Sample records for deasphalting

  1. Chemical composition of asphaltenes of crude oil from Baradero field in Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platonov, V.V.; Proskuryakov, V.A.; Klyavina, O.A.

    Asphaltenes of crude oil from Baradero field in Cuba have been studied by physical and physicochemical methods. Dynamics of distribution of nitrogen, sulfur, and oxygen and also various functional groups in asphaltenes has been described. These data can be used for the proper deasphalting of crude oil and further treatment of asphaltenes.

  2. Kinetics of resid hydrodesulfurization reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed, A.H.A.K.; Abbas, A.A.A.; Al'-Maiya, A.S.K.

    1987-07-01

    In this article the authors examine the results obtained in hydrodesulfurizing an atmospheric resis from Bai-Hassan crude on Ni-Mo/Al/sub 2/O/sub 3/ catalyst at 320-420/sup 0/C, feedstock space velocity 0.37-2.6 h/sup -1/, pressure 6.1 MPa, and hydrogen/feed ratio 300 liters/liter, in a single-pass downflow reactor with a stationary bed of catalyst. Also, they give certain thermodynamic characteristics for desulfurization, demetalization, and deasphalting of this resid. The kinetic model describing most accurately the kinetics of the different reactions will be examined.

  3. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly progress report, July--September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, C.W.; Gutterman, C.; Chander, S.

    The overall objective of this project is to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and carrying out a technical assessment including an economic evaluation. The primary coal of this program, Black Thunder subbituminous coal, can be effectively beneficiated to about 3.5 wt % ash using aqueous sulfurous acid pretreatment. This treated coal can be further beneficiated to about 2 wt % ash usingmore » commercially available procedures. All three coals used in this study (Black Thunder, Burning Star bituminous, and Martin Lake lignite) are effectively swelled by a number of solvents. The most effective solvents are those having hetero-functionality. laboratory- and bench-scale liquefaction experimentation is underway using swelled and catalyst impregnated coal samples. Higher coal conversions were observed for the SO{sub 2}-treated subbituminous coal than the raw coal, regardless of catalyst type. Conversions of swelled coal were highest when Molyvan L, molybdenum naphthenate, and nickel octoate, respectively, were added to the liquefaction solvent. The study of bottoms processing consists of combining the ASCOT process which consists of coupling solvent deasphalting with delayed coking to maximize the production of coal-derived liquids while rejecting solids within the coke drum. The asphalt production phase has been completed; representative product has been evaluated. The solvent system for the deasphalting process has been established. Two ASCOT tests produced overall liquid yields (63.3 wt % and 61.5 wt %) that exceeded the combined liquid yields from the vacuum tower and ROSE process.« less

  4. Thermogravimetric determination of the coking kinetics of Arab heavy vacuum residuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schucker, R.C.

    1983-10-01

    The progressively heavier nature of available feedstocks has put a premium on efficient, low-cost refinery processes to convert residuum to lighter products. One such process is fluid coking, and the present study was undertaken to provide information on the coking kinetics of Arab Heavy vacuum residuum-a feed of commercial interest. The feed was first separated by solvent deasphalting and liquid-solid absorption techniques into four fractions asphaltenes, polar aromatics, aromatics, and saturates. Each of these fractions and the whole residuum were then subjected to nonisothermal kinetic analysis using thermogravimetry. Both weight loss and its first derivative were monitored as a functionmore » of temperature at heating rates ranging from 1 degree C/min to 20 degrees C/min. Activation energies and frequency factors were obtained at various conversion levels and in all cases were shown to increase with conversion. This strongly suggests the use of an activation energy distribution for future coking kinetic modeling.« less

  5. Molecular-level characterization of crude oil compounds combining reversed-phase high-performance liquid chromatography with off-line high-resolution mass spectrometry

    USGS Publications Warehouse

    Sim, Arum; Cho, Yunju; Kim, Daae; Witt, Matthias; Birdwell, Justin E.; Kim, Byung Ju; Kim, Sunghwan

    2014-01-01

    A reversed-phase separation technique was developed in a previous study (Loegel et al., 2012) and successfully applied to the de-asphalted fraction of crude oil. However, to the best of our knowledge, the molecular-level characterization of oil fractions obtained by reversed-phase high-performance liquid chromatography (HPLC) coupled with high-resolution mass spectrometry (MS) has not yet been reported. A detailed characterization of the oil fractions prepared by reversed-phase HPLC was performed in this study. HPLC fractionation was carried out on conventional crude oil and an oil shale pyrolysate. The analyses of the fractions showed that the carbon number of alkyl chains and the double bond equivalent (DBE) value were the major factors determining elution order. The compounds with larger DBE (presumably more condensed aromatic structures) and smaller carbon number (presumably compounds with short side chains) were eluted earlier but those compounds with lower DBE values (presumably less aromatic structures) and higher carbon number (presumably compounds with longer alkyl chains) eluted later in the chromatograms. This separation behavior is in good agreement with that expected from the principles of reversed-phase separation. The data presented in this study show that reversed-phase chromatography is effective in separating crude oil compounds and can be combined with ultrahigh-resolution MS data to better understand natural oils and oil shale pyrolysates.

Top