up to several thousand-fold under physiological conditions.

  13. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    PubMed Central

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  14. Inhibition of APOBEC3G activity impedes double-stranded DNA repair.

    PubMed

    Prabhu, Ponnandy; Shandilya, Shivender M D; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A; Kotler, Moshe

    2016-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor, acting by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in double-stranded DNA damage, such as ionizing radiation and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases the sensitivity of lymphoma cells to ionizing radiation. In the current study, we show that additional peptides derived from Vif, A3G, and APOBEC3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, whereas replacing a single residue in the LYYF motif completely abrogates inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break repair after irradiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit double-strand break repair halts their propagation. These results suggest that A3G may be a potential therapeutic target that is amenable to peptide and peptidomimetic inhibition. © 2015 FEBS.

  15. Plasma amine oxidase activities in Norrie disease patients with an X-chromosomal deletion affecting monoamine oxidase.

    PubMed

    Murphy, D L; Sims, K B; Karoum, F; Garrick, N A; de la Chapelle, A; Sankila, E M; Norio, R; Breakefield, X O

    1991-01-01

    Two individuals with an X-chromosomal deletion were recently found to lack the genes encoding monoamine oxidase type A (MAO-A) and MAO-B. This abnormality was associated with almost total (90%) reductions in the oxidatively deaminated urinary metabolites of the MAO-A substrate, norepinephrine, and with marked (100-fold) increases in an MAO-B substrate, phenylethylamine, confirming systemic functional consequences of the genetic enzyme deficiency. However, urinary concentrations of the deaminated metabolites of dopamine and serotonin (5-HT) were essentially normal. To investigate other deaminating systems besides MAO-A and MAO-B that might produce these metabolites of dopamine and 5-HT, we examined plasma amine oxidase (AO) activity in these two patients and two additional patients with the same X-chromosomal deletion. Normal plasma AO activity was found in all four Norrie disease-deletion patients, in four patients with classic Norrie disease without a chromosomal deletion, and in family members of patients from both groups. Marked plasma amine metabolite abnormalities and essentially absent platelet MAO-B activity were found in all four Norrie disease-deletion patients, but in none of the other subjects in the two comparison groups. These results indicate that plasma AO is encoded by gene(s) independent of those for MAO-A and MAO-B, and raise the possibility that plasma AO, and perhaps the closely related tissue AO, benzylamine oxidase, as well as other atypical AOs or MAOs encoded independently from MAO-A and MAO-B may contribute to the oxidative deamination of dopamine and 5-HT in humans.

  16. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues.

    PubMed

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S; Heslop, Pauline; Firbank, Susan J; Kool, Eric T; Connolly, Bernard A

    2010-07-13

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describe uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at position 2 explains the stimulation of the polymerase 3'-5' proofreading exonuclease, observed with deaminated bases at this location. A beta-hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double-stranded DNA. This denatures the two complementary primer bases and directs the resulting 3' single-stranded extension toward the exonuclease active site. Finally, the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using nonpolar isosteres. Affinity for both 2,4-difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine, respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4-difluorobenzene is seen, confirming a role for shape recognition.

  17. Multifaceted counter-APOBEC3G mechanisms employed by HIV-1 Vif.

    PubMed

    Britan-Rosich, Elena; Nowarski, Roni; Kotler, Moshe

    2011-07-29

    In the absence of human immunodeficiency virus type 1 (HIV-1) Vif protein, the host antiviral deaminase apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (A3G) restricts the production of infectious HIV-1 by deamination of dC residues in the negative single-stranded DNA produced by reverse transcription. The Vif protein averts the lethal threat of deamination by precluding the packaging of A3G into assembling virions by mediating proteasomal degradation of A3G. In spite of this robust Vif activity, residual A3G molecules that escape degradation and incorporate into newly assembled virions are potentially deleterious to the virus. We hypothesized that virion-associated Vif inhibits A3G enzymatic activity and therefore prevents lethal mutagenesis of the newly synthesized viral DNA. Here, we show that (i) Vif-proficient HIV-1 particles released from H9 cells contain A3G with lower specific activity compared with Δvif-virus-associated A3G, (ii) encapsidated HIV-1 Vif inhibits the deamination activity of recombinant A3G, and (iii) purified HIV-1 Vif protein and the Vif-derived peptide Vif25-39 inhibit A3G activity in vitro at nanomolar concentrations in an uncompetitive manner. Our results manifest the potentiality of Vif to control the deamination threat in virions or in the pre-integration complexes following entry to target cells. Hence, virion-associated Vif could serve as a last line of defense, protecting the virus against A3G antiviral activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Oligomerization transforms human APOBEC3G from an efficient enzyme to a slowly dissociating nucleic acid-binding protein

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy R.; McCauley, Micah J.; Wang, Wei; Qualley, Dominic F.; Wu, Tiyun; Kitamura, Shingo; Geertsema, Hylkje; Chan, Denise S. B.; Hertz, Amber; Iwatani, Yasumasa; Levin, Judith G.; Musier-Forsyth, Karin; Rouzina, Ioulia; Williams, Mark C.

    2014-01-01

    The human APOBEC3 proteins are a family of DNA-editing enzymes that play an important role in the innate immune response against retroviruses and retrotransposons. APOBEC3G is a member of this family that inhibits HIV-1 replication in the absence of the viral infectivity factor Vif. Inhibition of HIV replication occurs by both deamination of viral single-stranded DNA and a deamination-independent mechanism. Efficient deamination requires rapid binding to and dissociation from ssDNA. However, a relatively slow dissociation rate is required for the proposed deaminase-independent roadblock mechanism in which APOBEC3G binds the viral template strand and blocks reverse transcriptase-catalysed DNA elongation. Here, we show that APOBEC3G initially binds ssDNA with rapid on-off rates and subsequently converts to a slowly dissociating mode. In contrast, an oligomerization-deficient APOBEC3G mutant did not exhibit a slow off rate. We propose that catalytically active monomers or dimers slowly oligomerize on the viral genome and inhibit reverse transcription.

  19. DNA Methylation-a Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy.

    PubMed

    Mishra, Manish; Kowluru, Renu A

    2018-04-21

    In the development of diabetic retinopathy, retinal mitochondria are dysfunctional, and mitochondrial DNA (mtDNA) is damaged with increased base mismatches and hypermethylated cytosines. DNA methylation is also a potential source of mutation, and in diabetes, the noncoding region, the displacement loop (D-loop), experiences more methylation and base mismatches than other regions of the mtDNA. Our aim was to investigate a possible crosstalk between mtDNA methylation and base mismatches in the development of diabetic retinopathy. The effect of inhibition of Dnmts (by 5-aza-2'-deoxycytidine or Dnmt1-siRNA) on glucose-induced mtDNA base mismatches was investigated in human retinal endothelial cells by surveyor endonuclease digestion and validated by Sanger sequencing. The role of deamination factors on increased base mismatches was determined in the cells genetically modulated for mitochondrial superoxide dismutase (Sod2) or cytidine-deaminase (APOBEC3A). The results were confirmed in an in vivo model using retinal microvasculature from diabetic mice overexpressing Sod2. Inhibition of DNA methylation, or regulation of cytosine deamination, significantly inhibited an increase in base mismatches at the D-loop and prevented mitochondrial dysfunction. Overexpression of Sod2 in mice also prevented diabetes-induced D-loop hypermethylation and increase in base mismatches. The crosstalk between DNA methylation and base mismatches continued even after termination of hyperglycemia, suggesting its role in the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Inhibition of DNA methylation limits the availability of methylated cytosine for deamination, suggesting a crosstalk between DNA methylation and base mismatches. Thus, regulation of DNA methylation, or its deamination, should impede the development of diabetic retinopathy by preventing formation of base mismatches and mitochondrial dysfunction.

  20. Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues†

    PubMed Central

    Killelea, Tom; Ghosh, Samantak; Tan, Samuel S.; Heslop, Pauline; Firbank, Susan; Kool, Eric T.; Connolly, Bernard A.

    2010-01-01

    Archaeal family-B DNA polymerases stall replication on encountering the pro-mutagenic bases uracil and hypoxanthine. This publication describes an X-ray crystal structure of Thermococcus gorgonarius polymerase in complex with a DNA containing hypoxanthine in the single-stranded region of the template, two bases ahead of the primer-template junction. Full details of the specific recognition of hypoxanthine are revealed, allowing a comparison with published data that describes uracil binding. The two bases are recognized by the same pocket, in the N-terminal domain, and make very similar protein-DNA interactions. Specificity for hypoxanthine (and uracil) arises from a combination of polymerase-base hydrogen bonds and shape fit between the deaminated bases and the pocket. The structure with hypoxanthine at the +2 position explains the stimulation of the polymerase 3′-5′ proof reading exonuclease, observed with deaminated bases at this location. A β hairpin element, involved in partitioning the primer strand between the polymerase and exonuclease active sites, inserts between the two template bases at the extreme end of the double stranded DNA. This denatures the two complementary primer bases and directs the resulting 3′ single-stranded extension towards the exonuclease active site. Finally the relative importance of hydrogen bonding and shape fit in determining selectivity for deaminated bases has been examined using non-polar isosteres. Affinity for both 2,4 difluorobenzene and fluorobenzimidazole, non-hydrogen bonding shape mimics of uracil and hypoxanthine respectively, is strongly diminished, suggesting polar protein-base contacts are important. However, residual interaction with 2,4 difluorobenzene is seen, confirming a role for shape recognition. PMID:20527806

  1. Heat shock proteins stimulate APOBEC-3-mediated cytidine deamination in the hepatitis B virus.

    PubMed

    Chen, Zhigang; Eggerman, Thomas L; Bocharov, Alexander V; Baranova, Irina N; Vishnyakova, Tatyana G; Kurlander, Roger; Patterson, Amy P

    2017-08-11

    Apolipoprotein B mRNA-editing enzyme catalytic subunit 3 (APOBEC-3) enzymes are cytidine deaminases that are broadly and constitutively expressed. They are often up-regulated during carcinogenesis and candidate genes for causing the major single-base substitution in cancer-associated DNA mutations. Moreover, APOBEC-3s are involved in host innate immunity against many viruses. However, how APOBEC-3 mutational activity is regulated in normal and pathological conditions remains largely unknown. Heat shock protein levels are often elevated in both carcinogenesis and viral infection and are associated with DNA mutations. Here, using mutational analyses of hepatitis B virus (HBV), we found that Hsp90 stimulates deamination activity of APOBEC-3G (A3G), A3B, and A3C during co-expression in human liver HepG2 cells. Hsp90 directly stimulated A3G deamination activity when the purified proteins were used in in vitro reactions. Hsp40, -60, and -70 also had variable stimulatory effects in the cellular assay, but not in vitro Sequencing analyses further demonstrated that Hsp90 increased both A3G cytosine mutation efficiency on HBV DNA and total HBV mutation frequency. In addition, Hsp90 shifted A3G's cytosine region selection in HBV DNA and increased A3G's 5' nucleoside preference for deoxycytidine (5'-CC). Furthermore, the Hsp90 inhibitor 17- N -allylamino-17-demethoxygeldanamycin dose dependently inhibited A3G and A3B mutational activity on HBV viral DNA. Hsp90 knockdown by siRNA or by Hsp90 active-site mutation also decreased A3G activity. These results indicate that heat shock proteins, in particular Hsp90, stimulate APOBEC-3-mediated DNA deamination activity, suggesting a potential physiological role in carcinogenesis and viral innate immunity.

  2. Understanding cerebral L-lysine metabolism: the role of L-pipecolate metabolism in Gcdh-deficient mice as a model for glutaric aciduria type I.

    PubMed

    Posset, Roland; Opp, Silvana; Struys, Eduard A; Völkl, Alfred; Mohr, Heribert; Hoffmann, Georg F; Kölker, Stefan; Sauer, Sven W; Okun, Jürgen G

    2015-03-01

    Inherited deficiencies of the L-lysine catabolic pathway cause glutaric aciduria type I and pyridoxine-dependent epilepsy. Dietary modulation of cerebral L-lysine metabolism is thought to be an important therapeutic intervention for these diseases. To better understand cerebral L-lysine degradation, we studied in mice the two known catabolic routes -- pipecolate and saccharopine pathways -- using labeled stable L-lysine and brain peroxisomes purified according to a newly established protocol. Experiments with labeled stable L-lysine show that cerebral L-pipecolate is generated along two pathways: i) a minor proportion retrograde after ε-deamination of L-lysine along the saccharopine pathway, and ii) a major proportion anterograde after α-deamination of L-lysine along the pipecolate pathway. In line with these findings, we observed only little production of saccharopine in the murine brain. L-pipecolate oxidation was only detectable in brain peroxisomes, but L-pipecolate oxidase activity was low (7 ± 2μU/mg protein). In conclusion, L-pipecolate is a major degradation product from L-lysine in murine brain generated by α-deamination of this amino acid.

  3. Proximity to AGCT sequences dictates MMR-independent versus MMR-dependent mechanisms for AID-induced mutation via UNG2

    PubMed Central

    Thientosapol, Eddy Sanchai; Sharbeen, George; Lau, K.K. Edwin; Bosnjak, Daniel; Durack, Timothy; Stevanovski, Igor; Weninger, Wolfgang

    2017-01-01

    Abstract AID deaminates C to U in either strand of Ig genes, exclusively producing C:G/G:C to T:A/A:T transition mutations if U is left unrepaired. Error-prone processing by UNG2 or mismatch repair diversifies mutation, predominantly at C:G or A:T base pairs, respectively. Here, we show that transversions at C:G base pairs occur by two distinct processing pathways that are dictated by sequence context. Within and near AGCT mutation hotspots, transversion mutation at C:G was driven by UNG2 without requirement for mismatch repair. Deaminations in AGCT were refractive both to processing by UNG2 and to high-fidelity base excision repair (BER) downstream of UNG2, regardless of mismatch repair activity. We propose that AGCT sequences resist faithful BER because they bind BER-inhibitory protein(s) and/or because hemi-deaminated AGCT motifs innately form a BER-resistant DNA structure. Distal to AGCT sequences, transversions at G were largely co-dependent on UNG2 and mismatch repair. We propose that AGCT-distal transversions are produced when apyrimidinic sites are exposed in mismatch excision patches, because completion of mismatch repair would require bypass of these sites. PMID:28039326

  4. [Effect of monovalent cations on glutamate metabolism in rat brain].

    PubMed

    Nilova, N S

    1976-10-01

    Glutamate oxidation in vitro via deamination and transamination during gramicidin C-induced transport of K+ and Na+ in rat nervous tissue mitochondria was studied. An increase in ammonium production, i.e. in glutamate oxidation due to deamination, was shown to occur with maximal increase of oxygen consumption in the presence of cations. It was found that 1.5 mM Na+ activate oxygen consumption by 15% and accelerate ammonium production from glutamate (by 17%). No changes in aspartate production were observed. 15 mM K+ increase oxygen consumption by 29% and ammonium production by 11% during a decrease in aspartate production as compared to glutamate oxidation in the presence of a lower (10 mM) concentration of K+ in the samples.

  5. Degradation of aniline by heterogeneous Fenton's reaction using a Ni-Fe oxalate complex catalyst.

    PubMed

    Liu, Yucan; Zhang, Guangming; Fang, Shunyan; Chong, Shan; Zhu, Jia

    2016-11-01

    A Ni-Fe oxalate complex catalyst was synthesized and characterized by means of Brunauer-Emmet-Teller (BET) method, scanning electron microscope (SEM) and X-ray photo-electron spectroscopy (XPS). The catalyst showed good catalytic activity for aniline degradation by heterogeneous Fenton's reaction, in which the synergetic index was 9.3. The effects of reaction temperature, catalyst dosage, hydrogen peroxide concentration and initial pH were investigated. Under the optimum conditions (T = 293 K, catalyst dosage = 0.2 g/L, H2O2 concentration = 4 mmol/L and initial pH = 5.4), 100% aniline could be removed within 35 min, and approximately 88% deamination efficiency was achieved in 60 min. The aniline degradation process followed the pseudo-first-order kinetic (k = 0.177 min(-1)) with activation energy (Ea) of 49.4 kJ mol(-1). Aniline could be removed in a broad initial pH (3-8) due to the excellent pH-tolerance property of the catalyst. The detected ammonium ion indicated that deamination occurred during aniline degradation. It was proposed that deamination synchronized with aniline removal, and aniline was attacked by free radicals to generate benzoquinonimine and phenol. This system is promising for the removal of aniline from water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A facile one-step fluorescence method for the quantitation of low-content single base deamination impurity in synthetic oligonucleotides.

    PubMed

    Su, Xiaoye; Liang, Ruiting; Stolee, Jessica A

    2018-06-05

    Oligonucleotides are being researched and developed as potential drug candidates for the treatment of a broad spectrum of diseases. The characterization of antisense oligonucleotide (ASO) impurities caused by base mutations (e.g. deamination) which are closely related to the target ASO is a significant analytical challenge. Herein, we describe a novel one-step method, utilizing a strategy that combines fluorescence-ON detection with competitive hybridization, to achieve single base mutation quantitation in extensively modified synthetic ASOs. Given that this method is highly specific and sensitive (LoQ = 4 nM), we envision that it will find utility for screening other impurities as well as sequencing modified oligonucleotides. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. AID targeting: old mysteries and new challenges.

    PubMed

    Chandra, Vivek; Bortnick, Alexandra; Murre, Cornelis

    2015-09-01

    Activation-induced cytidine deaminase (AID) mediates cytosine deamination and underlies two central processes in antibody diversification: somatic hypermutation and class-switch recombination. AID deamination is not exclusive to immunoglobulin loci; it can instigate DNA lesions in non-immunoglobulin genes and thus stringent checks are in place to constrain and restrict its activity. Recent findings have provided new insights into the mechanisms that target AID activity to specific genomic regions, revealing an involvement for noncoding RNAs associated with polymerase pausing and with enhancer transcription as well as genomic architecture. We review these findings and integrate them into a model for multilevel regulation of AID expression and targeting in immunoglobulin and non-immunoglobulin loci. Within this framework we discuss gaps in understanding, and outline important areas of further research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. AID Targeting: Old Mysteries and New Challenges

    PubMed Central

    Chandra, Vivek; Bortnick, Alexandra; Murre, Cornelis

    2015-01-01

    Activation-induced cytidine deaminase (AID) mediates cytosine deamination and underlies two central processes in antibody diversification: somatic hypermutation and class-switch recombination. AID deamination is not exclusive to immunoglobulin loci; it can instigate DNA lesions in non-immunoglobulin genes and thus, stringent checks are in place to constrain and restrict its activity. Recent findings have provided new insights into the mechanisms that target AID activity to specific genomic regions, revealing an involvement for non-coding RNAs associated with polymerase pausing and with enhancer transcription as well as genomic architecture. We review these findings and integrate them into a model for multi-level regulation of AID expression and targeting in immunoglobulin and non-immunoglobulin loci. Within this framework we discuss gaps in understanding, and outline important areas of further research. PMID:26254147

  9. Discovery and structure determination of the orphan enzyme isoxanthopterin deaminase .

    PubMed

    Hall, Richard S; Agarwal, Rakhi; Hitchcock, Daniel; Sauder, J Michael; Burley, Stephen K; Swaminathan, Subramanyam; Raushel, Frank M

    2010-05-25

    Two previously uncharacterized proteins have been identified that efficiently catalyze the deamination of isoxanthopterin and pterin 6-carboxylate. The genes encoding these two enzymes, NYSGXRC-9339a ( gi|44585104 ) and NYSGXRC-9236b ( gi|44611670 ), were first identified from DNA isolated from the Sargasso Sea as part of the Global Ocean Sampling Project. The genes were synthesized, and the proteins were subsequently expressed and purified. The X-ray structure of Sgx9339a was determined at 2.7 A resolution (Protein Data Bank entry 2PAJ ). This protein folds as a distorted (beta/alpha)(8) barrel and contains a single zinc ion in the active site. These enzymes are members of the amidohydrolase superfamily and belong to cog0402 within the clusters of orthologous groups (COG). Enzymes in cog0402 have previously been shown to catalyze the deamination of guanine, cytosine, S-adenosylhomocysteine, and 8-oxoguanine. A small compound library of pteridines, purines, and pyrimidines was used to probe catalytic activity. The only substrates identified in this search were isoxanthopterin and pterin 6-carboxylate. The kinetic constants for the deamination of isoxanthopterin with Sgx9339a were determined to be 1.0 s(-1), 8.0 muM, and 1.3 x 10(5) M(-1) s(-1) (k(cat), K(m), and k(cat)/K(m), respectively). The active site of Sgx9339a most closely resembles the active site for 8-oxoguanine deaminase (Protein Data Bank entry 2UZ9 ). A model for substrate recognition of isoxanthopterin by Sgx9339a was proposed on the basis of the binding of guanine and xanthine in the active site of guanine deaminase. Residues critical for substrate binding appear to be conserved glutamine and tyrosine residues that form hydrogen bonds with the carbonyl oxygen at C4, a conserved threonine residue that forms hydrogen bonds with N5, and another conserved threonine residue that forms hydrogen bonds with the carbonyl group at C7. These conserved active site residues were used to identify 24 other genes which are predicted to deaminate isoxanthopterin.

  10. The Transcription Elongation Complex Directs Activation-Induced Cytidine Deaminase-Mediated DNA Deamination†

    PubMed Central

    Besmer, Eva; Market, Eleonora; Papavasiliou, F. Nina

    2006-01-01

    Activation-induced cytidine deaminase (AID) is a single-stranded DNA deaminase required for somatic hypermutation of immunoglobulin (Ig) genes, a key process in the development of adaptive immunity. Transcription provides a single-stranded DNA substrate for AID, both in vivo and in vitro. We present here an assay which can faithfully replicate all of the molecular features of the initiation of hypermutation of Ig genes in vivo. In this assay, which detects AID-mediated deamination in the context of transcription by Escherichia coli RNA polymerase, deamination targets either strand and declines in efficiency as the distance from the promoter increases. We show that AID binds DNA exposed by the transcribing polymerase, implicating the polymerase itself as the vehicle which distributes AID on DNA as it moves away from the promoter. PMID:16705187

  11. Inhibition potential of 3,4-methylenedioxymethamphetamine (MDMA) and its metabolites on the in vitro monoamine oxidase (MAO)-catalyzed deamination of the neurotransmitters serotonin and dopamine.

    PubMed

    Steuer, Andrea E; Boxler, Martina I; Stock, Lorena; Kraemer, Thomas

    2016-01-22

    Neurotoxicity of 3,4-methylenedioxymethamphetamine (MDMA) is still controversially discussed. Formation of reactive oxygen species e.g. based on elevated dopamine (DA) concentrations and DA quinone formation is discussed among others. Inhibition potential of MDMA metabolites regarding neurotransmitter degradation by catechol-O-methyltransferase and sulfotransferase was described previously. Their influence on monoamine oxidase (MAO) - the major DA degradation pathway-has not yet been studied in humans. Therefore the inhibition potential of MDMA and its metabolites on the deamination of the neurotransmitters DA and serotonin (5-HT) by MAO-A and B using recombinant human enzymes in vitro should be investigated. In initial studies, MDMA and MDA showed relevant inhibition (>30%) toward MAO A for 5-HT and DA. No relevant effects toward MAO B were observed. Further investigation on MAO-A revealed MDMA as a competitive inhibitor of 5-HT and DA deamination with Ki 24.5±7.1 μM and 18.6±4.3 μM respectively and MDA as a mixed-type inhibitor with Ki 7.8±2.6 μM and 8.4±3.2 μM respectively. Although prediction of in vivo relevance needs to be done with care, relevant inhibitory effects at expected plasma concentrations after recreational MDMA consumption seems unlikely based on the obtained data. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. In vitro and in vivo studies of pharmacokinetics and antitumor efficacy of D07001-F4, an oral gemcitabine formulation.

    PubMed

    Hao, Wei-Hua; Wang, Jong-Jing; Hsueh, Shu-Ping; Hsu, Pei-Jing; Chang, Li-Chien; Hsu, Chang-Shan; Hsu, Kuang-Yang

    2013-02-01

    The chemotherapy agent gemcitabine is currently administered intravenously because the drug has poor oral bioavailability. In order to assess the pharmacokinetics and antitumor activity of D07001-F4, a new self-microemulsifying oral drug delivery system preparation of gemcitabine, this study was performed to compare the effect of D07001-F4 with administered gemcitabine in vitro and in vivo. D07001-F4 pharmacokinetics was examined by evaluation of in vitro deamination of D07001-F4 and gemcitabine hydrochloride by recombinant human cytidine deaminase (rhCDA) and in vivo evaluation of D07001-F4 pharmacokinetics in mice. Antitumor activity was evaluated by comparing the effect of D07001-F4 and gemcitabine hydrochloride in inhibiting growth in nine cancer cell lines and by examining the effect of D07001-F4 and gemcitabine in two xenograft tumor models in mice. In vitro deamination of D07001-F4 by rhCDA was 3.3-fold slower than deamination of gemcitabine hydrochloride. Growth inhibition by D07001-F4 of 7 of the 8 cancer cell lines was increased compared with that seen with gemcitabine hydrochloride, and D07001-F4 inhibited the growth of pancreatic and colon cancer xenografts. In vivo pharmacokinetics showed the oral bioavailability of D07001-F4 to be 34%. D07001-F4 was effective against several cancer types, was metabolized more slowly than gemcitabine hydrochloride, and exhibited enhanced oral bioavailability.

  13. AID to overcome the limitations of genomic information by introducing somatic DNA alterations.

    PubMed

    Honjo, Tasuku; Muramatsu, Masamichi; Nagaoka, Hitoshi; Kinoshita, Kazuo; Shinkura, Reiko

    2006-05-01

    The immune system has adopted somatic DNA alterations to overcome the limitations of the genomic information. Activation induced cytidine deaminase (AID) is an essential enzyme to regulate class switch recombination (CSR), somatic hypermutation (SHM) and gene conversion (GC) of the immunoglobulin gene. AID is known to be required for DNA cleavage of S regions in CSR and V regions in SHM. However, its molecular mechanism is a focus of extensive debate. RNA editing hypothesis postulates that AID edits yet unknown mRNA, to generate specific endonucleases for CSR and SHM. By contrast, DNA deamination hypothesis assumes that AID deaminates cytosine in DNA, followed by DNA cleavage by base excision repair enzymes. We summarize the basic knowledge for molecular mechanisms for CSR and SHM and then discuss the importance of AID not only in the immune regulation but also in the genome instability.

  14. Differential Role of Glutamate Dehydrogenase in Nitrogen Metabolism of Maize Tissues 1

    PubMed Central

    Loyola-Vargas, Victor Manuel; de Jimenez, Estela Sanchez

    1984-01-01

    Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation. PMID:16663876

  15. Ab initio ONIOM-molecular dynamics (MD) study on the deamination reaction by cytidine deaminase.

    PubMed

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase by calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket of the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determining step is the release of the NH3 molecule.

  16. Studies with a reconstituted muscle glycolytic system. The anaerobic glycolytic response to simulated tetanic contraction

    PubMed Central

    Scopes, Robert K.

    1974-01-01

    By using a reconstituted glycolytic system and a highly active adenosine triphosphatase (ATPase), the metabolism during muscular tetanic contraction was simulated and observed. With an ATPase activity somewhat greater than can be maintained in muscle tissue, phosphocreatine was rapidly and completely utilized, lactate production commenced about 5s after the ATPase was added and after 15s adenine nucleotides were lost through deamination to IMP. By 40s, all metabolism ceased because of complete loss of adenine mononucleotides. With a lower ATPase activity, glycolytic regeneration of ATP was capable of maintaining the ATP concentration at its initial value and even by 80s, only one-half of the phosphocreatine had been utilized. No deamination occurred in this time. It is suggested that the metabolic events observed in the simulated system are basically the same as occur in muscle doing heavy work. PMID:4275706

  17. Phenylalanine ammonia lyase catalyzed synthesis of amino acids by an MIO-cofactor independent pathway.

    PubMed

    Lovelock, Sarah L; Lloyd, Richard C; Turner, Nicholas J

    2014-04-25

    Phenylalanine ammonia lyases (PALs) belong to a family of 4-methylideneimidazole-5-one (MIO) cofactor dependent enzymes which are responsible for the conversion of L-phenylalanine into trans-cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non-natural amino acids. Herein the discovery of a previously unobserved competing MIO-independent reaction pathway, which proceeds in a non-stereoselective manner and results in the generation of both L- and D-phenylalanine derivatives, is described. The mechanism of the MIO-independent pathway is explored through isotopic-labeling studies and mutagenesis of key active-site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1 cB elimination mechanism. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Regulation of Immunoglobulin Class-Switch Recombination: Choreography of Noncoding Transcription, Targeted DNA Deamination, and Long-Range DNA Repair

    PubMed Central

    Matthews, Allysia J.; Zheng, Simin; DiMenna, Lauren J.; Chaudhuri, Jayanta

    2014-01-01

    Upon encountering antigens, mature IgM-positive B lymphocytes undergo class-switch recombination (CSR) wherein exons encoding the default Cμ constant coding gene segment of the immunoglobulin (Ig) heavy-chain (Igh) locus are excised and replaced with a new constant gene segment (referred to as “Ch genes”, e.g., Cγ, Cε, or Cα). The B cell thereby changes from expressing IgM to one producing IgG, IgE, or IgA, with each antibody isotype having a different effector function during an immune reaction. CSR is a DNA deletional-recombination reaction that proceeds through the generation of DNA double-strand breaks (DSBs) in repetitive switch (S) sequences preceding each Ch gene and is completed by end-joining between donor Sμ and acceptor S regions. CSR is a multistep reaction requiring transcription through S regions, the DNA cytidine deaminase AID, and the participation of several general DNA repair pathways including base excision repair, mismatch repair, and classical nonhomologous end-joining. In this review, we discuss our current understanding of how transcription through S regions generates substrates for AID-mediated deamination and how AID participates not only in the initiation of CSR but also in the conversion of deaminated residues into DSBs. Additionally, we review the multiple processes that regulate AID expression and facilitate its recruitment specifically to the Ig loci, and how deregulation of AID specificity leads to oncogenic translocations. Finally, we summarize recent data on the potential role of AID in the maintenance of the pluripotent stem cell state during epigenetic reprogramming. PMID:24507154

  19. S-Methylmethionine Conversion to Dimethylsulfoniopropionate: Evidence for an Unusual Transamination Reaction.

    PubMed Central

    Rhodes, D.; Gage, D. A.; Cooper, AJL.; Hanson, A. D.

    1997-01-01

    Leaves of Wollastonia biflora (L.) DC. synthesize the osmoprotectant 3-dimethylsulfoniopropionate (DMSP) from methionine via S-methylmethionine (SMM) and 3-dimethylsulfoniopropionaldehyde (DMSP-ald); no other intermediates have been detected. To test whether the amino group of SMM is lost by transamination or deamination, [methyl-2H3,15N]SMM was supplied to leaf discs, and 15N-labeling of amino acids was monitored, along with synthesis of [2H3]DMSP. After short incubations more 15N was incorporated into glutamate than into other amino acids, and the 15N abundance in glutamate exceeded that in the amide group of glutamine (Gln). This is more consistent with transamination than deamination, because deamination would be predicted to give greater labeling of Gln amide N due to reassimilation, via Gln synthetase, of the 15NH4+ released. This prediction was borne out by control experiments with 15NH4Cl. The transamination product of SMM, 4-dimethylsulfonio-2-oxobutyrate (DMSOB), is expected to be extremely unstable. This was confirmed by attempting to synthesize it enzymatically from SMM using L-amino acid oxidase or Gln transaminase K and from 4-methylthio-2-oxobutyrate using methionine S-methyltransferase. In each case, the reaction product decomposed rapidly, releasing dimethylsulfide. The conversion of SMM to DMSP-ald is therefore unlikely to involve a simple transamination that generates free DMSOB. Plausible alternatives are that DMSOB is channeled within a specialized transaminase-decarboxylase complex or that it exists only as the bound intermediate of a single enzyme catalyzing an unusual transamination-decarboxylation reaction. PMID:12223879

  20. Effect of pH and temperature on the stability of UV-induced repairable pyrimidine hydrates in DNA.

    PubMed

    O'Donnell, R E; Boorstein, R J; Cunningham, R P; Teebor, G W

    1994-08-23

    UV irradiation of cytosine yields 6-hydroxy-5,6-dihydrocytosine (cytosine hydrate) whether the cytosine is in solution as base, nucleoside, or nucleotide or on the DNA backbone. Cytosine hydrate decomposes by elimination of water, yielding cytosine, or by irreversible deamination, yielding uracil hydrate, which, in turn, decomposes by dehydration yielding uracil. To determine how pH and temperature affect these decomposition reactions, alternating poly(dG-[3H]dC) copolymer was irradiated at 254 nm and incubated under different conditions of pH and temperature. The cytosine hydrate and uracil hydrate content of the DNA was determined by the use of Escherichia coli endonuclease III, which releases pyrimidine hydrates from DNA by virtue of its DNA glycosylase activity. Uracil content was determined by using uracil-DNA glycosylase. The rate of decomposition of cytosine hydrate to cytosine was determined at 4 temperatures at pH 3.1, 5.4, and 7.4. The Ea was determined from the rates by using the Arrhenius equation and proved to be the same at pH 5.4 and 7.4, although the decomposition rate at pH 5.4 was faster at all temperatures. At pH 3.1, the Ea was reduced. These results suggest that the dehydration reaction is affected by two discrete protonations, most probably of the N-3 and the OH group of C-6 of cytosine hydrate. The deamination of cytosine hydrate to uracil hydrate was maximal at pH 3.1 at all temperatures. The doubly protonated cytosine hydrate probably is the common intermediate for both competing decomposition reactions, explaining why cytosine hydrate is prone to deamination at acid pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats.

    PubMed

    Stepien, Magdalena; Azzout-Marniche, Dalila; Even, Patrick C; Khodorova, Nadezda; Fromentin, Gilles; Tomé, Daniel; Gaudichon, Claire

    2016-10-01

    We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[ 15 N]-[ 13 C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15 N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13 CO 2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13 C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet. Copyright © 2016 the American Physiological Society.

  2. Suppression of HIV-1 Infection by APOBEC3 Proteins in Primary Human CD4+ T Cells Is Associated with Inhibition of Processive Reverse Transcription as Well as Excessive Cytidine Deamination

    PubMed Central

    Gillick, Kieran; Pollpeter, Darja; Phalora, Prabhjeet; Kim, Eun-Young; Wolinsky, Steven M.

    2013-01-01

    The Vif protein of human immunodeficiency virus type 1 (HIV-1) promotes viral replication by downregulation of the cell-encoded, antiviral APOBEC3 proteins. These proteins exert their suppressive effects through the inhibition of viral reverse transcription as well as the induction of cytidine deamination within nascent viral cDNA. Importantly, these two effects have not been characterized in detail in human CD4+ T cells, leading to controversies over their possible contributions to viral inhibition in the natural cell targets of HIV-1 replication. Here we use wild-type and Vif-deficient viruses derived from the CD4+ T cells of multiple donors to examine the consequences of APOBEC3 protein function at natural levels of expression. We demonstrate that APOBEC3 proteins impart a profound deficiency to reverse transcription from the initial stages of cDNA synthesis, as well as excessive cytidine deamination (hypermutation) of the DNAs that are synthesized. Experiments using viruses from transfected cells and a novel method for mapping the 3′ termini of cDNAs indicate that the inhibition of reverse transcription is not limited to a few specific sites, arguing that APOBEC3 proteins impede enzymatic processivity. Detailed analyses of mutation spectra in viral cDNA strongly imply that one particular APOBEC3 protein, APOBEC3G, provides the bulk of the antiviral phenotype in CD4+ T cells, with the effects of APOBEC3F and APOBEC3D being less significant. Taken together, we conclude that the dual mechanisms of action of APOBEC3 proteins combine to deliver more effective restriction of HIV-1 than either function would by itself. PMID:23152537

  3. Analusis by 252Cf plasma desorption mass spectrometry of Bordetella pertussis endotoxin after nitrous deamination

    NASA Astrophysics Data System (ADS)

    Deprun, C.; Karibian, D.; Caroff, M.

    1993-07-01

    Endotoxic lipopolysaccharides (LPSs) are the major components of Gram-negative bacterial outer membrane. Like many amphipathic molecules, they pose problems of heterogeneity, purity, solubility, and aggregation. Nevertheless, PDMS has recently have been applied to unmodified endotoxins composed of LPS having uip to five sugar units in their saccharide chain. The B. Pertussis LPSs, most of which have a dodecasaccharide domain, ahve been analysed by classical methods and the masses of the separate lipid and saccharide domains determined after rupture of the bond linking them. However, the acid treatment employed for these and most chemical analyses can also modify structures in the vicinity of the bond. In order to investigate this biologically-important region, the endotoxin was treated to nitrous deamination, which shortens the saccharide chain to five sugars, but preserves the acid-labile region of the LPS. The PDM spectrum of this derivative, which required new conditions for its desorption, confirmed the structure analysis and demonstrated the presence of at least four molecular species.

  4. Nucleotide Catabolism on the Surface of Aortic Valve Xenografts; Effects of Different Decellularization Strategies.

    PubMed

    Kutryb-Zajac, Barbara; Yuen, Ada H Y; Khalpey, Zain; Zukowska, Paulina; Slominska, Ewa M; Taylor, Patricia M; Goldstein, Steven; Heacox, Albert E; Lavitrano, Marialuisa; Chester, Adrian H; Yacoub, Magdi H; Smolenski, Ryszard T

    2016-04-01

    Extracellular nucleotide metabolism controls thrombosis and inflammation and may affect degeneration and calcification of aortic valve prostheses. We evaluated the effect of different decellularization strategies on enzyme activities involved in extracellular nucleotide metabolism. Porcine valves were tested intact or decellularized either by detergent treatment or hypotonic lysis and nuclease digestion. The rates of ATP hydrolysis, AMP hydrolysis, and adenosine deamination were estimated by incubation of aorta or valve leaflet sections with substrates followed by HPLC analysis. We demonstrated relatively high activities of ecto-enzymes on porcine valve as compared to the aortic wall. Hypotonic lysis/nuclease digestion preserved >80 % of ATP and AMP hydrolytic activity but reduced adenosine deamination to <10 %. Detergent decellularization completely removed (<5 %) all these activities. These results demonstrate high intensity of extracellular nucleotide metabolism on valve surface and indicate that various valve decellularization techniques differently affect ecto-enzyme activities that could be important in the development of improved valve prostheses.

  5. N-(3-aminopropyl)pyrrolidin-2-one, a product of spermidine catabolism in vivo.

    PubMed Central

    Seiler, N; Knödgen, B; Haegele, K

    1982-01-01

    A high-pressure-liquid-chromatographic method suitable for the separation and sensitive detection of putreanine and isoputreanine is described. This method allowed us to study the formation of the metabolites of the oxidative deamination of spermidine and N1-acetylspermidine. Administration of spermidine trishydrochloride to mice causes a time-dependent accumulation of putreanine and N-(3-aminopropyl)pyrrolidin-2-one in various organs. The latter compound yields isoputreanine by hydrolysis. It can be assumed that the analogous lactam. N-(3-acetamidopropyl)pyrrolidin-2-one is formed from N1-acetylspermidine, since hydrolysis of tissue extracts of N1-acetylspermidine-treated mice produced isoputreanine. No putreanine is formed under these conditions. Pretreatment of the animals with 25 mg of aminoguanidine sulphate/kg body wt. completely inhibits the formation of putreanine and of the respective isoputreanine precursor from spermidine and N1-acetylspermidine. This suggests a role for a diamine oxidase-like enzyme in the oxidative deamination of spermidine and N1-acetylspermidine. Images Fig. 6. PMID:7159392

  6. RNA editing produces glycine receptor alpha3(P185L), resulting in high agonist potency.

    PubMed

    Meier, Jochen C; Henneberger, Christian; Melnick, Igor; Racca, Claudia; Harvey, Robert J; Heinemann, Uwe; Schmieden, Volker; Grantyn, Rosemarie

    2005-06-01

    The function of supramedullary glycine receptors (GlyRs) is still unclear. Using Wistar rat collicular slices, we demonstrate GlyR-mediated inhibition of spike discharge elicited by low glycine (10 microM). Searching for the molecular basis of this phenomenon, we identified a new GlyR isoform. GlyR alpha3(P185L), a result of cytidine 554 deamination, confers high glycine sensitivity (EC50 approximately 5 microM) to neurons and thereby promotes the generation of sustained chloride conductances associated with tonic inhibition. The level of GlyR alpha3-C554U RNA editing is sensitive to experimentally induced brain lesion, inhibition of cytidine deamination by zebularine and inhibition of mRNA transcription by actinomycin D, but not to blockade of protein synthesis by cycloheximide. Conditional regulation of GlyR alpha3(P185L) is thus likely to be part of a post-transcriptional adaptive mechanism in neurons with enhanced excitability.

  7. [Monoamine oxidase activity in rat pineal gland: comparison with brain areas, alteration during aging].

    PubMed

    Razygraev, A V; Taborskaya, K I; Volovik, K Yu; Bunina, A A; Petrosyan, M A

    Using benzylamine as a substrate, the amine oxidase activity was determined in the pineal gland of adult rats and compared with the same activity in brain areas and pituitary. Two groups of rats aged 6-8 and 14-15 months were also compared on the basis of this activity. Benzylamine deaminating activity in the pineal gland was significantly higher than in the area preoptica medialis, the corpus mamillare, the tuberculum olfactorium, and the hypophysis, and lower than in the eminentia mediana. The significant increase of the activity in the pineal gland in animals of age from 6-8 to 14-15-months was revealed. Benzylamine deaminating activity in the pineal gland was totally inhibited by 0,002 mM R deprenyl, indicating the B type monoamine oxidase (MAO B) activity. Age-associated increase of MAO B activity in the pineal gland accompanied by decrease of glutathione peroxidase activity, reported earlier, can promote the oxidative damage in the pineal gland during aging.

  8. Protection against herbivores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, Gregg A.; Chen, Hui

    The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase ormore » threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase. In another preferred embodiment, the invention relates to altering threonine substrated deamination and dehydration activity in plants, arthropods, and microorganisms using threonine deaminase. In some embodiments, the invention related to overexpression and increased activity of arginase, threonine deaminase and a proteinase inhibitor.« less

  9. Cytidine deamination induced HIV-1 drug resistance

    PubMed Central

    Mulder, Lubbertus C. F.; Harari, Ariana; Simon, Viviana

    2008-01-01

    The HIV-1 Vif protein is essential for overcoming the antiviral activity of DNA-editing apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) cytidine deaminases. We show that naturally occurring HIV-1 Vif point mutants with suboptimal anti-APOBEC3G activity induce the appearance of proviruses with lamivudine (3TC) drug resistance-associated mutations before any drug exposure. These mutations, ensuing from cytidine deamination events, were detected in >40% of proviruses with partially defective Vif mutants. Transfer of drug resistance from hypermutated proviruses via recombination allowed for 3TC escape under culture conditions prohibitive for any WT viral growth. These results demonstrate that defective hypermutated genomes can shape the phenotype of the circulating viral population. Partially active Vif alleles resulting in incomplete neutralization of cytoplasmic APOBEC3 molecules are directly responsible for the generation of a highly diverse, yet G-to-A biased, proviral reservoir, which can be exploited by HIV-1 to generate viable and drug-resistant progenies. PMID:18391217

  10. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

    PubMed Central

    Rublack, Nico

    2014-01-01

    Summary Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated. PMID:25246949

  11. Protection against herbivores

    DOEpatents

    Howe, Gregg A; Chen, Hui

    2014-10-28

    The present invention relates to genes, proteins and methods comprising molecules that alter amino acid levels. In one embodiment, the present invention relates to altering guanidino substrate hydrolysis activities in plants, arthropods and microorganisms using molecules within the arginase family and other molecules that alter an amino acid levels. In ones embodiment, the present invention relates to altering threonine substrate deamination and dehydration activities in plants, arthropods and microorganisms using molecules within the threonine deaminase family and other molecules that alter amino acid levels. In one embodiment, the present invention relates to using genes, proteins and methods comprising arginase or threonine deaminase for altering the pathophysiology of plants, arthropods and microorganisms. In a preferred embodiment, the present invention relates to altering guanidino substrate hydrolysis activity in plants, arthropods, and microorganisms using arginase. In another preferred embodiment, the invention relates to altering threonine substrated deamination and dehydration activity in plants, arthropods, and microorganisms using threonine deaminase. In some embodiments, the invention related to overexpression and increased activity of arginase, threonine deaminase and a proteinase inhibitor.

  12. The APOBEC3 Family of Retroelement Restriction Factors

    PubMed Central

    Refsland, Eric W.; Harris, Reuben S.

    2014-01-01

    The ability to regulate and even target mutagenesis is an extremely valuable cellular asset. Enzyme-catalyzed DNA cytosine deamination is a molecular strategy employed by vertebrates to promote antibody diversity and defend against foreign nucleic acids. Ten years ago, a family of cellular enzymes was first described with several proving capable of deaminating DNA and inhibiting HIV-1 replication. Ensuing studies on the apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) restriction factors have uncovered a broad-spectrum innate defense network that suppresses the replication of numerous endogenous and exogenous DNA-based parasites. Although many viruses possess equally elaborate counter-defense mechanisms, the APOBEC3 enzymes offer a tantalizing possibility of leveraging innate immunity to fend off viral infection. Here we focus on mechanisms of retroelement restriction by the APOBEC3 family of restriction enzymes and we consider the therapeutic benefits, as well as the possible pathological consequences, of arming cells with active DNA deaminases. PMID:23686230

  13. Genotype-specific enrichment of ACC deaminase-positive bacteria in winter wheat rhizospheres

    USDA-ARS?s Scientific Manuscript database

    Bacteria that produce ACC deaminase promote plant growth and development by lowering levels of the stress hormone ethylene through deamination of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. Therefore, it is hypothesized that ACC deaminase positive (ACC+) bacteri...

  14. Hyperthermophilic Archaeon Thermococcus kodakarensis Utilizes a Four-Step Pathway for NAD+ Salvage through Nicotinamide Deamination.

    PubMed

    Hachisuka, Shin-Ichi; Sato, Takaaki; Atomi, Haruyuki

    2018-06-01

    Many organisms possess pathways that regenerate NAD + from its degradation products, and two pathways are known to salvage NAD + from nicotinamide (Nm). One is a four-step pathway that proceeds through deamination of Nm to nicotinic acid (Na) by Nm deamidase and phosphoribosylation to nicotinic acid mononucleotide (NaMN), followed by adenylylation and amidation. Another is a two-step pathway that does not involve deamination and directly proceeds with the phosphoribosylation of Nm to nicotinamide mononucleotide (NMN), followed by adenylylation. Judging from genome sequence data, the hyperthermophilic archaeon Thermococcus kodakarensis is supposed to utilize the four-step pathway, but the fact that the adenylyltransferase encoded by TK0067 recognizes both NMN and NaMN also raises the possibility of a two-step salvage mechanism. Here, we examined the substrate specificity of the recombinant TK1676 protein, annotated as nicotinic acid phosphoribosyltransferase. The TK1676 protein displayed significant activity toward Na and phosphoribosyl pyrophosphate (PRPP) and only trace activity with Nm and PRPP. We further performed genetic analyses on TK0218 (quinolinic acid phosphoribosyltransferase) and TK1650 (Nm deamidase), involved in de novo biosynthesis and four-step salvage of NAD + , respectively. The ΔTK0218 mutant cells displayed growth defects in a minimal synthetic medium, but growth was fully restored with the addition of Na or Nm. The ΔTK0218 ΔTK1650 mutant cells did not display growth in the minimal medium, and growth was restored with the addition of Na but not Nm. The enzymatic and genetic analyses strongly suggest that NAD + salvage in T. kodakarensis requires deamination of Nm and proceeds through the four-step pathway. IMPORTANCE Hyperthermophiles must constantly deal with increased degradation rates of their biomolecules due to their high growth temperatures. Here, we identified the pathway that regenerates NAD + from nicotinamide (Nm) in the hyperthermophilic archaeon Thermococcus kodakarensis The organism utilizes a four-step pathway that initially hydrolyzes the amide bond of Nm to generate nicotinic acid (Na), followed by phosphoribosylation, adenylylation, and amidation. Although the two-step pathway, consisting of only phosphoribosylation of Nm and adenylylation, seems to be more efficient, Nm mononucleotide in the two-step pathway is much more thermolabile than Na mononucleotide, the corresponding intermediate in the four-step pathway. Although NAD + itself is thermolabile, this may represent an example of a metabolism that has evolved to avoid the use of thermolabile intermediates. Copyright © 2018 American Society for Microbiology.

  15. Pros and cons of methylation-based enrichment methods for ancient DNA.

    PubMed

    Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D; Lopez, Patricio; McDonald, H Gregory; Scott, Eric; Tikhonov, Alexei; Stafford, Thomas W; Alfarhan, Ahmed H; Alquraishi, Saleh A; Al-Rasheid, Khaled A S; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic

    2015-07-02

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions.

  16. Pros and cons of methylation-based enrichment methods for ancient DNA

    PubMed Central

    Seguin-Orlando, Andaine; Gamba, Cristina; Sarkissian, Clio Der; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline D.; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford,, Thomas W.; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic

    2015-01-01

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved samples, where both DNA fragmentation and deamination have been limited. This work represents an essential step toward the characterization of ancient methylation signatures, which will help understanding the role of epigenetic changes in past environmental and cultural transitions. PMID:26134828

  17. Modulation of brain glutamate dehydrogenase as a tool for controlling seizures.

    PubMed

    Rasgado, Lourdes A Vega; Reyes, Guillermo Ceballos; Díaz, Fernando Vega

    2015-12-01

    Glutamate (Glu) is a major excitatory neurotransmitter involved in epilepsy. Glu is synthesized by glutamate dehydrogenase (GDH, E.C. 1.4.1.3) and dysfunction of the enzymatic activity of GDH is associated with brain pathologies. The main goal of this work is to establish the role of GDH in the effects of antiepileptic drugs (AEDs) such as valproate (VALP), diazepam (DIAZ) and diphenylhydantoin (DPH) and its repercussions on oxygen consumption. Oxidative deamination of Glu and reductive amination of αketoglutarate (αK) in mice brain were investigated. Our results show that AEDs decrease GDH activity and oxygen consumption in vitro. In ex vivo experiments, AEDs increased GDH activity but decreased oxygen consumption during Glu oxidative deamination. VALP and DPH reversed the increase in reductive amination of αK caused by the chemoconvulsant pentylenetetrazol. These results suggest that AEDs act by modulating brain GDH activity, which in turn decreased oxygen consumption. GDH represents an important regulation point of neuronal excitability, and modulation of its activity represents a potential target for metabolic treatment of epilepsy and for the development of new AEDs.

  18. Robust regulation of hepatic pericentral amination by glutamate dehydrogenase kinetics.

    PubMed

    Bera, Soumen; Lamba, Sanjay; Rashid, Mubasher; Sharma, Anuj K; Medvinsky, Alexander B; Acquisti, Claudia; Chakraborty, Amit; Li, Bai-Lian

    2016-11-07

    Impaired glutamate dehydrogenase (GDH) sensitivity to its inhibitors causes excessive insulin secretion by pancreatic beta-cells and defective ammonia metabolism in the liver. These symptoms are commonly associated with hyperinsulinism/hyperammonemia syndrome (HI/HA), which causes recurrent hypoglycaemia in early infancy. Hepatic localization of GDH amination and deamination activities linked with the urea cycle is known to be involved in ammonia metabolism and detoxification. Although deamination activities of hepatic GDH in the periportal zones of liver lobules and its connection to the urea cycle have been exhaustively investigated, physiological roles of GDH amination activity observed at pericentral zones have often been overlooked. Using kinetic modelling approaches, here we report a new role for hepatic GDH amination kinetics in maintaining ammonia homeostasis under an excess intrahepatocyte input of ammonium. We have shown that α-ketoglutarate substrate inhibition kinetics of GDH, which include both random and obligatory ordered association/dissociation reactions, robustly control the ratio between glutamate and ammonium under a wide range of intracellular substrate variation. Dysregulation of this activity under pericentral nitrogen insufficiency contributes to the breaking down of ammonia homeostasis and thereby can significantly affect HI/HA syndrome.

  19. Nitric oxide-induced interstrand cross-links in DNA.

    PubMed

    Caulfield, Jennifer L; Wishnok, John S; Tannenbaum, Steven R

    2003-05-01

    The DNA damaging effects of nitrous acid have been extensively studied, and the formation of interstrand cross-links have been observed. The potential for this cross-linking to occur through a common nitrosating intermediate derived from nitric oxide is investigated here. Using a HPLC laser-induced fluorescence (LIF) system, the amount of interstrand cross-link formed on nitric oxide treatment of the 5'-fluorescein-labeled oligomer ATATCGATCGATAT was determined. This self-complimentary sequence contains two 5'-CG sequences, which is the preferred site for nitrous acid-induced cross-linking. Nitric oxide was delivered to an 0.5 mM oligomer solution at 15 nmol/mL/min to give a final nitrite concentration of 652 microM. The resulting concentration of the deamination product, xanthine, in this sample was found to be 211 +/- 39 nM, using GC/MS, and the amount of interstrand cross-link was determined to be 13 +/- 2.5 nM. Therefore, upon nitric oxide treatment, the cross-link is found at approximately 6% of the amount of the deamination product. Using this system, detection of the cross-link is also possible for significantly lower doses of nitric oxide, as demonstrated by treatment of the same oligomer with NO at a rate of 18 nmol/mL/min resulting in a final nitrite concentration of 126 microM. The concentration of interstrand cross-link was determined to be 3.6 +/- 0.1 nM in this sample. Therefore, using the same dose rate, when the total nitric oxide concentration delivered drops by a factor of approximately 5, the concentration of cross-link drops by a factor of about 4-indicating a qausi-linear response. It may now be possible to predict the number of cross-links in a small genome based on the number of CpG sequences and the yield of xanthine derived from nitrosative deamination.

  20. Increased L-DOPA-derived dopamine following selective MAO-A or-B inhibition in rat striatum depleted of dopaminergic and serotonergic innervation

    PubMed Central

    Sader-Mazbar, O; Loboda, Y; Rabey, M J; Finberg, J P M

    2013-01-01

    Background and Purpose Selective MAO type B (MAO-B) inhibitors are effective in potentiation of the clinical effect of L-DOPA in Parkinson's disease, but dopamine (DA) is deaminated mainly by MAO type A (MAO-A) in rat brain. We sought to clarify the roles of MAO-A and MAO-B in deamination of DA formed from exogenous L-DOPA in rat striatum depleted of dopaminergic, or both dopaminergic and serotonergic innervations. We also studied the effect of organic cation transporter-3 (OCT-3) inhibition by decinium-22 on extracellular DA levels following L-DOPA. Experimental Approach Striatal dopaminergic and/or serotonergic neuronal innervations were lesioned by 6-hydroxydopamine or 5,7-dihydroxytryptamine respectively. Microdialysate DA levels after systemic L-DOPA were measured after inhibition of MAO-A or MAO-B by clorgyline or rasagiline respectively. MAO subtype localization in the striatum was determined by immunofluorescence. Key Results Rasagiline increased DA extracellular levels following L-DOPA to a greater extent in double-than in single-lesioned rats (2.8-and 1.8-fold increase, respectively, relative to saline treatment); however, clorgyline elevated DA levels in both models over 10-fold. MAO-A was strongly expressed in medium spiny neurons (MSNs) in intact and lesioned striata, while MAO-B was localized in glia and to a small extent in MSNs. Inhibition of OCT-3 increased DA levels in the double-more than the single-lesion animals. Conclusions and Implications In striatum devoid of dopaminergic and serotonergic inputs, most deamination of L-DOPA-derived DA is mediated by MAO-A in MSN and a smaller amount by MAO-B in both MSN and glia. OCT-3 plays a significant role in uptake of DA from extracellular space. Inhibitors of OCT-3 are potential future targets for anti-Parkinsonian treatments. PMID:23992249

  1. A new species of Proteus isolated from larvae of the gypsy moth, Porthetria dispar (L.)

    Treesearch

    B.J. Cosenza; J.D. Podgwaite

    1966-01-01

    Characteristics of a slime-producing bacterium isolated from living and dead gypsy moth larvae were determined. The bacterium was found to be a motile, gram-negative rod, which fermented glucose, but not lactose. It was oxidase-negative, hydrolyzed urea, deaminated phenylalanine and produced H2S. These characteristics are common to several...

  2. Biochanin A (an isoflavone produced by red clover) promotes weight gain of steers grazed in mixed grass pastures and fed dried-distillers grains

    USDA-ARS?s Scientific Manuscript database

    Biochanin A (BCA) is an isoflavone produced by red clover (Trifloium pratense L.) that can inhibit hyper-ammonia producing bacteria (HAB) to reduce deamination in the rumen and increase the feed amino acids available for gastric digestion. An in vitro experiment was conducted to evaluate the effect...

  3. Ontogenesis of uptake and deamination of 5-hydroxytryptamine, dopamine and beta-phenylethylamine in isolated perfused lung and lung homogenates from rats.

    PubMed Central

    Ben-Harari, R. R.; Youdim, M. B.

    1981-01-01

    1. Uptake of 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) was studied in perfused lung from male rats between 10 and 70 days old. 2. Monoamine oxidase (MAO) activity towards 5-HT, PEA and dopamine was studied in homogenate preparations of lung from rats aged between 5 and 80 days. 3. Uptake of 5-HT (10 microM) decreased throughout the age range studied but uptake of PEA (50 microM) increased for the first 30 days and beyond this age it decreased. Metabolites formed for both amines reflected the changes in uptake. 4. MAO activity deaminating 5-HT is well developed by day 10 and reaches its maximum by day 40. For dopamine and PEA, MAO activity remained low until day 20, and the developed rapidly, reaching a maximum by day 40 for dopamine; activity towards PEA did not reach a maximum by day 80. 5. These results show that uptake and MAO activity changes with age and thus the lung responds like other tissues. 6. These results also demonstrate the independent development of uptake and MAO activity towards 5-HT, PEA and dopamine. PMID:7284689

  4. Cytosine to uracil conversion through hydrolytic deamination of cytidine monophosphate hydroxy-alkylated on the amino group: a liquid chromatography--electrospray ionization--mass spectrometry investigation.

    PubMed

    Losito, I; Angelico, R; Introna, B; Ceglie, A; Palmisano, F

    2012-10-01

    A novel pathway for cytosine to uracil conversion performed in a micellar environment, leading to the generation of uridine monophosphate (UMP), was evidenced during the alkylation reaction of cytidine monophosphate (CMP) by dodecyl epoxide. Liquid chromatography-electrospray ionization - ion trap - mass spectrometry was used to separate and identify the reaction products and to follow their formation over time. The detection of hydroxy-amino-dodecane, concurrently with free UMP, in the reaction mixture suggested that, among the various alkyl-derivatives formed, CMP alkylated on the amino group of cytosine could undergo tautomerization to an imine and hydrolytic deamination, generating UMP. Interestingly, no evidence for this peculiar conversion pathway was obtained when guanosine monophosphate (GMP), the complementary ribonucleotide of CMP, was also present in the reaction mixture, due to the fact that NH(2)-alkylated CMP was not formed in this case. The last finding emphasized the role played by CMP-GMP molecular interactions, mediated by a micellar environment, in hindering the alkylation reaction at the level of the cytosine amino group. Copyright © 2012 John Wiley & Sons, Ltd.

  5. RETRACTED: Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48.

    PubMed

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-06-15

    An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO₂ substituent) and deamination (release of NH₂ substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC-MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Early infant exposure to excess multivitamin: a risk factor for autism?

    PubMed

    Zhou, Shi-Sheng; Zhou, Yi-Ming; Li, Da; Ma, Qiang

    2013-01-01

    Autism, a neurodevelopmental disorder that affects boys more than girls, is often associated with altered levels of monoamines (serotonin and catecholamines), especially elevated serotonin levels. The monoamines act as both neurotransmitters and signaling molecules in the gastrointestinal and immune systems. The evidence related to monoamine metabolism may be summarized as follows: (i) monoamine neurotransmitters are enzymatically degraded/inactivated by three mechanisms: oxidative deamination, methylation, and sulfation. The latter two are limited by the supply of methyl groups and sulfate, respectively. (ii) A decrease in methylation- and sulfation-mediated monoamine inactivation can be compensated by an increase in the oxidative deamination catalyzed by monoamine oxidase, an X-linked enzyme exhibiting higher activity in females than in males. (iii) Vitamins can, on one hand, facilitate the synthesis of monoamine neurotransmitters and, on the other hand, inhibit their inactivation by competing for methylation and sulfation. Therefore, we postulate that excess multivitamin feeding in early infancy, which has become very popular over the past few decades, may be a potential risk factor for disturbed monoamine metabolism. In this paper, we will focus on the relationship between excess multivitamin exposure and the inactivation/degradation of monoamine neurotransmitters and its possible role in the development of autism.

  7. Random-walk enzymes.

    PubMed

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  8. Random-walk enzymes

    PubMed Central

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  9. An optimized rapid bisulfite conversion method with high recovery of cell-free DNA.

    PubMed

    Yi, Shaohua; Long, Fei; Cheng, Juanbo; Huang, Daixin

    2017-12-19

    Methylation analysis of cell-free DNA is a encouraging tool for tumor diagnosis, monitoring and prognosis. Sensitivity of methylation analysis is a very important matter due to the tiny amounts of cell-free DNA available in plasma. Most current methods of DNA methylation analysis are based on the difference of bisulfite-mediated deamination of cytosine between cytosine and 5-methylcytosine. However, the recovery of bisulfite-converted DNA based on current methods is very poor for the methylation analysis of cell-free DNA. We optimized a rapid method for the crucial steps of bisulfite conversion with high recovery of cell-free DNA. A rapid deamination step and alkaline desulfonation was combined with the purification of DNA on a silica column. The conversion efficiency and recovery of bisulfite-treated DNA was investigated by the droplet digital PCR. The optimization of the reaction results in complete cytosine conversion in 30 min at 70 °C and about 65% of recovery of bisulfite-treated cell-free DNA, which is higher than current methods. The method allows high recovery from low levels of bisulfite-treated cell-free DNA, enhancing the analysis sensitivity of methylation detection from cell-free DNA.

  10. Random-walk enzymes

    NASA Astrophysics Data System (ADS)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  11. Nanopore Long-Read Guided Complete Genome Assembly of Hydrogenophaga intermedia, and Genomic Insights into 4-Aminobenzenesulfonate, p-Aminobenzoic Acid and Hydrogen Metabolism in the Genus Hydrogenophaga.

    PubMed

    Gan, Han M; Lee, Yin P; Austin, Christopher M

    2017-01-01

    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia , the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p -aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."

  12. Chronic low-dose ultraviolet-induced mutagenesis in nucleotide excision repair-deficient cells.

    PubMed

    Haruta, Nami; Kubota, Yoshino; Hishida, Takashi

    2012-09-01

    UV radiation induces two major types of DNA lesions, cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrimidine photoproducts, which are both primarily repaired by nucleotide excision repair (NER). Here, we investigated how chronic low-dose UV (CLUV)-induced mutagenesis occurs in rad14Δ NER-deficient yeast cells, which lack the yeast orthologue of human xeroderma pigmentosum A (XPA). The results show that rad14Δ cells have a marked increase in CLUV-induced mutations, most of which are C→T transitions in the template strand for transcription. Unexpectedly, many of the CLUV-induced C→T mutations in rad14Δ cells are dependent on translesion synthesis (TLS) DNA polymerase η, encoded by RAD30, despite its previously established role in error-free TLS. Furthermore, we demonstrate that deamination of cytosine-containing CPDs contributes to CLUV-induced mutagenesis. Taken together, these results uncover a novel role for Polη in the induction of C→T transitions through deamination of cytosine-containing CPDs in CLUV-exposed NER deficient cells. More generally, our data suggest that Polη can act as both an error-free and a mutagenic DNA polymerase, depending on whether the NER pathway is available to efficiently repair damaged templates.

  13. Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B₁.

    PubMed

    Hartinger, Doris; Schwartz, Heidi; Hametner, Christian; Schatzmayr, Gerd; Haltrich, Dietmar; Moll, Wulf-Dieter

    2011-08-01

    Fumonisins are carcinogenic mycotoxins that are frequently found as natural contaminants in maize from warm climate regions around the world. The aminotransferase FumI is encoded as part of a gene cluster of Sphingopyxis sp. MTA144, which enables this bacterial strain to degrade fumonisin B(1) and related fumonisins. FumI catalyzes the deamination of the first intermediate of the catabolic pathway, hydrolyzed fumonisin B(1). We used a preparation of purified, His-tagged FumI, produced recombinantly in Escherichia coli in soluble form, for enzyme characterization. The structure of the reaction product was studied by NMR and identified as 2-keto hydrolyzed fumonisin B(1). Pyruvate was found to be the preferred co-substrate and amino group receptor (K (M) = 490 μM at 10 μM hydrolyzed fumonisin B(1)) of FumI, but other α-keto acids were also accepted as co-substrates. Addition of the co-enzyme pyridoxal phosphate to the enzyme preparation enhanced activity, and saturation was already reached at the lowest tested concentration of 10 μM. The enzyme showed activity in the range of pH 6 to 10 with an optimum at pH 8.5, and in the range of 6°C to 50°C with an optimum at 35°C. The aminotransferase worked best at low salt concentration. FumI activity could be recovered after preincubation at pH 4.0 or higher, but not lower. The aminotransferase was denatured after preincubation at 60°C for 1 h, and the residual activity was also reduced after preincubation at lower temperatures. At optimum conditions, the kinetic parameters K (M) = 1.1 μM and k (cat) = 104/min were determined with 5 mM pyruvate as co-substrate. Based on the enzyme characteristics, a technological application of FumI, in combination with the fumonisin carboxylesterase FumD for hydrolysis of fumonisins, for deamination and detoxification of hydrolyzed fumonisins seems possible, if the enzyme properties are considered.

  14. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat, S.S.; Swaminathan, S.; Bagaria, A.

    2011-03-22

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. Themore » apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  15. Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Kamat; A Bagaria; D Kumaran

    2011-12-31

    Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{supmore » -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the identity of the rate-limiting steps.« less

  16. Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.

    PubMed

    Kamba, Keisuke; Nagata, Takashi; Katahira, Masato

    2015-01-01

    APOBEC3G (A3G) is a single-stranded DNA-specific cytidine deaminase that preferentially converts cytidine to uridine at the third position of triplet cytosine (CCC) hotspots. A3G restricts the infectivity of viruses, such as HIV-1, by targeting CCC hotspots scattered through minus DNA strands, reverse-transcribed from genomic RNA. Previously, we developed a real-time NMR method and elucidated the origin of the 3'→5' polarity of deamination of DNA by the C-terminal domain of A3G (CD2), which is a phenomenon by which a hotspot located closer to the 5'-end is deaminated more effectively than one less close to the 5'-end, through quantitative analysis involving nonspecific binding to and sliding along DNA. In the present study we applied the real-time NMR method to analyze the catalytic activity of CD2 toward DNA oligonucleotides containing a nucleotide analog at a single or multiple positions. Analyses revealed the importance of the sugar and base moieties throughout the consecutive 5 nucleotides, the CCC hotspot being positioned at the center. It was also shown that the sugar or base moieties of the nucleotides outside this 5 nucleotide recognition sequence are also relevant as to CD2's activity. Analyses involving DNA oligonucleotides having two CCC hotspots linked by a long sequence of either deoxyribonucleotides, ribonucleotides or abasic deoxyribonucleotides suggested that the phosphate backbone is required for CD2 to slide along the DNA strand and to exert the 3'→5' polarity. Examination of the effects of different salt concentrations on the 3'→5' polarity indicated that the higher the salt concentration, the less prominent the 3'→5' polarity. This is most likely the result of alleviation of sliding due to a decrease in the affinity of CD2 with the phosphate backbone at high salt concentrations. We also investigated the reactivity of substrates containing 5-methylcytidine (5mC) or 5-hydroxymethylcytidine, and found that A3G exhibited low activity toward 5mC.

  17. Y Chromosome Regulation of Autism Susceptibility Genes

    DTIC Science & Technology

    2009-06-01

    with human -like spontaneous mutation. Neuroreport, 2008. 19(7): p. 739-43. 60. Lin, Y.M., et al., Association analysis of monoamine oxidase A gene and...susceptibility genes, including the monoamine oxidase A (MOAA), mediator complex subunit 12 (MED12), homeobox B1 (HOXB1) gastrin-releasing peptide...autism susceptibility genes, the RET proto- oncogene and monoamine oxidase A (MAOA) gene for detail studies. MAOA deaminates monoamines and is involved

  18. Related Mechanisms of Antibody Somatic Hypermutation and Class Switch Recombination

    PubMed Central

    HWANG, JOYCE K.; ALT, FREDERICK W.; YEAP, LENG-SIEW

    2015-01-01

    The primary antibody repertoire is generated by mechanisms involving the assembly of the exons that encode the antigen-binding variable regions of immunoglobulin heavy (IgH) and light (IgL) chains during the early development of B lymphocytes. After antigen-dependent activation, mature B lymphocytes can further alter their IgH and IgL variable region exons by the process of somatic hypermutation (SHM), which allows the selection of B cells in which SHMs resulted in the production of antibodies with increased antigen affinity. In addition, during antigen-dependent activation, B cells can also change the constant region of their IgH chain through a DNA double-strand-break (DSB) dependent process referred to as IgH class switch recombination (CSR), which generates B cell progeny that produce antibodies with different IgH constant region effector functions that are best suited for a elimination of a particular pathogen or in a particular setting. Both the mutations that underlie SHM and the DSBs that underlie CSR are initiated in target genes by activation-induced cytidine deaminase (AID). This review describes in depth the processes of SHM and CSR with a focus on mechanisms that direct AID cytidine deamination in activated B cells and mechanisms that promote the differential outcomes of such cytidine deamination. PMID:26104555

  19. Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state.

    PubMed

    Zhang, Xi; Wang, Qifan; Wu, Jianping; Wang, Jiawei; Shi, Yigong; Liu, Minhao

    2018-04-10

    Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure-function relationship of LOX proteins and will facilitate LOX-targeting drug discovery. Copyright © 2018 the Author(s). Published by PNAS.

  20. Adenine formation from adenosine by mycoplasmas: adenosine phosphorylase activity.

    PubMed Central

    Hatanaka, M; Del Giudice, R; Long, C

    1975-01-01

    Mammalian cells have enzymes to convert adenosine to inosine by deamination and inosine to hypoxanthine by phosphorolysis, but they do not possess the enzymes necessary to form the free base, adenine, from adenosine. Mycoplasmas grown in broth or in cell cultures can produce adenine from adenosine. This activity was detected in a variety of mycoplasmatales, and the enzyme was shown to be adenosine phosphorylase. Adenosine formation from adenine and ribose 1-phosphate, the reverse reaction of adenine formation from adenosine, was also observed with the mycoplasma enzyme. Adenosine phosphorylase is apparently common to the mycoplasmatales but it is not universal, and the organisms can be divided into three groups on the basis of their use of adenosine as substrate. Thirteen of 16 Mycoplasma, Acholeplasma, and Siroplasma species tested exhibit adenosine phosphorylase activity. M. lipophilium differed from the other mycoplasmas and shared with mammalian cells the ability to convert adenosine to inosine by deamination. M. pneumoniae and the unclassified M. sp. 70-159 showed no reaction with adenosine. Adenosine phosphorylase activity offers an additional method for the detection of mycoplasma contamination of cells. The patterns of nucleoside metabolism will provide additional characteristics for identification of mycoplasmas and also may provide new insight into the classification of mycoplasmas. PMID:236559

  1. Ab Initio ONIOM-Molecular Dynamics (MD) Study on the Deamination Reaction by Cytidine Deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsubara, Toshiaki; Dupuis, Michel; Aida, Misako

    2007-08-23

    We applied the ONIOM-molecular dynamics (MD) method to the hydrolytic deamination of cytidine by cytidine deaminase, which is an essential step of the activation process of the anticancer drug inside the human body. The direct MD simulations were performed for the realistic model of cytidine deaminase calculating the energy and its gradient by the ab initio ONIOM method on the fly. The ONIOM-MD calculations including the thermal motion show that the neighboring amino acid residue is an important factor of the environmental effects and significantly affects not only the geometry and energy of the substrate trapped in the pocket ofmore » the active site but also the elementary step of the catalytic reaction. We successfully simulate the second half of the catalytic cycle, which has been considered to involve the rate-determining step, and reveal that the rate-determing step is the release of the NH3 molecule. TM and MA were supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan. MD was supported by the Division of Chemical Sciences, Office of Basic Energy Sciences, and by the Office of Biological and Environmental Research of the U.S. Department of Energy DOE. Battelle operates Pacific Northwest National Laboratory for DOE.« less

  2. Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge.

    PubMed

    Park, Junghoon; Park, Seyong; Kim, Moonil

    2014-01-01

    The anaerobic degradation of each amino acid that could be generated through the hydrolysis of sewage sludge was evaluated. Stickland reaction as an intermediate reaction between two kinds of amino acids was restricted in order to evaluate each amino acid. Changes in the chemical oxygen demand (COD), T-N, NH4(+)-N, biogas, and CH4 were analysed for the anaerobic digestion process. The initial nitrogen concentration of all amino acids is adjusted as 1000 mg/L. The degradation rate of the amino acids was determined based on the ammonia form of nitrogen, which is generated by the deamination of amino acids. Among all amino acids, such as alpha-alanine, beta-alanine, lysine, arginine, glycine, histidine, cysteine, methionine, and leucine, deamination rates of cysteine, leucine, and methionine were just 61.55%, 54.59%, and 46.61%, respectively, and they had low removal rates of organic matter and showed very low methane production rates of 13.55, 71.04, and 80.77 mL CH4/g CODin, respectively. Especially for cysteine, the methane content was maintained at approximately 7% during the experiment. If wastewater contains high levels of cysteine, leucine, and methionine and Stickland reaction is not prepared, these amino acids may reduce the efficiency of the anaerobic digestion.

  3. Biodegradation and Transformation of Nitroaromatic Compounds (POSTPRINT)

    DTIC Science & Technology

    2012-07-01

    groups. Reductive deamination of 4 -aminobenzoate metab· elites before ring cleavage ( 64) and degradation of 3-amino· benzoate (65) have been...Bacteri a from a variety of sources can degrade compounds such as 4 -ni- rrophenol that have been widely distributed in the en viron· ment ( 1, 3 7, 72...on the batch culture technique is continuous perfusion and recirculation in small soil columns ( 4 ). Isolation of Degradative Strains When a mixed

  4. Genetic Diversity among 3-Chloroaniline- and Aniline-Degrading Strains of the Comamonadaceae

    PubMed Central

    Boon, Nico; Goris, Johan; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2001-01-01

    We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present. PMID:11229899

  5. EPR, ENDOR, and DFT study of free radicals in L-lysine·HCl·2H2O single crystals X-irradiated at 298 K.

    PubMed

    Zhou, Yiying; Nelson, William H

    2011-10-27

    With K-band EPR (Electron Paramagnetic Resonance), ENDOR (Electron-Nuclear DOuble Resonance), and EIE (ENDOR-induced EPR) techniques, three free radicals (RI-RIII) in L-lysine hydrochloride dihydrate single crystals X-irradiated at 298 K were detected at 298 K, and six radicals (R1, R1', R2-R5) were detected if the temperature was lowered to 66 K from 298 K. R1 and RI dominated the central portion of the EPR at 66 and 298 K, respectively, and were identified as main chain deamination radicals, (-)OOCĊH(CH(2))(4)(NH(3))(+). R1' was identified as a main chain deamination radical with the different configuration from R1 at 66 K, and it probably formed during cooling the temperature from 298 to 66 K. The configurations of R1, R1', and RI were analyzed with their coupling tensors. R2 and R3 each contain one α- and four β-proton couplings and have very similar EIEs at three crystallographic axes. The two-layer ONIOM calculations (at B3LYP/6-31G(d,p):PM3) support that R2 and R3 are from different radicals: dehydrogenation at C4, (-)OOCCH(NH(3))(+)CH(2)ĊH(CH(2))(2)(NH(3))(+), and dehydrogenation at C5, (-)OOCCH(NH(3))(+)(CH(2))(2)ĊHCH(2)(NH(3))(+), respectively. The comparisons of the coupling tensors indicated that R2 (66 K) is the same radical as RII (298 K), and R3 is the same as RIII. Thus, RII and RIII also are the radicals of C4 and C5 dehydrogenation. R4 and R5 are minority radicals and were observed only when temperature was lowered to 66 K. R4 and R5 were only tentatively assigned as the side chain deamination radical, (-)OOCCH (NH(3))(+)(CH(2))(3)ĊH(2), and the radical dehydrogenation at C3, (-)OOCCH(NH(3))(+)ĊH(CH(2))(3)(NH(3))(+), respectively, although the evidence was indirect. From simulation of the EPR (B//a, 66 K), the concentrations of R1, R1', and R2-R5 were estimated as: R1, 50%; R1', 11%; R2, 14%; R3, 16%; R4, 6%; R5, 3%.

  6. Metabolism of phenylethylamine in rat isolated perfused lung: evidence for monoamine oxidase 'type B' in lung.

    PubMed Central

    Bakhle, Y S; Youdim, M B

    1976-01-01

    Phenylethylamine is inactivated in a single passage through rat lung tissue by a process of uptake and deamination by a monoamine oxidase 'type B'. This enzyme is particularly susceptible to inhibition by deprenil and less sensitive to clorgyline. The monoamine oxidase of the lung, like that of other rat tissues, can be differentiated into 'type A' and 'type B' which appear to operate independently in the organized tissue. PMID:1252659

  7. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  8. Diamine Oxidase from White Pea (Lathyrus sativus) Combined with Catalase Protects the Human Intestinal Caco-2 Cell Line from Histamine Damage.

    PubMed

    Jumarie, Catherine; Séïde, Marilyne; Marcocci, Lucia; Pietrangeli, Paola; Mateescu, Mircea Alexandru

    2017-07-01

    Diamine oxidase (DAO) administration has been proposed to treat certain gastrointestinal dysfunctions induced by histamine, an immunomodulator, signaling, and pro-inflammatory factor. However, H 2 O 2 resulting from the oxidative deamination of histamine by DAO may be toxic. The purpose of this study was to investigate to which extent DAO from white pea (Lathyrus sativus), alone or in combination with catalase, may modulate histamine toxicity in the human intestinal Caco-2 cell line. The results show that histamine at concentrations higher than 1 mM is toxic to the Caco-2 cells, independently of the cell differentiation status, with a LC 50 of ≅ 10 mM following a 24-h exposure. Depending on its concentration, DAO increased histamine toxicity to a greater extent in differentiated cells compared to undifferentiated cultures. In the presence of catalase, the DAO-induced increase in histamine toxicity was completely abolished in the undifferentiated cells and only partially decreased in differentiated cells, showing differences in the sensitivity of Caco-2 cells to the products resulting from histamine degradation by DAO (H 2 O 2 , NH 3 , or imidazole aldehyde). It appears that treatment of food histaminosis using a combination of vegetal DAO and catalase would protect against histamine toxicity and prevent H 2 O 2 -induced damage that may occur during histamine oxidative deamination.

  9. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed.

  10. Alternative 2-keto acid oxidoreductase activities in Trichomonas vaginalis.

    PubMed

    Brown, D M; Upcroft, J A; Dodd, H N; Chen, N; Upcroft, P

    1999-01-25

    We have induced high levels of resistance to metronidazole (1 mM or 170 microg ml(-1)) in two different strains of Trichomonas vaginalis (BRIS/92/STDL/F1623 and BRIS/92/STDL/B7708) and have used one strain to identify two alternative T. vaginalis 2-keto acid oxidoreductases (KOR) both of which are distinct from the already characterised pyruvate:ferredoxin oxidoreductase (PFOR). Unlike the characterised PFOR which is severely down-regulated in metronidazole-resistant parasites, both of the alternative KORs are fully active in metronidazole-resistant T. vaginalis. The first, KORI, localized in all membrane fractions but predominantly in the hydrogenosome fraction, is soluble in Triton X-100 and the second, KOR2, is extractable in 1 M acetate from membrane fractions of metronidazole-resistant parasites. PFOR and both KORI and KOR2 use a broad range of 2-keto acids as substrates (pyruvate, alpha-ketobutyrate, alpha-ketomalonate), including the deaminated forms of aromatic amino acids (indolepyruvate and phenylpyruvate). However, unlike PFOR neither KORI or KOR2 was able to use oz-ketoglutarate. Deaminated forms of branched chain amino acids (alpha-ketoisovalerate) were not substrates for T. vaginalis KORs. Since KOR I and KOR2 do not apparently donate electrons to ferredoxin, and are not down-regulated in metronidazole-resistant parasites, we propose that KORI and KOR2 provide metronidazole-resistant parasites with an alternative energy production pathway(s) which circumvents metronidazole activation.

  11. Transcription-associated mutational pressure in the Parvovirus B19 genome: Reactivated genomes contribute to the variability of viral populations.

    PubMed

    Khrustalev, Vladislav Victorovich; Ermalovich, Marina Anatolyevna; Hübschen, Judith M; Khrustaleva, Tatyana Aleksandrovna

    2017-12-21

    In this study we used non-overlapping parts of the two long open reading frames coding for nonstructural (NS) and capsid (VP) proteins of all available sequences of the Parvovirus B19 subgenotype 1a genome and found out that the rates of A to G, C to T and A to T mutations are higher in the first long reading frame (NS) of the virus than in the second one (VP). This difference in mutational pressure directions for two parts of the same viral genome can be explained by the fact of transcription of just the first long reading frame during the lifelong latency in nonerythroid cells. Adenine deamination (producing A to G and A to T mutations) and cytosine deamination (producing C to T mutations) occur more frequently in transcriptional bubbles formed by DNA "plus" strand of the first open reading frame. These mutations can be inherited only in case of reactivation of the infectious virus due to the help of Adenovirus that allows latent Parvovirus B19 to start transcription of the second reading frame and then to replicate its genome by the rolling circle mechanism using the specific origin. Results of this study provide evidence that the genomes reactivated from latency make significant contributions to the variability of Parvovirus B19. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The oxidation of cystamine and homocystamine by mammalian enzymes

    PubMed Central

    Bergeret, Bernadette; Blaschko, H.

    1957-01-01

    The oxidative deamination of cystamine and homocystamine by mammalian oxidases has been studied. The histaminase of pig kidney oxidizes homocystamine much more slowly than cystamine. The amine oxidase of mammalian liver (guinea-pig, rabbit) oxidizes homocystamine more rapidly than cystamine. Both amines are oxidized by plasma (or serum) of ruminants (ox, sheep, goat) and of the horse. In the enzymatic oxidation of homocystamine both aminogroups are removed; there is no evidence that a ring compound analogous to cystaldimine is accumulating. PMID:13489183

  13. Synthesis, Structural Characterization and Physicochemical Properties of Polymers Formed by Diazotization of 3-Amino-L-tyrosine and Closely Related Compounds

    DTIC Science & Technology

    1998-07-06

    the possibility that a diazotization at the aliphatic (alpha) amino group might lead to deamination with the formation of a cinnamic acid derivative...symmetric chlorinated/nitrated cinnamic acid derivative, and might not provide unequivocal connectivity information, although it could suggest ring...substituted aromatic ring, i.e., it is more like the spectrum of p-coumaric acid than the desired 3-amino-4-hydroxy- cinnamic acid , which would be

  14. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals

    USDA-ARS?s Scientific Manuscript database

    Background: APOBEC3 (A3) proteins deaminate DNA cytosines and block the replication of retroviruses and retrotransposons. Each A3 gene encodes a protein with one or two conserved zinc-coordinating motifs (Z1, Z2 or Z3). The presence of one A3 gene in mice (Z2-Z3) and seven in humans, A3A-H (Z1a, Z2a...

  15. Correlation Between Monoamine Oxidase Inhibitors and Anticonvulsants

    PubMed Central

    Dwivedi, Chandradhar; Misra, Radhey S.; Chaudhari, Anshumali; Parmar, Surendra S.

    1980-01-01

    Monoamine oxidase inhibitory and anticonvulsant properties of 2-substituted styryl-6-bromo-3-(4-ethylbenzoate/4 benzhydrazide)-4-quinazoles are studied. All styryl quinazolone esters except compound number 9 exhibited monoamine oxidase inhibitory properties during oxidative deamination of kynuramine. Corresponding hydrazides were found to have relatively higher activity. All these quinazolones were able to protect against pentylenetetrazol induced seizures. These observations in general do not prove that monoamine oxidase inhibitory properties represent the biochemical basis for the anticonvulsant activity of these compounds. PMID:7420438

  16. Effects of Carbidopa and Entacapone on the Metabolic Fate of the Norepinephrine Prodrug L-DOPS

    PubMed Central

    Goldstein, David S.; Holmes, Courtney; Sewell, LaToya; Pechnik, Sandra; Kopin, Irwin J.

    2016-01-01

    Background L-threo-3,4-dihydroxyphenylserine (L-DOPS), a norepinephrine (NE) prodrug, is investigational for orthostatic hypotension, which occurs commonly in Parkinson’s disease. Adjunctive anti-parkinsonian drugs might interact with L-DOPS. We tested whether L-aromatic aminoacid decarboxylase inhibition by carbidopa (CAR) attenuates L-DOPS conversion to NE and blocks the pressor effect of L-DOPS, whereas catechol-O-methyltransferase inhibition by entacapone (ENT) interferes with L-DOPS metabolism and augments the pressor effect. Methods Twelve patients with autonomic failure took 400 mg of L-DOPS with 200 mg of placebo (PLA), CAR, or ENT on different days. Plasma L-DOPS, NE, and deaminated NE metabolites (dihydroxyphenylglycol [DHPG], dihydroxymandelic acid [DHMA]) were measured. Results L-DOPS+PLA and L-DOPS+ENT increased systolic pressure similarly (by 27 ± 8 and 24 ± 9 mm Hg at 3 hours). L-DOPS+CAR did not increase pressure. The peak increase in plasma NE (0.57 ± 0.11 nmol/L) averaged less than 1/15 000th that in L-DOPS and less than 1/35th that in DHPG+DHMA. CAR prevented and ENT augmented responses of plasma DHPG and DHMA to L-DOPS. Conclusions After L-DOPS administration plasma, NE levels do not increase sufficiently to increase blood pressure. Pressor responses to L-DOPS seem to reflect NE produced extraneuronally that escapes extensive enzymatic deamination and O-methylation and evokes vasoconstriction before reaching the systemic circulation. PMID:20220040

  17. Effects of carbidopa and entacapone on the metabolic fate of the norepinephrine prodrug L-DOPS.

    PubMed

    Goldstein, David S; Holmes, Courtney; Sewell, LaToya; Pechnik, Sandra; Kopin, Irwin J

    2011-01-01

    L-threo-3,4-dihydroxyphenylserine (L-DOPS), a norepinephrine (NE) prodrug, is investigational for orthostatic hypotension, which occurs commonly in Parkinson's disease. Adjunctive anti-parkinsonian drugs might interact with L-DOPS. We tested whether L-aromatic amino-acid decarboxylase inhibition by carbidopa (CAR) attenuates L-DOPS conversion to NE and blocks the pressor effect of L-DOPS, whereas catechol-O-methyltransferase inhibition by entacapone (ENT) interferes with L-DOPS metabolism and augments the pressor effect. Twelve patients with autonomic failure took 400 mg of L-DOPS with 200 mg of placebo (PLA), CAR, or ENT on different days. Plasma L-DOPS, NE, and deaminated NE metabolites (dihydroxyphenylglycol [DHPG], dihydroxymandelic acid [DHMA]) were measured. L-DOPS+PLA and L-DOPS+ENT increased systolic pressure similarly (by 27 ± 8 and 24 ± 9 mm Hg at 3 hours). L-DOPS+CAR did not increase pressure. The peak increase in plasma NE (0.57 ± 0.11 nmol/L) averaged less than 1/15,000 th that in L-DOPS and less than 1/35th that in DHPG+DHMA. CAR prevented and ENT augmented responses of plasma DHPG and DHMA to L-DOPS. After L-DOPS administration plasma, NE levels do not increase sufficiently to increase blood pressure. Pressor responses to L-DOPS seem to reflect NE produced extraneuronally that escapes extensive enzymatic deamination and O-methylation and evokes vasoconstriction before reaching the systemic circulation.

  18. RNA-Dependent Oligomerization of APOBEC3G Is Required for Restriction of HIV-1

    PubMed Central

    Huthoff, Hendrik; Autore, Flavia; Gallois-Montbrun, Sarah; Fraternali, Franca; Malim, Michael H.

    2009-01-01

    The human cytidine deaminase APOBEC3G (A3G) is a potent inhibitor of retroviruses and transposable elements and is able to deaminate cytidines to uridines in single-stranded DNA replication intermediates. A3G contains two canonical cytidine deaminase domains (CDAs), of which only the C-terminal one is known to mediate cytidine deamination. By exploiting the crystal structure of the related tetrameric APOBEC2 (A2) protein, we identified residues within A3G that have the potential to mediate oligomerization of the protein. Using yeast two-hybrid assays, co-immunoprecipitation, and chemical crosslinking, we show that tyrosine-124 and tryptophan-127 within the enzymatically inactive N-terminal CDA domain mediate A3G oligomerization, and this coincides with packaging into HIV-1 virions. In addition to the importance of specific residues in A3G, oligomerization is also shown to be RNA-dependent. Homology modelling of A3G onto the A2 template structure indicates an accumulation of positive charge in a pocket formed by a putative dimer interface. Substitution of arginine residues at positions 24, 30, and 136 within this pocket resulted in reduced virus inhibition, virion packaging, and oligomerization. Consistent with RNA serving a central role in all these activities, the oligomerization-deficient A3G proteins associated less efficiently with several cellular RNA molecules. Accordingly, we propose that occupation of the positively charged pocket by RNA promotes A3G oligomerization, packaging into virions and antiviral function. PMID:19266078

  19. Modulation of cyclobutane thymine photodimer formation in T11-tracts in rotationally phased nucleosome core particles and DNA minicircles.

    PubMed

    Wang, Kesai; Taylor, John-Stephen A

    2017-07-07

    Cyclobutane pyrimidine dimers (CPDs) are DNA photoproducts linked to skin cancer, whose mutagenicity depends in part on their frequency of formation and deamination. Nucleosomes modulate CPD formation, favoring outside facing sites and disfavoring inward facing sites. A similar pattern of CPD formation in protein-free DNA loops suggests that DNA bending causes the modulation in nucleosomes. To systematically study the cause and effect of nucleosome structure on CPD formation and deamination, we have developed a circular permutation synthesis strategy for positioning a target sequence at different superhelix locations (SHLs) across a nucleosome in which the DNA has been rotationally phased with respect to the histone octamer by TG motifs. We have used this system to show that the nucleosome dramatically modulates CPD formation in a T11-tract that covers one full turn of the nucleosome helix at seven different SHLs, and that the position of maximum CPD formation at all locations is shifted to the 5΄-side of that found in mixed-sequence nucleosomes. We also show that an 80-mer minicircle DNA using the same TG-motifs faithfully reproduces the CPD pattern in the nucleosome, indicating that it is a good model for protein-free rotationally phased bent DNA of the same curvature as in a nucleosome, and that bending is modulating CPD formation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. On the Mechanism and Rate of Spontaneous Decomposition of Amino Acids

    PubMed Central

    Alexandrova, Anastassia N.; Jorgensen, William L.

    2011-01-01

    Spontaneous decarboxylation of amino acids is among the slowest known reactions; it is much less facile than the cleavage of amide bonds in polypeptides. Establishment of the kinetics and mechanisms for this fundamental reaction is important for gauging the proficiency of enzymes. In the present study, multiple mechanisms for glycine decomposition in water are explored using QM/MM Monte Carlo simulations and free energy perturbation theory. Simple CO2 detachment emerges as the preferred pathway for decarboxylation; it is followed by water-assisted proton transfer to yield the products, CO2 and methylamine. The computed free energy of activation of 45 kcal/mol, and the resulting rate-constant of 1 × 10−21 s−1, can be compared with an extrapolated experimental rate constant of ~2 × 10−17 s−1 at 25 °C. The half-life for the reaction is more than 1 billion years. Furthermore, examination of deamination finds simple NH3-detachment yielding α-lactone to be the favored route, though it is less facile than decarboxylation by kcal/mol. Ab initio and DFT calculations with the CPCM hydration model were also carried out for the reactions; the computed free energies of activation for glycine decarboxylation agree with the QM/MM result, while deamination is predicted to be more favorable. QM/MM calculations were also performed for decarboxylation of alanine; the computed barrier is 2 kcal/mol higher than for glycine in qualitative accord with experiment. PMID:21995727

  1. Psychedelic 5-Methoxy-N,N-dimethyltryptamine: Metabolism, Pharmacokinetics, Drug Interactions, and Pharmacological Actions

    PubMed Central

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C.; Yu, Ai-Ming

    2011-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780

  2. Changing blue fluorescent protein to green fluorescent protein using chemical RNA editing as a novel strategy in genetic restoration.

    PubMed

    Vu, Luyen T; Nguyen, Thanh T K; Alam, Shafiul; Sakamoto, Takashi; Fujimoto, Kenzo; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2015-11-01

    Using the transition from cytosine of BFP (blue fluorescent protein) gene to uridine of GFP (green fluorescent protein) gene at position 199 as a model, we successfully controlled photochemical RNA editing to effect site-directed deamination of cytidine (C) to uridine (U). Oligodeoxynucleotides (ODNs) containing 5'-carboxyvinyl-2'-deoxyuridine ((CV) U) were used for reversible photoligation, and single-stranded 100-nt BFP DNA and in vitro-transcribed full-length BFP mRNA were the targets. Photo-cross-linking with the responsive ODNs was performed using UV (366 nm) irradiation, which was followed by heat treatment, and the cross-linked nucleotide was cleaved through photosplitting (UV, 312 nm). The products were analyzed using restriction fragment length polymorphism (RFLP) and fluorescence measurements. Western blotting and fluorescence-analysis results revealed that in vitro-translated proteins were synthesized from mRNAs after site-directed RNA editing. We detected substantial amounts of the target-base-substituted fragment using RFLP and observed highly reproducible spectra of the transition-GFP signal using fluorescence spectroscopy, which indicated protein stability. ODNc restored approximately 10% of the C-to-U transition. Thus, we successfully used non-enzymatic site-directed deamination for genetic restoration in vitro. In the near future, in vivo studies that include cultured cells and model animals will be conducted to treat genetic disorders. © 2015 John Wiley & Sons A/S.

  3. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation.

    PubMed

    Santa-Marta, Mariana; da Silva, Frederico Aires; Fonseca, Ana Margarida; Goncalves, Joao

    2005-03-11

    The human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G), also known as CEM-15, is a host-cell factor involved in innate resistance to retroviral infection. HIV-1 viral infectivity factor (Vif) protein was shown to protect the virus from APOBEC3G-mediated viral cDNA hypermutation. The mechanism proposed for protection of the virus by HIV-1 Vif is mediated by APOBEC3G degradation through ubiquitination and the proteasomal pathway. Here we show that in Escherichia coli the APOBEC3G-induced cytidine deamination is inhibited by expression of Vif without depletion of deaminase. Moreover, inhibition of deaminase-mediated bacterial hypermutation is dependent on a single amino acid substitution D128K that renders APOBEC3G resistant to Vif inhibition. This single amino acid was elegantly proven by other authors to determine species-specific sensitivity. Our results show that in bacteria this single amino acid substitution controls Vif-dependent blocking of APOBEC3G that is dependent on a strong protein interaction. The C-terminal region of Vif is responsible for this strong protein-protein interaction. In conclusion, our experiments suggest a complement to the model of Vif-induced degradation of APOBEC3G by bringing to relevance that deaminase inhibition can also result from a direct interaction with Vif protein.

  4. Identification and characterization of Moraxella phenylpyruvica

    PubMed Central

    Snell, J. J. S.; Hill, L. R.; Lapage, S. P.

    1972-01-01

    Eight strains of Moraxella phenylpyruvica have been isolated from clinical material in the United Kingdom, the first to be reported from this country. They were characterized, together with three strains of M. phenylpyruvica of the National Collection of Type Cultures (NCTC), and compared with NCTC strains of eight other Moraxella species. The strains of M. phenylpyruvica formed a homogeneous group which is readily distinguishable from other Moraxella species. Deamination of phenylalanine is not restricted to M. phenylpyruvica which, however, is urease positive and is stimulated by bile, in contrast to other Moraxella spp. PMID:4648540

  5. [Genotoxic modification of nucleic acid bases and biological consequences of it. Review and prospects of experimental and computational investigations

    NASA Technical Reports Server (NTRS)

    Poltev, V. I.; Bruskov, V. I.; Shuliupina, N. V.; Rein, R.; Shibata, M.; Ornstein, R.; Miller, J.

    1993-01-01

    The review is presented of experimental and computational data on the influence of genotoxic modification of bases (deamination, alkylation, oxidation) on the structure and biological functioning of nucleic acids. Pathways are discussed for the influence of modification on coding properties of bases, on possible errors of nucleic acid biosynthesis, and on configurations of nucleotide mispairs. The atomic structure of nucleic acid fragments with modified bases and the role of base damages in mutagenesis and carcinogenesis are considered.

  6. Ligation Bias in Illumina Next-Generation DNA Libraries: Implications for Sequencing Ancient Genomes

    PubMed Central

    Seguin-Orlando, Andaine; Schubert, Mikkel; Clary, Joel; Stagegaard, Julia; Alberdi, Maria T.; Prado, José Luis; Prieto, Alfredo; Willerslev, Eske; Orlando, Ludovic

    2013-01-01

    Ancient DNA extracts consist of a mixture of endogenous molecules and contaminant DNA templates, often originating from environmental microbes. These two populations of templates exhibit different chemical characteristics, with the former showing depurination and cytosine deamination by-products, resulting from post-mortem DNA damage. Such chemical modifications can interfere with the molecular tools used for building second-generation DNA libraries, and limit our ability to fully characterize the true complexity of ancient DNA extracts. In this study, we first use fresh DNA extracts to demonstrate that library preparation based on adapter ligation at AT-overhangs are biased against DNA templates starting with thymine residues, contrarily to blunt-end adapter ligation. We observe the same bias on fresh DNA extracts sheared on Bioruptor, Covaris and nebulizers. This contradicts previous reports suggesting that this bias could originate from the methods used for shearing DNA. This also suggests that AT-overhang adapter ligation efficiency is affected in a sequence-dependent manner and results in an uneven representation of different genomic contexts. We then show how this bias could affect the base composition of ancient DNA libraries prepared following AT-overhang ligation, mainly by limiting the ability to ligate DNA templates starting with thymines and therefore deaminated cytosines. This results in particular nucleotide misincorporation damage patterns, deviating from the signature generally expected for authenticating ancient sequence data. Consequently, we show that models adequate for estimating post-mortem DNA damage levels must be robust to the molecular tools used for building ancient DNA libraries. PMID:24205269

  7. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes.

    PubMed

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted "bidirectional analysis," which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples.

  8. Sex Determination from Fragmented and Degenerated DNA by Amplified Product-Length Polymorphism Bidirectional SNP Analysis of Amelogenin and SRY Genes

    PubMed Central

    Masuyama, Kotoka; Shojo, Hideki; Nakanishi, Hiroaki; Inokuchi, Shota; Adachi, Noboru

    2017-01-01

    Sex determination is important in archeology and anthropology for the study of past societies, cultures, and human activities. Sex determination is also one of the most important components of individual identification in criminal investigations. We developed a new method of sex determination by detecting a single-nucleotide polymorphism in the amelogenin gene using amplified product-length polymorphisms in combination with sex-determining region Y analysis. We particularly focused on the most common types of postmortem DNA damage in ancient and forensic samples: fragmentation and nucleotide modification resulting from deamination. Amplicon size was designed to be less than 60 bp to make the method more useful for analyzing degraded DNA samples. All DNA samples collected from eight Japanese individuals (four male, four female) were evaluated correctly using our method. The detection limit for accurate sex determination was determined to be 20 pg of DNA. We compared our new method with commercial short tandem repeat analysis kits using DNA samples artificially fragmented by ultraviolet irradiation. Our novel method was the most robust for highly fragmented DNA samples. To deal with allelic dropout resulting from deamination, we adopted “bidirectional analysis,” which analyzed samples from both sense and antisense strands. This new method was applied to 14 Jomon individuals (3500-year-old bone samples) whose sex had been identified morphologically. We could correctly identify the sex of 11 out of 14 individuals. These results show that our method is reliable for the sex determination of highly degenerated samples. PMID:28052096

  9. Biochemical and Biological Studies of Mouse APOBEC3

    PubMed Central

    Nair, Smita; Sanchez-Martinez, Silvia; Ji, Xinhua

    2014-01-01

    ABSTRACT Many murine leukemia viruses (MLVs) are partially resistant to restriction by mouse APOBEC3 (mA3) and essentially fully resistant to induction of G-to-A mutations by mA3. In contrast, Vif-deficient HIV-1 (ΔVif HIV-1) is profoundly restricted by mA3, and the restriction includes high levels of G-to-A mutation. Human APOBEC3G (hA3G), unlike mA3, is fully active against MLVs. We produced a glutathione S-transferase–mA3 fusion protein in insect cells and demonstrated that it possesses cytidine deaminase activity, as expected. This activity is localized within the N-terminal domain of this 2-domain protein; the C-terminal domain is enzymatically inactive but required for mA3 encapsidation into retrovirus particles. We found that a specific arginine residue and several aromatic residues, as well as the zinc-coordinating cysteines in the C-terminal domain, are necessary for mA3 packaging; a structural model of this domain suggests that these residues line a potential nucleic acid-binding interface. Mutation of a few potential phosphorylation sites in mA3 drastically reduces its antiviral activity by impairing either deaminase activity or its encapsidation. mA3 deaminates short single-stranded DNA oligonucleotides preferentially toward their 3′ ends, whereas hA3G exhibits the opposite polarity. However, when packaged into infectious ΔVif HIV-1 virions, both mA3 and hA3G preferentially induce deaminations toward the 5′ end of minus-strand viral DNA, presumably because of the sequence of events during reverse transcription in vivo. Despite the fact that mA3 in MLV particles does not induce detectable deaminations upon infection, its deaminase activity is easily detected in virus lysates. We still do not understand how MLV resists mA3-induced G-to-A mutation. IMPORTANCE One way that mammalian cells defend themselves against infection by retroviruses is with APOBEC3 proteins. These proteins convert cytidine bases to uridine bases in retroviral DNA. However, mouse APOBEC3 protein blocks infection by murine leukemia viruses without catalyzing this base change, and the mechanism of inhibition is not understood in this case. We have produced recombinant mouse APOBEC3 protein for the first time and characterized it here in a number of ways. Our mutational studies shed light on the mechanism by which mouse APOBEC3 protein is incorporated into retrovirus particles. While mouse APOBEC3 does not catalyze base changes in murine leukemia virus DNA, it can be recovered from these virus particles in enzymatically active form; it is still not clear why it fails to induce base changes when these viruses infect new cells. PMID:24453360

  10. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products.

    PubMed

    Wang, Wen-Long; Wu, Qian-Yuan; Huang, Nan; Xu, Zi-Bin; Lee, Min-Yong; Hu, Hong-Ying

    2018-05-15

    UV based advanced oxidation processes (UV-AOPs) that efficiently eliminate organic pollutants during water treatment have been the subject of numerous investigations. Most organic pollutants are not completely mineralized during UV-AOPs but are partially oxidized into transformation products (TPs), thereby adding complexity to the treated water and posing risks to humans, ecological systems, and the environment. While the degradation kinetics and mechanisms of pollutants have been widely documented, there is little information about the risks associated with TPs. In this review, we have collated recent knowledge about the harmful TPs that are generated in UV/H 2 O 2 and UV photocatalysis, two UV-AOPs that have been studied extensively. Toxic and assimilable TPs were ubiquitously observed in more than 80% of UV-AOPs of organic pollutants, of which the toxicity and assimilability levels changed with variations in the reaction conditions, such as the UV fluence and oxidant dosage. Previous studies and modeling assessments showed that toxic and assimilable TPs may be generated during hydroxylation, dealkylation, decarboxylation, and deamination. Among various reactions, TPs generated from dealkylation and decarboxylation were generally less and more toxic than the parent pollutants, respectively; TPs generated from decarboxylation and deamination were generally less and more assimilable than the parent pollutants, respectively. There is also potential concern about the sensory-unpleasant TPs generated by oxidations and subsequent metabolism of microorganisms. In this overview, we stress the need to include both the concentrations of organic pollutants and the evaluations of the risks from TPs for the quality assessments of the water treated by UV-AOPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoenzyme Model

    PubMed Central

    Harjes, Elena; Gross, Phillip J.; Chen, Kuan-Ming; Lu, Yongjian; Shindo, Keisuke; Nowarski, Roni; Gross, John D.; Kotler, Moshe; Harris, Reuben S.; Matsuo, Hiroshi

    2009-01-01

    Summary Human APOBEC3G (A3G) belongs to a family of polynucleotide cytidine deaminases. This family includes APOBEC1 and AID, which edit APOB mRNA and antibody gene DNA, respectively. A3G deaminates cytidines to uridines in single-strand DNA and inhibits the replication of HIV-1, other retroviruses and retrotransposons. Although the mechanism of A3G-catalyzed DNA deamination has been investigated genetically and biochemically, atomic details are just starting to emerge. Here, we compare the DNA cytidine deaminase activities and NMR structures of two A3G catalytic domain constructs. The longer A3G191-384 protein is considerably more active than the shorter A3G198-384 variant. The longer structure has an α1 helix (residues 201–206) that was not apparent in the shorter protein and it contributes to catalytic activity through interactions with hydrophobic core structures (β1, β3, α5 and α6). Both A3G catalytic domain solution structures have a discontinuous β2 region that is clearly different than the continuous β2 strand of another family member APOBEC2. In addition, the longer A3G191-384 structure revealed part of the N-terminal pseudo-catalytic domain including the inter-domain linker and some of the last α-helix. These structured residues (191–196) enabled a novel full-length A3G model by providing physical overlap between the N-terminal pseudo-catalytic domain and the new C-terminal catalytic domain structure. Contrary to predictions, this structurally constrained model suggested that the two domains are tethered by structured residues and that the N- and C-terminal β2 regions are too distant from one another to participate in this interaction. PMID:19389408

  12. Characterization of Ovine A3Z1 Restriction Properties against Small Ruminant Lentiviruses (SRLVs)

    PubMed Central

    de Pablo-Maiso, Lorena; Glaria, Idoia; Crespo, Helena; Nistal-Villán, Estanislao; Andrésdóttir, Valgerdur; de Andrés, Damián; Amorena, Beatriz

    2017-01-01

    Intrinsic factors of the innate immune system include the apolipoprotein B editing enzyme catalytic polypeptide-like 3 (APOBEC3) protein family. APOBEC3 inhibits replication of different virus families by cytosine deamination of viral DNA and a not fully characterized cytosine deamination-independent mechanism. Sheep are susceptible to small ruminant lentivirus (SRLVs) infection and contain three APOBEC3 genes encoding four proteins (A3Z1, Z2, Z3 and Z2-Z3) with yet not deeply described antiviral properties. Using sheep blood monocytes and in vitro-derived macrophages, we found that A3Z1 expression is associated with lower viral replication in this cellular type. A3Z1 transcripts may also contain spliced variants (A3Z1Tr) lacking the cytidine deaminase motif. A3Z1 exogenous expression in fully permissive fibroblast-like cells restricted SRLVs infection while A3Z1Tr allowed infection. A3Z1Tr was induced after SRLVs infection or stimulation of blood-derived macrophages with interferon gamma (IFN-γ). Interaction between truncated isoform and native A3Z1 protein was detected as well as incorporation of both proteins into virions. A3Z1 and A3Z1Tr interacted with SRLVs Vif, but this interaction was not associated with degradative properties. Similar A3Z1 truncated isoforms were also present in human and monkey cells suggesting a conserved alternative splicing regulation in primates. A3Z1-mediated retroviral restriction could be constrained by different means, including gene expression and specific alternative splicing regulation, leading to truncated protein isoforms lacking a cytidine-deaminase motif. PMID:29149056

  13. Metabolism of β-valine via a CoA-dependent ammonia lyase pathway.

    PubMed

    Otzen, Marleen; Crismaru, Ciprian G; Postema, Christiaan P; Wijma, Hein J; Heberling, Matthew M; Szymanski, Wiktor; de Wildeman, Stefaan; Janssen, Dick B

    2015-11-01

    Pseudomonas species strain SBV1 can rapidly grow on medium containing β-valine as a sole nitrogen source. The tertiary amine feature of β-valine prevents direct deamination reactions catalyzed by aminotransferases, amino acid dehydrogenases, and amino acid oxidases. However, lyase- or aminomutase-mediated conversions would be possible. To identify enzymes involved in the degradation of β-valine, a PsSBV1 gene library was prepared and used to complement the β-valine growth deficiency of a closely related Pseudomonas strain. This resulted in the identification of a gene encoding β-valinyl-coenzyme A ligase (BvaA) and two genes encoding β-valinyl-CoA ammonia lyases (BvaB1 and BvaB2). The BvaA protein demonstrated high sequence identity to several known phenylacetate CoA ligases. Purified BvaA enzyme did not convert phenyl acetic acid but was able to activate β-valine in an adenosine triphosphate (ATP)- and CoA-dependent manner. The substrate range of the enzyme appears to be narrow, converting only β-valine and to a lesser extent, 3-aminobutyrate and β-alanine. Characterization of BvaB1 and BvaB2 revealed that both enzymes were able to deaminate β-valinyl-CoA to produce 3-methylcrotonyl-CoA, a common intermediate in the leucine degradation pathway. Interestingly, BvaB1 and BvaB2 demonstrated no significant sequence identity to known CoA-dependent ammonia lyases, suggesting they belong to a new family of enzymes. BLAST searches revealed that BvaB1 and BvaB2 show high sequence identity to each other and to several enoyl-CoA hydratases, a class of enzymes that catalyze a similar reaction with water instead of amine as the leaving group.

  14. Adenosine deaminase from Streptomyces coelicolor: recombinant expression, purification and characterization.

    PubMed

    Pornbanlualap, Somchai; Chalopagorn, Pornchanok

    2011-08-01

    The sequencing of the genome of Streptomyces coelicolor A3(2) identified seven putative adenine/adenosine deaminases and adenosine deaminase-like proteins, none of which have been biochemically characterized. This report describes recombinant expression, purification and characterization of SCO4901 which had been annotated in data bases as a putative adenosine deaminase. The purified putative adenosine deaminase gives a subunit Mr=48,400 on denaturing gel electrophoresis and an oligomer molecular weight of approximately 182,000 by comparative gel filtration. These values are consistent with the active enzyme being composed of four subunits with identical molecular weights. The turnover rate of adenosine is 11.5 s⁻¹ at 30 °C. Since adenine is deaminated ∼10³ slower by the enzyme when compared to that of adenosine, these data strongly show that the purified enzyme is an adenosine deaminase (ADA) and not an adenine deaminase (ADE). Other adenine nucleosides/nucleotides, including 9-β-D-arabinofuranosyl-adenine (ara-A), 5'-AMP, 5'-ADP and 5'-ATP, are not substrates for the enzyme. Coformycin and 2'-deoxycoformycin are potent competitive inhibitors of the enzyme with inhibition constants of 0.25 and 3.4 nM, respectively. Amino acid sequence alignment of ScADA with ADAs from other organisms reveals that eight of the nine highly conserved catalytic site residues in other ADAs are also conserved in ScADA. The only non-conserved residue is Asn317, which replaces Asp296 in the murine enzyme. Based on these data, it is suggested here that ADA and ADE proteins are divergently related enzymes that have evolved from a common α/β barrel scaffold to catalyze the deamination of different substrates, using a similar catalytic mechanism. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. CONTRASTING BEHAVIOR OF CONFORMATIONALLY LOCKED CARBOCYCLIC NUCLEOSIDES OF ADENOSINE AND CYTIDINE AS SUBSTRATES FOR DEAMINASES

    PubMed Central

    Schroeder, Gottfried K.; Ludek, Olaf R.; Siddiqui, Maqbool A.; Ezzitouni, Abdallah; Wolfenden, Richard

    2010-01-01

    In addition to the already known differences between adenosine deaminase (ADA) and cytidine deaminase (CDA) in terms of their tertiary structure, the sphere of Zn+2 coordination, and their reverse stereochemical preference, we present evidence that the enzymes also differ significantly in terms of the North/South conformational preferences for their substrates and the extent to which the lack of the O(4’) oxygen affects the kinetics of the enzymatic deamination of carbocyclic substrates. The carbocyclic nucleoside substrates used in this study have either a flexible cyclopentane ring or a rigid bicyclo[3.1.0]hexane scaffold. PMID:20183605

  16. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  17. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  18. Mechanistic study of competitive releases of H2O, NH3 and CO2 from deprotonated aspartic and glutamic acids: Role of conformation.

    PubMed

    Barbier Saint Hilaire, Pierre; Warnet, Anna; Gimbert, Yves; Hohenester, Ulli Martin; Giorgi, Gianluca; Olivier, Marie-Françoise; Fenaille, François; Colsch, Benoît; Junot, Christophe; Tabet, Jean-Claude

    2017-03-15

    The aims of this study were to highlight the impact of minor structural differences (e.g. an aminoacid side chain enlargement by one methylene group), on ion dissociation under collision-induced dissociation conditions, and to determine the underlying chemical mechanisms. Therefore, we compared fragmentations of deprotonated aspartic and glutamic acids generated in negative electrospray ionization. Energy-resolved mass spectrometry breakdown curves were recorded and MS 3 experiments performed on an Orbitrap Fusion for high-resolution and high-mass accuracy measurements. Activated fragmentations were performed using both the resonant and non-resonant excitation modes (i.e., CID and HCD, respectively) in order to get complementary information on the competitive and consecutive dissociative pathways. These experiments showed a specific loss of ammonia from the activated aspartate but not from the activated glutamate. We mainly focused on this specific observed loss from aspartate. Two different mechanisms based on intramolecular reactions (similar to those occurring in organic chemistry) were proposed, such as intramolecular elimination (i.e. Ei-like) and nucleophilic substitution (i.e. SNi-like) reactions, respectively, yielding anions as fumarate and α lactone from a particular conformation with the lowest steric hindrance (i.e. with antiperiplanar carboxyl groups). The detected deaminated aspartate anion can then release CO 2 as observed in the MS 3 experimental spectra. However, quantum calculations did not indicate the formation of such a deaminated aspartate product ion without loss of carbon dioxide. Actually, calculations displayed the double neutral (NH 3 +CO 2 ) loss as a concomitant pathway (from a particular conformation) with relative high activation energy instead of a consecutive process. This disagreement is apparent since the concomitant pathway may be changed into consecutive dissociations according to the collision energy i.e., at higher collision energy and at lower excitation conditions, respectively. The latter takes place by stabilization of the deaminated aspartate solvated with two residual molecules of water (present in the collision cell). This desolvated anion formed is an α lactone substituted by a methylene carboxylate group. The vibrational excitation acquired by [(D-H)-NH 3 ] - during its isolation is enough to allow its prompt decarboxylation with a barrier lower than 8.4kJ/mol. In addition, study of glutamic acid-like diastereomers constituted by a cyclopropane, hindering any side chain rotation, confirms the impact of the three-dimensional geometry on fragmentation pathways. A significant specific loss of water is only observed for one of these diastereomers. Other experiments, such as stable isotope labeling, need to be performed to elucidate all the observed losses from activated aspartate and glutamate anions. These first mechanistic interpretations enhance understanding of this dissociative pathway and underline the necessity of studying fragmentation of a large number of various compounds to implement properly new algorithms for de novo elucidation of unknown metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Rapid biochemical screening for Salmonella, Shigella, Yersinia, and Aeromonas isolates from stool specimens.

    PubMed Central

    De Ryck, R; Struelens, M J; Serruys, E

    1994-01-01

    Four screens for the rapid (4 to 6 h) biochemical detection of pathogens from enteric isolation media are described. The Salmonella screen consisted of Kligler iron agar (KIA), motility-indole-urea-tryptophan-deamination semisolid medium (MIU-TDA), and the o-nitrophenyl-beta-D-galactopyranoside (ONPG) test; the Shigella screen consisted of KIA, MIU-TDA, the ONPG test, and the lysine decarboxylation-indole test; the Yersinia screen consisted of a rhamnose broth; the Aeromonas screen consisted of a xylose agar plate. When tested on 2,102 fresh isolates and 71 stock strains, the screens correctly detected 212 enteric pathogens (sensitivity, 100%), with a specificity of 98.1%. PMID:8077408

  20. Microbial detoxification of mycotoxins.

    PubMed

    McCormick, Susan P

    2013-07-01

    Mycotoxins are fungal natural products that are toxic to vertebrate animals including humans. Microbes have been identified that enzymatically convert aflatoxin, zearalenone, ochratoxin, patulin, fumonisin, deoxynivalenol, and T-2 toxin to less toxic products. Mycotoxin-degrading fungi and bacteria have been isolated from agricultural soil, infested plant material, and animal digestive tracts. Biotransformation reactions include acetylation, glucosylation, ring cleavage, hydrolysis, deamination, and decarboxylation. Microbial mycotoxin degrading enzymes can be used as feed additives or to decontaminate agricultural commodities. Some detoxification genes have been expressed in plants to limit the pre-harvest mycotoxin production and to protect crop plants from the phytotoxic effects of mycotoxins. Toxin-deficient mutants may be useful in assessing the role of mycotoxins in the ecology of the microorganisms.

  1. Atomic-Resolution Structure of an N(5) Flavin Adduct in D-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Wang, Siming

    2011-09-06

    D-Arginine dehydrogenase (DADH) catalyzes the flavin-dependent oxidative deamination of D-arginine and other D-amino acids to the corresponding imino acids. The 1.07 {angstrom} atomic-resolution structure of DADH crystallized with D-leucine unexpectedly revealed a covalent N(5) flavin adduct, instead of the expected iminoleucine product in the active site. This acyl adduct has been successfully reproduced by photoreduction of DADH in the presence of 4-methyl-2-oxopentanoic acid (ketoleucine). The iminoleucine may be released readily because of weak interactions in the binding site, in contrast to iminoarginine, converted to ketoleucine, which reacts with activated FAD to form the covalently linked acyl adduct.

  2. Detection of Maillard reaction products by a coupled HPLC-Fraction collector technique and FTIR characterization of Cu(II)-complexation with the isolated species

    NASA Astrophysics Data System (ADS)

    Ioannou, Aristos; Daskalakis, Vangelis; Varotsis, Constantinos

    2017-08-01

    The isolation of reaction products of asparagine with reducing sugars at alkaline pH and high temperature has been probed by a combination of high performance liquid chromatography (HPLC) coupled with a Fraction Collector. The UV-vis and FTIR spectra of the isolated Maillard reaction products showed structure-sensitive changes as depicted by deamination events and formation of asparagine-saccharide conjugates. The initial reaction species of the Asn-Gluc reaction were also characterized by Density Functional Theory (DFT) methods. Evidence for Cu (II) metal ion complexation with the Maillard reaction products is supported by UV-vis and FTIR spectroscopy.

  3. Epigenetic reprogramming - is deamination key to active DNA demethylation?

    PubMed Central

    Teperek-Tkacz, Marta; Pasque, Vincent; Gentsch, George; Ferguson-Smith, Anne C.

    2013-01-01

    DNA demethylation processes are important for reproduction being central in epigenetic reprogramming during embryonic and germ cell development. While the enzymes methylating DNA have been known for many years, identification of factors capable of mediating active DNA demethylation has been challenging. Recent findings suggest that cytidine deaminases may be key players in active DNA demethylation. One of the most investigated candidates is AID (activation-induced cytidine deaminase) best known for its role in generating secondary antibody diversity in B cells. We evaluate evidence for cytidine deaminases in DNA demethylation pathways in vertebrates and discuss possible models for their targeting and activity regulation. These findings are also considered alongside alternative demethylation pathways involving hydroxymethylation. PMID:21911441

  4. Inhibition of rat brain monoamine oxidase by repeated administration of pirlindol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verevkina, I.V.; Asnina, V.V.; Gorkin, V.Z.

    1985-10-01

    Since pirlindol, like other antidepressants, is used for a long time and since its therapeutic effect usually appears 5-7 days or more after the beginning of treatment, the authors investigate its action on activity of MAO of types A and B in rat brain when administered repeatedly. MAO activity was determined in 50% homogenates of rat brain, made up in 10 mM phosphate buffer, pH 7.4, containing 2% detergent Triton X-100. It is shown that an important role in the antidepressant effect of pirlindol is played by its property of selectively blocking deamination of neurotrans mitters such as serotonin andmore » noradrenalin in the human brain.« less

  5. Mutations, kataegis, and translocations in B lymphocytes: towards a mechanistic understanding of AID promiscuous activity

    PubMed Central

    Casellas, Rafael; Basu, Uttiya; Yewdell, William T.; Chaudhuri, Jayanta; Robbiani, Davide F.; Di Noia, Javier M.

    2016-01-01

    As B cells engage in the immune response they express the deaminase AID to initiate the hypermutation and recombination of immunoglobulin genes, which are crucial processes for the efficient recognition and disposal of pathogens, However, AID must be tightly controlled in B cells to minimize off-targeting mutations, which can drive chromosomal translocations and the development of B cell malignancies, such as lymphomas. Recent genomic and biochemical analyses have begun to unravel the crucial question of how AID-mediated deamination is targeted outside immunoglobulin genes. Here, we discuss the transcriptional and topological features that are emerging as key drivers of AID promiscuous activity. PMID:26898111

  6. Fragmentation of DNA components by hyperthermal heavy ion (Ar+ and Xe+) impact in the condensed phase

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Sarvenaz Sarabipour, Ms; Michaud, Marc; Deng, Zongwu; Huels, Michael A.

    The overriding environmental factor that presently limits human endeavors in space is exposure to heavy ion radiation. While knowledge of its damage to living tissue is essential for radiation protection and risk estimates for astronauts, very little data exists at the molecular level regarding the nascent DNA damage by the primary particle track, or by secondary species during subsequent reaction cascades. This persistent lack of a basic understanding of nascent damage induced by such low dose, high LET radiation, introduces unacceptable errors in radiation risk estimates (based mainly on extrapolation from high dose, low LET radiation), particularly for long term exposure. Mutagenic effects induced by heavy ion radiation to cells are largely due to DNA damage by secondary transient species, i.e. secondary ballistic ions, electrons and radicals generated along the ion tracks; the secondary ions have hyperthermal energies up to several 100 eV, which they will deposit within a few nm in the surrounding medium; thus their LET is very high, and yields lethal clustered DNA lesions. We present measurements of molecular damage induced in films of DNA components by ions with precisely such low energies (1-100 eV) and compare results to conventional electron impact measurements. Experiments are conducted in UHV using a mass selected low energy ion source, and a high-resolution quadrupole MS to monitor ion yields desorbing from molecular films. Among the major fragments, NH4 + is identified in the desorption mass spectra of irradiated films of Adenine, Guanine, Cytosine, indicating efficient deamination; in cells this results in pre-mutagenic lesions. Experiments with 5-amino-Uracil, and comparison to previous results on uracil and thymine show that deamination is a key step in the NH4 + fragment formation. For Adenine, we also observe formation of amine aducts in the films, viz. amination of Adenine, and global fragmentation in all ion impact mass spectra, attributed mainly to kinetic & potential ion scattering.[Funded by NSERC and the Canadian Space Agency].

  7. Aag Hypoxanthine-DNA Glycosylase Is Synthesized in the Forespore Compartment and Involved in Counteracting the Genotoxic and Mutagenic Effects of Hypoxanthine and Alkylated Bases in DNA during Bacillus subtilis Sporulation.

    PubMed

    Ayala-García, Víctor M; Valenzuela-García, Luz I; Setlow, Peter; Pedraza-Reyes, Mario

    2016-12-15

    Aag from Bacillus subtilis has been implicated in in vitro removal of hypoxanthine and alkylated bases from DNA. The regulation of expression of aag in B. subtilis and the resistance to genotoxic agents and mutagenic properties of an Aag-deficient strain were studied here. A strain with a transcriptional aag-lacZ fusion expressed low levels of β-galactosidase during growth and early sporulation but exhibited increased transcription during late stages of this developmental process. Notably, aag-lacZ expression was higher inside the forespore than in the mother cell compartment, and this expression was abolished in a sigG-deficient background, suggesting a forespore-specific mechanism of aag transcription. Two additional findings supported this suggestion: (i) expression of an aag-yfp fusion was observed in the forespore, and (ii) in vivo mapping of the aag transcription start site revealed the existence of upstream regulatory sequences possessing homology to σ G -dependent promoters. In comparison with the wild-type strain, disruption of aag significantly reduced survival of sporulating B. subtilis cells following nitrous acid or methyl methanesulfonate treatments, and the Rif r mutation frequency was significantly increased in an aag strain. These results suggest that Aag protects the genome of developing B. subtilis sporangia from the cytotoxic and genotoxic effects of base deamination and alkylation. In this study, evidence is presented revealing that aag, encoding a DNA glycosylase implicated in processing of hypoxanthine and alkylated DNA bases, exhibits a forespore-specific pattern of gene expression during B. subtilis sporulation. Consistent with this spatiotemporal mode of expression, Aag was found to protect the sporulating cells of this microorganism from the noxious and mutagenic effects of base deamination and alkylation. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.

    PubMed

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J; Francis, Richard O; Roach, Robert C; Dzieciatkowska, Monika; Rogers, Stephen C; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T; Thomas, Tiffany A; Hansen, Kirk C; Spitalnik, Steven L; Xia, Yang; Zimring, James C; Hod, Eldad A; D'Alessandro, Angelo

    2018-02-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1-7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13 C 1 -aspartate or 13 C 5 -adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and - preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. Copyright© 2018 Ferrata Storti Foundation.

  9. A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.)

    PubMed Central

    Liu, Guoyuan; Li, Xue; Guo, Liping; Zhang, Xuexian; Qi, Tingxiang; Wang, Hailin; Tang, Huini; Qiao, Xiuqin; Zhang, Jinfa; Xing, Chaozhu; Wu, Jianyong

    2017-01-01

    The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cellular functions and biological processes including fertility restoration to cytoplasmic male sterility (CMS) in plants. In this study, we identified 227 and 211 DYW deaminase-coding PPR genes for the cultivated tetraploid cotton species G. hirsutum and G. barbadense (2n = 4x = 52), respectively, as well as 126 and 97 DYW deaminase-coding PPR genes in the ancestral diploid species G. raimondii and G. arboreum (2n = 26), respectively. The 227 G. hirsutum PPR genes were predicted to encode 52–2016 amino acids, 203 of which were mapped onto 26 chromosomes. Most DYW deaminase genes lacked introns, and their proteins were predicted to target the mitochondria or chloroplasts. Additionally, the DYW domain differed from the complete DYW deaminase domain, which contained part of the E domain and the entire E+ domain. The types and number of DYW tripeptides may have been influenced by evolutionary processes, with some tripeptides being lost. Furthermore, a gene ontology analysis revealed that DYW deaminase functions were mainly related to binding as well as hydrolase and transferase activities. The G. hirsutum DYW deaminase expression profiles varied among different cotton tissues and developmental stages, and no differentially expressed DYW deaminase-coding PPRs were directly associated with the male sterility and restoration in the CMS-D2 system. Our current study provides an important piece of information regarding the structural and evolutionary characteristics of Gossypium DYW-containing PPR genes coding for deaminases and will be useful for characterizing the DYW deaminase gene family in cotton biology and breeding. PMID:28339482

  10. Methylenedioxy designer drugs: mass spectrometric characterization of their glutathione conjugates by means of liquid chromatography-high-resolution mass spectrometry/mass spectrometry and studies on their glutathionyl transferase inhibition potency.

    PubMed

    Meyer, Markus R; Richter, Lilian H J; Maurer, Hans H

    2014-04-25

    Methylenedioxy designer drugs of abuse such as 3,4-methylenedioxymethamphetamine (MDMA) can be selectively toxic to serotonergic neurons and glutathione (GSH) adducts have been implicated in its neurotoxicity. The catecholic demethylenyl metabolites of MDMA, 3,4-dihydroxymethamphetamine and 3,4-dihydroxyamphetamine, are metabolically oxidized to the corresponding ortho-quinones, which are highly reactive intermediates. These intermediates can then be conjugated with GSH preventing cellular damage. Furthermore, glutathionyl transferase (GST) activity was described to be irreversibly inhibited by the catechols dopamine, α-methyldopa and their GSH conjugates. Therefore, the aims of the present work were the detection and characterization of GSH conjugates of ten methylenedioxy drugs of abuse and their phase I metabolites as well as to assess their inhibition potency on GST activity. The substrates were incubated using human placental GST with or without preincubation by cytochrome P450 enzymes preparations. GST inhibition was tested using chlorodinitrobenzene GSH conjugation as marker reaction. GSH conjugates were analyzed and characterized using LC-high-resolution-MS/MS. For confirmation of postulated fragmentation patterns, formation of GSH conjugates of selected deuterated analogs (deuterated analogue approach, DAA) of the investigated drugs was explored. For the methylenedioxy amphetamines the following steps could be identified: conjugation of the parent compounds at position 2, 5, 6, of the demethylenyl metabolites at position 2 and 5, and of the further deaminated demethylenyl metabolites at position 2. For the β-keto-phenylalkylamine and pyrrolidinophenone, conjugation of the demethylenyl metabolites and of the deaminated demethylenyl metabolites at position 2 could be identified. The DAA allowed the differentiation of the 2 and 5/6 isomers by confirmation of the postulated mass spectral fragments. Finally, the tested drugs and phase I metabolites showed no inhibition potency on GST activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage

    PubMed Central

    Nemkov, Travis; Sun, Kaiqi; Reisz, Julie A.; Song, Anren; Yoshida, Tatsuro; Dunham, Andrew; Wither, Matthew J.; Francis, Richard O.; Roach, Robert C.; Dzieciatkowska, Monika; Rogers, Stephen C.; Doctor, Allan; Kriebardis, Anastasios; Antonelou, Marianna; Papassideri, Issidora; Young, Carolyn T.; Thomas, Tiffany A.; Hansen, Kirk C.; Spitalnik, Steven L.; Xia, Yang; Zimring, James C.; Hod, Eldad A.; D’Alessandro, Angelo

    2018-01-01

    Hypoxanthine catabolism in vivo is potentially dangerous as it fuels production of urate and, most importantly, hydrogen peroxide. However, it is unclear whether accumulation of intracellular and supernatant hypoxanthine in stored red blood cell units is clinically relevant for transfused recipients. Leukoreduced red blood cells from glucose-6-phosphate dehydrogenase-normal or -deficient human volunteers were stored in AS-3 under normoxic, hyperoxic, or hypoxic conditions (with oxygen saturation ranging from <3% to >95%). Red blood cells from healthy human volunteers were also collected at sea level or after 1–7 days at high altitude (>5000 m). Finally, C57BL/6J mouse red blood cells were incubated in vitro with 13C1-aspartate or 13C5-adenosine under normoxic or hypoxic conditions, with or without deoxycoformycin, a purine deaminase inhibitor. Metabolomics analyses were performed on human and mouse red blood cells stored for up to 42 or 14 days, respectively, and correlated with 24 h post-transfusion red blood cell recovery. Hypoxanthine increased in stored red blood cell units as a function of oxygen levels. Stored red blood cells from human glucose-6-phosphate dehydrogenase-deficient donors had higher levels of deaminated purines. Hypoxia in vitro and in vivo decreased purine oxidation and enhanced purine salvage reactions in human and mouse red blood cells, which was partly explained by decreased adenosine monophosphate deaminase activity. In addition, hypoxanthine levels negatively correlated with post-transfusion red blood cell recovery in mice and – preliminarily albeit significantly - in humans. In conclusion, hypoxanthine is an in vitro metabolic marker of the red blood cell storage lesion that negatively correlates with post-transfusion recovery in vivo. Storage-dependent hypoxanthine accumulation is ameliorated by hypoxia-induced decreases in purine deamination reaction rates. PMID:29079593

  12. The catalase activity of diiron adenine deaminase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamat S. S.; Swaminathan S.; Holmes-Hampton, G. P.

    2011-12-01

    Adenine deaminase (ADE) from the amidohydrolase superfamily (AHS) of enzymes catalyzes the conversion of adenine to hypoxanthine and ammonia. Enzyme isolated from Escherichia coli was largely inactive toward the deamination of adenine. Molecular weight determinations by mass spectrometry provided evidence that multiple histidine and methionine residues were oxygenated. When iron was sequestered with a metal chelator and the growth medium supplemented with Mn{sup 2+} before induction, the post-translational modifications disappeared. Enzyme expressed and purified under these conditions was substantially more active for adenine deamination. Apo-enzyme was prepared and reconstituted with two equivalents of FeSO{sub 4}. Inductively coupled plasma mass spectrometrymore » and Moessbauer spectroscopy demonstrated that this protein contained two high-spin ferrous ions per monomer of ADE. In addition to the adenine deaminase activity, [Fe{sup II}/Fe{sup II}]-ADE catalyzed the conversion of H{sub 2}O{sub 2} to O{sub 2} and H{sub 2}O. The values of k{sub cat} and k{sub cat}/K{sub m} for the catalase activity are 200 s{sup -1} and 2.4 x 10{sup 4} M{sup -1} s{sup -1}, respectively. [Fe{sup II}/Fe{sup II}]-ADE underwent more than 100 turnovers with H{sub 2}O{sub 2} before the enzyme was inactivated due to oxygenation of histidine residues critical for metal binding. The iron in the inactive enzyme was high-spin ferric with g{sub ave} = 4.3 EPR signal and no evidence of anti-ferromagnetic spin-coupling. A model is proposed for the disproportionation of H{sub 2}O{sub 2} by [Fe{sup II}/Fe{sup II}]-ADE that involves the cycling of the binuclear metal center between the di-ferric and di-ferrous oxidation states. Oxygenation of active site residues occurs via release of hydroxyl radicals. These findings represent the first report of redox reaction catalysis by any member of the AHS.« less

  13. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs.

    PubMed

    Svarovskaia, Evguenia S; Xu, Hongzhan; Mbisa, Jean L; Barr, Rebekah; Gorelick, Robert J; Ono, Akira; Freed, Eric O; Hu, Wei-Shau; Pathak, Vinay K

    2004-08-20

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is a host cytidine deaminase that is packaged into virions and confers resistance to retroviral infection. APOBEC3G deaminates deoxycytidines in minus strand DNA to deoxyuridines, resulting in G to A hypermutation and viral inactivation. Human immunodeficiency virus type 1 (HIV-1) virion infectivity factor counteracts the antiviral activity of APOBEC3G by inducing its proteosomal degradation and preventing virion incorporation. To elucidate the mechanism of viral suppression by APOBEC3G, we developed a sensitive cytidine deamination assay and analyzed APOBEC3G virion incorporation in a series of HIV-1 deletion mutants. Virus-like particles derived from constructs in which pol, env, and most of gag were deleted still contained high levels of cytidine deaminase activity; in addition, coimmunoprecipitation of APOBEC3G and HIV-1 Gag in the presence and absence of RNase A indicated that the two proteins do not interact directly but form an RNase-sensitive complex. Viral particles lacking HIV-1 genomic RNA which were generated from the gag-pol expression constructs pC-Help and pSYNGP packaged APOBEC3G at 30-40% of the wild-type level, indicating that interactions with viral RNA are not necessary for incorporation. In addition, viral particles produced from an nucleocapsid zinc finger mutant contained approximately 1% of the viral genomic RNA but approximately 30% of the cytidine deaminase activity. The reduction in APOBEC3G incorporation was equivalent to the reduction in the total RNA present in the nucleocapsid mutant virions. These results indicate that interactions with viral proteins or viral genomic RNA are not essential for APOBEC3G incorporation and suggest that APOBEC3G interactions with viral and nonviral RNAs that are packaged into viral particles are sufficient for APOBEC3G virion incorporation.

  14. AID/APOBEC cytosine deaminase induces genome-wide kataegis

    PubMed Central

    2012-01-01

    Clusters of localized hypermutation in human breast cancer genomes, named “kataegis” (from the Greek for thunderstorm), are hypothesized to result from multiple cytosine deaminations catalyzed by AID/APOBEC proteins. However, a direct link between APOBECs and kataegis is still lacking. We have sequenced the genomes of yeast mutants induced in diploids by expression of the gene for PmCDA1, a hypermutagenic deaminase from sea lamprey. Analysis of the distribution of 5,138 induced mutations revealed localized clusters very similar to those found in tumors. Our data provide evidence that unleashed cytosine deaminase activity is an evolutionary conserved, prominent source of genome-wide kataegis events. Reviewers This article was reviewed by: Professor Sandor Pongor, Professor Shamil R. Sunyaev, and Dr Vladimir Kuznetsov. PMID:23249472

  15. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  16. EFFECTS OF PERTUSSIS SENSITIZATION AND ROENTGEN IRRADIATION ON THE ADRENAL GLANDS OF RATS AND MICE (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, M.

    1962-10-01

    Histaminase activity was estimated by the coupled oxidation and deamination method in lung tissue from rats and mice followrng adrenal gland x irradiation, sensitization with B. pertussis, or pertussis sensitization followed by adrenal gland irradiation. Histamine activity was greatly reduced in lung tissue from animals sensitized with pertussis followed by adrenal irradiation, moderately reduced in lung tissue from pertussis sensitized animals, and slightly decreased in lung tissue from the adrenal irradiated group. The activity of succinoxidose and monoamine oxidose in lung tissue was not affected by either adrenal irradiation or pertussis sensitization. The possibility that steroid hormone balance may bemore » affected by disturbance of the adrenal glands in animals sensitized with pertussis is discussed. (C.H.)« less

  17. Tanovea® for the treatment of lymphoma in dogs.

    PubMed

    De Clercq, Erik

    2018-05-17

    Tanovea® (first named GS-9219, then VDC-1101, generic name: rabacfosadine) is a pro-prodrug or "double" prodrug of PMEG [9-(2-phosphonylmethoxyethyl)guanine], which has been conditionally approved by the US FDA (Food and Drug Administration) for the treatment of lymphoma in dogs. Tanovea has been demonstrated to be effective against non-Hodgkin's lymphoma (NHL) in dogs, as well as canine cutaneous T-cell lymphoma, spontaneous canine multiple myeloma, naïve canine multicentric lymphoma and relapsed canine B-cell lymphoma. As a double prodrug of PMEG, GS-9219 is first converted intracellularly by hydrolysis to cPr-PMEDAP, then deaminated to PMEG, which is then phosphorylated twice to its active metabolite PMEGpp, acting at the level of the cellular DNA polymerases. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Molecular dynamics, flexible docking, virtual screening, ADMET predictions, and molecular interaction field studies to design novel potential MAO-B inhibitors.

    PubMed

    Braun, Glaucia H; Jorge, Daniel M M; Ramos, Henrique P; Alves, Raquel M; da Silva, Vinicius B; Giuliatti, Silvana; Sampaio, Suley Vilela; Taft, Carlton A; Silva, Carlos H T P

    2008-02-01

    Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson's disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.

  19. Facilitated sequence counting and assembly by template mutagenesis

    PubMed Central

    Levy, Dan; Wigler, Michael

    2014-01-01

    Presently, inferring the long-range structure of the DNA templates is limited by short read lengths. Accurate template counts suffer from distortions occurring during PCR amplification. We explore the utility of introducing random mutations in identical or nearly identical templates to create distinguishable patterns that are inherited during subsequent copying. We simulate the applications of this process under assumptions of error-free sequencing and perfect mapping, using cytosine deamination as a model for mutation. The simulations demonstrate that within readily achievable conditions of nucleotide conversion and sequence coverage, we can accurately count the number of otherwise identical molecules as well as connect variants separated by long spans of identical sequence. We discuss many potential applications, such as transcript profiling, isoform assembly, haplotype phasing, and de novo genome assembly. PMID:25313059

  20. Purification and characterization of the amine dehydrogenase from a facultative methylotroph.

    PubMed

    Coleman, J P; Perry, J J

    1984-01-01

    Strain RA-6 is a pink-pigmented organism which can grow on a variety of substrates including methylamine. It can utilize methylamine as sole source of carbon via an isocitrate lyase negative serine pathway. Methylamine grown cells contain an inducible primary amine dehydrogenase [primary amine: (acceptor) oxidoreductase (deaminating)] which is not present in succinate grown cells. The amine dehydrogenase was purified to over 90% homogeneity. It is an acidic protein (isoelectric point of 5.37) with a molecular weight of 118,000 containing subunits with approximate molecular weights of 16,500 and 46,000. It is active on an array of primary terminal amines and is strongly inhibited by carbonyl reagents. Cytochrome c or artificial electron acceptors are required for activity; neither NAD nor NADP can serve as primary electron acceptor.

  1. Biodegradation and mineralization of isotopically labeled TNT and RDX in anaerobic marine sediments.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Smith, Richard W; Fallis, Stephen; Groshens, Thomas; Tobias, Craig

    2017-05-01

    The lack of knowledge on the fate of explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), particularly in marine ecosystems, constrains the application of bioremediation techniques in explosive-contaminated coastal sites. The authors present a comparative study on anaerobic biodegradation and mineralization of 15 N-nitro group isotopically labeled TNT and RDX in organic carbon-rich, fine-grained marine sediment with native microbial assemblages. Separate sediment slurry experiments were carried out for TNT and RDX at 23°C for 16 d. Dissolved and sediment-sorbed fractions of parent and transformation products, isotopic compositions of sediment, and mineralization products of the dissolved inorganic N pool ( 15 NH 4 + , 15 NO 3 - , 15 NO 2 - , and 15 N 2 ) were measured. The rate of TNT removal from the aqueous phase was faster (0.75 h -1 ) than that of RDX (0.37 h -1 ), and 15 N accumulation in sediment was higher in the TNT (13%) than the RDX (2%) microcosms. Mono-amino-dinitrotoluenes were identified as intermediate biodegradation products of TNT. Two percent of the total spiked TNT-N is mineralized to dissolved inorganic N through 2 different pathways: denitration as well as deamination and formation of NH 4 + , facilitated by iron and sulfate reducing bacteria in the sediments. The majority of the spiked TNT-N (85%) is in unidentified pools by day 16. Hexahydro-1,3,5-trinitro-1,3,5-triazine (10%) biodegrades to nitroso derivatives, whereas 13% of RDX-N in nitro groups is mineralized to dissolved inorganic N anaerobically by the end of the experiment. The primary identified mineralization end product of RDX (40%) is NH 4 + , generated through either deamination or mono-denitration, followed by ring breakdown. A reasonable production of N 2 gas (13%) was seen in the RDX system but not in the TNT system. Sixty-eight percent of the total spiked RDX-N is in an unidentified pool by day 16 and may include unquantified mineralization products dissolved in water. Environ Toxicol Chem 2017;36:1170-1180. © 2016 SETAC. © 2016 SETAC.

  2. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants.

    PubMed

    Herraiz, Tomás; Flores, Andrea; Fernández, Lidia

    2018-01-15

    Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of biogenic amines and neurotransmitters and produce ammonia, aldehydes, and hydrogen peroxide which is involved in oxidative processes. Inhibitors of MAO-A and -B isozymes are useful as antidepressants and neuroprotectants. The assays of MAO usually measure amine oxidation products or hydrogen peroxide by spectrophotometric techniques. Those assays are often compromised by interfering compounds resulting in poor results. This research describes a new method that combines in the same assay the oxidative deamination of kynuramine to 4-hydroxyquinoline analyzed by HPLC-DAD with the oxidation of tetramethylbenzidine (TMB) (or Amplex Rex) by horseradish peroxidase (HRP) in presence of hydrogen peroxide. The new method was applied to study the inhibition of human MAO-A and -B by bioactive compounds including β-carboline alkaloids and flavonoids occurring in foods and plants. As determined by HPLC-DAD, β-carbolines, methylene blue, kaempferol and clorgyline inhibited MAO-A and methylene blue, 5-nitroindazole, norharman and deprenyl inhibited MAO-B, and all of them inhibited the oxidation of TMB in the same extent. The flavonoids catechin and cyanidin were not inhibitors of MAO by HPLC-DAD but highly inhibited the oxidation of TMB (or Amplex Red) by peroxidase whereas quercetin and resveratrol were moderate inhibitors of MAO-A by HPLC-DAD, but inhibited the peroxidase assay in a higher level. For some phenolic compounds, using the peroxidase-coupled assay to measure MAO activity led to mistaken results. The new method permits to discern between true inhibitors of MAO from those that are antioxidants and which interfere with peroxidase assays but do not inhibit MAO. For true inhibitors of MAO, inhibition as determined by HPLC-DAD correlated well with inhibition of the oxidation of TMB and this approach can be used to assess the in vitro antioxidant activity (less hydrogen peroxide production) resulting from MAO inhibition. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: A genomics approach to personalized medicine

    PubMed Central

    O’Leary, Ryan E.; Shih, Jean C.; Hyland, Keith; Kramer, Nancy; Asher, Y. Jane Tavyev; Graham, John M.

    2012-01-01

    Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control. Patients who lack both MAOA and MAOB have the most extreme laboratory values (urine, blood, and CSF serotonin 4–6 times normal, with elevated O-methylated amine metabolites and reduced deaminated metabolites) in addition to severe intellectual deficiency and behavioral problems. Mice lacking maoa and moab exhibit decreased proliferation of neural stem cells beginning in late gestation and persisting into adulthood These mice show significantly increased monoamine levels, particularly serotonin, as well as anxiety-like behaviors as adults, suggesting that brain maturation in late embryonic development is adversely affected by elevated serotonin levels. We report the case of a male infant with a de novo Xp11.3 microdeletion exclusively encompassing the MAOA and MAOB genes. This newly recognized X-linked disorder is characterized by severe intellectual disability and unusual episodes of hypotonia, which resemble atonic seizures, but have no EEG correlate. A customized low dietary amine diet was implemented in an attempt to prevent the cardiovascular complications that can result from the excessive intake of these compounds. This is the second report of this deletion and the first attempt to maintain the patient’s cardiovascular health through dietary manipulation. Even though a diet low in tyramine, phenylethylamine, and dopa/dopamine is necessary for long-term management, it will not rescue the abnormal monoamine profile seen in combined MAOA and MAOB deficiency. Our patient displays markedly elevated levels of serotonin in blood, serum, urine, and CSF while on this diet. Serotonin biosynthesis inhibitors like para-chlorophenylalanine and p-ethynylphenylalanine may be needed to lower serotonin levels in patients with absent monoamine oxidase enzymes. PMID:22365943

  4. Error-free versus mutagenic processing of genomic uracil--relevance to cancer.

    PubMed

    Krokan, Hans E; Sætrom, Pål; Aas, Per Arne; Pettersen, Henrik Sahlin; Kavli, Bodil; Slupphaug, Geir

    2014-07-01

    Genomic uracil is normally processed essentially error-free by base excision repair (BER), with mismatch repair (MMR) as an apparent backup for U:G mismatches. Nuclear uracil-DNA glycosylase UNG2 is the major enzyme initiating BER of uracil of U:A pairs as well as U:G mismatches. Deficiency in UNG2 results in several-fold increases in genomic uracil in mammalian cells. Thus, the alternative uracil-removing glycosylases, SMUG1, TDG and MBD4 cannot efficiently complement UNG2-deficiency. A major function of SMUG1 is probably to remove 5-hydroxymethyluracil from DNA with general back-up for UNG2 as a minor function. TDG and MBD4 remove deamination products U or T mismatched to G in CpG/mCpG contexts, but may have equally or more important functions in development, epigenetics and gene regulation. Genomic uracil was previously thought to arise only from spontaneous cytosine deamination and incorporation of dUMP, generating U:G mismatches and U:A pairs, respectively. However, the identification of activation-induced cytidine deaminase (AID) and other APOBEC family members as DNA-cytosine deaminases has spurred renewed interest in the processing of genomic uracil. Importantly, AID triggers the adaptive immune response involving error-prone processing of U:G mismatches, but also contributes to B-cell lymphomagenesis. Furthermore, mutational signatures in a substantial fraction of other human cancers are consistent with APOBEC-induced mutagenesis, with U:G mismatches as prime suspects. Mutations can be caused by replicative polymerases copying uracil in U:G mismatches, or by translesion polymerases that insert incorrect bases opposite abasic sites after uracil-removal. In addition, kataegis, localized hypermutations in one strand in the vicinity of genomic rearrangements, requires APOBEC protein, UNG2 and translesion polymerase REV1. What mechanisms govern error-free versus error prone processing of uracil in DNA remains unclear. In conclusion, genomic uracil is an essential intermediate in adaptive immunity and innate antiviral responses, but may also be a fundamental cause of a wide range of malignancies. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  5. The metabolites of cyclohexylamine in man and certain animals

    PubMed Central

    Renwick, A. G.; Williams, R. T.

    1972-01-01

    1. [1-14C]Cyclohexylamine hydrochloride was synthesized and given orally or intraperitoneally to rats, rabbits and guinea pigs (dose 50–500mg/kg) and orally to humans (dose 25 or 200mg/person). The 14C is excreted mainly in the urine, most of the excretion occurring in the first day after dosing. Only small amounts (1–7%) are found in the faeces. 2. In the rat, guinea pig and man, the amine is largely excreted unchanged, only 4–5% of the dose being metabolized in 24h in the rat and guinea pig and 1–2% in man. In the rabbit about two-thirds of the dose is excreted unchanged and about 30% is metabolized. 3. In the rat, five minor metabolites were found, namely cyclohexanol (0.05%), trans-3- (2.2%), cis-4- (1.7%), trans-4- (0.5%) and cis-3-aminocyclohexanol (0.1% of the dose in 24h). 4. In the rabbit, eight metabolites were identified, namely cyclohexanol (9.3%), trans-cyclohexane-1,2-diol (4.7%), cyclohexanone (0.2%), cyclohexylhydroxylamine (0.2%) and trans-3- (11.3%), cis-3- (0.6%), trans-4- (0.4%) and cis-4-aminocyclohexanol (0.2%). 5. In the guinea pig, six minor metabolites were found, namely cyclohexanol (0.5%), trans-cyclohexane-1,2-diol (2.5%) and trans-3- (1.2%), cis-3- (0.2%), trans-4- (0.2%) and cis-4-aminocyclohexanol (0.2%). 6. In man only two metabolites were definitely identified, namely cyclohexanol (0.2%) and trans-cyclohexane-1,2-diol (1.4% of the dose), but man had been given a smaller dose (3mg/kg) than the other species (50mg/kg). 7. The hydroxylated metabolites of cyclohexylamine were excreted in the urine in both free and conjugated forms. 8. Although cyclohexylamine is metabolized to only a minor extent, in rats the metabolism was mainly through hydroxylation of the cyclohexane ring, in man by deamination and in guinea pigs and rabbits by ring hydroxylation and deamination. PMID:4655821

  6. De novo microdeletion of Xp11.3 exclusively encompassing the monoamine oxidase A and B genes in a male infant with episodic hypotonia: a genomics approach to personalized medicine.

    PubMed

    O'Leary, Ryan E; Shih, Jean C; Hyland, Keith; Kramer, Nancy; Asher, Y Jane Tavyev; Graham, John M

    2012-05-01

    Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control. Patients who lack both MAOA and MAOB have the most extreme laboratory values (urine, blood, and CSF serotonin 4-6 times normal, with elevated O-methylated amine metabolites and reduced deaminated metabolites) in addition to severe intellectual deficiency and behavioral problems. Mice lacking maoa and moab exhibit decreased proliferation of neural stem cells beginning in late gestation and persisting into adulthood. These mice show significantly increased monoamine levels, particularly serotonin, as well as anxiety-like behaviors as adults, suggesting that brain maturation in late embryonic development is adversely affected by elevated serotonin levels. We report the case of a male infant with a de novo Xp11.3 microdeletion exclusively encompassing the MAOA and MAOB genes. This newly recognized X-linked disorder is characterized by severe intellectual disability and unusual episodes of hypotonia, which resemble atonic seizures, but have no EEG correlate. A customized low dietary amine diet was implemented in an attempt to prevent the cardiovascular complications that can result from the excessive intake of these compounds. This is the second report of this deletion and the first attempt to maintain the patient's cardiovascular health through dietary manipulation. Even though a diet low in tyramine, phenylethylamine, and dopa/dopamine is necessary for long-term management, it will not rescue the abnormal monoamine profile seen in combined MAOA and MAOB deficiency. Our patient displays markedly elevated levels of serotonin in blood, serum, urine, and CSF while on this diet. Serotonin biosynthesis inhibitors like para-chlorophenylalanine and p-ethynylphenylalanine may be needed to lower serotonin levels in patients with absent monoamine oxidase enzymes. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2013-03-01

    Laboratory experiments were conducted to observe the effect of iron oxide and sulfide minerals on decomposition reactions of norvaline, a representative of a group of alkyl-α-amino acids observed in meteorites and prebiotic synthesis experiments. The primary products observed during heating of aqueous solutions of norvaline at temperatures of 156-186 °C in the presence of minerals included CO2, NH3, butyric acid, and valeric acid. The products indicated that norvaline predominantly decomposed by a combination of pathways that included both decarboxylation followed rapidly by oxidative deamination (norvaline → butanamide + CO2 → butyric acid + NH3) and deamination directly to valeric acid (norvaline → valeric acid + NH3). An experiment performed with alanine under similar conditions showed it decomposed by analogous reactions that produced acetic and propionic acids along with CO2 and NH3. For both amino acids, the presence of minerals accelerated decomposition rates as well as altered the final products of reaction, when compared with decomposition in the absence of mineral substrates. In addition, decomposition of norvaline was found to proceed much faster in the presence of the mineral assemblage hematite-magnetite-pyrite (HMP) than with the assemblage pyrite-pyrrhotite-magnetite (PPM), a trend that has been observed for several other organic compounds. The influence of minerals on decomposition reactions of these amino acids appears to be attributable to a combination of surface catalysis and production of dissolved sulfur compounds. Overall, the results indicate that minerals may exert a substantial influence on amino acid stability in many geologic environments, and emphasize the need to consider the impact of minerals when evaluating the lifetimes and decomposition rates of amino acids in terrestrial and planetary systems. Estimated half-lives for alkyl-α-amino acids based on the experimental results indicate that moderately hot hydrothermal environments (<˜100 °C) would have been the most favorable for accumulation of these amino acids in the early solar system, and that the predominance of alkyl-α-amino acids in some meteorites may only be compatible with temperature remaining below about 60 °C following their formation.

  8. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed Central

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-01-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes. Images PMID:1592816

  9. Anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) via benzoyl-coenzyme A (CoA) and cyclohex-1-enecarboxyl-CoA in a denitrifying bacterium.

    PubMed

    Lochmeyer, C; Koch, J; Fuchs, G

    1992-06-01

    The enzymes catalyzing the initial reactions in the anaerobic degradation of 2-aminobenzoic acid (anthranilic acid) were studied with a denitrifying Pseudomonas sp. anaerobically grown with 2-aminobenzoate and nitrate as the sole carbon and energy sources. Cells grown on 2-aminobenzoate are simultaneously adapted to growth with benzoate, whereas cells grown on benzoate degrade 2-aminobenzoate several times less efficiently than benzoate. Evidence for a new reductive pathway of aromatic metabolism and for four enzymes catalyzing the initial steps is presented. The organism contains 2-aminobenzoate-coenzyme A ligase (2-aminobenzoate-CoA ligase), which forms 2-aminobenzoyl-CoA. 2-Aminobenzoyl-CoA is then reductively deaminated to benzoyl-CoA by an oxygen-sensitive enzyme, 2-aminobenzoyl-CoA reductase (deaminating), which requires a low potential reductant [Ti(III)]. The specific activity is 15 nmol of 2-aminobenzoyl-CoA reduced min-1 mg-1 of protein at an optimal pH of 7. The two enzymes are induced by the substrate under anaerobic conditions only. Benzoyl-CoA is further converted in vitro by reduction with Ti(III) to six products; the same products are formed when benzoyl-CoA or 2-aminobenzoyl-CoA is incubated under reducing conditions. Two of them were identified preliminarily. One product is cyclohex-1-enecarboxyl-CoA, the other is trans-2-hydroxycyclohexane-carboxyl-CoA. The complex transformation of benzoyl-CoA is ascribed to at least two enzymes, benzoyl-CoA reductase (aromatic ring reducing) and cyclohex-1-enecarboxyl-CoA hydratase. The reduction of benzoyl-CoA to alicyclic compounds is catalyzed by extracts from cells grown anaerobically on either 2-aminobenzoate or benzoate at almost the same rate (10 to 15 nmol min-1 mg-1 of protein). In contrast, extracts from cells grown anaerobically on acetate or grown aerobically on benzoate or 2-aminobenzoate are inactive. This suggests a sequential induction of the enzymes.

  10. Overlapping activation-induced cytidine deaminase hotspot motifs in Ig class-switch recombination

    PubMed Central

    Han, Li; Masani, Shahnaz; Yu, Kefei

    2011-01-01

    Ig class-switch recombination (CSR) is directed by the long and repetitive switch regions and requires activation-induced cytidine deaminase (AID). One of the conserved switch-region sequence motifs (AGCT) is a preferred site for AID-mediated DNA-cytosine deamination. By using somatic gene targeting and recombinase-mediated cassette exchange, we established a cell line-based CSR assay that allows manipulation of switch sequences at the endogenous locus. We show that AGCT is only one of a family of four WGCW motifs in the switch region that can facilitate CSR. We go on to show that it is the overlap of AID hotspots at WGCW sites on the top and bottom strands that is critical. This finding leads to a much clearer model for the difference between CSR and somatic hypermutation. PMID:21709240

  11. Mutation at a strictly conserved, active site tyrosine in the copper amine oxidase leads to uncontrolled oxygenase activity.

    PubMed

    Chen, Zhi-Wei; Datta, Saumen; Dubois, Jennifer L; Klinman, Judith P; Mathews, F Scott

    2010-08-31

    The copper amine oxidases carry out two copper-dependent processes: production of their own redox-active cofactor (2,4,5-trihydroxyphenylalanine quinone, TPQ) and the subsequent oxidative deamination of substrate amines. Because the same active site pocket must facilitate both reactions, individual active site residues may serve multiple roles. We have examined the roles of a strictly conserved active site tyrosine Y305 in the copper amine oxidase from Hansenula polymorpha kinetically, spetroscopically (Dubois and Klinman (2006) Biochemistry 45, 3178), and, in the present work, structurally. While the Y305A enzyme is almost identical to the wild type, a novel, highly oxygenated species replaces TPQ in the Y305F active sites. This new structure not only provides the first direct detection of peroxy intermediates in cofactor biogenesis but also indicates the critical control of oxidation chemistry that can be conferred by a single active site residue.

  12. The rate of the AMP/adenosine substrate cycle in concanavalin-A-stimulated rat lymphocytes.

    PubMed Central

    Szondy, Z; Newsholme, E A

    1989-01-01

    The effect of adenosine on the metabolism of prelabelled adenine nucleotides was investigated in concanavalin-A-stimulated rat lymphocytes. Adenosine in the presence of the adenosine deaminase inhibitor, deoxycoformycin, caused a 2-fold increase in the ATP concentration. This effect was, in part, countereacted by an increased rate of adenine nucleotide catabolism, which could be explained by a stimulation of AMP deaminase (EC 3.5.4.6). At the same time a continuous rate of labelled adenosine production was found, which was not affected by the increased ATP concentration and which could only be detected by the trapping effect of a high concentration of added unlabelled adenosine. It is concluded that the rate of the substrate cycle between AMP and adenosine is low (1.9 +/- 0.2 nmol/h per 10(7) cells) in comparison to the rate of AMP deamination. PMID:2552990

  13. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots.

    PubMed

    Kazemi, Masoud; Åqvist, Johan

    2015-06-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies.

  14. Chemical reaction mechanisms in solution from brute force computational Arrhenius plots

    PubMed Central

    Kazemi, Masoud; Åqvist, Johan

    2015-01-01

    Decomposition of activation free energies of chemical reactions, into enthalpic and entropic components, can provide invaluable signatures of mechanistic pathways both in solution and in enzymes. Owing to the large number of degrees of freedom involved in such condensed-phase reactions, the extensive configurational sampling needed for reliable entropy estimates is still beyond the scope of quantum chemical calculations. Here we show, for the hydrolytic deamination of cytidine and dihydrocytidine in water, how direct computer simulations of the temperature dependence of free energy profiles can be used to extract very accurate thermodynamic activation parameters. The simulations are based on empirical valence bond models, and we demonstrate that the energetics obtained is insensitive to whether these are calibrated by quantum mechanical calculations or experimental data. The thermodynamic activation parameters are in remarkable agreement with experiment results and allow discrimination among alternative mechanisms, as well as rationalization of their different activation enthalpies and entropies. PMID:26028237

  15. [The pyretroind pesticides lambda-cigalothrines influence on composition of free aminoacids in tissue of fish in Alazani River].

    PubMed

    Dzhikiia, G M; Mchedluri, T T; Nikolaĭshvili, M I; Zurabishvili, Z A; Iordanishvili, G S

    2011-12-01

    The aim of the research was to study toxic effect of lambda-cigalothrin, on quantitative contents of free amino acid in muscle, liver and in brain of fishes in r. Alazani. It was found that under the action of lambda-cigalothrin total amount of free amino acid in fish's tissue was increasing, contents of glycine, asparagine and glutamine acids, alanine and cysteine also increased. Increasing of glutamine and asparagines acids content in muscle and liver of fish goes with the dissimilation of other amino acids through the process of their deaminization by glutamate dehydrogenation system. Increasing the alanine content is indicative of reinforcement of transamination processes. Decrease of phenylalanine, valine, glycine and the other amino acids content is explained by reinforcement of amino acids catabolism in condition of pesticide load, as it occurs in condition of fishes' intoxication by phenols.

  16. New Insights into the Biological Role of Mammalian ADARs; the RNA Editing Proteins

    PubMed Central

    Mannion, Niamh; Arieti, Fabiana; Gallo, Angela; Keegan, Liam P.; O’Connell, Mary A.

    2015-01-01

    The ADAR proteins deaminate adenosine to inosine in double-stranded RNA which is one of the most abundant modifications present in mammalian RNA. Inosine can have a profound effect on the RNAs that are edited, not only changing the base-pairing properties, but can also result in recoding, as inosine behaves as if it were guanosine. In mammals there are three ADAR proteins and two ADAR-related proteins (ADAD) expressed. All have a very similar modular structure; however, both their expression and biological function differ significantly. Only two of the ADAR proteins have enzymatic activity. However, both ADAR and ADAD proteins possess the ability to bind double-strand RNA. Mutations in ADARs have been associated with many diseases ranging from cancer, innate immunity to neurological disorders. Here, we will discuss in detail the domain structure of mammalian ADARs, the effects of RNA editing, and the role of ADARs in human diseases. PMID:26437436

  17. GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy

    PubMed Central

    Singh, Shailendra Kumar; Maeda, Kazuhiko; Eid, Mohammed Mansour Abbas; Almofty, Sarah Ameen; Ono, Masaya; Pham, Phuong; Goodman, Myron F.; Sakaguchi, Nobuo

    2013-01-01

    Somatic hypermutation in B cells is initiated by activation-induced cytidine deaminase-catalyzed C→U deamination at immunoglobulin variable regions. Here we investigate the role of the germinal centre-associated nuclear protein (GANP) in enhancing the access of activation-induced cytidine deaminase (AID) to immunoglobulin variable regions. We show that the nuclear export factor GANP is involved in chromatin modification at rearranged immunoglobulin variable loci, and its activity requires a histone acetyltransferase domain. GANP interacts with the transcription stalling protein Spt5 and facilitates RNA Pol-II recruitment to immunoglobulin variable regions. Germinal centre B cells from ganp-transgenic mice showed a higher AID occupancy at the immunoglobulin variable region, whereas B cells from conditional ganp-knockout mice exhibit a lower AID accessibility. These findings suggest that GANP-mediated chromatin modification promotes transcription complex recruitment and positioning at immunoglobulin variable loci to favour AID targeting. PMID:23652018

  18. Degradation of Histamine by Lactobacillus plantarum Isolated from Miso Products.

    PubMed

    Kung, Hsien-Feng; Lee, Yi-Chen; Huang, Ya-Ling; Huang, Yu-Ru; Su, Yi-Cheng; Tsai, Yung-Hsiang

    2017-10-01

    Histamine is a toxic chemical and is the causative agent of food poisoning. This foodborne toxin may be degraded by the oxidative deamination activity of certain microorganisms. In this study, we isolated four histamine-degrading Lactobacillus plantarum bacteria from miso products. Among them, L. plantarum D-103 exhibited 100% degradation of histamine in de Man Rogosa Sharpe (MRS) broth containing 50 ppm of histamine after 24 h of incubation at 30°C. The optimal growth, histamine oxidase, and histamine-degrading activity of L. plantarum D-103 were observed in histamine MRS broth at pH 7.0, 3% NaCl, and 30°C. It also exhibited tolerance to broad ranges of pH (4 to 10) and salt concentrations (0 to 12%) in histamine MRS broth. Therefore, the histamine-degrading L. plantarum D-103 might be used as an additive culture to prevent histamine accumulation in miso products during fermentation.

  19. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  20. Mannich Bases: An Important Pharmacophore in Present Scenario

    PubMed Central

    Sharma, Neha; Kajal, Anu; Saini, Vipin

    2014-01-01

    Mannich bases are the end products of Mannich reaction and are known as beta-amino ketone carrying compounds. Mannich reaction is a carbon-carbon bond forming nucleophilic addition reaction and is a key step in synthesis of a wide variety of natural products, pharmaceuticals, and so forth. Mannich reaction is important for the construction of nitrogen containing compounds. There is a number of aminoalkyl chain bearing Mannich bases like fluoxetine, atropine, ethacrynic acid, trihexyphenidyl, and so forth with high curative value. The literature studies enlighten the fact that Mannich bases are very reactive and recognized to possess potent diverse activities like anti-inflammatory, anticancer, antifilarial, antibacterial, antifungal, anticonvulsant, anthelmintic, antitubercular, analgesic, anti-HIV, antimalarial, antipsychotic, antiviral activities and so forth. The biological activity of Mannich bases is mainly attributed to α, β-unsaturated ketone which can be generated by deamination of hydrogen atom of the amine group. PMID:25478226

  1. Degradation chemistry of gemcitabine hydrochloride, a new antitumor agent.

    PubMed

    Anliker, S L; McClure, M S; Britton, T C; Stephan, E A; Maple, S R; Cooke, G G

    1994-05-01

    The anti-tumor agent gemcitabine hydrochloride, a beta-difluoronucleoside, is remarkably stable in the solid state. In 0.1 N HCI solution at 40 degrees C, deamination of gemcitabine occurs, yielding its uridine analogue. Approximately 86% of the initial gemcitabine remains after 4 weeks under these conditions. Cleavage of the N-glycosidic bond of gemcitabine or conversion to its alpha-anomer in 0.1 N HCI solution is not observed over a 4-week period. However, this work has shown that gemcitabine hydrochloride anomerizes in 0.1 N NaOH at 40 degrees C. Approximately 72% of the initial gemcitabine remains after 4 weeks under the basic conditions used. Uridine hydrolysis products are also formed under these conditions. The anormerization reaction, which is unusual under basic conditions, has been confirmed by characterization of the chromatographically isolated alpha-anomer by NMR and mass spectrometry. A mechanism involving an acyclic intermediate is proposed.

  2. APOBEC3 Cytidine Deaminases in Double-Strand DNA Break Repair and Cancer Promotion

    PubMed Central

    Nowarski, Roni; Kotler, Moshe

    2013-01-01

    High frequency of cytidine to thymidine conversions were identified in the genome of several types of cancer cells. In breast cancer cells these mutations are clustered in long DNA regions associated with ssDNA, double-strand DNA breaks (DSBs) and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs and clustered mutations. PMID:23598277

  3. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    PubMed

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  4. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer.

    PubMed

    Qu, Yi; Olsen, Jan Roger; Yuan, Xing; Cheng, Phil F; Levesque, Mitchell P; Brokstad, Karl A; Hoffman, Paul S; Oyan, Anne Margrete; Zhang, Weidong; Kalland, Karl-Henning; Ke, Xisong

    2018-01-01

    Wnt (wingless)/β-catenin signaling is critical for tumor progression and is frequently activated in colorectal cancer as a result of the mutation of adenomatous polyposis coli (APC); however, therapeutic agents targeting this pathway for clinical use are lacking. Here we report that nitazoxanide (NTZ), a clinically approved antiparasitic drug, efficiently inhibits Wnt signaling independent of APC. Using chemoproteomic approaches, we have identified peptidyl arginine deiminase 2 (PAD2) as the functional target of NTZ in Wnt inhibition. By targeting PAD2, NTZ increased the deamination (citrullination) and turnover of β-catenin in colon cancer cells. Replacement of arginine residues disrupted the transcriptional activity, and NTZ induced degradation of β-catenin. In Wnt-activated colon cancer cells, knockout of either PAD2 or β-catenin substantially increased resistance to NTZ treatment. Our data highlight the potential of NTZ as a modulator of β-catenin citrullination for the treatment of cancer patients with Wnt pathway mutations.

  5. Mitochondrial inhibition of uracil-DNA glycosylase is not mutagenic

    PubMed Central

    Kachhap, Sushant; Singh, Keshav K

    2004-01-01

    Background Uracil DNA glycosylase (UDG) plays a major role in repair of uracil formed due to deamination of cytosine. UDG in human cells is present in both the nucleus and mitochondrial compartments. Although, UDG's role in the nucleus is well established its role in mitochondria is less clear. Results In order to identify UDG's role in the mitochondria we expressed UGI (uracil glycosylase inhibitor) a natural inhibitor of UDG in the mitochondria. Our studies suggest that inhibition of UDG by UGI in the mitochondria does not lead to either spontaneous or induced mutations in mtDNA. Our studies also suggest that UGI expression has no affect on cellular growth or cytochrome c-oxidase activity. Conclusions These results suggest that human cell mitochondria contain alternatives glycosylase (s) that may function as back up DNA repair protein (s) that repair uracil in the mitochondria. PMID:15574194

  6. Invited review: Essential oils as modifiers of rumen microbial fermentation.

    PubMed

    Calsamiglia, S; Busquet, M; Cardozo, P W; Castillejos, L; Ferret, A

    2007-06-01

    Microorganisms in the rumen degrade nutrients to produce volatile fatty acids and synthesize microbial protein as an energy and protein supply for the ruminant, respectively. However, this fermentation process has energy (losses of methane) and protein (losses of ammonia N) inefficiencies that may limit production performance and contribute to the release of pollutants to the environment. Antibiotic ionophores have been very successful in reducing these energy and protein losses in the rumen, but the use of antibiotics in animal feeds is facing reduced social acceptance, and their use has been banned in the European Union since January 2006. For this reason, scientists have become interested in evaluating other alternatives to control specific microbial populations to modulate rumen fermentation. Essential oils can interact with microbial cell membranes and inhibit the growth of some gram-positive and gram-negative bacteria. As a result of such inhibition, the addition of some plant extracts to the rumen results in an inhibition of deamination and methanogenesis, resulting in lower ammonia N, methane, and acetate, and in higher propionate and butyrate concentrations. Results have indicated that garlic oil, cinnamaldehyde (the main active component of cinnamon oil), eugenol (the main active component of the clove bud), capsaicin (the active component of hot peppers), and anise oil, among others, may increase propionate production, reduce acetate or methane production, and modify proteolysis, peptidolysis, or deamination in the rumen. However, the effects of some of these essential oils are pH and diet dependent, and their use may be beneficial only under specific conditions and production systems. For example, capsaicin appears to have small effects in high-forage diets, whereas the changes observed in high-concentrate diets (increases in dry matter intake and total VFA, and reduction in the acetateto-propionate ratio and ammonia N concentration) may be beneficial. Because plant extracts may act at different levels in the carbohydrate and protein degradation pathways, their careful selection and combination may provide a useful tool to manipulate rumen microbial fermentation effectively. However, additional research is required to establish the optimal dose in vivo in units of the active component, to consider the potential adaptation of microbial populations to their activities, to examine the presence of residues in the products (milk or meat), and to demonstrate improvements in animal performance.

  7. Amino acid fermentation at the origin of the genetic code.

    PubMed

    de Vladar, Harold P

    2012-02-10

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors.

  8. Optical tweezers reveal how proteins alter replication

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Kathy

    Single molecule force spectroscopy is a powerful method that explores the DNA interaction properties of proteins involved in a wide range of fundamental biological processes such as DNA replication, transcription, and repair. We use optical tweezers to capture and stretch a single DNA molecule in the presence of proteins that bind DNA and alter its mechanical properties. We quantitatively characterize the DNA binding mechanisms of proteins in order to provide a detailed understanding of their function. In this work, we focus on proteins involved in replication of Escherichia coli (E. coli ), endogenous eukaryotic retrotransposons Ty3 and LINE-1, and human immunodeficiency virus (HIV). DNA polymerases replicate the entire genome of the cell, and bind both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) during DNA replication. The replicative DNA polymerase in the widely-studied model system E. coli is the DNA polymerase III subunit alpha (DNA pol III alpha). We use optical tweezers to determine that UmuD, a protein that regulates bacterial mutagenesis through its interactions with DNA polymerases, specifically disrupts alpha binding to ssDNA. This suggests that UmuD removes alpha from its ssDNA template to allow DNA repair proteins access to the damaged DNA, and to facilitate exchange of the replicative polymerase for an error-prone translesion synthesis (TLS) polymerase that inserts nucleotides opposite the lesions, so that bacterial DNA replication may proceed. This work demonstrates a biophysical mechanism by which E. coli cells tolerate DNA damage. Retroviruses and retrotransposons reproduce by copying their RNA genome into the nuclear DNA of their eukaryotic hosts. Retroelements encode proteins called nucleic acid chaperones, which rearrange nucleic acid secondary structure and are therefore required for successful replication. The chaperone activity of these proteins requires strong binding affinity for both single- and double-stranded nucleic acids. We use single molecule DNA stretching to show that the nucleocapsid protein (NC) of the yeast retrotransposon Ty3, which is likely to be an ancestor of HIV NC, has optimal nucleic acid chaperone activity with only a single zinc finger. We also show that the chaperone activity of the ORF1 protein is responsible for successful replication of the mouse LINE-1 retrotransposon. LINE-1 is also 17% of the human genome, where it generates insertion mutations and alters gene expression. Retrotransposons such as LINE-1 and Ty3 are likely to be ancestors of retroviruses such as HIV. Human APOBEC3G (A3G) inhibits HIV-1 replication via cytidine deamination of the viral ssDNA genome, as well as via a distinct deamination-independent mechanism. Efficient deamination requires rapid on-off binding kinetics, but a slow dissociation rate is required for the proposed deaminase-independent mechanism. We resolve this apparent contradiction with a new quantitative single molecule method, which shows that A3G initially binds ssDNA with fast on-off rates and subsequently converts to a slow binding mode. This suggests that oligomerization transforms A3G from a fast enzyme to a slow binding protein, which is the biophysical mechanism that allows A3G to inhibit HIV replication. A complete understanding of the mechanism of A3G-mediated antiviral activity is required to design drugs that disrupt the viral response to A3G, enhance A3G packaging inside the viral core, and other potential strategies for long-term treatment of HIV infection. We use single molecule biophysics to explore the function of proteins involved in bacterial DNA replication, endogenous retrotransposition of retroelements in eukaryotic hosts such yeast and mice, and HIV replication in human cells. Our quantitative results provide insight into protein function in a range of complex biological systems and have wide-ranging implications for human health.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation,more » providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.« less

  10. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste.

    PubMed

    Wang, Tengfei; Zhai, Yunbo; Zhu, Yun; Peng, Chuan; Xu, Bibo; Wang, Tao; Li, Caiting; Zeng, Guangming

    2018-01-01

    The influence of temperature (180-260°C) on the fate of nitrogen during hydrothermal carbonization (HTC) of food waste (FW) was assessed. The distribution and evolution of nitrogen in aqueous products and bio-oil, as well as hydrochar, were conducted. Results suggested that elevated temperature enhanced the deamination and the highest ammonium concentration (929.75mg/L) was acquired at 260°C. At temperatures above 220°C, the total N in the hydrochar became stable, whereas the mass percentage of N increased. Amines and heterocyclic-N compounds from protein cracking and Maillard reactions were identified as the main nitrogen-containing compounds in the bio-oil. As to the hydrochar, increasing temperature resulted in condensed nitrogen-containing aromatic heterocycles (e.g. pyridine-N and quaternary-N). In particular, remarkable Maillard reactions at 180°C and the highest temperature at 260°C enhanced nitrogen incorporation (i.e. quaternary-N) into hydrochar. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Methanothermobacter thermautotrophicus ExoIII homologue Mth212 is a DNA uridine endonuclease

    PubMed Central

    Georg, Jens; Schomacher, Lars; Chong, James P. J.; Majerník, Alan I.; Raabe, Monika; Urlaub, Henning; Müller, Sabine; Ciirdaeva, Elena; Kramer, Wilfried; Fritz, Hans-Joachim

    2006-01-01

    The genome of Methanothermobacter thermautotrophicus, as a hitherto unique case, is apparently devoid of genes coding for general uracil DNA glycosylases, the universal mediators of base excision repair following hydrolytic deamination of DNA cytosine residues. We have now identified protein Mth212, a member of the ExoIII family of nucleases, as a possible initiator of DNA uracil repair in this organism. This enzyme, in addition to bearing all the enzymological hallmarks of an ExoIII homologue, is a DNA uridine endonuclease (U-endo) that nicks double-stranded DNA at the 5′-side of a 2′-d-uridine residue, irrespective of the nature of the opposing nucleotide. This type of activity has not been described before; it is absent from the ExoIII homologues of Escherichia coli, Homo sapiens and Methanosarcina mazei, all of which are equipped with uracil DNA repair glycosylases. The U-endo activity of Mth212 is served by the same catalytic center as its AP-endo activity. PMID:17012282

  12. Selective MAO-B inhibitors: a lesson from natural products.

    PubMed

    Carradori, Simone; D'Ascenzio, Melissa; Chimenti, Paola; Secci, Daniela; Bolasco, Adriana

    2014-02-01

    Monoamine oxidases (MAOs) are mitochondrial bound enzymes, which catalyze the oxidative deamination of monoamine neurotransmitters. Inside the brain, MAOs are present in two isoforms: MAO-A and MAO-B. The activity of MAO-B is generally higher in patients affected by neurodegenerative diseases like Alzheimer's and Parkinson's. Therefore, the search for potent and selective MAO-B inhibitors is still a challenge for medicinal chemists. Nature has always been a source of inspiration for the discovery of new lead compounds. Moreover, natural medicine is a major component in all traditional medicine systems. In this review, we present the latest discoveries in the search for selective MAO-B inhibitors from natural sources. For clarity, compounds have been classified on the basis of structural analogy or source: flavonoids, xanthones, tannins, proanthocyanidins, iridoid glucosides, curcumin, alkaloids, cannabinoids, and natural sources extracts. MAO inhibition values reported in the text are not always consistent due to the high variability of MAO sources (bovine, pig, rat brain or liver, and human) and to the heterogeneity of the experimental protocols used.

  13. A new model for ancient DNA decay based on paleogenomic meta-analysis

    PubMed Central

    Ware, Roselyn; Smith, Oliver; Collins, Matthew

    2017-01-01

    Abstract The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. PMID:28486705

  14. Changing genetic information through RNA editing

    NASA Technical Reports Server (NTRS)

    Maas, S.; Rich, A.

    2000-01-01

    RNA editing, the post-transcriptional alteration of a gene-encoded sequence, is a widespread phenomenon in eukaryotes. As a consequence of RNA editing, functionally distinct proteins can be produced from a single gene. The molecular mechanisms involved include single or multiple base insertions or deletions as well as base substitutions. In mammals, one type of substitutional RNA editing, characterized by site-specific base-modification, was shown to modulate important physiological processes. The underlying reaction mechanism of substitutional RNA editing involves hydrolytic deamination of cytosine or adenosine bases to uracil or inosine, respectively. Protein factors have been characterized that are able to induce RNA editing in vitro. A supergene family of RNA-dependent deaminases has emerged with the recent addition of adenosine deaminases specific for tRNA. Here we review the developments that have substantially increased our understanding of base-modification RNA editing over the past few years, with an emphasis on mechanistic differences, evolutionary aspects and the first insights into the regulation of editing activity.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Melissa M.; Thomas, Justin M.; Zheng, Yuxuan

    Adenosine deaminases acting on RNA (ADARs) are editing enzymes that convert adenosine to inosine in duplex RNA, a modification reaction with wide-ranging consequences in RNA function. Understanding of the ADAR reaction mechanism, the origin of editing-site selectivity, and the effect of mutations is limited by the lack of high-resolution structural data for complexes of ADARs bound to substrate RNAs. In this paper, we describe four crystal structures of the human ADAR2 deaminase domain bound to RNA duplexes bearing a mimic of the deamination reaction intermediate. These structures, together with structure-guided mutagenesis and RNA-modification experiments, explain the basis of the ADARmore » deaminase domain's dsRNA specificity, its base-flipping mechanism, and its nearest-neighbor preferences. In addition, we identified an ADAR2-specific RNA-binding loop near the enzyme active site, thus rationalizing differences in selectivity observed between different ADARs. In conclusion, our results provide a structural framework for understanding the effects of ADAR mutations associated with human disease.« less

  16. The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis

    PubMed Central

    Deffit, Sarah N; Yee, Brian A; Manning, Aidan C; Rajendren, Suba; Vadlamani, Pranathi; Wheeler, Emily C; Domissy, Alain; Washburn, Michael C

    2017-01-01

    ADAR proteins alter gene expression both by catalyzing adenosine (A) to inosine (I) RNA editing and binding to regulatory elements in target RNAs. Loss of ADARs affects neuronal function in all animals studied to date. Caenorhabditis elegans lacking ADARs exhibit reduced chemotaxis, but the targets responsible for this phenotype remain unknown. To identify critical neural ADAR targets in C. elegans, we performed an unbiased assessment of the effects of ADR-2, the only A-to-I editing enzyme in C. elegans, on the neural transcriptome. Development and implementation of publicly available software, SAILOR, identified 7361 A-to-I editing events across the neural transcriptome. Intersecting the neural editome with adr-2 associated gene expression changes, revealed an edited mRNA, clec-41, whose neural expression is dependent on deamination. Restoring clec-41 expression in adr-2 deficient neural cells rescued the chemotaxis defect, providing the first evidence that neuronal phenotypes of ADAR mutants can be caused by altered gene expression. PMID:28925356

  17. Larger differences in utilization of rarely requested tests in primary care in Spain.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Uris, Joaquín; Leiva-Salinas, Carlos

    2015-01-01

    The study was performed to compare and analyze the inter-departmental variability in the request of rarely requested laboratory tests in primary care, as opposed to other more common and highly requested tests. Data from production statistics for the year 2012 from 76 Spanish laboratories was used. The number of antinuclear antibodies, antistreptolysin O, creatinine, cyclic citrullinated peptide antibodies, deaminated peptide gliadine IgA antibodies, glucose, protein electrophoresis, rheumatoid factor, transglutaminase IgA antibodies, urinalysis and uric acid tests requested was collected. The number of test requests per 1000 inhabitants was calculated. In order to explore the variability the coefficient of quartile dispersion was calculated. The smallest variation was seen for creatinine, glucose, uric acid and urinalysis; the most requested tests. The tests that were least requested showed the greatest variability. Our study shows through a very simplified approach, in a population close to twenty million inhabitants, how in primary care, the variability in the request of laboratory tests is inversely proportional to the request rate.

  18. Inhibition of DNA replication in Saccharomyces cerevisiae by araCMP.

    PubMed

    McIntosh, E M; Kunz, B A; Haynes, R H

    1986-01-01

    Cytosine arabinoside (araC), a potent inhibitor of DNA replication in mammalian cells, was found to be completely ineffective in Saccharomyces cerevisiae. The 5' monophosphate derivative, araCMP, is toxic and effectively inhibits both nuclear and mitochondrial DNA synthesis in this organism. Although wild-type strains can be inhibited by araCMP, dTMP permeable (tup-) strains were found to be much more sensitive to the analogue. In vivo labelling experiments indicate that araC enters yeast cells; however, it is extensively catabolized by deamination and breakage of the glycosidic bond. In addition, the analogue is not efficiently phosphorylated in S. cerevisiae owing to an apparent lack of deoxynucleoside kinase activity. These results provide further evidence that deoxyribonucleotides can be synthesized only through de novo pathways in this organism. Finally, araCMP was found to be recombinagenic in S. cerevisiae which suggests, together with other previous studies, that, in general, inhibition of DNA synthesis in yeast promotes mitotic recombination events.

  19. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    NASA Technical Reports Server (NTRS)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  20. Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp.

    PubMed

    Wang, Xin; Sheng, Lili; Yang, Xiaoyi

    2017-04-01

    Microalgal components were isolated gradually to get lipid-rich, protein-rich and carbohydrate-rich components. The aim of this work was to study pyrolysis mechanism of microalgae by real isolated real algae components. Thermogrametric analysis (DTG) curve of microalgae was fitted by single pyrolysis curves of protein, lipid and carbohydrate except special zones, which likely affected by cell disruption and hydrolysis mass loss. Experimental microalgae liquefaction without water index N was 0.6776, 0.3861 and 0.2856 for isolated lipid, protein and carbohydrate. Pyrolysis pathways of lipid are decarboxylation, decarbonylation, fragmentation of glycerin moieties and steroid to form hydrocarbons, carboxylic acids and esters. Pyrolysis pathways of protein are decarboxylation, deamination, hydrocarbon residue fragmentation, dimerization and fragmentation of peptide bonds to form amide/amines/nitriles, esters, hydrocarbons and N-heterocyclic compounds, especially diketopiperazines (DKPs). Pyrolysis pathways of carbohydrate are dehydrated reactions and further fragmentation to form ketones and aldehyde, decomposition of lignin to form phenols, and fragmentation of lipopolysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. ADARs, Viruses and Innate Immunity

    PubMed Central

    Samuel, Charles E.

    2013-01-01

    Double-stranded RNA (dsRNA) functions both as a substrate of ADARs and also as a molecular trigger of innate immune responses. ADARs, adenosine deaminases that act on RNA, catalyze the deamination of adenosine (A) to produce inosine (I) in dsRNA. ADARs thereby can destablize RNA structures, because the generated I:U mismatch pairs are less stable than A:U base pairs. Additionally, I is read as G instead of A by ribosomes during translation and by viral RNA-dependent RNA polymerases during RNA replication. Members of several virus families have the capacity to produce dsRNA during viral genome transcription and replication. Sequence changes (A-to-G, and U-to-C) characteristic of A-to-I editing occur during virus growth and persistence. Foreign viral dsRNA also mediates both the induction and the action of interferons. In this chapter our current understanding of the role and significance of ADARs in the context of innate immunity, and as determinants of the outcome of viral infection, will be considered. PMID:21809195

  2. Molecular Basis of C–N Bond Cleavage by the Glycyl Radical Enzyme Choline Trimethylamine-Lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodea, Smaranda; Funk, Michael A.; Balskus, Emily P.

    We report that deamination of choline catalyzed by the glycyl radical enzyme choline trimethylamine-lyase (CutC) has emerged as an important route for the production of trimethylamine, a microbial metabolite associated with both human disease and biological methane production. Here, we have determined five high-resolution X-ray structures of wild-type CutC and mechanistically informative mutants in the presence of choline. Within an unexpectedly polar active site, CutC orients choline through hydrogen bonding with a putative general base, and through close interactions between phenolic and carboxylate oxygen atoms of the protein scaffold and the polarized methyl groups of the trimethylammonium moiety. These structuralmore » data, along with biochemical analysis of active site mutants, support a mechanism that involves direct elimination of trimethylamine. Lastly, this work broadens our understanding of radical-based enzyme catalysis and will aid in the rational design of inhibitors of bacterial trimethylamine production.« less

  3. Partial bisulfite conversion for unique template sequencing

    PubMed Central

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael

    2018-01-01

    Abstract We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. PMID:29161423

  4. Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity.

    PubMed

    Kuang, Jiangmeng; Huang, Jun; Wang, Bin; Cao, Qiming; Deng, Shubo; Yu, Gang

    2013-05-15

    This work aimed to better understand the ozonation process of a typical antibiotic pharmaceutical, trimethoprim in aqueous solution. The parent compound was almost completely degraded with ozone dose up to 3.5 mg/L with no mineralization. Twenty one degradation products were identified using an electrospray quadrupole time-of-flight mass spectrometer. Several ozonation pathways were proposed including hydroxylation, demethylation, carbonylation, deamination and methylene group cleavage. Two species of luminescent bacteria Photobacterium phosphoreum and Vibrio qinghaiensis were selected to assess the toxicity of ozonation products. For P. phosphoreum, higher level of toxicity was observed compared to the parent compound, but a negligible toxicity change was observed for V. qinghaiensis, indicating different modes of action for the same water sample. This was further confirmed by quantitative structure-active relationship analysis. This work proves the dominant role of ozone rather than hydroxyl radicals in the reaction and the potential risk after ozonation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. UNG protects B cells from AID-induced telomere loss

    PubMed Central

    Cortizas, Elena M.; Zahn, Astrid; Safavi, Shiva

    2016-01-01

    Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair. PMID:27697833

  6. Convergent Transcription At Intragenic Super-Enhancers Targets AID-initiated Genomic Instability

    PubMed Central

    Meng, Fei-Long; Du, Zhou; Federation, Alexander; Hu, Jiazhi; Wang, Qiao; Kieffer-Kwon, Kyong-Rim; Meyers, Robin M.; Amor, Corina; Wasserman, Caitlyn R.; Neuberg, Donna; Casellas, Rafael; Nussenzweig, Michel C.; Bradner, James E.; Liu, X. Shirley; Alt, Frederick W.

    2015-01-01

    Summary Activation-induced cytidine deaminase (AID) initiates both somatic hypermutation (SHM) for antibody affinity maturation and DNA breakage for antibody class switch recombination (CSR) via transcription-dependent cytidine deamination of single stranded DNA targets. While largely specific for immunoglobulin genes, AID also acts on a limited set of off-targets, generating oncogenic translocations and mutations that contribute to B cell lymphoma. How AID is recruited to off-targets has been a long-standing mystery. Based on deep GRO-Seq studies of mouse and human B lineage cells activated for CSR or SHM, we report that most robust AID off-target translocations occur within highly focal regions of target genes in which sense and antisense transcription converge. Moreover, we found that such AID-targeting “convergent” transcription arises from antisense transcription that emanates from Super-Enhancers within sense transcribed gene bodies. Our findings provide an explanation for AID off-targeting to a small subset of mostly lineage-specific genes in activated B cells. PMID:25483776

  7. A role for the RNA pol II–associated PAF complex in AID-induced immune diversification

    PubMed Central

    Willmann, Katharina L.; Milosevic, Sara; Pauklin, Siim; Schmitz, Kerstin-Maike; Rangam, Gopinath; Simon, Maria T.; Maslen, Sarah; Skehel, Mark; Robert, Isabelle; Heyer, Vincent; Schiavo, Ebe; Reina-San-Martin, Bernardo

    2012-01-01

    Antibody diversification requires the DNA deaminase AID to induce DNA instability at immunoglobulin (Ig) loci upon B cell stimulation. For efficient cytosine deamination, AID requires single-stranded DNA and needs to gain access to Ig loci, with RNA pol II transcription possibly providing both aspects. To understand these mechanisms, we isolated and characterized endogenous AID-containing protein complexes from the chromatin of diversifying B cells. The majority of proteins associated with AID belonged to RNA polymerase II elongation and chromatin modification complexes. Besides the two core polymerase subunits, members of the PAF complex, SUPT5H, SUPT6H, and FACT complex associated with AID. We show that AID associates with RNA polymerase-associated factor 1 (PAF1) through its N-terminal domain, that depletion of PAF complex members inhibits AID-induced immune diversification, and that the PAF complex can serve as a binding platform for AID on chromatin. A model is emerging of how RNA polymerase II elongation and pausing induce and resolve AID lesions. PMID:23008333

  8. Celebrating wobble decoding: Half a century and still much is new.

    PubMed

    Agris, Paul F; Eruysal, Emily R; Narendran, Amithi; Väre, Ville Y P; Vangaveti, Sweta; Ranganathan, Srivathsan V

    2017-08-16

    A simple post-transcriptional modification of tRNA, deamination of adenosine to inosine at the first, or wobble, position of the anticodon, inspired Francis Crick's Wobble Hypothesis 50 years ago. Many more naturally-occurring modifications have been elucidated and continue to be discovered. The post-transcriptional modifications of tRNA's anticodon domain are the most diverse and chemically complex of any RNA modifications. Their contribution with regards to chemistry, structure and dynamics reveal individual and combined effects on tRNA function in recognition of cognate and wobble codons. As forecast by the Modified Wobble Hypothesis 25 years ago, some individual modifications at tRNA's wobble position have evolved to restrict codon recognition whereas others expand the tRNA's ability to read as many as four synonymous codons. Here, we review tRNA wobble codon recognition using specific examples of simple and complex modification chemistries that alter tRNA function. Understanding natural modifications has inspired evolutionary insights and possible innovation in protein synthesis.

  9. Structural studies of the cell wall polysaccharide from Lactococcus lactis UC509.9.

    PubMed

    Vinogradov, Evgeny; Sadovskaya, Irina; Grard, Thierry; Murphy, James; Mahony, Jennifer; Chapot-Chartier, Marie-Pierre; van Sinderen, Douwe

    2018-05-22

    Lactococcus lactis is the most widely utilised starter bacterial species in dairy fermentations. The L. lactis cell envelope contains polysaccharides, which, among other known functions, serve as bacteriophage receptors. Our previous studies have highlighted the structural diversity of these so-called cell wall polysaccharides (CWPSs) among L. lactis strains that could account for the narrow host range of most lactococcal bacteriophages. In the present work, we studied the CWPS of L. lactis strain UC509.9, an Irish dairy starter strain that is host to the temperate and well-characterized P335-type phage Tuc2009. The UC509.9 CWPS structure was analyzed by methylation, deacetylation/deamination, Smith degradation and 2D NMR spectroscopy. The CWPS consists of a linear backbone composed of a tetrasaccharide repeat unit, partially substituted with a branched phosphorylated oligosaccharide having a common trisaccharide and three non-stoichiometric substitutions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Surveying the repair of ancient DNA from bones via high-throughput sequencing.

    PubMed

    Mouttham, Nathalie; Klunk, Jennifer; Kuch, Melanie; Fourney, Ron; Poinar, Hendrik

    2015-07-01

    DNA damage in the form of abasic sites, chemically altered nucleotides, and strand fragmentation is the foremost limitation in obtaining genetic information from many ancient samples. Upon cell death, DNA continues to endure various chemical attacks such as hydrolysis and oxidation, but repair pathways found in vivo no longer operate. By incubating degraded DNA with specific enzyme combinations adopted from these pathways, it is possible to reverse some of the post-mortem nucleic acid damage prior to downstream analyses such as library preparation, targeted enrichment, and high-throughput sequencing. Here, we evaluate the performance of two available repair protocols on previously characterized DNA extracts from four mammoths. Both methods use endonucleases and glycosylases along with a DNA polymerase-ligase combination. PreCR Repair Mix increases the number of molecules converted to sequencing libraries, leading to an increase in endogenous content and a decrease in cytosine-to-thymine transitions due to cytosine deamination. However, the effects of Nelson Repair Mix on repair of DNA damage remain inconclusive.

  11. The oxidation of amino acids by ferrate(V). A pre-mix pulse radiolysis study.

    PubMed

    Rush, J D; Bielski, B H

    1995-06-01

    The forms of ferrate(V) which are derived from the one-electron reduction of potassium ferrate (K2FeO4) by ethanol radicals react with representative amino acids (glycine, methionine, phenylalanine and serine) at rates that are greater than 10(5)M-1s-1 near pH 10. The predominant interaction in the alkaline pH range is between the protonated ferrate(V) species, HFeO4(2-), and the amino acid anion. Fe(V) + amino acid-->Fe(III) + NH3 + alpha-keto acid The rate-determining process is the two electron reduction of ferrate(V) to iron(III) with oxidation and subsequent deamination of the amino acid. The reaction appears to involve an entry of the amino acid into the inner coordination sphere of ferrate(V). In all cases, ferrate(V) exhibits preferred attack on the amino group in contrast to the OH radical which attacks the thioether site of methionine and the phenyl ring of phenylalanine.

  12. Amino acid fermentation at the origin of the genetic code

    PubMed Central

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments into a proto-code that optimises the energetic yield. Monte Carlo simulations are performed to evaluate the establishment of these simple proto-codes, based on amino acid substitutions and codon swapping. In all cases, donor amino acids are assigned to anticodons composed of U+G, and have low redundancy (1-2 codons), whereas acceptor amino acids are assigned to the the remaining codons. These bioenergetic and structural constraints allow for a metabolic role for amino acids before their co-option as catalyst cofactors. Reviewers: this article was reviewed by Prof. William Martin, Prof. Eörs Szathmáry (nominated by Dr. Gáspár Jékely) and Dr. Ádám Kun (nominated by Dr. Sandor Pongor) PMID:22325238

  13. Deoxyinosine triphosphate induces MLH1/PMS2- and p53-dependent cell growth arrest and DNA instability in mammalian cells

    PubMed Central

    Yoneshima, Yasuto; Abolhassani, Nona; Iyama, Teruaki; Sakumi, Kunihiko; Shiomi, Naoko; Mori, Masahiko; Shiomi, Tadahiro; Noda, Tetsuo; Tsuchimoto, Daisuke; Nakabeppu, Yusaku

    2016-01-01

    Deoxyinosine (dI) occurs in DNA either by oxidative deamination of a previously incorporated deoxyadenosine residue or by misincorporation of deoxyinosine triphosphate (dITP) from the nucleotide pool during replication. To exclude dITP from the pool, mammals possess specific hydrolysing enzymes, such as inosine triphosphatase (ITPA). Previous studies have shown that deficiency in ITPA results in cell growth suppression and DNA instability. To explore the mechanisms of these phenotypes, we analysed ITPA-deficient human and mouse cells. We found that both growth suppression and accumulation of single-strand breaks in nuclear DNA of ITPA-deficient cells depended on MLH1/PMS2. The cell growth suppression of ITPA-deficient cells also depended on p53, but not on MPG, ENDOV or MSH2. ITPA deficiency significantly increased the levels of p53 protein and p21 mRNA/protein, a well-known target of p53, in an MLH1-dependent manner. Furthermore, MLH1 may also contribute to cell growth arrest by increasing the basal level of p53 activity. PMID:27618981

  14. Disposition and metabolism of safinamide, a novel drug for Parkinson's disease, in healthy male volunteers.

    PubMed

    Leuratti, Chiara; Sardina, Marco; Ventura, Paolo; Assandri, Alessandro; Müller, Markus; Brunner, Martin

    2013-01-01

    Absorption, biotransformation and elimination of safinamide, an enantiomeric α-aminoamide derivative developed as an add-on therapy for Parkinson's disease patients, were studied in healthy volunteers administered a single oral dose of 400 mg (14)C safinamide methanesulphonate, labelled in metabolically stable positions. Pharmacokinetics of the parent compound were investigated up to 96 h, of (14)C radioactivity up to 192/200 h post-dose. Maximum concentration was achieved at 1 h (plasma, median Tmax) for parent drug and at 7 and 1.5 h for plasma and whole blood (14)C radioactivity, respectively. Terminal half-lives were about 22 h for unchanged safinamide and 80 h for radioactivity. Safinamide deaminated acid and the N-dealkylated acid were identified as major metabolites in urine and plasma. In urine, the β-glucuronide of the N-dealkylated acid and the monohydroxy safinamide were also characterized. In addition, the glycine conjugate of the N-dealkylated acid and 2-[4-hydroxybenzylamino]propanamide were tentatively identified as minor urinary metabolites. © 2013 S. Karger AG, Basel.

  15. Bioaugmentation potential of a newly isolated strain Sphingomonas sp. NJUST37 for the treatment of wastewater containing highly toxic and recalcitrant tricyclazole.

    PubMed

    Wu, Haobo; Shen, Jinyou; Jiang, Xinbai; Liu, Xiaodong; Sun, Xiuyun; Li, Jiansheng; Han, Weiqing; Mu, Yang; Wang, Lianjun

    2018-05-19

    In order to develop an effective bioaugmentation strategy for the removal of highly toxic and recalcitrant tricyclazole from wastewater, a tricyclazole degrading strain was firstly successfully isolated and identified as Sphingomonas sp. NJUST37. In batch reactors, 100 mg L -1 tricyclazole could be completely removed within 102 h, which was accompanied by significant biomass increase, TOC and COD removal, as well as toxicity reduction. Chromatography analysis and density functional theory simulation indicated that monooxygenation occurred firstly, followed by triazole ring cleavage, decyanation reaction, hydration reaction, deamination, dihydroxylation and final mineralization reaction. Tricyclazole biodegradation condition by NJUST37 was optimized in terms of temperature, pH, tricyclazole concentration and additional carbon and nitrogen sources. After the inoculation of NJUST37 into a pilot-scale powdered activated carbon treatment tank treating real fungicide wastewater, tricyclazole removal efficiency increased to higher than 90%, demonstrating the great potential of NJUST37 for bioaugmentation particularly on tricyclazole biodegradation in practice. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. In vivo chemistry of iofetamine HCl iodine-123 (IMP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldwin, R.M.; Wu, J.L.

    1988-01-01

    Application of chemical methods for characterizing the in vivo behavior of iofetamine HCI /sup 123/I (IMP) has shed light on the metabolism of iofetamine in animals and humans. A successful technique consists of ethyl acetate extraction of the metabolites from tissue samples acidified with perchloric acid, separation of the mixture by high performance liquid chromatography, and quantitation of the radioactive components with a sensitive scintillation detector. Metabolism of iofetamine HCI /sup 123/I proceeds sequentially from the N-isopropyl group on the amphetamine side chain. The first step, dealkylation to the primary amine p-iodoamphetamine (PIA), occurs readily in the brain, lungs, andmore » liver; activity in the brain and lungs consists of only IMP and PIA even 24 hr after administration. The rate-limiting step appears to be deamination to give the transitory intermediate p-iodophenylacetone, which is rapidly degraded to p-iodobenzoic acid and conjugated with glycine in the liver to give the end product of metabolism, p-iodohippuric acid, which is excreted through the kidneys in the urine.« less

  17. Bovicin HC5 inhibits wasteful amino acid degradation by mixed ruminal bacteria in vitro.

    PubMed

    Lima, Janaína R; Ribon, Andréa de O Barros; Russell, James B; Mantovani, Hilário C

    2009-03-01

    Streptococcus bovis HC5 produces a broad spectrum lantibiotic (bovicin HC5) that inhibits pure cultures of hyper ammonia-producing bacteria (HAB). Experiments were preformed to see if: (1) S. bovis HC5 cells could inhibit the deamination of amino acids by mixed ruminal bacteria taken directly from a cow, (2) semi-purified bovicin was as effective as S. bovis HC5 cells, and 3) semi-purified and the feed additive monensin were affecting the same types of ammonia-producing ruminal bacteria. Because purified and semi-purified bovicin HC5 was as effective as S. bovis HC5 cells, it appeared that bovicin HC5 was penetrating the cell membranes of HAB before it could be degraded by peptidases and proteinases. Mixed ruminal bacteria that were successively transferred and enriched nine times with trypticase did not become significantly more resistant to either bovicin HC5 (50 AU mL(-1)) or monensin (5 microM), and amplified rDNA restriction analysis indicated that bovicin HC5 and monensin appeared to be selecting against the same types of bacteria.

  18. Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte Wolffia globosa.

    PubMed

    Zhang, Xin; Uroic, M Kalle; Xie, Wan-Ying; Zhu, Yong-Guan; Chen, Bao-Dong; McGrath, Steve P; Feldmann, Jörg; Zhao, Fang-Jie

    2012-06-01

    The rootless duckweed Wolffia globosa can accumulate and tolerate relatively large amounts of arsenic (As); however, the underlying mechanisms were unknown. W. globosa was exposed to different concentrations of arsenate with or without l-buthionine sulphoximine (BSO), a specific inhibitor of γ-glutamylcysteine synthetase. Free thiol compounds and As(III)-thiol complexes were identified and quantified using HPLC - high resolution ICP-MS - accurate mass ESI-MS. Without BSO, 74% of the As accumulated in the duckweed was complexed with phytochelatins (PCs), with As(III)-PC(4) and As(III)-PC(3) being the main species. BSO was taken up by the duckweed and partly deaminated. The BSO treatment completely suppressed the synthesis of PCs and the formation of As(III)-PC complexes, and also inhibited the reduction of arsenate to arsenite. BSO markedly decreased both As accumulation and As tolerance in W. globosa. The results demonstrate an important role of PCs in detoxifying As and enabling As accumulation in W. globosa. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Molecular size is important for the safety and selective inhibition of intrinsic factor Xase for fucosylated chondroitin sulfate.

    PubMed

    Yan, Lufeng; Li, Junhui; Wang, Danli; Ding, Tian; Hu, Yaqin; Ye, Xingqian; Linhardt, Robert J; Chen, Shiguo

    2017-12-15

    Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (FCS-Ib) showed potent anticoagulant activities without selectivity. The present study focused on developing safe FCS-Ib oligomers showing selective inhibition of intrinsic factor Xase (anti-FXase) prepared through partial N-deacetylation-deaminative cleavage. The N-deacetylation degree was regulated by reaction time, controlling the resulting oligomer distribution. Structure analysis confirmed the selectivity of degradation, and 12 high purity fractions with trisaccharide-repeating units were separated. In vitro anticoagulant assays indicated a decrease in molecular weight (Mw) dramatically reduced activated partial thromboplastin time (APTT), thrombin time (TT), AT-dependent anti-FIIa and anti-FXa activities, while the oligomers retained potent anti-FXase activity until they fell below 3kDa. Meanwhile, human FXII activation and platelet aggregation were markedly reduced with decreasing Mw and were moderate when under 12.0kDa. Thus, fragments of 3-12.0kDa should be safe and effective as selective inhibitors of intrinsic tenase complex for application as clinical anticoagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study.

    PubMed

    Zhang, Jun; Tian, Yu; Cui, Yanni; Zuo, Wei; Tan, Tao

    2013-03-01

    The nitrogen transformations with attention to NH3 and HCN were investigated at temperatures of 300-800°C during microwave pyrolysis of a protein model compound. The evolution of nitrogenated compounds in the char, tar and gas products were conducted. The amine-N, heterocyclic-N and nitrile-N compounds were identified as three important intermediates during the pyrolysis. NH3 and HCN were formed with comparable activation energies competed to consume the same reactive substances at temperatures of 300-800°C. The deamination and dehydrogenation of amine-N compounds from protein cracking contributed to the formation of NH3 (about 8.9% of Soy-N) and HCN (6.6%) from 300 to 500°C. The cracking of nitrile-N and heterocyclic-N compounds from the dehydrogenation and polymerization of amine-N generated HCN (13.4%) and NH3 (31.3%) between 500 and 800°C. It might be able to reduce the HCN and NH3 emissions through controlling the intermediates production at temperatures of 500-800°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A new model for ancient DNA decay based on paleogenomic meta-analysis.

    PubMed

    Kistler, Logan; Ware, Roselyn; Smith, Oliver; Collins, Matthew; Allaby, Robin G

    2017-06-20

    The persistence of DNA over archaeological and paleontological timescales in diverse environments has led to a revolutionary body of paleogenomic research, yet the dynamics of DNA degradation are still poorly understood. We analyzed 185 paleogenomic datasets and compared DNA survival with environmental variables and sample ages. We find cytosine deamination follows a conventional thermal age model, but we find no correlation between DNA fragmentation and sample age over the timespans analyzed, even when controlling for environmental variables. We propose a model for ancient DNA decay wherein fragmentation rapidly reaches a threshold, then subsequently slows. The observed loss of DNA over time may be due to a bulk diffusion process in many cases, highlighting the importance of tissues and environments creating effectively closed systems for DNA preservation. This model of DNA degradation is largely based on mammal bone samples due to published genomic dataset availability. Continued refinement to the model to reflect diverse biological systems and tissue types will further improve our understanding of ancient DNA breakdown dynamics. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Crystal structure of a chimaeric bacterial glutamate dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Tânia; Sharkey, Michael A.; Engel, Paul C.

    2016-05-23

    Glutamate dehydrogenases (EC 1.4.1.2–4) catalyse the oxidative deamination of L-glutamate to α-ketoglutarate using NAD(P) +as a cofactor. The bacterial enzymes are hexameric, arranged with 32 symmetry, and each polypeptide consists of an N-terminal substrate-binding segment (domain I) followed by a C-terminal cofactor-binding segment (domain II). The catalytic reaction takes place in the cleft formed at the junction of the two domains. Distinct signature sequences in the nucleotide-binding domain have been linked to the binding of NAD +versusNADP +, but they are not unambiguous predictors of cofactor preference. In the absence of substrate, the two domains move apart as rigid bodies,more » as shown by the apo structure of glutamate dehydrogenase fromClostridium symbiosum. Here, the crystal structure of a chimaeric clostridial/Escherichia colienzyme has been determined in the apo state. The enzyme is fully functional and reveals possible determinants of interdomain flexibility at a hinge region following the pivot helix. The enzyme retains the preference for NADP +cofactor from the parentE. colidomain II, although there are subtle differences in catalytic activity.« less

  3. A cyclobutane thymine–N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis

    PubMed Central

    Yamamoto, Junpei; Oyama, Tomoko; Kunishi, Tomohiro; Masutani, Chikahide; Hanaoka, Fumio; Iwai, Shigenori

    2014-01-01

    Exposure of DNA to ultraviolet light produces harmful crosslinks between adjacent pyrimidine bases, to form cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6–4)pyrimidone photoproducts. The CPD is frequently formed, and its repair mechanisms have been exclusively studied by using a CPD formed at a TT site. On the other hand, biochemical analyses using CPDs formed within cytosine-containing sequence contexts are practically difficult, because saturated cytosine easily undergoes hydrolytic deamination. Here, we found that N-alkylation of the exocyclic amino group of 2′-deoxycytidine prevents hydrolysis in CPD formation, and an N-methylated cytosine-containing CPD was stable enough to be derivatized into its phosphoramidite building block and incorporated into oligonucleotides. Kinetic studies of the CPD-containing oligonucleotide indicated that its lifetime under physiological conditions is relatively long (∼7 days). In biochemical analyses using human DNA polymerase η, incorporation of TMP opposite the N-methylcytosine moiety of the CPD was clearly detected, in addition to dGMP incorporation, and the incorrect TMP incorporation blocked DNA synthesis. The thermodynamic parameters confirmed the formation of this unusual base pair. PMID:24185703

  4. Structure-Activity Relationship Analysis of 3-phenylcoumarin-Based Monoamine Oxidase B Inhibitors

    NASA Astrophysics Data System (ADS)

    Rauhamäki, Sanna; Postila, Pekka A.; Niinivehmas, Sanna; Kortet, Sami; Schildt, Emmi; Pasanen, Mira; Manivannan, Elangovan; Ahinko, Mira; Koskimies, Pasi; Nyberg, Niina; Huuskonen, Pasi; Multamäki, Elina; Pasanen, Markku; Juvonen, Risto O.; Raunio, Hannu; Huuskonen, Juhani; Pentikäinen, Olli T.

    2018-03-01

    Monoamine oxidase B (MAO-B) catalyzes deamination of monoamines such as neurotransmitters dopamine and norepinephrine. Accordingly, small-molecule MAO-B inhibitors potentially alleviate the symptoms of dopamine-linked neuropathologies such as depression or Parkinson’s disease. Coumarin with a functionalized 3-phenyl ring system is a promising scaffold for building potent MAO-B inhibitors. Here, a vast set of 3-phenylcoumarin derivatives was designed using virtual combinatorial chemistry or rationally de novo and synthesized using microwave chemistry. The derivatives inhibited the MAO-B at 100 nM - 1 µM. The IC50 value of the most potent derivative 1 was 56 nM. A docking-based structure-activity relationship analysis summarizes the atom-level determinants of the MAO-B inhibition by the derivatives. Finally, the cross-reactivity of the derivatives was tested against monoamine oxidase A and a specific subset of enzymes linked to estradiol metabolism, known to have coumarin-based inhibitors. Overall, the results indicate that the 3-phenylcoumarins, especially derivative 1, present unique pharmacological features worth considering in future drug development.

  5. Removal of interfering nucleotides from brain extracts containing substance p. Effect of drugs on brain concentrations of substance p

    PubMed Central

    Laszlo, I.

    1963-01-01

    Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136

  6. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA

    PubMed Central

    Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137

  7. AID Biology: A pathological and clinical perspective.

    PubMed

    Choudhary, Meenal; Tamrakar, Anubhav; Singh, Amit Kumar; Jain, Monika; Jaiswal, Ankit; Kodgire, Prashant

    2018-01-02

    Activation-induced cytidine deaminase (AID), primarily expressed in activated mature B lymphocytes in germinal centers, is the key factor in adaptive immune response against foreign antigens. AID is responsible for producing high-affinity and high-specificity antibodies against an infectious agent, through the physiological DNA alteration processes of antibody genes by somatic hypermutation (SHM) and class-switch recombination (CSR) and functions by deaminating deoxycytidines (dC) to deoxyuridines (dU), thereby introducing point mutations and double-stranded chromosomal breaks (DSBs). The beneficial physiological role of AID in antibody diversification is outweighed by its detrimental role in the genesis of several chronic immune diseases, under non-physiological conditions. This review offers a comprehensive and better understanding of AID biology and its pathological aspects, as well as addresses the challenges involved in AID-related cancer therapeutics, based on various recent advances and evidence available in the literature till date. In this article, we discuss ways through which our interpretation of AID biology may reflect upon novel clinical insights, which could be successfully translated into designing clinical trials and improving patient prognosis and disease management.

  8. Mechanisms of volatile production from non-sulfur amino acids by irradiation

    NASA Astrophysics Data System (ADS)

    Ahn, Dong Uk; Lee, Eun Joo; Feng, Xi; Zhang, Wangang; Lee, Ji Hwan; Jo, Cheorun; Nam, Kichang

    2016-02-01

    Non-sulfur amino acid monomers were used to study the mechanisms of volatile production in meat by irradiation. Irradiation not only produced many volatiles but also increased the amounts of volatiles from non-sulfur amino acid monomers. The major reaction mechanisms involved in volatile production from each group of the amino acids by irradiation differ significantly. However, we speculate that the radiolysis of amino acid side chains were the major mechanism. In addition, Strecker degradation, especially the production of aldehydes from aliphatic group amino acids, and deamination, isomerization, decarboxylation, cyclic reaction and dehydrogenation of the initial radiolytic products were also contributed to the production of volatile compounds. Each amino acid monomers produced different odor characteristics, but the intensities of odor from all non-sulfur amino acid groups were very weak. This indicated that the contribution of volatiles produced from non-sulfur amino acids was minor. If the volatile compounds from non-sulfur amino acids, especially aldehydes, interact with other volatiles compounds such as sulfur compounds, however, they can contribute to the off-odor of irradiated meat significantly.

  9. Metabolism of Exogenous Purine Bases and Nucleosides by Salmonella typhimurium

    PubMed Central

    Hoffmeyer, J.; Neuhard, J.

    1971-01-01

    Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate. PMID:4928005

  10. Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells

    PubMed Central

    Eid, Mohammed Mansour Abbas; Shimoda, Mayuko; Singh, Shailendra Kumar; Almofty, Sarah Ameen; Pham, Phuong; Goodman, Myron F.; Maeda, Kazuhiko; Sakaguchi, Nobuo

    2017-01-01

    Abstract Immunoglobulin affinity maturation depends on somatic hypermutation (SHM) in immunoglobulin variable (IgV) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs (MMRs) create transversion mutations at C/G and mutations at A/T sites. In Neuberger’s model, it remained to be clarified how transition/transversion repair is regulated. We investigate the role of AID-interacting GANP (germinal center-associated nuclear protein) in the IgV SHM profile. GANP enhances transition mutation of the non-transcribed strand G and reduces mutation at A, restricted to GYW of the AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with MMRs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions (FWRs) by Bayesian statistical estimation demonstrates that GANP supports the preservation of IgV FWR genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in the IgV FWR in affinity maturation. PMID:28541550

  11. Mechanisms and pathways of aniline elimination from aquatic environments.

    PubMed Central

    Lyons, C D; Katz, S; Bartha, R

    1984-01-01

    The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO2 within a 1-week period, and microbial biomass was formed as a result of aniline utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO2. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. PMID:6497369

  12. The Evolution of Ribosomal DNA: Divergent Paralogues and Phylogenetic Implications

    PubMed Central

    Buckler-IV, E. S.; Ippolito, A.; Holtsford, T. P.

    1997-01-01

    Although nuclear ribosomal DNA (rDNA) repeats evolve together through concerted evolution, some genomes contain a considerable diversity of paralogous rDNA. This diversity includes not only multiple functional loci but also putative pseudogenes and recombinants. We examined the occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences. Some of the divergent paralogues are probably rDNA pseudogenes, since they have low predicted secondary structure stability, high substitution rates, and many deamination-driven substitutions at methylation sites. Under standard PCR conditions, the low stability paralogues amplified well, while many high-stability paralogues amplified poorly. Under highly denaturing PCR conditions (i.e., with dimethylsulfoxide), both low- and high-stability paralogues amplified well. We also found recombination between divergent paralogues. For phylogenetics, divergent ribosomal paralogues can aid in reconstructing ancestral states and thus serve as good outgroups. Divergent paralogues can also provide companion rDNA phylogenies. However, phylogeneticists must discriminate among families of divergent paralogues and recombinants or suffer from muddled and inaccurate organismal phylogenies. PMID:9055091

  13. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities

    NASA Astrophysics Data System (ADS)

    Ikeda, Terumasa; Ong, Eugene Boon Beng; Watanabe, Nobumoto; Sakaguchi, Nobuo; Maeda, Kazuhiko; Koito, Atsushi

    2016-01-01

    APOBEC1 (A1) proteins from lagomorphs and rodents have deaminase-dependent restriction activity against HIV-1, whereas human A1 exerts a negligible effect. To investigate these differences in the restriction of HIV-1 by A1 proteins, a series of chimeric proteins combining rabbit and human A1s was constructed. Homology models of the A1s indicated that their activities derive from functional domains that likely act in tandem through a dimeric interface. The C-terminal region containing the leucine-rich motif and the dimerization domains of rabbit A1 is important for its anti-HIV-1 activity. The A1 chimeras with strong anti-HIV-1 activity were incorporated into virions more efficiently than those without anti-HIV-1 activity, and exhibited potent DNA-mutator activity. Therefore, the C-terminal region of rabbit A1 is involved in both its packaging into the HIV-1 virion and its deamination activity against both viral cDNA and genomic RNA. This study identifies the novel molecular mechanism underlying the target specificity of A1.

  14. Cell-free biosynthesis of lipophosphoglycan from Leishmania donovani. Characterization of microsomal galactosyltransferase and mannosyltransferase activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carver, M.A.; Turco, S.J.

    1991-06-15

    Incubation of microsomal preparations from Leishmania donovani parasites with UDP-({sup 3}H)galactose or GDP-({sup 14}C)mannose resulted in incorporation of radiolabel into an endogenous product that exhibited the chemical and chromatographic characteristics of the parasite's major surface glycoconjugate, lipophosphoglycan. The ({sup 3}H)galactose- or ({sup 14}C)mannose-labeled product was (1) cleaved by phosphatidylinositol-specific phospholipase C; (2) deaminated by nitrous acid; and (3) degraded into radioactive, low molecular weight fragments upon hydrolysis with mild acid. Analysis of the products of mild acid hydrolysis revealed the presence of phosphorylated Gal-beta-Man as the major fragment with lesser amounts of mono-, tri-, and tetrasaccharides. The incorporation of themore » two isotopic precursors was neither stimulated by the addition of dolichylphosphate nor inhibited by amphomycin, indicating that dolichol-saccharide intermediates are not involved in assembly of the repeating units of lipophosphoglycan. Development of this cell-free glycosylating system will facilitate further studies on the pathway and enzymes involved in lipophosphoglycan biosynthesis.« less

  15. Detection of hypermutated human papillomavirus type 16 genome by Next-Generation Sequencing.

    PubMed

    Wakae, Kousho; Aoyama, Satoru; Wang, Zhe; Kitamura, Kouichi; Liu, Guangyan; Monjurul, Ahasan Md; Koura, Miki; Imayasu, Mieko; Sakamoto, Naoya; Nakamura, Mitsuhiro; Kyo, Satoru; Kondo, Satoru; Fujiwara, Hiroshi; Yoshizaki, Tomokazu; Kukimoto, Iwao; Yamaguchi, Katsushi; Shigenobu, Shuji; Nishiyama, Tomoaki; Muramatsu, Masamichi

    2015-11-01

    Human papillomavirus type 16 (HPV16) is a major cause of cervical cancer. We previously demonstrated that C-to-T and G-to-A hypermutations accumulated in the HPV16 genome by APOBEC3 expression in vitro. To investigate in vivo characteristics of hypermutation, differential DNA denaturation-PCR (3D-PCR) was performed using three clinical specimens obtained from HPV16-positive cervical dysplasia, and detected hypermutation from two out of three specimens. One sample accumulating hypermutations in both E2 and the long control region (LCR) was further subjected to Next-Generation Sequencing, revealing that hypermutations spread across the LCR and all early genes. Notably, hypermutation was more frequently observed in the LCR, which contains a viral replication origin and the early promoter. APOBEC3 expressed abundantly in an HPV16-positive cervix, suggesting that single-stranded DNA exposed during viral replication and transcription may be efficient targets for deamination. The results further strengthen a role of APOBEC3 in introducing HPV16 hypermutation in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity

    DOE PAGES

    Matthews, Melissa M.; Thomas, Justin M.; Zheng, Yuxuan; ...

    2016-04-11

    Adenosine deaminases acting on RNA (ADARs) are editing enzymes that convert adenosine to inosine in duplex RNA, a modification reaction with wide-ranging consequences in RNA function. Understanding of the ADAR reaction mechanism, the origin of editing-site selectivity, and the effect of mutations is limited by the lack of high-resolution structural data for complexes of ADARs bound to substrate RNAs. In this paper, we describe four crystal structures of the human ADAR2 deaminase domain bound to RNA duplexes bearing a mimic of the deamination reaction intermediate. These structures, together with structure-guided mutagenesis and RNA-modification experiments, explain the basis of the ADARmore » deaminase domain's dsRNA specificity, its base-flipping mechanism, and its nearest-neighbor preferences. In addition, we identified an ADAR2-specific RNA-binding loop near the enzyme active site, thus rationalizing differences in selectivity observed between different ADARs. In conclusion, our results provide a structural framework for understanding the effects of ADAR mutations associated with human disease.« less

  17. Repair of naturally occurring mismatches can induce mutations in flanking DNA

    PubMed Central

    Chen, Jia; Miller, Brendan F; Furano, Anthony V

    2014-01-01

    ‘Normal’ genomic DNA contains hundreds of mismatches that are generated daily by the spontaneous deamination of C (U/G) and methyl-C (T/G). Thus, a mutagenic effect of their repair could constitute a serious genetic burden. We show here that while mismatches introduced into human cells on an SV40-based episome were invariably repaired, this process induced mutations in flanking DNA at a significantly higher rate than no mismatch controls. Most mutations involved the C of TpC, the substrate of some single strand-specific APOBEC cytidine deaminases, similar to the mutations that can typify the ‘mutator phenotype’ of numerous tumors. siRNA knockdowns and chromatin immunoprecipitation showed that TpC preferring APOBECs mediate the mutagenesis, and siRNA knockdowns showed that both the base excision and mismatch repair pathways are involved. That naturally occurring mispairs can be converted to mutators, represents an heretofore unsuspected source of genetic changes that could underlie disease, aging, and evolutionary change. DOI: http://dx.doi.org/10.7554/eLife.02001.001 PMID:24843013

  18. Chemo-Enzymatic Synthesis of Chiral Epoxides Ethyl and Methyl (S)-3-(Oxiran-2-yl)propanoates from Renewable Levoglucosenone: An Access to Enantiopure (S)-Dairy Lactone.

    PubMed

    Peru, Aurélien A M; Flourat, Amandine L; Gunawan, Christian; Raverty, Warwick; Jevric, Martyn; Greatrex, Ben W; Allais, Florent

    2016-07-29

    Chiral epoxides-such as ethyl and methyl (S)-3-(oxiran-2-yl)propanoates ((S)-1a/1b)-are valuable precursors in many chemical syntheses. Until recently, these compounds were synthesized from glutamic acid in four steps (deamination, reduction, tosylation and epoxide formation) in low to moderate overall yield (20%-50%). Moreover, this procedure requires some harmful reagents such as sodium nitrite ((eco)toxic) and borane (carcinogen). Herein, starting from levoglucosenone (LGO), a biobased chiral compound obtained through the flash pyrolysis of acidified cellulose, we propose a safer and more sustainable chemo-enzymatic synthetic pathway involving lipase-mediated Baeyer-Villiger oxidation, palladium-catalyzed hydrogenation, tosylation and treatment with sodium ethoxide/methoxide as key steps. This route afforded ethyl and methyl (S)-3-(oxiran-2-yl)propanoates in 57% overall yield, respectively. To demonstrate the potentiality of this new synthetic pathway from LGO, the synthesis of high value-added (S)-dairy lactone was undertaken from these epoxides and provided the target in 37% overall yield from LGO.

  19. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.

    PubMed

    Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A

    2017-04-28

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.

  20. Structures of the SER/THR linked variant oligosaccharides present in equine chorionic gonadotropin (eCG). beta. -subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahl, O.P.; Anumula, K.R.

    1986-05-01

    eCG ..beta..-subunit contains more than 50% carbohydrate and constitutes about 72% of the hormone. O-linked carbohydrate (85%) was separated from the N-linked (15%) by gel filtration of the endoproteinase Lys-C digest. Six O-linked carbohydrate units were released by NaOH/NaB/sup 3/H/sub 4/ treatment. Oligosaccharides were fractionated by gel filtration and paper chromatography. Several oligosaccharides were obtained ranging in size from a sialyl di-saccharide to megalosaccharide with about 50 sugar residues. Methylation analyses and tlc examination of the oligosaccharides after endo- and exoglycosidase digestions and nitrous acid deamination and Smith degradation revealed a core structure of Gal..beta..1-4 GlcNAc..beta..1-6 (Gal ..beta..1-3) GalNAcH/sub 2/more » with poly-N-acetyllactosamine peripheral extensions. Nearly 50% of the oligosaccharides were large and were preferentially extended on 1,6 arm of the GalNAcH/sub 2/ by repeating N-acetyllactosamine units. Furthermore, these oligosaccharides contained branching 1,3,6-linked galactoses giving rise to tri, penta and multiantennary structures.« less

  1. Effect of heavy metals on acdS gene expression in Herbaspirillium sp. GW103 isolated from rhizosphere soil.

    PubMed

    Loganathan, Praburaman; Myung, Hyun; Muthusamy, Govarthanan; Lee, Kui-Jae; Seralathan, Kamala-Kannan; Oh, Byung-Taek

    2015-10-01

    This study aimed to understand the influence of heavy metals on 1-aminocyclopropane-1-carboxylate deaminase activity (ACCD) and acdS gene expression in Herbaspirillium sp. GW103. The GW103 strain ACCD activity decreased in cells grown in a medium supplemented with Pb and As, whereas cells grown in medium supplemented with Cu showed increase in enzyme activity. The GW103 strain produced 262.2 ± 6.17 μmol of α-ketobutyrate per milligram of protein per hour during ACC deamination at 25 °C after 24 h incubation. Using a PCR approach, an acdS coding-gene of 1.06 kbp was amplified in isolate GW103, showing 92% identity with Herbaspirillum seropedicae SmR1 acdS gene. Real time quantitative polymerase chain reaction results indicate that the acdS expression rate was increased (7.1-fold) in the presence of Cu, whereas it decreased (0.2- and 0.1-fold) in the presence of As and Pb. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.

    PubMed

    Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A

    2014-11-20

    The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Metabolism of 4-N-Hydroxy-Cytidine in Escherichia coli

    PubMed Central

    Trimble, R. B.; Maley, Frank

    1971-01-01

    4-N-hydroxy-cytidine was found to substitute for uridine as a pyrimidine supplement for the growth of Escherichia coli Bu−. Measurement of the incorporation of 4-N-hydroxy-cytidine-2-14C into ribonucleic acid and deoxyribonucleic acid revealed that this compound was converted to cytidine or uridine before utilization. Two pathways for metabolism were considered: (i) the reduction of 4-N-hydroxy-cytidine to cytidine followed by deamination, (ii) the direct hydrolysis of hydroxylamine from 4-N-hydroxy-cytidine to yield uridine. A threefold increase in cytidine (deoxycytidine) deaminase (EC 3.5.4.5) activity, when the cells were grown on 4-N-hydroxy-cytidine, suggested the involvement of this enzyme. More direct proof was obtained by purifying the deaminase 185-fold and finding that it released hydroxylamine from 4-N-hydroxy-cytidine at one-fiftieth the rate at which ammonia was removed from cytidine. This result is consistent with the slower rate of growth of the Bu− cells on 4-N-hydroxy-cytidine than cytidine and suggests that the second pathway is the major route for utilization of this compound. PMID:4941553

  4. Pretreatment with nomifensine or nomifensine analogue 4-phenyl-1,2,3,4-tetrahydroisoquinoline augments methamphetamine-induced stereotypical behavior in mice

    PubMed Central

    Hall, F. Scott; Uhl, George R.; Asano, Hiromi; Chatani, Ryuki; Hayata, Sachiko; Yokoyama, Hiroko; Tanaka, Koh-ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko

    2014-01-01

    Nomifensine is a dopamine/norepinephrine reuptake inhibitor. Nomifensine and some of its structural analogues produce behavioral effects indicative of indirect dopaminergic agonist properties, such as hyperlocomotion. By contrast, the deaminated and demethylated nomifensine analogue 4-phenyl-1,2,3,4-tetrahydroisoquinoline (PTIQ) is reported to have amphetamine-antagonistic properties, as demonstrated by inhibition of methamphetamine (METH)-induced dopamine release in the nucleus accumbens and METH-induced hyperlocomotion in rats. In the present study, we examined the effect of PTIQ (10 mg/kg, i.p.) and nomifensine (3 mg/kg, i.p.) on METH (5 or 10 mg/kg ,i.p.)-induced stereotypical behavior in mice in order to determine whether PTIQ and nomifensine inhibit and augment, respectively, METH-induced stereotypical behavior. Unexpectedly, our observations demonstrated that both PTIQ and nomifensine significantly augmented METH-induced stereotypical behavior and locomotion in mice. This augmentation is likely the result of additive effects on dopaminergic function by METH in combination with PTIQ or nomifensine. These results suggest that, contrary to some reports, PTIQ may display dopaminergic agonist properties in mice. PMID:22265332

  5. Reduction of L-phenylalanine in protein hydrolysates using L-phenylalanine ammonia-lyase from Rhodosporidium toruloides.

    PubMed

    Castañeda, María Teresita; Adachi, Osao; Hours, Roque Alberto

    2015-10-01

    L-Phenylalanine ammonia-lyase (PAL, EC 4.3.1.25) from Rhodosporidium toruloides was utilized to remove L-phenylalanine (L-Phe) from different commercial protein hydrolysates. A casein acid hydrolysate (CAH, L-Phe ~2.28 %) was employed as a model substrate. t-Cinnamic acid resulting from deamination of L-Phe was extracted, analyzed at λ = 290 nm, and used for PAL activity determination. Optimum reaction conditions, optimized using successive Doehlert design, were 35 mg mL(-1) of CAH and 800 mU mL(-1) of PAL, while temperature and pH were 42 °C and 8.7, respectively. Reaction kinetics of PAL with CAH was determined under optimized conditions. Then, removal of L-Phe from CAH was tested. Results showed that more than 92 % of initial L-Phe was eliminated. Similar results were obtained with other protein hydrolysates. These findings demonstrate that PAL is a useful biocatalyst for L-Phe removal from protein hydrolysates, which can be evaluated as potential ingredients in foodstuffs for PKU patients.

  6. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    NASA Astrophysics Data System (ADS)

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-10-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  7. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies.

    PubMed

    Shlyakhtenko, Luda S; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S; Lyubchenko, Yuri L

    2015-10-27

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA.

  8. The cytidine deaminase signature HxE(x)n CxxC of DYW1 binds zinc and is necessary for RNA editing of ndhD-1.

    PubMed

    Boussardon, Clément; Avon, Alexandra; Kindgren, Peter; Bond, Charles S; Challenor, Michael; Lurin, Claire; Small, Ian

    2014-09-01

    In flowering plants, RNA editing involves deamination of specific cytidines to uridines in both mitochondrial and chloroplast transcripts. Pentatricopeptide repeat (PPR) proteins and multiple organellar RNA editing factor (MORF) proteins have been shown to be involved in RNA editing but none have been shown to possess cytidine deaminase activity. The DYW domain of some PPR proteins contains a highly conserved signature resembling the zinc-binding active site motif of known nucleotide deaminases. We modified these highly conserved amino acids in the DYW motif of DYW1, an editing factor required for editing of the ndhD-1 site in Arabidopsis chloroplasts. We demonstrate that several amino acids of this signature motif are required for RNA editing in vivo and for zinc binding in vitro. We conclude that the DYW domain of DYW1 has features in common with cytidine deaminases, reinforcing the hypothesis that this domain forms part of the active enzyme that carries out RNA editing in plants. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  9. Selective Conversion of P=O-Bridged Rhodamines into P=O-Rhodols: Solvatochromic Near-Infrared Fluorophores.

    PubMed

    Grzybowski, Marek; Taki, Masayasu; Yamaguchi, Shigehiro

    2017-09-21

    The substitution of an oxygen atom in rhodols with a phosphine oxide (P=O) moiety affords P=O-bridged rhodols as a new type of near-infrared (NIR) fluorophore. This compound class can be readily accessed upon exposure of the corresponding rhodamines to aqueous basic conditions. The electron-withdrawing effect of the P=O group facilitates the hydrolytic deamination, and, moreover, prolonged exposure to aqueous basic conditions generates P=O-bridged fluoresceins, that is, a series of three P=O-bridged xanthene dyes is available in one simple operation. The P=O-bridged rhodols show significant bathochromic shifts of the longest-wavelength absorption maximum (Δλ=125 nm; >3600 cm -1 ) upon changing the solvent from toluene to water, whereas the emission is shifted less drastically (Δλ=70 nm; 1600 cm -1 ). The hydrogen bonding between the P=O and C=O groups with protic solvents results in substantial stabilization of the LUMO level, which is responsible for the solvatochromism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers

    NASA Technical Reports Server (NTRS)

    Singh, S.; Lewis, N. G.; Towers, G. H.

    1998-01-01

    In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato (Ipomoea batatas) tuber discs. [15N]-Labeled substrates including L-Phe, in the presence or absence of specific enzyme inhibitors, were administered to sweet potato discs in light under aseptic conditions. 15N-Nuclear magnetic resonance spectroscopic analyses revealed that the 15NH4+ liberated during the PAL reaction is first incorporated into the amide nitrogen of L-glutamine (L-Gln) and then into L-glutamate (L-Glu). These results extend our previous observations in pine and potato that PAL-generated NH4+ is assimilated by the glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 1.4.1.13) pathway, with the NH4+ so formed ultimately being recycled back to L-Phe via L-Glu as aminoreceptor and donor.

  11. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    Stipanovic, Robert D; Wheeler, Michael H; Puckhaber, Lorraine S; Liu, Jinggao; Bell, Alois A; Williams, Howard J

    2011-05-25

    Fusarium oxysporum is a fungal pathogen that attacks many important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentrations of the phytotoxin fusaric acid. Thus, fusaric acid may be a critical component in the pathogenicity of these biotypes. This study investigated the biosynthesis of fusaric acid using (13)C-labeled substrates including [1,2-(13)C(2)]acetate as well as (13)C- and (15)N-labeled aspartate and [(15)N]glutamine. The incorporation of labeled substrates is consistent with the biosynthesis of fusaric acid from three acetate units at C5-C6, C7-C8, and C9-C10, with the remaining carbons being derived from aspartate via oxaloacetate and the TCA cycle; the oxaloacetate originates in part by transamination of aspartate, but most of the oxaloacetate is derived by deamination of aspartate to fumarate by aspartase. The nitrogen from glutamine is more readily incorporated into fusaric acid than that from aspartate.

  12. Partial bisulfite conversion for unique template sequencing.

    PubMed

    Kumar, Vijay; Rosenbaum, Julie; Wang, Zihua; Forcier, Talitha; Ronemus, Michael; Wigler, Michael; Levy, Dan

    2018-01-25

    We introduce a new protocol, mutational sequencing or muSeq, which uses sodium bisulfite to randomly deaminate unmethylated cytosines at a fixed and tunable rate. The muSeq protocol marks each initial template molecule with a unique mutation signature that is present in every copy of the template, and in every fragmented copy of a copy. In the sequenced read data, this signature is observed as a unique pattern of C-to-T or G-to-A nucleotide conversions. Clustering reads with the same conversion pattern enables accurate count and long-range assembly of initial template molecules from short-read sequence data. We explore count and low-error sequencing by profiling 135 000 restriction fragments in a PstI representation, demonstrating that muSeq improves copy number inference and significantly reduces sporadic sequencer error. We explore long-range assembly in the context of cDNA, generating contiguous transcript clusters greater than 3,000 bp in length. The muSeq assemblies reveal transcriptional diversity not observable from short-read data alone. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Evaluation of the inhibitory effects of quercetin-related flavonoids and tea catechins on the monoamine oxidase-A reaction in mouse brain mitochondria.

    PubMed

    Bandaruk, Yauhen; Mukai, Rie; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji

    2012-10-17

    Quercetin, a typical dietary flavonoid, is thought to exert antidepressant effects by inhibiting the monoamine oxidase-A (MAO-A) reaction, which is responsible for regulation of the metabolism of the neurotransmitter 5-hydroxytryptamine (5-HT) in the brain. This study compared the MAO-A inhibitory activity of quercetin with those of O-methylated quercetin (isorhamnetin, tamarixetin), luteolin, and green tea catechins ((-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate) by measuring the formation of the oxidative deamination product of 5-HT, 5-hydroxyindole aldehyde (5-HIAL), in mouse brain mitochondria. Quercetin was inferior to luteolin in the inhibition of MAO-A activity, whereas isorhamnetin, tamarixetin, and tea catechins scarcely exerted inhibitory activity. Quercetin did not affect MAO-A activity in mouse intestinal mitochondria, indicating that it does not evoke side effects on the metabolism of dietary monoamines in the gut. These data suggest that quercetin is a weak (but safe) MAO-A inhibitor in the modulation of 5-HT levels in the brain.

  14. Monoamine oxidases as sources of oxidants in the heart

    PubMed Central

    Kaludercic, Nina; Mialet-Perez, Jeanne; Paolocci, Nazareno; Parini, Angelo; Di Lisa, Fabio

    2014-01-01

    Oxidative stress can be generated at several sites within the mitochondria. Among these, monoamine oxidases (MAO) have been described as a prominent source. MAO are mitochondrial flavoenzymes responsible for the oxidative deamination of catecholamines, serotonin and biogenic amines, and during this process they generate H2O2 and aldehyde intermediates. The role of MAO in cardiovascular pathophysiology has only recently gathered some attention since it has been demonstrated that both H2O2 and aldehydes may target mitochondrial function and consequently affect function and viability of the myocardium. In the present review, we will discuss the role of MAO in catecholamine and serotonin clearance and cycling in relation to cardiac structure and function. The relevant contribution of each MAO isoform (MAO-A or -B) will be discussed in relation to mitochondrial dysfunction and myocardial injury. Finally, we will examine both beneficial effects of their pharmacological or genetic inhibition along with potential adverse effects observed at baseline in MAO knockout mice, as well as the deleterious effects following their over-expression specifically at cardiomyocyte level. PMID:24412580

  15. Increase in expression of brain serotonin transporter and monoamine oxidase a genes induced by repeated experience of social defeats in male mice.

    PubMed

    Filipenko, M L; Beilina, A G; Alekseyenko, O V; Dolgov, V V; Kudryavtseva, N N

    2002-04-01

    Serotonin transporter and monoamine oxidase (MAO) A are involved in the inactivation of serotonin. The former is responsible for serotonin re-uptake from the synapse, whereas the latter catalyzes serotonin deamination in presynaptic terminals. Expression of serotonin transporter and MAO A genes was investigated in raphe nuclei of midbrain of CBA/Lac male mice with repeated experience of social victories or defeats in 10 daily aggressive confrontations. The amount of cDNA of these genes was evaluated using multiplex RT-PCR. Two independent experiments revealed that the defeated mice were characterized by significantly higher levels of serotonin transporter and MAO A mRNAs than the control and aggressive animals. Increased expression of MAO A and serotonin transporter genes is suggested to reflect the accelerated serotonin degradation in response to activation of the serotonergic system functioning induced by social stress. Significant positive correlation between MAO A and serotonin transporter mRNA levels suggests common pathways of regulation of transcriptional activity of these genes.

  16. Catalytic Activity of a Binary Informational Macromolecule

    NASA Technical Reports Server (NTRS)

    Reader, John S.; Joyce, Gerald F.

    2003-01-01

    RNA molecules are thought to have played a prominent role in the early history of life on Earth based on their ability both to encode genetic information and to exhibit catalytic function. The modern genetic alphabet relies on two sets of complementary base pairs to store genetic information. However, due to the chemical instability of cytosine, which readily deaminates to uracil, a primitive genetic system composed of the bases A, U, G and C may have been difficult to establish. It has been suggested that the first genetic material instead contained only a single base-pairing unie'. Here we show that binary informational macromolecules, containing only two different nucleotide subunits, can act as catalysts. In vitro evolution was used to obtain ligase ribozymes composed of only 2,6-diaminopurine and uracil nucleotides, which catalyze the template-directed joining of two RNA molecules, one bearing a 5'-triphosphate and the other a 3'-hydroxyl. The active conformation of the fastest isolated ribozyme had a catalytic rate that was about 36,000-fold faster than the uncatalyzed rate of reaction. This ribozyme is specific for the formation of biologically relevant 3',5'-phosphodiester linkages.

  17. Comblike poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers as anti-infection surface modifying agents.

    PubMed

    Mai-ngam, Katanchalee

    2006-05-01

    A series of structurally well-defined poly(ethylene oxide)/hydrophobic C6 branched chitosan surfactant polymers that undergo surface induced self assembly on hydrophobic biomaterial surfaces were synthesized and characterized. The surfactant polymers consist of low molecular weight (Mw) chitosan backbone with hydrophilic poly(ethylene oxide) (PEO) and hydrophobic hexyl pendant groups. Chitosan was depolymerized by nitrous acid deaminative cleavage. Hexanal and aldehyde-terminated PEO chains were simultaneously attached to low Mw chitosan hydrochloride via reductive amination. The surfactant polymers were prepared with various ratios of the two side chains. The molecular composition of the surfactant polymers was determined by FT-IR and 1H NMR. Surface active properties at the air-water interface were determined by Langmuir film balance measurements. The surfactant polymers with PEO/hexyl ratios of 1:3.0 and 1:14.4 were used as surface modifying agents to investigate their anti-infection properties. E. coli adhesion on Silastic surface was decreased significantly by the surfactant polymer with PEO/hexyl 1:3.0. Surface growth of adherent E. coli was effectively suppressed by both tested surfactant polymers.

  18. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma

    PubMed Central

    Leonard, Brandon; Hart, Steven N.; Burns, Michael B.; Carpenter, Michael A.; Temiz, Nuri A.; Rathore, Anurag; Vogel, Rachel Isaksson; Nikas, Jason B.; Law, Emily K.; Brown, William L.; Li, Ying; Zhang, Yuji; Maurer, Matthew J.; Oberg, Ann L.; Cunningham, Julie M.; Shridhar, Viji; Bell, Debra A.; April, Craig; Bentley, David; Bibikova, Marina; Cheetham, R. Keira; Fan, Jian-Bing; Grocock, Russell; Humphray, Sean; Kingsbury, Zoya; Peden, John; Chien, Jeremy; Swisher, Elizabeth M.; Hartmann, Lynn C.; Kalli, Kimberly R.; Goode, Ellen L.; Sicotte, Hugues; Kaufmann, Scott H.; Harris, Reuben S.

    2013-01-01

    Ovarian cancer is a clinically and molecularly heterogeneous disease. The driving forces behind this variability are unknown. Here we report wide variation in expression of the DNA cytosine deaminase APOBEC3B, with elevated expression in a majority of ovarian cancer cell lines (3 standard deviations above the mean of normal ovarian surface epithelial cells) and high grade primary ovarian cancers. APOBEC3B is active in the nucleus of several ovarian cancer cell lines and elicits a biochemical preference for deamination of cytosines in 5′TC dinucleotides. Importantly, examination of whole-genome sequence from 16 ovarian cancers reveals that APOBEC3B expression correlates with total mutation load as well as elevated levels of transversion mutations. In particular, high APOBEC3B expression correlates with C-to-A and C-to-G transversion mutations within 5′TC dinucleotide motifs in early-stage high grade serous ovarian cancer genomes, suggesting that APOBEC3B-catalyzed genomic uracil lesions are further processed by downstream DNA ‘repair’ enzymes including error-prone translesion polymerases. These data identify a potential role for APOBEC3B in serous ovarian cancer genomic instability. PMID:24154874

  19. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV.

    PubMed

    López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M

    2017-10-13

    Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome

    PubMed Central

    Sakurai, Masayuki; Ueda, Hiroki; Yano, Takanori; Okada, Shunpei; Terajima, Hideki; Mitsuyama, Toutai; Toyoda, Atsushi; Fujiyama, Asao; Kawabata, Hitomi; Suzuki, Tsutomu

    2014-01-01

    Inosine is an abundant RNA modification in the human transcriptome and is essential for many biological processes in modulating gene expression at the post-transcriptional level. Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosines to inosines (A-to-I editing) in double-stranded regions. We previously established a biochemical method called “inosine chemical erasing” (ICE) to directly identify inosines on RNA strands with high reliability. Here, we have applied the ICE method combined with deep sequencing (ICE-seq) to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome of human adult brain. Taken together with the sites identified by the conventional ICE method, we mapped 19,791 novel sites and newly found 1258 edited mRNAs, including 66 novel sites in coding regions, 41 of which cause altered amino acid assignment. ICE-seq detected novel editing sites in various repeat elements as well as in short hairpins. Gene ontology analysis revealed that these edited mRNAs are associated with transcription, energy metabolism, and neurological disorders, providing new insights into various aspects of human brain functions. PMID:24407955

  1. Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya.

    PubMed

    Wardle, Josephine; Burgers, Peter M J; Cann, Isaac K O; Darley, Kate; Heslop, Pauline; Johansson, Erik; Lin, Li-Jung; McGlynn, Peter; Sanvoisin, Jonathan; Stith, Carrie M; Connolly, Bernard A

    2008-02-01

    Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures approximately 100 degrees C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases delta and epsilon for nuclear DNA and polymerase gamma for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil.

  2. Biochemical profile of Achatina fulica (Mollusca: Gastropoda) after infection by different parasitic loads of Angiostrongylus cantonensis (Nematoda, Metastrongylidae).

    PubMed

    Tunholi-Alves, Vinícius Menezes; Tunholi, Victor Menezes; Amaral, Ludimila Santos; Mota, Esther Maria; Maldonado Júnior, Arnaldo; Pinheiro, Jairo; Garcia, Juberlan

    2015-01-01

    The effect of experimental infection by different parasitic loads of Angiostrongylus cantonensis (Nematode, Metastrongylidae) on the activities of the aminotransferases and concentration of total proteins, uric acid and urea in the hemolymph of Achatina fulica (Mollusca, Gastropoda) were investigated. There was a significant decrease in the concentration of total proteins in the exposed snails to 5000 or more larvae. This change was accompanied by an increase in the concentrations of urea and uric acid in the hemolymph, suggesting a higher rate of deamination of the amino acids. Besides this, variations in the activities of the aminotransferases were also observed, with the highest values recorded in the groups exposed to greater parasite load. These results suggest an increase in the use of total proteins, since there was increased formation of nitrogenous catabolites, in conformity with an increase in the aminotransferase activities. Infection was verified by the fact that L3 larvae recovered from the snails was proportion to the exposure dose of L1 larvae. Histopathological results also indicated presence of an inflammatory cell infiltrate, favoring an increase of both transaminases. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    PubMed

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  4. RNA Editing and Its Molecular Mechanism in Plant Organelles

    PubMed Central

    Ichinose, Mizuho; Sugita, Mamoru

    2016-01-01

    RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified. PMID:28025543

  5. Bidirectional regulation of adenosine-to-inosine (A-to-I) RNA editing by DEAH box helicase 9 (DHX9) in cancer.

    PubMed

    Hong, HuiQi; An, Omer; Chan, Tim H M; Ng, Vanessa H E; Kwok, Hui Si; Lin, Jaymie S; Qi, Lihua; Han, Jian; Tay, Daryl J T; Tang, Sze Jing; Yang, Henry; Song, Yangyang; Bellido Molias, Fernando; Tenen, Daniel G; Chen, Leilei

    2018-05-18

    Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.

  6. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  7. Utilization of 2,6-diaminopurine by Salmonella typhimurium.

    PubMed Central

    Garber, B B; Gots, J S

    1980-01-01

    The pathway for the utilization of 2,6-diaminopurine (DAP) as an exogenous purine source in Salmonella typhimurium was examined. In strains able to use DAP as a purine source, mutant derivatives lacking either purine nucleoside phosphorylase or adenosine deaminase activity lost the ability to do so. The implied pathway of DAP utilization was via its conversion to DAP ribonucleoside by purine nucleoside phosphorylase, followed by deamination to guanosine by adenosine deaminase. Guanosine can then enter the established purine salvage pathways. In the course of defining this pathway, purine auxotrophs able to utilize DAP as sole purine source were isolated and partially characterized. These mutants fell into several classes, including (i) strains that only required an exogenous source of guanine nucleotides (e.g., guaA and guaB strains); (ii) strains that had a purF genetic lesion (i.e., were defective in alpha-5-phosphoribosyl 1-pyrophosphate amidotransferase activity); and (iii) strains that had constitutive levels of purine nucleoside phosphorylase. Selection among purine auxotrophs blocked in the de novo synthesis of inosine 5'-monophosphate, for efficient growth on DAP as sole source of purine nucleotides, readily yielded mutants which were defective in the regulation of their deoxyribonucleoside-catabolizing enzymes (e.g., deoR mutants). PMID:6782081

  8. AID induces intraclonal diversity and genomic damage in CD86+ chronic lymphocytic leukemia cells

    PubMed Central

    Huemer, Michael; Rebhandl, Stefan; Zaborsky, Nadja; Gassner, Franz J; Hainzl, Stefan; Weiss, Lukas; Hebenstreit, Daniel; Greil, Richard; Geisberger, Roland

    2014-01-01

    The activation-induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination of the Ig genes by directly deaminating cytosines to uracils. As AID causes a substantial amount of off-target mutations, its activity has been associated with lymphomagenesis and clonal evolution of B-cell malignancies. Although it has been shown that AID is expressed in B-cell chronic lymphocytic leukemia (CLL), a clear analysis of in vivo AID activity in this B-cell malignancy remained elusive. In this study performed on primary human CLL samples, we report that, despite the presence of a dominant VDJ heavy chain region, a substantial intraclonal diversity was observed at VDJ as well as at IgM switch regions (Sμ), showing ongoing AID activity in vivo during disease progression. This AID-mediated heterogeneity was higher in CLL subclones expressing CD86, which we identified as the proliferative CLL fraction. Finally, CD86 expression correlated with shortened time to first treatment and increased γ-H2AX focus formation. Our data demonstrate that AID is active in CLL in vivo and thus, AID likely contributes to clonal evolution of CLL. PMID:25179679

  9. Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells.

    PubMed

    Eid, Mohammed Mansour Abbas; Shimoda, Mayuko; Singh, Shailendra Kumar; Almofty, Sarah Ameen; Pham, Phuong; Goodman, Myron F; Maeda, Kazuhiko; Sakaguchi, Nobuo

    2017-05-01

    Immunoglobulin affinity maturation depends on somatic hypermutation (SHM) in immunoglobulin variable (IgV) regions initiated by activation-induced cytidine deaminase (AID). AID induces transition mutations by C→U deamination on both strands, causing C:G→T:A. Error-prone repairs of U by base excision and mismatch repairs (MMRs) create transversion mutations at C/G and mutations at A/T sites. In Neuberger's model, it remained to be clarified how transition/transversion repair is regulated. We investigate the role of AID-interacting GANP (germinal center-associated nuclear protein) in the IgV SHM profile. GANP enhances transition mutation of the non-transcribed strand G and reduces mutation at A, restricted to GYW of the AID hotspot motif. It reduces DNA polymerase η hotspot mutations associated with MMRs followed by uracil-DNA glycosylase. Mutation comparison between IgV complementary and framework regions (FWRs) by Bayesian statistical estimation demonstrates that GANP supports the preservation of IgV FWR genomic sequences. GANP works to maintain antibody structure by reducing drastic changes in the IgV FWR in affinity maturation. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  10. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    PubMed

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Tackling Critical Catalytic Residues in Helicobacter pylori l-Asparaginase

    PubMed Central

    Maggi, Maristella; Chiarelli, Laurent R; Valentini, Giovanna; Scotti, Claudia

    2015-01-01

    Bacterial asparaginases (amidohydrolases, EC 3.5.1.1) are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of l-ASN and, to a variable extent, of l-GLN, on which leukemia cells are dependent for survival. In contrast to other known l-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase) is cooperative and has a low affinity towards l-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289) have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in l-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features. PMID:25826146

  12. Tackling Critical Catalytic Residues in Helicobacter pylori L-Asparaginase.

    PubMed

    Maggi, Maristella; Chiarelli, Laurent R; Valentini, Giovanna; Scotti, Claudia

    2015-03-27

    Bacterial asparaginases (amidohydrolases, EC 3.5.1.1) are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of L-ASN and, to a variable extent, of L-GLN, on which leukemia cells are dependent for survival. In contrast to other known L-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase) is cooperative and has a low affinity towards L-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289) have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in L-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features.

  13. Mechanistic Insight into the Biosynthesis and Detoxification of Fumonisin Mycotoxins.

    PubMed

    Burgess, Kevin M N; Renaud, Justin B; McDowell, Tim; Sumarah, Mark W

    2016-09-16

    Fumonisins, notably FB1, FB2, FB3, and FB4, are economically important mycotoxins produced by a number Fusarium sp. that occur on corn, rice, and sorghum as well as by Aspergillus sp. on grapes. The fumonisin scaffold is comprised of a C18 polyketide backbone functionalized with two tricarballylic esters and an alanine derived amine. These functional groups contribute to fumonisin's ability to inhibit sphingolipid biosynthesis in animals, plants, and yeasts. We report for the first time the isolation and structure elucidation of two classes of nonaminated fumonisins (FPy and FLa) produced by Aspergillus welwitschiae. Using a Lemna minor (duckweed) bioassay, these new compounds were significantly less toxic in comparison to the fumonisin B mycotoxins, providing new insight into the mechanism of fumonisin toxicity. Time course fermentations monitoring the production of FB4, FPy4, and FLa4, as well as (13)C and (15)N stable isotope incorporation, suggest a novel postbiosynthetic oxidative deamination process for fumonisins. This pathway was further supported by a feeding study with FB1, a fumonisin not produced by Aspergillus sp., which resulted in its transformation to FPy1. This study demonstrates that Aspergillus have the ability to produce enzymes that could be used for fumonisin detoxification.

  14. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies

    NASA Astrophysics Data System (ADS)

    Ohkouchi, Naohiko; Ogawa, Nanako O.; Chikaraishi, Yoshito; Tanaka, Hiroyuki; Wada, Eitaro

    2015-12-01

    We review the biochemical and physiological bases of the use of carbon and nitrogen isotopic compositions as an approach for environmental and ecological studies. Biochemical processes commonly observed in the biosphere, including the decarboxylation and deamination of amino acids, are the key factors in this isotopic approach. The principles drawn from the isotopic distributions disentangle the complex dynamics of the biosphere and allow the interactions between the geosphere and biosphere to be analyzed in detail. We also summarize two recently examined topics with new datasets: the isotopic compositions of individual biosynthetic products (chlorophylls and amino acids) and those of animal organs for further pursuing the basis of the methodology. As a tool for investigating complex systems, compound-specific isotopic analysis compensates the intrinsic disadvantages of bulk isotopic signatures. Chlorophylls provide information about the particular processes of various photoautotrophs, whereas amino acids provide a precise measure of the trophic positions of heterotrophs. The isotopic distributions of carbon and nitrogen in a single organism as well as in the whole biosphere are strongly regulated, so that their major components such as amino acids are coordinated appropriately rather than controlled separately.

  15. Combined free nitrous acid and hydrogen peroxide pre-treatment of waste activated sludge enhances methane production via organic molecule breakdown

    PubMed Central

    Zhang, Tingting; Wang, Qilin; Ye, Liu; Batstone, Damien; Yuan, Zhiguo

    2015-01-01

    This study presents a novel pre-treatment strategy using combined free nitrous acid (FNA i.e. HNO2) and hydrogen peroxide (H2O2) to enhance methane production from WAS, with the mechanisms investigated bio-molecularly. WAS from a full-scale plant was treated with FNA alone (1.54 mg N/L), H2O2 alone (10–80 mg/g TS), and their combinations followed by biochemical methane potential tests. Combined FNA and H2O2 pre-treatment substantially enhanced methane potential of WAS by 59–83%, compared to 13–23% and 56% with H2O2 pre-treatment alone and FNA pre-treatment alone respectively. Model-based analysis indicated the increased methane potential was mainly associated with up to 163% increase in rapidly biodegradable fraction with combined pre-treatment. The molecular weight distribution and chemical structure analyses revealed the breakdown of soluble macromolecules with the combined pre-treatment caused by the deamination and oxidation of the typical functional groups in proteins, polysaccharides and phosphodiesters. These changes likely improved the biodegradability of WAS. PMID:26565653

  16. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    PubMed

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  17. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity

    PubMed Central

    Kouno, Takahide; Silvas, Tania V.; Hilbert, Brendan J.; Shandilya, Shivender M. D.; Bohn, Markus F.; Kelch, Brian A.; Royer, William E.; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A.

    2017-01-01

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A–ssDNA complex defines the 5′–3′ directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics. PMID:28452355

  18. Photoinduced collagen cross-linking: a new approach to venous insufficiency.

    PubMed

    Frullini, Alessandro; Manetti, Leonardo; Di Cicco, Emiliano; Fortuna, Damiano

    2011-08-01

    What little research has been done on methods of venous valve function recovery with radiofrequency has had disappointing results. Valvuloplasty has some supporters, but the majority of physicians do not consider it a valid therapeutic option. To test a new method of treating varicose veins based on their collagen structure. This procedure it is not a thermal treatment, but it is fast, with significant shrinking and preservation of the endothelium. In the laboratory, we subjected greater saphenous vein specimens to irradiation with a blue light-emitting diode generated (wavelength 450-480 nm) while a riboflavin solution (vitamin B2) was administered. The riboflavin acts as a cross-linking agent, and the blue light as the activator. In this photo-induced reaction, oxygen singlet is produced with oxidative deamination, forming new covalent bonds between collagen fibrils and water. In venous specimens, we demonstrated fast and significant shrinkaged without histologic evidence of endothelial damage and with evident change in mechanical properties of varicose veins. Photochemically induced collagen cross-linking to restructure varicose veins is only a research field but may become an important tool for recovery of vein diameter and valve function. © 2011 by the American Society for Dermatologic Surgery, Inc.

  19. The Frequency of Cytidine Editing of Viral DNA Is Differentially Influenced by Vpx and Nucleosides during HIV-1 or SIVMAC Infection of Dendritic Cells

    PubMed Central

    Nguyen, Xuan-Nhi; Barateau, Véronique; Wu, Nannan; Berger, Gregory; Cimarelli, Andrea

    2015-01-01

    Two cellular factors are currently known to modulate lentiviral infection specifically in myeloid cells: SAMHD1 and APOBEC3A (A3A). SAMHD1 is a deoxynucleoside triphosphohydrolase that interferes with viral infection mostly by limiting the intracellular concentrations of dNTPs, while A3A is a cytidine deaminase that has been described to edit incoming vDNA. The restrictive phenotype of myeloid cells can be alleviated through the direct degradation of SAMHD1 by the HIV-2/SIVSM Vpx protein or else, at least in the case of HIV-1, by the exogenous supplementation of nucleosides that artificially overcome the catabolic activity of SAMHD1 on dNTPs. Here, we have used Vpx and dNs to explore the relationship existing between vDNA cytidine deamination and SAMHD1 during HIV-1 or SIVMAC infection of primary dendritic cells. Our results reveal an interesting inverse correlation between conditions that promote efficient infection of DCs and the extent of vDNA editing that may reflect the different susceptibility of vDNA to cytoplasmic effectors during the infection of myeloid cells. PMID:26496699

  20. Exercise Training positively modulates the Ectonucleotidase Enzymes in Lymphocytes of Metabolic Syndrome Patients.

    PubMed

    Martins, C C; Bagatini, M D; Cardoso, A M; Zanini, D; Abdalla, F H; Baldissarelli, J; Dalenogare, D P; Dos Santos, D L; Schetinger, M R C; Morsch, V M M

    2016-11-01

    In this study, we investigated the cardiovascular risk factors as well as ectonucleotidase activities in lymphocytes of metabolic syndrome (MetS) patients before and after an exercise intervention. 20 MetS patients, who performed regular concurrent exercise training for 30 weeks, 3 times/week, were studied. Anthropometric, biochemical, inflammatory and hepatic parameters and hydrolysis of adenine nucleotides and nucleoside in lymphocytes were collected from patients before and after 15 and 30 weeks of the exercise intervention as well as from participants of the control group. An increase in the hydrolysis of ATP and ADP, and a decrease in adenosine deamination in lymphocytes of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training after 30 weeks of intervention. Additionally, exercise training reduced the inflammatory and hepatic markers to baseline levels after 30 weeks of exercise. Our results clearly indicated alteration in ectonucleotidase enzymes in lymphocytes in the MetS, whereas regular exercise training had a protective effect on the enzymatic alterations and on inflammatory and hepatic parameters, especially if it is performed regularly and for a long period. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Purification and characterization of the enzymes involved in nicotinamide adenine dinucleotide degradation by Penicillium brevicompactum NRC 829.

    PubMed

    Ali, Thanaa Hamed; El-Ghonemy, Dina Helmy

    2016-06-01

    The present study was conducted to investigate a new pathway for the degradation of nicotinamide adenine dinucleotide (NAD) by Penicillium brevicompactum NRC 829 extracts. Enzymes involved in the hydrolysis of NAD, i.e. alkaline phosphatase, aminohydrolase and glycohydrolase were determined. Alkaline phosphatase was found to catalyse the sequential hydrolysis of two phosphate moieties of NAD molecule to nicotinamide riboside plus adenosine. Adenosine was then deaminated by aminohydrolase to inosine and ammonia. While glycohydrolase catalyzed the hydrolysis of the nicotinamide-ribosidic bond of NAD+ to produce nicotinamide and ADP-ribose in equimolar amounts, enzyme purification through a 3-step purification procedure revealed the existence of two peaks of alkaline phosphatases, and one peak contained deaminase and glycohydrolase activities. NAD deaminase was purified to homogeneity as estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis with an apparent molecular mass of 91 kDa. Characterization and determination of some of NAD aminohydrolase kinetic properties were conducted due to its biological role in the regulation of cellular NAD level. The results also revealed that NAD did not exert its feedback control on nicotinamide amidase produced by P. brevicompactum.

  2. L-Arogenate is a chemoattractant which can be utilized as the sole source of carbon and nitrogen by Pseudomonas aeruginosa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, R.S.; Song, Jian; Gu, Wei

    L-Arogenate is a commonplace amino acid in nature in consideration of its role as a ubiquitous precursor of L-phenylalanine and/or L-tyrosine. However, the questions of whether it serves as a chemoattractant molecule and whether it can serve as a substrate for catabolism have never been studied. We found that Pseudomonas aeruginosa recognizes L-arogenate as a chemoattractant molecule which can be utilized as a source of both carbon and nitrogen. Mutants lacking expression of either cyclohexadienyl dehydratase or phenylalanine hydroxylase exhibited highly reduced growth rates when utilizing L-arogenate as a nitrogen source. Utilization of L-arogenate as a source of either carbonmore » or nitrogen was dependent upon {sub S}{sup 54}, as revealed by the use of an rpoN null mutant. The evidence suggests that catabolism of L-arogenate proceeds via alternative pathways which converge at 4-hydroxyphenylpyruvate. In one pathway, prephenate formed in the periplasm by deamination of L-arogenate is converted to 4-hydroxyphenylpyruvate by cyclohexadienyl dehydrogenase. The second route depends upon the sequential action of periplasmic cyclohexadienyl dehydratase, phenylalanine hydroxylase, and aromatic aminotransferase. 32 refs., 5 figs., 4 tabs.« less

  3. APOBEC3G Interacts with ssDNA by Two Modes: AFM Studies

    PubMed Central

    Shlyakhtenko, Luda S.; Dutta, Samrat; Banga, Jaspreet; Li, Ming; Harris, Reuben S.; Lyubchenko, Yuri L.

    2015-01-01

    APOBEC3G (A3G) protein has antiviral activity against HIV and other pathogenic retroviruses. A3G has two domains: a catalytic C-terminal domain (CTD) that deaminates cytidine, and a N-terminal domain (NTD) that binds to ssDNA. Although abundant information exists about the biological activities of A3G protein, the interplay between sequence specific deaminase activity and A3G binding to ssDNA remains controversial. We used the topographic imaging and force spectroscopy modalities of Atomic Force Spectroscopy (AFM) to characterize the interaction of A3G protein with deaminase specific and nonspecific ssDNA substrates. AFM imaging demonstrated that A3G has elevated affinity for deaminase specific ssDNA than for nonspecific ssDNA. AFM force spectroscopy revealed two distinct binding modes by which A3G interacts with ssDNA. One mode requires sequence specificity, as demonstrated by stronger and more stable complexes with deaminase specific ssDNA than with nonspecific ssDNA. Overall these observations enforce prior studies suggesting that both domains of A3G contribute to the sequence specific binding of ssDNA. PMID:26503602

  4. Mechanisms and pathways of aniline elimination from aquatic environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyons, C.D.; Katz, S.; Bartha, R.

    1984-09-01

    The fate of aniline, a representative of arylamine pollutants derived from the manufacture of dyes, coal liquefaction, and pesticide degradation, was comprehensively evaluated by use of unpolluted and polluted pond water as model environments. Evaporation plus autoxidation proved to be minor elimination mechanisms, removing ca. 1% of the added aniline per day. Instantaneous binding to humic components of a 0.1% sewage sludge inoculum removed 4%. Biodegradation of aniline in pond water was accelerated by the sewage sludge inoculum. A substantial portion of the degraded aniline carbon was mineralized to CO/sub 2/ within a 1-week period, and microbial biomass was formedmore » as a result of analine utilization. Biodegradation was clearly the most significant removal mechanism of polluting aniline from pond water. A gas chromatographic-mass spectrometric analysis of biodegradation intermediates revealed that the major pathway of aniline biodegradation in pond water involved oxidative deamination to catechol, which was further metabolized through cis,cis-muconic, beta-ketoadipic, levulinic, and succinic acid intermediates to CO/sub 2/. Minor biodegradation pathways involved reversible acylation to acetanilide and formanilide, whereas N-oxidation resulted in small amounts of oligomeric condensation products. 36 references, 4 figures, 3 tables.« less

  5. Structures of Substrate-And Inhibitor-Bound Adenosine Deaminase From a Human Malaria Parasite Show a Dramatic Conformational Change And Shed Light on Drug Selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, E.T.; Deng, W.; Krumm, B.E.

    Plasmodium and other apicomplexan parasites are deficient in purine biosynthesis, relying instead on the salvage of purines from their host environment. Therefore, interference with the purine salvage pathway is an attractive therapeutic target. The plasmodial enzyme adenosine deaminase (ADA) plays a central role in purine salvage and, unlike mammalian ADA homologs, has a further secondary role in methylthiopurine recycling. For this reason, plasmodial ADA accepts a wider range of substrates, as it is responsible for deamination of both adenosine and 5{prime}-methylthioadenosine. The latter substrate is not accepted by mammalian ADA homologs. The structural basis for this natural difference in specificitymore » between plasmodial and mammalian ADA has not been well understood. We now report crystal structures of Plasmodium vivax ADA in complex with adenosine, guanosine, and the picomolar inhibitor 2{prime}-deoxycoformycin. These structures highlight a drastic conformational change in plasmodial ADA upon substrate binding that has not been observed for mammalian ADA enzymes. Further, these complexes illuminate the structural basis for the differential substrate specificity and potential drug selectivity between mammalian and parasite enzymes.« less

  6. An AP Endonuclease Functions in Active DNA Demethylation and Gene Imprinting in Arabidopsis

    PubMed Central

    Li, Yan; Córdoba-Cañero, Dolores; Qian, Weiqiang; Zhu, Xiaohong; Tang, Kai; Zhang, Huiming; Ariza, Rafael R.; Roldán-Arjona, Teresa; Zhu, Jian-Kang

    2015-01-01

    Active DNA demethylation in plants occurs through base excision repair, beginning with removal of methylated cytosine by the ROS1/DME subfamily of 5-methylcytosine DNA glycosylases. Active DNA demethylation in animals requires the DNA glycosylase TDG or MBD4, which functions after oxidation or deamination of 5-methylcytosine, respectively. However, little is known about the steps following DNA glycosylase action in the active DNA demethylation pathways in plants and animals. We show here that the Arabidopsis APE1L protein has apurinic/apyrimidinic endonuclease activities and functions downstream of ROS1 and DME. APE1L and ROS1 interact in vitro and co-localize in vivo. Whole genome bisulfite sequencing of ape1l mutant plants revealed widespread alterations in DNA methylation. We show that the ape1l/zdp double mutant displays embryonic lethality. Notably, the ape1l+/−zdp−/− mutant shows a maternal-effect lethality phenotype. APE1L and the DNA phosphatase ZDP are required for FWA and MEA gene imprinting in the endosperm and are important for seed development. Thus, APE1L is a new component of the active DNA demethylation pathway and, together with ZDP, regulates gene imprinting in Arabidopsis. PMID:25569774

  7. Screening of Bothrops snake venoms for L-amino acid oxidase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pessati, M.L.; Fontana, J.D.; Guimaraes, M.F.

    1995-12-31

    Toxins, enzymes, and biologically active peptides are the main components of snake venoms from the genus Bothrops. Following the venom inoculation, the local effects are hemorrhage, edema, and myonecrosis. Nineteen different species of Brazilian Bothrops were screened for protein content and L-amino acid oxidase activity. B. cotiara, formerly found in the South of Brazil, is now threatened with extinction. Its venom contains a highly hemorrhagic fraction and, as expected from the deep yellow color of the corresponding lyophilized powder, a high L-amino acid oxidase (LAO) activity was also characterized. Flavin adenine dinucleotide (FAD) is its associate coenzyme. B. cotiara venommore » LAO catalyzed the oxidative deamination of several L-amino acids, and the best substrates were methionine, leucine, tryptophan, and phenylalanine, hence, its potential application for the use in biosensors for aspartame determination and for the removal of amino acids from plasma. High levels for LAO were also found in other species than B. cotiara. In addition, the technique of isoelectric focusing (IEF) was employed as a powerful tool to study the iso- or multi-enzyme distribution for LAO activity in the B. cotiara snake venom.« less

  8. Rev1 Recruits Ung to Switch Regions and Enhances dU Glycosylation for Immunoglobulin Class Switch DNA Recombination

    PubMed Central

    Zan, Hong; White, Clayton A.; Thomas, Lisa M.; Mai, Thach; Li, Guideng; Xu, Zhenming; Zhang, Jinsong; Casali, Paolo

    2012-01-01

    SUMMARY By diversifying the biological effector functions of antibodies, class switch DNA recombination (CSR) plays a critical role in the maturation of the immune response. It is initiated by AID-mediated dC deamination, yielding dUs, and dU glycosylation by Ung in antibody switch (S) region DNA. Here we showed that the translesion DNA synthesis polymerase Rev1 directly interacted with Ung and targeted in an AID-dependent and Ung-independent fashion the S regions undergoing CSR. Rev1–/– Ung+/+ B cells reduced Ung recruitment to S regions, DNA-dU glycosylation and CSR. This together with an S region spectrum of mutations similar to that of Rev1+/+ Ung–/– B cells suggested that Rev1 operated in the same pathway as Ung, as emphasized by further decreased CSR in Rev1–/– Msh2–/– B cells. Rescue of CSR in Rev1–/– B cells by a catalytically inactive Rev1 mutant showed that the important role of Rev1 in CSR is mediated by Rev1 scaffold, not enzymatic function. PMID:23140944

  9. Isoguanine and 5-Methyl-Isocytosine Bases, In Vitro and In Vivo

    PubMed Central

    Bande, Omprakash; Abu El Asrar, Rania; Braddick, Darren; Dumbre, Shrinivas; Pezo, Valérie; Schepers, Guy; Pinheiro, Vitor B; Lescrinier, Eveline; Holliger, Philipp; Marlière, Philippe; Herdewijn, Piet

    2015-01-01

    The synthesis, base-pairing properties and in vitro and in vivo characteristics of 5-methyl-isocytosine (isoCMe) and isoguanine (isoG) nucleosides, incorporated in an HNA(h) (hexitol nucleic acid)–DNA(d) mosaic backbone, are described. The required h-isoG phosphoramidite was prepared by a selective deamination as a key step. As demonstrated by Tm measurements the hexitol sugar showed slightly better mismatch discrimination against dT. The d-isoG base mispairing follows the order T>G>C while the h-isoG base mispairing follows the order G>C>T. The h- and d-isoCMe bases mainly mispair with G. Enzymatic incorporation experiments show that the hexitol backbone has a variable effect on selectivity. In the enzymatic assays, isoG misincorporates mainly with T, and isoCMe misincorporates mainly with A. Further analysis in vivo confirmed the patterns of base-pair interpretation for the deoxyribose and hexitol isoCMe/isoG bases in a cellular context, through incorporation of the bases into plasmidic DNA. Results in vivo demonstrated that mispairing and misincorporation was dependent on the backbone scaffold of the base, which indicates rational advances towards orthogonality. PMID:25684598

  10. Purification and Properties of Cytidine Deaminase from Normal and Leukemic Granulocytes

    PubMed Central

    Chabner, Bruce A.; Johns, David G.; Coleman, C. Norman; Drake, James C.; Evans, Warren H.

    1974-01-01

    Cytidine deaminase, an enzyme that catalyses the deamination of both cytidine and its nucleoside analogues including the antineoplastic agents cytosine arabinoside (ara-C) and 5-azacytidine (5-azaC), has been partially purified from normal and leukemic human granulocytes. The purification procedure included heat precipitation at 70°C, ammonium sulfate precipitation, calcium phosphate gel ion exchange, and Sephadex G-150 gel filtration. The enzyme has mol wt 51,000, isoelectric pH of 4.8, and maximum activity over a broad pH range of 5-9.5. The enzyme is stabilized by the presence of the sulfhydryl reagent, dithiothreitol. Cytidine deaminase from normal human granulocytes has a greater affinity for its physiologic substrate cytidine (Km = 1.1 × 10−5 M) than for ara-C (8.8 × 10−5 M) or 5-azaC (4.3 × 10−4 M). Halogenated analogues such as 5-fluorocytidine and 5-bromo-2′-deoxycytidine also exhibited substrate activity, with maximum velocities greater than that of the physiologic substrates cytidine and deoxycytidine. No activity was observed with nucleotides or deoxynucleotides. The relative maximum velocity of the enzyme for cytidine and its nucleoside analogues remained constant during purification, indicating that a single enzyme was responsible for deamination of these substrates. Tetrahydrouridine (THU) was found to be a strong competitive inhibitor of partially purified deaminase with a Ki of 5.4 × 10−8 M. The biochemical properties of partially purified preparations of cytidine deaminase from normal and leukemic cells were compared with respect to isoelectric pH, molecular weight, and substrate and inhibitor kinetic parameters, and no differences were observed. However, normal circulating granulocytes contained a significantly greater concentration of cytidine deaminase (3.52±1.86 × 103/mg protein) than chronic myelocytic leukemia (CML) cells (1.40±0.70 × 103 U/mg protein) or acute myelocytic leukemia (AML) cells (0.19±0.17 × 103 U/mg protein). To explain these differences in enzyme levels in leukemic versus normal cells, the changes in cytidine deaminase levels associated with maturation of normal granulocytes were studied in normal human bone marrow. Myeloid precursors obtained from bone marrow aspirates were separated into mature and immature fractions by Ficoll density centrifugation. Deaminase activity in lysates of mature granulocytes was 3.55-14.2 times greater than the activity found in the lysates of immature cells. Decreased enzyme activity was also found in immature myeloid cells from a patient with CML as compared to mature granulocytes from the same patient. These observations support the conclusion that the greater specific activity of cytidine deaminase in normal mature granulocytes as compared to leukemic cells is related to the process of granulocyte maturation rather than a specific enzymatic defect in leukemic cells. PMID:4521417

  11. Tracing the Cycling and Fate of the Explosive 2,4,6-Trinitrotoluene in Coastal Marine Systems with a Stable Isotopic Tracer, (15)N-[TNT].

    PubMed

    Smith, Richard W; Vlahos, Penny; Böhlke, J K; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J; Tobias, Craig

    2015-10-20

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT ((15)N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ(15)N analysis of sediments, SPM, and tissues revealed large quantities of (15)N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a (15)N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  12. Tracing the cycling and fate of the explosive 2,4,6-trinitrotoluene in coastal marine systems with a stable isotopic tracer, 15N-[TNT

    USGS Publications Warehouse

    Smith, Richard W.; Vlahos, Penny; Böhlke, John Karl; Ariyarathna, Thivanka; Ballentine, Mark; Cooper, Christopher; Fallis, Stephen; Groshens, Thomas J.; Tobias, Craig

    2015-01-01

    2,4,6-Trinitrotoluene (TNT) has been used as a military explosive for over a hundred years. Contamination concerns have arisen as a result of manufacturing and use on a large scale; however, despite decades of work addressing TNT contamination in the environment, its fate in marine ecosystems is not fully resolved. Here we examine the cycling and fate of TNT in the coastal marine systems by spiking a marine mesocosm containing seawater, sediments, and macrobiota with isotopically labeled TNT (15N-[TNT]), simultaneously monitoring removal, transformation, mineralization, sorption, and biological uptake over a period of 16 days. TNT degradation was rapid, and we observed accumulation of reduced transformation products dissolved in the water column and in pore waters, sorbed to sediments and suspended particulate matter (SPM), and in the tissues of macrobiota. Bulk δ15N analysis of sediments, SPM, and tissues revealed large quantities of 15N beyond that accounted for in identifiable derivatives. TNT-derived N was also found in the dissolved inorganic N (DIN) pool. Using multivariate statistical analysis and a 15N mass balance approach, we identify the major transformation pathways of TNT, including the deamination of reduced TNT derivatives, potentially promoted by sorption to SPM and oxic surface sediments.

  13. Toxicokinetics of novel psychoactive substances: characterization of N-acetyltransferase (NAT) isoenzymes involved in the phase II metabolism of 2C designer drugs.

    PubMed

    Meyer, Markus R; Robert, Anja; Maurer, Hans H

    2014-06-05

    The 2,5-dimethoxyphenethylamine-derived designer drugs (so-called "2Cs") recently became of great importance on the illicit drug market as stimulating hallucinogens. They are distributed and consumed as "novel psychoactive substances" (NPS) without any safety testing at the forefront. As previous studies have shown, the 2Cs are mainly metabolized by O-demethylation, N-acetylation, or deamination. Therefore, the aim of this study was to elucidate the role of the recombinant human N-acetyltransferase (NAT) isoforms 1 and 2 in the phase II metabolism of 2Cs. For these studies, cDNA-expressed recombinant human NATs were used and formation of metabolites after incubation was measured using GC-MS. NAT2 could be shown to be the only isoform catalyzing the reaction in vitro, hence it should be the only relevant enzyme for in vivo acetylation. In general, all metabolite formation reactions followed classic Michaelis-Menten kinetics and the affinity to human NAT2 was increasing with the volume of the 4-substituent. In consequence, a slow acetylator phenotype or inhibition of NAT2 could lead to decreased N-acetylation and might lead to an increased risk of side effects caused by these novel psychoactive substances. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Activation induced deaminase C-terminal domain links DNA breaks to end protection and repair during class switch recombination

    PubMed Central

    Zahn, Astrid; Eranki, Anil K.; Patenaude, Anne-Marie; Methot, Stephen P.; Fifield, Heather; Cortizas, Elena M.; Foster, Paul; Imai, Kohsuke; Durandy, Anne; Larijani, Mani; Verdun, Ramiro E.; Di Noia, Javier M.

    2014-01-01

    Activation-induced deaminase (AID) triggers antibody class switch recombination (CSR) in B cells by initiating DNA double strand breaks that are repaired by nonhomologous end-joining pathways. A role for AID at the repair step is unclear. We show that specific inactivation of the C-terminal AID domain encoded by exon 5 (E5) allows very efficient deamination of the AID target regions but greatly impacts the efficiency and quality of subsequent DNA repair. Specifically eliminating E5 not only precludes CSR but also, causes an atypical, enzymatic activity-dependent dominant-negative effect on CSR. Moreover, the E5 domain is required for the formation of AID-dependent Igh-cMyc chromosomal translocations. DNA breaks at the Igh switch regions induced by AID lacking E5 display defective end joining, failing to recruit DNA damage response factors and undergoing extensive end resection. These defects lead to nonproductive resolutions, such as rearrangements and homologous recombination that can antagonize CSR. Our results can explain the autosomal dominant inheritance of AID variants with truncated E5 in patients with hyper-IgM syndrome 2 and establish that AID, through the E5 domain, provides a link between DNA damage and repair during CSR. PMID:24591601

  15. Effect of hyperoxia on uptake and metabolism of 5-hydroxytryptamine and β-phenylethylamine in rat lung: a sex difference

    PubMed Central

    Ben-Harari, R.R.; Lanir, A.; Youdim, M.B.H.

    1981-01-01

    1 The uptake of 5-hydroxytryptamine (5—HT) and β-phenylethylamine (PEA) and their deamination by monoamine oxidase (MAO) were studied in perfused lung from male and female rats exposed to 100% O2 at 1 ATA for up to 60 h. 2 The uptake and metabolism of 5-HT in lungs from both male and female rats was not changed by exposure to O2. 3 The uptake and metabolism of PEA by lungs from male rats was unchanged. Uptake of PEA by lungs from female rats was inhibited 20% and 62% after 37 h and 50 h exposure respectively. 4 MAO activity, both in vitro and in perfused lung, was increased towards PEA after 35 h of hyperoxia. 5 Metabolism of PEA in perfused lung, measured over 30 min, was inhibited 52% after 50 h of O2 hyperoxia. 6 These results show that exposure to high concentrations of O2 damages lung, resulting in inhibition of uptake of PEA and consequently in inhibition of metabolism of PEA. 7 These results also indicate that, in lung from female rats, MAO-type B is more susceptible to changes in O2 tension than MAO type A. PMID:7236995

  16. Transcription factor YY1 can control AID-mediated mutagenesis in mice.

    PubMed

    Zaprazna, Kristina; Basu, Arindam; Tom, Nikola; Jha, Vibha; Hodawadekar, Suchita; Radova, Lenka; Malcikova, Jitka; Tichy, Boris; Pospisilova, Sarka; Atchison, Michael L

    2018-02-01

    Activation-induced cytidine deminase (AID) is crucial for controlling the immunoglobulin (Ig) diversification processes of somatic hypermutation (SHM) and class switch recombination (CSR). AID initiates these processes by deamination of cytosine, ultimately resulting in mutations or double strand DNA breaks needed for SHM and CSR. Levels of AID control mutation rates, and off-target non-Ig gene mutations can contribute to lymphomagenesis. Therefore, factors that control AID levels in the nucleus can regulate SHM and CSR, and may contribute to disease. We previously showed that transcription factor YY1 can regulate the level of AID in the nucleus and Ig CSR. Therefore, we hypothesized that conditional knock-out of YY1 would lead to reduction in AID localization at the Ig locus, and reduced AID-mediated mutations. Using mice that overexpress AID (IgκAID yy1 f/f ) or that express normal AID levels (yy1 f/f ), we found that conditional knock-out of YY1 results in reduced AID nuclear levels, reduced localization of AID to the Sμ switch region, and reduced AID-mediated mutations. We find that the mechanism of YY1 control of AID nuclear accumulation is likely due to YY1-AID physical interaction which blocks AID ubiquitination. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Deoxycytidine and deoxythymidine treatment for thymidine kinase 2 deficiency

    PubMed Central

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Marti; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-01-01

    Objective Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene TK2 cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, dCMP and dTMP, prolongs the lifespan of Tk2-deficient (Tk2-/-) mice by 2-3 fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: 1) deoxynucleosides might be the major active agents and 2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. Methods To test these hypotheses, we assessed two therapies in Tk2-/- mice: 1) dT+dC and 2) co-administration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. Results We observed that dC+dT delayed disease onset, prolonged lifespan of Tk2-deficient mice, and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased lifespan of Tk2-/- animals compared to dCMP+dTMP. Interpretation Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. PMID:28318037

  18. Product release mechanism and the complete enzyme catalysis cycle in yeast cytosine deaminase (yCD): A computational study.

    PubMed

    Zhao, Yuan; She, Nai; Zhang, Xin; Wang, Chaojie; Mo, Yirong

    2017-08-01

    Yeast cytosine deaminase (yCD) is critical in gene-directed enzyme prodrug therapy as it catalyzes the hydrolytic deamination of cytosine. The product (uracil) release process is considered as rate-limiting in the whole enzymatic catalysis and includes the cleavage of the uracil-metal bond and the delivery of free uracil out of the reactive site. Herein extensive combined random acceleration molecular dynamics (RAMD) and molecular dynamics (MD) simulations coupled with the umbrella sampling technique have been performed to study the product transport mechanism. Five channels have been identified, and the thermodynamic and dynamic characterizations for the two most favorable channels have been determined and analyzed. The free energy barrier for the most beneficial pathway is about 13kcal/mol and mainly results from the cleavage of hydrogen bonds between the ligand uracil and surrounding residues Asn51, Glu64, and Asp155. The conjugated rings of Phe114 and Trp152 play gating and guiding roles in the product delivery via π⋯π van der Waals interactions with the product. Finally, the full cycle of the enzymatic catalysis has been determined, making the whole process computationally more precise. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster

    PubMed Central

    Li, Xianghua; Overton, Ian M.; Baines, Richard A.; Keegan, Liam P.; O’Connell, Mary A.

    2014-01-01

    RNA editing by deamination of specific adenosine bases to inosines during pre-mRNA processing generates edited isoforms of proteins. Recoding RNA editing is more widespread in Drosophila than in vertebrates. Editing levels rise strongly at metamorphosis, and Adar5G1 null mutant flies lack editing events in hundreds of CNS transcripts; mutant flies have reduced viability, severely defective locomotion and age-dependent neurodegeneration. On the other hand, overexpressing an adult dADAR isoform with high enzymatic activity ubiquitously during larval and pupal stages is lethal. Advantage was taken of this to screen for genetic modifiers; Adar overexpression lethality is rescued by reduced dosage of the Rdl (Resistant to dieldrin), gene encoding a subunit of inhibitory GABA receptors. Reduced dosage of the Gad1 gene encoding the GABA synthetase also rescues Adar overexpression lethality. Drosophila Adar5G1 mutant phenotypes are ameliorated by feeding GABA modulators. We demonstrate that neuronal excitability is linked to dADAR expression levels in individual neurons; Adar-overexpressing larval motor neurons show reduced excitability whereas Adar5G1 null mutant or targeted Adar knockdown motor neurons exhibit increased excitability. GABA inhibitory signalling is impaired in human epileptic and autistic conditions, and vertebrate ADARs may have a relevant evolutionarily conserved control over neuronal excitability. PMID:24137011

  20. Timing matters: error-prone gap filling and translesion synthesis in immunoglobulin gene hypermutation

    PubMed Central

    Sale, Julian E.; Batters, Christopher; Edmunds, Charlotte E.; Phillips, Lara G.; Simpson, Laura J.; Szüts, Dávid

    2008-01-01

    By temporarily deferring the repair of DNA lesions encountered during replication, the bypass of DNA damage is critical to the ability of cells to withstand genomic insults. Damage bypass can be achieved either by recombinational mechanisms that are generally accurate or by a process called translesion synthesis. Translesion synthesis involves replacing the stalled replicative polymerase with one of a number of specialized DNA polymerases whose active sites are able to tolerate a distorted or damaged DNA template. While this property allows the translesion polymerases to synthesize across damaged bases, it does so with the trade-off of an increased mutation rate. The deployment of these enzymes must therefore be carefully regulated. In addition to their important role in general DNA damage tolerance and mutagenesis, the translesion polymerases play a crucial role in converting the products of activation induced deaminase-catalysed cytidine deamination to mutations during immunoglobulin gene somatic hypermutation. In this paper, we specifically consider the control of translesion synthesis in the context of the timing of lesion bypass relative to replication fork progression and arrest at sites of DNA damage. We then examine how recent observations concerning the control of translesion synthesis might help refine our view of the mechanisms of immunoglobulin gene somatic hypermutation. PMID:19008194

  1. Temporal patterns of damage and decay kinetics of DNA retrieved from plant herbarium specimens.

    PubMed

    Weiß, Clemens L; Schuenemann, Verena J; Devos, Jane; Shirsekar, Gautam; Reiter, Ella; Gould, Billie A; Stinchcombe, John R; Krause, Johannes; Burbano, Hernán A

    2016-06-01

    Herbaria archive a record of changes of worldwide plant biodiversity harbouring millions of specimens that contain DNA suitable for genome sequencing. To profit from this resource, it is fundamental to understand in detail the process of DNA degradation in herbarium specimens. We investigated patterns of DNA fragmentation and nucleotide misincorporation by analysing 86 herbarium samples spanning the last 300 years using Illumina shotgun sequencing. We found an exponential decay relationship between DNA fragmentation and time, and estimated a per nucleotide fragmentation rate of 1.66 × 10(-4) per year, which is six times faster than the rate estimated for ancient bones. Additionally, we found that strand breaks occur specially before purines, and that depurination-driven DNA breakage occurs constantly through time and can to a great extent explain decreasing fragment length over time. Similar to what has been found analysing ancient DNA from bones, we found a strong correlation between the deamination-driven accumulation of cytosine to thymine substitutions and time, which reinforces the importance of substitution patterns to authenticate the ancient/historical nature of DNA fragments. Accurate estimations of DNA degradation through time will allow informed decisions about laboratory and computational procedures to take advantage of the vast collection of worldwide herbarium specimens.

  2. NaCl stress effects on enzymes involved in nitrogen assimilation pathway in tomato "Lycopersicon esculentum" seedlings.

    PubMed

    Debouba, Mohamed; Gouia, Houda; Suzuki, Akira; Ghorbel, Mohamed Habib

    2006-12-01

    Tomato plants (Lycopersicon esculentum Mill, cv. Chibli F1) grown for 10 days on control medium were exposed to differing concentrations of NaCl (0, 25, 50, and 100mM). Increasing salinity led to a decrease of dry weight (DW) production and protein contents in the leaves and roots. Conversely, the root to shoot (R/S) DW ratio was increased by salinity. Na(+) and Cl(-) accumulation were correlated with a decline of K(+) and NO(3)(-) in the leaves and roots. Under salinity, the activities of nitrate reductase (NR, EC 1.6.6.1) and glutamine synthetase (GS, EC 6.3.1.2) were repressed in the leaves, while they were enhanced in the roots. Nitrite reductase (NiR, EC 1.7.7.1) activity was decreased in both the leaves and roots. Deaminating activity of glutamate dehydrogenase (GDH, EC 1.4.1.2) was inhibited, whereas the aminating function was significantly stimulated by salinity in the leaves and roots. At a high salt concentration, the nicotinamide adenine dinucleotide reduced (NADH)-GDH activity was stimulated concomitantly with the increasing NH(4)(+) contents and proteolysis activity in the leaves and roots. With respect to salt stress, the distinct sensitivity of the enzymes involved in nitrogen assimilation is discussed.

  3. Diagnostic value of serum adenosine deaminase activity in HIV infected patients of Kurdish population.

    PubMed

    Abdi, Mohammad; Ahmadi, Abbas; Roshany, Daem; Khodadadi, Iraj; Javid, Saman; Shahmohammad-Nezhad, Shiva; Sharifipour, Mozhdeh; Hoseini, Javad

    2013-01-01

    Adenosine deaminase (ADA) is a hydrolytic enzyme involved in the deamination of adenosine to inosine. ADA is involved in T-lymphocyte differentiation and development. This study was aimed to determine the diagnostic value of the adenosine deaminase (ADA) activity test for the diagnosis of HIV positive patients in the Kurdish population. This descriptive analytical case-control study was performed on 30 healthy and 60 HIV positive subjects. Blood CD4+ cell count was recorded and serum total ADA, and ADA1 and ADA2 isoenzyme activities were determined. Serum total ADA and ADA2 isoenzyme activity was significantly higher in HIV positive patients than in healthy subjects. CD4+ cell counts markedly decreased in all patients and showed a significant inverse correlation with ADA activities. Using a cut-off level of 36.52 U/L and 30.98 U/L for serum total ADA and ADA2, respectively, sensitivity and specificity were 90.9% and 90.27% for total ADA and 93% and 90% for ADA2, respectively. Serum ADA was significantly increased in HIV infected patients. Therefore, because of its low cost and simplicity to perform, ADA activity might be considered a useful diagnostic tool among the other markers in this disease.

  4. Synthesis and Release of Cyclic Adenosine 3′:5′-Monophosphate by Ochromonas malhamensis1

    PubMed Central

    Bressan, Ray A.; Handa, Avtar K.; Quader, Hartmut; Filner, Philip

    1980-01-01

    The chrysophycean alga, Ochromonas malhamensis Pringsheim, was shown to synthesize cyclic adenosine 3′:5′-monophosphate (cAMP) and to release it into the culture medium. Cells contained 3 to 3,000 picomoles per gram fresh weight; medium contained up to 20 times the amount in the cells. Putative [32P]cAMP was purified from cultures supplied [32P]phosphate. The compound was identified as [32P]cAMP by co-chromatography with authentic cAMP through 10 serial steps; by chemical deamination at the same rate as authentic cAMP, to a 32P compound with the chromatographic behavior of cIMP; and by its conversion through the action of cyclic nucleotide phosphodiesterase to a 32P compound with the chromatographic behavior of 5′-AMP. A two-step procedure involving chromatography on alumina and on Dowex 50 purified the unlabeled compound from cells or medium sufficiently for it to be assayable by competitive inhibition of binding of [3H]cAMP to cAMP-binding protein (Gilman assay) or by stimulation of cAMP-dependent protein kinase. The activity was destroyed by cyclic nucleotide phosphodiesterase with the same kinetics as authentic cAMP, provided that an endogenous inhibitor of the phosphodiesterase was first removed by an additional purification step. Images PMID:16661154

  5. Studies of lysine cyclodeaminase from Streptomyces pristinaespiralis: Insights into the complex transition NAD+ state.

    PubMed

    Ying, Hanxiao; Wang, Jing; Shi, Ting; Zhao, Yilei; Wang, Xin; Ouyang, Pingkai; Chen, Kequan

    2018-01-01

    Lysine cyclodeaminase (LCD) catalyzes the piperidine ring formation in macrolide-pipecolate natural products metabolic pathways from a lysine substrate through a combination of cyclization and deamination. This enzyme belongs to a unique enzyme class, which uses NAD + as the catalytic prosthetic group instead of as the co-substrate. To understand the molecular details of NAD + functions in lysine cyclodeaminase, we have determined four ternary crystal structure complexes of LCD-NAD + with pipecolic acid (LCD-PA), lysine (LCD-LYS), and an intermediate (LCD-INT) as ligands at 2.26-, 2.00-, 2.17- and 1.80 Å resolutions, respectively. By combining computational studies, a NAD + -mediated "gate keeper" function involving NAD + /NADH and Arg49 that control the binding and entry of the ligand lysine was revealed, confirming the critical roles of NAD + in the substrate access process. Further, in the gate opening form, a substrate delivery tunnel between ε-carboxyl moiety of Glu264 and the α-carboxyl moiety of Asp236 was observed through a comparison of four structure complexes. The LCD structure details including NAD + -mediated "gate keeper" and substrate tunnel may assist in the exploration the NAD + function in this unique enzyme class, and in regulation of macrolide-pipecolate natural product synthesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Disposition, profiling and identification of emixustat and its metabolites in humans.

    PubMed

    Fitzsimmons, Michael E; Sun, Gang; Kuksa, Vladimir; Reid, Michael J

    2018-06-01

    1. Emixustat is a small molecule that potently inhibits retinal pigment epithelium 65 isomerohydrolase. Emixustat is in clinical development for the treatment of various retinopathies (i.e. Stargardt disease and diabetic retinopathy). 2. A human absorption, distribution, metabolism, and excretion (ADME) study was conducted with a single dose of [ 14 C]-emixustat in healthy male subjects. Total 14 C content in plasma, urine, and faeces was determined using accelerator mass spectrometry (AMS), and metabolic profiles in pooled plasma and urine were investigated by both HPLC-AMS and 2D LC-MS/MS. 3. After a single, oral 40-mg dose of [ 14 C]-emixustat, recovery of total 14 C was nearly complete within 24 h. Urine was the major route of 14 C elimination; accounting for > 90% of the administered dose. 4. Biotransformation of emixustat occurred primarily at two structural moieties; oxidation of the cyclohexyl moiety and oxidative deamination of the 3R-hydroxypropylamine, both independently and in combination to produce secondary metabolites. Metabolite profiling in pooled plasma samples identified 3 major metabolites: ACU-5124, ACU-5116 and ACU-5149, accounting for 29.0%, 11.5%, and 10.6% of total 14 C, respectively. Emixustat was metabolized in human hepatocytes with unchanged emixustat accounting for 33.7% of sample radioactivity and predominantly cyclohexanol metabolites observed.

  7. Metabolically Generated Stable Isotope-Labeled Deoxynucleoside Code for Tracing DNA N6-Methyladenine in Human Cells.

    PubMed

    Liu, Baodong; Liu, Xiaoling; Lai, Weiyi; Wang, Hailin

    2017-06-06

    DNA N 6 -methyl-2'-deoxyadenosine (6mdA) is an epigenetic modification in both eukaryotes and bacteria. Here we exploited stable isotope-labeled deoxynucleoside [ 15 N 5 ]-2'-deoxyadenosine ([ 15 N 5 ]-dA) as an initiation tracer and for the first time developed a metabolically differential tracing code for monitoring DNA 6mdA in human cells. We demonstrate that the initiation tracer [ 15 N 5 ]-dA undergoes a specific and efficient adenine deamination reaction leading to the loss the exocyclic amine 15 N, and further utilizes the purine salvage pathway to generate mainly both [ 15 N 4 ]-dA and [ 15 N 4 ]-2'-deoxyguanosine ([ 15 N 4 ]-dG) in mammalian genomes. However, [ 15 N 5 ]-dA is largely retained in the genomes of mycoplasmas, which are often found in cultured cells and experimental animals. Consequently, the methylation of dA generates 6mdA with a consistent coding pattern, with a predominance of [ 15 N 4 ]-6mdA. Therefore, mammalian DNA 6mdA can be potentially discriminated from that generated by infecting mycoplasmas. Collectively, we show a promising approach for identification of authentic DNA 6mdA in human cells and determine if the human cells are contaminated with mycoplasmas.

  8. Adar3 Is Involved in Learning and Memory in Mice.

    PubMed

    Mladenova, Dessislava; Barry, Guy; Konen, Lyndsey M; Pineda, Sandy S; Guennewig, Boris; Avesson, Lotta; Zinn, Raphael; Schonrock, Nicole; Bitar, Maina; Jonkhout, Nicky; Crumlish, Lauren; Kaczorowski, Dominik C; Gong, Andrew; Pinese, Mark; Franco, Gloria R; Walkley, Carl R; Vissel, Bryce; Mattick, John S

    2018-01-01

    The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I) have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains) have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3 -deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

  9. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    PubMed

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Hplc-nmr identification of the human urinary metabolites of (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl] cytosine, a nucleoside analogue active against human immunodeficiency virus (HIV).

    PubMed

    Shockcor, J P; Wurm, R M; Frick, L W; Sanderson, P N; Farrant, R D; Sweatman, B C; Lindon, J C

    1996-02-01

    1. Human urine samples from a clinical trial of the anti-HIV compound (-)-cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-yl]-cyto sin e (BW524W91) have been analysed using 19F-nmr and 1H-hplc-nmr spectroscopy. 2. The identities and relative levels of the xenobiotic species in the urine have been determined by 470-MHz 19F-nmr spectroscopy and by directly coupled 600-MHz 1H-hplc-nmr in the stop-flow mode with confirmation of the metabolite identities being made by comparison with nmr spectra of synthetic standard compounds. 3. The principal urinary xenobiotic was the unchanged drug, but the glucuronide ether conjugate at the 5' position of BW524W91, one of the two diastereomeric sulphoxides and the deaminated metabolite were also characterized. 4. The detection limit of directly coupled hplc-600-MHz 1H-nmr spectroscopy was evaluated by measuring two-dimensional nmr spectra of the glucuronide conjugate of BW524W91 and shown to be approximately 1 microgram material for 1H-1H-TOCSY and 20 micrograms metabolite for 1H-13C-HMQC spectra for overnight (16 h) acquisition.

  11. Crystal structure and MD simulation of mouse EndoV reveal wedge motif plasticity in this inosine-specific endonuclease

    NASA Astrophysics Data System (ADS)

    Nawaz, Meh Sameen; Vik, Erik Sebastian; Ronander, Mia Elise; Solvoll, Anne Marthe; Blicher, Pernille; Bjørås, Magnar; Alseth, Ingrun; Dalhus, Bjørn

    2016-04-01

    Endonuclease V (EndoV) is an enzyme with specificity for deaminated adenosine (inosine) in nucleic acids. EndoV from Escherichia coli (EcEndoV) acts both on inosines in DNA and RNA, whereas the human homolog cleaves only at inosines in RNA. Inosines in DNA are mutagenic and the role of EndoV in DNA repair is well established. In contrast, the biological function of EndoV in RNA processing is largely unexplored. Here we have characterized a second mammalian EndoV homolog, mouse EndoV (mEndoV), and show that mEndoV shares the same RNA selectivity as human EndoV (hEndoV). Mouse EndoV cleaves the same inosine-containing substrates as hEndoV, but with reduced efficiencies. The crystal structure of mEndoV reveals a conformation different from the hEndoV and prokaryotic EndoV structures, particularly for the conserved tyrosine in the wedge motif, suggesting that this strand separating element has some flexibility. Molecular dynamics simulations of mouse and human EndoV reveal alternative conformations for the invariant tyrosine. The configuration of the active site, on the other hand, is very similar between the prokaryotic and mammalian versions of EndoV.

  12. Using Cryo-EM to Map Small Ligands on Dynamic Metabolic Enzymes: Studies with Glutamate Dehydrogenase

    PubMed Central

    Borgnia, Mario J.; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A.; Falconieri, Veronica

    2016-01-01

    Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an “open” or “closed” state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132

  13. The preferred nucleotide contexts of the AID/APOBEC cytidine deaminases have differential effects when mutating retrotransposon and virus sequences compared to host genes

    PubMed Central

    Chen, Jeffrey

    2017-01-01

    The AID / APOBEC genes are a family of cytidine deaminases that have evolved in vertebrates, and particularly mammals, to mutate RNA and DNA at distinct preferred nucleotide contexts (or “hotspots”) on foreign genomes such as viruses and retrotransposons. These enzymes play a pivotal role in intrinsic immunity defense mechanisms, often deleteriously mutating invading retroviruses or retrotransposons and, in the case of AID, changing antibody sequences to drive affinity maturation. We investigate the strength of various hotspots on their known biological targets by evaluating the potential impact of mutations on the DNA coding sequences of these targets, and compare these results to hypothetical hotspots that did not evolve. We find that the existing AID / APOBEC hotspots have a large impact on retrotransposons and non-mammalian viruses while having a much smaller effect on vital mammalian genes, suggesting co-evolution with AID / APOBECs may have had an impact on the genomes of the viruses we analyzed. We determine that GC content appears to be a significant, but not sole, factor in resistance to deaminase activity. We discuss possible mechanisms AID and APOBEC viral targets have adopted to escape the impacts of deamination activity, including changing the GC content of the genome. PMID:28362825

  14. Free-radical reactions induced by OH-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC.

    PubMed Central

    Hiraoka, W; Kuwabara, M; Sato, F; Matsuda, A; Ueda, T

    1990-01-01

    Free-radical reactions induced by OH-radical attack on cytosine-related compounds were investigated by a method combining ESR, spin trapping with 2-methyl-2-nitrosopropane and high-performance liquid chromatography (HPLC). Cytidine, 2'-deoxycytidine, cytidine 3'-monophosphate, cytidine 5'-monophosphate, 2'-deoxycytidine 5'-monophosphate and their derivatives, of which 5,6-protons at the base moiety were replaced by deuterons, and polycytidylic acid (poly(C] were employed as samples. OH radicals were generated by X-irradiating an N2O-saturated aqueous solution. Five spin adducts were separated by HPLC. Examination of them by ESR spectroscopy and UV photospectrometry showed that spin adducts assigned to C5 and C6 radicals due to OH addition to the 5,6 double-bond, a deaminated form of the spin adduct derived from a C5 radical due to the cyclization reaction between C5' of the sugar and C6 of the base, and a spin adduct assigned to the C4' radical due to H abstraction by OH radicals were produced. From these results the sites of OH-radical attack and the subsequent radical reactions in cytosine-related compounds were clarified. PMID:2157193

  15. HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G

    PubMed Central

    Ikeda, Terumasa; Albin, John S.; Li, Ming; Thali, Markus

    2018-01-01

    HIV-1 replication normally requires Vif-mediated neutralization of APOBEC3 antiviral enzymes. Viruses lacking Vif succumb to deamination-dependent and -independent restriction processes. Here, HIV-1 adaptation studies were leveraged to ask whether viruses with an irreparable vif deletion could develop resistance to restrictive levels of APOBEC3G. Several resistant viruses were recovered with multiple amino acid substitutions in Env, and these changes alone are sufficient to protect Vif-null viruses from APOBEC3G-dependent restriction in T cell lines. Env adaptations cause decreased fusogenicity, which results in higher levels of Gag-Pol packaging. Increased concentrations of packaged Pol in turn enable faster virus DNA replication and protection from APOBEC3G-mediated hypermutation of viral replication intermediates. Taken together, these studies reveal that a moderate decrease in one essential viral activity, namely Env-mediated fusogenicity, enables the virus to change other activities, here, Gag-Pol packaging during particle production, and thereby escape restriction by the antiviral factor APOBEC3G. We propose a new paradigm in which alterations in viral homeostasis, through compensatory small changes, constitute a general mechanism used by HIV-1 and other viral pathogens to escape innate antiviral responses and other inhibitions including antiviral drugs. PMID:29677220

  16. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID

    PubMed Central

    Le, Quy; Maizels, Nancy

    2015-01-01

    AID (Activation Induced Deaminase) deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome. PMID:26355458

  17. Monoamine oxidase inactivation: from pathophysiology to therapeutics.

    PubMed

    Bortolato, Marco; Chen, Kevin; Shih, Jean C

    2008-01-01

    Monoamine oxidases (MAOs) A and B are mitochondrial bound isoenzymes which catalyze the oxidative deamination of dietary amines and monoamine neurotransmitters, such as serotonin, norepinephrine, dopamine, beta-phenylethylamine and other trace amines. The rapid degradation of these molecules ensures the proper functioning of synaptic neurotransmission and is critically important for the regulation of emotional behaviors and other brain functions. The byproducts of MAO-mediated reactions include several chemical species with neurotoxic potential, such as hydrogen peroxide, ammonia and aldehydes. As a consequence, it is widely speculated that prolonged excessive activity of these enzymes may be conducive to mitochondrial damages and neurodegenerative disturbances. In keeping with these premises, the development of MAO inhibitors has led to important breakthroughs in the therapy of several neuropsychiatric disorders, ranging from mood disorders to Parkinson's disease. Furthermore, the characterization of MAO knockout (KO) mice has revealed that the inactivation of this enzyme produces a number of functional and behavioral alterations, some of which may be harnessed for therapeutic aims. In this article, we discuss the intriguing hypothesis that the attenuation of the oxidative stress induced by the inactivation of either MAO isoform may contribute to both antidepressant and antiparkinsonian actions of MAO inhibitors. This possibility further highlights MAO inactivation as a rich source of novel avenues in the treatment of mental disorders.

  18. Activating the innate immune response to counter chronic hepatitis B virus infection.

    PubMed

    Lamb, Camilla; Arbuthnot, Patrick

    2016-12-01

    Chronic infection with hepatitis B virus (HBV) is endemic to several populous parts of the world, where resulting complicating cirrhosis and hepatocellular carcinoma occur commonly. Licensed drugs to treat the infection have limited curative efficacy, and development of therapies that eliminate all replication intermediates of HBV is a priority. Areas covered: The recent demonstration that the activation of the innate immune response may eradicate HBV from infected hepatocytes has a promising therapeutic application. Small molecule stimulators of Toll-like receptors (TLRs) inhibit replication of woodchuck hepatitis virus in woodchucks and HBV in chimpanzees and mice. Early stage clinical trials using GS-9620, a TLR7 agonist, indicate that this candidate antiviral is well tolerated in humans. Using an alternative approach, triggering the innate immune response with agonists of lymphotoxin-β receptor caused efficient APOBEC-mediated deamination and degradation of viral covalently closed circular DNA. Expert opinion: Eliminating HBV cccDNA from infected individuals would constitute a cure, and has become the focus of intensive research that employs various therapeutic approaches, including gene therapy. Immunomodulation through innate immune activation shows promise for the treatment of chronic infection of HBV (CHB) and, used in combination with other therapeutics, may contribute to the global control of infections and ultimately to the eradication of HBV.

  19. Phenylalanine ammonia-lyase. Induction and purification from yeast and clearance in mammals.

    PubMed

    Fritz, R R; Hodgins, D S; Abell, C W

    1976-08-10

    Yeast phenylalanine ammonia-lyase (EC 4.3.1.5) catalyzes the deamination of L-phenylalanine to form trans-cinnamic acid and tyrosine to trans-coumaric acid. Maximal enzyme activity in Rhodotorula glutinis (2 units/g, wet weight, of yeast) was induced in late-log phase (12 to 14 hours) of growth in a culture medium containing 1.0% malt extract, 0.1% yeast extract, and 0.1% L-phenylalanine. A highly purified enzyme was obtained by fractionation with ammonium sulfate and sodium citrate followed by chromatography on DEAE-cellulose and Sephadex G-200. The active preparation yielded a major component on three different polyacrylamide gel electrophoretic systems. Antisera to phenylalanine ammonia-lyase was raised in rabbits and detected by double immunodiffusion. The antigen-antibody complex was enzymatically active in vitro. The biological half-life of the enzyme was approximately 21 hours in several mammalian species (mice without and with BW10232 adenocarcinoma and B16 melanoma, rats, and monkeys) after a single injection; however, upon repeated administration, phenylalanine ammonia-lyase had a much shorter biological half-life. The onset of rapid clearance occurred earlier in tumor-bearing than in nontumor-bearing mice indicating a direct or indirect influence by the tumor on the biological half-life of phenylalanine ammonia-lyase.

  20. A thermostable L-aspartate oxidase: a new tool for biotechnological applications.

    PubMed

    Bifulco, Davide; Pollegioni, Loredano; Tessaro, Davide; Servi, Stefano; Molla, Gianluca

    2013-08-01

    L-Amino acid oxidases (LAAOs) are homodimeric flavin adenine dinucleotide (FAD)-containing flavoproteins that catalyze the stereospecific oxidative deamination of L-amino acids to α-keto acids, ammonia, and hydrogen peroxide. Unlike the D-selective counterpart, the biotechnological application of LAAOs has not been thoroughly advanced because of the difficulties in their expression as recombinant protein in prokaryotic hosts. In this work, L-aspartate oxidase from the thermophilic archea Sulfolobus tokodaii (StLASPO, specific for L-aspartate and L-asparagine only) was efficiently produced as recombinant protein in E. coli in the active form as holoenzyme. This recombinant flavoenzyme shows the classical properties of FAD-containing oxidases. Indeed, StLASPO shows distinctive features that makes it attractive for biotechnological applications: high thermal stability (it is fully stable up to 80 °C) and high temperature optimum, stable activity in a broad range of pH (7.0-10.0), weak inhibition by the product oxaloacetate and by D-aspartate, and tight binding of the FAD cofactor. This latter property significantly distinguishes StLASPO from the E. coli counterpart. StLASPO represents an appropriate novel biocatalyst for the production of D-aspartate and a well-suited protein scaffold to evolve a LAAO activity by protein engineering.

  1. A Role for Adenosine Deaminase in Drosophila Larval Development

    PubMed Central

    Dolezal, Tomas; Dolezelova, Eva; Zurovec, Michal

    2005-01-01

    Adenosine deaminase (ADA) is an enzyme present in all organisms that catalyzes the irreversible deamination of adenosine and deoxyadenosine to inosine and deoxyinosine. Both adenosine and deoxyadenosine are biologically active purines that can have a deep impact on cellular physiology; notably, ADA deficiency in humans causes severe combined immunodeficiency. We have established a Drosophila model to study the effects of altered adenosine levels in vivo by genetic elimination of adenosine deaminase-related growth factor-A (ADGF-A), which has ADA activity and is expressed in the gut and hematopoietic organ. Here we show that the hemocytes (blood cells) are the main regulator of adenosine in the Drosophila larva, as was speculated previously for mammals. The elevated level of adenosine in the hemolymph due to lack of ADGF-A leads to apparently inconsistent phenotypic effects: precocious metamorphic changes including differentiation of macrophage-like cells and fat body disintegration on one hand, and delay of development with block of pupariation on the other. The block of pupariation appears to involve signaling through the adenosine receptor (AdoR), but fat body disintegration, which is promoted by action of the hemocytes, seems to be independent of the AdoR. The existence of such an independent mechanism has also been suggested in mammals. PMID:15907156

  2. Transcriptomic analysis of genes in the nitrogen recycling pathway of meat-type chickens divergently selected for feed efficiency.

    PubMed

    Aggrey, S E; Lee, J; Karnuah, A B; Rekaya, R

    2014-04-01

    The understanding of the dynamics of ammonia detoxification and excretion in uricotelic species is lagging behind ureotelic species. The relative expression of genes involved in nitrogen recycling and feed efficiency in chickens is unknown. The objective of this study was to investigate the transcriptomics differences in key genes in the nitrogen (N) metabolism and purine biosynthesis pathway in a chicken population divergently selected for low (LRFI) or high (HRFI) residual feed intake at days 35 and 42 using duodenum, liver, pectoralis major (P. major) and kidney. There was a significant positive correlation between RFI and fecal N. The purine salvage pathway was activated in the LRFI compared with HRFI at days 42. The birds in the LRFI population attained greater feed efficiency by having lower FI, increasing their protein retention and producing adequate glutamine to maintain growth compared with the HRFI line. To maintain growth, excess N is deaminated mostly to generate purine nucleotides. Generating purine nucleotides primarily from the purine biosynthesis pathway is energetically costly, and to preserve energy, they preferentially generate nucleotides from the purine salvage pathway. The LRFI birds need to generate sufficient nucleotides to maintain growth despite reduced FI that then results in reduced fecal N. © 2013 Stichting International Foundation for Animal Genetics.

  3. A Phenotypic Screen for Functional Mutants of Human Adenosine Deaminase Acting on RNA 1.

    PubMed

    Wang, Yuru; Havel, Jocelyn; Beal, Peter A

    2015-11-20

    Adenosine deaminases acting on RNA (ADARs) are RNA-editing enzymes responsible for the conversion of adenosine to inosine at specific locations in cellular RNAs. ADAR1 and ADAR2 are two members of the family that have been shown to be catalytically active. Earlier, we reported a phenotypic screen for the study of human ADAR2 using budding yeast S. cerevisiae as the host system. While this screen has been successfully applied to the study of ADAR2, it failed with ADAR1. Here, we report a new reporter that uses a novel editing substrate and is suitable for the study of ADAR1. We screened plasmid libraries with randomized codons for two important residues in human ADAR1 (G1007 and E1008). The screening results combined with in vitro deamination assays led to the identification of mutants that are more active than the wild type protein. Furthermore, a screen of the ADAR1 E1008X library with a reporter construct bearing an A•G mismatch at the editing site suggests one role for the residue at position 1008 is to sense the identity of the base pairing partner for the editing site adenosine. This work has provided a starting point for future in vitro evolution studies of ADAR1 and led to new insight into ADAR's editing site selectivity.

  4. Efficient removal of atrazine from aqueous solutions using magnetic Saccharomyces cerevisiae bionanomaterial.

    PubMed

    Wu, Xin; He, Huijun; Yang, William L; Yu, Jiaping; Yang, Chunping

    2018-06-17

    A novel bionanomaterial comprising Saccharomyces cerevisiae (S. cerevisiae) and Fe 3 O 4 nanoparticles encapsulated in a sodium alginate-polyvinyl alcohol (SA-PVA) matrix was synthesized for the efficient removal of atrazine from aqueous solutions. The effects of the operating parameters, nitrogen source, and glucose and Fe 3+ contents on atrazine removal were investigated, and the intermediates were detected by gas chromatography-mass spectrometry (GC-MS). In addition, the synthesized Fe 3 O 4 particles were characterized by XRD, EDX, HR-TEM, FTIR, and hysteresis loops, and the bionanomaterial was characterized by SEM. The results showed that the maximum removal efficiency of 100% was achieved at 28 °C, a pH of 7.0, and 150 rpm with an initial atrazine concentration of 2.0 mg L -1 and that the removal efficiency was still higher than 95.53% even when the initial atrazine concentration was 50 mg L -1 . Biodegradation was demonstrated to be the dominant removal mechanism for atrazine because atrazine was consumed as the sole carbon source for S. cerevisiae. The results of GC-MS showed that dechlorination, dealkylation, deamination, isomerization, and mineralization occurred in the process of atrazine degradation, and thus, a new degradation pathway was proposed. These results indicated that this bionanomaterial has great potential for the bioremediation of atrazine-contaminated water.

  5. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    PubMed Central

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  6. Enhancement of stability of L-tryptophan dehydrogenase from Nostoc punctiforme ATCC29133 and its application to L-tryptophan assay.

    PubMed

    Matsui, Daisuke; Okazaki, Seiji; Matsuda, Motoki; Asano, Yasuhisa

    2015-02-20

    Microbial NAD(+)-dependent L-tryptophan dehydrogenase (TrpDH, EC1.4.1.19), which catalyzes the reversible oxidative deamination and the reductive amination between L-tryptophan and indole-3-pyruvic acid, was found in the scytonemin biosynthetic pathway of Nostoc punctiforme ATCC29133. The TrpDH exhibited high specificity toward L-tryptophan, but its instability was a drawback for L-tryptophan determination. The mutant enzyme TrpDH L59F/D168G/A234D/I296N with thermal stability was obtained by screening of Escherichia coli transformants harboring various mutant genes, which were generated by error-prone PCR using complementation in an L-tryptophan auxotroph of E. coli. The specific activity and stability of this mutant enzyme were higher than those of the wild type enzyme. We also revealed here that in these four mutation points, the two amino acid residues Asp168 and Ile296 contributed to increase the enzyme stability, and the Leu59, Ala234 residues to increase its specific activity. Growth of the strain harboring the gene of above 4 point mutated enzyme was accelerated by the enhanced performance. In the present study, we demonstrated that TrpDH L59F/D168G/A234D/I296N was available for determination of L-tryptophan in human plasma. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain

    PubMed Central

    Vesely, Cornelia; Tauber, Stefanie; Sedlazeck, Fritz J.; Tajaddod, Mansoureh; von Haeseler, Arndt; Jantsch, Michael F.

    2014-01-01

    Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to inosines in double-stranded RNAs including miRNA precursors. A to I editing is widespread and required for normal life. By comparing deep sequencing data of brain miRNAs from wild-type and ADAR2 deficient mouse strains, we detect editing sites and altered miRNA processing at high sensitivity. We detect 48 novel editing events in miRNAs. Some editing events reach frequencies of up to 80%. About half of all editing events depend on ADAR2 while some miRNAs are preferentially edited by ADAR1. Sixty-four percent of all editing events are located within the seed region of mature miRNAs. For the highly edited miR-3099, we experimentally prove retargeting of the edited miRNA to novel 3′ UTRs. We show further that an abundant editing event in miR-497 promotes processing by Drosha of the corresponding pri-miRNA. We also detect reproducible changes in the abundance of specific miRNAs in ADAR2-deficient mice that occur independent of adjacent A to I editing events. This indicates that ADAR2 binding but not editing of miRNA precursors may influence their processing. Correlating with changes in miRNA abundance we find misregulation of putative targets of these miRNAs in the presence or absence of ADAR2. PMID:25260591

  8. CCCTC-Binding Factor Locks Premature IgH Germline Transcription and Restrains Class Switch Recombination

    PubMed Central

    Marina-Zárate, Ester; Pérez-García, Arantxa; Ramiro, Almudena R.

    2017-01-01

    In response to antigenic stimulation B cells undergo class switch recombination (CSR) at the immunoglobulin heavy chain (IgH) to replace the primary IgM/IgD isotypes by IgG, IgE, or IgA. CSR is initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues at the switch (S) regions of IgH. B cell stimulation promotes germline transcription (GLT) of specific S regions, a necessary event prior to CSR because it facilitates AID access to S regions. Here, we show that CCCTC-binding factor (CTCF)-deficient mice are severely impaired in the generation of germinal center B cells and plasma cells after immunization in vivo, most likely due to impaired cell survival. Importantly, we find that CTCF-deficient B cells have an increased rate of CSR under various stimulation conditions in vitro. This effect is not secondary to altered cell proliferation or AID expression in CTCF-deficient cells. Instead, we find that CTCF-deficient B cells harbor an increased mutation frequency at switch regions, probably reflecting an increased accessibility of AID to IgH in the absence of CTCF. Moreover, CTCF deficiency triggers premature GLT of S regions in naïve B cells. Our results indicate that CTCF restricts CSR by enforcing GLT silencing and limiting AID access to IgH. PMID:28928744

  9. Nitrosative damage to free and zinc-bound cysteine thiols underlies nitric oxide toxicity in wild-type Borrelia burgdorferi

    PubMed Central

    Bourret, Travis J; Boylan, Julie A; Lawrence, Kevin A; Gherardini, Frank C

    2011-01-01

    Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product, deoxyinosine, and the numbers of apurinic/apyrimidinic (AP) sites were identical in DNA isolated from untreated and DEA/NO-treated B. burgdorferi cells. Strains with mutations in the nucleotide excision repair (NER) pathway genes uvrC or uvrB treated with DEA/NO had significantly higher spontaneous mutation frequencies, increased numbers of AP sites in DNA and reduced survival compared with wild-type controls. Polyunsaturated fatty acids in B. burgdorferi cell membranes, which are susceptible to peroxidation by reactive oxygen species (ROS), were not sensitive to RNS-mediated lipid peroxidation. However, treatment of B. burgdorferi cells with DEA/NO resulted in nitrosative damage to several proteins, including the zinc-dependent glycolytic enzyme fructose-1,6-bisphosphate aldolase (BB0445), the Borrelia oxidative stress regulator (BosR) and neutrophil-activating protein (NapA). Collectively, these data suggested that nitrosative damage to proteins harbouring free or zinc-bound cysteine thiols, rather than DNA or membrane lipids underlies RNS toxicity in wild-type B. burgdorferi. PMID:21564333

  10. Deoxycytidine and Deoxythymidine Treatment for Thymidine Kinase 2 Deficiency.

    PubMed

    Lopez-Gomez, Carlos; Levy, Rebecca J; Sanchez-Quintero, Maria J; Juanola-Falgarona, Martí; Barca, Emanuele; Garcia-Diaz, Beatriz; Tadesse, Saba; Garone, Caterina; Hirano, Michio

    2017-05-01

    Thymidine kinase 2 (TK2), a critical enzyme in the mitochondrial pyrimidine salvage pathway, is essential for mitochondrial DNA (mtDNA) maintenance. Mutations in the nuclear gene, TK2, cause TK2 deficiency, which manifests predominantly in children as myopathy with mtDNA depletion. Molecular bypass therapy with the TK2 products, deoxycytidine monophosphate (dCMP) and deoxythymidine monophosphate (dTMP), prolongs the life span of Tk2-deficient (Tk2 -/- ) mice by 2- to 3-fold. Because we observed rapid catabolism of the deoxynucleoside monophosphates to deoxythymidine (dT) and deoxycytidine (dC), we hypothesized that: (1) deoxynucleosides might be the major active agents and (2) inhibition of deoxycytidine deamination might enhance dTMP+dCMP therapy. To test these hypotheses, we assessed two therapies in Tk2 -/- mice: (1) dT+dC and (2) coadministration of the deaminase inhibitor, tetrahydrouridine (THU), with dTMP+dCMP. We observed that dC+dT delayed disease onset, prolonged life span of Tk2-deficient mice and restored mtDNA copy number as well as respiratory chain enzyme activities and levels. In contrast, dCMP+dTMP+THU therapy decreased life span of Tk2 -/- animals compared to dCMP+dTMP. Our studies demonstrate that deoxynucleoside substrate enhancement is a novel therapy, which may ameliorate TK2 deficiency in patients. Ann Neurol 2017;81:641-652. © 2017 American Neurological Association.

  11. Uncovering the formation and selection of benzylmalonyl-CoA from the biosynthesis of splenocin and enterocin reveals a versatile way to introduce amino acids into polyketide carbon scaffolds.

    PubMed

    Chang, Chenchen; Huang, Rong; Yan, Yan; Ma, Hongmin; Dai, Zheng; Zhang, Benying; Deng, Zixin; Liu, Wen; Qu, Xudong

    2015-04-01

    Selective modification of carbon scaffolds via biosynthetic engineering is important for polyketide structural diversification. Yet, this scope is currently restricted to simple aliphatic groups due to (1) limited variety of CoA-linked extender units, which lack aromatic structures and chemical reactivity, and (2) narrow acyltransferase (AT) specificity, which is limited to aliphatic CoA-linked extender units. In this report, we uncovered and characterized the first aromatic CoA-linked extender unit benzylmalonyl-CoA from the biosynthetic pathways of splenocin and enterocin in Streptomyces sp. CNQ431. Its synthesis employs a deamination/reductive carboxylation strategy to convert phenylalanine into benzylmalonyl-CoA, providing a link between amino acid and CoA-linked extender unit synthesis. By characterization of its selection, we further validated that AT domains of splenocin, and antimycin polyketide synthases are able to select this extender unit to introduce the phenyl group into their dilactone scaffolds. The biosynthetic machinery involved in the formation of this extender unit is highly versatile and can be potentially tailored for tyrosine, histidine and aspartic acid. The disclosed aromatic extender unit, amino acid-oriented synthetic pathway, and aromatic-selective AT domains provides a systematic breakthrough toward current knowledge of polyketide extender unit formation and selection, and also opens a route for further engineering of polyketide carbon scaffolds using amino acids.

  12. Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

    PubMed Central

    Hsiao, Yu-Yuan; Fang, Woei-Horng; Lee, Chia-Chia; Chen, Yi-Ping; Yuan, Hanna S.

    2014-01-01

    DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3′ end of structured DNA, including bulge, bubble, and Y-structured DNA, and it can work with Endonuclease V to restore the deaminated base in an inosine-containing heteroduplex DNA. Crystal structure analyses further reveal how RNase T recognizes the bulge DNA by inserting a phenylalanine into the bulge, and as a result the 3′ end of blunt-end bulge DNA can be digested by RNase T. In contrast, the homodimeric RNase T interacts with the Y-structured DNA by a different binding mode via a single protomer so that the 3′ overhang of the Y-structured DNA can be trimmed closely to the duplex region. Our data suggest that RNase T likely processes bulge and bubble DNA in the Endonuclease V–dependent DNA repair, whereas it processes Y-structured DNA in UV-induced and various other DNA repair pathways. This study thus provides mechanistic insights for RNase T and thousands of DnaQ-like exonucleases in DNA 3′-end processing. PMID:24594808

  13. Bioconversion of Airborne Methylamine by Immobilized Recombinant Amine Oxidase from the Thermotolerant Yeast Hansenula polymorpha

    PubMed Central

    Sigawi, Sasi; Nitzan, Yeshayahu

    2014-01-01

    Aliphatic amines, including methylamine, are air-pollutants, due to their intensive use in industry and the natural degradation of proteins, amino acids, and other nitrogen-containing compounds in biological samples. It is necessary to develop systems for removal of methylamine from the air, since airborne methylamine has a negative effect on human health. The primary amine oxidase (primary amine : oxygen oxidoreductase (deaminating) or amine oxidase, AMO; EC 1.4.3.21), a copper-containing enzyme from the thermotolerant yeast Hansenula polymorpha which was overexpressed in baker's yeast Saccharomyces cerevisiae, was tested for its ability to oxidize airborne methylamine. A continuous fluidized bed bioreactor (CFBR) was designed to enable bioconversion of airborne methylamine by AMO immobilized in calcium alginate (CA) beads. The results demonstrated that the bioreactor with immobilized AMO eliminates nearly 97% of the airborne methylamine. However, the enzymatic activity of AMO causes formation of formaldehyde. A two-step bioconversion process was therefore proposed. In the first step, airborne methylamine was fed into a CFBR which contained immobilized AMO. In the second step, the gas flow was passed through another CFBR, with alcohol oxidase from the yeast H. polymorpha immobilized in CA, in order to decompose the formaldehyde formed in the first step. The proposed system provided almost total elimination of the airborne methylamine and the formaldehyde. PMID:24672387

  14. Apurinic/Apyrimidinic Endonuclease 1 Is the Essential Nuclease during Immunoglobulin Class Switch Recombination

    PubMed Central

    Masani, Shahnaz; Han, Li

    2013-01-01

    Immunoglobulin (Ig) class switch recombination (CSR) is initiated by activation-induced cytidine deaminase (AID) that catalyzes numerous DNA cytosine deaminations within switch regions. The resulting uracils are processed by uracil base excision and/or mismatch repair enzymes that ultimately generate switch region DNA double-strand breaks (DSBs). Uracil glycosylase 2 (UNG2) is required for CSR, most likely by removing uracils to generate abasic sites. Although it is presumed that the apurinic/apyrimidinic endonuclease 1 (APE1) generates DNA strand incisions (a prerequisite for CSR) at these abasic sites, a direct test of the requirement for APE1 in CSR has been difficult because of the embryonic lethality of APE1 ablation in mice. Here, we report the successful deletion of the APE1 gene in a mouse B cell line (CH12F3) capable of robust CSR in vitro. In contrast to the general assumption that APE1 is essential for cellular viability, deletion of APE1 in CH12F3 cells has no apparent effect on cell viability or growth. Moreover, CSR in APE1-null CH12F3 cells is drastically reduced, providing direct evidence for an essential role for APE1 in switch region cleavage and CSR. Finally, deletion of AP endonuclease 2 (APE2) has no effect on CSR in either APE1-proficient or -deficient cells. PMID:23382073

  15. Comparing Ancient DNA Preservation in Petrous Bone and Tooth Cementum

    PubMed Central

    Margaryan, Ashot; Stenderup, Jesper; Lynnerup, Niels; Willerslev, Eske; Allentoft, Morten E.

    2017-01-01

    Large-scale genomic analyses of ancient human populations have become feasible partly due to refined sampling methods. The inner part of petrous bones and the cementum layer in teeth roots are currently recognized as the best substrates for such research. We present a comparative analysis of DNA preservation in these two substrates obtained from the same human skulls, across a range of different ages and preservation environments. Both substrates display significantly higher endogenous DNA content (average of 16.4% and 40.0% for teeth and petrous bones, respectively) than parietal skull bone (average of 2.2%). Despite sample-to-sample variation, petrous bone overall performs better than tooth cementum (p = 0.001). This difference, however, is driven largely by a cluster of viking skeletons from one particular locality, showing relatively poor molecular tooth preservation (<10% endogenous DNA). In the remaining skeletons there is no systematic difference between the two substrates. A crude preservation (good/bad) applied to each sample prior to DNA-extraction predicted the above/below 10% endogenous DNA threshold in 80% of the cases. Interestingly, we observe signficantly higher levels of cytosine to thymine deamination damage and lower proportions of mitochondrial/nuclear DNA in petrous bone compared to tooth cementum. Lastly, we show that petrous bones from ancient cremated individuals contain no measurable levels of authentic human DNA. Based on these findings we discuss the pros and cons of sampling the different elements. PMID:28129388

  16. Efficacy of Asparaginase Erwinia chrysanthemi With and Without Temozolomide Against Glioma Cells and Intracranial Mouse Medulloblastoma.

    PubMed

    Sanghez, Valentina; Chen, Mengqing; Li, Shan; Chou, Tsui-Fen; Iacovino, Michelina; Lin, Henry J; Lasky, Joseph L; Panosyan, Eduard H

    2018-05-01

    Anti-metabolites are less-myelosuppressive than DNA-damaging anticancer drugs and may be useful against brain tumors. We evaluated the asparagine/glutamine-deaminating agent Erwinaze with/without temozolomide against brain tumor cells and mouse medulloblastomas. Erwinaze treatment of cell lines and neurospheres led to dose-dependent reductions of cells (reversible by L-glutamine), with half maximal inhibitory concentrations (IC 50 s) of 0.12->10 IU/ml. Erwinaze at <1 IU/ml reduced temozolomide IC 50 s by 3.6- to 13-fold (300-1,200 μM to 40-330 μM). Seven-week-old SMO/SMO mice treated with Erwinaze (regardless of temozolomide treatment) had better survival 11 weeks post-therapy, compared to those not treated with Erwinaze (81.25% vs. 46.15, p=0.08). Temozolomide-treated mice developed 10% weight loss, impairing survival. All 16 mice treated with temozolomide (regardless of Erwinaze treatment) succumbed by 40-weeks of age, whereas 5/8 animals treated with Erwinaze alone and 2/6 controls survived (p=0.035). Erwinaze enhances cytotoxicity of temozolomide in vitro, and improves survival in SMO/SMO mice, likely by reducing cerebrospinal fluid glutamine. Temozolomide-associated toxicity prevented demonstration of any potential combinatorial advantage with Erwinaze in vivo. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Resistance to Phosphinothricin (Glufosinate) and Its Utilization as a Nitrogen Source by Chlamydomonas reinhardtii

    PubMed Central

    Franco, A. R.; Lopez-Siles, F. J.; Cardenas, J.

    1996-01-01

    Wild-type strain 21gr of the green alga Chlamydomonas reinhardtii was resistant to the ammonium salt of l-phosphinothricin (PPT, also called glufosinate), an irreversible inhibitor of glutamine synthetase activity and the main active component of the herbicide BASTA (AgrEvo, Frankfurt am Main, Germany). Under the same conditions, however, this strain was highly sensitive to l-methionine-S-sulfoximine, a structural analog of PPT which has been reported to be 5 to 10 times less effective than PPT as an inhibitor in plants. Moreover, this alga was able to grow with PPT as the sole nitrogen source when this compound was provided at low concentrations. This utilization of PPT was dependent upon the addition of acetate and light and did not take place in the presence of ammonium. Resistance was due neither to the presence of N-acetyltransferase or transaminase activity nor to the presence of glutamine synthetase isoforms resistant to PPT. By using l-[methyl-(sup14)C]PPT, we demonstrated that resistance is due to lack of PPT transport into the cells. This strongly suggests that PPT and l-methionine-S-sulfoximine enter the cells through different systems. Growth with PPT is supported by its deamination by an l-amino acid oxidase activity which has been previously described to be located at the periplasm. PMID:16535427

  18. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-06-13

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  19. R-loops: targets for nuclease cleavage and repeat instability.

    PubMed

    Freudenreich, Catherine H

    2018-01-11

    R-loops form when transcribed RNA remains bound to its DNA template to form a stable RNA:DNA hybrid. Stable R-loops form when the RNA is purine-rich, and are further stabilized by DNA secondary structures on the non-template strand. Interestingly, many expandable and disease-causing repeat sequences form stable R-loops, and R-loops can contribute to repeat instability. Repeat expansions are responsible for multiple neurodegenerative diseases, including Huntington's disease, myotonic dystrophy, and several types of ataxias. Recently, it was found that R-loops at an expanded CAG/CTG repeat tract cause DNA breaks as well as repeat instability (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Two factors were identified as causing R-loop-dependent breaks at CAG/CTG tracts: deamination of cytosines and the MutLγ (Mlh1-Mlh3) endonuclease, defining two new mechanisms for how R-loops can generate DNA breaks (Su and Freudenreich, Proc Natl Acad Sci USA 114, E8392-E8401, 2017). Following R-loop-dependent nicking, base excision repair resulted in repeat instability. These results have implications for human repeat expansion diseases and provide a paradigm for how RNA:DNA hybrids can cause genome instability at structure-forming DNA sequences. This perspective summarizes mechanisms of R-loop-induced fragility at G-rich repeats and new links between DNA breaks and repeat instability.

  20. Monoamine Oxidase-A Inhibition and Associated Antioxidant Activity in Plant Extracts with Potential Antidepressant Actions

    PubMed Central

    Guillén, Hugo

    2018-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of amines and neurotransmitters and is involved in mood disorders, depression, oxidative stress, and adverse pharmacological reactions. This work studies the inhibition of human MAO-A by Hypericum perforatum, Peganum harmala, and Lepidium meyenii, which are reported to improve and affect mood and mental conditions. Subsequently, the antioxidant activity associated with the inhibition of MAO is determined in plant extracts for the first time. H. perforatum inhibited human MAO-A, and extracts from flowers gave the highest inhibition (IC50 of 63.6 μg/mL). Plant extracts were analyzed by HPLC-DAD-MS and contained pseudohypericin, hypericin, hyperforin, adhyperforin, hyperfirin, and flavonoids. Hyperforin did not inhibit human MAO-A and hypericin was a poor inhibitor of this isoenzyme. Quercetin and flavonoids significantly contributed to MAO-A inhibition. P. harmala seed extracts highly inhibited MAO-A (IC50 of 49.9 μg/L), being a thousand times more potent than H. perforatum extracts owing to its content of β-carboline alkaloids (harmaline and harmine). L. meyenii root (maca) extracts did not inhibit MAO-A. These plants may exert protective actions related to antioxidant effects. Results in this work show that P. harmala and H. perforatum extracts exhibit antioxidant activity associated with the inhibition of MAO (i.e., lower production of H2O2). PMID:29568754

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yi, E-mail: yihooyi@gmail.com; Ericsson, Ida, E-mail: ida.ericsson@ntnu.no; Doseth, Berit, E-mail: berit.doseth@ntnu.no

    Activation-induced cytidine deaminase (AID) is the mutator enzyme in adaptive immunity. AID initiates the antibody diversification processes in activated B cells by deaminating cytosine to uracil in immunoglobulin genes. To some extent other genes are also targeted, which may lead to genome instability and B cell malignancy. Thus, it is crucial to understand its targeting and regulation mechanisms. AID is regulated at several levels including subcellular compartmentalization. However, the complex nuclear distribution and trafficking of AID has not been studied in detail previously. In this work, we examined the subnuclear localization of AID and its interaction partner CTNNBL1 and foundmore » that they associate with spliceosome-associated structures including Cajal bodies and nuclear speckles. Moreover, protein kinase A (PKA), which activates AID by phosphorylation at Ser38, is present together with AID in nuclear speckles. Importantly, we demonstrate that AID physically associates with the major spliceosome subunits (small nuclear ribonucleoproteins, snRNPs), as well as other essential splicing components, in addition to the transcription machinery. Based on our findings and the literature, we suggest a transcription-coupled splicing-associated model for AID targeting and activation. - Highlights: • AID and its interaction partner CTNNBL1 localize to Cajal bodies and nuclear speckles. • AID associates with its activating kinase PKA in nuclear speckles. • AID is linked to the splicing machinery in switching B-cells. • Our findings suggest a transcription-coupled splicing associated mechanism for AID targeting and activation.« less

  2. A double-strand break can trigger immunoglobulin gene conversion

    PubMed Central

    Bastianello, Giulia; Arakawa, Hiroshi

    2017-01-01

    All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries. PMID:27701075

  3. Degradation and mineralization of atrazine by a soil bacterial isolate.

    PubMed Central

    Radosevich, M; Traina, S J; Hao, Y L; Tuovinen, O H

    1995-01-01

    An atrazine-degrading bacterial culture was isolated from an agricultural soil previously impacted by herbicide spills. The organism was capable of using atrazine under aerobic conditions as the sole source of C and N. Cyanuric acid could replace atrazine as the sole source of N, indicating that the organism was capable of ring cleavage. Ring cleavage was confirmed in 14CO2 evolution experiments with [U-14C-ring]atrazine. Between 40 and 50% of ring-14C was mineralized to 14CO2. [14C]biuret and [14C]urea were detected in spent culture media. Cellular assimilation of 14C was negligible, in keeping with the fully oxidized valence of the ring carbon. Chloride release was stoichiometric. The formation of ammonium during atrazine degradation was below the stoichiometric amount, suggesting a deficit due to cellular assimilation and metabolite-N accumulation. With excess glucose and with atrazine as the sole N source, free ammonium was not detected, suggesting assimilation into biomass. The organism degraded atrazine anaerobically in media which contained (i) atrazine only, (ii) atrazine and glucose, and (iii) atrazine, glucose, and nitrate. To date, this is the first report of a pure bacterial isolate with the ability to cleave the s-triazine ring structure of atrazine. It was also concluded that this bacterium was capable of dealkylation, dechlorination, and deamination in addition to ring cleavage. PMID:7887609

  4. Characterisation of the willow phenylalanine ammonia-lyase (PAL) gene family reveals expression differences compared with poplar

    PubMed Central

    de Jong, Femke; Hanley, Steven J.; Beale, Michael H.; Karp, Angela

    2015-01-01

    Willow is an important biomass crop for the bioenergy industry, and therefore optimal growth with minimal effects of biotic and abiotic stress is essential. The phenylpropanoid pathway is responsible for the biosynthesis of not only lignin but also of flavonoids, condensed tannins, benzenoids and phenolic glycosides which all have a role in protecting the plant against biotic and abiotic stress. All products of the phenylpropanoid pathway are important for the healthy growth of short rotation cropping species such as willow. However, the phenylpropanoid pathway in willow remains largely uncharacterised. In the current study we identified and characterised five willow phenylalanine ammonia-lyase (PAL) genes, which encode enzymes that catalyse the deamination of l-phenylalanine to form trans-cinnamic acid, the entry point into the phenylpropanoid pathway. Willow PAL1, PAL2, PAL3 and PAL4 genes were orthologous to the poplar genes. However no orthologue of PAL5 appears to be present in willow. Moreover, two tandemly repeated PAL2 orthologues were identified in a single contig. Willow PALs show similar sub-cellular localisation to the poplar genes. However, the enzyme kinetics and gene expression of the willow PAL genes differed slightly, with willow PAL2 being more widely expressed than its poplar orthologues implying a wider role for PALs in the production of flavonoids, condensed tannins, benzenoids, and phenolic glycosides, in willow. PMID:26070140

  5. APOBEC4 Enhances the Replication of HIV-1

    PubMed Central

    Hofmann, Henning; Hanschmann, Kay-Martin; Mühlebach, Michael D.; Schumann, Gerald G.; König, Renate; Cichutek, Klaus; Häussinger, Dieter; Münk, Carsten

    2016-01-01

    APOBEC4 (A4) is a member of the AID/APOBEC family of cytidine deaminases. In this study we found a high mRNA expression of A4 in human testis. In contrast, there were only low levels of A4 mRNA detectable in 293T, HeLa, Jurkat or A3.01 cells. Ectopic expression of A4 in HeLa cells resulted in mostly cytoplasmic localization of the protein. To test whether A4 has antiviral activity similar to that of proteins of the APOBEC3 (A3) subfamily, A4 was co-expressed in 293T cells with wild type HIV-1 and HIV-1 luciferase reporter viruses. We found that A4 did not inhibit the replication of HIV-1 but instead enhanced the production of HIV-1 in a dose-dependent manner and seemed to act on the viral LTR. A4 did not show detectable cytidine deamination activity in vitro and weakly interacted with single-stranded DNA. The presence of A4 in virus producer cells enhanced HIV-1 replication by transiently transfected A4 or stably expressed A4 in HIV-susceptible cells. APOBEC4 was capable of similarly enhancing transcription from a broad spectrum of promoters, regardless of whether they were viral or mammalian. We hypothesize that A4 may have a natural role in modulating host promoters or endogenous LTR promoters. PMID:27249646

  6. Reaction of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts.

    PubMed

    Olsen, Raymond; Molander, Paal; Øvrebø, Steinar; Ellingsen, Dag G; Thorud, Syvert; Thomassen, Yngvar; Lundanes, Elsa; Greibrokk, Tyge; Backman, Josefin; Sjöholm, Rainer; Kronberg, Leif

    2005-04-01

    Glyoxal (ethanedial) is an increasingly used industrial chemical that has been found to be mutagenic in bacteria and mammalian cells. In this study, the reactions of glyoxal with 2'-deoxyguanosine, 2'-deoxyadenosine, 2'-deoxycytidine, cytidine, thymidine, and calf thymus DNA have been studied in aqueous buffered solutions. The nucleoside adducts were isolated by reversed-phase liquid chromatography and characterized by their UV absorbance and 1H and 13C NMR spectroscopic and mass spectrometric features. The reaction with 2'-deoxyguanosine gave one adduct, the previously known 3-(2'-deoxy-beta-D-erythro-pentofuranosyl)-5,6,7-trihydro-6,7-dihydroxyimidazo[1,2-a]purine-9-one adduct. The reaction of 2'-deoxyadenosine with glyoxal resulted in the formation of a previously not reported N6-(hydroxyacetyl)-2'-deoxyadenosine adduct. In the reaction of glyoxal with 2'-deoxycytidine and cytidine at neutral conditions and 37 degrees C, 5-hydroxyacetyl pyrimidine derivatives were obtained. When the cytidine reaction was performed at pH 4.5 and 50 degrees C, the 5-hydroxyacetyl derivative of uridine was formed through deamination of cytidine-glyoxal. Adducts in the thymidine reaction could not be detected. In the reaction of glyoxal with calf thymus DNA, the 2'-deoxyguanosine-glyoxal and 2'-deoxyadenosine-glyoxal adducts were obtained, the former being the major adduct.

  7. Cloning and characterization of an alternative splicing transcript of the gene coding for human cytidine deaminase.

    PubMed

    Lisboa, Bianca Cristina Garcia; Machado, Tamara da Rocha; Pimenta, Daniel Carvalho; Han, Sang Won

    2007-02-01

    Human cytidine deaminase (HCD) catalyzes the deamination of cytidine or deoxycytidine to uridine or deoxyuridine, respectively. The genomic sequence of HCD is formed by 31 kb with 4 exons and several alternative splicing signals, but an alternative form of HCD has yet to be reported. Here we describe the cloning and characterization of a small form of HCD, HSCD, and it is likely to be a product of alternative splicing of HCD. The alignment of DNA sequences shows that the HSCD matches HCD in 2 parts, except for a deletion of 170 bp. Based on the HCD genome organization, exons 1 and 4 should be joined and all sequences of introns and exons 2 and 3 should be deleted by splicing. This alternative splicing shifted the translation of the reading frame from the point of splicing. The estimated molecular mass is 9.8 kDa, and this value was confirmed by Western blot and mass spectroscopy after expressing the gene fused with glutathionine-S-transferase in the pGEX vector. The deletion and shift of the reading frame caused a loss of HCD activity, which was confirmed by enzyme assay and also with NIH3T3 cells modified to express HSCD and challenged against cytosine arabinoside. In this work we describe the identification and characterization of HSCD, which is the product of alternative splicing of the HCD gene.

  8. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair

    PubMed Central

    Nowarski, Roni; Wilner, Ofer I.; Cheshin, Ori; Shahar, Or D.; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S.; Goldberg, Michal; Willner, Itamar

    2012-01-01

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy. PMID:22645179

  9. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    PubMed

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  10. Abiotic formation of valine peptides under conditions of high temperature and high pressure.

    PubMed

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  11. Quercetin changes purinergic enzyme activities and oxidative profile in platelets of rats with hypothyroidism.

    PubMed

    Baldissarelli, Jucimara; Santi, Adriana; Schmatz, Roberta; Zanini, Daniela; Cardoso, Andréia M; Abadalla, Fátima H; Thomé, Gustavo R; Murussi, Camila; Polachini, Carla R N; Delenogare, Diéssica P; Loro, Vania L; Morsch, Vera M; Schetinger, Maria R C

    2016-12-01

    Diseases related to thyroid hormones have been extensively studied because affect a large number of individuals, and these hormones participate in the regulation of the whole organism homeostasis. However, little is known about the involvement of purinergic signaling related to oxidative stress in hypothyroidism and possible therapeutic adjuncts for treatment of this disorder. Thus, the present study investigates the effects of quercetin on NTPDase, 5'-nucleotidase and adenosine deaminase activities, platelet aggregation and oxidative profile in platelets of rats with methimazole (MMI)-induced hypothyroidism. Methimazole at a concentration of 20mg/100mL was administered for 90days. From the second month the animals received quercetin 10 or 25mg/kg for 60days. Results showed that: Ecto-5'-nucleotidase activity decreased in methimazole/water group and the treatment with quercetin 25mg/kg decreased NTPDase, 5'-nucleotidase and adenosine deaminase activities. Moreover, platelet aggregation increased in methimazole/water group. Lipid peroxidation increased while superoxide dismutase and catalase activities decreased, but, interestingly, the treatment with quercetin reversed these changes. These results demonstrated that quercetin modulates adenine nucleotide hydrolysis decreasing the ADP formation and adenosine deamination. At the same time quercetin improves the oxidative profile, as well as reduces platelet aggregation, which together with the modulation in the nucleotides levels can contribute to the prevention of platelet disorders. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes

    PubMed Central

    Poulos, Rebecca C.

    2017-01-01

    Abstract Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation–methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation–methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation–methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes. PMID:28531315

  13. In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson’s Disease

    PubMed Central

    Choi, Jin Gyu; Park, Gunhyuk; Kim, Hyo Geun; Oh, Dal-Seok; Kim, Hocheol; Oh, Myung Sook

    2016-01-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of monoamines including dopamine (DA). MAO expression is elevated in Parkinson’s disease (PD). An increase in MAO activity is closely related to age, and this may induce neuronal degeneration in the brain due to oxidative stress. MAO (and particularly monoamine oxidase B (MAO-B)) participates in the generation of reactive oxygen species (ROS), such as hydrogen peroxide that are toxic to dopaminergic cells and their surroundings. Although the polyphenol-rich aqueous walnut extract (JSE; an extract of Juglandis Semen) has been shown to have various beneficial bioactivities, no study has been dedicated to see if JSE is capable to protect dopaminergic neurons against neurotoxic insults in models of PD. In the present study we investigated the neuroprotective potential of JSE against 1-methyl-4-phenylpyridinium (MPP+)- or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicities in primary mesencephalic cells and in a mouse model of PD. Here we show that JSE treatment suppressed ROS and nitric oxide productions triggered by MPP+ in primary mesencephalic cells. JSE also inhibited depletion of striatal DA and its metabolites in vivo that resulted in significant improvement in PD-like movement impairment. Altogether our results indicate that JSE has neuroprotective effects in PD models and may have potential for the prevention or treatment of PD. PMID:26784178

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ming; Smith, Christopher J.; Walker, Matthew T.

    Mammalian glutamate dehydrogenase (GDH) is a homohexameric enzyme that catalyzes the reversible oxidative deamination of L-glutamate to 2-oxoglutarate using NAD(P){sup +} as coenzyme. Unlike its counterparts from other animal kingdoms, mammalian GDH is regulated by a host of ligands. The recently discovered hyperinsulinism/hyperammonemia disorder showed that the loss of allosteric inhibition of GDH by GTP causes excessive secretion of insulin. Subsequent studies demonstrated that wild-type and hyperinsulinemia/hyperammonemia forms of GDH are inhibited by the green tea polyphenols, epigallocatechin gallate and epicatechin gallate. This was followed by high throughput studies that identified more stable inhibitors, including hexachlorophene, GW5074, and bithionol. Shownmore » here are the structures of GDH complexed with these three compounds. Hexachlorophene forms a ring around the internal cavity in GDH through aromatic stacking interactions between the drug and GDH as well as between the drug molecules themselves. In contrast, GW5074 and bithionol both bind as pairs of stacked compounds at hexameric 2-fold axes between the dimers of subunits. The internal core of GDH contracts when the catalytic cleft closes during enzymatic turnover. None of the drugs cause conformational changes in the contact residues, but all bind to key interfaces involved in this contraction process. Therefore, it seems likely that the drugs inhibit enzymatic turnover by inhibiting this transition. Indeed, this expansion/contraction process may play a major role in the inter-subunit communication and allosteric regulation observed in GDH.« less

  15. Mucosal immunization in macaques upregulates the innate APOBEC 3G anti-viral factor in CD4(+) memory T cells.

    PubMed

    Wang, Yufei; Bergmeier, Lesley A; Stebbings, Richard; Seidl, Thomas; Whittall, Trevor; Singh, Mahavir; Berry, Neil; Almond, Neil; Lehner, Thomas

    2009-02-05

    APOBEC3G is an innate intracellular anti-viral factor which deaminates retroviral cytidine to uridine. In vivo studies of APOBEC3G (A3G) were carried out in rhesus macaques, following mucosal immunization with SIV antigens and CCR5 peptides, linked to the 70kDa heat shock protein. A progressive increase in A3G mRNA was elicited in PBMC after each immunization (p<0.0002 to p< or =0.02), which was maintained for at least 17 weeks. Analysis of memory T cells showed a significant increase in A3G mRNA and protein in CD4(+)CCR5(+) memory T cells in circulating (p=0.0001), splenic (p=0.0001), iliac lymph nodes (p=0.002) and rectal (p=0.01) cells of the immunized compared with unimmunized macaques. Mucosal challenge with SIVmac 251 showed a significant increase in A3G mRNA in the CD4(+)CCR5(+) circulating cells (p<0.01) and the draining iliac lymph node cells (p<0.05) in the immunized uninfected macaques, consistent with a protective effect exerted by A3G. The results suggest that mucosal immunization in a non-human primate can induce features of a memory response to an innate anti-viral factor in CCR5(+)CD4(+) memory and CD4(+)CD95(+)CCR7(-) effector memory T cells.

  16. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines.

    PubMed

    Lin, R D; Hou, W C; Yen, K Y; Lee, M H

    2003-11-01

    Monoamine oxidase (MAO) catalyzes the oxidative deamination of biogenic amines accompaned by the release of H2O2. Two subtypes, MAO-A and MAO-B, exist on the basis of their specificities to substrates and inhibitors. The regulation of MAO-B activity is important in the treatment of neurodegenerative diseases. Twenty-seven species of plants used in traditional Chinese medicines, selected from an enthnobotanical survey, were used in an investigation of their inhibitory effect on MAO-B in rat brain homogenates. The 50% aqueous methanol extracts of four active extracts, Arisaema amurense, Lilium brownii var. colchesteri, Lycium chinense, and Uncaria rhynchophylla, exhibited the best activity and selectivity towards MAO-B with IC50 values of 0.44, 0.29, 0.40, and 0.03 mg/ml, respectively. A kinetic study of MAO-B inhibition by the four extracts using the Lineweaver-Burk plot for each active extract revealed the IC50 concentrations, and results show that: Ki = 0.59 mg/ml for A. amurense for the mixed-type mode, Ki = 0.58 mg/ml for L. brownii var. colchesteri for the mixed-type mode, Ki = 5.01 mg/ml for L. chinense for the uncompetitive mode, and Ki = 0.02 mg/ml for U. rhynchophylla for the uncompetitive mode. These may therefore be candidates for use in delaying the progressive degeneration caused by neurological diseases.

  17. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2?? amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1?? amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were dearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acids with unlabeled NO2- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.

  18. Casein infusion rate influences feed intake differently depending on metabolizable protein balance in dairy cows: A multilevel meta-analysis.

    PubMed

    Martineau, R; Ouellet, D R; Kebreab, E; Lapierre, H

    2016-04-01

    The effects of casein infusion have been investigated extensively in ruminant species. Its effect on responses in dry matter intake (DMI) has been reviewed and indicated no significant effect. The literature reviewed in the current meta-analysis is more extensive and limited to dairy cows fed ad libitum. A total of 51 studies were included in the meta-analysis and data were fitted to a multilevel model adjusting for the correlated nature of some studies. The effect size was the mean difference calculated by subtracting the means for the control from the casein-infused group. Overall, casein infusion [average of 333 g of dry matter (DM)/d; range: 91 to 1,092 g of DM/d] tended to increase responses in DMI by 0.18 kg/d (n=48 studies; 3 outliers). However, an interaction was observed between the casein infusion rate (IR) and the initial metabolizable protein (MP) balance [i.e., supply minus requirements (NRC, 2001)]. When control cows were in negative MP balance (n=27 studies), responses in DMI averaged 0.28 kg/d at mean MP balance (-264 g/d) and casein IR (336 g/d), and a 100g/d increment in the casein IR from its mean increased further responses by 0.14 kg/d (MP balance being constant), compared with cows not infused with casein. In contrast, when control cows were in positive MP balance (n=22 studies; 2 outliers), responses in DMI averaged -0.20 kg/d at mean casein IR (339 g/d), and a 100g/d increment in the casein IR from its mean further decreased responses by 0.33 kg/d, compared with cows not infused with casein. Responses in milk true protein yield at mean casein IR were greater (109 vs. 65 g/d) for cows in negative vs. positive MP balance, respectively, and the influence of the casein IR on responses was significant only for cows in negative MP balance. A 100g/d increment in the casein IR from its mean increased further responses in milk true protein yield by 25 g/d, compared with cows not infused with casein. Responses in blood urea concentration increased in casein studies (+0.59 mM) and the influence of the casein IR was greatest for cows in positive MP balance (0.26 vs. 0.11 mM per 100g/d increment). Responses in DMI were also correlated negatively with responses in blood urea concentration only for cows in positive MP balance. Together, these results suggest an association between satiety and deamination and oxidation of AA supplied in excess of requirements for cows in positive MP balance. Therefore, casein stimulated appetite in cows fed MP-deficient diets possibly via the supply of orexigenic AA or through a pull effect in response to an increased metabolic demand. Conversely, casein induced satiety in cows fed diets supplying MP in excess of requirements. Not precluding other factors involved in satiety (e.g., insulin, gut peptides), casein could have increased the supply of AA (e.g., Ser, Thr, Tyr), which might depress appetite at the brain level or increase the deamination and the oxidation of AA in oversupply in agreement with the hepatic oxidation theory. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  19. SPERMINE OXIDASE: AN AMINE OXIDASE WITH SPECIFICITY FOR SPERMINE AND SPERMIDINE

    PubMed Central

    Hirsch, James G.

    1953-01-01

    Sheep serum and bovine serum contain an enzyme which brings about a rapid oxidative deamination of certain biological amines. This enzyme differs from previously described amine oxidases in several regards and especially in its substrate specificity. Studies thus far indicate that only spermine and the closely related compound spermidine serve as substrates for the enzyme in sheep serum. For this reason, the enzyme has been named spermine oxidase. Spermine oxidase is active in a variety of fluids of various ionic strength and buffer composition. The reaction takes place between pH 6.0 and pH 8.0 with an optimal rate in the vicinity of neutrality. Under certain conditions, the rate of oxygen consumption during the initial phase of the reaction is independent of the concentration of substrate. The diminution in rate observed during the latter phase of the enzymatic attack appears to be due to an alteration in the kinetics at low concentrations of substrate, or to competitive inhibition by a product of the reaction. Carbonyl reagents almost completely block the action of spermine oxidase, while certain amines and the cyanide ion bring about partial inhibition. Thiol reagents and sequestering compounds do not alter the course of the oxidative process. In the presence of low concentrations of mercuric chloride, the sheep serum-spermine system consumes approximately twice as much oxygen as controls containing no mercuric ion. The mechanism by which the mercuric ion stimulates additional oxygen uptake is obscure. PMID:13052805

  20. Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions.

    PubMed

    Rueda-López, Marina; Pascual, María Belén; Pallero, Mercedes; Henao, Luisa María; Lasa, Berta; Jauregui, Ivan; Aparicio-Tejo, Pedro M; Cánovas, Francisco M; Ávila, Concepción

    2017-01-01

    In this work, the role of the pine transcriptional regulator Dof 5 in carbon and nitrogen metabolism has been examined in poplar trees. The overexpression of the gene and potential effects on growth and biomass production were compared between trees growing in a growth chamber under controlled conditions and trees growing in a field trial during two growth seasons. Ten-week-old transgenic poplars exhibited higher growth than untransformed controls and exhibited enhanced capacity for inorganic nitrogen uptake in the form of nitrate. Furthermore, the transgenic trees accumulated significantly more carbohydrates such as glucose, fructose, sucrose and starch. Lignin content increased in the basal part of the stem likely due to the thicker stem of the transformed plants. The enhanced levels of lignin were correlated with higher expression of the PAL1 and GS1.3 genes, which encode key enzymes involved in the phenylalanine deamination required for lignin biosynthesis. However, the results in the field trial experiment diverged from those observed in the chamber system. The lines overexpressing PpDof5 showed attenuated growth during the two growing seasons and no modification of carbon or nitrogen metabolism. These results were not associated with a decrease in the expression of the transgene, but they can be ascribed to the nitrogen available in the field soil compared to that available for growth under controlled conditions. This work highlights the paramount importance of testing transgenic lines in field trials.

  1. Norepinephrine metabolism in neuron: dissociation between 3,4-dihydroxyphenylglycol and 3,4-dihydroxymandelic acid pathways.

    PubMed

    Dong, Wen-Xin; Ni, Xiang-Lian

    2002-01-01

    To investigate the pre-synaptic metabolism of norepinephrine (NE), judged by variations in plasma concentration of 3,4-dihydroxyphenylglycol (DHPG) and 3,4-dihydroxymandelic acid (DOMA). Pithed and electrically stimulated (2.5 Hz) rats were given intravenous infusion of exogenous NE (6 nmol . kg-1 . min-1). Plasma NE, DHPG, DOMA, and the activities of mono- amine oxidases (MAO) were measured with the radio-enzymatic assay. Exogenous NE induces an about 100-fold increase in plasma NE concentration while blood pressure remained within normal limits. A 12-fold increase in plasma DHPG and 1.2-fold increase for DOMA were observed. When NE transportation across the pre-synaptic membrane was inhibited by desipramine (2 mg/kg, iv), a great reduction in plasma DHPG concentration (about 25 % of control) was observed while DOMA remained unchanged. When MAO-A activity was inhibited to 25 % of control by clorgyline (2 mg/kg, iv) and MAO-B to 30 % by deprenyl, the plasma DHPG and DOMA concentrations were reduced to 15 % and 70 % of controls, and to 26 % and 76 % of controls, respectively. When clorgyline and deprenyl were combined, plasma DHPG was vanished (less than 2 % of control) while plasma DOMA remained in the same range (72 % of control). The metabolizing system of NE in pre-synapse, associating with the pre-synaptic reuptake plus oxidative deamination on the external membrane of mitochondria, is predominant for the reduction to DHPG.

  2. Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U.

    PubMed

    Arias, Sagrario; Olivera, Elías R; Arcos, Mario; Naharro, Germán; Luengo, José M

    2008-02-01

    In Pseudomonas putida U two different pathways (Pea, Ped) are required for the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid. The 2-phenylethylamine pathway (PeaABCDEFGHR) catalyses the transport of this amine, its deamination to phenylacetaldehyde by a quinohaemoprotein amine dehydrogenase and the oxidation of this compound through a reaction catalysed by a phenylacetaldehyde dehydrogenase. Another catabolic route (PedS(1)R(1)ABCS(2)R(2)DEFGHI) is needed for the uptake of 2-phenylethanol and for its oxidation to phenylacetic acid via phenylacetaldehyde. This implies the participation of two different two-component signal-transducing systems, two quinoprotein alcohol dehydrogenases, a cytochrome c, a periplasmic binding protein, an aldehyde dehydrogenase, a pentapeptide repeat protein and an ABC efflux system. Additionally, two accessory sets of elements (PqqABCDEF and CcmABCDEFGHI) are necessary for the operation of the main pathways (Pea and Ped). PqqABCDEF is required for the biosynthesis of pyrroloquinoline quinone (PQQ), a prosthetic group of certain alcohol dehydrogenases that transfers electrons to an independent cytochrome c; whereas CcmABCDEFGHI is required for cytochrome c maturation. Our data show that the degradation of phenylethylamine and phenylethanol in P. putida U is quite different from that reported in Escherichia coli, and they demonstrate that PeaABCDEFGHR and PedS(1)R(1)ABCS(2)R(2)DEFGHI are two upper routes belonging to the phenylacetyl-CoA catabolon.

  3. A to I editing in disease is not fake news.

    PubMed

    Bajad, Prajakta; Jantsch, Michael F; Keegan, Liam; O'Connell, Mary

    2017-09-02

    Adenosine deaminases acting on RNA (ADARs) are zinc-containing enzymes that deaminate adenosine bases to inosines within dsRNA regions in transcripts. In short, structured dsRNA hairpins individual adenosine bases may be targeted specifically and edited with up to one hundred percent efficiency, leading to the production of alternative protein variants. However, the majority of editing events occur within longer stretches of dsRNA formed by pairing of repetitive sequences. Here, many different adenosine bases are potential targets but editing efficiency is usually much lower. Recent work shows that ADAR-mediated RNA editing is also required to prevent aberrant activation of antiviral innate immune sensors that detect viral dsRNA in the cytoplasm. Missense mutations in the ADAR1 RNA editing enzyme cause a fatal auto-inflammatory disease, Aicardi-Goutières syndrome (AGS) in affected children. In addition RNA editing by ADARs has been observed to increase in many cancers and also can contribute to vascular disease. Thus the role of RNA editing in the progression of various diseases can no longer be ignored. The ability of ADARs to alter the sequence of RNAs has also been used to artificially target model RNAs in vitro and in cells for RNA editing. Potentially this approach may be used to repair genetic defects and to alter genetic information at the RNA level. In this review we focus on the role of ADARs in disease development and progression and on their potential use to artificially modify RNAs in a targeted manner.

  4. Influence of Electron–Holes on DNA Sequence-Specific Mutation Rates

    PubMed Central

    Suárez-Villagrán, Martha Y; Azevedo, Ricardo B R; Miller, John H

    2018-01-01

    Abstract Biases in mutation rate can influence molecular evolution, yielding rates of evolution that vary widely in different parts of the genome and even among neighboring nucleotides. Here, we explore one possible mechanism of influence on sequence-specific mutation rates, the electron–hole, which can localize and potentially trigger a replication mismatch. A hole is a mobile site of positive charge created during one-electron oxidation by, for example, radiation, contact with a mutagenic agent, or oxidative stress. Its quantum wavelike properties cause it to localize at various sites with probabilities that vary widely, by orders of magnitude, and depend strongly on the local sequence. We find significant correlations between hole probabilities and mutation rates within base triplets, observed in published mutation accumulation experiments on four species of bacteria. We have also computed hole probability spectra for hypervariable segment I of the human mtDNA control region, which contains several mutational hotspots, and for heptanucleotides in noncoding regions of the human genome, whose polymorphism levels have recently been reported. We observe significant correlations between hole probabilities, and context-specific mutation and substitution rates. The correlation with hole probability cannot be explained entirely by CpG methylation in the heptanucleotide data. Peaks in hole probability tend to coincide with mutational hotspots, even in mtDNA where CpG methylation is rare. Our results suggest that hole-enhanced mutational mechanisms, such as oxidation-stabilized tautomerization and base deamination, contribute to molecular evolution. PMID:29617801

  5. An integrated (electro- and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment.

    PubMed

    Aravind, Priyadharshini; Selvaraj, Hosimin; Ferro, Sergio; Sundaram, Maruthamuthu

    2016-11-15

    A hybrid approach for the remediation of recalcitrant dye wastewater is proposed. The chlorine-mediated electrochemical oxidation of real textile effluents and synthetic samples (using Ti/IrO2-RuO2-TiO2 anodes), lead to discoloration by 92% and 89%, respectively, in 100min, without significant mineralization. The remediation was obtained through biodegradation, after removing the residual bio-toxic active chlorine species via sunlight exposition. Results show that the electrochemical discoloration enhances the effluent biodegradability with about 90% COD removal employing acclimatized naphthalene-degrading bacterial consortia, within 144h. Based on results obtained through FT-IR and GC-MS, it is likely that azo group stripping and oxidative cleavage of dyes occur due to the nucleophilic attack of active chlorine species during electro-oxidation. This leads to generation of aromatic intermediates which are further desulfonated, deaminated or oxidized only at their functional groups. These aromatic intermediates were mineralized into simpler organic acids and aldehydes by bacterial consortia. Phyto-toxicity trials on Vigna radiata confirmed the toxic nature of the untreated dye solutions. An increase in root and shoot development was observed with the electrochemically treated solutions, the same was higher in case of bio-treated solutions. Overall, obtained results confirm the capability of the proposed hybrid oxidation scheme for the remediation of textile wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Novel liver-specific cholic acid-cytarabine conjugates with potent antitumor activities: Synthesis and biological characterization

    PubMed Central

    Chen, Dan-qi; Wang, Xin; Chen, Lin; He, Jin-xue; Miao, Ze-hong; Shen, Jing-kang

    2011-01-01

    Aim: Cytarabine is an efficient anticancer agent for acute myelogenous leukemia, but with short plasma half-life and rapid deamination to its inactive metabolite. The aim of this study was to design and synthesize novel cholic acid-cytarabine conjugates to improve its pharmacokinetic parameters. Methods: The in vitro stability of novel cholic acid-cytarabine conjugates was investigated in simulated gastric and intestinal fluid, mouse blood and liver homogenate using HPLC. The portacaval samples of the conjugates were examined in male Sprague-Dawley rats using LC/MS, and in vivo distribution was examined in male Kunming mice using LC/MS. Antitumor activities were tested in HL60 cells using MTT assay. Results: Cholic acid-cytarabine compounds with four different linkers were designed and synthesized. All the four cholic acid-cytarabine conjugates could release cytarabine when incubated with the simulated gastric and intestinal fluid, mouse blood and liver homogenate. The conjugates 6, 12, and 16 were present in the portacaval samples, whereas the conjugate 7 was not detected. The conjugates 6 and 16 showed high specificity in targeting the liver (liver target index 34.9 and 16.3, respectively) and good absorption in vivo, as compared with cytarabine. In cytarabine-sensitive HL60 cells, the conjugates 6, 12, and 16 retained potent antitumor activities. Conclusion: Three novel cholic acid-cytarabine conjugates with good liver-targeting properties and absorption were obtained. Further optimization of the conjugates is needed in the future. PMID:21516131

  7. Transporter-targeted cholic acid-cytarabine conjugates for improved oral absorption.

    PubMed

    Zhang, Dong; Li, Dongpo; Shang, Lei; He, Zhonggui; Sun, Jin

    2016-09-10

    Cytarabine has a poor oral absorption due to its rapid deamination and poor membrane permeability. Bile acid transporters are highly expressed both in enterocytes and hepatocytes and to increase the oral bioavailability and investigate the potential application of cytarabine for liver cancers, a transporter- recognizing prodrug strategy was applied to design and synthesize four conjugates of cytarabine with cholic acid (CA), chenodeoxycholic acid (CDCA), hyodeoxycholic acid (HDCA) and ursodeoxycholic acid (UDCA). The anticancer activities against HepG2 cells were evaluated by MTT assay and the role of bile acid transporters during cellular transport was investigated in a competitive inhibition experiment. The in vitro and in vivo metabolic stabilities of these conjugates were studied in rat plasma and liver homogenates. Finally, an oral bioavailability study was conducted in rats. All the cholic acid-cytarabine conjugates (40μM) showed potent antiproliferative activities (up to 70%) against HepG2 cells after incubation for 48h. The addition of bile acids could markedly reduce the antitumor activities of these conjugates. The N(4)-ursodeoxycholic acid conjugate of cytarabine (compound 5) exhibited optimal stability (t1/2=90min) in vitro and a 3.9-fold prolonged half-life of cytarabine in vivo. More importantly, compound 5 increased the oral bioavailability 2-fold compared with cytarabine. The results of the present study suggest that the prodrug strategy based on the bile acid transporters is suitable for improving the oral absorption and the clinical application of cytarabine. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Soybean peroxidase-mediated degradation of an azo dye– a detailed mechanistic study

    PubMed Central

    2013-01-01

    Background Peroxidases are emerging as an important class of enzymes that can be used for the efficient degradation of organic pollutants. However, detailed studies identifying the various intermediates produced and the mechanisms involved in the enzyme-mediated pollutant degradation are not widely published. Results In the present study, the enzymatic degradation of an azo dye (Crystal Ponceau 6R, CP6R) was studied using commercially available soybean peroxidase (SBP) enzyme. Several operational parameters affecting the enzymatic degradation of dye were evaluated and optimized, such as initial dye concentration, H2O2 dosage, mediator amount and pH of the solution. Under optimized conditions, 40 ppm dye solution could be completely degraded in under one minute by SBP in the presence of H2O2 and a redox mediator. Dye degradation was also confirmed using HPLC and TOC analyses, which showed that most of the dye was being mineralized to CO2 in the process. Conclusions Detailed analysis of metabolites, based on LC/MS results, showed that the enzyme-based degradation of the CP6R dye proceeded in two different reaction pathways- via symmetric azo bond cleavage as well as asymmetric azo bond breakage in the dye molecule. In addition, various critical transformative and oxidative steps such as deamination, desulfonation, keto-oxidation are explained on an electronic level. Furthermore, LC/MS/MS analyses confirmed that the end products in both pathways were small chain aliphatic carboxylic acids. PMID:24308857

  9. Correction of β-thalassemia mutant by base editor in human embryos.

    PubMed

    Liang, Puping; Ding, Chenhui; Sun, Hongwei; Xie, Xiaowei; Xu, Yanwen; Zhang, Xiya; Sun, Ying; Xiong, Yuanyan; Ma, Wenbin; Liu, Yongxiang; Wang, Yali; Fang, Jianpei; Liu, Dan; Songyang, Zhou; Zhou, Canquan; Huang, Junjiu

    2017-11-01

    β-Thalassemia is a global health issue, caused by mutations in the HBB gene. Among these mutations, HBB -28 (A>G) mutations is one of the three most common mutations in China and Southeast Asia patients with β-thalassemia. Correcting this mutation in human embryos may prevent the disease being passed onto future generations and cure anemia. Here we report the first study using base editor (BE) system to correct disease mutant in human embryos. Firstly, we produced a 293T cell line with an exogenous HBB -28 (A>G) mutant fragment for gRNAs and targeting efficiency evaluation. Then we collected primary skin fibroblast cells from a β-thalassemia patient with HBB -28 (A>G) homozygous mutation. Data showed that base editor could precisely correct HBB -28 (A>G) mutation in the patient's primary cells. To model homozygous mutation disease embryos, we constructed nuclear transfer embryos by fusing the lymphocyte or skin fibroblast cells with enucleated in vitro matured (IVM) oocytes. Notably, the gene correction efficiency was over 23.0% in these embryos by base editor. Although these embryos were still mosaic, the percentage of repaired blastomeres was over 20.0%. In addition, we found that base editor variants, with narrowed deamination window, could promote G-to-A conversion at HBB -28 site precisely in human embryos. Collectively, this study demonstrated the feasibility of curing genetic disease in human somatic cells and embryos by base editor system.

  10. Evidence for carboxyl-terminal processing and glycolipid-anchoring of human carcinoembryonic antigen.

    PubMed

    Takami, N; Misumi, Y; Kuroki, M; Matsuoka, Y; Ikehara, Y

    1988-09-05

    We have investigated the post-translational modification of carcinoembryonic antigen (CEA) for membrane-anchoring in QGP-1 cells derived from a human pancreatic carcinoma. Pulse-chase experiments with [3H]leucine demonstrated that CEA was initially synthesized as a precursor form with Mr 150,000 having N-linked high-mannose-type oligosaccharides, which was then converted to a mature form with Mr 200,000 containing the complex type sugar chains. The mature protein thus labeled was found to be released from the cell surface by treatment with phosphatidylinositol-specific phospholipase C, suggesting that CEA is a phosphatidylinositol-linked membrane protein. This was confirmed by metabolic incorporation into CEA of 3H-labeled compounds such as ethanolamine, myo-inositol, palmitic acid, and stearic acid. The 3H-labeled fatty acids incorporated were specifically removed from the protein by nitrous acid deamination as well as by phosphatidylinositol-specific phospholipase C treatment. Since the available cDNA sequence predicts that CEA contains a single methionine residue only in its carboxyl-terminal hydrophobic domain, processing of the carboxyl terminus was examined by pulse-chase experiments with [35S]methionine. It was found that CEA with Mr 150,000 was initially labeled with [35S]methionine but its radioactivity was immediately lost with chase. Taken together, these results suggest that CEA is anchored to the membrane by simultaneously occurring proteolysis of the carboxyl terminus and replacement by the glycophospholipid immediately after the synthesis.

  11. Roles of Saccharomyces cerevisiae DNA polymerases Poleta and Polzeta in response to irradiation by simulated sunlight.

    PubMed

    Kozmin, Stanislav G; Pavlov, Youri I; Kunkel, Thomas A; Sage, Evelyne

    2003-08-01

    Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase eta (Poleta) and polymerase zeta (Polzeta), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310-1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Delta, rev3Delta and rev3Delta rad30Delta strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6-4) photoproducts derived from studies with UVC. They further suggest that Poleta participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polzeta is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polzeta, Poleta contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine.

  12. A transcriptional serenAID: the role of noncoding RNAs in class switch recombination

    PubMed Central

    Yewdell, William T.; Chaudhuri, Jayanta

    2017-01-01

    Abstract During an immune response, activated B cells may undergo class switch recombination (CSR), a molecular rearrangement that allows B cells to switch from expressing IgM and IgD to a secondary antibody heavy chain isotype such as IgG, IgA or IgE. Secondary antibody isotypes provide the adaptive immune system with distinct effector functions to optimally combat various pathogens. CSR occurs between repetitive DNA elements within the immunoglobulin heavy chain (Igh) locus, termed switch (S) regions and requires the DNA-modifying enzyme activation-induced cytidine deaminase (AID). AID-mediated DNA deamination within S regions initiates the formation of DNA double-strand breaks, which serve as biochemical beacons for downstream DNA repair pathways that coordinate the ligation of DNA breaks. Myriad factors contribute to optimal AID targeting; however, many of these factors also localize to genomic regions outside of the Igh locus. Thus, a current challenge is to explain the specific targeting of AID to the Igh locus. Recent studies have implicated noncoding RNAs in CSR, suggesting a provocative mechanism that incorporates Igh-specific factors to enable precise AID targeting. Here, we chronologically recount the rich history of noncoding RNAs functioning in CSR to provide a comprehensive context for recent and future discoveries. We present a model for the RNA-guided targeting of AID that attempts to integrate historical and recent findings, and highlight potential caveats. Lastly, we discuss testable hypotheses ripe for current experimentation, and explore promising ideas for future investigations. PMID:28535205

  13. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1

    DOE PAGES

    Alsøe, Lene; Sarno, Antonio; Carracedo, Sergio; ...

    2017-08-03

    Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1 -/ - mice. Here, we found that 5-hydroxymethyluracil accumulated in Smug1 -/ - tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1more » -/ - mice did not accumulate uracil in their genome and Ung -/ - mice showed slightly elevated uracil levels. Contrastingly, Ung -/ -Smug1 -/ - mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.« less

  14. Calcium-sensitive regulation of monoamine oxidase-A contributes to the production of peroxyradicals in hippocampal cultures: implications for Alzheimer disease-related pathology

    PubMed Central

    Cao, Xia; Wei, Zelan; Gabriel, Geraldine G; Li, XinMin; Mousseau, Darrell D

    2007-01-01

    Background Calcium (Ca2+) has recently been shown to selectively increase the activity of monoamine oxidase-A (MAO-A), a mitochondria-bound enzyme that generates peroxyradicals as a natural by-product of the deamination of neurotransmitters such as serotonin. It has also been suggested that increased intracellular free Ca2+ levels as well as MAO-A may be contributing to the oxidative stress associated with Alzheimer disease (AD). Results Incubation with Ca2+ selectively increases MAO-A enzymatic activity in protein extracts from mouse hippocampal HT-22 cell cultures. Treatment of HT-22 cultures with the Ca2+ ionophore A23187 also increases MAO-A activity, whereas overexpression of calbindin-D28K (CB-28K), a Ca2+-binding protein in brain that is greatly reduced in AD, decreases MAO-A activity. The effects of A23187 and CB-28K are both independent of any change in MAO-A protein or gene expression. The toxicity (via production of peroxyradicals and/or chromatin condensation) associated with either A23187 or the AD-related β-amyloid peptide, which also increases free intracellular Ca2+, is attenuated by MAO-A inhibition in HT-22 cells as well as in primary hippocampal cultures. Conclusion These data suggest that increases in intracellular Ca2+ availability could contribute to a MAO-A-mediated mechanism with a role in AD-related oxidative stress. PMID:17868476

  15. Liquid chromatography high resolution mass spectrometry for the determination of baclofen and its metabolites in plasma: Application to therapeutic drug monitoring.

    PubMed

    Labat, Laurence; Goncalves, Antonio; Marques, Ana Rita; Duretz, Bénédicte; Granger, Bernard; Declèves, Xavier

    2017-08-01

    Baclofen is used to manage alcohol dependence. This study describes a simple method using liquid chromatography coupled to high-resolution mass spectrometry (LC-HR-MS) developed in plasma samples. This method was optimized to allow quantification of baclofen and determination of metabolic ratio of its metabolites, an oxidative deaminated metabolite of baclofen (M1) and its glucuronide form (M2). The LC-HR-MS method on Exactive® apparatus is a newly developed method with all the advantages of high resolution in full-scan mode for the quantification of baclofen and detection of its metabolites in plasma. The present assay provides a protein precipitation method starting with 100 μL plasma giving a wide polynomial dynamic range (R 2  > 0.999) between 10 and 2000 ng/mL and a lower limit of quantitation of 3 ng/mL for baclofen. Intra- and inter-day precisions were <8.1% and accuracies were between 91.2 and 103.3% for baclofen. No matrix effect was observed. The assay was successfully applied to 36 patients following baclofen administration. Plasma concentrations of baclofen were determined between 12.2 and 1399.9 ng/mL and metabolic ratios were estimated between 0.4 and 81.8% for M1 metabolite and on the order of 0.3% for M2 in two samples. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Big differences in primary care celiac disease serological markers request in Spain.

    PubMed

    Salinas, Maria; López-Garrigós, Maite; Flores, Emilio; Leiva-Salinas, Carlos

    2017-02-15

    Celiac disease (CD) prevalence is increasing but the disorder remains undiagnosed. The study compares CD serology markers requested by General Practitioners (GPs) over time and geographical areas. The aim of the current research is to assess the inter-practice and temporal variability in the request of CD serology markers by GPs in Spain, and the differences between regions. A cross-sectional study was conducted enrolling Spanish clinical laboratories. Primary care CD serology markers request in 2010, 2012 and 2014 from 15 autonomous communities (AACC), with more participants was reported. Test-utilization rates were calculated (tissue transglutaminase IgA antibodies (tTG-IgA) and deaminated peptide gliadine IgA antibodies (DGP-IgA) per 1000 inhabitants), and also the ratio of both tests request (DGP-IgA /tTG-IgA). The request of tTG-IgA per 1000 inhabitants increased significantly along years (from 3.99 to 5.90 (P < 0.001)). The demand of DGP-IgA per 1000 inhabitants was maintained in 2010 and 2012 (0.68 and 0.6), and decreased in 2014 (0.35) (P = 0.927). DGP-IgA /tTG-IgA diminished over time (from 0.16 to 0.06 (P = 0.548)), and in the 2014 edition, there was a significant regional difference, ranging from 0.01 to 0.57 (P < 0.001). The variability in the request in CD serology markers emphasizes the need of inter-regional cooperation to develop strategies to optimize the use of laboratory tests.

  17. Overexpression of a pine Dof transcription factor in hybrid poplars: A comparative study in trees growing under controlled and natural conditions

    PubMed Central

    Rueda-López, Marina; Pascual, María Belén; Pallero, Mercedes; Henao, Luisa María; Lasa, Berta; Jauregui, Ivan; Aparicio-Tejo, Pedro M.; Cánovas, Francisco M.

    2017-01-01

    In this work, the role of the pine transcriptional regulator Dof 5 in carbon and nitrogen metabolism has been examined in poplar trees. The overexpression of the gene and potential effects on growth and biomass production were compared between trees growing in a growth chamber under controlled conditions and trees growing in a field trial during two growth seasons. Ten-week-old transgenic poplars exhibited higher growth than untransformed controls and exhibited enhanced capacity for inorganic nitrogen uptake in the form of nitrate. Furthermore, the transgenic trees accumulated significantly more carbohydrates such as glucose, fructose, sucrose and starch. Lignin content increased in the basal part of the stem likely due to the thicker stem of the transformed plants. The enhanced levels of lignin were correlated with higher expression of the PAL1 and GS1.3 genes, which encode key enzymes involved in the phenylalanine deamination required for lignin biosynthesis. However, the results in the field trial experiment diverged from those observed in the chamber system. The lines overexpressing PpDof5 showed attenuated growth during the two growing seasons and no modification of carbon or nitrogen metabolism. These results were not associated with a decrease in the expression of the transgene, but they can be ascribed to the nitrogen available in the field soil compared to that available for growth under controlled conditions. This work highlights the paramount importance of testing transgenic lines in field trials. PMID:28376100

  18. Aryl acylamidase activity exhibited by butyrylcholinesterase is higher in chick than in horse, but much lower than in fetal calf serum.

    PubMed

    Weitnauer, E; Robitzki, A; Layer, P G

    1998-10-02

    Several side activities have been attributed to butyrylcholinesterase (BChE), including aryl acylamidase (AAA) activity, which is an amidase-like activity with unknown physiological function splitting the artificial substrate o-nitroacetanilide. For avians, extensive developmental data have pointed to neurogenetic functions of BChE, however, a possible AAA activity of BChE has not been studied. In this study, we first compare the relative levels of AAA exhibited by BChE in whole sera from chick, fetal calves (FCS) and horse. Remarkably, FCS exhibits a 400-fold higher ratio of AAA/BChE than horse and 80-fold higher than chick serum. We then show that an immunoisolated preparation of BChE from chicken serum presents significant activity for AAA. Both in sera and with the purified enzyme, the AAA activity is fully inhibited by anticholinesterase drugs, showing that AAA activity is exclusively conveyed by the BChE molecule. Noticeably, AAA inhibition even occurs at lower drug concentrations than that of BChE activity itself. Moreover, AAA is sensitive to serotonin. These data indicate that (1) AAA is a general feature of serum BChE of vertebrates including avians, (2) AAA is effectively inhibited by cholinergic and serotonergic agents, and (3) AAA may have a developmental role, since it is much pronounced in a serum from fetal animals. Functionally, deamination of neuropeptides, a link between cholinergic and serotonergic neurotransmitter systems, and roles in lipoprotein metabolism could be relevant.

  19. Early diagenesis and organic matter preservation--A molecular stable isotope perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macko, S.A.; Engel, M.H.; Qian, Y.

    1992-01-01

    Through new developments in stable isotope capability, gas chromatography coupled to a stable isotope ratio mass spectrometer (GC/IRMS), the molecular pathways of the diagenetic reactions can be observed on the components themselves. The authors report the results of laboratory-controlled degradation experiments of fresh organic substrates. Isotopically resolvable materials were used. Seagrass showed slight enrichments in [delta]N-15 with little change in [delta]C-13 following four weeks of decomposition. During that period the identifiable amino acid content decreased by approx. 50% for each amino acid. Mixtures of marine sediment with the same seagrass showed enrichments in nitrogen with associated depletions in carbon isotopicmore » compositions over the same time span. Control experiments on the sediments without added fresh seagrass showed no change in isotopic content. These changes are attributed to hydrolysis, deamination and decarboxylation reactions. Isotopic fractionations of similar size and direction have been observed in laboratory studies on peptide hydrolysis and natural samples of particulate organic materials. At the molecular level, using GC/IRMS, certain amino acids are seen to decrease in C-13 content while others become increasingly enriched in C-13. Similar reactions are seen in carbohydrates. The molecular isotope approach indicates that the process of diagenesis and preservation is significantly more complex than simple breakdown and loss. A large portion of the organic matter eventually preserved in organic-rich deposits can be attributed to new production in the deposit.« less

  20. Toxicokinetics of new psychoactive substances: plasma protein binding, metabolic stability, and human phase I metabolism of the synthetic cannabinoid WIN 55,212-2 studied using in vitro tools and LC-HR-MS/MS.

    PubMed

    Mardal, Marie; Gracia-Lor, Emma; Leibnitz, Svenja; Castiglioni, Sara; Meyer, Markus R

    2016-10-01

    The new psychoactive substance WIN 55,212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo-[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone) is a potent synthetic cannabinoid receptor agonist. The metabolism of WIN 55,212-2 in man has never been reported. Therefore, the aim of this study was to identify the human in vitro metabolites of WIN 55,212-2 using pooled human liver microsomes and liquid chromatography-high resolution-tandem mass spectrometry (LC-HR-MS/MS) to provide targets for toxicological, doping, and environmental screening procedures. Moreover, a metabolic stability study in pooled human liver microsomes (pHLM) was carried out. In total, 19 metabolites were identified and the following partly overlapping metabolic steps were deduced: degradation of the morpholine ring via hydroxylation, N- and O-dealkylation, and oxidative deamination, hydroxylations on either the naphthalene or morpholine ring or the alkyl spacer with subsequent oxidation, epoxide formation with subsequent hydrolysis, or combinations. In conclusion, WIN 55,212-2 was extensively metabolized in human liver microsomes incubations and the calculated hepatic clearance was comparably high, indicating a fast and nearly complete metabolism in vivo. This is in line with previous findings on other synthetic cannabinoids. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Impaired oxidative metabolism increases adenine nucleotide breakdown in McArdle's disease.

    PubMed

    Sahlin, K; Areskog, N H; Haller, R G; Henriksson, K G; Jorfeldt, L; Lewis, S F

    1990-10-01

    Two patients with muscle phosphorylase deficiency [McArdle's disease (McA)] were studied during bicycle exercise at 40 (n = 2) and 60 W (n = 1). Peak heart rate was 170 and 162 beats/min, corresponding to approximately 90% of estimated maximal heart rate. Muscle samples were taken at rest and immediately after exercise from the quadriceps femoris. Lactate content remained low in both muscle and blood. Acetylcarnitine, which constitutes a readily available form of acetyl units and thus a substrate for the tricarboxylic acid cycle, was very low in McA patients both at rest and during exercise, corresponding to approximately 17 and 11%, respectively, of that in healthy subjects. Muscle NADH was unchanged during exercise in McA patients in contrast to healthy subjects, in whom NADH increases markedly at high exercise intensities. Despite low lactate levels, arterial plasma NH3 and muscle inosine 5'-monophosphate increased more steeply relative to work load in McA patients than in healthy subjects. The low postexercise levels of lactate, acetylcarnitine, and NADH in McA patients support the idea that exercise performance is limited by the availability of oxidative fuels. Increases in muscle inosine 5'-monophosphate and plasma NH3 indicate that lack of glycogen as an oxidative fuel is associated with adenine nucleotide breakdown and increased deamination of AMP. It is suggested that the early onset of fatigue in McA patients is caused by an insufficient rate of ADP phosphorylation, resulting in transient increases in ADP.

  2. Solid-State Fermentation vs Submerged Fermentation for the Production of l-Asparaginase.

    PubMed

    Doriya, K; Jose, N; Gowda, M; Kumar, D S

    l-Asparaginase, an enzyme that catalyzes l-asparagine into aspartic acid and ammonia, has relevant applications in the pharmaceutical and food industry. So, this enzyme is used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. This enzyme is also able to reduce the amount of acrylamide found in carbohydrate-rich fried and baked foods which is carcinogenic to humans. The concentration of acrylamide in food can be reduced by deamination of asparagine using l-Asparaginase. l-Asparaginase is present in plants, animals, and microbes. Various microorganisms such as bacteria, yeast, and fungi are generally used for the production of l-Asparaginase as it is difficult to obtain the same from plants and animals. l-Asparaginase from bacteria causes anaphylaxis and other abnormal sensitive reactions. To overcome this, eukaryotic organisms such as fungi can be used for the production of l-Asparaginase. l-Asparaginase can be produced either by solid-state fermentation (SSF) or by submerged fermentation (SmF). SSF is preferred over SmF as it is cost effective, eco-friendly and it delivers high yield of enzyme. SSF process utilizes agricultural and industrial wastes as solid substrate. The contamination level is substantially reduced in SSF through low moisture content. Current chapter will discuss in detail the chemistry and applications of l-Asparaginase enzyme and various methods available for the production of the enzyme, especially focusing on the advantages and limitations of SSF and SmF processes. © 2016 Elsevier Inc. All rights reserved.

  3. C-to-U editing and site-directed RNA editing for the correction of genetic mutations.

    PubMed

    Vu, Luyen Thi; Tsukahara, Toshifumi

    2017-07-24

    Cytidine to uridine (C-to-U) editing is one type of substitutional RNA editing. It occurs in both mammals and plants. The molecular mechanism of C-to-U editing involves the hydrolytic deamination of a cytosine to a uracil base. C-to-U editing is mediated by RNA-specific cytidine deaminases and several complementation factors, which have not been completely identified. Here, we review recent findings related to the regulation and enzymatic basis of C-to-U RNA editing. More importantly, when C-to-U editing occurs in coding regions, it has the power to reprogram genetic information on the RNA level, therefore it has great potential for applications in transcript repair (diseases related to thymidine to cytidine (T>C) or adenosine to guanosine (A>G) point mutations). If it is possible to manipulate or mimic C-to-U editing, T>C or A>G genetic mutation-related diseases could be treated. Enzymatic and non-enzymatic site-directed RNA editing are two different approaches for mimicking C-to-U editing. For enzymatic site-directed RNA editing, C-to-U editing has not yet been successfully performed, and in theory, adenosine to inosine (A-to-I) editing involves the same strategy as C-to-U editing. Therefore, in this review, for applications in transcript repair, we will provide a detailed overview of enzymatic site-directed RNA editing, with a focus on A-to-I editing and non-enzymatic site-directed C-to-U editing.

  4. BLOOD PLASMA PROTEIN GIVEN BY VEIN UTILIZED IN BODY METABOLISM

    PubMed Central

    Holman, Russell L.; Mahoney, Earle B.; Whipple, George H.

    1934-01-01

    Large amounts of normal blood plasma can be given intravenously to normal dogs over several weeks without causing any significant escape by way of the urine. There appears to be no renal threshold for plasma protein even with high plasma protein concentration (9.7 per cent). Dogs receiving sugar by mouth and plasma by vein can be kept practically in nitrogen equilibrium and it would seem that the injected protein must be utilized by the body. If this can happen in this emergency we may suspect that normally there is a certain amount of "give and take" between body protein and plasma protein. Plasma protein fed by mouth under identical conditions shows the same general reaction as noted with plasma by vein but the urinary nitrogen is a little higher and suggests that the injected protein is utilized a little more completely to form new protein. The difference may be explained as due to deaminization in the case of protein by mouth. During fasting periods the blood plasma proteins are used up and the total circulating protein may even decrease to one-half the normal level. The plasma protein concentration changes but little and the significant change is a shrinkage of plasma volume. All these facts point to a dynamic equilibrium between tissue protein and plasma protein depending upon the physiological needs of the moment. In the absence of food protein the body can use material coming from one body protein to fabricate badly needed protein material of different character. PMID:19870245

  5. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    PubMed

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Pharmacodynamics of norepinephrine reuptake inhibition: Modeling the peripheral and central effects of atomoxetine, duloxetine, and edivoxetine on the biomarker 3,4-dihydroxyphenylglycol in humans.

    PubMed

    Kielbasa, William; Lobo, Evelyn

    2015-12-01

    Norepinephrine, a neurotransmitter in the autonomic sympathetic nervous system, is deaminated by monoamine oxidase to 3,4-dihydroxyphenylglycol (DHPG). Inhibition of the NE transporter (NET) using DHPG as a biomarker was evaluated using atomoxetine, duloxetine, and edivoxetine as probe NET inhibitors. Pharmacokinetic and pharmacodynamic data were obtained from healthy subjects (n = 160) from 5 clinical trials. An indirect response model was used to describe the relationship between drug plasma concentration and DHPG concentration in plasma and cerebrospinal fluid (CSF). The baseline plasma DHPG concentration (1130-1240 ng/mL) and Imax (33%-37%) were similar for the 3 drugs. The unbound plasma drug IC50 (IC50U ) based on plasma DHPG was 0.973 nM for duloxetine, 0.136 nM for atomoxetine, and 0.041 nM for edivoxetine. The baseline CSF DHPG concentration (1850-2260 ng/mL) was similar for the 3 drugs, but unlike plasma DHPG, the Imax for DHPG was 38% for duloxetine, 53% for atomoxetine, and75% for edivoxetine. The IC50U based on CSF DHPG was 2.72 nM for atomoxetine, 1.22 nM for duloxetine, and 0.794 nM for edivoxetine. These modeling results provide insights into the pharmacology of NET inhibitors and the use of DHPG as a biomarker. © 2015, The American College of Clinical Pharmacology.

  7. Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis

    PubMed Central

    Liu, Dong

    2013-01-01

    Isoleucine is one of the branched-chain amino acids (BCAAs) that are essential substrates for protein synthesis in all organisms. Although the metabolic pathway for isoleucine has been well characterized in higher plants, it is not known whether it plays a specific role in plant development. In this study, an Arabidopsis mutant, lib (low isoleucine biosynthesis), that has defects in both cell proliferation and cell expansion processes during root development, was characterized. The lib mutant carries a T-DNA insertion in the last exon of the OMR1 gene that encodes a threonine deaminase/dehydratase (TD). TD catalyses the deamination and dehydration of threonine, which is the first and also the committed step in the biosynthesis of isoleucine. This T-DNA insertion results in a partial deficiency of isoleucine in lib root tissues but it does not affect its total protein content. Application of exogenous isoleucine or introduction of a wild-type OMR1 gene into the lib mutant can completely rescue the mutant phenotypes. These results reveal an important role for isoleucine in plant development. In addition, microarray analysis indicated that the partial deficiency of isoleucine in the lib mutant triggers a decrease in transcript levels of the genes encoding the major enzymes involved in the BCAA degradation pathway; the analysis also indicated that many genes involved in the biosynthesis of methionine-derived glucosinolates are up-regulated. PMID:23230023

  8. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    PubMed

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  9. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination.

    PubMed

    Martomo, Stella A; Yang, William W; Gearhart, Patricia J

    2004-07-05

    Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6(-/-) clones, whereas mutations were dispersed in Msh3(-/-) and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase.

  10. Refining the Genetic Alphabet: A Late-Period Selection Pressure?

    PubMed Central

    Tor, Yitzhak

    2012-01-01

    Abstract The transition from genomic ribonucleic acid (RNA) to deoxyribonucleic acid (DNA) in primitive cells may have created a selection pressure that refined the genetic alphabet, resulting from the global weakening of the N-glycosyl bonds. Hydrolytic rupture of these bonds, termed deglycosylation, leaves an abasic site that is the single greatest threat to the stability and integrity of genomic DNA. The rates of deglycosylation are highly dependent on the identity of the nucleobases. Modifications made to the bases, such as deamination, oxidation, and alkylation, can further increase deglycosylation reaction rates, suggesting that the native bases provide optimum N-glycosyl bond stability. To protect their genomes, cells have evolved highly specific enzymes called glycosylases, associated with DNA repair, that detect and remove these damaged bases. In RNA, however, the occurrence of many of these modified bases is deliberate. The dichotomous behavior that cells exhibit toward base modifications may have originated in the RNA world. Modified bases would have been advantageous for the functional and structural repertoire of catalytic RNAs. Yet in an early DNA world, the utility of these heterocycles was greatly diminished, and their presence posed a distinct liability to the stability of cells' genomes. A natural selection for bases exhibiting the greatest resistance to deglycosylation would have ensured the viability of early DNA life, along with the recruitment of DNA repair. Key Words: DNA—Nucleic acids—RNA world—Asteroid—Chemical evolution—Ribozymes. Astrobiology 12, 884–891. PMID:22984873

  11. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  12. Genome-Wide Estimates of Mutation Rates and Spectrum in Schizosaccharomyces pombe Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation

    PubMed Central

    Behringer, Megan G.; Hall, David W.

    2015-01-01

    We accumulated mutations for 1952 generations in 79 initially identical, haploid lines of the fission yeast Schizosaccharomyces pombe, and then performed whole-genome sequencing to determine the mutation rates and spectrum. We captured 696 spontaneous mutations across the 79 mutation accumulation (MA) lines. We compared the mutation spectrum and rate to a recently published equivalent experiment on the same species, and to another model ascomycetous yeast, the budding yeast Saccharomyces cerevisiae. While the two species are approximately 600 million years diverged from each other, they share similar life histories, genome size and genomic G/C content. We found that Sc. pombe and S. cerevisiae have similar mutation rates, but Sc. pombe exhibits a stronger insertion bias. Intriguingly, we observed an increased mutation rate at cytosine nucleotides, specifically CpG nucleotides, which is also seen in S. cerevisiae. However, the absence of methylation in Sc. pombe and the pattern of mutation at these sites, primarily C → A as opposed to C → T, strongly suggest that the increased mutation rate is not caused by deamination of methylated cytosines. This result implies that the high mutability of CpG dinucleotides in other species may be caused in part by a methylation-independent mechanism. Many of our findings mirror those seen in the recent study, despite the use of different passaging conditions, indicating that MA is a reliable method for estimating mutation rates and spectra. PMID:26564949

  13. Uracil Accumulation and Mutagenesis Dominated by Cytosine Deamination in CpG Dinucleotides in Mice Lacking UNG and SMUG1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsøe, Lene; Sarno, Antonio; Carracedo, Sergio

    Both a DNA lesion and an intermediate for antibody maturation, uracil is primarily processed by base excision repair (BER), either initiated by uracil-DNA glycosylase (UNG) or by single-strand selective monofunctional uracil DNA glycosylase (SMUG1). The relative in vivo contributions of each glycosylase remain elusive. To assess the impact of SMUG1 deficiency, we measured uracil and 5-hydroxymethyluracil, another SMUG1 substrate, in Smug1 -/ - mice. Here, we found that 5-hydroxymethyluracil accumulated in Smug1 -/ - tissues and correlated with 5-hydroxymethylcytosine levels. The highest increase was found in brain, which contained about 26-fold higher genomic 5-hydroxymethyluracil levels than the wild type. Smug1more » -/ - mice did not accumulate uracil in their genome and Ung -/ - mice showed slightly elevated uracil levels. Contrastingly, Ung -/ -Smug1 -/ - mice showed a synergistic increase in uracil levels with up to 25-fold higher uracil levels than wild type. Whole genome sequencing of UNG/SMUG1-deficient tumours revealed that combined UNG and SMUG1 deficiency leads to the accumulation of mutations, primarily C to T transitions within CpG sequences. This unexpected sequence bias suggests that CpG dinucleotides are intrinsically more mutation prone. In conclusion, we showed that SMUG1 efficiently prevent genomic uracil accumulation, even in the presence of UNG, and identified mutational signatures associated with combined UNG and SMUG1 deficiency.« less

  14. Pyrimidine homoribonucleosides: synthesis, solution conformation, and some biological properties.

    PubMed

    Lassota, P; Kuśmierek, J T; Stolarski, R; Shugar, D

    1987-05-01

    Conversion of uridine and cytidine to their 5'-O-tosyl derivatives, followed by cyanation with tetraethylammonium cyanide, reduction and deamination, led to isolation of the hitherto unknown homouridine (1-(5'-deoxy-beta-D-allofuranosyl)uracil) and homocytidine (1-(5'-deoxy-beta-D-allofuranosyl)cytosine), analogues of uridine and cytidine in which the exocyclic 5'-CH2OH chain is extended by one carbon to CH2CH2OH. Homocytidine was also phosphorylated to its 6'-phosphate and 6'-pyrophosphate analogues. In addition, it was converted, via its 2,2'-anhydro derivative, to arahomocytidine, an analogue of the chemotherapeutically active araC. The structures of all the foregoing were established by various criteria, including 1H and 13C NMR spectroscopy, both of which were also applied to analyses of the solution conformations of the various compounds, particularly as regards the conformations of the exocyclic chains. The behaviour of the homo analogues was examined in several enzymatic systems. Homocytidine was a feeble substrate, without inhibitory properties, of E. coli cytidine deaminase. Homocytidine was an excellent substrate for wheat shoot nucleoside phosphotransferase; while homouridine was a good substrate for E. coli uridine phosphorylase. Although homoCMP was neither a substrate, nor an inhibitor, of snake venom 5'-nucleotidase, homoCDP was a potent inhibitor of this enzyme (Ki approximately 6 microM). HomoCDP was not a substrate for M. luteus polynucleotide phosphorylase. None of the compounds exhibited significant activity vs herpes simplex virus type 1, or cytotoxic activity in several mammalian cell lines.

  15. Simultaneous and selective decarboxylation of L-serine and deamination of L-phenylalanine in an amino acid mixture--a means of separating amino acids for synthesizing biobased chemicals.

    PubMed

    Teng, Yinglai; Scott, Elinor L; Witte-van Dijk, Susan C M; Sanders, Johan P M

    2016-01-25

    Amino acids (AAs) obtained from the hydrolysis of biomass-derived proteins are interesting feedstocks for the chemical industry. They can be prepared from the byproduct of biofuel production and agricultural wastes. They are rich in functionalities needed in petrochemicals, providing the opportunity to save energy, reagents, and process steps. However, their separation is required before they can be applied for further applications. Electrodialysis (ED) is a promising separation method, but its efficiency needs to be improved when separating AAs with similar isoelectric points. Thus, specific conversions are required to form product with different charges. Here we studied the enzymatic conversions which can be used as a means to aid the ED separation of neutral AAs. A model mixture containing L-serine, L-phenylalanine and L-methionine was used. The reactions of L-serine decarboxylase and L-phenylalanine ammonia-lyase were employed to specifically convert serine and phenylalanine into ethanolamine and trans-cinnamic acid. At the isoelectric point of methionine (pH 5.74), the charge of ethanolamine and trans-cinnamic acid are +1 and -1, therefore facilitating potential separation into three different streams by electrodialysis. Here the enzyme kinetics, specificity, inhibition and the operational stabilities were studied, showing that both enzymes can be applied simultaneously to aid the ED separation of neutral AAs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. High-resolution melting analysis of sequence variations in the cytidine deaminase gene (CDA) in patients with cancer treated with gemcitabine.

    PubMed

    Raynal, Caroline; Ciccolini, Joseph; Mercier, Cédric; Boyer, Jean-Christophe; Polge, Anne; Lallemant, Benjamin; Mouzat, Kévin; Lumbroso, Serge; Brouillet, Jean-Paul; Evrard, Alexandre

    2010-02-01

    Gemcitabine (2',2'-difluorodeoxycytidine) is a major antimetabolite cytotoxic drug with a wide spectrum of activity against solid tumors. Hepatic elimination of gemcitabine depends on a catabolic pathway through a deamination step driven by the enzyme cytidine deaminase (CDA). Severe hematologic toxicity to gemcitabine was reported in patients harboring genetic polymorphisms in CDA gene. High-resolution melting (HRM) analysis of polymerase chain reaction amplicon emerges today as a powerful technique for both genotyping and gene scanning strategies. In this study, 46 DNA samples from gemcitabine-treated patients were subjected to HRM analysis on a LightCycler 480 platform. Residual serum CDA activity was assayed as a surrogate marker for the overall functionality of this enzyme. Genotyping of three well-described single nucleotide polymorphisms in coding region (c.79A>C, c.208G>A and c.435C>T) was successfully achieved by HRM analysis of small polymerase chain reaction fragments, whereas unknown single nucleotide polymorphisms were searched by a gene scanning strategy with longer amplicons (up to 622 bp). The gene scanning strategy allowed us to find a new intronic mutation c.246+37G>A in a female patient displaying marked CDA deficiency and who had an extreme toxic reaction with a fatal outcome to gemcitabine treatment. Our work demonstrates that HRM-based methods, owing to their simplicity, reliability, and speed, are useful tools for diagnosis of CDA deficiency and could be of interest for personalized medicine.

  17. Free-Energy Landscape and Proton Transfer Pathways in Oxidative Deamination by Methylamine Dehydrogenase.

    PubMed

    Zelleke, Theodros; Marx, Dominik

    2017-01-18

    The rate-determining step in the reductive half-reaction of the bacterial enzyme methylamine dehydrogenase, which is proton abstraction from the native substrate methylamine, is investigated using accelerated QM/MM molecular dynamics simulations at room temperature. Generation of the multidimensional thermal free-energy landscape without restriction of the degrees of freedom beyond a multidimensional reaction subspace maps two rather similar pathways for the underlying proton transfer to one of two aspartate carboxyl oxygen atoms, termed OD1 and OD2, which hydrogen bond with Thr122 and Trp108, respectively. Despite significant large-amplitude motion perpendicular to the one-dimensional proton transfer coordinate, due to fluctuations of the donor-acceptor distance of about 3 Å, it is found that the one-dimensional proton transfer free-energy profiles are essentially identical to the minimum free-energy pathways on the multidimensional free-energy landscapes for both proton transfer channels. Proton transfer to one of the acceptor oxygen atoms-the OD2 site-is slightly favored in methylamine dehydrogenase by approximately 2 kcal mol -1 , both kinetically and thermodynamically. Mechanistic analyses reveal that the hydrogen bond between Thr122β and OD1 is always present in the transition state independently of the proton transfer channel. Population analysis confirms that the electronic charge gained upon oxidation of the substrate is delocalized within the ring systems of the tryptophan tryptophylquinone cofactor. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. BEHAVIORAL OUTCOMES OF MONOAMINE OXIDASE DEFICIENCY: PRECLINICAL AND CLINICAL EVIDENCE

    PubMed Central

    Bortolato, Marco; Shih, Jean C.

    2012-01-01

    Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity—due to either genetic or environmental factors—can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson’s disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders. PMID:21971001

  19. Behavioral outcomes of monoamine oxidase deficiency: preclinical and clinical evidence.

    PubMed

    Bortolato, Marco; Shih, Jean C

    2011-01-01

    Monoamine oxidase (MAO) isoenzymes A and B are mitochondrial-bound proteins, catalyzing the oxidative deamination of monoamine neurotransmitters as well as xenobiotic amines. Although they derive from a common ancestral progenitor gene, are located at X-chromosome and display 70% structural identity, their substrate preference, regional distribution, and physiological role are divergent. In fact, while MAO-A has high affinity for serotonin and norepinephrine, MAO-B primarily serves the catabolism of 2-phenylethylamine (PEA) and contributes to the degradation of other trace amines and dopamine. Convergent lines of preclinical and clinical evidence indicate that variations in MAO enzymatic activity--due to either genetic or environmental factors--can exert a profound influence on behavioral regulation and play a role in the pathophysiology of a large spectrum of mental and neurodegenerative disorders, ranging from antisocial personality disorder to Parkinson's disease. Over the past few years, numerous advances have been made in our understanding of the phenotypical variations associated with genetic polymorphisms and mutations of the genes encoding for both isoenzymes. In particular, novel findings on the phenotypes of MAO-deficient mice are highlighting novel potential implications of both isoenzymes in a broad spectrum of mental disorders, ranging from autism and anxiety to impulse-control disorders and ADHD. These studies will lay the foundation for future research on the neurobiological and neurochemical bases of these pathological conditions, as well as the role of gene × environment interactions in the vulnerability to several mental disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Ethylene-Regulated Glutamate Dehydrogenase Fine-Tunes Metabolism during Anoxia-Reoxygenation.

    PubMed

    Tsai, Kuen-Jin; Lin, Chih-Yu; Ting, Chen-Yun; Shih, Ming-Che

    2016-11-01

    Ethylene is an essential hormone in plants that is involved in low-oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis (Arabidopsis thaliana) EIN3 chromatin immunoprecipitation sequencing data set, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in tricarboxylic acid cycle replenishment. We demonstrated that both GDH1 and GDH2 are induced during anoxia and reoxygenation and that this induction is mediated via ethylene signaling. In addition, the results of enzymatic assays showed that the level of GDH during anoxia-reoxygenation decreased in the ethylene-insensitive mutants ein2-5 and ein3eil1 Global metabolite analysis indicated that the deamination activity of GDH might regenerate 2-oxoglutarate, which is a cosubstrate that facilitates the breakdown of alanine by alanine aminotransferase when reoxygenation occurs. Moreover, ineffective tricarboxylic acid cycle replenishment, disturbed carbohydrate metabolism, reduced phytosterol biosynthesis, and delayed energy regeneration were found in gdh1gdh2 and ethylene mutants during reoxygenation. Taken together, these data illustrate the essential role of EIN3-regulated GDH activity in metabolic adjustment during anoxia-reoxygenation. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. The importance of becoming double-stranded: Innate immunity and the kinetic model of HIV-1 central plus strand synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poeschla, Eric, E-mail: poeschla.eric@mayo.edu

    Central initiation of plus strand synthesis is a conserved feature of lentiviruses and certain other retroelements. This complication of the standard reverse transcription mechanism produces a transient “central DNA flap” in the viral cDNA, which has been proposed to mediate its subsequent nuclear import. This model has assumed that the important feature is the flapped DNA structure itself rather than the process that produces it. Recently, an alternative kinetic model was proposed. It posits that central plus strand synthesis functions to accelerate conversion to the double-stranded state, thereby helping HIV-1 to evade single-strand DNA-targeting antiviral restrictions such as APOBEC3 proteins,more » and perhaps to avoid innate immune sensor mechanisms. The model is consistent with evidence that lentiviruses must often synthesize their cDNAs when dNTP concentrations are limiting and with data linking reverse transcription and uncoating. There may be additional kinetic advantages for the artificial genomes of lentiviral gene therapy vectors. - Highlights: • Two main functional models for HIV central plus strand synthesis have been proposed. • In one, a transient central DNA flap in the viral cDNA mediates HIV-1 nuclear import. • In the other, multiple kinetic consequences are emphasized. • One is defense against APOBEC3G, which deaminates single-stranded DNA. • Future questions pertain to antiviral restriction, uncoating and nuclear import.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Changhong; Li, Ming; Chen, Pan

    Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of L-glutamate and, in animals, is extensively regulated by a number of metabolites. Gain of function mutations in GDH that abrogate GTP inhibition cause the hyperinsulinism/hyperammonemia syndrome (HHS), resulting in increased pancreatic {beta}-cell responsiveness to leucine and susceptibility to hypoglycemia following high protein meals. We have previously shown that two of the polyphenols from green tea (epigallocatechin gallate (EGCG) and epicatechin gallate (ECG)) inhibit GDH in vitro and that EGCG blocks GDH-mediated insulin secretion in wild type rat islets. Using structural and site-directed mutagenesis studies, we demonstrate that ECG binds to the samemore » site as the allosteric regulator, ADP. Perifusion assays using pancreatic islets from transgenic mice expressing a human HHS form of GDH demonstrate that the hyperresponse to glutamine caused by dysregulated GDH is blocked by the addition of EGCG. As observed in HHS patients, these transgenic mice are hypersensitive to amino acid feeding, and this is abrogated by oral administration of EGCG prior to challenge. Finally, the low basal blood glucose level in the HHS mouse model is improved upon chronic administration of EGCG. These results suggest that this common natural product or some derivative thereof may prove useful in controlling this genetic disorder. Of broader clinical implication is that other groups have shown that restriction of glutamine catabolism via these GDH inhibitors can be useful in treating various tumors. This HHS transgenic mouse model offers a highly useful means to test these agents in vivo.« less

  3. The interaction between cytosine methylation and processes of DNA replication and repair shape the mutational landscape of cancer genomes.

    PubMed

    Poulos, Rebecca C; Olivier, Jake; Wong, Jason W H

    2017-07-27

    Methylated cytosines (5mCs) are frequently mutated in the genome. However, no studies have yet comprehensively analysed mutation-methylation associations across cancer types. Here we analyse 916 cancer genomes, together with tissue type-specific methylation and replication timing data. We describe a strong mutation-methylation association across colorectal cancer subtypes, most interestingly in samples with microsatellite instability (MSI) or Polymerase epsilon (POLE) exonuclease domain mutations. By analysing genomic regions with differential mismatch repair (MMR) efficiency, we suggest a possible role for MMR in the correction of 5mC deamination events, potentially accounting for the high rate of 5mC mutation accumulation in MSI tumours. Additionally, we propose that mutant POLE asserts a mutator phenotype specifically at 5mCs, and we find coding mutation hotspots in POLE-mutant cancers at highly-methylated CpGs in the tumour-suppressor genes APC and TP53. Finally, using multivariable regression models, we demonstrate that different cancers exhibit distinct mutation-methylation associations, with DNA repair influencing such associations in certain cancer genomes. Taken together, we find differential associations with methylation that are vital for accurately predicting expected mutation loads across cancer types. Our findings reveal links between methylation and common mutation and repair processes, with these mechanisms defining a key part of the mutational landscape of cancer genomes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Plant-based strategies towards minimising 'livestock's long shadow'.

    PubMed

    Kingston-Smith, Alison H; Edwards, Joan E; Huws, Sharon A; Kim, Eun J; Abberton, Michael

    2010-11-01

    Ruminant farming is an important component of the human food chain. Ruminants can use offtake from land unsuitable for cereal crop cultivation via interaction with the diverse microbial population in their rumens. The rumen is a continuous flow fermenter for the digestion of ligno-cellulose, with microbial protein and fermentation end-products incorporated by the animal directly or during post-ruminal digestion. However, ruminal fermentation is inefficient in capturing the nutrient resource presented, resulting in environmental pollution and generation of greenhouse gases. Methane is generated as a consequence of ruminal fermentation and poor retention of ingested forage nitrogen causes nitrogenous pollution of water and land and contributes to the generation of nitrous oxide. One possible cause is the imbalanced provision of dietary substrates to the rumen micro-organisms. Deamination of amino acids by ammonia-producing bacteria liberates ammonia which can be assimilated by the rumen bacteria and used for microbial protein synthesis. However, when carbohydrate is limiting, microbial growth is slow, meaning low demand for ammonia for microbial protein synthesis and excretion of the excess. Protein utilisation can therefore be improved by increasing the availability of readily fermentable sugars in forage or by making protein unavailable for proteolysis through complexing with plant secondary products. Alternatively, realisation that grazing cattle ingest living cells has led to the discovery that plant cells undergo endogenous, stress-mediated protein degradation due to the exposure to rumen conditions. This presents the opportunity to decrease the environmental impact of livestock farming by using decreased proteolysis as a selection tool for the development of improved pasture grass varieties.

  5. Psychopharmacological investigation of the monoamine oxidase inhibitory activity of molindone, a dihydroindolone neuroleptic.

    PubMed

    Balsara, J J; Gada, V P; Nandal, N V; Chandorkar, A G

    1984-09-01

    24 h pretreatment with molindone enhanced the behavioural effects of L-dopa and 5-HTP, precursors of biogenic amines (catecholamines and 5-HT respectively) preferentially deaminated by MAO-A, confirming that a metabolite of molindone inhibits MAO-A. 24 h pretreatment with molindone enhanced the behavioural effects of tryptamine and antagonized reserpine-induced ptosis, and in molindone-pretreated rats L-tryptophan induced behavioural effects, probably because of the MAO-A inhibitory activity exerted by a metabolite of molindone. Since 24 h pretreatment with molindone, unlike 30 min pretreatment with clomipramine, failed to antagonize fenfluramine and p-chloramphetamine-induced behavioural syndromes, it suggests that molindone and/or its metabolites most probably do not exert 5-HT neuronal uptake blocking activity and the potentiation of 5-HTP-induced behavioural syndrome is due to a metabolite's MAO-A inhibitory activity. As 2 h pretreatment with molindone induced catalepsy and antagonized apomorphine-induced climbing behaviour in mice and stereotypy in rats, while 24 h pretreatment failed to induce catalepsy and to antagonize apomorphine-induced behaviour, it appears that, at 24 h, the tissue levels of molindone are inadequate to block postsynaptic striatal and mesolimbic DA receptors and that, though a metabolite of molindone is biologically active so far as inhibition of MAO-A is concerned, the metabolites are devoid of neuroleptic activity. Further, since 2 h pretreatment with molindone failed to enhance the behavioural effects of L-dopa, it suggests that at 2 h the degree of MAO-A inhibition induced by molindone and/or the metabolite is not sufficient to counteract the neuroleptic activity of the parent compound.

  6. Of the Nine Cytidine Deaminase-Like Genes in Arabidopsis, Eight Are Pseudogenes and Only One Is Required to Maintain Pyrimidine Homeostasis in Vivo1

    PubMed Central

    2016-01-01

    CYTIDINE DEAMINASE (CDA) catalyzes the deamination of cytidine to uridine and ammonia in the catabolic route of C nucleotides. The Arabidopsis (Arabidopsis thaliana) CDA gene family comprises nine members, one of which (AtCDA) was shown previously in vitro to encode an active CDA. A possible role in C-to-U RNA editing or in antiviral defense has been discussed for other members. A comprehensive bioinformatic analysis of plant CDA sequences, combined with biochemical functionality tests, strongly suggests that all Arabidopsis CDA family members except AtCDA are pseudogenes and that most plants only require a single CDA gene. Soybean (Glycine max) possesses three CDA genes, but only two encode functional enzymes and just one has very high catalytic efficiency. AtCDA and soybean CDAs are located in the cytosol. The functionality of AtCDA in vivo was demonstrated with loss-of-function mutants accumulating high amounts of cytidine but also CMP, cytosine, and some uridine in seeds. Cytidine hydrolysis in cda mutants is likely caused by NUCLEOSIDE HYDROLASE1 (NSH1) because cytosine accumulation is strongly reduced in a cda nsh1 double mutant. Altered responses of the cda mutants to fluorocytidine and fluorouridine indicate that a dual specific nucleoside kinase is involved in cytidine as well as uridine salvage. CDA mutants display a reduction in rosette size and have fewer leaves compared with the wild type, which is probably not caused by defective pyrimidine catabolism but by the accumulation of pyrimidine catabolism intermediates reaching toxic concentrations. PMID:27208239

  7. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana.

    PubMed

    Wang, Minmin; Toda, Kyoko; Maeda, Hiroshi A

    2016-12-01

    Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Embryonic lethality in mice lacking mismatch-specific thymine DNA glycosylase is partially prevented by DOPS, a precursor of noradrenaline.

    PubMed

    Saito, Yusuke; Ono, Tetsuya; Takeda, Naoki; Nohmi, Takehiko; Seki, Masayuki; Enomoto, Takemi; Noda, Tetsuo; Uehara, Yoshihiko

    2012-01-01

    Thymine DNA glycosylase (TDG) is involved in the repair of G:T and G:U mismatches caused by hydrolytic deamination of 5-methylcytosine and cytosine, respectively. Recent studies have shown that TDG not only has G-T/U glycosylase activities but also acts in the maintaining proper epigenetic status. In order to investigate the function of TDG in vivo, mice lacking Tdg, Tdg (-/-), were generated. Tdg mutant mice died in utero by 11.5 days post coitum (dpc), although there were no significant differences in the spontaneous mutant frequencies between wild type and Tdg (-/-) embryos. On the other hand, the levels of noradrenaline in 10.5 dpc whole embryos, which is necessary for normal embryogenesis, were dramatically reduced in Tdg (-/-) embryos. Consequently, we tested the effect of D, L-threo-3, 4-dihydroxyphenylserine (DOPS), a synthetic precursor of noradrenaline, on the survival of the Tdg (-/-) embryos. DOPS was given to pregnant Tdg (+/-) mice from 6.5 dpc through drinking water. Most of the Tdg (-/-) embryos were alive at 11.5 dpc, and they were partially rescued up to 14.5 dpc by the administration of DOPS. In contrast, the administration of L-3, 4-dihydroxyphenylalanine (L-DOPA) had marginal effects on Tdg (-/-) embryonic lethality. No embryo was alive without DOPS beyond 11.5 dpc, suggesting that the lethality in (-/-) embryos is partially due to the reduction of noradrenaline. These results suggest that embryonic lethality in Tdg (-/-) embryos is due, in part, to the reduction of noradrenaline levels.

  9. Systematic asymmetric nucleotide exchanges produce human mitochondrial RNAs cryptically encoding for overlapping protein coding genes.

    PubMed

    Seligmann, Hervé

    2013-05-07

    GenBank's EST database includes RNAs matching exactly human mitochondrial sequences assuming systematic asymmetric nucleotide exchange-transcription along exchange rules: A→G→C→U/T→A (12 ESTs), A→U/T→C→G→A (4 ESTs), C→G→U/T→C (3 ESTs), and A→C→G→U/T→A (1 EST), no RNAs correspond to other potential asymmetric exchange rules. Hypothetical polypeptides translated from nucleotide-exchanged human mitochondrial protein coding genes align with numerous GenBank proteins, predicted secondary structures resemble their putative GenBank homologue's. Two independent methods designed to detect overlapping genes (one based on nucleotide contents analyses in relation to replicative deamination gradients at third codon positions, and circular code analyses of codon contents based on frame redundancy), confirm nucleotide-exchange-encrypted overlapping genes. Methods converge on which genes are most probably active, and which not, and this for the various exchange rules. Mean EST lengths produced by different nucleotide exchanges are proportional to (a) extents that various bioinformatics analyses confirm the protein coding status of putative overlapping genes; (b) known kinetic chemistry parameters of the corresponding nucleotide substitutions by the human mitochondrial DNA polymerase gamma (nucleotide DNA misinsertion rates); (c) stop codon densities in predicted overlapping genes (stop codon readthrough and exchanging polymerization regulate gene expression by counterbalancing each other). Numerous rarely expressed proteins seem encoded within regular mitochondrial genes through asymmetric nucleotide exchange, avoiding lengthening genomes. Intersecting evidence between several independent approaches confirms the working hypothesis status of gene encryption by systematic nucleotide exchanges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Aerobic Degradation of N-Methyl-4-Nitroaniline (MNA) by Pseudomonas sp. Strain FK357 Isolated from Soil

    PubMed Central

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway. PMID:24116023

  11. Aerobic degradation of N-methyl-4-nitroaniline (MNA) by Pseudomonas sp. strain FK357 isolated from soil.

    PubMed

    Khan, Fazlurrahman; Vyas, Bhawna; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    N-Methyl-4-nitroaniline (MNA) is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA), 4-aminophenol (4-AP), and 1, 2, 4-benzenetriol (BT) as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent) reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  12. Roles of Saccharomyces cerevisiae DNA polymerases Polη and Polζ in response to irradiation by simulated sunlight

    PubMed Central

    Kozmin, Stanislav G.; Pavlov, Youri I.; Kunkel, Thomas A.; Sage, Evelyne

    2003-01-01

    Sunlight causes lesions in DNA that if unrepaired and inaccurately replicated by DNA polymerases yield mutations that result in skin cancer in humans. Two enzymes involved in translesion synthesis (TLS) of UV-induced photolesions are DNA polymerase η (Polη) and polymerase ζ (Polζ), encoded by the RAD30A and REV3 genes, respectively. Previous studies have investigated the TLS roles of these polymerases in human and yeast cells irradiated with monochromatic, short wavelength UVC radiation (254 nm). However, less is known about cellular responses to solar radiation, which is of higher and mixed wavelengths (310–1100 nm) and produces a different spectrum of DNA lesions, including Dewar photoproducts and oxidative lesions. Here we report on the comparative cytotoxic and mutagenic effects of simulated sunlight (SSL) and UVC radiation on yeast wild-type, rad30Δ, rev3Δ and rev3Δ rad30Δ strains. The results with SSL support several previous interpretations on the roles of these two polymerases in TLS of photodimers and (6–4) photoproducts derived from studies with UVC. They further suggest that Polη participates in the non-mutagenic bypass of SSL-dependent cytosine-containing Dewar photoproducts and 8-oxoguanine, while Polζ is mainly responsible for the mutagenic bypass of all types of Dewar photoproducts. They also suggest that in the absence of Polζ, Polη contributes to UVC- and SSL-induced mutagenesis, possibly by the bypass of photodimers containing deaminated cytosine. PMID:12888515

  13. Sepsis induced by cecal ligation and perforation (CLP) alters nucleotidase activities in platelets of rats.

    PubMed

    Pereira, Renata S; Bertoncheli, Claudia M; Adefegha, Stephen A; Castilhos, Lívia G; Silveira, Karine L; Rezer, João Felipe P; Doleski, Pedro H; Abdalla, Fátima H; Santos, Karen F; Leal, Claudio A M; Santos, Roberto C V; Casali, Emerson A; Moritz, Cesar E J; Stainki, Daniel R; Leal, Daniela B R

    2017-10-01

    Sepsis is a potentially lethal condition, and it is associated with platelet alterations. The present study sought to investigate the activity of ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase), E-5'-nucleotidase, and ecto-adenosine deaminase (E-ADA) in the platelets of rats that were induced with sepsis. Male Wistar rats were divided into three groups of ten animals each: a negative control group (normal; NC); a group that underwent surgical procedures (sham); and a group that underwent cecal ligation and perforation (CLP). The induction of sepsis was confirmed by bacteremia, and the causative pathogen identified was Escherichia coli. Hematological parameters showed leukocytosis and thrombocytopenia in animals in the septic group. The results also revealed that there were significant (p < 0.05) increases in adenosine triphosphate (ATP) and adenosine monophosphate (AMP) hydrolyses, and in the deamination of adenosine in the CLP group compared to the sham and control groups. Conversely, ADP hydrolysis was significantly decreased (p < 0.05) in the CLP group compared to the sham and control groups. Purine levels were analyzed by high-performance liquid chromatography (HPLC) in serum samples from control, sham, and CLP groups. Increased concentrations of ATP, adenosine, and inosine were found in the CLP group compared to the sham and control groups. Conversely, the concentrations of ADP and AMP in the CPL group were not significantly altered. We suggest that alterations in hematological parameters, nucleotide hydrolysis in platelets, and nucleotide concentrations in serum samples of rats with induced sepsis may be related to thromboembolic events. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    PubMed

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  15. Base Excision Repair of Tandem Modifications in a Methylated CpG Dinucleotide*

    PubMed Central

    Sassa, Akira; Çağlayan, Melike; Dyrkheeva, Nadezhda S.; Beard, William A.; Wilson, Samuel H.

    2014-01-01

    Cytosine methylation and demethylation in tracks of CpG dinucleotides is an epigenetic mechanism for control of gene expression. The initial step in the demethylation process can be deamination of 5-methylcytosine producing the TpG alteration and T:G mispair, and this step is followed by thymine DNA glycosylase (TDG) initiated base excision repair (BER). A further consideration is that guanine in the CpG dinucleotide may become oxidized to 7,8-dihydro-8-oxoguanine (8-oxoG), and this could affect the demethylation process involving TDG-initiated BER. However, little is known about the enzymology of BER of altered in-tandem CpG dinucleotides; e.g. Tp8-oxoG. Here, we investigated interactions between this altered dinucleotide and purified BER enzymes, the DNA glycosylases TDG and 8-oxoG DNA glycosylase 1 (OGG1), apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligases. The overall TDG-initiated BER of the Tp8-oxoG dinucleotide is significantly reduced. Specifically, TDG and DNA ligase activities are reduced by a 3′-flanking 8-oxoG. In contrast, the OGG1-initiated BER pathway is blocked due to the 5′-flanking T:G mispair; this reduces OGG1, AP endonuclease 1, and DNA polymerase β activities. Furthermore, in TDG-initiated BER, TDG remains bound to its product AP site blocking OGG1 access to the adjacent 8-oxoG. These results reveal BER enzyme specificities enabling suppression of OGG1-initiated BER and coordination of TDG-initiated BER at this tandem alteration in the CpG dinucleotide. PMID:24695738

  16. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide

    PubMed Central

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A.; Sibille, Etienne; Siever, Larry J.; Koonin, Eugene; Dracheva, Stella

    2014-01-01

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. PMID:24781207

  17. Quantitative Analysis of Focused A-To-I RNA Editing Sites by Ultra-High-Throughput Sequencing in Psychiatric Disorders

    PubMed Central

    Zhu, Hu; Urban, Daniel J.; Blashka, Jared; McPheeters, Matthew T.; Kroeze, Wesley K.; Mieczkowski, Piotr; Overholser, James C.; Jurjus, George J.; Dieter, Lesa; Mahajan, Gouri J.; Rajkowska, Grazyna; Wang, Zefeng; Sullivan, Patrick F.; Stockmeier, Craig A.; Roth, Bryan L.

    2012-01-01

    A-to-I RNA editing is a post-transcriptional modification of single nucleotides in RNA by adenosine deamination, which thereby diversifies the gene products encoded in the genome. Thousands of potential RNA editing sites have been identified by recent studies (e.g. see Li et al, Science 2009); however, only a handful of these sites have been independently confirmed. Here, we systematically and quantitatively examined 109 putative coding region A-to-I RNA editing sites in three sets of normal human brain samples by ultra-high-throughput sequencing (uHTS). Forty of 109 putative sites, including 25 previously confirmed sites, were validated as truly edited in our brain samples, suggesting an overestimation of A-to-I RNA editing in these putative sites by Li et al (2009). To evaluate RNA editing in human disease, we analyzed 29 of the confirmed sites in subjects with major depressive disorder and schizophrenia using uHTS. In striking contrast to many prior studies, we did not find significant alterations in the frequency of RNA editing at any of the editing sites in samples from these patients, including within the 5HT2C serotonin receptor (HTR2C). Our results indicate that uHTS is a fast, quantitative and high-throughput method to assess RNA editing in human physiology and disease and that many prior studies of RNA editing may overestimate both the extent and disease-related variability of RNA editing at the sites we examined in the human brain. PMID:22912834

  18. Alu elements shape the primate transcriptome by cis-regulation of RNA editing

    PubMed Central

    2014-01-01

    Background RNA editing by adenosine to inosine deamination is a widespread phenomenon, particularly frequent in the human transcriptome, largely due to the presence of inverted Alu repeats and their ability to form double-stranded structures – a requisite for ADAR editing. While several hundred thousand editing sites have been identified within these primate-specific repeats, the function of Alu-editing has yet to be elucidated. Results We show that inverted Alu repeats, expressed in the primate brain, can induce site-selective editing in cis on sites located several hundred nucleotides from the Alu elements. Furthermore, a computational analysis, based on available RNA-seq data, finds that site-selective editing occurs significantly closer to edited Alu elements than expected. These targets are poorly edited upon deletion of the editing inducers, as well as in homologous transcripts from organisms lacking Alus. Sequences surrounding sites near edited Alus in UTRs, have been subjected to a lesser extent of evolutionary selection than those far from edited Alus, indicating that their editing generally depends on cis-acting Alus. Interestingly, we find an enrichment of primate-specific editing within encoded sequence or the UTRs of zinc finger-containing transcription factors. Conclusions We propose a model whereby primate-specific editing is induced by adjacent Alu elements that function as recruitment elements for the ADAR editing enzymes. The enrichment of site-selective editing with potentially functional consequences on the expression of transcription factors indicates that editing contributes more profoundly to the transcriptomic regulation and repertoire in primates than previously thought. PMID:24485196

  19. Uracil-DNA Glycosylase in Base Excision Repair and Adaptive Immunity

    PubMed Central

    Doseth, Berit; Visnes, Torkild; Wallenius, Anders; Ericsson, Ida; Sarno, Antonio; Pettersen, Henrik Sahlin; Flatberg, Arnar; Catterall, Tara; Slupphaug, Geir; Krokan, Hans E.; Kavli, Bodil

    2011-01-01

    Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung+/+ and Ung−/− backcrossed mice. Interestingly, human cells displayed ∼15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ∼8-fold higher in mouse cells, constituting ∼50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung−/− mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity. PMID:21454529

  20. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Kim, Jiyoung; Park, Hyesung; Han, Jae-Gu; Oh, Junsang; Choi, Hyung-Kyoon; Kim, Seong Hwan; Sung, Gi-Ho

    2015-11-01

    Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. New Views on Strand Asymmetry in Insect Mitochondrial Genomes

    PubMed Central

    Wei, Shu-Jun; Shi, Min; Chen, Xue-Xin; Sharkey, Michael J.; van Achterberg, Cornelis; Ye, Gong-Yin; He, Jun-Hua

    2010-01-01

    Strand asymmetry in nucleotide composition is a remarkable feature of animal mitochondrial genomes. Understanding the mutation processes that shape strand asymmetry is essential for comprehensive knowledge of genome evolution, demographical population history and accurate phylogenetic inference. Previous studies found that the relative contributions of different substitution types to strand asymmetry are associated with replication alone or both replication and transcription. However, the relative contributions of replication and transcription to strand asymmetry remain unclear. Here we conducted a broad survey of strand asymmetry across 120 insect mitochondrial genomes, with special reference to the correlation between the signs of skew values and replication orientation/gene direction. The results show that the sign of GC skew on entire mitochondrial genomes is reversed in all species of three distantly related families of insects, Philopteridae (Phthiraptera), Aleyrodidae (Hemiptera) and Braconidae (Hymenoptera); the replication-related elements in the A+T-rich regions of these species are inverted, confirming that reversal of strand asymmetry (GC skew) was caused by inversion of replication origin; and finally, the sign of GC skew value is associated with replication orientation but not with gene direction, while that of AT skew value varies with gene direction, replication and codon positions used in analyses. These findings show that deaminations during replication and other mutations contribute more than selection on amino acid sequences to strand compositions of G and C, and that the replication process has a stronger affect on A and T content than does transcription. Our results may contribute to genome-wide studies of replication and transcription mechanisms. PMID:20856815

  2. Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig.

    PubMed

    Polakof, Sergio; Rémond, Didier; David, Jérémie; Dardevet, Dominique; Savary-Auzeloux, Isabelle

    2018-06-01

    High-fat high-sucrose diet (HFHS) overfeeding is one of the main factors responsible for the increased prevalence of metabolic disorders. Elevated levels of branched-chain amino acids (BCAAs) have been associated with metabolic dysfunctions, including insulin resistance (IR). The aim of this study was to elucidate whether elevated BCAA levels are the cause or the consequence of IR and to determine the mechanisms and tissues involved in such a phenotype. We performed a 2-mo follow-up on minipigs overfed an HFHS diet and focused on kinetics fasting and postprandial (PP) BCAA levels and BCAA catabolism in key tissues. The study of the fasting BCAA elevation reveals that BCAA accumulation in the plasma compartment is well correlated with IR markers and body weight. Furthermore, the PP excursion of BCAA levels after the last HFHS meal was exacerbated when compared with that of the first meal, suggesting a reduced amino acid oxidation potential. Although only minor changes in BCAA metabolism were observed in liver, muscle, and the visceral adipose tissue, the oxidative deamination potential of the subcutaneous adipose tissue was blunted after 60 d of HFHS feeding. To our knowledge, the present results demonstrated for the first time in a swine model of obesity and IR, the existence of a phenotype related to high-circulating BCAA levels and metabolic dysregulation. The oxidative BCAA capacity reduction specifically in the subcutaneous adipose tissue emerges, at least in the present swine model, as the more plausible metabolic explanation for the elevated blood BCAA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Different modes of retrovirus restriction by human APOBEC3A and APOBEC3G in vivo.

    PubMed

    Stavrou, Spyridon; Crawford, Daniel; Blouch, Kristin; Browne, Edward P; Kohli, Rahul M; Ross, Susan R

    2014-05-01

    The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions.

  4. Secondary targets of nitrite-derived reactive nitrogen species: nitrosation/nitration pathways, antioxidant defense mechanisms and toxicological implications.

    PubMed

    d'Ischia, Marco; Napolitano, Alessandra; Manini, Paola; Panzella, Lucia

    2011-12-19

    Nitrite, the primary metabolite of nitric oxide (NO) and a widely diffused component of human diet, plays distinct and increasingly appreciated roles in human physiology. However, when exposed to acidic environments, typically in the stomach, or under oxidative stress conditions, it may be converted to a range of reactive nitrogen species (RNS) which in turn can target a variety of biomolecules. Typical consequences of toxicological relevance include protein modification, DNA base deamination and the formation of N-nitrosamines, among the most potent mutagenic and carcinogenic compounds for humans. Besides primary biomolecules, nitrite can cause structural modifications to a variety of endogenous and exogenous organic compounds, ranging from polyunsaturated fatty acids to estrogens, tocopherol, catecholamines, furans, retinoids, dietary phenols, and a range of xenobiotics. The study of the interactions between nitrite and key food components, including phenolic antioxidants, has therefore emerged as an area of great promise for delineating innovative strategies in cancer chemoprevention. Depending on substrates and conditions, diverse reaction pathways may compete to determine product features and distribution patterns. These include nitrosation and nitration but also oxidation, via electron transfer to nitrosonium ion or nitrogen dioxide. This contribution aims to provide an overview of the main classes of compounds that can be targeted by nitrite and to discuss at chemical levels the possible reaction mechanisms under conditions that model those occurring in the stomach. The toxicological implications of the nitrite-modified molecules are finally addressed, and a rational chemical approach to the design of potent antinitrosing agents is illustrated. © 2011 American Chemical Society

  5. An open-label, single-dose, phase 1 study of the absorption, metabolism and excretion of quizartinib, a highly selective and potent FLT3 tyrosine kinase inhibitor, in healthy male subjects, for the treatment of acute myeloid leukemia.

    PubMed

    Sanga, Madhu; James, Joyce; Marini, Joseph; Gammon, Guy; Hale, Christine; Li, Jianke

    2017-10-01

    1. Quizartinib absorption, metabolism and excretion were characterized in six healthy men receiving a single oral dose of 60 mg (≈100 μCi) of [ 14 C]-quizartinib. Blood, plasma, urine and faeces were collected ≤336 h postdose. 2. Four hours postdose, maximum mean ± SD blood radioactivity concentrations were 296 ± 67.4 ng equivalents/g. A mean ± SD of 1.64 ± 0.482% and 76.3 ± 6.23% of the dose was recovered in urine and faeces, respectively, within 336 h postdose. 3. Radio-detector high-performance liquid chromatography (radio-HPLC) and liquid chromatography-mass spectrometry (LC-MS) showed two main radioactive peaks in plasma, unchanged quizartinib and mono-oxidative metabolite, AC886. Five additional metabolites in plasma were identified by LC-MS, but low levels prevented radio-HPLC detection. Although unchanged quizartinib was the main radioactive component in faeces (mean, 4.0% of administered dose), 15 metabolites representing a mean of 1.0-3.5% of administered dose were found. Quizartinib was predominantly metabolized by phase I biotransformations (oxidation, reduction, dealkylation, deamination, hydrolysis and combinations thereof). 4. This study indicated that quizartinib was rapidly and orally bioavailable, extensively metabolized, with AC886 as the major circulating metabolite, and predominantly eliminated in faeces. Quizartinib was well tolerated in the subjects.

  6. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  7. Muscle adenine nucleotide degradation during submaximal treadmill exercise to fatigue.

    PubMed

    Essén-Gustavsson, B; Gottlieb-Vedi, M; Lindholm, A

    1999-07-01

    The aim was to investigate metabolic response in muscle during submaximal treadmill exercise to fatigue, with a special emphasis on adenine nucleotide degradation products such as inosine monophosphate (IMP) in muscle and hypoxanthine, xanthine and uric acid in plasma. Five Standardbred trotters performed treadmill exercise on 2 occasions, once at 7 m/s and once at 10 m/s. Venous blood samples were taken at rest, during exercise and at the end of exercise. Muscle biopsies were taken before and after exercise and muscle temperature was measured before and after exercise. Running time differed among horses and was 48-58 min at 7 m/s and 10-15.5 min at 10 m/s. Both lactate and uric acid concentrations in plasma showed a gradual increase during exercise at both 7 and 10 m/s. At the end of exercise, values for uric acid were higher and values for lactate lower at 7 m/s compared with at 10 m/s. No marked changes were seen in plasma concentrations of hypoxanthine or xanthine with exercise. Muscle glycogen decreased after exercise at both 7 and 10 m/s with a marked depletion seen in some fibres. Muscle lactate concentrations increased after exercise at both 7 m/s and at 10 m/s. No significant changes were seen in adenosine triphosphate (ATP), ADP and AMP concentrations, whereas IMP concentrations increased after exercise at both 7 m/s and at 10 m/s. The results of this study indicate that AMP deamination occurs with submaximal exercise and that development of fatigue may be related to adenine nucleotide degradation in muscle.

  8. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing

    PubMed Central

    Yoon, Song-Ro; Arnheim, Norman; Calabrese, Peter

    2016-01-01

    We used targeted next generation deep-sequencing (Safe Sequencing System) to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11) were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10−8) suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments. PMID:27341568

  9. Localized delivery of chemotherapy to the cervix for radiosensitization.

    PubMed

    Hodge, Lucy S; Downs, Levi S; Chura, Justin C; Thomas, Sajeena G; Callery, Patrick S; Soisson, A Patrick; Kramer, Paul; Wolfe, Stephen S; Tracy, Timothy S

    2012-10-01

    Chemoradiation is the mainstay of therapy for advanced cervical cancer, with the most effective treatment regimens involving combinations of radiosensitizing agents. However, administration of radiosensitizing chemotherapeutics concurrently with pelvic radiation is not without side effects. The aim of this study was to examine the utility of localized drug delivery as a means of improving drug targeting of radiosensitizing chemotherapeutics to the cervix while limiting systemic toxicities. An initial proof-of-concept study was performed in 14 healthy women following local administration of diazepam utilizing a novel cervical delivery device (CerviPrep™). Uterine vein and peripheral blood samples were collected and diazepam was measured using a GC-MS method. In the follow-up study, gemcitabine was applied to the cervix in 17 women undergoing hysterectomy for various gynecological malignancies. Cervical tissue, uterine vein blood samples, and peripheral plasma were collected, and gemcitabine and its deaminated metabolite 2',2'-difluorodeoxyuridine (dFdU) were measured using HPLC-UV and LC/MS methods. Targeted delivery of diazepam to the cervix was consistent with parent drug detectable in the uterine vein of 13 of 14 women. In the second study, pharmacologically relevant concentrations of gemcitabine (0.01-6.6 nmol/g tissue) were detected in the cervical tissue of 11 of 16 available specimens with dFdU measureable in 15 samples (0.04-8.8 nmol/g tissue). Neither gemcitabine nor its metabolites were detected in the peripheral plasma of any subject. Localized drug delivery to the cervix is possible and may be useful in limiting toxicity associated with intravenous administration of chemotherapeutics for radiosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    PubMed Central

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  11. Structural features of antiviral DNA cytidine deaminases.

    PubMed

    Vasudevan, Ananda Ayyappan Jaguva; Smits, Sander H J; Höppner, Astrid; Häussinger, Dieter; Koenig, Bernd W; Münk, Carsten

    2013-11-01

    The APOBEC3 (A3) family of cytidine deaminases plays a vital role for innate defense against retroviruses. Lentiviruses such as HIV-1 evolved the Vif protein that triggers A3 protein degradation. There are seven A3 proteins, A3A-A3H, found in humans. All A3 proteins can deaminate cytidines to uridines in single-stranded DNA (ssDNA), generated during viral reverse transcription. A3 proteins have either one or two cytidine deaminase domains (CD). The CDs coordinate a zinc ion, and their amino acid specificity classifies the A3s into A3Z1, A3Z2, and A3Z3. A3 proteins occur as monomers, dimers, and large oligomeric complexes. Studies on the nature of A3 oligomerization, as well as the mode of interaction of A3s with RNA and ssDNA are partially controversial. High-resolution structures of the catalytic CD2 of A3G and A3F as well as of the single CD proteins A3A and A3C have been published recently. The NMR and X-ray crystal structures show globular proteins with six α-helices and five β sheets arranged in a characteristic motif (α1-β1-β2/2'-α2-β3-α3-β4-α4-β5-α5-α6). However, the detailed arrangement and extension of individual structure elements and their relevance for A3 complex formation and activity remains a matter of debate and will be highlighted in this review.

  12. Paracoccus denitrificans PD1222 Utilizes Hypotaurine via Transamination Followed by Spontaneous Desulfination To Yield Acetaldehyde and, Finally, Acetate for Growth

    PubMed Central

    Felux, Ann-Katrin; Denger, Karin; Weiss, Michael; Cook, Alasdair M.

    2013-01-01

    Hypotaurine (HT; 2-aminoethane-sulfinate) is known to be utilized by bacteria as a sole source of carbon, nitrogen, and energy for growth, as is taurine (2-aminoethane-sulfonate); however, the corresponding HT degradation pathway has remained undefined. Genome-sequenced Paracoccus denitrificans PD1222 utilized HT (and taurine) quantitatively for heterotrophic growth and released the HT sulfur as sulfite (and sulfate) and HT nitrogen as ammonium. Enzyme assays with cell extracts suggested that an HT-inducible HT:pyruvate aminotransferase (Hpa) catalyzes the deamination of HT in an initial reaction step. Partial purification of the Hpa activity and peptide fingerprinting-mass spectrometry (PF-MS) identified the Hpa candidate gene; it encoded an archetypal taurine:pyruvate aminotransferase (Tpa). The same gene product was identified via differential PAGE and PF-MS, as was the gene of a strongly HT-inducible aldehyde dehydrogenase (Adh). Both genes were overexpressed in Escherichia coli. The overexpressed, purified Hpa/Tpa showed HT:pyruvate-aminotransferase activity. Alanine, acetaldehyde, and sulfite were identified as the reaction products but not sulfinoacetaldehyde; the reaction of Hpa/Tpa with taurine yielded sulfoacetaldehyde, which is stable. The overexpressed, purified Adh oxidized the acetaldehyde generated during the Hpa reaction to acetate in an NAD+-dependent reaction. Based on these results, the following degradation pathway for HT in strain PD1222 can be depicted. The identified aminotransferase converts HT to sulfinoacetaldehyde, which desulfinates spontaneously to acetaldehyde and sulfite; the inducible aldehyde dehydrogenase oxidizes acetaldehyde to yield acetate, which is metabolized, and sulfite, which is excreted. PMID:23603744

  13. Crystal violet: Study of the photo-fading of an early synthetic dye in aqueous solution and on paper with HPLC-PDA, LC-MS and FORS

    NASA Astrophysics Data System (ADS)

    Confortin, Daria; Neevel, Han; Brustolon, Marina; Franco, Lorenzo; Kettelarij, Albert J.; Williams, Renè M.; van Bommel, Maarten R.

    2010-06-01

    The photo-fading of crystal violet (CV), one of the earliest synthetic dyes and an ink component, is examined both in solution and on paper. Aqueous solutions of CV were exposed to UV light (365nm) and samples were taken at constant time intervals and analysed with a High Performance Liquid Chromatography-Photo Diode Array (HPLC-PDA) and Liquid Chromatography-Mass Spectroscopy (LC-MS). Demethylation products were positively identified. Also, deamination probably occurred. The oxidation at the central carbon likely generates Michler's ketone (MK) or its derivatives, but still needs confirmation. To study CV on paper, Whatman paper was immersed in CV and exposed to UV light. Before and after different irradiation periods, reflectance spectra were recorded with Fibre Optic Reflectance Spectrophotometry (FORS). A decrease in CV concentration and a change in aggregation type for CV molecules upon irradiation was observed. Colorimetric L*a*b* values before and during irradiation were also measured. Also, CV was extracted from paper before and after different irradiation periods and analysed with HPLC-PDA. Photo-fading of CV on paper produced the same products as in solution, at least within the first 100 hours of irradiation. Finally, a photo-fading of CV in the presence of MK on Whatman paper was performed. It was demonstrated that MK both accelerates CV degradation and is consumed during the reaction. The degradation pathway identified in this work is suitable for explaining the photo/fading of other dyes belonging to the triarylmethane group.

  14. Thymine DNA Glycosylase (TDG) is involved in the pathogenesis of intestinal tumors with reduced APC expression.

    PubMed

    Xu, Jinfei; Cortellino, Salvatore; Tricarico, Rossella; Chang, Wen-Chi; Scher, Gabrielle; Devarajan, Karthik; Slifker, Michael; Moore, Robert; Bassi, Maria Rosaria; Caretti, Elena; Clapper, Margie; Cooper, Harry; Bellacosa, Alfonso

    2017-10-27

    Thymine DNA Glycosylase (TDG) is a base excision repair enzyme that acts as a thymine and uracil DNA N-glycosylase on G:T and G:U mismatches, thus protecting CpG sites in the genome from mutagenesis by deamination. In addition, TDG has an epigenomic function by removing the novel cytosine derivatives 5-formylcytosine and 5-carboxylcytosine (5caC) generated by Ten-Eleven Translocation (TET) enzymes during active DNA demethylation. We and others previously reported that TDG is essential for mammalian development. However, its involvement in tumor formation is unknown. To study the role of TDG in tumorigenesis, we analyzed the effects of its inactivation in a well-characterized model of tumor predisposition, the Apc Min mouse strain. Mice bearing a conditional Tdg flox allele were crossed with Fabpl ::Cre transgenic mice, in the context of the Apc Min mutation, in order to inactivate Tdg in the small intestinal and colonic epithelium. We observed an approximately 2-fold increase in the number of small intestinal adenomas in the test Tdg -mutant Apc Min mice in comparison to control genotypes (p=0.0001). This increase occurred in female mice, and is similar to the known increase in intestinal adenoma formation due to oophorectomy. In the human colorectal cancer (CRC) TCGA database, the subset of patients with TDG and APC expression in the lowest quartile exhibits an excess of female cases. We conclude that TDG inactivation plays a role in intestinal tumorigenesis initiated by mutation/underexpression of APC . Our results also indicate that TDG may be involved in sex-specific protection from CRC.

  15. Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions

    PubMed Central

    Sarasketa, Asier; González-Moro, María Begoña; González-Murua, Carmen; Marino, Daniel

    2014-01-01

    Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH4 +), together with nitrate (NO3 –), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 + assimilation requires less energy than that of NO3 –, many plants display toxicity symptoms when grown with NH4 + as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO3 – or NH4 + as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO3 –. Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 +-fed plants. In contrast, GDH deaminating activity was higher in NO3 –-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 + accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH4 + assimilation capacity. PMID:25205573

  16. A novel archaeal alanine dehydrogenase homologous to ornithine cyclodeaminase and mu-crystallin.

    PubMed

    Schröder, Imke; Vadas, Alexander; Johnson, Eric; Lim, Sierin; Monbouquette, Harold G

    2004-11-01

    A novel alanine dehydrogenase (AlaDH) showing no significant amino acid sequence homology with previously known bacterial AlaDHs was purified to homogeneity from the soluble fraction of the hyperthermophilic archaeon Archaeoglobus fulgidus. AlaDH catalyzed the reversible, NAD+-dependent deamination of L-alanine to pyruvate and NH4+. NADP(H) did not serve as a coenzyme. The enzyme is a homodimer of 35 kDa per subunit. The Km values for L-alanine, NAD+, pyruvate, NADH, and NH4+ were estimated at 0.71, 0.60, 0.16, 0.02, and 17.3 mM, respectively. The A. fulgidus enzyme exhibited its highest activity at about 82 degrees C (203 U/mg for reductive amination of pyruvate) yet still retained 30% of its maximum activity at 25 degrees C. The thermostability of A. fulgidus AlaDH was increased by more than 10-fold by 1.5 M KCl to a half-life of 55 h at 90 degrees C. At 25 degrees C in the presence of this salt solution, the enzyme was approximately 100% stable for more than 3 months. Closely related A. fulgidus AlaDH homologues were found in other archaea. On the basis of its amino acid sequence, A. fulgidus AlaDH is a member of the ornithine cyclodeaminase-mu-crystallin family of enzymes. Similar to the mu-crystallins, A. fulgidus AlaDH did not exhibit any ornithine cyclodeaminase activity. The recombinant human mu-crystallin was assayed for AlaDH activity, but no activity was detected. The novel A. fulgidus gene encoding AlaDH, AF1665, is designated ala.

  17. Solution structure and intramolecular exchange of methyl-cytosine binding domain protein 4 (MBD4) on DNA suggests a mechanism to scan for mCpG/TpG mismatches

    PubMed Central

    Walavalkar, Ninad M.; Cramer, Jason M.; Buchwald, William A.; Scarsdale, J. Neel; Williams, David C.

    2014-01-01

    Unlike other members of the methyl-cytosine binding domain (MBD) family, MBD4 serves as a potent DNA glycosylase in DNA mismatch repair specifically targeting mCpG/TpG mismatches arising from spontaneous deamination of methyl-cytosine. The protein contains an N-terminal MBD (MBD4MBD) and a C-terminal glycosylase domain (MBD4GD) separated by a long linker. This arrangement suggests that the MBD4MBD either directly augments enzymatic catalysis by the MBD4GD or targets the protein to regions enriched for mCpG/TpG mismatches. Here we present structural and dynamic studies of MBD4MBD bound to dsDNA. We show that MBD4MBD binds with a modest preference formCpG as compared to mismatch, unmethylated and hydroxymethylated DNA. We find that while MBD4MBD exhibits slow exchange between molecules of DNA (intermolecular exchange), the domain exhibits fast exchange between two sites in the same molecule of dsDNA (intramolecular exchange). Introducing a single-strand defect between binding sites does not greatly reduce the intramolecular exchange rate, consistent with a local hopping mechanism for moving along the DNA. These results support a model in which the MBD4MBD4 targets the intact protein to mCpG islands and promotes scanning by rapidly exchanging between successive mCpG sites which facilitates repair of nearby mCpG/TpG mismatches by the glycosylase domain. PMID:25183517

  18. Resolving the role of plant glutamate dehydrogenase: II. Physiological characterization of plants overexpressing the two enzyme subunits individually or simultaneously.

    PubMed

    Tercé-Laforgue, Thérèse; Bedu, Magali; Dargel-Grafin, Céline; Dubois, Frédéric; Gibon, Yves; Restivo, Francesco M; Hirel, Bertrand

    2013-10-01

    Glutamate dehydrogenase (GDH; EC 1.4.1.2) is able to carry out the deamination of glutamate in higher plants. In order to obtain a better understanding of the physiological function of GDH in leaves, transgenic tobacco (Nicotiana tabacum L.) plants were constructed that overexpress two genes from Nicotiana plumbaginifolia (GDHA and GDHB under the control of the Cauliflower mosiac virus 35S promoter), which encode the α- and β-subunits of GDH individually or simultaneously. In the transgenic plants, the GDH protein accumulated in the mitochondria of mesophyll cells and in the mitochondria of the phloem companion cells (CCs), where the native enzyme is normally expressed. Such a shift in the cellular location of the GDH enzyme induced major changes in carbon and nitrogen metabolite accumulation and a reduction in growth. These changes were mainly characterized by a decrease in the amount of sucrose, starch and glutamine in the leaves, which was accompanied by an increase in the amount of nitrate and Chl. In addition, there was an increase in the content of asparagine and a decrease in proline. Such changes may explain the lower plant biomass determined in the GDH-overexpressing lines. Overexpressing the two genes GDHA and GDHB individually or simultaneously induced a differential accumulation of glutamate and glutamine and a modification of the glutamate to glutamine ratio. The impact of the metabolic changes occurring in the different types of GDH-overexpressing plants is discussed in relation to the possible physiological function of each subunit when present in the form of homohexamers or heterohexamers.

  19. The enzymatic activity of CEM15/Apobec-3G is essential for the regulation of the infectivity of HIV-1 virion but not a sole determinant of its antiviral activity.

    PubMed

    Shindo, Keisuke; Takaori-Kondo, Akifumi; Kobayashi, Masayuki; Abudu, Aierken; Fukunaga, Keiko; Uchiyama, Takashi

    2003-11-07

    Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.

  20. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures

    PubMed Central

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji

    2017-01-01

    ABSTRACT NAD (NAD+) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD+ from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD+ de novo synthesis pathway. Herein, we report the importance of the NAD+ salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD+ salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide (Km of 17 μM, kcat of 50 s−1, kcat/Km of 3.0 × 103 s−1 · mM−1). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD+ salvage pathway in T. thermophilus. Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD+ and NADH. IMPORTANCE NAD+ and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD+ decomposition is, in general, more rapid. This study emphasizes that NAD+ instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. PMID:28630126

  1. Nitrogen Limited Red and Green Leaf Lettuce Accumulate Flavonoid Glycosides, Caffeic Acid Derivatives, and Sucrose while Losing Chlorophylls, Β-Carotene and Xanthophylls.

    PubMed

    Becker, Christine; Urlić, Branimir; Jukić Špika, Maja; Kläring, Hans-Peter; Krumbein, Angelika; Baldermann, Susanne; Goreta Ban, Smiljana; Perica, Slavko; Schwarz, Dietmar

    2015-01-01

    Reduction of nitrogen application in crop production is desirable for ecological and health-related reasons. Interestingly, nitrogen deficiency can lead to enhanced concentrations of polyphenols in plants. The reason for this is still under discussion. The plants' response to low nitrogen concentration can interact with other factors, for example radiation intensity. We cultivated red and green leaf lettuce hydroponically in a Mediterranean greenhouse, supplying three different levels of nitrogen (12 mM, 3 mM, 0.75 mM), either in full or reduced (-50%) radiation intensity. In both red and green lettuce, we found clear effects of the nitrogen treatments on growth characteristics, phenolic and photosynthetic compounds, nitrogen, nitrate and carbon concentration of the plants. Interestingly, the concentrations of all main flavonoid glycosides, caffeic acid derivatives, and sucrose increased with decreasing nitrogen concentration, whereas those of chlorophylls, β-carotene, neoxanthin, lactucaxanthin, all trans- and cis-violaxanthin decreased. The constitutive concentrations of polyphenols were lower in the green cultivar, but their relative increase was more pronounced than in the red cultivar. The constitutive concentrations of chlorophylls, β-carotene, neoxanthin, all trans- and cis-violaxanthin were similar in red and green lettuce and with decreasing nitrogen concentration they declined to a similar extent in both cultivars. We only detected little influence of the radiation treatments, e.g. on anthocyanin concentration, and hardly any interaction between radiation and nitrogen concentration. Our results imply a greater physiological plasticity of green compared to the red lettuce regarding its phenolic compounds. They support the photoprotection theory regarding anthocyanins as well as the theory that the deamination activity of phenylalanine ammonia-lyase drives phenylpropanoid synthesis.

  2. The paradox of HBV evolution as revealed from a 16th century mummy

    PubMed Central

    Duggan, Ana T.; Poinar, Debi; Poinar, Hendrik N.

    2018-01-01

    Hepatitis B virus (HBV) is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox), showed no DNA reads for VARV yet did for hepatitis B virus (HBV). Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D), at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen. PMID:29300782

  3. Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes

    PubMed Central

    Dhar, Alok; Polev, Dmitrii E.; Masharsky, Alexey E.; Rogozin, Igor B.; Pavlov, Youri I.

    2015-01-01

    Mutations in genomes of species are frequently distributed non-randomly, resulting in mutation clusters, including recently discovered kataegis in tumors. DNA editing deaminases play the prominent role in the etiology of these mutations. To gain insight into the enigmatic mechanisms of localized hypermutagenesis that lead to cluster formation, we analyzed the mutational single nucleotide variations (SNV) data obtained by whole-genome sequencing of drug-resistant mutants induced in yeast diploids by AID/APOBEC deaminase and base analog 6-HAP. Deaminase from sea lamprey, PmCDA1, induced robust clusters, while 6-HAP induced a few weak ones. We found that PmCDA1, AID, and APOBEC1 deaminases preferentially mutate the beginning of the actively transcribed genes. Inactivation of transcription initiation factor Sub1 strongly reduced deaminase-induced can1 mutation frequency, but, surprisingly, did not decrease the total SNV load in genomes. However, the SNVs in the genomes of the sub1 clones were re-distributed, and the effect of mutation clustering in the regions of transcription initiation was even more pronounced. At the same time, the mutation density in the protein-coding regions was reduced, resulting in the decrease of phenotypically detected mutants. We propose that the induction of clustered mutations by deaminases involves: a) the exposure of ssDNA strands during transcription and loss of protection of ssDNA due to the depletion of ssDNA-binding proteins, such as Sub1, and b) attainment of conditions favorable for APOBEC action in subpopulation of cells, leading to enzymatic deamination within the currently expressed genes. This model is applicable to both the initial and the later stages of oncogenic transformation and explains variations in the distribution of mutations and kataegis events in different tumor cells. PMID:25941824

  4. Evolution of amino acid metabolism inferred through cladistic analysis.

    PubMed

    Cunchillos, Chomin; Lecointre, Guillaume

    2003-11-28

    Because free amino acids were most probably available in primitive abiotic environments, their metabolism is likely to have provided some of the very first metabolic pathways of life. What were the first enzymatic reactions to emerge? A cladistic analysis of metabolic pathways of the 16 aliphatic amino acids and 2 portions of the Krebs cycle was performed using four criteria of homology. The analysis is not based on sequence comparisons but, rather, on coding similarities in enzyme properties. The properties used are shared specific enzymatic activity, shared enzymatic function without substrate specificity, shared coenzymes, and shared functional family. The tree shows that the earliest pathways to emerge are not portions of the Krebs cycle but metabolisms of aspartate, asparagine, glutamate, and glutamine. The views of Horowitz (Horowitz, N. H. (1945) Proc. Natl. Acad. Sci. U. S. A. 31, 153-157) and Cordón (Cordón, F. (1990) Tratado Evolucionista de Biologia, Aguilar, Madrid, Spain), according to which the upstream reactions in the catabolic pathways and the downstream reactions in the anabolic pathways are the earliest in evolution, are globally corroborated; however, with some exceptions. These are due to later opportunistic connections of pathways (actually already suggested by these authors). Earliest enzymatic functions are mostly catabolic; they were deaminations, transaminations, and decarboxylations. From the consensus tree we extracted four time spans for amino acid metabolism development. For some amino acids catabolism and biosynthesis occurred at the same time (Asp, Glu, Lys, Leu, Ala, Val, Ile, Pro, Arg). For others ultimate reactions that use amino acids as a substrate or as a product are distinct in time, with catabolism preceding anabolism for Asn, Gln, and Cys and anabolism preceding catabolism for Ser, Met, and Thr. Cladistic analysis of the structure of biochemical pathways makes hypotheses in biochemical evolution explicit and parsimonious.

  5. Immobilization of R-ω-transaminase on MnO2 nanorods for catalyzing the conversion of (R)-1-phenylethylamine.

    PubMed

    Sun, Jian; Cui, Wen-Hui; Du, Kun; Gao, Qian; Du, Mengmeng; Ji, Peijun; Feng, Wei

    2017-03-10

    R-ɷ-transaminases transfer an amino group from an amino donor (e.g. (R)-1-phenylethylamine) onto an amino acceptor (e.g. pyruvate), resulting a co-product (e.g. d-alanine). This work intends to immobilize R-ɷ-Transaminase on MnO 2 nanorods to achieve multienzyme catalysis. R-ɷ-Transaminase (RTA) and d-amino acid oxidase (DAAO) have been fused to an elastin-like polypeptide (ELP) separately through genetic engineering of the enzymes. ELP-RTA and ELP-DAAO have been separately immobilized on polydopamine-coated MnO 2 nanorods. When the two immobilized enzymes were used together in one pot, the transformation of (R)-1-phenylethylamine was catalyzed by the immobilized ELP-RTA, and the co-product d-alanine was converted back to pyruvate under the catalysis of the immobilized ELP-DAAO, achieving the recycling of pyruvate in situ. Thus pyruvate was maintained at a low concentration in order to reduce its negative effect. On the other hand, the generated H 2 O 2 of ELP-DAAO was decomposed by the MnO 2 nanorods, and the evolved oxygen oxidized the reduced cofactors of ELP-DAAO. Forming the circles of hydrogen peroxide→oxygen→hydrogen peroxide accelerated the deamination reaction. The highly efficient conversion of the co-product d-alanine back to pyruvate accelerated the forming of the pyruvate→d-alanine→pyruvate cycle between the two immobilized enzymes. The coordination of the pyruvate→d-alanine→pyruvate and hydrogen peroxide→oxygen→hydrogen peroxide cycles accelerated the transformation of (R)-1-phenylethylamine. As a result, As a result, the immobilized enzymes achieved a conversion of 98±1.8% in comparison to 69.6±1.2% by free enzymes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Influence of formulation and processing factors on stability of levothyroxine sodium pentahydrate.

    PubMed

    Collier, Jarrod W; Shah, Rakhi B; Gupta, Abhay; Sayeed, Vilayat; Habib, Muhammad J; Khan, Mansoor A

    2010-06-01

    Stability of formulations over shelf-life is critical for having a quality product. Choice of excipients, manufacturing process, storage conditions, and packaging can either mitigate or enhance the degradation of the active pharmaceutical ingredient (API), affecting potency and/or stability. The purpose was to investigate the influence of processing and formulation factors on stability of levothyroxine (API). The API was stored at long-term (25 degrees C/60%RH), accelerated (40 degrees C/75%RH), and low-humidity (25 degrees C/0%RH and 40 degrees C/0%RH) conditions for 28 days. Effect of moisture loss was evaluated by drying it (room temperature, N(2)) and placed at 25 degrees C/0%RH and 40 degrees C/0%RH. The API was incubated with various excipients (based on package insert of marketed tablets) in either 1:1, 1:10, or 1:100 ratios with 5% moisture at 60 degrees C. Commonly used ratios for excipients were used. The equilibrium sorption data was collected on the API and excipients. The API was stable in solid state for the study duration under all conditions for both forms (potency between 90% and 110%). Excipients effect on stability varied and crospovidone, povidone, and sodium laurel sulfate (SLS) caused significant API degradation where deiodination and deamination occurred. Moisture sorption values were different across excipients. Crospovidone and povidone were hygroscopic whereas SLS showed deliquescence at high RH. The transient formulation procedures where temperature might go up or humidity might go down would not have major impact on the API stability. Excipients influence stability and if possible, those three should either be avoided or used in minimum quantity which could provide more stable tablet formulations with minimum potency loss throughout its shelf-life.

  7. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss Army knife for plant biologists.

    PubMed

    Wolter, Felix; Puchta, Holger

    2018-06-01

    Application of the bacterial CRISPR/Cas systems to eukaryotes is revolutionizing biology. Cas9 and Cas12 (previously called Cpf1) are widely used as DNA nucleases for inducing site-specific DNA breaks for different kinds of genome engineering applications, and in their mutated forms as DNA-binding proteins to modify gene expression. Moreover, histone modifications, as well as cytosine methylation or base editing, were achieved with these systems in plants. Recently, with the discovery of the nuclease Cas13a (previously called C2c2), molecular biologists have obtained a system that enables sequence-specific cleavage of single-stranded RNA molecules. The latest experiments with this and also the alternative Cas13b system demonstrate that these proteins can be used in a similar manner in eukaryotes for RNA manipulation as Cas9 and Cas12 for DNA manipulations. The first application of Cas13a for post-transcriptional regulation of gene expression in plants has been reported. Recent results show that the system is also applicable for combating viral infection in plants. As single-stranded RNA viruses are by far the most abundant class of viruses in plants, the application of this system is of special promise for crops. More interesting applications are imminent for plant biologists, with nuclease dead versions of Cas13 enabling the ability to visualize RNA molecules in vivo, as well as to edit different kinds of RNA molecules at specific bases by deamination or to modify them by conjugation. Moreover, by combining DNA- and RNA-directed systems, the most complex of changes in plant metabolism might be achievable. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  8. Contamination of the Norepinephrine Prodrug Droxidopa by Dihydroxyphenylacetaldehyde

    PubMed Central

    Holmes, Courtney; Whittaker, Noel; Heredia-Moya, Jorge; Goldstein, David S.

    2015-01-01

    BACKGROUND l-Threo-3,4-dihydroxyphenylserine (L-DOPS, droxidopa) is a norepinephrine (NE) prodrug under development to treat orthostatic hypotension. 3,4-Dihydroxyphenylacetaldehyde (DOPAL), an endogenous catecholaldehyde produced by enzymatic oxidative deamination of dopamine, is toxic to catecholaminergic neurons. Based on the observation of increasing plasma DOPAL after oral administration of L-DOPS to a patient, we examined whether other subjects also had DOPAL in their plasma after droxidopa administration, and whether droxidopa is contaminated with DOPAL. METHODS Thirteen subjects took 400 mg droxidopa orally. We sampled venous blood at baseline and 1, 2, 3, 6, 24, and 48 h after drug administration and assayed L-DOPS, NE, and DOPAL by use of liquid chromatography with electrochemical detection (LC-ED). Droxidopa in acidic solution (20:80 mixture of 0.04 mol/L phosphoric acid:0.20 mol/L acetic acid) was vacuum centrifuged for 1 h at 30 °C and then assayed by LC-ED. RESULTS Droxidopa contained 0.01% DOPAL. At 6 h after droxidopa, all subjects had detectable DOPAL in plasma (1.89 nmol/L, P = 0.0001). Across the sampling times, plasma DOPAL correlated with plasma L-DOPS (r = 0.996). The mean increment in plasma DOPAL was more than 4 times that in plasma NE (0.39 nmol/L). In 2 patients with Parkinson disease and orthostatic hypotension, DOPAL was detected in plasma at baseline (0.12 nmol/L) and increased by about 70-fold after droxidopa. Vacuum concentration of droxidopa in the acid solution converted L-DOPS to DOPAL completely. CONCLUSIONS Droxidopa is contaminated with DOPAL. After oral droxidopa administration, DOPAL is detected in plasma of humans. Droxidopa is susceptible to extensive nonenzymatic conversion to DOPAL. PMID:20207766

  9. Contamination of the norepinephrine prodrug droxidopa by dihydroxyphenylacetaldehyde.

    PubMed

    Holmes, Courtney; Whittaker, Noel; Heredia-Moya, Jorge; Goldstein, David S

    2010-05-01

    L-threo-3,4-dihydroxyphenylserine (L-DOPS, droxidopa) is a norepinephrine (NE) prodrug under development to treat orthostatic hypotension. 3,4-Dihydroxyphenylacetaldehyde (DOPAL), an endogenous catecholaldehyde produced by enzymatic oxidative deamination of dopamine, is toxic to catecholaminergic neurons. Based on the observation of increasing plasma DOPAL after oral administration of L-DOPS to a patient, we examined whether other subjects also had DOPAL in their plasma after droxidopa administration, and whether droxidopa is contaminated with DOPAL. Thirteen subjects took 400 mg droxidopa orally. We sampled venous blood at baseline and 1, 2, 3, 6, 24, and 48 h after drug administration and assayed L-DOPS, NE, and DOPAL by use of liquid chromatography with electrochemical detection (LC-ED). Droxidopa in acidic solution (20:80 mixture of 0.04 mol/L phosphoric acid:0.20 mol/L acetic acid) was vacuum centrifuged for 1 h at 30 degrees C and then assayed by LC-ED. Droxidopa contained 0.01% DOPAL. At 6 h after droxidopa, all subjects had detectable DOPAL in plasma (1.89 nmol/L, P = 0.0001). Across the sampling times, plasma DOPAL correlated with plasma L-DOPS (r = 0.996). The mean increment in plasma DOPAL was more than 4 times that in plasma NE (0.39 nmol/L). In 2 patients with Parkinson disease and orthostatic hypotension, DOPAL was detected in plasma at baseline (0.12 nmol/L) and increased by about 70-fold after droxidopa. Vacuum concentration of droxidopa in the acid solution converted L-DOPS to DOPAL completely. Droxidopa is contaminated with DOPAL. After oral droxidopa administration, DOPAL is detected in plasma of humans. Droxidopa is susceptible to extensive nonenzymatic conversion to DOPAL.

  10. L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model.

    PubMed

    Donsante, Anthony; Sullivan, Patricia; Goldstein, David S; Brinster, Lauren R; Kaler, Stephen G

    2013-02-01

    Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. Copyright © 2012 American Neurological Association.

  11. L-DOPS corrects neurochemical abnormalities in a Menkes disease mouse model

    PubMed Central

    Donsante, Anthony; Sullivan, Patricia; Goldstein, David S.; Brinster, Lauren R.; Kaler, Stephen G.

    2012-01-01

    Objective Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting ATPase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine-beta-hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled, we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. Methods At 8, 10, and 12 days of age, wild type and mo-br mice received intraperi-toneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized and brains removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. Results Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (P<0.001) and its deaminated metabolite, dihydroxyphenylglycol (DHPG, P<0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (P<0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. Interpretation We conclude that 1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, 2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and 3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease. PMID:23224983

  12. Polymerization of non-complementary RNA: systematic symmetric nucleotide exchanges mainly involving uracil produce mitochondrial RNA transcripts coding for cryptic overlapping genes.

    PubMed

    Seligmann, Hervé

    2013-03-01

    Usual DNA→RNA transcription exchanges T→U. Assuming different systematic symmetric nucleotide exchanges during translation, some GenBank RNAs match exactly human mitochondrial sequences (exchange rules listed in decreasing transcript frequencies): C↔U, A↔U, A↔U+C↔G (two nucleotide pairs exchanged), G↔U, A↔G, C↔G, none for A↔C, A↔G+C↔U, and A↔C+G↔U. Most unusual transcripts involve exchanging uracil. Independent measures of rates of rare replicational enzymatic DNA nucleotide misinsertions predict frequencies of RNA transcripts systematically exchanging the corresponding misinserted nucleotides. Exchange transcripts self-hybridize less than other gene regions, self-hybridization increases with length, suggesting endoribonuclease-limited elongation. Blast detects stop codon depleted putative protein coding overlapping genes within exchange-transcribed mitochondrial genes. These align with existing GenBank proteins (mainly metazoan origins, prokaryotic and viral origins underrepresented). These GenBank proteins frequently interact with RNA/DNA, are membrane transporters, or are typical of mitochondrial metabolism. Nucleotide exchange transcript frequencies increase with overlapping gene densities and stop densities, indicating finely tuned counterbalancing regulation of expression of systematic symmetric nucleotide exchange-encrypted proteins. Such expression necessitates combined activities of suppressor tRNAs matching stops, and nucleotide exchange transcription. Two independent properties confirm predicted exchanged overlap coding genes: discrepancy of third codon nucleotide contents from replicational deamination gradients, and codon usage according to circular code predictions. Predictions from both properties converge, especially for frequent nucleotide exchange types. Nucleotide exchanging transcription apparently increases coding densities of protein coding genes without lengthening genomes, revealing unsuspected functional DNA coding potential. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Overexpression of the Coq8 Kinase in Saccharomyces cerevisiae coq Null Mutants Allows for Accumulation of Diagnostic Intermediates of the Coenzyme Q6 Biosynthetic Pathway*

    PubMed Central

    Xie, Letian X.; Ozeir, Mohammad; Tang, Jeniffer Y.; Chen, Jia Y.; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F.; Pierrel, Fabien

    2012-01-01

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q6 biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q6 biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q6. Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q6 biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway. PMID:22593570

  14. Somatic mutations in cancer: Stochastic versus predictable.

    PubMed

    Gold, Barry

    2017-02-01

    The origins of human cancers remain unclear except for a limited number of potent environmental mutagens, such as tobacco and UV light, and in rare cases, familial germ line mutations that affect tumor suppressor genes or oncogenes. A significant component of cancer etiology has been deemed stochastic and correlated with the number of stem cells in a tissue, the number of times the stem cells divide and a low incidence of random DNA polymerase errors that occur during each cell division. While somatic mutations occur during each round of DNA replication, mutations in cancer driver genes are not stochastic. Out of a total of 2843 codons, 1031 can be changed to stop codons by a single base substitution in the tumor suppressor APC gene, which is mutated in 76% of colorectal cancers (CRC). However, the nonsense mutations, which comprise 65% of all the APC driver mutations in CRC, are not random: 43% occur at Arg CGA codons, although they represent <3% of the codons. In TP53, CGA codons comprise <3% of the total 393 codons but they account for 72% and 39% of the mutations in CRC and ovarian cancer OVC, respectively. This mutation pattern is consistent with the kinetically slow, but not stochastic, hydrolytic deamination of 5-methylcytosine residues at specific methylated CpG sites to afford T·G mismatches that lead to C→T transitions and stop codons at CGA. Analysis of nonsense mutations in CRC, OVC and a number of other cancers indicates the need to expand the predictable risk factors for cancer to include, in addition to random polymerase errors, the methylation status of gene body CGA codons in tumor suppressor genes. Copyright © 2017. Published by Elsevier B.V.

  15. Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase.

    PubMed

    Min, Kyungjin; Yoon, Hye-Jin; Matsuura, Atsushi; Kim, Yong Hwan; Lee, Hyung Ho

    2018-04-30

    L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes β-deamination of L-lysine into L-pipecolic acid using β-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, μ-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with NAD + , (ii) a ternary complex with NAD + and L-pipecolic acid, (iii) a ternary complex with NAD + and L-proline, and (iv) a ternary complex with NAD + and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida . In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that NAD + is initially converted into NADH and then reverted back into NAD + at a late stage of the reaction.

  16. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    PubMed

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Human pharmacology of ayahuasca: subjective and cardiovascular effects, monoamine metabolite excretion, and pharmacokinetics.

    PubMed

    Riba, Jordi; Valle, Marta; Urbano, Gloria; Yritia, Mercedes; Morte, Adelaida; Barbanoj, Manel J

    2003-07-01

    The effects of the South American psychotropic beverage ayahuasca on subjective and cardiovascular variables and urine monoamine metabolite excretion were evaluated, together with the drug's pharmacokinetic profile, in a double-blind placebo-controlled clinical trial. This pharmacologically complex tea, commonly obtained from Banisteriopsis caapi and Psychotria viridis, combines N,N-dimethyltryptamine (DMT), an orally labile psychedelic agent showing 5-hydroxytryptamine2A agonist activity, with monoamine oxidase (MAO)-inhibiting beta-carboline alkaloids (harmine, harmaline, and tetrahydroharmine). Eighteen volunteers with prior experience in the use of psychedelics received single oral doses of encapsulated freeze-dried ayahuasca (0.6 and 0.85 mg of DMT/kg of body weight) and placebo. Ayahuasca produced significant subjective effects, peaking between 1.5 and 2 h, involving perceptual modifications and increases in ratings of positive mood and activation. Diastolic blood pressure showed a significant increase at the high dose (9 mm Hg at 75 min), whereas systolic blood pressure and heart rate were moderately and nonsignificantly increased. Cmax values for DMT after the low and high ayahuasca doses were 12.14 ng/ml and 17.44 ng/ml, respectively. Tmax (median) was observed at 1.5 h after both doses. The Tmax for DMT coincided with the peak of subjective effects. Drug administration increased urinary normetanephrine excretion, but, contrary to the typical MAO-inhibitor effect profile, deaminated monoamine metabolite levels were not decreased. This and the negligible harmine plasma levels found suggest a predominantly peripheral (gastrointestinal and liver) site of action for harmine. MAO inhibition at this level would suffice to prevent first-pass metabolism of DMT and allow its access to systemic circulation and the central nervous system.

  18. Membrane lipid-protein interactions modify the regulatory role of adenosine-deaminase complexing protein: a phase fluorometry study of a malignancy marker

    NASA Astrophysics Data System (ADS)

    Parola, Abraham H.; Porat, Nurith; Caiolfa, Valeria R.; Gill, David; Kiesow, Lutz A.; Weisman, Mathew; Nemschitz, S.; Yaron, Dahlia; Singer, Karen; Solomon, Ethel

    1990-05-01

    The role of membrane lipid-protein interactions in malignant cell transformation was examined with adenosine deaminase (ADA) as a representative membrane protein. ADA's activity changes dramatically in transformed cells and accordingly it is a malignancy marker. Yet, the mechanisms controlling its variable activity are unknown. We undertook the spectroscopic deciphering of its interactions with its lipidic environment in normal and malignant cells. ADA exists in two interconvertible forms, small (45 KD) and large (21OKD). The large form consists of two small catalytic subunits (55-ADA) and a dimeric complexing protein ADCP. The physiological role of ADCP was not known either. Our studies were carried out at three levels.: 1. Solution enzyme kinetics, 2. The interaction of 55-ADA with ADCP reconstituted in liposomes: Effect of cholesterol and 3. Multifrequency phase modulation spectrofluorometry of pyrene-labeled 55-ADA bound to ADCP on the membranes of normal and RSV or RSV Ts68 transformed chick embryo fibroblasts. We found: 1. ADCP has an allosteric regulatory role on 55-ADA, which may be of physiological relevance: It inhibits 55-ADA activity at low physiological adenosine concentrations but accelerates deamination at high substrate concentration. 2. When reconstituted in DMPC liposomes, it retains 55-ADA activity (in its absence the activity is lost) and upon rigidification with cholesterol, a three fold increase in 55-ADA activity is attained, contrary to ADCP's regulatory activity when free of lipids. 3. The reduced ADA activity in transformed chick embryo fibroblasts is associated with increased membrane lipid fluidity (reduced order parameter), reduced accessibility of ADCP and increase rotational dynamics of the complex. We thus obtained spectroscopic deciphering of the vertical motion of ADCP, controlled by lipid-protein interaction, resulting in variable activity of this malignancy marker.

  19. Application of the CometChip platform to assess DNA damage in field-collected blood samples from turtles.

    PubMed

    Sykora, Peter; Chiari, Ylenia; Heaton, Andrew; Moreno, Nickolas; Glaberman, Scott; Sobol, Robert W

    2018-05-01

    DNA damage has been linked to genomic instability and the progressive breakdown of cellular and organismal homeostasis, leading to the onset of disease and reduced longevity. Insults to DNA from endogenous sources include base deamination, base hydrolysis, base alkylation, and metabolism-induced oxidative damage that can lead to single-strand and double-strand DNA breaks. Alternatively, exposure to environmental pollutants, radiation or ultra-violet light, can also contribute to exogenously derived DNA damage. We previously validated a novel, high through-put approach to measure levels of DNA damage in cultured mammalian cells. This new CometChip Platform builds on the classical single cell gel electrophoresis or comet methodology used extensively in environmental toxicology and molecular biology. We asked whether the CometChip Platform could be used to measure DNA damage in samples derived from environmental field studies. To this end, we determined that nucleated erythrocytes from multiple species of turtle could be successfully evaluated in the CometChip Platform to quantify levels of DNA damage. In total, we compared levels of DNA damage in 40 animals from two species: the box turtle (Terrapene carolina) and the red-eared slider (Trachemys scripta elegans). Endogenous levels of DNA damage were identical between the two species, yet we did discover some sex-linked differences and changes in DNA damage accumulation. Based on these results, we confirm that the CometChip Platform allows for the measurement of DNA damage in a large number of samples quickly and accurately, and is particularly adaptable to environmental studies using field-collected samples. Environ. Mol. Mutagen. 59:322-333, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  20. Highly Stable l-Lysine 6-Dehydrogenase from the Thermophile Geobacillus stearothermophilus Isolated from a Japanese Hot Spring: Characterization, Gene Cloning and Sequencing, and Expression

    PubMed Central

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-01-01

    l-Lysine dehydrogenase, which catalyzes the oxidative deamination of l-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Δ1-piperideine-6-carboxylate, indicating that the enzyme is l-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70°C, respectively. No activity was lost at temperatures up to 65°C in the presence of 5 mM l-lysine. The enzyme was relatively selective for l-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for l-lysine, NAD, and NADP at 50°C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da. PMID:14766574

  1. Highly stable L-lysine 6-dehydrogenase from the thermophile Geobacillus stearothermophilus isolated from a Japanese hot spring: characterization, gene cloning and sequencing, and expression.

    PubMed

    Heydari, Mojgan; Ohshima, Toshihisa; Nunoura-Kominato, Naoki; Sakuraba, Haruhiko

    2004-02-01

    L-Lysine dehydrogenase, which catalyzes the oxidative deamination of L-lysine in the presence of NAD, was found in the thermophilic bacterium Geobacillus stearothermophilus UTB 1103 and then purified about 3,040-fold from a crude extract of the organism by using four successive column chromatography steps. This is the first report showing the presence of a thermophilic NAD-dependent lysine dehydrogenase. The product of the enzyme catalytic activity was determined to be Delta1-piperideine-6-carboxylate, indicating that the enzyme is L-lysine 6-dehydrogenase (LysDH) (EC 1.4.1.18). The molecular mass of the purified protein was about 260 kDa, and the molecule was determined to be a homohexamer with subunit molecular mass of about 43 kDa. The optimum pH and temperature for the catalytic activity of the enzyme were about 10.1 and 70 degrees C, respectively. No activity was lost at temperatures up to 65 degrees C in the presence of 5 mM L-lysine. The enzyme was relatively selective for L-lysine as the electron donor, and either NAD or NADP could serve as the electron acceptor (NADP exhibited about 22% of the activity of NAD). The Km values for L-lysine, NAD, and NADP at 50 degrees C and pH 10.0 were 0.73, 0.088, and 0.48 mM, respectively. When the gene encoding this LysDH was cloned and overexpressed in Escherichia coli, a crude extract of the recombinant cells had about 800-fold-higher enzyme activity than the extract of G. stearothermophilus. The nucleotide sequence of the LysDH gene encoded a peptide containing 385 amino acids with a calculated molecular mass of 42,239 Da.

  2. Rapeseed and milk protein exhibit a similar overall nutritional value but marked difference in postprandial regional nitrogen utilization in rats

    PubMed Central

    2011-01-01

    Background Rapeseed is an emerging and promising source of dietary protein for human nutrition and health. We previously found that rapeseed protein displayed atypical nutritional properties in humans, characterized by low bioavailability and a high postprandial biological value. The objective of the present study was to investigate the metabolic fate of rapeseed protein isolate (RPI) and its effect on protein fractional synthesis rates (FSR) in various tissues when compared to a milk protein isolate (MPI). Methods Rats (n = 48) were given a RPI or MPI meal, either for the first time or after 2-week adaptation to a MPI or RPI-based diet. They were divided in two groups for measuring the fed-state tissue FSR 2 h after the meal (using a flooding dose of 13C-valine) and the dietary N postprandial distribution at 5 h (using 15N-labeled meals). Results RPI and MPI led to similar FSR and dietary nitrogen (N) losses (ileal and deamination losses of 4% and 12% of the meal, respectively). By contrast, the dietary N incorporation was significantly higher in the intestinal mucosa and liver (+36% and +16%, respectively) and lower in skin (-24%) after RPI than MPI. Conclusions Although RPI and MPI led to the same overall level of postprandial dietary N retention in rats (in line with our findings in humans), this global response conceals marked qualitative differences at the tissue level regarding dietary N accretion. The fact that FSR did not however differed between groups suggest a differential modulation of proteolysis after RPI or MPI ingestion, or other mechanisms that warrant further study. PMID:21787407

  3. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.

    PubMed

    Hiatt, Joseph B; Pritchard, Colin C; Salipante, Stephen J; O'Roak, Brian J; Shendure, Jay

    2013-05-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10(-6) in cell lines and 2.6 × 10(-5) in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%-4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%-1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings.

  4. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation

    PubMed Central

    Hiatt, Joseph B.; Pritchard, Colin C.; Salipante, Stephen J.; O'Roak, Brian J.; Shendure, Jay

    2013-01-01

    The detection and quantification of genetic heterogeneity in populations of cells is fundamentally important to diverse fields, ranging from microbial evolution to human cancer genetics. However, despite the cost and throughput advances associated with massively parallel sequencing, it remains challenging to reliably detect mutations that are present at a low relative abundance in a given DNA sample. Here we describe smMIP, an assay that combines single molecule tagging with multiplex targeted capture to enable practical and highly sensitive detection of low-frequency or subclonal variation. To demonstrate the potential of the method, we simultaneously resequenced 33 clinically informative cancer genes in eight cell line and 45 clinical cancer samples. Single molecule tagging facilitated extremely accurate consensus calling, with an estimated per-base error rate of 8.4 × 10−6 in cell lines and 2.6 × 10−5 in clinical specimens. False-positive mutations in the single molecule consensus base-calls exhibited patterns predominantly consistent with DNA damage, including 8-oxo-guanine and spontaneous deamination of cytosine. Based on mixing experiments with cell line samples, sensitivity for mutations above 1% frequency was 83% with no false positives. At clinically informative sites, we identified seven low-frequency point mutations (0.2%–4.7%), including BRAF p.V600E (melanoma, 0.2% alternate allele frequency), KRAS p.G12V (lung, 0.6%), JAK2 p.V617F (melanoma, colon, two lung, 0.3%–1.4%), and NRAS p.Q61R (colon, 4.7%). We anticipate that smMIP will be broadly adoptable as a practical and effective method for accurately detecting low-frequency mutations in both research and clinical settings. PMID:23382536

  5. Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type I collagen

    PubMed Central

    Yamauchi, Mitsuo; Noyes, Claudia; Kuboki, Yoshinori; Mechanic, Gerald L.

    1982-01-01

    A three-chained peptide from type I collagen, crosslinked by hydroxyaldolhistidine, has been isolated from a tryptic digest of 5 M guanidine·HCl-insoluble bovine skin collagen (a small but as yet unknown percentage of the total collagen in whole skin). OsO4/NaIO4 specifically cleaved the crosslink at its double bond into a two-chained crosslink peptide and a single peptide. The sequence of the two-chained peptide containing the bifunctional crosslink was determined after amino acid analysis of the separated peptides. The crosslink consists of an aldehyde derived from hydroxylysine-87 in the aldehyde-containing cyanogen bromide fragment α1CB5ald and an aldehyde derived from the lysine in the COOH-terminal nonhelical region of the α1CB6ald fragment. The α1CB6ald portion of the peptide exhibited structural microheterogeneity, containing the inverted sequence Ala-Lys-His instead of the normal sequence Lys-Ala-His. This indicates that another structural gene exists for α1(I) chain. The original three-chained peptide did not contain any glycosylated hydroxylysine or glycosylated hydroxyaldolhistidine. The lack of glycosylation of hydroxylysine-87 in α1CB5, which is usually glycosylated, allowed formation of the aldehyde, and this, coupled with the sequence inversion, may have allowed formation of the nonreducible crosslink hydroxyaldolhistidine. We suggest that the role of glycosylation, a posttranslational modification, of specific hydroxylysine residues is to prevent their oxidative deamination to aldehydes, thereby precluding formation of complex stable crosslinks. Complex crosslinks would decrease the rate of collagen turnover. The decrease, with time, would increase the population of stable crosslinked collagen molecules, which would eventually accumulate with age. PMID:6961443

  6. Photocontrol of Spirodela intermedia flavonoids 1

    PubMed Central

    McClure, Jerry W.

    1968-01-01

    Clone 115 of Spirodela intermedia W. Koch grown in Hutner's medium with sucrose produces the glycoflavones vitexin and orientin in darkness or in light of various wavelengths. The anthocyanin cyanidin-3-monoglucoside was present only after prolonged illumination of the plants with white or blue light. No cyanidin-glucoside was formed under constant red light. The substitution of red, blue, or far-red light for the last 24 hours of culture under constant white light reduced each flavonoid over those maintained in white light or given 24 hours of darkness. Reducing the light intensity from 900 to 400 ft-c of constant cool-white fluorescent light had no appreciable influence on vitexin (4′-hydroxyl) but markedly reduced orientin and cyanidin-glucoside (both 3′4′-hydroxyl). Substituting alternate 12-hour periods of light and darkness for continuous light reduced the glycoflavones approximately 50% while cyanidin-glucoside was reduced about 85%. Most responses to red, blue, or far-red light are consistent with a phytochrome-controlled promotion of vitexin synthesis. The evidence suggests that in S. intermedia: A) Environmental conditions which elicit cyanidin-glucoside and glycoflavone synthesis are different since a prolonged illumination with white light is required for the former but not the latter. B) The availability of a 3′4′-hydroxyl precursor for orientin and anthocyanin probably limits their synthesis in low intensity light. Since vitexin is essentially unaltered under these conditions this also suggests that acetate or malonate units for the A-ring and the deamination products of aromatic amino acids for the B-ring and carbons of the C-ring are not limiting factors. C) Light controls the biosynthesis of flavonols in the same manner as glycoflavones; under all experimental conditions the synthesis of kaempferol paralleled vitexin while quercetin responded in the same manner as crientin. PMID:16656751

  7. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere.

    PubMed

    Kwak, Min-Jung; Jeong, Haeyoung; Madhaiyan, Munusamy; Lee, Yi; Sa, Tong-Min; Oh, Tae Kwang; Kim, Jihyun F

    2014-01-01

    Pink-pigmented facultative methylotrophs in the Rhizobiales are widespread in the environment, and many Methylobacterium species associated with plants produce plant growth-promoting substances. To gain insights into the life style at the phyllosphere and the genetic bases of plant growth promotion, we determined and analyzed the complete genome sequence of Methylobacterium oryzae CBMB20T, a strain isolated from rice stem. The genome consists of a 6.29-Mb chromosome and four plasmids, designated as pMOC1 to pMOC4. Among the 6,274 coding sequences in the chromosome, the bacterium has, besides most of the genes for the central metabolism, all of the essential genes for the assimilation and dissimilation of methanol that are either located in methylotrophy islands or dispersed. M. oryzae is equipped with several kinds of genes for adaptation to plant surfaces such as defense against UV radiation, oxidative stress, desiccation, or nutrient deficiency, as well as high proportion of genes related to motility and signaling. Moreover, it has an array of genes involved in metabolic pathways that may contribute to promotion of plant growth; they include auxin biosynthesis, cytokine biosynthesis, vitamin B12 biosynthesis, urea metabolism, biosorption of heavy metals or decrease of metal toxicity, pyrroloquinoline quinone biosynthesis, 1-aminocyclopropane-1-carboxylate deamination, phosphate solubilization, and thiosulfate oxidation. Through the genome analysis of M. oryzae, we provide information on the full gene complement of M. oryzae that resides in the aerial parts of plants and enhances plant growth. The plant-associated lifestyle of M. oryzae pertaining to methylotrophy and plant growth promotion, and its potential as a candidate for a bioinoculant targeted to the phyllosphere and focused on phytostimulation are illuminated.

  8. A unique gene expression signature associated with serotonin 2C receptor RNA editing in the prefrontal cortex and altered in suicide.

    PubMed

    Di Narzo, Antonio Fabio; Kozlenkov, Alexey; Roussos, Panos; Hao, Ke; Hurd, Yasmin; Lewis, David A; Sibille, Etienne; Siever, Larry J; Koonin, Eugene; Dracheva, Stella

    2014-09-15

    Editing of the pre-mRNA for the serotonin receptor 2C (5-HT2CR) by site-specific adenosine deamination (A-to-I pre-mRNA editing) substantially increases the functional plasticity of this key neurotransmitter receptor and is thought to contribute to homeostatic mechanisms in neurons. 5-HT2CR mRNA editing generates up to 24 different receptor isoforms. The extent of editing correlates with 5-HT2CR functional activity: more highly edited isoforms exhibit the least function. Altered 5-HT2CR editing has been reported in postmortem brains of suicide victims. We report a comparative analysis of the connections among 5-HT2CR editing, genome-wide gene expression and DNA methylation in suicide victims, individuals with major depressive disorder and non-psychiatric controls. The results confirm previous findings of an overrepresentation of highly edited mRNA variants (which encode hypoactive 5-HT2CR receptors) in the brains of suicide victims. A large set of genes for which the expression level is associated with editing was detected. This signature set of editing-associated genes is significantly enriched for genes that are involved in synaptic transmission, genes that are preferentially expressed in neurons, and genes whose expression is correlated with the level of DNA methylation. Notably, we report that the link between 5-HT2CR editing and gene expression is disrupted in suicide victims. The results suggest that the postulated homeostatic function of 5-HT2CR editing is dysregulated in individuals who committed suicide. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Genome-wide A-to-I RNA editing in fungi independent of ADAR enzymes

    PubMed Central

    Liu, Huiquan; Wang, Qinhu; He, Yi; Chen, Lingfeng; Hao, Chaofeng; Jiang, Cong; Li, Yang; Dai, Yafeng; Kang, Zhensheng; Xu, Jin-Rong

    2016-01-01

    Yeasts and filamentous fungi do not have adenosine deaminase acting on RNA (ADAR) orthologs and are believed to lack A-to-I RNA editing, which is the most prevalent editing of mRNA in animals. However, during this study with the PUK1 (FGRRES_01058) pseudokinase gene important for sexual reproduction in Fusarium graminearum, we found that two tandem stop codons, UA1831GUA1834G, in its kinase domain were changed to UG1831GUG1834G by RNA editing in perithecia. To confirm A-to-I editing of PUK1 transcripts, strand-specific RNA-seq data were generated with RNA isolated from conidia, hyphae, and perithecia. PUK1 was almost specifically expressed in perithecia, and 90% of transcripts were edited to UG1831GUG1834G. Genome-wide analysis identified 26,056 perithecium-specific A-to-I editing sites. Unlike those in animals, 70.5% of A-to-I editing sites in F. graminearum occur in coding regions, and more than two-thirds of them result in amino acid changes, including editing of 69 PUK1-like pseudogenes with stop codons in ORFs. PUK1 orthologs and other pseudogenes also displayed stage-specific expression and editing in Neurospora crassa and F. verticillioides. Furthermore, F. graminearum differs from animals in the sequence preference and structure selectivity of A-to-I editing sites. Whereas A's embedded in RNA stems are targeted by ADARs, RNA editing in F. graminearum preferentially targets A's in hairpin loops, which is similar to the anticodon loop of tRNA targeted by adenosine deaminases acting on tRNA (ADATs). Overall, our results showed that A-to-I RNA editing occurs specifically during sexual reproduction and mainly in the coding regions in filamentous ascomycetes, involving adenosine deamination mechanisms distinct from metazoan ADARs. PMID:26934920

  10. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins

    PubMed Central

    Hegde, Muralidhar L.; Hegde, Pavana M.; Bellot, Larry J.; Mandal, Santi M.; Hazra, Tapas K.; Li, Guo-Min; Boldogh, Istvan; Tomkinson, Alan E.; Mitra, Sankar

    2013-01-01

    Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a “cowcatcher” and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function. PMID:23898192

  11. Conformational Changes and Substrate Recognition in Pseudomonas aeruginosa d-Arginine Dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guoxing; Yuan, Hongling; Li, Congran

    2010-11-15

    DADH catalyzes the flavin-dependent oxidative deamination of D-amino acids to the corresponding {alpha}-keto acids and ammonia. Here we report the first X-ray crystal structures of DADH at 1.06 {angstrom} resolution and its complexes with iminoarginine (DADH{sub red}/iminoarginine) and iminohistidine (DADH{sub red}/iminohistidine) at 1.30 {angstrom} resolution. The DADH crystal structure comprises an unliganded conformation and a product-bound conformation, which is almost identical to the DADH{sub red}/iminoarginine crystal structure. The active site of DADH was partially occupied with iminoarginine product (30% occupancy) that interacts with Tyr53 in the minor conformation of a surface loop. This flexible loop forms an 'active site lid',more » similar to those seen in other enzymes, and may play an essential role in substrate recognition. The guanidinium side chain of iminoarginine forms a hydrogen bond interaction with the hydroxyl of Thr50 and an ionic interaction with Glu87. In the structure of DADH in complex with iminohistidine, two alternate conformations were observed for iminohistidine where the imidazole groups formed hydrogen bond interactions with the side chains of His48 and Thr50 and either Glu87 or Gln336. The different interactions and very distinct binding modes observed for iminoarginine and iminohistidine are consistent with the 1000-fold difference in k{sub cat}/K{sub m} values for D-arginine and D-histidine. Comparison of the kinetic data for the activity of DADH on different D-amino acids and the crystal structures in complex with iminoarginine and iminohistidine establishes that this enzyme is characterized by relatively broad substrate specificity, being able to oxidize positively charged and large hydrophobic D-amino acids bound within a flask-like cavity.« less

  12. Cytochemical evaluation of the Guard procedure a regressive staining method for demonstrating chromosomal basic proteins. I. Effects of fixation, blocking reactions, selective extractions, and polyacid "differentiation".

    PubMed

    Cowden, R R; Rasch, E M; Curtis, S K

    1976-08-12

    Appropriately fixed preparations stained by a modification of the Guard (1959) reaction for "sex chromatin" display selective staining of interphase chromatin and mitotic or meiotic chromosomes. This is a regressive staining method which seems to depend on the selective displacement of an acidic dye from less basic structures, and retention of the dye at more basic sites. The results obtained with the reaction can be controlled by the length of time that the preparations are "differentiated" in solutions containing phosphomolybdic and phosphotungstic acids (polyacids). After three- or four-hour exposures to polyacid solutions, all chromatin is stained. However, with longer differentiation, "condensed" chromatin can be stained preferentially. Of a number of fixatives investigated, only 10% formalin, ethanol-acetic acid (3:1), and Bouin's solution proved useful. Others resulted in diminished specificity or a total loss of selectivity. The most intense staining was obtained after formalin fixation. Less intense dyebinding was observed after fixation in 3:1 - probably due to extraction of some histone fractions-and the least amount of dye was bound in Bouin's-fixed chromatin - probably due to blockage of arginine residues by picric acid. The reaction was not affected by enzymatic removal of nucleic acids or the extraction of lipids. It was diminished by treatment with trypsin or weak acetylation, and it was completely prevented by strong acetylation, deamination, or extraction of basic proteins with HCl. The results presented suggest that the modified Guard (1959) procedure selectively demonstrates basic nucleoproteins. Further, by the use of regressive differentiation in polyacid solutions, the retention of dye in more condensed chromatin can be favored.

  13. Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation.

    PubMed

    Wimmerová, M; Macholán, L

    1999-12-01

    We prepared a new inorganic sorbent based on modified triazine (2-[4,6-bis (aminoethylamine)-1,3,5-triazine]-Silasorb; BAT-Silasorb) which binds pea seedlings amine oxidase (PSAO) very tightly without loss of its catalytic activity. This unique feature as well as the wide substrate specificity of PSAO was successfully utilised in the construction of an amperometric biosensor based on a carbon paste electrode for the fast and sensitive detection of various amines at a formal potential 0 mV versus Ag/AgCl reference electrode. The reaction layer of the biosensor is created by the direct immobilisation of PSAO at the electrode surface via affinity carrier BAT-Silasorb. Used arrangement facilitates a simple restoration of the inactive biosensor. An amperometric signal results from horseradish peroxidase catalysed reduction of H2O2, a secondary product of the oxidative deamination of amines, catalysed by PSAO. The sensor was used for the basic characterisation of 55 biogenic and synthetic amines, from numerous mono-, di- and polyamines to various hydroxy-, thio-, benzyl- and aromatic derivatives in order to establish its suitability as a postcolumn detector. Its high sensitivity to putrescine 20.0 +/- 0.64 mA l-1 per mol (636.9 +/- 2.03 mA l-1 per mol per cm2), a limit of detection of 10 nmol l-1 (determined with respect to a signal-to-noise ratio 3:1), a linear range of current response to 0.01-100 mumol l-1 concentration of substrate and good reproducibility all indicate that the sensor could be applied to future industrial and clinical analyses.

  14. 3-Iodothyroacetic acid lacks thermoregulatory and cardiovascular effects in vivo

    PubMed Central

    Hoefig, Carolin S; Jacobi, Simon F; Warner, Amy; Harder, Lisbeth; Schanze, Nancy; Vennström, Björn; Mittag, Jens

    2015-01-01

    Background and Purpose 3-Iodothyronamine (3-T1AM) is an endogenous thyroid hormone derivative reported to induce strong hypothermia and bradycardia within minutes upon injection in rodents. Although 3-T1AM is rapidly converted to several other metabolites in vivo, these strong pharmacological responses were solely attributed to 3-T1AM, leaving potential contributions of downstream products untested. We therefore examined the cardiometabolic effects of 3-iodothyroacetic acid (TA1), the main degradation product of 3-T1AM. Experimental Approach We used a sensitive implantable radiotelemetry system in C57/Bl6J mice to study the effects of TA1 on body temperature and heart rate, as well as other metabolic parameters. Key Results Interestingly, despite using pharmacological TA1 doses, we observed no effects on heart rate or body temperature after a single TA1 injection (50 mg·kg−1, i.p.) compared to sham-injected controls. Repeated administration of TA1 (5 mg·kg−1, i.p. for 7 days) likewise did not alter body weight, food and water intake, heart rate, blood pressure, brown adipose tissue (BAT) thermogenesis or body temperature. Moreover, mRNA expression of tissue specific genes in heart, kidney, liver, BAT and lung was also not altered by TA1 compared to sham-injected controls. Conclusions and Implications Our data therefore conclusively demonstrate that TA1 does not contribute to the cardiovascular or thermoregulatory effects observed after 3-T1AM administration in mice, suggesting that the oxidative deamination constitutes an important deactivation mechanism for 3-T1AM with possible implications for cardiovascular and thermoregulatory functions. PMID:25765843

  15. Modulation of the Effect of l‐β‐D‐Arabinofuranosylcytosine by 6‐Mercaptopurine in L1210 Cells

    PubMed Central

    Kawai, Yasukazu; Ueda, Takanori; Nakamura, Toru

    1994-01-01

    In L1210 cells incubated with l‐β‐D‐arabinofuranosylcytosine (ara‐C), 6‐mercaptopurine (6‐MP) significantly potentiated 1‐β‐D‐arabinofuranosylcytosme 5′‐triphosphate (ara‐CTP) accumulation and ara‐C incorporation into DNA (ara‐C/DNA). The cytotoxicity of these two drugs was assessed to be at least additive by clonogenic assay. l‐β‐D‐Arabinofuranosylnracil (ara‐U) level in a cell suspension was suppressed by 6‐MP in a concentration‐dependent fashion, though intracellular cytidine deaminase (CDD) activity was not affected by 6‐MP. In addition, extracted CDD activity was not directly inhibited by 6‐MP or by its intracellular metabolites in vitro. After preincubation in the presence or absence of 6‐MP, the cell suspension was fractionated to obtain the spent medium and cell pellet. Then, each fraction was incubated with ara‐C. Ara‐U formation in the spent medium was found to increase conspicuously in relation to the time of preincubation in the control and it was suppressed by 6‐MP pretreatment. Ara‐U formation in the cell compartment increased slightly in relation to the time of preincubation in the control and substantially no suppression of ara‐U formation was observed in spite of 6‐MP pretreatment. In conclusion, intracellularly synthesized CDD was thought to be rapidly shed into the medium and the released CDD could play an important role in ara‐C inactivation. 6‐MP interrupted some step between synthesis and shedding of CDD, resulting in a decrease of the ara‐C deamination in the medium and enhancement of its antileukemic effect. PMID:7961129

  16. Structural elucidation of fucosylated chondroitin sulfates from sea cucumber using FTICR-MS/MS.

    PubMed

    Agyekum, Isaac; Pepi, Lauren; Yu, Yanlei; Li, Junhui; Yan, Lufeng; Linhardt, Robert J; Chen, Shiguo; Amster, I Jonathan

    2018-02-01

    Fucosylated chondroitin sulfates are complex polysaccharides extracted from sea cucumber. They have been extensively studied for their anticoagulant properties and have been implicated in other biological activities. While nuclear magnetic resonance spectroscopy has been used to extensively characterize fucosylated chondroitin sulfate oligomers, we herein report the first detailed mass characterization of fucosylated chondroitin sulfate using high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The two species of fucosylated chondroitin sulfates considered for this work include Pearsonothuria graeffei (FCS-Pg) and Isostichopus badionotus (FCS-Ib). Fucosylated chondroitin sulfate oligosaccharides were prepared by N-deacetylation-deaminative cleavage of the two fucosylated chondroitin sulfates and purified by repeated gel filtration. Accurate mass measurements obtained from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry measurements confirmed the oligomeric nature of these two fucosylated chondroitin sulfate oligosaccharides with each trisaccharide repeating unit averaging four sulfates per trisaccharide. Collision-induced dissociation of efficiently deprotonated molecular ions through Na/H + exchange proved useful in providing structurally relevant glycosidic and cross-ring product ions, capable of assigning the sulfate modifications on the fucosylated chondroitin sulfate oligomers. Careful examination of the tandem mass spectrometry of both species deferring in the positions of sulfate groups on the fucose residue (FCS-Pg-3,4- OS) and (FCS-Ib-2,4- OS) revealed cross-ring products 0,2 A αf and 2,4 X 2αf which were diagnostic for (FCS-Pg-3,4- OS) and 0,2 X 2αf diagnostic for (FCS-Ib-2,4- OS). Mass spectrometry and tandem mass spectrometry data acquired for both species varying in oligomer length (dp3-dp15) are presented.

  17. Gene Cloning and Characterization of the Very Large NAD-Dependent l-Glutamate Dehydrogenase from the Psychrophile Janthinobacterium lividum, Isolated from Cold Soil▿

    PubMed Central

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-01-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids. PMID:17526698

  18. Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil.

    PubMed

    Kawakami, Ryushi; Sakuraba, Haruhiko; Ohshima, Toshihisa

    2007-08-01

    NAD-dependent l-glutamate dehydrogenase (NAD-GDH) activity was detected in cell extract from the psychrophile Janthinobacterium lividum UTB1302, which was isolated from cold soil and purified to homogeneity. The native enzyme (1,065 kDa, determined by gel filtration) is a homohexamer composed of 170-kDa subunits (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Consistent with these findings, gene cloning and sequencing enabled deduction of the amino acid sequence of the subunit, which proved to be comprised of 1,575 amino acids with a combined molecular mass of 169,360 Da. The enzyme from this psychrophile thus appears to belong to the GDH family characterized by very large subunits, like those expressed by Streptomyces clavuligerus and Pseudomonas aeruginosa (about 180 kDa). The entire amino acid sequence of the J. lividum enzyme showed about 40% identity with the sequences from S. clavuligerus and P. aeruginosa enzymes, but the central domains showed higher homology (about 65%). Within the central domain, the residues related to substrate and NAD binding were highly conserved, suggesting that this is the enzyme's catalytic domain. In the presence of NAD, but not in the presence of NADP, this GDH exclusively catalyzed the oxidative deamination of l-glutamate. The stereospecificity of the hydride transfer to NAD was pro-S, which is the same as that of the other known GDHs. Surprisingly, NAD-GDH activity was markedly enhanced by the addition of various amino acids, such as l-aspartate (1,735%) and l-arginine (936%), which strongly suggests that the N- and/or C-terminal domains play regulatory roles and are involved in the activation of the enzyme by these amino acids.

  19. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, T m , and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (T m (F/T) < T m (εA/T) < T m (Hx/T) < T m (A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  20. Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms.

    PubMed

    Li, Yong; Sekula, Peggy; Wuttke, Matthias; Wahrheit, Judith; Hausknecht, Birgit; Schultheiss, Ulla T; Gronwald, Wolfram; Schlosser, Pascal; Tucci, Sara; Ekici, Arif B; Spiekerkoetter, Ute; Kronenberg, Florian; Eckardt, Kai-Uwe; Oefner, Peter J; Köttgen, Anna

    2018-05-01

    Background The kidneys have a central role in the generation, turnover, transport, and excretion of metabolites, and these functions can be altered in CKD. Genetic studies of metabolite concentrations can identify proteins performing these functions. Methods We conducted genome-wide association studies and aggregate rare variant tests of the concentrations of 139 serum metabolites and 41 urine metabolites, as well as their pairwise ratios and fractional excretions in up to 1168 patients with CKD. Results After correction for multiple testing, genome-wide significant associations were detected for 25 serum metabolites, two urine metabolites, and 259 serum and 14 urinary metabolite ratios. These included associations already known from population-based studies. Additional findings included an association for the uremic toxin putrescine and variants upstream of an enzyme catalyzing the oxidative deamination of polyamines ( AOC1 , P -min=2.4×10 -12 ), a relatively high carrier frequency (2%) for rare deleterious missense variants in ACADM that are collectively associated with serum ratios of medium-chain acylcarnitines ( P -burden=6.6×10 -16 ), and associations of a common variant in SLC7A9 with several ratios of lysine to neutral amino acids in urine, including the lysine/glutamine ratio ( P =2.2×10 -23 ). The associations of this SLC7A9 variant with ratios of lysine to specific neutral amino acids were much stronger than the association with lysine concentration alone. This finding is consistent with SLC7A9 functioning as an exchanger of urinary cationic amino acids against specific intracellular neutral amino acids at the apical membrane of proximal tubular cells. Conclusions Metabolomic indices of specific kidney functions in genetic studies may provide insight into human renal physiology. Copyright © 2018 by the American Society of Nephrology.

  1. Phenylalanine as a nitrogen source induces root growth and nitrogen-use efficiency in Populus × canescens.

    PubMed

    Jiao, Yu; Chen, Yinghao; Ma, Chaofeng; Qin, Jingjing; Nguyen, Thi Hong Nhung; Liu, Di; Gan, Honghao; Ding, Shen; Luo, Zhi-Bin

    2018-01-01

    To investigate the physiological responses of poplars to amino acids as sole nitrogen (N) sources, Populus × canescens (Ait.) Smith plants were supplied with one of three nitrogen fertilizers (NH4NO3, phenylalanine (Phe) or the mixture of NH4NO3 and Phe) in sand culture. A larger root system, and decreased leaf size and CO2 assimilation rate was observed in Phe- versus NH4NO3-treated poplars. Consistently, a greater root biomass and a decreased shoot growth were detected in Phe-supplied poplars. Decreased enzymatic activities of nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) and elevated activities of nitrite reductase (NiR), phenylalanine ammonia lyase (PAL), glutamine synthetase (GS) and asparagine synthase (AS) were found in Phe-treated roots. Accordingly, reduced concentrations of NH4+, NO3- and total N, and enhanced N-use efficiencies (NUEs) were detected in Phe-supplied poplars. Moreover, the transcript levels of putative Phe transporters ANT1 and ANT3 were upregulated, and the mRNA levels of NR, glutamine synthetase 2 (GS2), NADH-dependent glutamate synthase (NADH-GOGAT), GDH and asparagine synthetase 2 (ASN2) were downexpressed in Phe-treated roots and/or leaves. The 15N-labeled Phe was mainly allocated in the roots and only a small amount of 15N-Phe was translocated to poplar aerial parts. These results indicate that poplar roots can acquire Phe as an N source to support plant growth and that Phe-induced NUEs in the poplars are probably associated with NH4+ re-utilization after Phe deamination and the carbon bonus simultaneously obtained during Phe uptake. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Liver Transcriptome Changes in Zebrafish during Acclimation to Transport-Associated Stress

    PubMed Central

    Dhanasiri, Anusha K. S.; Fernandes, Jorge M. O.; Kiron, Viswanath

    2013-01-01

    Liver plays a key role during the stress acclimation, and liver transcriptome analysis of shipped zebrafish could reveal the molecular adjustments that occur in the organ. Transcriptional changes in liver were analyzed with a 44 K oligo array using total RNA from fish prior to transport and during a mock transport process - immediately after packing (0 h), at 48 and 72 h. Large numbers of genes related to a variety of biological processes and pathways were regulated, mainly during transport (at 48/72 h). Immediately after packing, transcripts of genes related to both gluconeogenesis and glycolysis were induced. During transport, induction of gluconeogenesis-linked genes and reduction of glycolysis-related genes may be supporting the increase in blood glucose levels. Inhibition of genes involved in fatty acid beta-oxidation may be pointing to the poor ability of fish to utilize energy from fatty acids, under transport conditions. Genes involved in some of the mechanisms that regulate body ammonia were also affected. Even though genes associated with certain transaminases were inhibited in liver, sustained glutamate deamination may have led to high ammonia accumulation in liver/body. Enhanced levels of gene transcripts in ubiquitination and MAPK signalling cascade and reduced levels of gene transcripts related to ROS generation via peroxisomal enzymes as well as xenobiotic metabolism may be signifying the importance of such cellular and tissue responses to maintain homeostasis. Furthermore, transcripts connected with stress and thyroid hormones were also regulated. Moreover, suppression of genes related to specific immune components may be denoting the deleterious impact of transport on fish health. Thus, this study has revealed the complex molecular -adjustments that occur in zebrafish when they are transported. PMID:23762281

  3. Quantitative role of splanchnic region in leucine metabolism: L-(1-13C,15N)leucine and substrate balance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Y.M.; Wagner, D.A.; Tredget, E.E.

    1990-07-01

    The role of the splanchnic region (Sp) in whole body leucine metabolism was assessed in six chronically catheterized fasting mongrel dogs and in eight dogs during constant enteral feeding of a complete amino acid solution (0.24 g.kg-1.h-1). We used primed continuous intravenous infusions of L-(1-13C,15N)leucine and L-(1-14C)leucine and measurements of arteriovenous isotope and leucine balance across the gut, liver, and Sp. In the fasted condition, 3.5% of arterial leucine supply was oxidized in the Sp, accounting for 13% of total body leucine oxidation, with 10% by liver. With amino acid feeding (1) leucine carbon and nitrogen fluxes and oxidation weremore » increased (P less than 0.01) at the whole body level; (2) the percent of whole body leucine oxidation occurring in the Sp and liver increased (P less than 0.01) to 41 and 27%, respectively; (3) fractional metabolic utilization of leucine delivered to the Sp was reduced (P less than 0.01) from 47 to 35%; (4) the deamination rate of leucine in the gut was increased (P less than 0.05), along with an increased reamination rate of alpha-ketoisocaproic acid in the Sp (P less than 0.05). These findings reveal that the Sp accounts for a small fraction of whole body leucine oxidation during the fasting condition, but it plays a quantitatively important role in total body leucine oxidation during amino acid feeding; the gut and liver play cooperative roles in controlling leucine supply to peripheral tissues.« less

  4. Influence of Microheterogeneous Environments of Sodium Dodecyl Sulfate on the Kinetics of Oxidation of l-Serine by Chloro and Chlorohydroxo Complexes of Gold(III).

    PubMed

    Maiti, Krishnendu; Sen, Pratik K; Barik, Anil K; Pal, Biswajit

    2018-06-21

    The oxidation of l-serine by chloro and chlorohydroxo complexes of gold(III) was spectrophotometrically investigated in acidic buffer media in the absence and presence of the anionic surfactant sodium dodecyl sulfate (SDS). The oxidation rate decreases with increase in either [H + ] or [Cl - ]. Gold(III) complex species react with the zwitterionic form of serine to yield acetaldehyde (principal reaction product) through oxidative decarboxylation and subsequent deamination processes. A reaction pathway involving one electron transfer from serine to Au(III) followed by homolytic cleavage of α-C-C bond with the concomitant formation of iminic cation intermediate has been proposed where Au(III) is initially reduced to Au(II). The surfactant in the submicellar region exhibits a catalytic effect on the reaction rate at [SDS] ≤ 4 mM; however, in the postmicellar region an inhibitory effect was prominent at [SDS] ≥ 4 mM. The catalytic effect below the critical micelle concentration (cmc) may be attributable to the electrostatic attraction between serine and SDS that, in turn, enhances the nucleophilicity of the carboxylate ion of the amino acid. The inhibition effect beyond cmc has been explained by considering the distribution of the reactant species between the aqueous and the micellar pseudophases that restricts the close association of the reactant species. The thermodynamic parameters Δ H 0 and Δ S 0 associated with the binding between serine and SDS micelle were calculated to be -14.4 ± 2 kJ mol -1 and -6.3 ± 0.5 J K -1 mol -1 , respectively. Water structure rearrangement and micelle-substrate binding play instrumental roles during the transfer of the reactant species from aqueous to micellar pseudophase.

  5. CD26 expression and adenosine deaminase activity in regulatory T cells (Treg) and CD4+ T effector cells in patients with head and neck squamous cell carcinoma

    PubMed Central

    Mandapathil, Magis; Szczepanski, Miroslaw; Harasymczuk, Malgorzata; Ren, Jin; Cheng, Dongmei; Jackson, Edwin K.; Gorelik, Elieser; Johnson, Jonas; Lang, Stephan; Whiteside, Theresa L

    2012-01-01

    Adenosine deaminase (ADA) is responsible for the deamination of immunosuppressive adenosine to inosine. In human T lymphocytes, ADA is associated with dipeptidyl peptidase IV (CD26). ADA expression and activity were evaluated in regulatory T cells (Treg) and CD4+ T effector cells (Teff) of patients with head and neck squamous cell cancer (HNSCC). CD4+CD39+ and CD4+CD39neg T cells were isolated by single-cell sorting from the peripheral blood of 15 HNSCC patients and 15 healthy donors (NC). CD26/ADA expression in these cells was studied by multicolor flow cytometry, confocal microscopy, RT-PCR and immunohistochemistry in tumor tissues. ADA activity was evaluated by mass spectrometry, suppression of Teff proliferation in CFSE assays and cytokine production by Luminex. CD4+CD39+ Treg had low and CD4+CD39neg Teff high CD26/ADA expression and ADA activity in NC or HNSCC. The frequency and suppressor activity of CD39+CD26neg Treg were elevated in patients relative to NC (p < 0.01). However, ADA activity in patients’ CD4+CD39neg Teff was decreased (p < 0.05), resulting in extracellular adenosine accumulation. Also, patients’ Teff were more sensitive to inhibitory signals delivered via adenosine receptors. IL-2, IL12 and INFγ upregulated ADA expression and activity in CD4+CD39neg Teff, whereas IL-10, PGE2 and CADO downregulated it. The differentially expressed CD26/ADA can serve as surface markers for functionally-active CD39+CD26neg Treg. PMID:22934258

  6. Biodegradation of 4-nitrotoluene with biosurfactant production by Rhodococcus pyridinivorans NT2: metabolic pathway, cell surface properties and toxicological characterization.

    PubMed

    Kundu, Debasree; Hazra, Chinmay; Dandi, Navin; Chaudhari, Ambalal

    2013-11-01

    A novel 4-nitrotoluene-degrading bacterial strain was isolated from pesticides contaminated effluent-sediment and identified as Rhodococcus pyridinivorans NT2 based on morphological and biochemical properties and 16S rDNA sequencing. The strain NT2 degraded 4-NT (400 mg l(-1)) with rapid growth at the end of 120 h, reduced surface tension of the media from 71 to 29 mN m(-1) and produced glycolipidic biosurfactants (45 mg l(-1)). The biosurfactant was purified and characterized as trehalose lipids. The biosurfactant was stable in high salinity (10 % w/v NaCl), elevated temperatures (120 °C for 15 min) and a wide pH range (2.0-10.0). The noticeable changes during biodegradation were decreased hydrophobicity; an increase in degree of fatty acid saturation, saturated/unsaturated ratio and cyclopropane fatty acid. Biodegradation of 4-NT was accompanied by the accumulation of ammonium (NH4 (+)) and negligible amount of nitrite ion (NO2 (-)). Product stoichiometry showed a carbon (C) and nitrogen (N) mass balance of 37 and 35 %, respectively. Biodegradation of 4-NT proceeded by oxidation at the methyl group to form 4-nitrobenzoate, followed by reduction and hydrolytic deamination yielding protocatechuate, which was metabolized through β-ketoadipate pathway. In vitro and in vivo acute toxicity assays in adult rat (Rattus norvegicus) showed sequential detoxification and the order of toxicity was 4-NT >4-nitrobenzyl alcohol >4-nitrobenzaldehyde >4-nitrobenzoate > protocatechuate. Taken together, the strain NT2 could be used as a potential bioaugmentation candidate for the bioremediation of contaminated sites.

  7. Importance of phenols structure on their activity as antinitrosating agents: A kinetic study

    PubMed Central

    Pessêgo, Márcia; Rosa da Costa, Ana M; Moreira, José A.

    2011-01-01

    Objective: Nitrosative deamination of DNA bases induced by reaction with reactive nitrogen species (RNS) has been pointed out as a probable cause of mutagenesis. (Poly)phenols, present in many food items from the Mediterranean diet, are believed to possess antinitrosating properties due to their RNS scavenging ability, which seems to be related to their structure. It has been suggested that phenolic compounds will react with the above-mentioned species more rapidly than most amino compounds, thus preventing direct nitrosation of the DNA bases and their transnitrosation from endogenous N-nitroso compounds, or most likely from the transient N-nitrosocompounds formed in vivo. Materials and Methods: In order to prove that assumption, a kinetic study of the nitroso group transfer from a N-methyl-N-nitrosobenzenesulfonamide (N-methyl-N-nitroso-4-methylbenzenesulfonamide, MeNMBS) to the DNA bases bearing an amine group and to a series of phenols was carried out. In the transnitrosation of phenols, the formation of nitrosophenol was monitored by Ultraviolet (UV) / Visible spectroscopy, and in the reactions of the DNA bases, the consumption of MeNMBS was followed by high performance liquid chromatography (HPLC). Results: The results obtained point to the transnitrosation of DNA bases being negligible, as well as that of phenols bearing electron-withdrawing groups. Phenols with methoxy substituents in positions 2, 4, and / or 6, although they seemed to react, did not afford the expected product. Phenols with electron-releasing substituents, unless these blocked the oxygen atom, reacted with our model compound at an appreciable rate. O-nitrosation of the phenolate ion followed by rearrangement of the C-nitrosophenol seemed to be involved. Conclusion: This study provided evidence that the above compounds might actually act as antinitrosating agents in vivo. PMID:21430963

  8. Plasma pharmacokinetics and oral bioavailability of 3,4,5,6-tetrahydrouridine, a cytidine deaminase inhibitor, in mice

    PubMed Central

    Eiseman, Julie L.; Parise, Robert A.; Florian, Jeffry A.; Joseph, Erin; D’Argenio, David Z.; Parker, Robert S.; Kay, Brittany; Covey, Joseph M.; Egorin, Merrill J.

    2009-01-01

    Cytidine analogues such as cytosine arabinoside, gemcitabine, decitabine, 5-azacytidine, 5-fluoro-2′-deoxycytidine and 5-chloro-2′-deoxycytidine undergo rapid catabolism by cytidine deaminase (CD). 3,4,5,6-tetrahydrouridine (THU) is a potent CD inhibitor that has been applied preclinically and clinically as a modulator of cytidine analogue metabolism. However, THU pharmacokinetics has not been fully characterized, which has impaired the optimal preclinical evaluation and clinical use of THU. Therefore, we characterized the THU pharmacokinetics and bioavailability in mice. Mice were dosed with THU iv (100 mg/kg) or po (30, 100, or 300 mg/kg). Plasma and urine THU concentrations were quantitated with a validated LC-MS/MS assay. Plasma pharmacokinetic parameters were calculated compartmentally and non-compartmentally. THU, at 100 mg/kg iv had a 73 min terminal half-life and produced plasma THU concentrations >1 μg/ml, the concentration shown to effectively block deamination, for 4 h. Clearance was 9.1 ml/min/kg, and the distribution volume was 0.95 l/kg. Renal excretion accounted for 36–55% of the THU dose. A three-compartment model fit the iv THU data best. THU, at 100 mg/kg po, produced a concentration versus time profile with a plateau of approximately 10 μg/ml from 0.5–3 h, followed by a decline with an 85 min half-life. The oral bioavailability of THU was approximately 20%. The 20% oral bioavailability of THU is sufficient to produce and sustain, for several hours, plasma concentrations that inhibit CD. This suggests the feasibility of using THU to decrease elimination and first-pass metabolism of cytidine analogues by CD. THU pharmacokinetics are now being evaluated in humans. PMID:18008070

  9. Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    PubMed Central

    He, Cuiwen H.; Black, Dylan S.; Allan, Christopher M.; Meunier, Brigitte; Rahman, Shamima; Clarke, Catherine F.

    2017-01-01

    Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA) in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB). To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model. PMID:28736527

  10. Overexpression of the Coq8 kinase in Saccharomyces cerevisiae coq null mutants allows for accumulation of diagnostic intermediates of the coenzyme Q6 biosynthetic pathway.

    PubMed

    Xie, Letian X; Ozeir, Mohammad; Tang, Jeniffer Y; Chen, Jia Y; Jaquinod, Sylvie-Kieffer; Fontecave, Marc; Clarke, Catherine F; Pierrel, Fabien

    2012-07-06

    Most of the Coq proteins involved in coenzyme Q (ubiquinone or Q) biosynthesis are interdependent within a multiprotein complex in the yeast Saccharomyces cerevisiae. Lack of only one Coq polypeptide, as in Δcoq strains, results in the degradation of several Coq proteins. Consequently, Δcoq strains accumulate the same early intermediate of the Q(6) biosynthetic pathway; this intermediate is therefore not informative about the deficient biosynthetic step in a particular Δcoq strain. In this work, we report that the overexpression of the protein Coq8 in Δcoq strains restores steady state levels of the unstable Coq proteins. Coq8 has been proposed to be a kinase, and we provide evidence that the kinase activity is essential for the stabilizing effect of Coq8 in the Δcoq strains. This stabilization results in the accumulation of several novel Q(6) biosynthetic intermediates. These Q intermediates identify chemical steps impaired in cells lacking Coq4 and Coq9 polypeptides, for which no function has been established to date. Several of the new intermediates contain a C4-amine and provide information on the deamination reaction that takes place when para-aminobenzoic acid is used as a ring precursor of Q(6). Finally, we used synthetic analogues of 4-hydroxybenzoic acid to bypass deficient biosynthetic steps, and we show here that 2,4-dihydroxybenzoic acid is able to restore Q(6) biosynthesis and respiratory growth in a Δcoq7 strain overexpressing Coq8. The overexpression of Coq8 and the use of 4-hydroxybenzoic acid analogues represent innovative tools to elucidate the Q biosynthetic pathway.

  11. A Key Enzyme of the NAD+ Salvage Pathway in Thermus thermophilus: Characterization of Nicotinamidase and the Impact of Its Gene Deletion at High Temperatures.

    PubMed

    Taniguchi, Hironori; Sungwallek, Sathidaphorn; Chotchuang, Phatcharin; Okano, Kenji; Honda, Kohsuke

    2017-09-01

    NAD (NAD + ) is a cofactor related to many cellular processes. This cofactor is known to be unstable, especially at high temperatures, where it chemically decomposes to nicotinamide and ADP-ribose. Bacteria, yeast, and higher organisms possess the salvage pathway for reconstructing NAD + from these decomposition products; however, the importance of the salvage pathway for survival is not well elucidated, except for in pathogens lacking the NAD + de novo synthesis pathway. Herein, we report the importance of the NAD + salvage pathway in the thermophilic bacterium Thermus thermophilus HB8 at high temperatures. We identified the gene encoding nicotinamidase (TTHA0328), which catalyzes the first reaction of the NAD + salvage pathway. This recombinant enzyme has a high catalytic activity against nicotinamide ( K m of 17 μM, k cat of 50 s -1 , k cat / K m of 3.0 × 10 3 s -1 · mM -1 ). Deletion of this gene abolished nicotinamide deamination activity in crude extracts of T. thermophilus and disrupted the NAD + salvage pathway in T. thermophilus Disruption of the salvage pathway led to the severe growth retardation at a higher temperature (80°C), owing to the drastic decrease in the intracellular concentrations of NAD + and NADH. IMPORTANCE NAD + and other nicotinamide cofactors are essential for cell metabolism. These molecules are unstable and decompose, even under the physiological conditions in most organisms. Thermophiles can survive at high temperatures where NAD + decomposition is, in general, more rapid. This study emphasizes that NAD + instability and its homeostasis can be one of the important factors for thermophile survival in extreme temperatures. Copyright © 2017 American Society for Microbiology.

  12. Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Aspartic Acid Complexes with Zn2+ and Cd2.

    PubMed

    Boles, Georgia C; Hightower, Randy L; Coates, Rebecca A; McNary, Christopher P; Berden, Giel; Oomens, Jos; Armentrout, P B

    2018-04-12

    Complexes of aspartic acid (Asp) cationized with Zn 2+ : Zn(Asp-H) + , Zn(Asp-H) + (ACN) where ACN = acetonitrile, and Zn(Asp-H) + (Asp); as well as with Cd 2+ , CdCl + (Asp), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free electron laser. A series of low-energy conformers for each complex was found using quantum chemical calculations to identify the structures formed experimentally. The main binding motif observed for the heavy-metal complex, CdCl + (Asp)[N,CO,CO s ], is a charge-solvated, tridentate structure, where the metal center binds to the backbone amino group and carbonyl oxygens of the backbone and side-chain carboxylic acids. Likewise, the deprotonated Zn(Asp-H) + (ACN) and Zn(Asp-H) + (Asp) complexes show comparable [N,CO - ,CO s ](ACN) and [N,CO - ,CO s ][N,CO,CO s ] coordinations, respectively. Interestingly, there was only minor spectral evidence for the analogous Zn(Asp-H) + [N,CO - ,CO s ] binding motif, even though this species is predicted to be the lowest-energy conformer. Instead, rearrangement and partial dissociation of the amino acid are observed, as spectral features most consistent with the experimental spectrum are exhibited by a four-coordinate Zn(Asp-NH 4 ) + [CO 2 - ,CO s ](NH 3 ) complex. Analysis of the mechanistic pathway leading from the predicted lowest-energy conformer to the isobaric deaminated complex is explored theoretically. Further, comparison of the current work to that of Zn 2+ and Cd 2+ complexes of asparagine (Asn) allows additional conclusions regarding populated conformers and effects of carboxamide versus carboxylic acid binding to be drawn.

  13. The Human Immunodeficiency Virus Type 1 Vif Protein Reduces Intracellular Expression and Inhibits Packaging of APOBEC3G (CEM15), a Cellular Inhibitor of Virus Infectivity

    PubMed Central

    Kao, Sandra; Khan, Mohammad A.; Miyagi, Eri; Plishka, Ron; Buckler-White, Alicia; Strebel, Klaus

    2003-01-01

    Replication of human immunodeficiency virus type 1 (HIV-1) in most primary cells and some immortalized T-cell lines depends on the activity of the viral infectivity factor (Vif). Vif has the ability to counteract a cellular inhibitor, recently identified as CEM15, that blocks infectivity of Vif-defective HIV-1 variants. CEM15 is identical to APOBEC3G and belongs to a family of proteins involved in RNA and DNA deamination. We cloned APOBEC3G from a human kidney cDNA library and confirmed that the protein acts as a potent inhibitor of HIV replication and is sensitive to the activity of Vif. We found that wild-type Vif inhibits packaging of APOBEC3G into virus particles in a dose-dependent manner. In contrast, biologically inactive variants carrying in-frame deletions in various regions of Vif or mutation of two highly conserved cysteine residues did not inhibit packaging of APOBEC3G. Interestingly, expression of APOBEC3G in the presence of wild-type Vif not only affected viral packaging but also reduced its intracellular expression level. This effect was not seen in the presence of biologically inactive Vif variants. Pulse-chase analyses did not reveal a significant difference in the stability of APOBEC3G in the presence or absence of Vif. However, in the presence of Vif, the rate of synthesis of APOBEC3G was slightly reduced. The reduction of intracellular APOBEC3G in the presence of Vif does not fully account for the Vif-induced reduction of virus-associated APOBEC3G, suggesting that Vif may function at several levels to prevent packaging of APOBEC3G into virus particles. PMID:14557625

  14. HIV1 V3 loop hypermutability is enhanced by the guanine usage bias in the part of env gene coding for it.

    PubMed

    Khrustalev, Vladislav Victorovich

    2009-01-01

    Guanine is the most mutable nucleotide in HIV genes because of frequently occurring G to A transitions, which are caused by cytosine deamination in viral DNA minus strands catalyzed by APOBEC enzymes. Distribution of guanine between three codon positions should influence the probability for G to A mutation to be nonsynonymous (to occur in first or second codon position). We discovered that nucleotide sequences of env genes coding for third variable regions (V3 loops) of gp120 from HIV1 and HIV2 have different kinds of guanine usage biases. In the HIV1 reference strain and 100 additionally analyzed HIV1 strains the guanine usage bias in V3 loop coding regions (2G>1G>3G) should lead to elevated nonsynonymous G to A transitions occurrence rates. In the HIV2 reference strain and 100 other HIV2 strains guanine usage bias in V3 loop coding regions (3G>2G>1G) should protect V3 loops from hypermutability. According to the HIV1 and HIV2 V3 alignment, insertion of the sequence enriched with 2G (21 codons in length) occurred during the evolution of HIV1 predecessor, while insertion of the different sequence enriched with 3G (19 codons in length) occurred during the evolution of HIV2 predecessor. The higher is the level of 3G in the V3 coding region, the lower should be the immune escaping mutation occurrence rates. This hypothesis was tested in this study by comparing the guanine usage in V3 loop coding regions from HIV1 fast and slow progressors. All calculations have been performed by our algorithms "VVK In length", "VVK Dinucleotides" and "VVK Consensus" (www.barkovsky.hotmail.ru).

  15. Deletion of CD73 in mice leads to aortic valve dysfunction.

    PubMed

    Zukowska, P; Kutryb-Zajac, B; Jasztal, A; Toczek, M; Zabielska, M; Borkowski, T; Khalpey, Z; Smolenski, R T; Slominska, E M

    2017-06-01

    Aortic stenosis is known to involve inflammation and thrombosis. Changes in activity of extracellular enzyme - ecto-5'-nucleotidase (referred also as CD73) can alter inflammatory and thrombotic responses. This study aimed to evaluate the effect of CD73 deletion in mice on development of aortic valve dysfunction and to compare it to the effect of high-fat diet. Four groups of mice (normal-diet Wild Type (WT), high-fat diet WT, normal diet CD73-/-, high-fat diet CD73-/-) were maintained for 15weeks followed by echocardiographic analysis of aortic valve function, measurement of aortic surface activities of nucleotide catabolism enzymes as well as alkaline phosphatase activity, mineral composition and histology of aortic valve leaflets. CD73-/- knock out led to an increase in peak aortic flow (1.06±0.26m/s) compared to WT (0.79±0.26m/s) indicating obstruction. Highest values of peak aortic flow (1.26±0.31m/s) were observed in high-fat diet CD73-/- mice. Histological analysis showed morphological changes in CD73-/- including thickening and accumulation of dark deposits, proved to be melanin. Concentrations of Ca 2+ , Mg 2+ and PO 4 3- in valve leaflets were elevated in CD73-/- mice. Alkaline phosphatase (ALP) activity was enhanced after ATP treatment and reduced after adenosine treatment in aortas incubated in osteogenic medium. AMP hydrolysis in CD73-/- was below 10% of WT. Activity of ecto-adenosine deaminase (eADA), responsible for adenosine deamination, in the CD73-/- was 40% lower when compared to WT. Deletion of CD73 in mice leads to aortic valve dysfunction similar to that induced by high-fat diet suggesting important role of this surface protein in maintaining heart valve integrity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Multifaceted plant responses to circumvent Phe hyperaccumulation by downregulation of flux through the shikimate pathway and by vacuolar Phe sequestration.

    PubMed

    Lynch, Joseph H; Orlova, Irina; Zhao, Chengsong; Guo, Longyun; Jaini, Rohit; Maeda, Hiroshi; Akhtar, Tariq; Cruz-Lebron, Junellie; Rhodes, David; Morgan, John; Pilot, Guillaume; Pichersky, Eran; Dudareva, Natalia

    2017-12-01

    Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non-oxidative deamination of Phe to trans-cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81-94% led to an 18-fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate-derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL-RNAi transgenic plants resulted in 1.6-fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Fast, Accurate and Automatic Ancient Nucleosome and Methylation Maps with epiPALEOMIX.

    PubMed

    Hanghøj, Kristian; Seguin-Orlando, Andaine; Schubert, Mikkel; Madsen, Tobias; Pedersen, Jakob Skou; Willerslev, Eske; Orlando, Ludovic

    2016-12-01

    The first epigenomes from archaic hominins (AH) and ancient anatomically modern humans (AMH) have recently been characterized, based, however, on a limited number of samples. The extent to which ancient genome-wide epigenetic landscapes can be reconstructed thus remains contentious. Here, we present epiPALEOMIX, an open-source and user-friendly pipeline that exploits post-mortem DNA degradation patterns to reconstruct ancient methylomes and nucleosome maps from shotgun and/or capture-enrichment data. Applying epiPALEOMIX to the sequence data underlying 35 ancient genomes including AMH, AH, equids and aurochs, we investigate the temporal, geographical and preservation range of ancient epigenetic signatures. We first assess the quality of inferred ancient epigenetic signatures within well-characterized genomic regions. We find that tissue-specific methylation signatures can be obtained across a wider range of DNA preparation types than previously thought, including when no particular experimental procedures have been used to remove deaminated cytosines prior to sequencing. We identify a large subset of samples for which DNA associated with nucleosomes is protected from post-mortem degradation, and nucleosome positioning patterns can be reconstructed. Finally, we describe parameters and conditions such as DNA damage levels and sequencing depth that limit the preservation of epigenetic signatures in ancient samples. When such conditions are met, we propose that epigenetic profiles of CTCF binding regions can be used to help data authentication. Our work, including epiPALEOMIX, opens for further investigations of ancient epigenomes through time especially aimed at tracking possible epigenetic changes during major evolutionary, environmental, socioeconomic, and cultural shifts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric Cancer.

    PubMed

    Cho, Charles J; Jung, Jaeeun; Jiang, Lushang; Lee, Eun Ji; Kim, Dae-Soo; Kim, Byung Sik; Kim, Hee Sung; Jung, Hwoon-Yong; Song, Ho-June; Hwang, Sung Wook; Park, Yangsoon; Jung, Min Kyo; Pack, Chan Gi; Myung, Seung-Jae; Chang, Suhwan

    2018-04-25

    Adenosine deaminase acting on RNA 1 (ADAR1) is known to mediate deamination of adenosine-to-inosine through binding to double-stranded RNA, the phenomenon known as RNA editing. Currently, the function of ADAR1 in gastric cancer is unclear. This study was aimed at investigating RNA editing-dependent and editing-independent functions of ADAR1 in gastric cancer, especially focusing on its influence on editing of 3' untranslated regions (UTRs) and subsequent changes in expression of messenger RNAs (mRNAs) as well as microRNAs (miRNAs). RNA-sequencing and small RNA-sequencing were performed on AGS and MKN-45 cells with a stable ADAR1 knockdown. Changed frequencies of editing and mRNA and miRNA expression were then identified by bioinformatic analyses. Targets of RNA editing were further validated in patients' samples. In the Alu region of both gastric cell lines, editing was most commonly of the A-to-I type in 3'-UTR or intron. mRNA and protein levels of PHACTR4 increased in ADAR1 knockdown cells, because of the loss of seed sequences in 3'-UTR of PHACTR4 mRNA that are required for miRNA-196a-3p binding. Immunohistochemical analyses of tumor and paired normal samples from 16 gastric cancer patients showed that ADAR1 expression was higher in tumors than in normal tissues and inversely correlated with PHACTR4 staining. On the other hand, decreased miRNA-148a-3p expression in ADAR1 knockdown cells led to increased mRNA and protein expression of NFYA, demonstrating ADAR1's editing-independent function. ADAR1 regulates post-transcriptional gene expression in gastric cancer through both RNA editing-dependent and editing-independent mechanisms.

  19. Metabolism of 14C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta).

    PubMed

    Slikker, W; Holder, C L; Lipe, G W; Korfmacher, W A; Thompson, H C; Bailey, J R

    1986-01-01

    The time-course of the metabolic fate of [14C]doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus [14C]doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid, 1-[1-phenyl-1(2-pyridinyl)ethoxy] methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peak 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.

  20. Metabolism of /sup 14/C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, W. Jr.; Holder, C.L.; Lipe, G.W.

    The time-course of the metabolic fate of (/sup 14/C)doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus (/sup 14/C)doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-(1-phenyl-1-(2-pyridinyl)ethoxy) acetic acid, 1-(1-phenyl-1(2-pyridinyl)ethoxy) methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peakmore » 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.« less

Top