Sample records for death valley turtlebacks

  1. The Death Valley turtlebacks reinterpreted as Miocene­ Pliocene folds of a major detachment surface

    USGS Publications Warehouse

    Holm, Daniel K.; Fleck, Robert J.; Lux, Daniel R.

    1994-01-01

    Determining the origin of extension parallel folds in metamorphic core complexes is fundamental to understanding the development of detachment faults. An excellent example of such a feature occurs in the Death Valley region of California where a major, undulatory, detachment fault is exposed along the well-known turtleback (antiformal) surfaces of the Black Mountains. In the hanging wall of this detachment fault are deformed strata of the Copper Canyon Formation. New age constraints indicate that the Copper Canyon Formation was deposited from ~6 to 3 Ma. The formation was folded during deposition into a SE-plunging syncline with an axial surface coplanar with that of a synform in the underlying detachment. This relation suggests the turtlebacks are a folded detachment surface formed during large-scale extension in an overall constrictional strain field. The present, more planar, Black Mountains frontal fault system may be the result of out-stepping of a normal fault system away from an older detachment fault that was deactivated by folding.

  2. Exhumation of the Black Mountains in Death Valley, California, with new thermochronometric data from the Badwater Turtleback

    NASA Astrophysics Data System (ADS)

    Sizemore, T. M.; Cemen, I.; Wielicki, M. M.; Stockli, D. F.; Heizler, M. T.; Lutz, B. M.

    2017-12-01

    The Black Mountains, in Death Valley, California, are one of the key areas to better understand Basin and Range extension because they contain Cenozoic igneous and sedimentary rocks overlying mid- to deep-crustal, 1.74 Ga basement gneiss with abundant fault striations, large-scale extensional folds, and tectonite fabrics containing top-to-the-northwest shear-sense indicators. These rocks make up the footwall of three prominent, high-relief "turtleback" fault surfaces in the western flank of the Black Mountains, which are thought to have accommodated a significant amount of strain in the Death Valley area. It is unknown whether the missing Paleozoic and Mesozoic strata in the Black Mountains were removed in association with high-angle faulting, or along a continuous detachment surface with a rolling-hinge style of faulting as the hanging wall moved to the west, now forming the Panamint Range. The turtlebacks play an important role in resolving this question because they are commonly cited as containing conflicting evidence of both hypotheses. To provide insight into this problem, we are building an exhumation model across the Black Mountains using previously published thermochronometric data as well as new transect-based (U-Th)/He and Ar-Ar thermochronology and U-Pb geochronology for the Badwater turtleback. The model will provide a four-dimensional view of the exhumation history of the Black Mountains, to serve as evidence for either of the two previously mentioned hypotheses, or possibly some other style of exhumation. Additionally, we will compare the exhumation history of the Black Mountains to that of the Panamint Range using previously published data and interpretations. Our preliminary zircon U-Pb data suggest a crystallization age for the gneissic rocks on the Badwater turtleback of 1.74 Ga (207Pb/206Pb, 2σ error=31.8 Ma, n=6) with two younger populations at 1.46 Ga (207Pb/206Pb, 2σ error=51.8 Ma, n=3) and 79.6 Ma (206Pb/238U, 2σ error=10.0 Ma, n=2), possibly reflecting post-crystallization alteration. This is in agreement with previously published ages. The zircon 206Pb/238U ages of the Smith Mountain Granite, exposed at the top of the Badwater turtleback, range from 3.06-9.71 Ma (n=11), confirming Cenozoic intrusion of the pluton.

  3. 4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. FACING EAST AT VIEW OF YOSEMITE VALLEY; EL CAPITAN ON LEFT, HALF DOME AT CENTER AND SENTINEL DOME AT LEFT REAR. POST AT LOWER LEFT MARKED 'W3' IS MARKER FOR SELF GUIDED TOUR TO PARK. - Wawona Road, Between South Entrance & Yosemite Valley, Yosemite Village, Mariposa County, CA

  4. Late Cenozoic tephrochronology, stratigraphy, geomorphology, and neotectonics of the Western Black Mountains Piedmont, Death Valley, California: Implications for the spatial and temporal evolution of the Death Valley fault zone

    NASA Astrophysics Data System (ADS)

    Knott, Jeffrey Rayburn

    This study presents the first detailed tephrochronologic study of the central Death Valley area by correlation of a Nomlaki-like tuff (>3.35 Ma), tuffs of the Mesquite Spring family (3.1 -- 3.35 Ma), a tuff of the lower Glass Mountain family (1.86 -- 2.06 Ma), and tephra layers from the upper Glass Mountain family (0.8 -- 1.2 Ma), the Bishop ash bed (0.76 Ma), the Lava Creek B ash bed (~0.66 Ma), and the Dibekulewe ash bed (~0.51 Ma). Correlation of these tuffs and tephra layers provides the first reliable numeric-age stratigraphy for late Cenozoic alluvial fan and lacustrine deposits for Death Valley and resulted in the naming of the informal early to middle Pleistocene Mormon Ploint formation. Using the numeric-age stratigraphy, the Death Valley fault zone (DVFZ) is interpreted to have progressively stepped basinward since the late Pliocene at Mormon Point and Copper Canyon. The Mormon Point turtleback or low-angle normal fault is shown to have unequivocal late Quaternary slip at its present low angle dip. Tectonic geomorphic analysis indicates that the (DVFZ) is composed of five geomorphic segments with the most persistent segment boundaries being the en-echelon step at Mormon Point and the bedrock salient at Artists Drive. Subsequent geomorphic studies resulting from the numeric-age stratigraphy and structural relations include application of Gilberts field criteria to the benches at Mormon Point indicating that the upper bench is a lacustrine strandline and the remaining topographically-lower benches are fault scarps across the 160--185 ka lake abrasion platform. In addition, the first known application of cosmogenic 10Be and 26Al exposure dating to a rock avalanche complex south of Badwater yielded an age of 29.5 +/- 1.9 ka for the younger avalanche. The 28 meter offset of the older avalanche may be interpreted as post-160--185 ka yielding a 0.1 mm/year slip rate, or post-29.5 +/- 1.9 ka yielding a maximum slip rate of 0.9 nun/year for the DVFZ. A consequence of these studies is the hypothesis that the turtleback or low-angle normal faults represent a thermally-warped detachment fault related to the Black Mountains igneous complex and do not conform with the present domino or a rolling-hinge models of low-angle normal fault development.

  5. Are the benches at Mormon Point, Death Valley, California, USA, scarps or strandlines?

    USGS Publications Warehouse

    Knott, J.R.; Tinsley, J. C.; Wells, S.G.

    2002-01-01

    The benches and risers at Mormon Point, Death Valley, USA, have long been interpreted as strandlines cut by still-stands of pluvial lakes correlative with oxygen isotope stage (OIS) 5e/6 (120,000-186,000 yr B.P.) and OIS-2 (10,000-35,000 yr B.P.). This study presents geologic mapping and geomorphic analyses (Gilbert's criteria, longitudinal profiles), which indicate that only the highest bench at Mormon Point (~90 m above mean sea level (msl)) is a lake strandline. The other prominent benches on the north-descending slope immediately below this strandline are interpreted as fault scarps offsetting a lacustrine abrasion platform. The faults offsetting the abrasion platform most likely join downward into and slip sympathetically with the Mormon Point turtleback fault, implying late Quaternary slip on this low-angle normal fault. Our geomorphic reinterpretation implies that the OIS-5e/6 lake receded rapidly enough not to cut strandlines and was ~90 m deep. Consistent with independent core studies of the salt pan, no evidence of OIS-2 lake strandlines was found at Mormon Point, which indicates that the maximum elevation of the OIS-2 lake surface was -30 m msl. Thus, as measured by pluvial lake depth, the OIS-2 effective precipitation was significantly less than during OIS-5e/6, a finding that is more consistent with other studies in the region. The changed geomorphic context indicates that previous surface exposure dates on fault scarps and benches at Mormon Point are uninterpretable with respect to lake history. ?? 2002 University of Washington.

  6. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  7. 3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA

  8. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  9. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which are...

  10. Surficial Geologic Map of the Death Valley Junction 30' x 60' Quadrangle, California and Nevada

    USGS Publications Warehouse

    Slate, Janet L.; Berry, Margaret E.; Menges, Christopher M.

    2009-01-01

    This surficial geologic map of the Death Valley Junction 30' x 60' quadrangle was compiled digitally at 1:100,000 scale. The map area covers the central part of Death Valley and adjacent mountain ranges - the Panamint Range on the west and the Funeral Mountains on the east - as well as areas east of Death Valley including some of the Amargosa Desert, the Spring Mountains and Pahrump Valley. Shaded relief delineates the topography and appears as gray tones in the mountain ranges where the bedrock is undifferentiated and depicted as a single unit.

  11. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting events) that cuts Q1B surfaces.

  12. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  13. 75 FR 5846 - Supplemental Notice of Intent To Prepare an Environmental Assessment and Request for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Plan Program at Death Valley National Park AGENCY: Federal Aviation Administration (FAA). ACTION... an Air Tour Management Plan (ATMP) for Death Valley National Park (DEVA), pursuant to the National... businesses, and the Timbisha Shoshone tribe. It is chaired by the Superintendent of Death Valley National...

  14. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  15. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  16. Death Valley, California

    NASA Image and Video Library

    2009-06-29

    Death Valley, Calif., has the lowest point in North America, Badwater at 85.5 meters 282 feet below sea level. It is also the driest and hottest location in North America. This image is from NASA Terra spacecraft.

  17. Death Valley California as seen from STS-59

    NASA Image and Video Library

    1994-04-13

    STS059-86-059 (9-20 April 1994) --- This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers). Using Spaceborne Imaging Radar (SIR-C) and X-band Synthetic Aperture Radar (X-SAR) onboard the Space Shuttle Endeavour, the crew was able to record a great deal of data on this and other sites, as part of NASA's Mission to Planet Earth.

  18. 75 FR 2922 - Notice of Intent To Prepare an Environmental Assessment and Request for Public Scoping Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... Death Valley National Park AGENCY: Federal Aviation Administration (FAA). ACTION: Notice of intent to... a cooperating agency, has initiated development of an Air Tour Management Plan (ATMP) for Death... Timbisha Shoshone tribe. It is chaired by the Superintendent of Death Valley National Park. In June 2009...

  19. Kinematics at the intersection of the Garlock and Death Valley fault zones, California: Integration of TM data and field studies

    NASA Technical Reports Server (NTRS)

    Abrams, Michael; Verosub, Ken; Finnerty, Tony; Brady, Roland

    1987-01-01

    The Garlock and Death Valley fault zones in SE California are two active strike-slip faults coming together on the east side of the Avawatz Mtns. The kinematics of this intersection, and the possible continuation of either fault zone, are being investigated using a combination of field mapping, and processing and interpretation of remotely sensed image data. Regional and local relationships are derivable from Thematic Mapper data (30 m resolution), including discrimination and relative age dating of alluvial fans, bedrock mapping, and fault mapping. Aircraft data provide higher spatial resolution over more limited areas. Hypotheses being considered are: (1) the Garlock fault extends east of the intersection; (2) the Garlock fault terminates at the intersection and the Death Valley fault continues southeastward; and (3) the Garlock fault has been offset right laterally by the Death Valley fault which continues to the southeast. Preliminary work indicates that the first hypothesis is invalid. From kinematic considerations, image analysis, and field work the third hypothesis is favored. The projected continuation of the Death Valley zone defines the boundary between the Mojave crustal block and the Basin and Range block.

  20. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  1. The Shape of Trail Canyon Alluvial Fan, Death Valley

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Dohrenwend, John C.

    1993-01-01

    A modified conic equation has been fit to high-resolution digital topographic data for Trail Canyon alluvial fan in Death Valley, California. Fits were accomplished for 3 individual fan units of different age.

  2. Color Image of Death Valley, California from SIR-C

    NASA Image and Video Library

    1999-09-27

    This radar image shows the area of Death Valley, California and the different surface types in the area. Radar is sensitive to surface roughness with rough areas showing up brighter than smooth areas, which appear dark.

  3. Detail view to show the stylized "dragon" bracket feature that ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view to show the stylized "dragon" bracket feature that stands guard by the outside door to the kitchen (north elevation of the main house) - Death Valley Ranch, Main House, Death Valley Junction, Inyo County, CA

  4. Demonstration of using quieter pavement in Death Valley National Park

    DOT National Transportation Integrated Search

    2013-06-01

    Death Valley National Park provided an environment that allowed a demonstration of : quieter pavement use. Sound measurements near the tire-pavement interface, near the : road, and in areas of frequent human use were conducted and analyses performed ...

  5. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    USGS Publications Warehouse

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.

    2008-01-01

    During glacial (pluvial) climatic periods, Death Valley is hypothesized to have episodically been the terminus for the Amargosa, Owens, and Mojave Rivers. Geological and biological studies have tended to support this hypothesis and a hydrological link that included the Colorado River, allowing dispersal of pupfish throughout southeastern California and western Nevada. Recent mitochondrial deoxyribonucleic acid (mtDNA) studies show a common pupfish (Cyprinodontidae) ancestry in this region with divergence beginning 3-2 Ma. We present tephrochronologic and paleomagnetic data in the context of testing the paleohydrologic connections with respect to the common collection point of the Amargosa, Owens, and Mojave Rivers in Death during successive time periods: (1) the late Pliocene to early Pleistocene (3-2 Ma), (2) early to middle Pleistocene (1.2-0.5 Ma), and (3) middle to late Pleistocene (<0.70.03 Ma; paleolakes Manly and Mojave). Using the 3.35 Ma Zabriskie Wash tuff and 3.28 Ma Nomlaki Tuff Member of the Tuscan and Tehama Formations, which are prominent marker beds in the region, we conclude that at 3-2 Ma, a narrow lake occupied the ancient Furnace Creek Basin and that Death Valley was not hydrologically connected with the Amargosa or Mojave Rivers. A paucity of data for Panamint Valley does not allow us to evaluate an Owens River connection to Death Valley ca. 3-2 Ma. Studies by others have shown that Death Valley was not hydrologically linked to the Amargosa, Owens, or Mojave Rivers from 1.2 to 0.5 Ma. We found no evidence that Lake Manly flooded back up the Mojave River to pluvial Lake Mojave between 0.18 and 0.12 Ma, although surface water flowed from the Amargosa and Owens Rivers to Death Valley at this time. There is also no evidence for a connection of the Owens, Amargosa, or Mojave Rivers to the Colorado River in the last 3-2 m.y. Therefore, the hypothesis that pupfish dispersed or were isolated in basins throughout southeastern California and western Nevada by such a connection is not supported. Beyond the biologically predicted time frame, however, sparse and disputed data suggest that a fluvial system connected Panamint (Owens River), Death, and Amargosa Valleys, which could account for the dispersal and isolation before 3 Ma. ?? 2008 The Geological Society of America.

  6. Sierra Nevada, California

    NASA Image and Video Library

    1994-09-30

    STS068-267-097 (30 September-11 October 1994) --- An extensive view eastward from the irrigated San Joaquin Valley in the foreground, across the Sierra Nevada (living up to its name in early October), into the desert of eastern California and Nevada (which has no snow, despite the name). Mono Lake is just visible at the left edge of the frame; Owens Valley extends southward to Owens Lake, the next valley is Panamint Valley, and then Death Valley. Las Vegas and Lake Mead are visible at the upper right of the frame. The Space Radar Laboratory 2 (SRL-2) obtained extensive, multiple-pass data from many test sites within the region displayed, including Mammoth Mountain ski area south of Mono Lake, and in Death Valley.

  7. 21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. POWER ROOM INTERIOR, DETAIL OF CATERPILLAR DIESEL ENGINE DIRECTLY CONNECTED TO GENERAL ELECTRIC 15 KW DC GENERATOR (ON LEFT), 110 VOLTS, 136 AMPS, 1200 RPM. INSTALLED 1942. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  8. 23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKSMORSE DIESEL ENGINE, DIRECTLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. POWER ROOM INTERIOR, DETAIL OF FAIRBANKS-MORSE DIESEL ENGINE, DIRECTLY CONNECTED TO FAIRBANKS-MORSE 30 KW DC GENERATOR, 125 VOLTS, 240 AMPS, 800 RPM. INSTALLED 1930. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  9. Upper Neogene stratigraphy and tectonics of Death Valley - A review

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.

    2005-01-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.

  10. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.

  11. Morphological and Geomicrobiological Characteristics of an Endolithic Microbial Community from the Badwater Basin, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Douglas, S.

    2001-01-01

    ESEM-EDS studies of an endolithic evaporite community from Death Valley revealed its ability to sequester water and affect the partitioning of trace metals in this environment. Additional information is contained in the original extended abstract.

  12. 19. POWER ROOM INTERIOR, PELTON WATER TURBINE AND FLYBALL GOVERNOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. POWER ROOM INTERIOR, PELTON WATER TURBINE AND FLYBALL GOVERNOR DIRECTLY CONNECTED TO 7 KW AC GENERATOR (ON RIGHT), 125 VOLTS, 56 AMPS. INSTALLED IN 1926, STILL IN USE FOR OUTSIDE LIGHTING. - Death Valley Ranch, Power House, Death Valley Junction, Inyo County, CA

  13. Kinematics at the Intersection of the Garlock and Death Valley Fault Zones, California: Integration of TM Data and Field Studies

    NASA Technical Reports Server (NTRS)

    Verosub, Kenneth L.; Brady, Roland H., III; Abrams, Michael

    1989-01-01

    Kinematic relationships at the intersection of the southern Death Valley and Garlock fault zones were examined to identify and delineate the eastern structural boundary between the Mojave and the Basin and Range geologic terrains, and to construct a model for the evolution of this boundary through time. In order to accomplish this, satellite imagery was combined with field investigations to study six areas in the vicinity of the intersection, or possible extensions, of the fault zones. The information gathered from these areas allows the test of various hypotheses that were proposed to explain the interaction between the Death Valley and Garlock fault zones.

  14. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  15. Application of multispectral radar and LANDSAT imagery to geologic mapping in death valley

    NASA Technical Reports Server (NTRS)

    Daily, M.; Elachi, C.; Farr, T.; Stromberg, W.; Williams, S.; Schaber, G.

    1978-01-01

    Side-Looking Airborne Radar (SLAR) images, acquired by JPL and Strategic Air Command Systems, and visible and near-infrared LANDSAT imagery were applied to studies of the Quaternary alluvial and evaporite deposits in Death Valley, California. Unprocessed radar imagery revealed considerable variation in microwave backscatter, generally correlated with surface roughness. For Death Valley, LANDSAT imagery is of limited value in discriminating the Quaternary units except for alluvial units distinguishable by presence or absence of desert varnish or evaporite units whose extremely rough surfaces are strongly shadowed. In contrast, radar returns are most strongly dependent on surface roughness, a property more strongly correlated with surficial geology than is surface chemistry.

  16. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  17. OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP RAVINE,LOOKING SOUTH FROM BREAK OVER TOWER LOCATION. A SINGLE ORE BUCKET HANGS FROM THE CABLE AT CENTER. DEATH VALLEY'S FLOOR IS IN THE DISTANCE (TOP). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  18. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  19. Modeling the Death Valley regional ground-water flow system

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.

    2004-01-01

    The development of a regional ground-water flow model of the Death Valley region in the southwestern United States is discussed in the context of the fourteen guidelines of Hill. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and to direct further model development and data collection.

  20. Isostatic gravity map of the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Ponce, D.A.; Blakely, R.J.; Morin, R.L.; Mankinen, E.A.

    2001-01-01

    An isostatic gravity map of the Death Valley groundwater model area was prepared from over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  1. A case study: Death Valley National Monument California-Nevada

    Treesearch

    Daniel Hamson; Ristau Toni

    1979-01-01

    With passage of the Mining in the Parks Act (P.L. 94-429) in 1976, the National Park Service, Department of the Interior, was given the responsibility of preparing a report to Congress outlining the environmental consequences of mining on claims within Death Valley National Monument. In addition, the Secretary of the Interior is required to formulate a recommendation...

  2. Map showing depth to pre-Cenozoic basement in the Death Valley ground-water model area, Nevada and California

    USGS Publications Warehouse

    Blakely, R.J.; Ponce, D.A.

    2001-01-01

    A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.

  3. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  4. Quantitative analysis of surface characteristics and morphology in Death Valley, California using AIRSAR data

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.; Lefkoff, A. B.

    1992-01-01

    The Jet Propulsion Laboratory Airborne Synthetic Aperture Radar (JPL-AIRSAR) is used to collect full polarimetric measurements at P-, L-, and C-bands. These data are analyzed using the radar analysis and visualization environment (RAVEN). The AIRSAR data are calibrated using in-scene corner reflectors to allow for quantitative analysis of the radar backscatter. RAVEN is used to extract surface characteristics. Inversion models are used to calculate quantitative surface roughness values and fractal dimensions. These values are used to generate synthetic surface plots that represent the small-scale surface structure of areas in Death Valley. These procedures are applied to a playa, smooth salt-pan, and alluvial fan surfaces in Death Valley. Field measurements of surface roughness are used to verify the accuracy.

  5. Comparison of inversion models using AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1993-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in September 1989. AIRSAR is a four-look, quid-polarizaiton, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The scene used in this study is in Death Valley, California and is located over Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is located on the west side of the valley at the base of the Panamint Range and is a large fan with older areas of desert pavement and younger active channels. The source for the material on southern part of the fan is mostly quartzites and there is an area of carbonate source on the northern part of the fan. Artists Drive fan is located at the base of the Black Mountains on the east side of the valley and is a smaller, young fan with its source mostly from volcanic rocks. The valley floor contains playa and salt deposits that range from smooth to Devil's Golf course type salt pinnacles.

  6. Technology push, market pull, and the Valley of Death

    NASA Astrophysics Data System (ADS)

    Swift, Gregory W.

    2005-09-01

    The Valley of Death is the gap between fundamental research and product development, where apparently promising technologies can stall or disappear. Fundamental researchers may hope for potential applications of their work, and they try to push technology based on their research. Businesses may hope that new technology might serve their market needs, and they try to find promising new technologies that can be pulled toward practical use. The valley between the researchers and the businesses can be surprisingly twisted and thorny, despite government attempts to build roads across it. The histories of cryogenic engineering in the late 20th century and of thermoacoustics work at Los Alamos offer examples of both useful and misguided strategies in this valley. Although global thermoacoustics R&D has not (yet?) been as successful as cryogenic engineering, thermoacoustics has thus far avoided some of the worst pitfalls in the valley.

  7. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  8. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, J.P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd-Sr-Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  9. Miocene rapakivi granites in the southern Death Valley region, California, USA

    USGS Publications Warehouse

    Calzia, James P.; Ramo, O.T.

    2005-01-01

    Rapakivi granites in the southern Death Valley region, California, include the 12.4-Ma granite of Kingston Peak, the ca. 10.6-Ma Little Chief stock, and the 9.8-Ma Shoshone pluton. All of these granitic rocks are texturally zoned from a porphyritic rim facies, characterized by rapakivi textures and miarolitic cavities, to an equigranular aplite core. These granites crystallized from anhydrous and peraluminous to metaluminous magmas that were more oxidized and less alkalic than type rapakivi granites from southern Finland. Chemical and isotope (Nd–Sr–Pb) data suggest that rapakivi granites of the southern Death Valley region were derived by partial melting of lower crustal rocks (possibly including Mesozoic plutonic component) with some mantle input as well; they were emplaced at shallow crustal levels (4 km) in an actively extending orogen.

  10. Geomorphology and Tectonics at the Intersection of Silurian and Death Valleys, Southern California - 2005 Guidebook Pacific Cell Friends of the Pleistocene

    USGS Publications Warehouse

    Miller, David M.; Valin, Zenon C.

    2007-01-01

    This publication describes results from new regional and detailed surficial geologic mapping, combined with geomorphologic, geochronologic, and tectonic studies, in Silurian Valley and Death Valley, California. The studies address a long-standing problem, the tectonic and geomorphic evolution of the intersection between three regional tectonic provinces: the eastern California shear zone, the Basin and Range region of southern Nevada and adjacent California, and the eastern Mojave Desert region. The chapters represent work presented on the 2005 Friends of the Pleistocene field trip and meeting as well as the field trip road log.

  11. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014

    PubMed Central

    Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J.A.W.; Venter, Estelle H.

    2016-01-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa. PMID:27869589

  12. Rift Valley Fever Outbreak in Livestock, Mozambique, 2014.

    PubMed

    Fafetine, José M; Coetzee, Peter; Mubemba, Benjamin; Nhambirre, Ofélia; Neves, Luis; Coetzer, J A W; Venter, Estelle H

    2016-12-01

    In early 2014, abortions and death of ruminants were reported on farms in Maputo and Gaza Provinces, Mozambique. Serologic analysis and quantitative and conventional reverse transcription PCR confirmed the presence of Rift Valley fever virus. The viruses belonged to lineage C, which is prevalent among Rift Valley fever viruses in southern Africa.

  13. Thematic Mapper and field investigations at the intersection of the Death Valley and Garlock fault zones, California

    NASA Technical Reports Server (NTRS)

    Brady, Roland H., III; Cregan, Alan; Clayton, Jeff; Troxel, Bennie W.; Verosub, Kenneth L.; Abrams, Michael

    1989-01-01

    Analysis of processed images and detailed field investigations have provided significant information concerning the late-Pliocene and Quaternary evolution of the intersection of the Garlock and Death Valley fault zones. The imagery was used to determine patterns of sedimentation and age relationships on alluvial fans and to determine the geometry, styles of deformation, and relative ages of movements on major and minor faults in the study area. The field investigation often confirmed the inferences drawn from the images and provided additional tectonic and geomorphologic data about the Quaternary deformation of the region. All the data gathered in the course of this project support the contention that the Garlock fault zone terminates in the Avawatz Mountains and that the Death Valley fault zone continues south of the intersection for at least 50 km, forming the eastern boundary of the Mojave province.

  14. Case Studies of Water Vapor and Surface Liquid Water from AVIRIS Data Measured Over Denver, CO and Death Valley, CA

    NASA Technical Reports Server (NTRS)

    Gao, B.-C.; Kierein-Young, K. S.; Goetz, A. F. H.; Westwater, E. R.; Stankov, B. B.; Birkenheuer, D.

    1991-01-01

    High spatial resolution column atmospheric water vapor amounts and equivalent liquid water thicknesses of surface targets are retrieved from spectral data collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). The retrievals are made using a nonlinear least squares curve fitting technique. Two case studies from AVIRIS data acquired over Denver-Platteville area, Colorado and over Death Valley, California are presented. The column water vapor values derived from AVIRIS data over the Denver-Platteville area are compared with those obtained from radiosondes, ground level upward-looking microwave radiometers, and geostationary satellite measurements. The column water vapor image shows spatial variation patterns related to the passage of a weather front system. The column water vapor amounts derived from AVIRIS data over Death Valley decrease with increasing surface elevation. The derived liquid water image clearly shows surface drainage patterns.

  15. Insiders Views of the Valley of Death Behavioral and Institutional Perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, Amy K; Bjornstad, David J; Shumpert, Barry L

    Valley of death describes the metaphorical depths to which promising science and technology too often plunge, never to emerge and reach their full potential. Behavioral and institutional perspectives help in understanding the implications of choices that inadvertently lead into rather than over the valley of death. A workshop conducted among a diverse set of scientists, managers, and technology transfer staff at a U.S. national laboratory is a point of departure for discussing behavioral and institutional elements that promote or impede the pathway from research toward use, and for suggesting actionable measures that can facilitate the flow of information and productsmore » from research toward use. In the complex systems that comprise research institutions, where competing pressures can create barriers to information or technology transfer, one recommendation is to re-frame the process as a more active ushering toward use.« less

  16. Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S.

    USGS Publications Warehouse

    Belcher, W.R.; Bedinger, M.S.; Back, J.T.; Sweetkind, D.S.

    2009-01-01

    Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349] and Anderson et al. [Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276-302]. In light of these inconsistencies, interbasin flow is the only readily apparent explanation for the large spring discharges at Furnace Creek and, in our view, is the likely explanation for most large volume, low elevation springs in the Great Basin. An understanding of hydrogeologic processes that control the rate and direction of ground-water flow in eastern and central Nevada is necessary component of regional water-resource planning and management of alluvial and bedrock aquifers.

  17. Preliminary Geologic Map of the Southern Funeral Mountains and Adjacent Ground-Water Discharge Sites, Inyo County, California, and Nye County, Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.; Slate, Janet L.; Berry, M.E.; Machette, Michael N.

    2008-01-01

    This map covers the southern part of the Funeral Mountains, and adjacent parts of four structural basins - Furnace Creek, Amargosa Valley, Opera House, and central Death Valley. It extends over three full 7.5-minute quadrangles, and parts of eleven others - a total area of about 950 square kilometers. The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of ground water that discharges from the springs of the Furnace Creek wash area, in the west-central part of the map. These springs provide the major potable water supply for Death Valley National Park.

  18. Integration of AIRSAR and AVIRIS data for Trail Canyon alluvial fan, Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, Kathryn S.

    1995-01-01

    Combining quantitative geophysical information extracted from the optical and microwave wavelengths provides complementary information about both the surface mineralogy and morphology. This study combines inversion results from two remote sensing instruments, a polarimetric synthetic aperture radar, AIRSAR, and an imaging spectrometer, AVIRIS, for Trail Canyon alluvial fan in Death Valley, California. The NASA/JPL Airborne Synthetic Aperture Radar (AIRSAR) is a quad-polarization, three frequency instrument. AIRSAR collects data at C-band = 5.66 cm, L-band = 23.98 cm, and P-band = 68.13 cm. The data are processed to four-looks and have a spatial resolution of 10 m and a swath width of 12 km. The AIRSAR data used in this study were collected as part of the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley on 9/14/89. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is a NASA/JPL instrument that flies in an ER-2 aircraft at an altitude of 20 km. AVIRIS uses four spectrometers to collect data in 224 spectral channels from 0.4 micrometer to 2.45 micrometer. The width of each spectral band is approximately 10 nm. AVIRIS collects data with a swath width of 11 km and a pixel size of 20 m. The AVIRIS data used in this study were collected over Death Valley on 5/31/92.

  19. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    USGS Publications Warehouse

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  20. Terrestrial Cosmogenic-Nuclide Dating of Alluvial Fans in Death Valley, California

    USGS Publications Warehouse

    Machette, Michael N.; Slate, Janet L.; Phillips, Fred M.

    2008-01-01

    We have used terrestrial cosmogenic nuclides (TCN) to establish the age of some of the most extensive Quaternary alluvial fans in Death Valley, California. These intermediate-age alluvial fans are most extensive on the western side of the valley, where tectonic deformation is considerably less pronounced than on the eastern side of the valley. These fans are characterized by a relatively smooth, densely packed desert pavement formed by well-varnished (blackened) clasts. These surfaces have been mapped as the Q2 gravel by previous workers and as unit Qai (intermediate age) by us. However, the intermediate-age gravels probably contain multiple subunits, as evidenced by slight differences in morphologic expression, soil formation, and inset geomorphic relations. The TCN technique used herein sums the cosmogenic 36Cl in approximately 2.5-meter-deep profiles through soil and host alluvium, thus avoiding some of the problems associated with the more typical surface-exposure dating of boulders or smaller clasts. Our TCN 36Cl dating of 12 depth profiles indicates that these intermediate-age (Qai) alluvial fans range from about 100 to 40 kilo-annum (ka), with a mean age of about 70 ka. An alternative interpretation is that alluvial unit Qai was deposited in two discrete episodes from 90 to 80 ka and from 60 to 50 ka, before and after MIS (marine oxygen-isotope stage) 4 (respectively). Without an intermediate-age unit, such as MIS 4 lake deposits, we can neither disprove nor prove that Qai was deposited in two discrete intervals or over a longer range of time. Thus, in Death Valley, alluvial unit Qai largely brackets MIS 4, which is not associated with a deep phase of Lake Manly. These Qai fans extend to elevations of about -46 meters (150 feet below sea level) and have not been transgressed by Lake Manly, suggesting that MIS 4 or MIS 2 lakes were rather shallow in Death Valley, perhaps because they lacked inflow from surface runoff of the Sierra Nevada drainages through Panamint Valley and over Wingate Wash. A remnant of ancient lake shoreline deposits that once extended across the Hanaupah Canyon fan constrains the timing and extent of the last deep cycle of Pleistocene Lake Manly. The lacustrine delta complex yields a 36Cl depth-profile date of 130 ka, which is consistent with deposition during a highstand of Lake Manly at the end of MIS 6. These deposits are presently at an altitude of about 30 meters above sea level (asl), which relates to a lake with a maximum depth of about 115 meters. Remnants of shoreline deposits at higher elevations on the southern margin of the Hanaupah Canyon fan complex are cut across older alluvium (unit Qao) and may be related to an MIS 6 highstand of at least 67 meters asl or, more likely, an older (MIS 8 or earlier) highstand that is poorly preserved and still undated in the valley. As part of our work on the west-side fans, we also dated an older phase of alluvial-fan deposits from the Trail Canyon fan complex, which is north of Hanaupah Canyon. A 36Cl depth-profile age of 170 ka suggests alluvial deposition of unit Qaio (older phase of Qao) took place prior to the MIS 6 highstand of Lake Manly. Knowing the absolute ages (or range in ages) of the intermediate-age (Qai) surfaces in Death Valley allows us to estimate the following rates of geologic processes: (1) a lateral slip rate of 5 millimeters per year for the northern Death Valley fault zone; (2) uplift of 50 meters in roughly the past 80,000 years for parts of the Mustard Canyon hills in east-central Death Valley; and (3) an estimated 10-40 m of dip-slip thrust movement on the Echo Canyon fault in Furnace Creek Canyon.

  1. Fifty years after Welles and Welles: Distribution and genetic structure of Desert Bighorn Sheep in Death Valley National Park

    USGS Publications Warehouse

    Epps, Clinton W.; Wehausen, John D.; Sloan, William B.; Holt, Stacy; Creech, Tyler G.; Crowhurst, Rachel S.; Jaeger, Jef R.; Longshore, Kathleen M.; Monello, Ryan J.

    2013-01-01

    Where possible, we revisited many of the water sources and other locations originally investigated by Welles and Welles (1961) and earlier researchers. We extracted DNA from fecal pellets, carcass tissue samples, and blood samples archived from earlier captures and genotyped them using highly variable genetic markers (15 microsatellite loci) with sufficient power to distinguish individuals and characterize gene flow and genetic structure. We also analyzed DNA samples collected from other bighorn sheep populations extending north to the White Mountains, west to the Inyo Mountains, south to the Avawatz Mountains, and southeast to the Clark Mountain Range, Kingston Range, and Spring Mountains of Nevada. We estimated genetic structure and recent gene flow among nearly all known populations of bighorn sheep in and around Death Valley National Park (DEVA), and used assignment tests to evaluate individual and population-level genetic structure to infer connectivity across the region. We found that bighorn sheep are still widely distributed in mountain ranges throughout DEVA, including many of the areas described by Welles and Welles (1961), although some use patterns appear to have changed and other areas still require resurvey. Gene flow was relatively high through some sections of fairly continuous habitat, such as the Grapevine and Funeral Mountains along the eastern side of Death Valley, but other populations were more isolated. Genetic diversity was relatively high throughout the park. Although southern Death Valley populations were genetically distinct from populations to the southeast, population assignment tests and recent gene flow estimates suggested that individuals occasionally migrate between those regions, indicating the potential for the recent outbreak of respiratory disease in the southern Mojave Desert to spread into the Death Valley system. We recommend careful monitoring of bighorn sheep using remote cameras to check for signs of respiratory disease in southeastern DEVA and ground surveys in the still-understudied southwestern part of DEVA.

  2. DETAIL VIEW OF STEAM TRACTOR "OLD DINAH," LOOKING NORTHWEST. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF STEAM TRACTOR "OLD DINAH," LOOKING NORTHWEST. THIS STEAM TRACTOR WAS USED TO REPLACE THE HORSE WAGON TRAINS THAT CARRIED SUPPLIES AND CRUDE OIL THE 26 MILES FROM BEATTY, NEVADA TO KEANE WONDER. THE TRACTOR ONLY MADE ONE RUN IN 1909 BEFORE THE BOILER EXPLODED ENROUTE, AND IT WAS ABANDONED THERE ON THE TRAIL TODAY IT STANDS ON DISPLAY AT THE FURNACE CREEK RANCH IN DEATH VALLEY NATIONAL PARK, AS SEEN IN THE PHOTOGRAPH. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. Imaging Radar in the Mojave Desert-Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    2001-01-01

    The Mojave Desert-Death Valley region has had a long history as a test bed for remote sensing techniques. Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the area since the 1970's, yielding new insights into the geologic applications of these technologies. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in the Mojave Desert-Death Valley region because it contains a variety of surface types in a small area without the confounding effects of vegetation. The earliest imaging radars to be flown over the region included military tests of short-wavelength (3 cm) X-band sensors. Later, the Jet Propulsion Laboratory began its development of imaging radars with an airborne sensor, followed by the Seasat orbital radar in 1978. These systems were L-band (25 cm). Following Seasat, JPL embarked upon a series of Space Shuttle Imaging Radars: SIRA (1981), SIR-B (1984), and SIR-C (1994). The most recent in the series was the most capable radar sensor flown in space and acquired large numbers of data swaths in a variety of test areas around the world. The Mojave Desert-Death Valley region was one of those test areas, and was covered very well with 3 wavelengths, multiple polarizations, and at multiple angles. At the same time, the JPL aircraft radar program continued improving and collecting data over the Mojave Desert Death Valley region. Now called AIRSAR, the system includes 3 bands (P-band, 67 cm; L-band, 25 cm; C-band, 5 cm). Each band can collect all possible polarizations in a mode called polarimetry. In addition, AIRSAR can be operated in the TOPSAR mode wherein 2 antennas collect data interferometrically, yielding a digital elevation model (DEM). Both L-band and C-band can be operated in this way, with horizontal resolution of about 5 m and vertical errors less than 2 m. The findings and developments of these earlier investigations are discussed.

  4. Pathogenesis of Rift Valley Fever in Rhesus Monkeys: Role of Interferon Response

    DTIC Science & Technology

    1990-01-01

    hemorrhagic fever characterized by epistaxis, petechial to purpuric cutaneous lesions, anorexia, and vomiting prior to death. The 14 remaining monkeys survived...DMI, FILE Copy Arch Virol (1990) 110: 195-212 Amhivesirology ( by Springer-Verlag 1990 00 N Pathogenesis of Rift Valley fever in rhesus monkeys: (NI...inoculated intravenously with Rift Valley fever (RVF) virus presented clinical disease syndromes similar to human cases of RVF. All 17 infected monkeys

  5. Reemergence of Rift Valley fever, Mauritania, 2010.

    PubMed

    Faye, Ousmane; Ba, Hampathé; Ba, Yamar; Freire, Caio C M; Faye, Oumar; Ndiaye, Oumar; Elgady, Isselmou O; Zanotto, Paolo M A; Diallo, Mawlouth; Sall, Amadou A

    2014-02-01

    A Rift Valley fever (RVF) outbreak in humans and animals occurred in Mauritania in 2010. Thirty cases of RVF in humans and 3 deaths were identified. RVFV isolates were recovered from humans, camels, sheep, goats, and Culex antennatus mosquitoes. Phylogenetic analysis of isolates indicated a virus origin from western Africa.

  6. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  7. Geologic map of the southern Funeral Mountains including nearby groundwater discharge sites in Death Valley National Park, California and Nevada

    USGS Publications Warehouse

    Fridrich, C.J.; Thompson, R.A.; Slate, J.L.; Berry, M.E.; Machette, M.N.

    2012-01-01

    This 1:50,000-scale geologic map covers the southern part of the Funeral Mountains, and adjoining parts of four structural basins—Furnace Creek, Amargosa Valley, Opera House, and central Death Valley—in California and Nevada. It extends over three full 7.5-minute quadrangles, and parts of eleven others—an area of about 1,000 square kilometers (km2). The boundaries of this map were drawn to include all of the known proximal hydrogeologic features that may affect the flow of groundwater that discharges from springs of the Furnace Creek basin, in the west-central part of the map. These springs provide the main potable water supply for Death Valley National Park. Major hydrogeologic features shown on this map include: (1) springs of the Furnace Creek basin, (2) a large Pleistocene groundwater discharge mound in the northeastern part of the map, (3) the exposed extent of limestones and dolomites that constitute the Paleozoic carbonate aquifer, and (4) the exposed extent of the alluvial conglomerates that constitute the Funeral Formation aquifer.

  8. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  9. 3-D View of Death Valley, California

    NASA Image and Video Library

    2001-07-21

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America. http://photojournal.jpl.nasa.gov/catalog/PIA02663

  10. From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Space Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    There must be a plan or opportunities for flight validation: a) To reduce the bottleneck of new technologies at the TRL Valley of Death; b) To allow frequent infusion of new technologies into flight missions. Risk must be tolerated for new technology flight experiments. Risk must also be accepted on early-adopting missions to enable new capabilities. Fundamental research is critical to taking the next giant leap in the scientific exploration of space. Technology push is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts.

  11. Relationships between topographic roughness and aeolian processes

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Lancaster, N.; Gaddis, L.; Rasmussen, K. R.; White, B. R.; Saunders, R. S.; Wall, S.; Dobrovolskis, Anthony R.; Iversen, J. D.

    1991-01-01

    The interaction between winds and desert surfaces has important implications for sediment transport on Earth, Mars, and Venus, and for understanding the relationships between radar backscatter and aerodynamic roughness as part of the NASA Shuttle Imaging radar (SIR-C) Mission. Here, researchers report results from measurements of boundary layer wind profiles and surface roughness at sites in Death Valley and discuss their implications. The sites included a flat to undulating gravel and sand reg, alluvial fans, and a playa. Estimates of average particle size composition of Death Valley sites and arithmetic mean values of aerodynamic roughness are given in tabular form.

  12. Imaging Radar Applications in the Death Valley Region

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1996-01-01

    Death Valley has had a long history as a testbed for remote sensing techniques (Gillespie, this conference). Along with visible-near infrared and thermal IR sensors, imaging radars have flown and orbited over the valley since the 1970's, yielding new insights into the geologic applications of that technology. More recently, radar interferometry has been used to derive digital topographic maps of the area, supplementing the USGS 7.5' digital quadrangles currently available for nearly the entire area. As for their shorter-wavelength brethren, imaging radars were tested early in their civilian history in Death Valley because it has a variety of surface types in a small area without the confounding effects of vegetation. In one of the classic references of these early radar studies, in a semi-quantitative way the response of an imaging radar to surface roughness near the radar wavelength, which typically ranges from about 1 cm to 1 m was explained. This laid the groundwork for applications of airborne and spaceborne radars to geologic problems in and regions. Radar's main advantages over other sensors stems from its active nature- supplying its own illumination makes it independent of solar illumination and it can also control the imaging geometry more accurately. Finally, its long wavelength allows it to peer through clouds, eliminating some of the problems of optical sensors, especially in perennially cloudy and polar areas.

  13. Mapping playa evaporite minerals with AVIRIS data: A first report from death valley, California

    USGS Publications Warehouse

    Crowley, J.K.

    1993-01-01

    Efflorescent salt crusts in Death Valley, California, were mapped by using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data and a recently developed least-squares spectral band-fitting algorithm. Eight different saline minerals were remotely identified, including three borates, hydroboracite, pinnoite, and rivadavite, that have not been previously reported from the Death Valley efflorescent crusts. The three borates are locally important phases in the crusts, and at least one of the minerals, rivadavite, appears to be forming directly from brine. Borates and other evaporite minerals provide a basis for making remote chemical measurements of desert hydrologic systems. For example, in the Eagle Borax Spring area, the AVIRIS mineral maps pointed to elevated magnesium and boron levels in the ground waters, and to the action of chemical divides causing subsurface fractionation of calcium. Many other chemical aspects of playa brines should have an expression in the associated evaporite assemblages. Certain anhydrous evaporites, including anhydrite, glauberite, and thenardite, lack absorption bands in the visible and near-infrared wavelength range, and crusts composed of these minerals could not be characterized by using AVIRIS. In these situations, thermal-infrared remote sensing data may complement visible and near-infrared data for mapping evaporites. Another problem occurred in wet areas of Death Valley, where water absorption caused low signal levels in the 2.0-2.5 ??m wavelength region that obscured any spectral features of evaporite minerals. Despite these difficulties, the results of this study demonstrate the potential for using AVIRIS and other imaging spectrometer data to study playa chemistry. Such data can be useful for understanding chemical linkages between evaporites and ground waters, and will facilitate studies of how desert ground-water regimes change through time in response to climatic and other variables. ?? 1993.

  14. Late Cenozoic crustal extension and magmatism, southern Death Valley region, California

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.

    2000-01-01

    The late Cenozoic geologic history of the southern Death Valley region is characterized by coeval crustal extension and magamatism. Crustal extension is accommodated by numerous listric and planar normal faults as well as right- and left-lateral strike slip faults. The normal faults sip 30°-50° near the surface and flatten and merge leozoic miogeoclinal rocks; the strike-slip faults act as tear faults between crustal blocks that have extended at different times and at different rates. Crustal extension began 13.4-13.1 Ma and migrated northwestward with time; undeformed basalt flows and lacustrine deposits suggest that extension stopped in this region (but continued north of the Death Valley graben) between 5 and 7 Ma. Estimates of crustal extension in this region vary from 30-50 percent to more than 100 percent. Magmatic rocks syntectonic with crustal extension in the southern Death Valley region include 12.4-6.4 Ma granitic rocks as well as bimodal 14.0-4.0 Ma volcanic rocks. Geochemical and isotopic evidence suggest that the granitic rocks get younger and less alkalic from south to north; the volcanic rocks become more mafic with less evidence of crustal interaction as they get younger. The close spatial and temporal relation between crustal extension and magmatism suggest a genetic and probably a dynamic relation between these geologic processes. We propose a rectonic-magmatic model that requires heat to be transported into the crust by mantle-derived mafic magmas. These magmas pond at lithologic or rheologic boundaries, begin the crystallize, and partially melt the surrounding crustal rocks. With time, the thermally weakened crust is extended (given a regional extensional stress field) concurrent with granitic magmatism and bimodal volcanism.

  15. Inventory of amphibians and reptiles at Death Valley National Park

    USGS Publications Warehouse

    Persons, Trevor B.; Nowak, Erika M.

    2006-01-01

    As part of the National Park Service Inventory and Monitoring Program in the Mojave Network, we conducted an inventory of amphibians and reptiles at Death Valley National Park in 2002-04. Objectives for this inventory were to: 1) Inventory and document the occurrence of reptile and amphibian species occurring at DEVA, primarily within priority sampling areas, with the goal of documenting at least 90% of the species present; 2) document (through collection or museum specimen and literature review) one voucher specimen for each species identified; 3) provide a GIS-referenced list of sensitive species that are federally or state listed, rare, or worthy of special consideration that occur within priority sampling locations; 4) describe park-wide distribution of federally- or state-listed, rare, or special concern species; 5) enter all species data into the National Park Service NPSpecies database; and 6) provide all deliverables as outlined in the Mojave Network Biological Inventory Study Plan. Methods included daytime and nighttime visual encounter surveys, road driving, and pitfall trapping. Survey effort was concentrated in predetermined priority sampling areas, as well as in areas with a high potential for detecting undocumented species. We recorded 37 species during our surveys, including two species new to the park. During literature review and museum specimen database searches, we recorded three additional species from DEVA, elevating the documented species list to 40 (four amphibians and 36 reptiles). Based on our surveys, as well as literature and museum specimen review, we estimate an overall inventory completeness of 92% for Death Valley and an inventory completeness of 73% for amphibians and 95% for reptiles. Key Words: Amphibians, reptiles, Death Valley National Park, Inyo County, San Bernardino County, Esmeralda County, Nye County, California, Nevada, Mojave Desert, Great Basin Desert, inventory, NPSpecies.

  16. AVIRIS study of Death Valley evaporite deposits using least-squares band-fitting methods

    NASA Technical Reports Server (NTRS)

    Crowley, J. K.; Clark, R. N.

    1992-01-01

    Minerals found in playa evaporite deposits reflect the chemically diverse origins of ground waters in arid regions. Recently, it was discovered that many playa minerals exhibit diagnostic visible and near-infrared (0.4-2.5 micron) absorption bands that provide a remote sensing basis for observing important compositional details of desert ground water systems. The study of such systems is relevant to understanding solute acquisition, transport, and fractionation processes that are active in the subsurface. Observations of playa evaporites may also be useful for monitoring the hydrologic response of desert basins to changing climatic conditions on regional and global scales. Ongoing work using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data to map evaporite minerals in the Death Valley salt pan is described. The AVIRIS data point to differences in inflow water chemistry in different parts of the Death Valley playa system and have led to the discovery of at least two new North American mineral occurrences. Seven segments of AVIRIS data were acquired over Death Valley on 31 July 1990, and were calibrated to reflectance by using the spectrum of a uniform area of alluvium near the salt pan. The calibrated data were subsequently analyzed by using least-squares spectral band-fitting methods, first described by Clark and others. In the band-fitting procedure, AVIRIS spectra are fit compared over selected wavelength intervals to a series of library reference spectra. Output images showing the degree of fit, band depth, and fit times the band depth are generated for each reference spectrum. The reference spectra used in the study included laboratory data for 35 pure evaporite spectra extracted from the AVIRIS image cube. Additional details of the band-fitting technique are provided by Clark and others elsewhere in this volume.

  17. Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images

    USGS Publications Warehouse

    Crowley, J.K.; Hook, S.J.

    1996-01-01

    Efflorescent salt crusts and associated sediments in Death Valley, California, were studied with remote-sensing data acquired by the NASA thermal infrared multispectral scanner (TIMS). Nine spectral classes that represent a variety of surface materials were distinguished, including several classes that reflect important aspects of the playa groundwater chemistry and hydrology. Evaporite crusts containing abundant thenardite (sodium sulfate) were mapped along the northern and eastern margins of the Cottonball Basin, areas where the inflow waters are rich in sodium. Gypsum (calcium sulfate) crusts were more common in the Badwater Basin, particularly near springs associated with calcic groundwaters along the western basin margin. Evaporite-rich crusts generally marked areas where groundwater is periodically near the surface and thus able to replenish the crusts though capillary evaporation. Detrital silicate minerals were prevalent in other parts of the salt pan where shallow groundwater does not affect the surface composition. The surface features in Death Valley change in response to climatic variations on several different timescales. For example, salt crusts on low-lying mudflats form and redissolve during seasonal-to-interannual cycles of wetting and desiccation. In contrast, recent flooding and erosion of rough-salt surfaces in Death Valley probably reflect increased regional precipitation spanning several decades. Remote-sensing observations of playas can provide a means for monitoring changes in evaporite facies and for better understanding the associated climatic processes. At present, such studies are limited by the availability of suitable airborne scanner data. However, with the launch of the Earth Observing System (EOS) AM-1 Platform in 1998, multispectral visible/near-infrared and thermal infrared remote-sensing data will become globally available. Copyright 1996 by the American Geophysical Union.

  18. Appraisal of the water resources of Death Valley, California-Nevada

    USGS Publications Warehouse

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  19. Death Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The bright dots near the center of the image are corner refectors that have been set-up to calibrate the radar as the Shuttle passes overhead with the SIR-C/X-SAR system. The Jet Propulsion Laboratory alternative photo number is P-43883.

  20. Geochemistry of Mesozoic plutons, southern Death Valley region, California: Insights into the origin of Cordilleran interior magmatism

    USGS Publications Warehouse

    Ramo, O.T.; Calzia, J.P.; Kosunen, P.J.

    2002-01-01

    Mesozoic granitoid plutons in the southern Death Valley region of southeastern California reveal substantial compositional and isotopic diversity for Mesozoic magmatism in the southwestern US Cordillera. Jurassic plutons of the region are mainly calc-alkaline mafic granodiorites with ??Ndi of -5 to -16, 87Sr/86Sri of 0.707-0.726, and 206Pb/204Pbi of 17.5-20.0. Cretaceous granitoids of the region are mainly monzogranites with ??Ndi of -6 to -19, 87Sr/86Sri of 0.707-0.723, and 206Pb/204Pbi of 17.4-18.6. The granitoids were generated by mixing of mantle-derived mafic melts and pre-existing crust - some of the Cretaceous plutons represent melting of Paleoproterozoic crust that, in the southern Death Valley region, is exceptionally heterogeneous. A Cretaceous gabbro on the southern flank of the region has an unuasually juvenile composition (??Ndi -3.2, 87Sr/86Sri 0.7060). Geographic position of the Mesozoic plutons and comparison with Cordillera plutonism in the Mojave Desert show that the Precambrian lithosphere (craton margin) in the eastern Mojave Desert region may consists of two crustal blocks separated by a more juvenile terrane.

  1. Successfully accelerating translational research at an academic medical center: the University of Michigan-Coulter translational research partnership program.

    PubMed

    Pienta, Kenneth J

    2010-12-01

    Translational research encompasses the effective movement of new knowledge and discoveries into new approaches for prevention, diagnosis, and treatment of disease. There are many roadblocks to successful bench to bedside research, but few have received as much recent attention as the "valley of death". The valley of death refers to the lack of funding and support for research that moves basic science discoveries into diagnostics, devices, and treatments in humans, and is ascribed to be the result of companies unwilling to fund research development that may not result in a drug or device that will be utilized in the clinic and conversely, the fact that researchers have no access to the funding needed to carry out preclinical and early clinical development to demonstrate potential efficacy in humans. The valley of death also exists because bridging the translational gap is dependent on successfully managing an additional four risks: scientific, intellectual property, market, and regulatory. The University of Michigan (UM) has partnered with the Wallace H. Coulter Foundation (CF) to create a model providing an infrastructure to overcome these risks. This model is easily adoptable to other academic medical centers (AMCs). © 2010 Wiley Periodicals, Inc.

  2. California's potential volcanic hazards

    USGS Publications Warehouse

    Jorgenson, P.

    1989-01-01

    This is a summary of "Potential Hazards from Future Volcanic Eruptions in California' (USGS Bulletin No. 1847: price $4.75). The chief areas of danger are Lassen Peak, Mount Shasta and Medicine Lake Highland in the north; Clear Lake, Mono Lake and Long Valley in the centre; and Owen's River-Death Valley, Amboy Crater and the Saltan Butter in the south of the State. -A.Scarth

  3. Stable sulfur isotope hydrogeochemical studies using desert shrubs and tree rings, Death Valley, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wenbo; Spencer, R.J.; Krouse, H.R.

    1996-08-01

    The {delta}{sup 34}S values of two dominant xerophytes, Atriplex hymenehytra and Larrea tridentata, in Death Valley, California, vary similarly from +7 to +18{per_thousand}, corresponding isotopically to sulfate in the water supplies at a given location. Going radially outwards, tree ring data from a phreatophyte tree, Tamarix aphylla, show a distinct time dependence, with {delta}{sup 34}S values increasing from +13.5 to +18{per_thousand} for soluble sulfate and from +12 to +17% for total sulfur. These data are interpreted in terms of sulfur sources, water sources and flow paths, and tree root growth. 32 refs., 3 figs., 3 tabs.

  4. Albian salt-tectonics in Central Tunisia: Evidences for an Atlantic-type passive margin

    NASA Astrophysics Data System (ADS)

    Jaillard, Etienne; Bouillin, Jean-Pierre; Ouali, Jamel; Dumont, Thierry; Latil, Jean-Louis; Chihaoui, Abir

    2017-11-01

    Tunisia is part of the south-Tethyan margin, which comprises Triassic evaporites and a thick series of Jurassic and Cretaceous, mainly marine deposits, related to the Tethyan rifting evolution. A survey of various Cretaceous outcrops of central Tunisia (Kasserine-El Kef area), combined with literature descriptions, shows that the style of Albian deformation changes from the proximal (South) to the distal part (North) of the margin. The southern part is dominated by tilted blocks and growth faults, which evolve to the north to turtle-back and roll-over structures. Farther North, deformation is dominated by the extrusion of diapirs and salt walls. Such a distribution of deformation strongly suggests that the whole sedimentary cover glided northward on the Triassic evaporites during Albian times, as described for the Atlantic passive margin or for the Gulf of Mexico. Subsequently, these halokinetic structures have been folded during Alpine compressional tectonics.

  5. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high-density vegetation. ET-unit acreage for two other discharge areas delineated in the Grapevine Springs area (Surprise Springs and Staininger Spring) totaled about 6 and 43 acres, respectively; and for the discharge areas delineated in the Furnace Creek area (Nevares Springs, Cow Creek-Salt Springs, Texas Spring, and Travertine Springs) totaled about 29, 13, 11, and 21 acres, respectively. In discharge areas other than Grapevine Springs, watering and spring diversions have altered the natural distribution of the vegetation. More...

  6. Radiochemically-Supported Microbial Communities: A Potential Mechanism for Biocolloid Production of Importance to Actinide Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Duane P.; Hamilton-Brehm, Scott D.; Fisher, Jenny C.

    Due to the legacy of Cold War nuclear weapons testing, the Nevada National Security Site (NNSS, formerly known as the Nevada Test Site (NTS)) contains millions of Curies of radioactive contamination. Presented here is a summary of the results of the first comprehensive study of subsurface microbial communities of radioactive and nonradioactive aquifers at this site. To achieve the objectives of this project, cooperative actions between the Desert Research Institute (DRI), the Nevada Field Office of the National Nuclear Security Administration (NNSA), the Underground Test Area Activity (UGTA), and contractors such as Navarro-Interra (NI), were required. Ultimately, fluids from 17more » boreholes and two water-filled tunnels were sampled (sometimes on multiple occasions and from multiple depths) from the NNSS, the adjacent Nevada Test and Training Range (NTTR), and a reference hole in the Amargosa Valley near Death Valley. The sites sampled ranged from highly-radioactive nuclear device test cavities to uncontaminated perched and regional aquifers. Specific areas sampled included recharge, intermediate, and discharge zones of a 100,000-km2 internally-draining province, known as the Death Valley Regional Flow System (DVRFS), which encompasses the entirety of the NNSS/NTTR and surrounding areas. Specific geological features sampled included: West Pahute and Ranier Mesas (recharge zone), Yucca and Frenchman Flats (transitional zone), and the Western edge of the Amargosa Valley near Death Valley (discharge zone). The original overarching question underlying the proposal supporting this work was stated as: Can radiochemically-produced substrates support indigenous microbial communities and subsequently stimulate biocolloid formation that can affect radionuclides in NNSS subsurface nuclear test/detonation sites? Radioactive and non-radioactive groundwater samples were thus characterized for physical parameters, aqueous geochemistry, and microbial communities using both DNA- and cultivation-based tools in an effort to understand the drivers of microbial community structure (including radioactivity) and microbial interactions with select radionuclides and other factors across the range of habitats surveyed.« less

  7. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  8. Land Surface Temperature Measurements from EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1997-01-01

    We applied the multi-method strategy of land-surface temperature (LST) and emissivity measurements in two field campaigns this year for validating the MODIS LST algorithm. The first field campaign was conducted in Death Valley, CA, on March 3rd and the second one in Railroad Valley, NV, on June 23-27. ER2 MODIS Airborne Simulator (MAS) data were acquired in morning and evening for these two field campaigns. TIR spectrometer, radiometer, and thermistor data were also collected in the field campaigns. The LST values retrieved from MAS data with the day/night LST algorithm agree with those obtained from ground-based measurements within 1 C and show close correlations with topographic maps. The band emissivities retrieved from MAS data show close correlations with geological maps in the Death Valley field campaign. The comparison of measurement data in the latest Railroad Valley field campaign indicates that we are approaching the goals of the LST validation: LST uncertainty less than 0.5 C, and emissivity uncertainty less than 0.005 in the 10-13 spectral range. Measurement data show that the spatial variation in LST is the major uncertainty in the LST validation. In order to reduce this uncertainty, a new component of the multi-method strategy has been identified.

  9. A Transformative Undergraduate Field Trip to the Grand Canyon and Death Valley

    NASA Astrophysics Data System (ADS)

    Smith, J. A.

    2014-12-01

    Seeing the iconic Grand Canyon and Death Valley in person is a transformative experience for most geologists, including nine undergraduate geology students from upstate New York. The students were enrolled in a one-credit course designed around a nine-day spring-break field trip to Grand Canyon National Park (GCNP) and Death Valley National Park (DVNP). We met once a week before the trip to plan day-to-day activities and discuss background geologic information. Students selected a research topic related to our itinerary and wrote a guidebook entry for the topic. Students' entries were combined with papers, maps, and background material to make a guidebook. The printed guidebooks provided students with a "publication" of their work to show to others and refer to in the field. The nine-day field trip started with a flight into Las Vegas, NV, on 3/1/14. We spent three nights camping at the South Rim of the Grand Canyon, one night camping in Valley of Fire State Park (VOFSP, 55 mi N of Las Vegas), and three nights staying at the Shoshone Education and Research Center (SHEAR) east of Death Valley. Highlights of the trip included the hike along the Bright Angel Trail (and fault) to Plateau Point and recognition of the Great Unconformity at GCNP; the White Domes loop hike, camping at the Beehives, and observation of the Muddy Mountain Overthrust in VOFSP; and hikes at Ubehebe Crater, Badwater Salt Flat, and Natural Bridge Canyon in DVNP. Each student presented his/her research topic at a pertinent point in the field trip; students were impressively well-prepared. One requirement of the course was a poster presentation on each student's research topic at our Undergraduate Research Symposium in April. For most of the students, the poster session was the first experience preparing and presenting a poster. In addition, the class gave a joint colloquium presentation to several hundred science majors and a number of science faculty at Saint Rose. Each student spoke for five minutes on his/her research topic, accompanied by slides. This was their first experience giving a talk in public, and most learned the lesson that preparation and practice are keys to a good talk. Course evaluations were overwhelmingly positive. In my experience, there is no substitute for seeing geology in the field; the students agreed.

  10. Death Valley Lower Carbonate Aquifer Monitoring Program Wells Down Gradient of the Proposed Yucca Mountain Nuclear Waste Repository, U. S. Department of Energy Grant DE-RW0000233 2010 Project Report, prepared by The Hydrodynamics Group, LLC for Inyo County Yucca Mountain Repository Assessment Office

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Michael J; Bredehoeft, John D., Dr.

    2010-09-03

    Inyo County completed the first year of the U.S. Department of Energy Grant Agreement No. DE-RW0000233. This report presents the results of research conducted within this Grant agreement in the context of Inyo County's Yucca Mountain oversight program goals and objectives. The Hydrodynamics Group, LLC prepared this report for Inyo County Yucca Mountain Repository Assessment Office. The overall goal of Inyo County's Yucca Mountain research program is the evaluation of far-field issues related to potential transport, by ground water, of radionuclide into Inyo County, including Death Valley, and the evaluation of a connection between the Lower Carbonate Aquifer (LCA) andmore » the biosphere. Data collected within the Grant is included in interpretive illustrations and discussions of the results of our analysis. The centeral elements of this Grant prgoram was the drilling of exploratory wells, geophysical surveys, geological mapping of the Southern Funeral Mountain Range. The cullimination of this research was 1) a numerical ground water model of the Southern Funeral Mountain Range demonstrating the potential of a hydraulic connection between the LCA and the major springs in the Furnace Creek area of Death Valley, and 2) a numerical ground water model of the Amargosa Valley to evaluate the potential for radionuclide transport from Yucca Mountain to Inyo County, California. The report provides a description of research and activities performed by The Hydrodynamics Group, LLC on behalf of Inyo County, and copies of key work products in attachments to this report.« less

  11. Southern California as seen from the Apollo 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This view of southern California as seen from the Apollo 7 spacecraft during its 18th revolution of the earth. Photographed from an altitude of 124 nautical miles. The coast of California can be seen from Point Mugu southward to Oceanside. Santa Catalina can be seen below the off shore clouds. Details of the Los Angeles area are obscured by pollution which extends from Banning westard for 100 miles to beyond Malibu. In the upper portion of the photograph can be seen (left to right) the San Joaquin Valley beyond Bakersfield, the Techachapi Mountains, the Sierra Nevada, Owens Valley, Death Valley and the Mojave Desert.

  12. Southern California as seen from the Apollo 7 spacecraft

    NASA Image and Video Library

    1968-10-12

    This view of southern California as seen from the Apollo 7 spacecraft during its 18th revolution of the earth. Photographed from an altitude of 124 nautical miles. The coast of California can be seen from Point Mugu southward to Oceanside. Santa Catalina can be seen below the off shore clouds. Details of the Los Angeles area are obscured by pollution which extends from Banning westard for 100 miles to beyond Malibu. In the upper portion of the photograph can be seen (left to right) the San Joaquin Valley beyond Bakersfield, the Techachapi Mountains, the Sierra Nevada, Owens Valley, Death Valley and the Mojave Desert.

  13. Space Radar Image of Death Valley, California

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This image shows Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. The goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global climate-change scenarios. Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  14. Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Andrew; Bohlke, J. K.; Gu, Baohua

    Perchlorate (ClO4-) has been detected over an expansive area in groundwater and soils in the southwestern United States. Because of its wide distribution, much of the ClO4- is presumed to be from natural sources, primarily atmospheric deposition and accumulation. The objective of this study was to evaluate the range of the isotopic composition of natural ClO4- indigenous to the southwestern U.S. Stable isotope ratios of Cl and O were determined for ClO4- collected from numerous sources, including: groundwater from several locations in the southern high plains (SHP) of Texas and New Mexico and the middle Rio Grande Basin in Newmore » Mexico, vadose zone soil from the SHP, and surface NO3--rich caliches from four locations in Death Valley, CA. The data suggest that natural ClO4- in the southwestern U.S. has at least two distinctive isotope signatures that differ both from each other and from those previously reported for natural ClO4- from the Atacama Desert of Chile and all anthropogenic ClO4- sources tested to date. The ClO4- in four caliche samples collected in Death Valley has high 17O values (8.6 to 18.4 ), similar to those described for ClO4- from the Atacama, and suggesting atmospheric formation via reaction with ozone (O3). However, the Death Valley samples have 37Cl values (-3.1 to -0.8 ) and 18O values (+2.9 to +26.1 ), that are appreciably higher than Atacama perchlorate ( 37Cl; -14.3 to -10.2 and 18O; (-10.5 to -2.2 , respectively). In contrast, samples from 8 locations in West Texas and New Mexico were characterized by only a slight elevation in 17O (0.3 to 1.3 ), suggesting either that this material is not primarily generated with O3 as a reactant or that the ClO4- has been consistently altered post-deposition by one or more processes that caused isotopic exchange of O. The 37Cl values in the SHP perchlorate (+ 3.4 to + 5.1 ) were consistently higher than for the Atacama or Death Valley salts, while the 18O values (+ 0.5 to + 4.8 ) overlapped significantly with those from Death Valley. Additional studies are necessary to better understand the various origins and potential exchange reactions of natural perchlorate, however, the data presented herein provide constraints on natural isotope signatures important for interpretation of isotope values at locations in which ClO4- sources in groundwater or drinking water are unknown.« less

  15. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  16. Geologic Map of the Warm Spring Canyon Area, Death Valley National Park, Inyo County, California, With a Discussion of the Regional Significance of the Stratigraphy and Structure

    USGS Publications Warehouse

    Wrucke, Chester T.; Stone, Paul; Stevens, Calvin H.

    2007-01-01

    Warm Spring Canyon is located in the southeastern part of the Panamint Range in east-central California, 54 km south of Death Valley National Park headquarters at Furnace Creek Ranch. For the relatively small size of the area mapped (57 km2), an unusual variety of Proterozoic and Phanerozoic rocks is present. The outcrop distribution of these rocks largely resulted from movement on the east-west-striking, south-directed Butte Valley Thrust Fault of Jurassic age. The upper plate of the thrust fault comprises a basement of Paleoproterozoic schist and gneiss overlain by a thick sequence of Mesoproterozoic and Neoproterozoic rocks, the latter of which includes diamictite generally considered to be of glacial origin. The lower plate is composed of Devonian to Permian marine formations overlain by Jurassic volcanic and sedimentary rocks. Late Jurassic or Early Cretaceous plutons intrude rocks of the area, and one pluton intrudes the Butte Valley Thrust Fault. Low-angle detachment faults of presumed Tertiary age underlie large masses of Neoproterozoic dolomite in parts of the area. Movement on these faults predated emplacement of middle Miocene volcanic rocks in deep, east-striking paleovalleys. Excellent exposures of all the rocks and structural features in the area result from sparse vegetation in the dry desert climate and from deep erosion along Warm Spring Canyon and its tributaries.

  17. Preliminary estimates of spatially distributed net infiltration and recharge for the Death Valley region, Nevada-California

    USGS Publications Warehouse

    Hevesi, J.A.; Flint, A.L.; Flint, L.E.

    2002-01-01

    A three-dimensional ground-water flow model has been developed to evaluate the Death Valley regional flow system, which includes ground water beneath the Nevada Test Site. Estimates of spatially distributed net infiltration and recharge are needed to define upper boundary conditions. This study presents a preliminary application of a conceptual and numerical model of net infiltration. The model was developed in studies at Yucca Mountain, Nevada, which is located in the approximate center of the Death Valley ground-water flow system. The conceptual model describes the effects of precipitation, runoff, evapotranspiration, and redistribution of water in the shallow unsaturated zone on predicted rates of net infiltration; precipitation and soil depth are the two most significant variables. The conceptual model was tested using a preliminary numerical model based on energy- and water-balance calculations. Daily precipitation for 1980 through 1995, averaging 202 millimeters per year over the 39,556 square kilometers area of the ground-water flow model, was input to the numerical model to simulate net infiltration ranging from zero for a soil thickness greater than 6 meters to over 350 millimeters per year for thin soils at high elevations in the Spring Mountains overlying permeable bedrock. Estimated average net infiltration over the entire ground-water flow model domain is 7.8 millimeters per year.To evaluate the application of the net-infiltration model developed on a local scale at Yucca Mountain, to net-infiltration estimates representing the magnitude and distribution of recharge on a regional scale, the net-infiltration results were compared with recharge estimates obtained using empirical methods. Comparison of model results with previous estimates of basinwide recharge suggests that the net-infiltration estimates obtained using this model may overestimate recharge because of uncertainty in modeled precipitation, bedrock permeability, and soil properties for locations such as the Spring Mountains. Although this model is preliminary and uncalibrated, it provides a first approximation of the spatial distribution of net infiltration for the Death Valley region under current climatic conditions.

  18. Quantifying alluvial fan sensitivity to climate in Death Valley, California, from field observations and numerical models

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Armitage, John; D'Arcy, Mitch; Watkins, Stephen

    2017-04-01

    A quantitative understanding of landscape sensitivity to climate change remains a key challenge in the Earth Sciences. The stream-flow deposits of coupled catchment-fan systems offer one way to decode past changes in external boundary conditions as they comprise simple, closed systems that can be represented effectively by numerical models. Here we combine the collection and analysis of grain size data on well-dated alluvial fan surfaces in Death Valley, USA, with numerical modelling to address the extent to which sediment routing systems record high-frequency, high-magnitude climate change. We compile a new database of Holocene and Late-Pleistocene grain size trends from 11 alluvial fans in Death Valley, capturing high-resolution grain size data ranging from the Recent to 100 kyr in age. We hypothesise the observed changes in average surface grain size and fining rate over time are a record of landscape response to glacial-interglacial climatic forcing. With this data we are in a unique position to test the predictions of landscape evolution models and evaluate the extent to which climate change has influenced the volume and calibre of sediment deposited on alluvial fans. To gain insight into our field data and study area, we employ an appropriately-scaled catchment-fan model that calculates an eroded volumetric sediment budget to be deposited in a subsiding basin according to mass balance where grain size trends are predicted by a self-similarity fining model. We use the model to compare predicted trends in alluvial fan stratigraphy as a function of boundary condition change for a range of model parameters and input grain size distributions. Subsequently, we perturb our model with a plausible glacial-interglacial magnitude precipitation change to estimate the requisite sediment flux needed to generate observed field grain size trends in Death Valley. Modelled fluxes are then compared with independent measurements of sediment supply over time. Our results constitute one of the first attempts to combine the detailed collection of alluvial fan grain size data in time and space with coupled catchment-fan models, affording us the means to evaluate how well field and model data can be reconciled for simple sediment routing systems.

  19. Identification and interpretation of tectonic features from Skylab imagery. [California to Arizona

    NASA Technical Reports Server (NTRS)

    Abdel-Gawad, M. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. S190-B imagery confirmed previous conclusions from S190-A that the Garlock fault does not extend eastward beyond its known termination near the southern end of Death Valley. In the Avawatz Mountains, California, two faults related to the Garlock fault zone (Mule Spring fault and Leach Spring fault) show evidence of recent activity. There is evidence that faulting related to Death Valley fault zone extends southeastward across the Old Dad Mountains. There, the Old Dad fault shows evidence of recent activity. A significant fault lineament has been identified from McCullough Range, California southeastward to Eagle Tail Mountains in southwestern Arizona. The lineament appears to control tertiary and possible cretaceous intrusives. Considerable right lateral shear is suspected to have taken place along parts of this lineament.

  20. Water-level database update for the Death Valley regional groundwater flow system, Nevada and California, 1907-2007

    USGS Publications Warehouse

    Pavelko, Michael T.

    2010-01-01

    The water-level database for the Death Valley regional groundwater flow system in Nevada and California was updated. The database includes more than 54,000 water levels collected from 1907 to 2007, from more than 1,800 wells. Water levels were assigned a primary flag and multiple secondary flags that describe hydrologic conditions and trends at the time of the measurement and identify pertinent information about the well or water-level measurement. The flags provide a subjective measure of the relative accuracy of the measurements and are used to identify which water levels are appropriate for calculating head observations in a regional transient groundwater flow model. Included in the report appendix are all water-level data and their flags, selected well data, and an interactive spreadsheet for viewing hydrographs and well locations.

  1. Geology of the American Southwest

    NASA Astrophysics Data System (ADS)

    Baldridge, W. Scott

    2004-06-01

    Scott Baldridge presents a concise guide to the geology of the Southwestern U.S. Two billion years of Earth history are represented in the rocks and landscape of the Southwest U.S., creating natural wonders such as the Grand Canyon, Monument Valley, and Death Valley. This region is considered a geologist's "dream", attracting a large number of undergraduate field classes and amateur geologists. The volume will prove invaluable to students and will also appeal to anyone interested in the geology and landscape of the region's National Parks.

  2. Macropolygon morphology, development, and classification on North Panamint and Eureka playas, Death Valley National Park CA

    USGS Publications Warehouse

    Messina, P.; Stoffer, P.; Smith, W.C.

    2005-01-01

    Panamint and Eureka playas, both located within Death Valley National Park, exhibit a host of surficial features including fissures, pits, mounds, and plant-covered ridges, representing topographic highs and lows that vary up to 2 m of relief from the playa surface. Aerial photographs reveal that these linear strands often converge to form polygons, ranging in length from several meters to nearly a kilometer. These features stand out in generally dark contrast to the brighter intervening expanse of flat, plant-free, desiccated mud of the typical playa surface. Ground-truth mapping of playa features with differential GPS (Global Positioning System) was conducted in 1999 (North Panamint Valley) and 2002 (Eureka Valley). High-resolution digital maps reveal that both playas possess macropolygons of similar scale and geometry, and that fissures may be categorized into one of two genetic groups: (1) shore-parallel or playa-interior desiccation and shrinkage; and (2) tectonic-induced cracks. Early investigations of these features in Eureka Valley concluded that their origin may have been related to agricultural activity by paleo-Indian communities. Although human artifacts are abundant at each locale, there is no evidence to support the inference that surface features reported on Eureka Playa are anthropogenic in origin. Our assumptions into the genesis of polygons on playas is based on our fortuitous experience of witnessing a fissure in the process of formation on Panamint Playa after a flash flood (May 1999); our observations revealed a paradox that saturation of the upper playa crusts contributes to the establishment of some desiccation features. Follow-up visits to the same feature over 2 yrs' time are a foundation for insight into the evolution and possible longevity of these features. ?? 2005 Elsevier B.V. All rights reserved.

  3. Application of shuttle imaging radar to geologic mapping

    NASA Technical Reports Server (NTRS)

    Labotka, T. C.

    1986-01-01

    Images from the Shuttle Imaging Radar - B (SIR-B) experiment covering the area of the Panamint Mountains, Death Valley, California, were examined in the field and in the laboratory to determine their usefulness as aids for geologic mapping. The covered area includes the region around Wildrose Canyon where rocks ranging in age from Precambrian to Cenozoic form a moderately rugged portion of the Panamint Mountains, including sharp ridges, broad alluviated upland valleys, and fault-bounded grabens. The results of the study indicate that the available SIR-B images of this area primarily illustrate variations in topography, except in the broadly alluviated areas of Panamint Valley and Death Valley where deposits of differing reflectivity can be recognized. Within the mountainous portion of the region, three textures can be discerned, each representing a different mode of topographic expression related to the erosion characteristics of the underlying bedrock. Regions of Precambrian bedrock have smooth slopes and sharp ridges with a low density of gullies. Tertiary monolithologic breccias have smooth, steep slopes with an intermediate density of gullies with rounded ridges. Tertiary fanglomerates have steep rugged slopes with numerous steep-sided gullies and knife-sharp ridges. The three topographic types reflect the consistancy and relative susceptibility to erosion of the bedrock; the three types can readily be recognized on topographic maps. At present, it has not been possible to distinguish on the SIR-B image of the mountainous terrain the type of bedrock, independent of the topographic expression.

  4. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for each ET unit was determined by fitting the annual ground-water ET for each site with the variability in vegetation density in each ET unit. The ET rate representing the midpoint of each ET unit was used as the representative value. The rate of annual ground-water ET for the playa sites did not require scaling in this manner. Annual ground-water discharge by ET was determined for all five ET units: salt-encrusted playa (0.13 foot), bare-soil playa (0.15 foot), low-density vegetation (1.0 foot), moderate-density vegetation (2.0 feet), and high-density vegetation (3.0 feet), and an area of vegetation or bare soil not contributing to ground-water discharge unclassified (0.0 foot). The total ground-water discharge from ET for the Death Valley floor is about 35,000 acre-feet and was computed by summing the products of the area of each ET unit multiplied by a corresponding ET rate for each unit.

  5. 47. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS AND STEMS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS AND STEMS, LOOKING NORTH NORTHWEST. SEE CA-290-22 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  6. 22. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS AND STEMS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS AND STEMS, LOOKING NORTH NORTHWEST. SEE CA-290-47 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  7. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    NASA Technical Reports Server (NTRS)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  8. Study of LANDSAT-D thematic mapper performance as applied to hydrocarbon exploration. [Southern Ontario, Lawton, Oklahoma; Owl Creek, Wyoming; Washington, D.C.; and Death Valley California

    NASA Technical Reports Server (NTRS)

    Everett, J. R. (Principal Investigator)

    1983-01-01

    Improved delineation of known oil and gas fields in southern Ontario and a spectacularly high amount of structural information on the Owl Creek, Wyoming scene were obtained from analysis of TM data. The use of hue, saturation, and value image processing techniques on a Death Valley, California scene permitted direct comparison of TM processed imagery with existing 1:250,000 scale geological maps of the area and revealed small outcrops of Tertiary volcanic material overlying Paleozoic sections. Analysis of TM data over Lawton, Oklahoma suggests that the reducing chemical environment associated with hydrocarbon seepage change ferric iron to soluble ferrous iron, allowing it to be leached. Results of the band selection algorithm show a suprising consistency, with the 1,4,5 combination selected as optimal in most cases.

  9. TOP VIEW OF CYANIDE PLANT FOUNDATIONS. ZINC BOXES, TANKS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP VIEW OF CYANIDE PLANT FOUNDATIONS. ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING SOUTHWEST FROM MAIN ACCESS ROAD. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS. IN THE FOREGROUND ARE REMAINS OF TWO PREPARATION TANKS AT LEFT NEXT TO A BUILDING FOOTPRINT AT RIGHT. ZINC BOXES ARE JUST ABOVE THE PREPARATION TANKS ON LEFT. THE WATER TANK AT CENTER IS NEARBY A SHAFT. THE COLLAPSED TANK JUST IN FRONT OF THE WATER TANK IS ANOTHER WATER HOLDING TANK THAT CONNECTS DIRECTLY TO THE PIPELINE THAT CARRIED WATER FROM A NEARBY SPRING A QUARTER MILE OFF TO THE RIGHT (SEE CA-291-41 FOR DETAIL). THE LEFT OF THE CENTER WATER TANK IS A LARGE TAILINGS PILE. DEATH VALLEY IS IN THE DISTANCE. SEE CA-291-40 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  10. TOP VIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP VIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING SOUTHWEST FROM MAIN ACCESS ROAD. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS. IN THE FOREGROUND ARE REMAINS OF TWO PREPARATION TANKS AT LEFT NEXT TO A BUILDING FOOTPRINT AT RIGHT. ZINC BOXES ARE JUST ABOVE THE PREPARATION TANKS ON LEFT. THE WATER TANK AT CENTER IS NEARBY A SHAFT. THE COLLAPSED TANK JUST IN FRONT OF THE WATER TANK IS ANOTHER WATER HOLDING TANK THAT CONNECTS DIRECTLY TO THE PIPELINE THAT CARRIED WATER FROM A NEARBY SPRING A QUARTER MILE OFF TO THE RIGHT (SEE CA-291-41 FOR DETAIL). THE LEFT OF THE CENTER WATER TANK IS A LARGE TAILINGS PILE. DEATH VALLEY IS IN THE DISTANCE. SEE CA-291-53 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  11. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  12. Facies analysis of Tertiary basin-filling rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, Donald S.; Fridrich, Christopher J.; Taylor, Emily

    2001-01-01

    Existing hydrologic models of the Death Valley region typically have defined the Cenozoic basins as those areas that are covered by recent surficial deposits, and have treated the basin-fill deposits that are concealed under alluvium as a single unit with uniform hydrologic properties throughout the region, and with depth. Although this latter generalization was known to be flawed, it evidently was made because available geologic syntheses did not provide the basis for a more detailed characterization. As an initial attempt to address this problem, this report presents a compilation and synthesis of existing and new surface and subsurface data on the lithologic variations between and within the Cenozoic basin fills of this region. The most permeable lithologies in the Cenozoic basin fills are freshwater limestones, unaltered densely welded tuffs, and little-consolidated coarse alluvium. The least permeable lithologies are playa claystones, altered nonwelded tuffs, and tuffaceous and clay-matrix sediments of several types. In all but the youngest of the basin fills, permeability probably decreases strongly with depth owing to a typically increasing abundance of volcanic ash or clay in the matrices of the clastic sediments with increasing age (and therefore with increasing depth in general), and to increasing consolidation and alteration (both hydrothermal and diagenetic) with increasing depth and age. This report concludes with a categorization of the Cenozoic basins of the Death Valley region according to the predominant lithologies in the different basin fills and presents qualitative constraints on the hydrologic properties of these major lithologic categories.

  13. Perspective: Transforming science into medicine: how clinician-scientists can build bridges across research's "valley of death".

    PubMed

    Roberts, Scott F; Fischhoff, Martin A; Sakowski, Stacey A; Feldman, Eva L

    2012-03-01

    Significant increases in National Institutes of Health (NIH) spending on medical research have not produced corresponding increases in new treatments and cures. Instead, laboratory discoveries remain in what has been termed the "valley of death," the gap between bench research and clinical application. Recently, there has been considerable discussion in the literature and scientific community about the causes of this phenomenon and how to bridge the abyss. In this article, the authors examine one possible explanation: Clinician-scientists' declining role in the medical research enterprise has had a dilatory effect on the successful translation of laboratory breakthroughs into new clinical applications. In recent decades, the percentage of MDs receiving NIH funding has drastically decreased compared with PhDs. The growing gap between the research and clinical enterprises has resulted in fewer scientists with a true understanding of clinical problems as well as scientists who are unable to or uninterested in gleaning new basic research hypotheses from failed clinical trials. The NIH and many U.S. medical schools have recognized the decline of the clinician-scientist as a major problem and adopted innovative programs to reverse the trend. However, more radical action may be required, including major changes to the NIH peer-review process, greater funding for translational research, and significantly more resources for the training, debt relief, and early career support of potential clinician-scientists. Such improvements are required for clinician-scientists to conduct translational research that bridges the valley of death and transforms biomedical research discoveries into tangible clinical treatments and technologies.

  14. Death Valley, California

    NASA Image and Video Library

    1994-04-11

    STS059-S-026 (11 April 1994) --- This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters below sea level, the lowest in the United States, to more than 3300 meters above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help answer a number of different questions about the Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans help scientists study Earth's ancient climate. Scientists know the fans are bulit up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation, and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (or inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. the goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global cimate-change scenarios. Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. The bright dots near the center of the image are corner reflectors that have been set-up to calibrate the radar as the Shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40 kilometer by 40 kilometer area in and around Death Valley. The calibration team will also deploy transponders (electronic reflectors) and recievers to measure the radar signals from SIR-C/X-SAR on the ground. Spaceborne Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth (MTPE). The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was develpoed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies for the German Space Agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian Space Agency, Agenzia Spaziale Italiana (ASI). JPL Photo ID: P-43883

  15. Color Image of Death Valley, California from SIR-C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This radar image shows the area of Death Valley, California and the different surface types in the area. Radar is sensitive to surface roughness with rough areas showing up brighter than smooth areas, which appear dark. This is seen in the contrast between the bright mountains that surround the dark, smooth basins and valleys of Death Valley. The image shows Furnace Creek alluvial fan (green crescent feature) at the far right, and the sand dunes near Stove Pipe Wells at the center. Alluvial fans are gravel deposits that wash down from the mountains over time. Several other alluvial fans (semicircular features) can be seen along the mountain fronts in this image. The dark wrench-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. Elevations in the valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using these radar data to help answer a number of different questions about Earth's geology including how alluvial fans form and change through time in response to climatic changes and earthquakes. The image is centered at 36.629 degrees north latitude, 117.069 degrees west longitude. Colors in the image represent different radar channels as follows: red =L-band horizontally polarized transmitted, horizontally polarized received (LHH); green =L-band horizontally transmitted, vertically received (LHV) and blue = CHV.

    SIR-C/X-SAR is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fuer Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  16. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as having two main components: a series of relatively shallow and localized flow paths that are superimposed on deeper regional flow paths. A significant component of the regional ground-water flow is through a thick Paleozoic carbonate rock sequence. Throughout the flow system, ground water flows through zones of high transmissivity that have resulted from regional faulting and fracturing. The conceptual model of the Death Valley regional ground-water flow system used for this study is adapted from the two previous ground-water modeling studies. The three-dimensional digital hydrogeologic framework model developed for the region also contains elements of both of the hydrogeologic framework models used in the previous investigations. As dictated by project scope, very little reinterpretation and refinement were made where these two framework models disagree; therefore, limitations in the hydrogeologic representation of the flow system exist. Despite limitations, the framework model provides the best representation to date of the hydrogeologic units and structures that control regional ground-water flow and serves as an important information source used to construct and calibrate the predevelopment, steady-state flow model. In addition to the hydrogeologic framework, a complex array of mechanisms accounts for flow into, through, and out of the regional ground-water flow system. Natural discharges from the regional ground-water flow system occur by evapotranspiration, springs, and subsurface outflow. In this study, evapotranspiration rates were adapted from a related investigation that developed maps of evapotranspiration areas and computed rates from micrometeorological data collected within the local area over a multiyear period. In some cases, historical spring flow records were used to derive ground-water discharge rates for isolated regional springs. For this investigation, a process-based, numerical model was developed to estimat

  17. OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WARM SPRINGS CAMP BUILDINGS, LOOKING SOUTH SOUTHEAST. THE FUNCTION OF THE FLAT AREA AT CENTER RIGHT IS UNKNOWN. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  18. 48. DETAIL OF STAMP BATTERIES CAMS, TAPPETS AND STEMS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. DETAIL OF STAMP BATTERIES CAMS, TAPPETS AND STEMS WITH SIX FOOT SCALE, LOOKING NORTH NORTHWEST. SEE CA-290-24 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  19. 24. DETAIL OF STAMP BATTERIES CAMS, TAPPETS AND STEMS WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL OF STAMP BATTERIES CAMS, TAPPETS AND STEMS WITH SIX FOOT SCALE, LOOKING NORTH NORTHWEST. SEE CA-290-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. Lily-of-the-valley

    MedlinePlus

    ... 3 days and may require a hospital stay. Death is unlikely. DO NOT touch or eat any plant with which you are not familiar. Wash your hands after working in the garden or walking in the woods. Alternative Names Liljekonvall References Graeme KA. Toxic plant ...

  1. Space Radar Image of Death Valley in 3-D

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This picture is a three-dimensional perspective view of Death Valley, California. This view was constructed by overlaying a SIR-C radar image on a U.S. Geological Survey digital elevation map. The SIR-C image is centered at 36.629 degrees north latitude and 117.069 degrees west longitude. We are looking at Stove Pipe Wells, which is the bright rectangle located in the center of the picture frame. Our vantage point is located atop a large alluvial fan centered at the mouth of Cottonwood Canyon. In the foreground on the left, we can see the sand dunes near Stove Pipe Wells. In the background on the left, the Valley floor gradually falls in elevation toward Badwater, the lowest spot in the United States. In the background on the right we can see Tucki Mountain. This SIR-C/X-SAR supersite is an area of extensive field investigations and has been visited by both Space Radar Lab astronaut crews. Elevations in the Valley range from 70 meters (230 feet) below sea level, the lowest in the United States, to more than 3,300 meters (10,800 feet) above sea level. Scientists are using SIR-C/X-SAR data from Death Valley to help the answer a number of different questions about Earth's geology. One question concerns how alluvial fans are formed and change through time under the influence of climatic changes and earthquakes. Alluvial fans are gravel deposits that wash down from the mountains over time. They are visible in the image as circular, fan-shaped bright areas extending into the darker valley floor from the mountains. Information about the alluvial fans helps scientists study Earth's ancient climate. Scientists know the fans are built up through climatic and tectonic processes and they will use the SIR-C/X-SAR data to understand the nature and rates of weathering processes on the fans, soil formation and the transport of sand and dust by the wind. SIR-C/X-SAR's sensitivity to centimeter-scale (inch-scale) roughness provides detailed maps of surface texture. Such information can be used to study the occurrence and movement of dust storms and sand dunes. The goal of these studies is to gain a better understanding of the record of past climatic changes and the effects of those changes on a sensitive environment. This may lead to a better ability to predict future response of the land to different potential global climate-change scenarios. Vertical exaggeration is 1.87 times; exaggeration of relief is a common tool scientists use to detect relationships between structure (for example, faults and fractures) and topography. Death Valley is also one of the primary calibration sites for SIR-C/X-SAR. In the lower right quadrant of the picture frame two bright dots can be seen which form a line extending to Stove Pipe Wells. These dots are corner reflectors that have been set up to calibrate the radar as the shuttle passes overhead. Thirty triangular-shaped reflectors (they look like aluminum pyramids) have been deployed by the calibration team from JPL over a 40- by 40-kilometer (25- by 25-mile) area in and around Death Valley. The signatures of these reflectors were analyzed by JPL scientists to calibrate the image used in this picture. The calibration team here also deployed transponders (electronic reflectors) and receivers to measure the radar signals from SIR-C/X-SAR on the ground. SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-band (24 cm), C-band (6 cm) and X-band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, in conjunction with aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory. X-SAR was developed by the Dornier and Alenia Spazio companies for the German space agency, Deutsche Agentur fur Raumfahrtangelegenheiten (DARA), and the Italian space agency, Agenzia Spaziale Italiana (ASI).

  2. Transforming the "Valley of Death" into a "Valley of Opportunity"

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Merceret, Francis J.; O'Brien, T. P.; Roeder, William P.; Huddleston, Lisa L.; Bauman, William H., III

    2014-01-01

    Transitioning technology from research to operations (23 R2O) is difficult. The problem's importance is exemplified in the literature and in every failed attempt to do so. Although the R2O gap is often called the "valley of death", a recent a Space Weather editorial called it a "Valley of Opportunity". There are significant opportunities for space weather organizations to learn from the terrestrial experience. Dedicated R2O organizations like those of the various NOAA testbeds and collaborative "proving ground" projects take common approaches to improving terrestrial weather forecasting through the early transition of research capabilities into the operational environment. Here we present experience-proven principles for the establishment and operation of similar space weather organizations, public or private. These principles were developed and currently being demonstrated by NASA at the Applied Meteorology Unit (AMU) and the Short-term Prediction Research and Transition (SPoRT) Center. The AMU was established in 1991 jointly by NASA, the U.S. Air Force (USAF) and the National Weather Service (NWS) to provide tools and techniques for improving weather support to the Space Shuttle Program (Madura et al., 2011). The primary customers were the USAF 45th Weather Squadron (45 WS) and the NWS Spaceflight Meteorology Group (SMG who provided the weather observing and forecast support for Shuttle operations). SPoRT was established in 2002 to transition NASA satellite and remote-sensing technology to the NWS. The continuing success of these organizations suggests the common principles guiding them may be valuable for similar endeavors in the space weather arena.

  3. DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. THE FRICTION BRAKING SYSTEM CAN BE SEEN IN SHADOW ABOVE THE LARGE CABLE WHEEL BELOW. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  4. Test Rover Aids Preparations in California for Curiosity Rover on Mars

    NASA Image and Video Library

    2012-05-11

    NASA Mars Science Laboratory mission team members ran mobility tests on the test rover called Scarecrow on sand dunes near Death Valley, Ca. in early May 2012 in preparation for operating the Curiosity rover, currently en route to Mars.

  5. Luminescence ages for alluvial-fan deposits in Southern Death Valley: Implications for climate-driven sedimentation along a tectonically active mountain front

    USGS Publications Warehouse

    Sohn, M.F.; Mahan, S.A.; Knott, J.R.; Bowman, D.D.

    2007-01-01

    Controversy exists over whether alluvial-fan sedimentation along tectonically active mountain fronts is driven by climatic changes or tectonics. Knowing the age of sedimentation is the key to understanding the relationship between sedimentation and its cause. Alluvial-fan deposits in Death Valley and throughout the arid southwestern United States have long been the subjects of study, but their ages have generally eluded researchers until recently. Most mapping efforts have recognized at least four major relative-age groupings (Q1 (oldest), Q2, Q3, and Q4 (youngest)), using observed changes in surface soils and morphology, relation to the drainage net, and development of desert pavement. Obtaining numerical age determinations for these morphologic stages has proven challenging. We report the first optically stimulated luminescence (OSL) ages for three of these four stages deposited within alluvial-fans along the tectonically active Black Mountains of Death Valley. Deposits showing distinct, remnant bar and swale topography (Q3b) have OSL ages from 7 to 4 ka., whereas those with moderate to poorly developed desert pavement and located farther above the active channel (Q3a) have OSL ages from 17 to 11 ka. Geomorphically older deposits with well-developed desert pavement (Q2d) have OSL ages ???25 ka. Using this OSL-based chronology, we note that alluvial-fan deposition along this tectonically active mountain front corresponds to both wet-to-dry and dry-to-wet climate changes recorded globally and regionally. These findings underscore the influence of climate change on alluvial fan deposition in arid and semi-arid regions. ?? 2007 Elsevier Ltd and INQUA.

  6. Late Quaternary denudation, Death and Panamint Valleys, eastern California

    USGS Publications Warehouse

    Jayko, A.S.

    2005-01-01

    Late Quaternary denudation rates are constrained from alluvial fans and tributary watersheds in central Death and Panamint Valleys. Preliminary results suggest that the denudation rate is in part a function of the mean watershed elevation. Rainfall increases semi-logarithmically with higher elevation to about 2500 m where it becomes limited by the regional average maximum moisture content of the air mass. The fan volumes show a power-law relation to the watershed areas. The fan volumes ranged from about 250,000 to 4000 km3 and the watershed areas range from about 60,000 to 2000 km2. The upper limit of the denudation rates estimated from small Death Valley fans restricted to the east side of the basin along the Black Mountain frontal scarp range between about 0.03 to 0.18 mm/yr. The maximum is made by assuming most of the clastic accumulation in these fans followed the last highstand of Lake Manly around 24,000 yr which is the least conservative condition. The upper limit of the denudation rates from the Panamint fans range from 0.04 to 0.20 mm/yr assuming the accumulation mainly postdates OIS-4 ???60,000 yr or OIS-2 ???20,000 yr based on the presence or absence of inset shorelines from the last glacial-pluvial maximum. The greater denudation rate associated with the higher mean watershed elevations can mainly be attributed to the greater rainfall at higher elevation. Denudation rates are about a third or less of the Neogene dip-slip rates reported from nearby active faults consistent with relief increasing during dryer periods. ?? 2005 Elsevier B.V. All rights reserved.

  7. Facies analysis of Late Proterozoic through Lower Cambrian rocks of the Death Valley regional ground-water system and surrounding areas, Nevada and California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweetkind, D.S.; White, D.K.

    Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less

  8. 46. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS, STEMS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. DETAIL OF UPPER STAMP BATTERIES CAMS, TAPPETS, STEMS, AND RELATIONSHIP OF BULL WHEEL (LOWER RIGHT) LOOKING NORTH NORTHEAST. SEE CA-290-22 FOR A SIMILAR B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  9. 25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO TOP FLOOR OF MILL, LOOKING SOUTH FROM SECOND FLOOR OF MILL. PORTION OF ORE BIN ON RIGHT, STAIRS ON LEFT. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  10. Scientific innovation's two Valleys of Death: how blood and tissue banks can help to bridge the gap.

    PubMed

    Thompson, Sean D A

    2014-12-01

    Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation's inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process.

  11. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  12. 1985 VGP Awards

    NASA Astrophysics Data System (ADS)

    Carmichael, I. S. E.; Hildreth, Wes; Peterson, Donald W.; Fisher, Richard; Schmincke, Hans-Ulrich

    We are here to acknowledge Wes Hildreth's researches on silicic magmatism. His celebrated account of the Bishop Tuff, now eponymous, is the most extensively analyzed and influential rock mass since the Skaergaard intrusion and, for its detail and significance, has become the yardstick of silicic petrology; yet his study is less than 7 years old.Edward Wesley Hildreth III was born in 1938, and as the English would say, attended Harvard College in 1956. In 1961, he graduated cum laude with a major in geology, a minor in government, and a travelling scholarship to see the world. For the next 10 years he did so and became a naturalist in the U.S. National Park Service, with periods in Death Valley and in the Olympics. His “Death Valley Days” were to return, forthrough his love of the Panamint Ranges he met Mitch Reynolds, then an assistant professor at [the University of California] Berkeley, and in 1971 he arrived in Berkeley as a new graduate student, anxious and impatient to unravel the structure of the Panamints.

  13. Rift Valley Fever: An Emerging Mosquito-Borne Disease.

    PubMed

    Linthicum, Kenneth J; Britch, Seth C; Anyamba, Assaf

    2016-01-01

    Rift Valley fever (RVF), an emerging mosquito-borne zoonotic infectious viral disease caused by the RVF virus (RVFV) (Bunyaviridae: Phlebovirus), presents significant threats to global public health and agriculture in Africa and the Middle East. RVFV is listed as a select agent with significant potential for international spread and use in bioterrorism. RVFV has caused large, devastating periodic epizootics and epidemics in Africa over the past ∼60 years, with severe economic and nutritional impacts on humans from illness and livestock loss. In the past 15 years alone, RVFV caused tens of thousands of human cases, hundreds of human deaths, and more than 100,000 domestic animal deaths. Cattle, sheep, goats, and camels are particularly susceptible to RVF and serve as amplifying hosts for the virus. This review highlights recent research on RVF, focusing on vectors and their ecology, transmission dynamics, and use of environmental and climate data to predict disease outbreaks. Important directions for future research are also discussed.

  14. Scientific Innovation's Two Valleys of Death: How Blood and Tissue Banks Can Help to Bridge the Gap

    PubMed Central

    Thompson, Sean D.A.

    2014-01-01

    Abstract Most biomedical basic research in the United States takes place at universities and research institutes and is funded by federal grants. Basic research is awarded billions of federal dollars every year, enabling new discoveries and greater understanding of the fundamental science that makes new innovations and therapies possible. However, when basic research yields an invention of practical use and the research evolves from basic to applied, the playing field changes. Pre-technology licensing federal dollars all but disappear, and innovations rely predominantly on private funding to support the full path from bench to bedside. It is along this path that the scientific advance faces two Valleys of Death. These sometimes insurmountable development stages are the product of the innovation’s inherent financial, business and investment risks. Well-planned and executed in vivo studies using quality biological materials demonstrating proof-of-concept is often the key to bridging these gaps, and blood and tissue banks offer unique services and resources to enable this process. PMID:25457967

  15. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas

    NASA Astrophysics Data System (ADS)

    Jackson, T.; Halford, K. J.; Gardner, P.

    2017-12-01

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ETg) from desert playas is a significant component of the groundwater budget. This result occurs because desert playa ETg rates are poorly constrained by Bowen Ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ETg from desert playas have resulted in ETg rates that are below the detection limit of micrometeorological approaches. This study uses numerical models to further constrain desert playa ETg rates that are below the detection limit of EC (0.1 mm/d) and BREB (0.3 mm/d) approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater-density contrasts on desert playa ETg rates. Numerical models simulated ETg rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ETg rates from desert playas are significantly below the upper detection limits provided by the BREB- and EC-based micrometeorological measurements. Discharge from desert playas contribute less than 2 percent of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas is negligible in other basins. Numerical simulation results also show that ETg from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts.

  16. 76 FR 2705 - Notice of Continuation of Visitor Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Sports & Shenandoah National Park. Entertainment Services, Inc. DEVA002-81 Xanterra Parks & Death Valley... ARAMARK Sports & Olympic National Park. Entertainment, Inc. OLYM002-89 Log Cabin Resort, Inc. Olympic... Cape Hatteras Fishing Cape Hatteras National Seashore. Pier, Inc. CAHA004-98 Oregon Inlet Fishing Cape...

  17. 15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW CRUSHER, LOOKING SOUTH FROM END OF CONVEYOR PLATFORM. NOTICE THE THREE ORE BIN CONTROL DOORS, CORRESPONDING TO SEPARATE COMPARTMENTS OF THE BIN. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  18. Multistage late Cenozoic evolution of the Amargosa River drainage, southwestern Nevada and eastern California Society of America. All rights reserved

    USGS Publications Warehouse

    Menges, C.M.

    2008-01-01

    Stratigraphic and geomorphic analyses reveal that the regional drainage basin of the modern Amargosa River formed via multistage linkage of formerly isolated basins in a diachronous series of integration events between late Miocene and latest Pleistocene-Holocene time. The 275-km-long Amargosa River system drains generally southward across a large (15,540 km 2) watershed in southwestern Nevada and eastern California to its terminus in central Death Valley. This drainage basin is divided into four major subbasins along the main channel and several minor subbasins on tributaries; these subbasins contain features, including central valley lowlands surrounded by highlands that form external divides or internal paleodivides, which suggest relict individual physiographic-hydrologic basins. From north to south, the main subbasins along the main channel are: (1) an upper headwaters subbasin, which is deeply incised into mostly Tertiary sediments and volcanic rocks; (2) an unincised low-gradient section within the Amargosa Desert; (3) a mostly incised section centered on Tecopa Valley and tributary drainages; and (4) a west- to northwest-oriented mostly aggrading lower section along the axis of southern Death Valley. Adjoining subbasins are hydro-logically linked by interconnecting narrows or canyon reaches that are variably incised into formerly continuous paleodivides. The most important linkages along the main channel include: (1) the Beatty narrows, which developed across a Tertiary bedrock paleodivide between the upper and Amargosa Desert subbasins during a latest Miocene-early Pliocene to middle Pleistocene interval (ca. 4-0.5 Ma); (2) the Eagle Mountain narrows, which cut into a mostly alluvial paleodivide between the Amar-gosa Desert and Tecopa subbasins in middle to late Pleistocene (ca. 150-100 ka) time; and (3) the Amargosa Canyon, which formed in late middle Pleistocene (ca. 200140 ka) time through a breached, actively uplifting paleodivide between the Tecopa and southern Death Valley subbasins. Collectively, the interconnecting reaches represent discrete integration events that incrementally produced the modern drainage basin starting near Beatty sometime after 4 Ma and ending in the Salt Creek tributary in the latest Pleistocene to Holocene (post-30 ka). Potential mechanisms for drainage integration across paleodivides include basin overtopping from sedimentary infilling above paleodivide elevations, paleolake spillover, groundwater sapping, and (or) headward erosion of dissecting channels in lower-altitude subbasins. These processes are complexly influenced by fluvial responses to factors such as climatic change, local base-level differences across divides, and (or) tectonic activity (the latter only recognized in Amargosa Canyon). ?? 2008 The Geological Society of America.

  19. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa?

    PubMed

    Baba, Marycelin; Masiga, Daniel K; Sang, Rosemary; Villinger, Jandouwe

    2016-06-22

    Rift Valley fever (RVF) outbreaks have occurred across eastern Africa from 1912 to 2010 approximately every 4-15 years, most of which have not been accompanied by significant epidemics in human populations. However, human epidemics during RVF outbreaks in eastern Africa have involved 478 deaths in 1998, 1107 reported cases with 350 deaths from 2006 to 2007 and 1174 cases with 241 deaths in 2008. We review the history of RVF outbreaks in eastern Africa to identify the epidemiological factors that could have influenced its increasing severity in humans. Diverse ecological factors influence outbreak frequency, whereas virus evolution has a greater impact on its virulence in hosts. Several factors could have influenced the lack of information on RVF in humans during earlier outbreaks, but the explosive nature of human RVF epidemics in recent years mirrors the evolutionary trend of the virus. Comparisons between isolates from different outbreaks have revealed an accumulation of genetic mutations and genomic reassortments that have diversified RVF virus genomes over several decades. The threat to humans posed by the diversified RVF virus strains increases the potential public health and socioeconomic impacts of future outbreaks. Understanding the shifting RVF epidemiology as determined by its evolution is key to developing new strategies for outbreak mitigation and prevention of future human RVF casualties.

  20. 32 CFR 842.50 - Claims not payable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION... naval forces, or the Coast Guard, during time of war. (n) Arises from activities of the Tennessee Valley... injury or death of a member of the Armed Forces of the United States, including the Coast Guard, incurred...

  1. Mapping wilderness character in Death Valley National Park

    Treesearch

    James Tricker; Peter Landres; Sandee Dingman; Charlie Callagan; John Stark; Leah Bonstead; Kelly Fuhrmann; Steve Carver

    2012-01-01

    The 1964 Wilderness Act (Public Law 88-577) established the National Wilderness Preservation System "for the protection of these areas, the preservation of their wilderness character" (Section 2a). In congressional testimony clarifying the intent of wilderness designation, Zahniser (1962) said, "The purpose of the Wilderness Act is to preserve the...

  2. DETAIL VIEW OF FILTER PRESS REMAINS, BOILER, SECONDARY ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF FILTER PRESS REMAINS, BOILER, SECONDARY ORE BIN, TRAM TRESTLE AND WATER TANK, LOOKING NORTHWEST. HIS VIEW IS TAKEN FROM THE THIRD LEVEL OF THE MILL, NEARBY THE BLACKSMITH'S FORGE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. Biosignature Preservation Vulnerability Associated with Stress Response Metabolic Redox Mode Switching in a Mars Analogue Coupled Microbial Mat Transiting Near-Space

    NASA Astrophysics Data System (ADS)

    Archer, R.; Ralat, A.

    2016-05-01

    Examination of a coupled microbial mat recovered from Death Valley failed to detect rosickyte, both before and after exposure to near-space conditions; associated redox proxies suggest diagenesis caused by rapid adaptive microbial stress response.

  4. OBLIQUE DETAIL VIEW OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE DETAIL VIEW OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. THE JAW CRUSHER FOUNDATION CAN BE CLEARLY SEEN AT CENTER LEFT WITH A CONVEYOR TO CARRY CRUSHED ORE UP TO THE SECONDARY ORE BIN,LEFT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  5. MarsFest 2014: Linking Extremes of Earth and Space (Reporter Package)

    NASA Image and Video Library

    2014-03-21

    The third annual MarsFest in Death Valley National Park will be held on March 28th, 29th and 30th, 2014! Here is a look back at the 2012 and 2013 events to give you an idea about the fascinating research being done in this field.

  6. Effectiveness of the Complete Health Improvement Program

    ERIC Educational Resources Information Center

    Hutchins, Mathew; Melancon, Jim; Sneed, Demarcus; Nunning, Jennifer

    2015-01-01

    Currently, heart disease and diabetes dominate society as the leading cause of death for Americans. In this study, we examined the effectiveness of a lifestyle enhancement program on factors related to the development of heart disease. The Wabash Valley Complete Health Improvement Program (CHIP) is a community-based lifestyle change program with…

  7. Sierra Nevada, California as seen from STS-59

    NASA Image and Video Library

    1994-04-14

    STS059-L09-162 (9-20 April 1994) --- Orient with the snow-covered mountains (Sierra Nevada of California) in the upper right corner. Then Owens Valley runs along the top of the photograph to Owens Lake playa at top center. The upper end of Death Valley extends from right to left in the foreground, with the drainage running down to a playa at Stovepipe Wells in the left foreground. Geologists are studying microwave signatures of the different playa surfaces, and the coatings on alluvial fans that extend from mountain masses, to try to sort out the history of different climates in this formerly wet but now hyperarid region.

  8. Fatality of a wild Bornean orangutan (Pongo pygmaeus morio): behavior and death of a wounded juvenile in Danum Valley, North Borneo.

    PubMed

    Kanamori, Tomoko; Kuze, Noko; Bernard, Henry; Malim, Titol Peter; Kohshima, Shiro

    2012-07-01

    Reports of wild great ape fatalities have been very limited, and only two have described wild orangutan deaths. We found a wounded juvenile female Bornean orangutan on 7 October 2006 in the Danum Valley, Sabah, Malaysia, and observed the individual's behavior for 7 days until her death on 13 October 2006. The 5-6-year-old orangutan, which we had observed since 2004, was wounded in the left brachium, back, and right hand. The individual's behavior changed after injury; the mean nest-nest active time became significantly shorter than before injury (from 12 h 3 min to 9 h 33 min), the mean waking time became significantly later (0552-0629 hours) and the mean bedtime became significantly earlier (from 1747 to 1603 hours). In the activity budget, resting increased significantly from 28.0 to 53.3%. Traveling and feeding decreased significantly from 23.5 to 12.7% and from 45.6 to 32.8%, respectively. The rate of brachiation during traveling and nest making decreased, whereas ground activity increased from 0 to 9%. We observed one vomiting incident and four occurrences of watery diarrhea during the 7 days before the individual died. The results of an autopsy performed by a local veterinarian suggested that the cause of death was septicemia because of Pseudomonas aeruginosa infection of the severely contaminated wounds. The morphology and distribution of the wounds suggested they had been incurred during an attack by a large animal with fangs and/or claws. This juvenile female became independent of its mother at ~4-5 years of age, slightly earlier than average. This individual might have been vulnerable to predatory attack because of her small body size (~5 kg at death) and lack of the mother's protection.

  9. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which extends between OIS-5 and post OIS-2 based on based on proxy correlation with the marine oxygen isotope record.

  10. Out of the Valley of the Shadow of Death via Cader Idris: A Study of Disease and Drains, Health, and Hygiene in Victorian Public and Preparatory Schools

    ERIC Educational Resources Information Center

    Leinster-Mackay, D. P.

    1976-01-01

    Examines the circumstances that led to the flight of a school from Uppingham to North Wales, and goes on to consider the many facets of health and hygiene in Victorian public and preparatory schools. (Author/IRT)

  11. 38. DETAIL OF RUINS OF CYANIDE MIXING AND EXTRACTION SHED, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. DETAIL OF RUINS OF CYANIDE MIXING AND EXTRACTION SHED, LOOKING SOUTHEAST. CYANIDE SOLUTION WAS PREPARED HERE AND PUMPED UP INTO THE PROCESSING TANKS, AND THE PREGNANT SOLUTION WAS ALSO EXTRACTED HERE AFTER THE LEACHING PROCESS WAS COMPLETE - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  12. Hands-On Science Mysteries for Grades 3-6: Standards-Based Inquiry Investigations

    ERIC Educational Resources Information Center

    Taris, James Robert; Taris, Louis James

    2006-01-01

    In "Hands-On Science Mysteries for Grades 3-6," the authors connect science to real-world situations by investigating actual mysteries and phenomena, such as the strange heads on Easter Island, the ghost ship "Mary Celeste," and the "Dancing Stones" of Death Valley. The labs are designed to encourage the development…

  13. Notes on Northern Paiute Ethnography: Kroeber and Marsden Records.

    ERIC Educational Resources Information Center

    Heizer, Robert F., Ed.; And Others

    While practicing medicine in the Harney Valley of southeastern Oregon, Dr. W. L. Marsden became interested in the language of the Northern Paiute Indians. From 1891 until his death in 1913, he collected linguistic material. His principal informant and teacher was "Patotzi", known as Captain Louey or Captain Louey Crook. A member of the…

  14. OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF GOLD HILL MILL, ROAD, AND WHITE PINE TALC MINE LOOKING EAST. THE OPENING TO THE TALC MINE IS IN THE DARK AREA AT CENTER LEFT EDGE. WARM SPRINGS CAMP IS OUT OF FRAME TO THE RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  15. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prescribed to govern the surface use of claims therein: (1) The claim shall be occupied and used exclusively... of an authorized officer or employee of the National Park Service the surface of the claim may be... prescribed when permission is granted. (2) The owner of the claim and all persons holding under him shall...

  16. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... prescribed to govern the surface use of claims therein: (1) The claim shall be occupied and used exclusively... of an authorized officer or employee of the National Park Service the surface of the claim may be... prescribed when permission is granted. (2) The owner of the claim and all persons holding under him shall...

  17. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... prescribed to govern the surface use of claims therein: (1) The claim shall be occupied and used exclusively... of an authorized officer or employee of the National Park Service the surface of the claim may be... prescribed when permission is granted. (2) The owner of the claim and all persons holding under him shall...

  18. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... prescribed to govern the surface use of claims therein: (1) The claim shall be occupied and used exclusively... of an authorized officer or employee of the National Park Service the surface of the claim may be... prescribed when permission is granted. (2) The owner of the claim and all persons holding under him shall...

  19. Height changes along selected lines through the Death Valley region, California and Nevada, 1905-1984

    USGS Publications Warehouse

    Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.

    2005-01-01

    Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.

  20. Maternal near-miss: a multicenter surveillance in Kathmandu Valley.

    PubMed

    Rana, Ashma; Baral, Gehanath; Dangal, Ganesh

    2013-01-01

    Multicenter surveillance has been carried out on maternal near-miss in the hospitals with sentinel units. Near-miss is recognized as the predictor of level of care and maternal death. Reducing Maternal Mortality Ratio is one of the challenges to achieve Millennium Development Goal. The objective was to determine the frequency and the nature of near-miss events and to analyze the near-miss morbidities among pregnant women. A prospective surveillance was done for a year in 2012 at nine hospitals in Kathmandu valley. Cases eligible by definition were recorded as a census based on WHO near-miss guideline. Similar questionnaires and dummy tables were used to present the results by non-inferential statistics. Out of 157 cases identified with near-miss rate of 3.8 per 1000 live births, severe complications were postpartum hemorrhage 62 (40%) and preeclampsia-eclampsia 25 (17%). Blood transfusion 102 (65%), ICU admission 85 (54%) and surgery 53 (32%) were common critical interventions. Oxytocin was main uterotonic used both prophylactically and therapeutically at health facilities. Total of 30 (19%) cases arrived at health facility after delivery or abortion. MgSO4 was used in all cases of eclampsia. All laparotomies were performed within three hours of arrival. Near-miss to maternal death ratio was 6:1 and MMR was 62. Study result yielded similar pattern amongst developing countries and same near-miss conditions as the causes of maternal death reported by national statistics. Process indicators qualified the recommended standard of care. The near-miss event could be used as a surrogate marker of maternal death and a window for system level intervention.

  1. Evaluating Micrometeorological Estimates of Groundwater Discharge from Great Basin Desert Playas.

    PubMed

    Jackson, Tracie R; Halford, Keith J; Gardner, Philip M

    2018-03-06

    Groundwater availability studies in the arid southwestern United States traditionally have assumed that groundwater discharge by evapotranspiration (ET g ) from desert playas is a significant component of the groundwater budget. However, desert playa ET g rates are poorly constrained by Bowen ratio energy budget (BREB) and eddy-covariance (EC) micrometeorological measurement approaches. Best attempts by previous studies to constrain ET g from desert playas have resulted in ET g rates that are within the measurement error of micrometeorological approaches. This study uses numerical models to further constrain desert playa ET g rates that are within the measurement error of BREB and EC approaches, and to evaluate the effect of hydraulic properties and salinity-based groundwater density contrasts on desert playa ET g rates. Numerical models simulated ET g rates from desert playas in Death Valley, California and Dixie Valley, Nevada. Results indicate that actual ET g rates from desert playas are significantly below the uncertainty thresholds of BREB- and EC-based micrometeorological measurements. Discharge from desert playas likely contributes less than 2% of total groundwater discharge from Dixie and Death Valleys, which suggests discharge from desert playas also is negligible in other basins. Simulation results also show that ET g from desert playas primarily is limited by differences in hydraulic properties between alluvial fan and playa sediments and, to a lesser extent, by salinity-based groundwater density contrasts. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  2. Has Rift Valley fever virus evolved with increasing severity in human populations in East Africa?

    PubMed Central

    Baba, Marycelin; Masiga, Daniel K; Sang, Rosemary; Villinger, Jandouwe

    2016-01-01

    Rift Valley fever (RVF) outbreaks have occurred across eastern Africa from 1912 to 2010 approximately every 4–15 years, most of which have not been accompanied by significant epidemics in human populations. However, human epidemics during RVF outbreaks in eastern Africa have involved 478 deaths in 1998, 1107 reported cases with 350 deaths from 2006 to 2007 and 1174 cases with 241 deaths in 2008. We review the history of RVF outbreaks in eastern Africa to identify the epidemiological factors that could have influenced its increasing severity in humans. Diverse ecological factors influence outbreak frequency, whereas virus evolution has a greater impact on its virulence in hosts. Several factors could have influenced the lack of information on RVF in humans during earlier outbreaks, but the explosive nature of human RVF epidemics in recent years mirrors the evolutionary trend of the virus. Comparisons between isolates from different outbreaks have revealed an accumulation of genetic mutations and genomic reassortments that have diversified RVF virus genomes over several decades. The threat to humans posed by the diversified RVF virus strains increases the potential public health and socioeconomic impacts of future outbreaks. Understanding the shifting RVF epidemiology as determined by its evolution is key to developing new strategies for outbreak mitigation and prevention of future human RVF casualties. PMID:27329846

  3. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  4. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  5. Specialization of Bacillus in the Geochemically Challenged Environment of Death Valley

    NASA Astrophysics Data System (ADS)

    Kopac, S.

    2014-04-01

    Death Valley is the hottest, driest place in North America, a desert with soils containing toxic elements such as boron and lead. While most organisms are unable to survive under these conditions, a diverse community of bacteria survives here. What has enabled bacteria to adapt and thrive in a plethora of extreme and stressful environments where other organisms are unable to grow? The unique environmental adaptations that distinguish ecologically distinct bacterial groups (ecotypes) remain a mystery, in contrast to many animal species (perhaps most notably Darwin's ecologically distinct finch species). We resolve the ecological factors associated with recently diverged ecotypes of the soil bacteria Bacillus subtilis and Bacillus licheniformis, isolated from the dry, geochemically challenging soils of Death Valley, CA. To investigate speciation associated with challenging environmental parameters, we sampled soil transects along a 400m stretch that parallels a decrease in salinity adjacent to a salt flat; transects also encompass gradients in soil B, Cu, Fe, NO3, and P, all of which were quantified in our soil samples. We demarcated strains using Ecotype Simulation, a sequence-based algorithm. Each ecotype's habitat associations were determined with respect to salinity, B, Cu, Fe, NO3, and P. In addition, our sample strains were tested for tolerance of copper, boron and salinity (all known to inhibit growth at high concentrations) by comparing their growth over a 20 hour period. Ecotypes differed in their habitat associations with salinity, boron, copper, iron, and other ecological factors; these environmental dimensions are likely causing speciation of B. subtilis-licheniformis ecotypes at our sample site. Strains also differed in tolerance of boron and copper, providing evidence that our sequence-based demarcations reflect real differences in metabolism. By better understanding the relationship between bacterial speciation and the environment, we can begin to predict the habitability of unexplored extreme and extra-Earth environments.

  6. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4) gridded surfaces from a previous three-dimensional geologic model. In addition, digital elevation model data were used in conjunction with these data to define ground-surface altitudes. These data, properly oriented in three dimensions by using geographic information systems, were combined and gridded to produce the upper surfaces of the hydrogeologic units used in the flow model. The final geometry of the framework model is constructed as a volumetric model by incorporating the intersections of these gridded surfaces and by applying fault truncation rules to structural features from the geologic map and cross sections. The cells defining the geometry of the hydrogeologic framework model can be assigned several attributes such as lithology, hydrogeologic unit, thickness, and top and bottom altitudes.

  7. Cenozoic tectonic reorganizations of the Death Valley region, southeast California and southwest Nevada

    USGS Publications Warehouse

    Fridrich, Christopher J.; Thompson, Ren A.

    2011-01-01

    The Death Valley region, of southeast California and southwest Nevada, is distinct relative to adjacent regions in its structural style and resulting topography, as well as in the timing of basin-range extension. Cenozoic basin-fill strata, ranging in age from greater than or equal to 40 to approximately 2 million years are common within mountain-range uplifts in this region. The tectonic fragmentation and local uplift of these abandoned basin-fills indicate a multistage history of basin-range tectonism. Additionally, the oldest of these strata record an earlier, pre-basin-range interval of weak extension that formed broad shallow basins that trapped sediments, without forming basin-range topography. The Cenozoic basin-fill strata record distinct stratigraphic breaks that regionally cluster into tight age ranges, constrained by well-dated interbedded volcanic units. Many of these stratigraphic breaks are long recognized formation boundaries. Most are angular unconformities that coincide with abrupt changes in depositional environment. Deposits that bound these unconformities indicate they are weakly diachronous; they span about 1 to 2 million years and generally decrease in age to the west within individual basins and regionally, across basin boundaries. Across these unconformities, major changes are found in the distribution and provenance of basin-fill strata, and in patterns of internal facies. These features indicate rapid, regionally coordinated changes in strain patterns defined by major active basin-bounding faults, coincident with step-wise migrations of the belt of active basin-range tectonism. The regionally correlative unconformities thus record short intervals of radical tectonic change, here termed "tectonic reorganizations." The intervening, longer (about 3- to 5-million-year) interval of gradual, monotonic evolution in the locus and style of tectonism are called "tectonic stages." The belt of active tectonism in the Death Valley region has abruptly stepped westward during three successive tectonic reorganizations that intervened between four stages of basin-range tectonism, the youngest of which is ongoing. These three tectonic reorganizations also intervened between four stages of volcanic activity, each of which has been distinct in the compositions of magmas erupted, in eruption rates, and in the locus of volcanic activity—which has stepped progressively westward, in close coordination with the step-wise migrations in the locus of basin-range extension. The timing of the Cenozoic tectonic reorganizations in the Death Valley region correlates closely with the documented timing of episodic reorganizations of the boundary between the Pacific and North American plates, to the west and southwest. This supports models that explain the widely distributed transtensional tectonism in southwestern North America since approximately 40 million years ago as resulting from traction imposed by the adjacent, divergent Pacific plate.

  8. The mighty oak faces challenges in the Pacific West

    Treesearch

    Gail Wells

    2010-01-01

    In popular imagination, the oak tree stands for strength, endurance, and longevity. But in the coastal lowlands and central valleys of British Columbia, Washington, Oregon, and California, oaks face a battery of natural and human-induced threats. Sudden oak death, caused by a virulent pathogen identified in 2000, has killed millions of tanoaks, California black oaks,...

  9. Effect of faulting on ground-water movement in the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Faunt, Claudia C.

    1997-01-01

    The current crustal stress field was combined with fault orientations to predict potential effects of faults on the regional groundwater flow regime. Numerous examples of faultcontrolled ground-water flow exist within the study area. Hydrologic data provided an independent method for checking some of the assumptions concerning preferential flow paths.

  10. 14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, LOOKING WEST. DETAIL OF SUPPORTING TIMBERS. THE LOCATION OF THIS ORE BIN IN RELATION TO THE MILL CAN BE SEEN IN MANY OF THE MILL OVERVIEWS. (CA-290-4 THROUGH CA-290-8). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  11. Researching Indigenous Indians in Southern California: Commentary, Bibliography, and Online Resources

    ERIC Educational Resources Information Center

    Sutton, Imre

    2006-01-01

    This article seeks to present a continuing bibliography of research on Southern California Indians from the past 20 years, and sometimes beyond. The coverage reaches outside the variably defined bounds of Southern California so that it includes peripheral groups such as the Timbisha Shoshone of Death Valley and one or more groups in the Owens…

  12. Restoring the American chestnut tree

    Treesearch

    Bryan Burhans; Fredrick V. Hebard

    2012-01-01

    The American chestnut (Castanea dentata) was a dominate hardwood tree in the eastern United States. Its historic range extended from Maine south to the northern parts of Georgia, Alabama, Mississippi, and west to the Ohio River Valley. In 1904, an exotic Asian fungus responsible for the death of American chestnut trees was first identified at the Bronx Zoo (New York...

  13. 19. DETAIL OF STAMP BATTERY AUTOMATIC FEEDER, LOOKING EAST. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF STAMP BATTERY AUTOMATIC FEEDER, LOOKING EAST. THIS IS THE MIDDLE OF THREE FEEDERS, ONE FOR EACH STAMP BATTERY. THE CHUTE (UPPER RIGHT) INTRODUCED THE CRUSHED ORE FROM THE ORE BIN. FLOW WAS CONTROLLED BY A SLIDING DOOR ON THE UPPER LEVEL. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  14. Hydrologic and geologic characteristics of the Yucca Mountain site relevant to the performance of a potential repository: Day 1, Las Vegas, Nevada to Pahrump, Nevada: Stop 6A. Keane Wonder Spring and regional groundwater flow in the Death Valley region

    USGS Publications Warehouse

    Steinkampf, W.C.

    2000-01-01

    Yucca Mountain, located ~100 mi northwest of Las Vegas, Nevada, has been designated by Congress as a site to be characterized for a potential mined geologic repository for high-level radioactive waste. This field trip will examine the regional geologic and hydrologic setting for Yucca Mountain, as well as specific results of the site characterization program, The first day focuses on the regional seeing with emphasis on current and paleo hydrology, which are both of critical concern for predicting future performance of a potential repository. Morning stops will be in southern Nevada and afternoon stops will be in Death Valley. The second day will be spent at Yucca Mountain. The filed trip will visit the underground testing sites in the "Exploratory Studies Facility" and the "Busted Butte Unsaturated Zone Transport Field Test" plus several surface-based testing sites. Much of the work at the site has concentrated on studies of the unsaturated zone, and element of the hydrologic system that historically has received little attention. Discussions during the second day will comprise selected topics of Yucca Mountain geology, mic hazard in the Yucca Mountain area. Evening discussions will address modeling of regional groundwater flow, the geology and hydrology of Yucca Mountain to the performance of a potential repository. Day 3 will examine the geologic framework and hydrology of the Pahute Mesa-Oasis Valley Groundwater Basin and then will continue to Reno via Hawthorne, Nevada and the Walker Lake area.

  15. Aeromagnetic Survey of the Amargosa Desert, Nevada and California: A Tool for Understanding Near-Surface Geology and Hydrology

    USGS Publications Warehouse

    Blakely, Richard J.; Langenheim, V.E.; Ponce, David A.; Dixon, Gary L.

    2000-01-01

    A high-resolution aeromagnetic survey of the Amargosa Desert and surrounding areas provides insights into the buried geology of this structurally complex region. The survey covers an area of approximately 7,700 km2 (2,970 mi2), extending from Beatty, Nevada, to south of Shoshone, California, and includes parts of the Nevada Test Site and Death Valley National Park. Aeromagnetic flight lines were oriented east-west, spaced 400 m (0.25 mi) apart, and flown at an altitude of 150 m (500 ft) above terrain, or as low as permitted by safety considerations. Characteristic magnetic anomalies occur over volcanic terranes, such as Yucca Mountain and the Greenwater Range, and over Proterozoic basement rocks, such as Bare Mountain and the Black Mountains. Linear magnetic anomalies caused by offsets of volcanic rocks permit detailed mapping of shallow faults in volcanic terranes. Of particular interest are subtle anomalies that overlie alluvial deposits at Devils Hole and Pahrump Valley. Alignments of springs along magnetic anomalies at these locales suggest that these anomalies are caused by faults that cut the alluvium, displace magnetic rocks at depth, and eventually influence ground-water flow. Linear magnetic anomalies over the Funeral Mountains appear to coincide with a prominent set of north-northeast-striking faults that cut the Precambrian Stirling Quartzite, rocks that are typically nonmagnetic. The position and orientation of these anomalies with respect to springs north of Furnace Creek suggest that the faults may act as conduits for the flow of water from the north into Death Valley, but the mineralogical cause of the anomalies is unknown.

  16. Rift Valley fever: the Nigerian story.

    PubMed

    Adeyeye, Adewale A; Ekong, Pius S; Pilau, Nicholas N

    2011-01-01

    Rift Valley fever (RVF) is an arthropod-borne zoonotic disease of livestock. It is characterised by fever, salivation, abdominal pain, diarrhoea, mucopurulent to bloody nasal discharge, abortion, rapid decrease in milk production and death in animals. Infected humans experience an influenza-like illness that is characterised by fever, malaise, headaches, nausea and epigastric pain followed by recovery, although mortality can occur. RVF was thought to be a disease of sub-Saharan Africa but with the outbreaks in Egypt and the Arabian Peninsula, it may be extending its range further afield. Virological and serological evidence indicates that the virus exists in Nigeria and, with the warning signal sent by international organisations to countries in Africa about an impending outbreak, co-ordinated research between veterinarians and physicians in Nigeria is advocated.

  17. Rift Valley fever outbreak--Kenya, November 2006-January 2007.

    PubMed

    2007-02-02

    In mid-December 2006, several unexplained fatalities associated with fever and generalized bleeding were reported to the Kenya Ministry of Health (KMOH) from Garissa District in North Eastern Province (NEP). By December 20, a total of 11 deaths had been reported. Of serum samples collected from the first 19 patients, Rift Valley fever (RVF) virus RNA or immunoglobulin M (IgM) antibodies against RVF virus were found in samples from 10 patients; all serum specimens were negative for yellow fever, Ebola, Crimean-Congo hemorrhagic fever, and dengue viruses. The outbreak was confirmed by isolation of RVF virus from six of the specimens. Humans can be infected with RVF virus from bites of mosquitoes or other arthropod vectors that have fed on animals infected with RVF virus, or through contact with viremic animals, particularly livestock. Reports of livestock deaths and unexplained animal abortions in NEP provided further evidence of an RVF outbreak. On December 20, an investigation was launched by KMOH, the Kenya Field Epidemiology and Laboratory Training Program (FELTP), the Kenya Medical Research Institute (KEMRI), the Walter Reed Project of the U.S. Army Medical Research Unit, CDC-Kenya's Global Disease Detection Center, and other partners, including the World Health Organization (WHO) and Médecins Sans Frontières (MSF). This report describes the findings from that initial investigation and the control measures taken in response to the RVF outbreak, which spread to multiple additional provinces and districts, resulting in 404 cases with 118 deaths as of January 25, 2007.

  18. 26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF STRUCTURAL COLLAPSE OF TOP FLOOR OF MILL, ABOVE ORE BIN, LOOKING WEST FROM TOP OF STAIRWAY IN CA-290-25. THE PIPE AT CENTER WAS USED TO SPREAD CRUSHED ORE COMING FROM THE JAW CRUSHER EVENLY TO ALL AREA OF THE ORE BIN BELOW. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  19. 45. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. MORTARS, BOSSES, MOST SHOES, STEMS, TAPPETS, CAMS AND BULL WHEELS ARE CLEARLY VISIBLE ON THE UPPER MORTAR BLOCKS (BELOW CENTER) UNION IRON WORKS, SAN FRANCISCO C-L. SEE CA-290-18 FOR A SIMILAR B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. 13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. THIS ORE BIN WAS ADDED IN THE LATE 1930'S. IT IS TRAPAZOIDAL IN SHAPE, WIDER AT THE REAR THAN THE FRONT, AND DIVIDED INTO THREE BINS, EACH WITH ITS OWN CONTROL DOOR (SEE CA-290-15). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  1. DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN. CONVEYOR PLATFORM,TRAM TRESTLE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN. CONVEYOR PLATFORM,TRAM TRESTLE, AND LOADING PLATFORM. LOOKING SOUTHWEST. THE HOLE IN THE ORE BIN FLOOR CAN BE SEEN, AND BALL MILL FOUNDATION AT LOWER LEFT CORNER. SEE CA-291-47(CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  2. DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM TRESTLE, AND LOADING PLATFORM, LOOKING SOUTHWEST. THE HOLE IN THE ORE BIN FLOOR CAN BE SEEN, AND BALL MILL FOUNDATION AT LOWER LEFT CORNER. SEE CA-291-13 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. Novel approaches to SOD management in California wildlands: a case study of "eradication" and collaboration in Redwood Valley

    Treesearch

    Y. Valachovic; L. Quinn-Davidson; E. Goldsworthy; P. Cannon

    2013-01-01

    In California, sudden oak death (SOD) treatment efforts have been localized, often targeting specific trees or properties. The widespread nature of SOD establishment and spread in coastal mountains of California has mostly precluded use of broader eradication strategies, which are more applicable in isolated infestations like those in Oregon. However, the 2010...

  4. Extraction of quantitative surface characteristics from AIRSAR data for Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kierein-Young, K. S.; Kruse, F. A.

    1992-01-01

    Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley, California, USA, in Sep. 1989. AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at three wavelengths, different scales of surface roughness are measured. Also, dielectric constants can be calculated from the data. The AIRSAR data were calibrated using in-scene trihedral corner reflectors to remove cross-talk; and to calibrate the phase, amplitude, and co-channel gain imbalance. The calibration allows for the extraction of accurate values of rms surface roughness, dielectric constants, sigma(sub 0) backscatter, and polarization information. The radar data sets allow quantitative characterization of small scale surface structure of geologic units, providing information about the physical and chemical processes that control the surface morphology. Combining the quantitative information extracted from the radar data with other remotely sensed data sets allows discrimination, identification and mapping of geologic units that may be difficult to discern using conventional techniques.

  5. Preliminary digital geologic maps of the Mariposa, Kingman, Trona, and Death Valley Sheets, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D`Agnese, F.A.; Faunt, C.C.; Turner, A.K.

    1995-10-01

    Parts of four 1:250,000-scale geologic maps by the California Department of Natural Resources, Division of Mines and Geology have been digitized for use in hydrogeologic characterization. These maps include the area of California between lat. 35{degree}N; Long. 115{degree}W and lat. 38{degree}N, long. 118{degree}W of the Kingman Sheet (Jennings, 1961), Trona Sheet (Jennings and others, 1962), Mariposa Sheet (Strand, 1967), and Death Valley Sheet (Streitz and Stinson, 1974). These digital maps are being released by the US Geological Survey in the ARC/INFO Version 6.1 Export format. The digitized data include geologic unit boundaries, fault traces, and identity of geologic units. Themore » procedure outlined in US Geological Survey Circular 1054 (Soller and others, 1990) was sued during the map construction. The procedure involves transferring hard-copy data into digital format by scanning manuscript maps, manipulating the digital map data, and outputting the data. Most of the work was done using Environmental Systems Research Institute`s ARC/INFO software. The digital maps are available in ARC/INFO Rev. 6.1 Export format, from the USGS, Yucca Mountain Project, in Denver, Colorado.« less

  6. An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka

    USGS Publications Warehouse

    Forester, R.M.; Lowenstein, T.K.; Spencer, R.J.

    2005-01-01

    Death Valley, a complex tectonic and hydrologic basin, was cored from its lowest surface elevation to a depth of 186 m. The sediments range from bedded primary halite to black muds. Continental ostracodes found in the black muds indicate that those sediments were deposited in a variety of hydrologic settings ranging from deep, relatively fresh water to shallow saline lakes to spring discharge supported wetlands. The alkaline-enriched, calcium-depleted paleolake waters indicate extrabasinal streamflow and basin-margin spring discharge. The alkaline-depleted, calcium-enriched paleowetland waters indicate intrabasinal spring discharge. During Marine Isotope Stage 6 (MIS 6, ca. 180-140 ka) the hydrologic settings were highly variable, implying that complex relations existed between climate and basin hydrology. Termination II (MIS 6 to MIS 5E) was a complex multicyclic sequence of paleoenvironments, implying that climates oscillated between high and low effective moisture. MIS 4 (ca. 73-61 ka) was a spring discharge supported wetland complex. During MIS 2 (ca. 20-12 ka) the hydrologic settings were variable, although they are not fully understood because some black muds deposited during that time were lost during coring. ?? 2005 Geological Society of America.

  7. Analytical results, geology, and sample locality map of mercury-sulfur-gypsum mineralization at Crater, Inyo County, California

    USGS Publications Warehouse

    Erickson, M.S.; Marsh, S.P.; Roemer, T.A.

    1984-01-01

    The Crater mercury-su l fur-gypsum ~ineral ized area is located in east-central California along the crest of the Last Chance Range, west of the north end of Death Valley (fig. 1). The area is in the northwest quarter of the Last Chance Range 15-minute quadrangle and occupies the area between 117 39 and 117 45 longitude and 37 10 and 37 15 latitudP.. The area studied lies between 5000 ( 1525 m) and 6000 ( 1830 m) feet above sea level. Relief isgenerally moderate but can be extreme in some places, as at Hanging Rock Canyon (plate 1). The climate is arid, and there are no active streams in the area. The range fronts east and west of the area are precipitous and incised by many steep canyons, whereas the range crest has relatively low relief. The old abandoned town and mine site of Crater 1 ie in this area of low relief. Access to the Crater area is by paved and dirt roads from Big Pine to the west or from the north end of the Death Valley National Monument to the southeast.

  8. Knowledge, transparency, and refutability in groundwater models, an example from the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Hill, Mary C.; Faunt, Claudia C.; Belcher, Wayne; Sweetkind, Donald; Tiedeman, Claire; Kavetski, Dmitri

    2013-01-01

    This work demonstrates how available knowledge can be used to build more transparent and refutable computer models of groundwater systems. The Death Valley regional groundwater flow system, which surrounds a proposed site for a high level nuclear waste repository of the United States of America, and the Nevada National Security Site (NNSS), where nuclear weapons were tested, is used to explore model adequacy, identify parameters important to (and informed by) observations, and identify existing old and potential new observations important to predictions. Model development is pursued using a set of fundamental questions addressed with carefully designed metrics. Critical methods include using a hydrogeologic model, managing model nonlinearity by designing models that are robust while maintaining realism, using error-based weighting to combine disparate types of data, and identifying important and unimportant parameters and observations and optimizing parameter values with computationally frugal schemes. The frugal schemes employed in this study require relatively few (10–1000 s), parallelizable model runs. This is beneficial because models able to approximate the complex site geology defensibly tend to have high computational cost. The issue of model defensibility is particularly important given the contentious political issues involved.

  9. Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts.

    PubMed

    Neveu, Julie; Regeard, Christophe; DuBow, Michael S

    2011-08-01

    The screening of environmental DNA metagenome libraries for functional activities can provide an important source of new molecules and enzymes. In this study, we identified 17 potential protease-producing clones from two metagenomic libraries derived from samples of surface sand from the Gobi and Death Valley deserts. Two of the proteases, DV1 and M30, were purified and biochemically examined. These two proteases displayed a molecular mass of 41.5 kDa and 45.7 kDa, respectively, on SDS polyacrylamide gels. Alignments with known protease sequences showed less than 55% amino acid sequence identity. These two serine proteases appear to belong to the subtilisin (S8A) family and displayed several unique biochemical properties. Protease DV1 had an optimum pH of 8 and an optimal activity at 55°C, while protease M30 had an optimum pH >11 and optimal activity at 40°C. The properties of these enzymes make them potentially useful for biotechnological applications and again demonstrate that metagenomic approaches can be useful, especially when coupled with the study of novel environments such as deserts.

  10. Strain accumulation across the Eastern California Shear Zone at latitude 36°30'N

    USGS Publications Warehouse

    Gan, Weijun; Svarc, Jerry L.; Savage, J.C.; Prescott, W.H.

    2000-01-01

    The motion of a linear array of monuments extending across the Eastern California Shear Zone (ECSZ) has been measured from 1994 to 1999 with the Global Positioning System. The linear array is oriented N54°E, perpendicular to the tangent to the local small circle drawn about the Pacific-North America pole of rotation, and the observed motion across the ECSZ is approximated by differential rotation about that pole. The observations suggest uniform deformation within the ECSZ (strike N23°W) (26 nstrain yr−1 extension normal to the zone and 39 nstrain yr−1 simple right-lateral shear across it) with no significant deformation in the two blocks (the Sierra Nevada mountains and southern Nevada) on either side. The deformation may be imposed by right-lateral slip at depth on the individual major fault systems within the zone if the slip rates are: Death Valley-Furnace Creek fault 3.2±0.9 mm yr−1, Hunter Mountain-Panamint Valley fault 3.3±1.6 mm yr−1, and Owens Valley fault 6.9±1.6 mm yr−1. However, this estimate of the slip rate on the Owens Valley fault is 3 times greater than the geologic estimate.

  11. The Basal Ediacaran Noonday Formation, Eastern California, and implications for Laurentian equivalents

    NASA Astrophysics Data System (ADS)

    Petterson, R.; Prave, A. R.; Wernicke, B. P.

    2009-12-01

    The Neoproterozoic-Cambrian succession in the Death Valley region of SW Laurentia is among the best exposed and easily accessible in the world, and comprises one of the most complete sections in Laurentia. The largest single exposure of these strata occurs in the Panamint Range on the west flank of Death Valley, but this area has received little attention in comparison to exposures to the east of Death Valley, primarily because of structural complexity and metamorphism. The eastern strata, though unmetamorphosed, occur in isolated fault-bounded exposures and are relatively incomplete compared to the Panamint stratigraphy. This, combined with a lack of fossil or radiometric age control, has hindered confident regional correlation, as well as placement in the context of hallmark Neoproterozoic events observed in other successions around the globe. New mapping, measured sections and high-resolution C-isotope data reported here from the Noonday Formation in the Panamints delineate its regional stratigraphic architecture and establish its age through correlation with sections with radiometric age control. Carbon isotopic trends in the Panamints match to within 1-2‰ reproducibility previous results obtained for correlative strata in the eastern sections, indicating that metamorphism did not significantly alter C isotopic ratios. The combined litho- and chemostratigraphic data form the basis for a revised stratigraphic framework for the Noonday Formation. A composite section shows that, where most complete, the Noonday consists of three members, from the base upward, the Sentinel Peak, Radcliff, and Mahogany Flats members. New mapping and chemostratigraphic data permit robust regional correlation of a thin dolostone marker horizon at the base of the Noonday in the Panamints as little as 2 m thick (Sentinel Peak Member) with a tube-bearing microbial dolostone in the eastern Death Valley region more than 200 m thick. The data also reveal that the Radcliff Member is bounded by disconformable surfaces and their correlative conformities. These surfaces are recognizable throughout the region and are used to construct a regionally unified stratigraphic nomenclature. We present a chemostratigraphic profile spanning most of Noonday time. The profile is a remarkable match for the Maiberg cap carbonate sequence in Namibia, including the decline to a minimum at -5‰, a recovery to near 0‰, and then subsequent decline to 2‰. Correlation of these curves (1) firmly places the Noonday at the base of the Ediacaran Period, (2) indicates deposition of ~200 m of Sentinel Peak and Radcliff strata occurred between 635 and 632 Ma, (3) supports the hypothesis that the Wildrose Diamictite of the Kingston Peak Formation, which lies in sharp contact below the Sentinel Peak Member, represents at least part of the Marinoan glacial interval; (4) helps identify correlative cap carbonate sequences in key Laurentian sections, which include the Ravensthroat Formation in the MacKenzie Mountains, dolostones capping the upper diamictite of the Pocatello Formation in eastern Idaho, and the middle part of the Mina el Mezquite Formation in Sonora.

  12. Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the southwestern United States

    USGS Publications Warehouse

    Jackson, W. Andrew; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Sturchio, Neil C.

    2010-01-01

    Perchlorate (ClO4−) has been detected widely in groundwater and soils of the southwestern United States. Much of this ClO4− appears to be natural, and it may have accumulated largely through wet and dry atmospheric deposition. This study evaluates the isotopic composition of natural ClO4− indigenous to the southwestern U.S. Stable isotope ratios were measured in ClO4− (δ18O, Δ17O, δ37Cl) and associated NO3− (δ18O, Δ17O, δ15N) in groundwater from the southern High Plains (SHP) of Texas and New Mexico and the Middle Rio Grande Basin (MRGB) in New Mexico, from unsaturated subsoil in the SHP, and from NO3−-rich surface caliche deposits near Death Valley, California. The data indicate natural ClO4− in the southwestern U.S. has a wide range of isotopic compositions that are distinct from those reported previously for natural ClO4− from the Atacama Desert of Chile as well as all known synthetic ClO4−. ClO4− in Death Valley caliche has a range of high Δ17O values (+8.6 to +18.4 ‰), overlapping and extending the Atacama range, indicating at least partial atmospheric formation via reaction with ozone (O3). However, the Death Valley δ37Cl values (−3.1 to −0.8 ‰) and δ18O values (+2.9 to +26.1‰) are higher than those of Atacama ClO4−. In contrast, ClO4− from western Texas and New Mexico has much lower Δ17O (+0.3 to +1.3‰), with relatively high δ37Cl (+3.4 to +5.1 ‰) and δ18O (+0.5 to +4.8 ‰), indicating either that this material was not primarily generated with O3 as a reactant or that the ClO4− was affected by postdepositional O isotope exchange. High Δ17O values in ClO4− (Atacama and Death Valley) are associated with high Δ17O values in NO3−, indicating that both compounds preserve characteristics of O3-related atmospheric production in hyper-arid settings, whereas both compounds have low Δ17O values in less arid settings. Although Δ17O variations in terrestrial NO3− can be attributed to mixing of atmospheric (high Δ17O) and biogenic (low Δ17O) NO3−, variations in Δ17O of terrestrial ClO4− are not readily explained in the same way. This study provides important new constraints for identifying natural sources of ClO4− in different environments by multicomponent isotopic characteristics, while presenting the possibilities of divergent ClO4− formation mechanisms and(or) ClO4− isotopic exchange in biologically active environments.

  13. Rift Valley fever vaccines: current and future needs.

    PubMed

    Dungu, Baptiste; Lubisi, Baratang A; Ikegami, Tetsuro

    2018-04-01

    Rift Valley fever (RVF) is a zoonotic mosquito-borne bunyaviral disease associated with high abortion rates, neonatal deaths, and fetal malformations in ruminants, and mild to severe disease in humans. Outbreaks of RVF cause huge economic losses and public health impacts in endemic countries in Africa and the Arabian Peninsula. A proper vaccination strategy is important for preventing or minimizing outbreaks. Vaccination against RVF is not practiced in many countries, however, due to absence or irregular occurrences of outbreaks, despite serological evidence of RVF viral activity. Nonetheless, effective vaccination strategies, and functional national and international multi-disciplinary networks, remain crucial for ensuring availability of vaccines and supporting execution of vaccination in high risk areas for efficient response to RVF alerts and outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Outbreak of avian cholera on the wintering grounds of the Mississippi Valley Canada goose flock

    USGS Publications Warehouse

    Windingstad, R.M.; Duncan, R.M.; Thornburg, D.

    1983-01-01

    Avian cholera is reported for the first time in Canada geese, Branta canadensis, of the Mississippi Valley population. The disease was detected in weekly surveillance transects and was responsible for the loss of about 850 geese during the winter of 1978-1979 at localized areas in southern Illinois. Necropsies performed on 480 geese that died at Union County Conservation Area and on 133 birds at Horseshoe Lake Conservation Area during January and February 1979 revealed that the majority of losses (64%) were caused by avian cholera. Lead poisoning was responsible for the death of 14% of the geese analyzed and the remaining 22%, most of which were decomposed, were undiagnosed. Lethal lead levels and Pasteurella multocida occurred concomitantly in a few instances.

  15. Acquisition Modernization: Transitioning Technology Into Warfighter Capability

    DTIC Science & Technology

    2011-08-01

    to test and evaluate the technology and integrate the new capability into operational weapon systems (Figure 4). This funding model creates stove...misalignment between missions, TRLs, and the RDT&E funding model is a major 11 contributor to the valley of death. Technologies become obsolete on... funding model of the acquisition system. Create an individual budget account to fund the development of promising technologies. The Acquisition

  16. 27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DETAIL OF PROBABLY LOCATION OF PELTON WATER WHEEL ON EAST SIDE OF MILL, LOOKING SOUTH SOUTHWEST. THE END OF THE WATER PIPELINE ENCASED IN A SQUARE BLOCK OF CONCRETE IS AT CENTER. THIS IS THE END OF A 23-MILE PIPELINE THAT SUPPLIED WATER FROM TELESCOPE PEAK IN THE PANAMINT MOUNTAINS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  17. Bridging the Technology Valley of Death in Joint Medical Development

    DTIC Science & Technology

    2015-11-01

    Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production

  18. 16. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING SOUTHWEST. EACH BATTERY CONTAINS FIVE STAMPS. TWO OF THE THREE BATTERIES ARE SIDE BY SIDE IN FOREGROUND, WHILE THE THIRD BATTERY IS SEPARATE (LOWER RIGHT). STAIRWAY UP IS AT LEFT SIDE. SEE CA-290-43 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  19. 43. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING SOUTHWEST. EACH BATTERY CONTAINS FIVE STAMPS. TWO OF THE THREE BATTERIES ARE SIDE BY SIDE IN FOREGROUND, WHILE THE THIRD BATTERY IS SEPARATE (LOWER RIGHT). STAIRWAY UP IS AT LEFT SIDE. SEE CA-290-16 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. Keeping it wild: Mapping wilderness character in the United States

    Treesearch

    Steve Carver; James Tricker; Peter Landres

    2013-01-01

    A GIS-based approach is developed to identify the state of wilderness character in US wilderness areas using Death Valley National Park (DEVA) as a case study. A set of indicators and measures are identified by DEVA staff and used as the basis for developing a flexible and broadly applicable framework to map wilderness character using data inputs selected by park staff...

  1. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in the study area. Analysis of all available data in a seamless 3D framework should force more unique solutions to outstanding kinematic problems, provide a better understanding of the Cordilleran thrust belt, and constrain the mechanisms of strain partitioning between the upper and lower crust.

  2. Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Dickinson, K.A.

    1988-01-01

    Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.

  3. 500,000-year temperature record challenges ice age theory

    USGS Publications Warehouse

    Snow, K. Mitchell

    1994-01-01

    Just outside the searing heat of Death Valley lies Devils Hole (fig. 1), a fault-created cave that harbors two remnants of the Earth's great ice ages. The endangered desert pupfish (Cyprinodon diabolis) has long made its home in the cave. A 500,000-year record of the planet's climate that challenges a widely accepted theory explaining the ice ages also has been preserved in Devils Hole.

  4. An Historiographical Analysis of the Impact of the 1960s on Institutions of Higher Education in Metropolitan Boise, Idaho

    ERIC Educational Resources Information Center

    Andersen, R. Scott

    2010-01-01

    This dissertation traces the history of three of the colleges in Idaho's Treasure Valley during the 1960s: Boise State University (BSU), the College of Idaho (C of I), and Northwest Nazarene University (NNU). The time period examined in the study begins with the Soviet launch of Sputnik in late 1957 and ends with the deaths of students during…

  5. A Policy Framed Analysis of the Valley of Death in U.S. University Technology Transfer

    ERIC Educational Resources Information Center

    Ferguson, William Ker

    2014-01-01

    At least as far back as the enactment of the Bayh-Dole Act of 1980 there has been an ongoing desire on the part of politicians, policy-makers and the public in the U.S., to obtain greater economic returns on the federal investment in publicly funded university research. Today among policy-makers there is an apparent belief that a capital shortage…

  6. 18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL ELEVATION OF STAMP BATTERIES AND APRONS, LOOKING SOUTHEAST. MORTARS, BOSSES, MOST SHOES, STEMS, TAPPETS, CAMS AND BULL WHEELS ARE CLEARLY VISIBLE AND INTACT. NAMEPLATE CASTING IS CLEARLY VISIBLE ON THE UPPER MORTAR BLOCKS (BELOW CENTER) UNION IRON WORKS, SAN FRANCISCO C-L, SEE CA-290-45 (CT) FOR A SIMILAR COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  7. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  8. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  9. EAST ELEVATION OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. TRAM CARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST ELEVATION OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. TRAM CARS ENTERED AND EXITED FROM RIGHT,AND DUMPED INTO THE ORE BIN SEEN AT LOWER LEFT. BELOW THE ORE BIN IS A JAW CRUSHER FOUNDATION. THE WOODEN BOX AT CENTER IS FILLED WITH ROCKS, PROVIDING THE COUNTERWEIGHT TO THE TRAMWAY CABLE, WHICH KEEPS IT TAUGHT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  10. Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.

    PubMed

    Wierzchos, Jacek; Sancho, Leopoldo García; Ascaso, Carmen

    2005-04-01

    In some zones of Antarctica's cold and dry desert, the extinction of cryptoendolithic microorganisms leaves behind inorganic traces of microbial life. In this paper, we examine the transition from live microorganisms, through their decay, to microbial fossils using in situ microscopy (transmission electron microscopy, scanning electron microscopy in back-scattered electron mode) and microanalytical (energy dispersive X-ray spectroscopy) techniques. Our results demonstrate that, after their death, endolithic microorganisms inhabiting Commonwealth Glacier sandstone from the Antarctica McMurdo Dry Valleys become mineralized. In some cases, epicellular deposition of minerals and/or simply filling up of empty moulds by minerals leads to the formation of cell-shaped structures that may be considered biomarkers. The continuous deposition of allochthonous clay minerals and sulfate-rich salts fills the sandstone pores. This process can give rise to microbial fossils with distinguishable cell wall structures. Often, fossilized cell interiors were of a different chemical composition to the mineralized cell walls. We propose that the microbial fossil formation observed was induced by mineral precipitation resulting from inorganic processes occurring after the death of cryptoendolithic microorganisms. Nevertheless, it must have been the organic template that provoked the diffusion of mineral elements and gave rise to their characteristic distribution pattern inside the fossilized cells.

  11. Delineation and hydrologic effects of a gasoline leak at Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, A.; Packard, Elaine M.

    1982-01-01

    Ground water is the only local source of water available to the Stovepipe Wells Hotel facilities of the Death Valley National Monument, California. A leak in a service station storage tank caused the formation of a gasoline layer overlying the water table, creating the potential for contamination of the water supply. The maximum horizontal extent of the gasoline layer was mathematically estimated to be 1,300 feet downgradient from the leaky gasoline tank. Exploratory drilling detected the gasoline layer between 900 and 1,400 feet downgradient and between 50 and 150 feet upgradient from the source. Traces of the soluble components of gasoline were also found in the aquifer 150 feet upgradient, and 250 feet distant from the source perpendicular to the direction of ground-water movement. The gasoline spill is not likely to have an effect on the supply wells located 0.4 mile south of the leak source, which is nearly perpendicular to the direction of ground-water movement and the primary direction of gasoline movement in the area. No effect on phreatophytes 2 miles downgradient from the layer is likely, but the potential effects of gasoline vapors within the unsaturated zone on local xerophytes are not known. (USGS)

  12. Taking Research and Knowledge to the Common People

    NASA Astrophysics Data System (ADS)

    Hossain, F.

    2017-12-01

    Most sponsored research in this world is driven by the need to improve livelihood and the environment around us. This is particularly true for the case of earth and environmental issues involving the resources of water, food, energy and health. However, is such research guaranteed of bringing positive benefits for society as soon as it is documented in peer-reviewed forums or in media publications? More than 2 decades ago the United States National Research Council popularized the term "Valley of Death" to describe the region where research findings struggle to survive before reaching maturity for societal applications. Recent experience in the field of earth and environmental sciences shows that many of the potential beneficiaries (i.e., the common people), who are not as familiar with the motivation behind sponsored research in the field, may have a more skeptical view based on their current and archaic practices in their livelihood. This talk will shed light this "Valley of Death" for research and ways to accelerate the societal impact of research to the common people. Using examples drawing from technology, water, food and physical modeling of earth, this talk will also share lessons learned on ways to be effective agents of change for making a direct impact with scientific research.

  13. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    PubMed Central

    Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.

    2014-01-01

    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703

  14. Comparison of preliminary results from Airborne Aster Simulator (AAS) with TIMS data

    NASA Technical Reports Server (NTRS)

    Kannari, Yoshiaki; Mills, Franklin; Watanabe, Hiroshi; Ezaka, Teruya; Narita, Tatsuhiko; Chang, Sheng-Huei

    1992-01-01

    The Japanese Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), being developed for a NASA EOS-A satellite, will have 3 VNIR, 6 SWIR, and 5 TIR (8-12 micron) bands. An Airborne ASTER Simulator (AAS) was developed for Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research Group (GER) Corp. to research surface temperature and emission features in the MWIR/TIR, to simulate ASTER's TIR bands, and to study further possibility of MWIR/TIR bands. ASTER Simulator has 1 VNIR, 3 MWIR (3-5 microns), and 20 (currently 24) TIR bands. Data was collected over 3 sites - Cuprite, Nevada; Long Valley/Mono Lake, California; and Death Valley, California - with simultaneous ground truth measurements. Preliminary data collected by AAS for Cuprite, Nevada is presented and AAS data is compared with Thermal Infrared Multispectral Scanner (TIMS) data.

  15. Subsurface Constraints on Late Cenozoic Basin Geometry in Northern Fish Lake Valley and Displacement Transfer Along the Northern Fish Lake Valley Fault Zone, Western Nevada

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.

    2016-12-01

    The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.

  16. Investigations into the Fish Lake Valley Fault Zone (FLVFZ) and its interactions with normal faulting within Eureka and Deep Springs Valleys

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Rhodes, E.; Yin, A.

    2016-12-01

    In most textbooks, the San Andreas Fault is stated to be the plate boundary between the North American and the Pacific plates, as plate tectonics assumes that boundaries are essentially discrete. In the Western United States this is not the case, as up to 25% of relative plate motion is accommodated on other structures within the Walker Lane Shear Zone (WLSZ) in a diffuse 100 km margin (Faulds et al., 2005; Oldow et al., 2001). Fish Lake Valley Fault Zone (FLVFZ), situated at the northern border of Death Valley National Park, is the northern continuation of the Furnace Creek Fault Zone (FCFZ), and is an important transfer structure within the Walker Lane Shear Zone. Though the FLVFZ has a long term rate (since 10 Ma) of 5 mm/yr (Reheis and Sawyer, 1997), it has a highly variable slip rate. In the middle Pleistocene, the rate has a maximum of up to 11 mm/yr which would accommodate nearly the entirety of slip within the Walker Lane, and yet this rate decreases significantly ( 2.5 to 3 mm/yr) by the late Pleistocene due to unknown causes (Frankel et al. 2007). This variation in slip rate has been proposed by previous workers to be due to strain transience, an increase in the overall strain rate, or due to other unknown structures (Lee et al., 2009). Currently, we are investigating the cause of this variation, and the possibility of the transfer of slip to faults south of the FLVFZ on oblique normal faults within Eureka and Deep Springs Valleys. Preliminary data will be shown utilizing scarp transects, geomorphic scarp modeling, and Optically Stimulated Luminescence (OSL) dating techniques.

  17. A Platform Across the Valley of Death: Tech Transition Via Open Enterprise Information System Development

    DTIC Science & Technology

    2014-09-01

    using the COTS IT marketplace, and Defense enterprise PLA, to hold competition, perform AoA, do risk mitigating prototyping, pre- certifying useful...POR proceeds serially from “Research and Material Solution Analysis” through “Milestone A” (MS A) into “Technology Development” for risk reduction... risk reduction. Procurement funds are used generally to develop and manufacture delivered capability. Operations and Maintenance (O&M) funds are used

  18. SOUTH ELEVATION OF GOLD HILL MILL, LOOKING NORTH. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTH ELEVATION OF GOLD HILL MILL, LOOKING NORTH. THE PRIMARY ORE BIN IS A CENTER, WITH A JAW CRUSHER JUST TO THE RIGHT. A CONVEYOR (MISSING) WAS USED TO CARRY CRUSHED ORE UP AND INTO THE SECONDARY ORE BIN. THE STONE RAMP TO THE LEFT OF THE ORE BIN WAS USED TO DRIVE TRUCKS UP TO DUMPING LEVEL. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  19. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  20. 44. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. OBLIQUE DETAIL VIEW OF STAMP BATTERIES AND APRONS, LOOKING SOUTHWEST. THIS IS THE IDENTICAL PERSPECTIVE GIVEN I CA-290-43 (CT), BUT THIS IS A TIGHTER (CLOSER) SHOT. APRONS AND STAIRWAY ARE OMITTED. EACH BATTERY CONTAINS FIVE SAMPS. TWO OR THE THREE BATTERIES ARE SIDE BY SIDE IN FOREGROUND, WHILE THE THIRD BATTERY IS SEPARATE (LOWER RIGHT). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  1. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    PubMed

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  2. Modelling the effects of seasonality and socioeconomic impact on the transmission of Rift Valley fever virus

    USGS Publications Warehouse

    Xiao, Yanyu; Beier, John C.; Cantrell, Robert Stephen; Cosner, Chris; DeAngelis, Donald L.; Ruan, Shigui

    2015-01-01

    Rift Valley fever (RVF) is an important mosquito-borne viral zoonosis in Africa and the Middle East that causes human deaths and significant economic losses due to huge incidences of death and abortion among infected livestock. Outbreaks of RVF are sporadic and associated with both seasonal and socioeconomic effects. Here we propose an almost periodic three-patch model to investigate the transmission dynamics of RVF virus (RVFV) among ruminants with spatial movements. Our findings indicate that, in Northeastern Africa, human activities, including those associated with the Eid al Adha feast, along with a combination of climatic factors such as rainfall level and hydrological variations, contribute to the transmission and dispersal of the disease pathogen. Moreover, sporadic outbreaks may occur when the two events occur together: 1) abundant livestock are recruited into areas at risk from RVF due to the demand for the religious festival and 2) abundant numbers of mosquitoes emerge. These two factors have been shown to have impacts on the severity of RVF outbreaks. Our numerical results present the transmission dynamics of the disease pathogen over both short and long periods of time, particularly during the festival time. Further, we investigate the impact on patterns of disease outbreaks in each patch brought by festival- and seasonal-driven factors, such as the number of livestock imported daily, the animal transportation speed from patch to patch, and the death rate induced by ceremonial sacrifices. In addition, our simulations show that when the time for festival preparation starts earlier than usual, the risk of massive disease outbreaks rises, particularly in patch 3 (the place where the religious ceremony will be held).

  3. Evolution of Late Miocene to Contemporary Displacement Transfer Between the Northern Furnace Creek and Southern Fish Lake Valley Fault Zones and the Central Walker Lane, Western Great Basin, Nevada

    NASA Astrophysics Data System (ADS)

    Oldow, J. S.; Geissman, J. W.

    2013-12-01

    Late Miocene to contemporary displacement transfer from the north Furnace Creek (FCF) and southern Fish Lake Valley (FLVF) faults to structures in the central Walker Lane was and continues to be accommodated by a belt of WNW-striking left-oblique fault zones in the northern part of the southern Walker Lane. The WNW fault zones are 2-9 km wide belts of anastomosing fault strands that intersect the NNW-striking FCF and southern FLVF in northern Death Valley and southern Fish Lake Valley, respectively. The WNW fault zones extend east for over 60 km where they merge with a 5-10 km wide belt of N10W striking faults that marks the eastern boundary of the southern Walker Lane. Left-oblique displacement on WNW faults progressively decreases to the east, as motion is successively transferred northeast on NNE-striking faults. NNE faults localize and internally deform extensional basins that each record cumulative net vertical displacements of between 3.0 and 5.2 km. The transcurrent faults and associated basins decrease in age from south to north. In the south, the WNW Sylvania Mountain fault system initiated left-oblique motion after 7 Ma but does not have evidence of contemporary displacement. Farther north, the left-oblique motion on the Palmetto Mountain fault system initiated after 6.0 to 4.0 Ma and has well-developed scarps in Quaternary deposits. Cumulative left-lateral displacement for the Sylvania Mountain fault system is 10-15 km, and is 8-12 km for the Palmetto fault system. The NNE-striking faults that emanate from the left-oblique faults merge with NNW transcurrent faults farther north in the eastern part of the Mina deflection, which links the Owens Valley fault of eastern California to the central Walker Lane. Left-oblique displacement on the Sylvania Mountain and Palmetto Mountain fault zones deformed the Furnace Creek and Fish Lake Valley faults. Left-oblique motion on Sylvania Mountain fault deflected the FCF into the 15 km wide Cucomungo Canyon restraining bend, segmented the >3.0 km deep basin underlying southern Fish Lake Valley, and formed a 2 km wide restraining bend in the FLVF. Part of the left-oblique motion on the Palmetto Mountain fault zone crosses Fish Lake Valley and offsets the FLVF in a 3 km wide restraining bend with the remainder being taken-up by NNW structures along the eastern side of southern Fish Lake Valley.

  4. Thermal airborne multispectral aster simulator and its preliminary results

    NASA Astrophysics Data System (ADS)

    Mills, F.; Kannari, Y.; Watanabe, H.; Sano, M.; Chang, S. H.

    1994-03-01

    An Airborne ASTER Simulator (AAS) is being developed for the Japan Resources Observation System Organization (JAROS) by the Geophysical Environmental Research (GER) Corporation. The first test flights of the AAS were over Cuprite, Nevada; Long Valley, California; and Death Valley, California, in December 1991. Preliminary laboratory tests at NASA's Stennis Space Center (SSC) were completed in April 1992. The results of the these tests indicate the AAS can discriminate between silicate and non-silicate rocks. The improvements planned for the next two years may give a spectral Full-Width at Half-Maximum (FWHM) of 0.3 μm and NEΔT of 0.2 - 0.5°K. The AAS has the potential to become a good tool for airborne TIR research and can be used for simulations of future satellite-borne TIR sensors. Flight tests over Cuprite, Nevada, and Castaic Lake, California, are planned for October-December 1992.

  5. Test of airborne fluorometer over land surfaces and geologic materials

    NASA Technical Reports Server (NTRS)

    Stoertz, G. E.; Hemphill, W. R.

    1970-01-01

    Response of an experimental Fraunhofer line discriminator to a wide range of surficial deposits common in deserts and semideserts was tested in the laboratory and from an H-19 helicopter. No signals attributable to fluorescence were recorded during 540 miles of aerial traverses over southeastern California and west-central Arizona. It was concluded that exposed surfaces of target materials throughout the traverses were either nonluminescent at 5890 A or not sufficiently so to be detectable. It cannot be ruled out that the lack of fluorescence is partly attributable to surficial coatings of nonluminescent weathered material. The principal route surveyed from the air was from Needles, California to Furnace Creek Ranch, Death Valley and return, via the Amargosa River valley, Silurian Lake (dry), Silver Lake (dry), and Soda Lake (dry). Principal targets traversed were unconsolidated clastic sediments ranging from silty clay to cobbles, and a wide range of evaporite deposits.

  6. 3D View of Death Valley, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This 3-D perspective view looking north over Death Valley, California, was produced by draping ASTER nighttime thermal infrared data over topographic data from the US Geological Survey. The ASTER data were acquired April 7, 2000 with the multi-spectral thermal infrared channels, and cover an area of 60 by 80 km (37 by 50 miles). Bands 13, 12, and 10 are displayed in red, green and blue respectively. The data have been computer enhanced to exaggerate the color variations that highlight differences in types of surface materials. Salt deposits on the floor of Death Valley appear in shades of yellow, green, purple, and pink, indicating presence of carbonate, sulfate, and chloride minerals. The Panamint Mtns. to the west, and the Black Mtns. to the east, are made up of sedimentary limestones, sandstones, shales, and metamorphic rocks. The bright red areas are dominated by the mineral quartz, such as is found in sandstones; green areas are limestones. In the lower center part of the image is Badwater, the lowest point in North America.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and measuring surface heat balance.

  7. DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINE SHAFTS, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF CLASSIFIER, TAILINGS LAUNDER TROUGH, LINE SHAFTS, AND CONCENTRATION TABLES, LOOKING SOUTHWEST. SLURRY EXITING THE BALL MILL WAS COLLECTED IN AN AMALGAMATION BOX (MISSING) FROM THE END OF THE MILL, AND INTRODUCED INTO THE CLASSIFIER. THE TAILINGS LAUDER IS ON THE GROUND AT LOWER RIGHT. THE LINE SHAFTING ABOVE PROVIDED POWER TO THE CONCENTRATION TABLES BELOW AT CENTER RIGHT. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  8. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-24 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  9. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-49 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  10. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-14 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  11. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-20 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  12. Potential hazards from floodflows in Grapevine Canyon, Death Valley National Monument, California and Nevada

    USGS Publications Warehouse

    Bowers, J.C.

    1990-01-01

    Grapevine Canyon is on the western slope of the Grapevine Mountains in the northern part of Death Valley National Monument , California and Nevada. Grapevine Canyon Road covers the entire width of the canyon floor in places and is a frequently traveled route to Scotty 's Castle in the canyon. The region is arid and subject to flash flooding because of infrequent but intense convective storms. When these storms occur, normally in the summer, the resulting floods may create a hazard to visitor safety and property. Historical data on rainfall and floodflow in Grapevine Canyon are sparse. Data from studies made for similar areas in the desert mountains of southern California provide the basis for estimating discharges and the corresponding frequency of floods in the study area. Results of this study indicate that high-velocity flows of water and debris , even at shallow depths, may scour and damage Grapevine Canyon Road. When discharge exceeds 4,900 cu ft/sec, expected at a recurrence interval of between 25 and 50 years, the Scotty 's Castle access road and bridge may be damaged and the parking lot partly inundated. A flood having a 100-year or greater recurrence interval probably would wash out the bridge and present a hazard to the stable and garage buildings but not to the castle buildings, whose foundations are higher than the predicted maximum flood level. (USGS)

  13. Evaluation of increases in dissolved solids in ground water, Stovepipe Wells Hotel, Death Valley National Monument, California

    USGS Publications Warehouse

    Buono, Anthony; Packard, E.M.

    1982-01-01

    Increases in dissolved solids have been monitored in two observation wells near Stovepipe Wells Hotel, Death Valley National Monument, California. One of the hotel 's supply wells delivers water to a reverse-osmosis treatment plant that produces the area 's potable water supply. Should water with increased dissolved solids reach the supply well, the costs of production of potable water will increase. The reverse-osmosis plant supply well is located about 0.4 mile south of one of the wells where increases have been monitored, and 0.8 mile southwest of the well where the most significant increases have been monitored. The direction of local ground-water movement is eastward, which reduces the probability of the supply well being affected. Honey mesquite, a phreatophyte located about 1.5 miles downgradient from the well where the most significant increases have been monitored, might be adversely affected should water with increased dissolved solids extend that far. Available data and data collected during this investigation do not indicate the source of the dissolved-solids increases. Continued ground-water-quality monitoring of existing wells and the installation of additional wells for water-quality monitoring would be necessary before the area affected by the increases, and the source and direction of movement of the water with increased dissolved solids, can be determined. (USGS)

  14. Monogenetic origin of Ubehebe Crater maar volcano, Death Valley, California: Paleomagnetic and stratigraphic evidence

    NASA Astrophysics Data System (ADS)

    Champion, Duane E.; Cyr, Andy; Fierstein, Judy; Hildreth, Wes

    2018-04-01

    Paleomagnetic data for samples collected from outcrops of basaltic spatter at the Ubehebe Crater cluster, Death Valley National Park, California, record a single direction of remanent magnetization indicating that these materials were emplaced during a short duration, monogenetic eruption sequence 2100 years ago. This conclusion is supported by geochemical data encompassing a narrow range of oxide variation, by detailed stratigraphic studies of conformable phreatomagmatic tephra deposits showing no evidence of erosion between layers, by draping of sharp rimmed craters by later tephra falls, and by oxidation of later tephra layers by the remaining heat of earlier spatter. This model is also supported through a reinterpretation and recalculation of the published 10Be age results (Sasnett et al., 2012) from an innovative and bold exposure-age study on very young materials. Their conclusion of multiple and protracted eruptions at Ubehebe Crater cluster is here modified through the understanding that some of their quartz-bearing clasts inherited 10Be from previous exposure on the fan surface (too old), and that other clasts were only exposed at the surface by wind and/or water erosion centuries after their eruption (too young). Ubehebe Crater cluster is a well preserved example of young monogenetic maar type volcanism protected within a National Park, and it represents neither a protracted eruption sequence as previously thought, nor a continuing volcanic hazard near its location.

  15. Sliding Rocks on Racetrack Playa, Death Valley National Park: First Observation of Rocks in Motion

    PubMed Central

    Lorenz, Ralph D.; Ray, Jib; Jackson, Brian

    2014-01-01

    The engraved trails of rocks on the nearly flat, dry mud surface of Racetrack Playa, Death Valley National Park, have excited speculation about the movement mechanism since the 1940s. Rock movement has been variously attributed to high winds, liquid water, ice, or ice flotation, but has not been previously observed in action. We recorded the first direct scientific observation of rock movements using GPS-instrumented rocks and photography, in conjunction with a weather station and time-lapse cameras. The largest observed rock movement involved >60 rocks on December 20, 2013 and some instrumented rocks moved up to 224 m between December 2013 and January 2014 in multiple move events. In contrast with previous hypotheses of powerful winds or thick ice floating rocks off the playa surface, the process of rock movement that we have observed occurs when the thin, 3 to 6 mm, “windowpane” ice sheet covering the playa pool begins to melt in late morning sun and breaks up under light winds of ∼4–5 m/s. Floating ice panels 10 s of meters in size push multiple rocks at low speeds of 2–5 m/min. along trajectories determined by the direction and velocity of the wind as well as that of the water flowing under the ice. PMID:25162535

  16. Using Gamma ray and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) to Evaluate Elemental Sequences in Cap-carbonates and Cap-like Carbonates of the Death Valley Region

    NASA Astrophysics Data System (ADS)

    Holter, S. A.; Theissen, K. M.; Hickson, T. A.; Bostick, B.

    2004-12-01

    The Snowball Earth theory of Hoffman et al. (1998) proposes dramatic post-glacial chemical weathering as large concentrations of carbon were removed from the atmosphere. This would result in a large input of terrigenous material into the oceans; hence, we might expect that carbonates formed under these conditions would demonstrate elevated K, U, Th levels in comparison to carbonates formed under more typical conditions. In January of 2004 we collected spectral gamma data (K, U, Th) and hand samples from cap carbonates (Noonday Dolomite) and cap-like carbonates (Beck Spring Dolomite) of the Death Valley region in order to explore elemental changes in post-snowball Earth oceans. Based on our spectral gamma results, Th/U ratio trends suggested variations in the oxidation state of the Precambrian ocean. We pursued further investigations of trace elements to ascertain the reliability of these results by using ICP-OES. A suite of 25 trace elements was measured, most notably including U and Th. The ICP-OES data not only allow us to compare elemental changes between cap-carbonates and cap-like carbonates, but they also allow for a comparison of optical emission spectrometry and hand held gamma spectrometry methods. Both methods show similar trends in U and Th values for both the cap-carbonates and cap-like carbonates.

  17. Speleothems in the desert: Glimpses of the Pleistocene history of the Death Valley Regional Groundwater Flow System, Nevada and California

    NASA Astrophysics Data System (ADS)

    Spötl, Christoph; Dublyansky, Yuri; Moseley, Gina; Wendt, Kathleen; Edwards, Larry; Scholger, Robert; Woodhead, Jon

    2016-04-01

    Death Valley in eastern California holds North Americás record for the deepest, hottest and driest place. Despite these unfavourable boundary conditions speleothems are present in this hyperarid depression and the surrounding deserts and provide unique insights into long-term regional climate change and landscape evolution of this tectonically and geomorphologically highly active region. Most of the speleothems are inactive and exposed due to tectonic uplift and erosion. They differ from common speleothems, because the majority formed under phreatic conditions as part of a regional groundwater flow system that is still active today. Data from three sites will be discussed illustrating the spectrum of speleothem deposits and their modes of formation. At Devils Hole, the thermal aquifer and the associated subaqueous and water-table speleothems can be directly accessed and provide a record reaching back about 1 million years. At Travertine Point, close to modern discharge points of this large groundwater flow system, phreatic speleothems form near-vertical veins up to about 2 m wide showing evidence of high flow rates along these fractures, which are connected to fossil spring tufa deposits. Finally, outcrops along Titus Canyon expose several generations of speleothems documenting the progressive lowering of the regional groundwater table. The youngest calcite generation records the transition towards vadose conditions 500-400 ka ago.

  18. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation component of 0.5 foot, is estimated to be about 6,000 acre-feet. Annual subsurface outflow from Oasis Valley into the Amargosa Desert is estimated to be between 30 and 130 acre-feet. Estimates of total annual ground-water withdrawal from Oasis Valley by municipal and non-municipal users in 1996 and 1999 are 440 acre-feet and 210 acre-feet, respectively. Based on these values, natural annual ground-water discharge from Oasis Valley is about 6,100 acre-feet. Total annual discharge was 6,500 acre-ft in 1996 and 6,300 acre-ft in 1999. This quantity of natural ground-water discharge from Oasis Valley exceeds the previous estimate made in 1962 by a factor of about 2.5. Water levels were measured in Oasis Valley to gain additional insight into the ET process. In shallow wells, water levels showed annual fluctuations as large as 7 feet and daily fluctuations as large as 0.2 foot. These fluctuations may be attributed to water loss associated with evapotranspiration. In shallow wells affected by ET, annual minimum depths to water generally occurred in winter or early spring shortly after daily ET reached minimum rates. Annual maximum depths to water generally occurred in late summer or fall shortly after daily ET reached maximum rates. The magnitude of daily water-level fluctuations generally increased as ET increased and decreased as depth to water increased.

  19. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

  20. Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.

    2010-01-01

    A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

  1. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone

    PubMed Central

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-01-01

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03–1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07–1.16). Total mortality risk was higher among those aged 35–44 years than ≥65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10–1.27) than from internal causes (RR = 1.04, CI 1.02–1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01–2.48) and the southernmost zone of California’s Central Valley (RR = 1.43, CI 1.21–1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions. PMID:27005646

  2. Manifestation of Coronary Atherosclerosis in Klang Valley, Malaysia: An Autopsy Study

    PubMed Central

    Rahimi, Razuin; Singh, Mansharan Kaur Chainchel; Noor, Norizal Mohd; Omar, Effat; Noor, Shahidan Md; Mahmood, Mohd Shah; Abdullah, Nurliza; Nawawi, Hapizah Mohd

    2018-01-01

    Aims: The present study aimed to determine the epidemiological aspects of medico-legal autopsies and manifestation of coronary atherosclerosis. Methods: This was a cross sectional study involving 222 cases recruited from National Institute of Forensic Medicine (NIFM) Hospital Kuala Lumpur (HKL) and Department of Forensic Medicine Hospital Sungai Buloh (HSgB) for a period of 15 months, from December 2012 to April 2014. Sociodemographic and autopsy findings, including the cause and manner of death were documented. Results: Male and female subjects aged 18–70 years were recruited. Males contributed to 86% of the total subjects and comprised 61% of young adults. Road traffic accidents were the primary cause of death, contributing almost 50% of the subjects. One third of the cases comprised of death due to natural causes, wherein almost 75% of the subjects within this category succumbed to sudden cardiac death. Coronary artery disease (CAD) contributed to 60% of the sudden cardiac death (SCD). Single and double-vessel diseases were the most common pattern of atherosclerosis. In almost 80% of CAD cases, atherosclerosis affected the left anterior descending artery (LAD). Conclusion: Cardiovascular diseases were the most significant natural cause of sudden death with a staggering figure of 75%. CAD was the single most commonly encountered pathology within the SCD. Most cases presented with single and double-vessel diseases, observed in all subjects, as well as the young adult population. PMID:29118310

  3. 50. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING TANK SUPPORTS AND MASONRY FOUNDATIONS. THE SUPPORTING TIMBERS WERE ADDED DURING THE MILL STABILIZATION EFFORT IN THE 1990'S. THE TANKS ARE HANGING OVER THE FOUNDATIONS TO GIVE ACCESS TO THE TRAP DOOR IN THEIR BOTTOMS FOR EMPTYING THE SANDS AFTER PROCESSING (SEE CA-290-37). SEE CA-290-36 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  4. 36. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. OBLIQUE VIEW OF CYANIDE TANKS, LOOKING EAST SOUTHEAST, SHOWING TANK SUPPORTS AND MASONRY FOUNDATIONS. THE SUPPORTING TIMBERS WERE ADDED DURING THE MILL STABILIZATION EFFORT IN THE 1990'S THE TANKS ARE HANGING OVER THE FOUNDATIONS TO GIVE ACCESS TO THE TRAP DOOR IN THEIR BOTTOMS FOR EMPTYING THE SANDS AFTER PROCESSING (SEE CA-290-37). SEE CA-290-50 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  5. Enabling Dedicated, Affordable Space Access Through Aggressive Technology Maturation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Kibbey, Timothy P.; Cobb, C. Brent; Harris, Lawanna L.

    2014-01-01

    A launch vehicle at the scale and price point which allows developers to take reasonable risks with high payoff propulsion and avionics hardware solutions does not exist today. Establishing this service provides a ride through the proverbial technology "valley of death" that lies between demonstration in laboratory and flight environments. NASA's NanoLaunch effort will provide the framework to mature both earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low earth orbit for cubesat class payloads.

  6. Interpretation of the Last Chance thrust, Death Valley region, California, as an Early Permian décollement in a previously undeformed shale basin

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul

    2005-01-01

    We interpret the Last Chance thrust as similar in many ways to Appalachian-type décollements in which the zone of thrusting is localized along a shale interval. The Last Chance thrust, however, has been dismembered during later geologic events so that its original geometry has been obscured. Our model may have unrecognized analogs in other structurally complex shale basins in which the initial deformation was along a major shale unit.

  7. Virtual reality and planetary exploration

    NASA Technical Reports Server (NTRS)

    Mcgreevy, Michael W.

    1992-01-01

    NASA-Ames is intensively developing virtual-reality (VR) capabilities that can extend and augment computer-generated and remote spatial environments. VR is envisioned not only as a basis for improving human/machine interactions involved in planetary exploration, but also as a medium for the more widespread sharing of the experience of exploration, thereby broadening the support-base for the lunar and planetary-exploration endeavors. Imagery representative of Mars are being gathered for VR presentation at such terrestrial sites as Antarctica and Death Valley.

  8. Mysterious Roving Rocks of Racetrack Playa

    NASA Image and Video Library

    2017-12-08

    The rocks at Racetrack Playa in Death Valley, Calif., are famous. Photo credit: NASA/GSFC/Maggie McAdam To read a feature story on the Racetrack Playa go to: www.nasa.gov/topics/earth/features/roving-rocks.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  9. The Changing Epidemiology of Coccidioidomycosis in Los Angeles (LA) County, California, 1973–2011

    PubMed Central

    2015-01-01

    Coccidioidomycosis, also known as Valley Fever, is often thought of as an endemic disease of central California exclusive of Los Angeles County. The fungus that causes Valley Fever, Coccidioides spp., grows in previously undisturbed soil of semi-arid and arid environments of certain areas of the Americas. LA County has a few large areas with such environments, particularly the Antelope Valley which has been having substantial land development. Coccidioidomycosis that is both clinically- and laboratory-confirmed is a mandated reportable disease in LA County. Population surveillance data for 1973–2011 reveals an annual rate increase from 0.87 to 3.2 cases per 100,000 population (n = 61 to 306 annual cases). In 2004, case frequency started substantially increasing with notable epidemiologic changes such as a rising 2.1 to 5.7 male-to-female case ratio stabilizing to 1.4–2.2. Additionally, new building construction in Antelope Valley greatly rose in 2003 and displayed a strong correlation (R = 0.92, Pearson p<0.0001) with overall LA County incidence rates for 1996–2007. Of the 24 LA County health districts, 19 had a 100%-1500% increase in cases when comparing 2000–2003 to 2008–2011. Case residents of endemic areas had stronger odds of local exposures, but cases from areas not known to be endemic had greater mortality (14% versus 9%) with notably more deaths during 2008–2011. Compared to the 57 other California counties during 2001–2011, LA County had the third highest average annual number of cases and Antelope Valley had a higher incidence rate than all but six counties. With the large number of reported coccidioidomycosis cases, multi-agency and community partnering is recommended to develop effective education and prevention strategies to protect residents and travelers. PMID:26313151

  10. Expert system-based mineral mapping using AVIRIS

    NASA Technical Reports Server (NTRS)

    Kruse, Fred A.; Lefkoff, A. B.; Dietz, J. B.

    1992-01-01

    Integrated analysis of imaging spectrometer data and field spectral measurements were used in conjunction with conventional geologic field mapping to characterize bedrock and surficial geology at the northern end of Death Valley, California and Nevada. A knowledge-based expert system was used to automatically produce image maps from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data showing the principal surface mineralogy. The imaging spectrometer data show the spatial distribution of spectrally distinct minerals occurring both as primary rock-forming minerals and as alteration and weathering products. Field spectral measurements were used to verify the mineral maps and field mapping was used to extend the remote sensing results. Geographically referenced image-maps produced from these data form new base maps from which to develop improved understanding of the processes of deposition and erosion affecting the present land surface. The 'northern Grapevine Mountains' (NGM) study area was reported on in numerous papers. This area is an unnamed northwestward extension of the range. Most of the research here has concentrated on mapping of Jurassic-age plutons and associated hydrothermal alteration, however, the nature and scope of these studies is much broader, pertaining to the geologic history and development of the entire Death Valley region. AVIRIS data for the NGM site were obtained during May 1989. Additional AVIRIS data were acquired during September 1989 as part of the Geologic Remote Sensing Field Experiment (GRSFE). The area covered by these data overlaps slightly with the May 1989 data. Three and one-half AVIRIS scenes total were analyzed.

  11. Magnetic and clast fabrics as measurements of grain-scale processes within the Death Valley shallow crustal detachment faults

    NASA Astrophysics Data System (ADS)

    Hayman, Nicholas W.; Housen, B. A.; Cladouhos, T. T.; Livi, K.

    2004-05-01

    The rock product of shallow-crustal faulting includes fine-grained breccia and clay-rich gouge. Many gouges and breccias have a fabric produced by distributed deformation. The orientation of fabric elements provides constraints on the kinematics of fault slip and is the structural record of intrafault strain not accommodated by planar and penetrative surfaces. However, it can be difficult to quantify the deformational fabric of fault rocks, especially the preferred orientations of fine-grained minerals, or to uniquely determine the relationship between fabric geometry and finite strain. Here, we present the results of a fabric study of gouge and breccia sampled from low-angle normal (detachment) faults in the Black Mountains, Death Valley, CA. We measured a preferred orientation of the long axes of the clasts inherited from the crystalline footwall of the fault and compared the shape preferred orientation to the anisotropy of magnetic susceptibility of the fault rocks. The two measurements of fabric exhibit systematic similarities and differences in orientation and anisotropy that are compatible with the large-scale kinematics of fault slip. The dominant carriers of the magnetic susceptibility are micron- and sub-micron scale iron oxides and clay minerals. Therefore even the finest grains in the fault rock were sensitive to the distributed deformation and the micro-mechanics of particle interaction must have departed from those assumed by the passive-marker kinematic model that best explains the fabric.

  12. The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinkham, Chelsea; An, Soyeon; Lundberg, Lindsay

    Rift Valley fever (RVF) is a zoonotic disease that can cause severe illness in humans and livestock, triggering spontaneous abortion in almost 100% of pregnant ruminants. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3) is phosphorylated on its conserved tyrosine residue (Y705) following RVFV infection. This phosphorylation was dependent on a major virulence factor, the viral nonstructural protein NSs. Loss of STAT3 had little effect on viral replication, but rather resulted in cells being more susceptible to RVFV-induced cell death. Phosphorylated STAT3 translocated to the nucleus, coinciding with inhibition of fos, jun, and nr4a2more » gene expression, and the presence of STAT3 and NSs at the nr4a2 promoter. NSs was found predominantly in the cytoplasm of STAT3 null cells, indicating that STAT3 influences NSs nuclear localization. Collectively, these data demonstrate that STAT3 functions in a pro-survival capacity through modulation of NSs localization. - Highlights: • STAT3 is phosphorylated on tyrosine residue 705 following RVFV infection. • Phosphorylation of STAT3 was dependent on the viral protein NSs. • STAT3 -/- MEFs were more susceptible to RVFV-induced cell death. • Loss of STAT3 led to an increase in pro-apoptotic gene expression. • STAT3 functions in a pro-survival capacity by modulation of NSs localization.« less

  13. Mammal Inventory of the Mojave Network Parks-Death Valley and Joshua Tree National Parks, Lake Mead National Recreation Area, Manzanar National Historic Site, and Mojave National Preserve

    USGS Publications Warehouse

    Drost, Charles A.; Hart, Jan

    2008-01-01

    This report describes the results of a mammal inventory study of National Park Service units in the Mojave Desert Network, including Death Valley National Park, Joshua Tree National Park, Lake Mead National Recreation Area, Manzanar National Historic Site, and Mojave National Preserve. Fieldwork for the inventory focused on small mammals, primarily rodents and bats. Fieldwork for terrestrial small mammals used trapping with Sherman and Tomahawk small- and medium-sized mammal traps, along with visual surveys for diurnal species. The majority of sampling for terrestrial small mammals was carried out in 2002 and 2003. Methods used in field surveys for bats included mist-netting at tanks and other water bodies, along with acoustic surveys using Anabat. Most of the bat survey work was conducted in 2003. Because of extremely dry conditions in the first two survey years (and associated low mammal numbers), we extended field sampling into 2004, following a relatively wet winter. In addition to field sampling, we also reviewed, evaluated, and summarized museum and literature records of mammal species for all of the Park units. We documented a total of 59 mammal species as present at Death Valley National Park, with an additional five species that we consider of probable occurrence. At Joshua Tree, we also documented 50 species, and an additional four 'probable' species. At Lake Mead National Recreation Area, 57 mammal species have been positively documented, with 10 additional probable species. Manzanar National Historic Site had not been previously surveyed. We documented 19 mammal species at Manzanar, with an additional 11 probable species. Mojave National Preserve had not had a comprehensive list previously, either. There are now a total of 50 mammal species documented at Mojave, with three additional probable species. Of these totals, 23 occurrences are new at individual park units (positively documented for the first time), with most of these being at Manzanar. Noteworthy additions include western mastiff bat at Joshua Tree, house mouse at a number of wildland sites at Lake Mead, and San Diego pocket mouse at Mojave National Preserve. There are also species that have been lost from the Mojave Network parks. We discuss remaining questions, including the possible occurrence of additional species at each park area (most of these are marginal species whose distributional range may or may not edge into the boundaries of the area). Taxonomic changes are also discussed, along with potential erroneous species records.

  14. Navigating the "Research-to-Operations" Bridge of Death: Collaborative Transition of Remotely-Sensed Snow Data from Research into Operational Water Resources Forecasting

    NASA Astrophysics Data System (ADS)

    Miller, W. P.; Bender, S.; Painter, T. H.; Bernard, B.

    2016-12-01

    Water and resource management agencies can benefit from hydrologic forecasts during both flood and drought conditions. Improved predictions of seasonal snowmelt-driven runoff volume and timing can assist operational water managers with decision support and efficient resource management within the spring runoff season. Using operational models and forecasting systems, NOAA's Colorado Basin River Forecast Center (CBRFC) produces hydrologic forecasts for stakeholders and water management groups in the western United States. Collaborative incorporation of research-oriented remote sensing data into CBRFC operational models and systems is one route by which CBRFC forecasts can be improved, ultimately for the benefit of water managers. Successful navigation of research-oriented remote sensing products across the "research-to-operations"/R2O gap (also known as the "valley of death") to operational destinations requires dedicated personnel on both the research and operations sides, working in a highly collaborative environment. Since 2012, the operational CBRFC has collaborated with the research-oriented Jet Propulsion Laboratory (JPL) under funding from NASA to transition remotely-sensed snow data into CBRFC's operational models and forecasting systems. Two specific datasets from JPL, the MODIS Dust Radiative Forcing in Snow (MODDRFS) and the MODIS Snow Covered-Area and Grain size (MODSCAG) products, are used in CBRFC operations as of 2016. Over the past several years, JPL and CBRFC have worked together to analyze patterns in JPL's remote sensing snow datasets from the operational perspective of the CBRFC and to develop techniques to bridge the R2O gap. Retrospective and real-time analyses have yielded valuable insight into the remotely-sensed snow datasets themselves, CBRFC's operational systems, and the collaborative R2O process. Examples of research-oriented JPL snow data, as used in CBRFC operations, are described. A timeline of the collaboration, challenges encountered during the journey across the R2O gap, or "valley of death", and solutions to those challenges are also illustrated.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, E.H.

    Ground water flow through the region south and west of Frenchman Flat, in the Ash Meadows subbasin of the Death Valley ground water flow system, is controlled mostly by the distribution of permeable and impermeable rocks. Geologic structures such as faults are instrumental in arranging the distribution of the aquifer and aquitard rock units. Most permeability is in fractures caused by faulting in carbonate rocks. Large faults are more likely to reach the potentiometric surface about 325 meters below the ground surface and are more likely to effect the flow path than small faults. Thus field work concentrated on identifyingmore » large faults, especially where they cut carbonate rocks. Small faults, however, may develop as much permeability as large faults. Faults that are penetrative and are part of an anastomosing fault zone are particularly important. The overall pattern of faults and joints at the ground surface in the Spotted and Specter Ranges is an indication of the fracture system at the depth of the water table. Most of the faults in these ranges are west-southwest-striking, high-angle faults, 100 to 3500 meters long, with 10 to 300 /meters of displacement. Many of them, such as those in the Spotted Range and Rock Valley are left-lateral strike-slip faults that are conjugate to the NW-striking right-lateral faults of the Las Vegas Valley shear zone. These faults control the ground water flow path, which runs west-southwest beneath the Spotted Range, Mercury Valley and the Specter Range. The Specter Range thrust is a significant geologic structure with respect to ground water flow. This regional thrust fault emplaces siliceous clastic strata into the north central and western parts of the Specter Range.« less

  16. W. W. Hansen, Microwave Physics, and Silicon Valley

    NASA Astrophysics Data System (ADS)

    Leeson, David

    2009-03-01

    The Stanford physicist W. W. Hansen (b. 1909, AB '29 and PhD '32, MIT post-doc 1933-4, Prof. physics '35-'49, d. 1949) played a seminal role in the development of microwave electronics. His contributions underlay Silicon Valley's postwar ``microwave'' phase, when numerous companies, acknowledging their unique scientific debt to Hansen, flourished around Stanford University. As had the prewar ``radio'' companies, they furthered the regional entrepreneurial culture and prepared the ground for the later semiconductor and computer developments we know as Silicon Valley. In the 1930's, Hansen invented the cavity resonator. He applied this to his concept of the radio-frequency (RF) linear accelerator and, with the Varian brothers, to the invention of the klystron, which made microwave radar practical. As WWII loomed, Hansen was asked to lecture on microwaves to the physicists recruited to the MIT Radiation Laboratory. Hansen's ``Notes on Microwaves,'' the Rad Lab ``bible'' on the subject, had a seminal impact on subsequent works, including the Rad Lab Series. Because of Hansen's failing health, his postwar work, and MIT-Stanford rivalries, the Notes were never published, languishing as an underground classic. I have located remaining copies, and will publish the Notes with a biography honoring the centenary of Hansen's birth. After the war, Hansen founded Stanford's Microwave Laboratory to develop powerful klystrons and linear accelerators. He collaborated with Felix Bloch in the discovery of nuclear magnetic resonance. Hansen experienced first-hand Stanford's evolution from its depression-era physics department to corporate, then government funding. Hansen's brilliant career was cut short by his death in 1949, after his induction in the National Academy of Sciences. His ideas were carried on in Stanford's two-mile long linear accelerator and the development of Silicon Valley.

  17. Meteorological and environmental aspects of one of the worst national air pollution episodes (January, 2004) in Logan, Cache Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Malek, Esmaiel; Davis, Tess; Martin, Randal S.; Silva, Philip J.

    2006-02-01

    Logan, Utah, USA, had the nation's worst air pollution on 15 January, 2004. The high concentration of PM 2.5 (particulates smaller than 2.5 μm in diameter) in the air resulted from geographical, meteorological, and environmental aspects of Cache Valley. A strong inversion (increase of temperature with height) and light precipitation and/or wind were the major causes for trapping pollutants in the air. Other meteorological factors enhancing the inversion were: the prolonged high atmospheric surface pressure, a snow-covered surface which plunged temperatures to as low as - 23.6 °C on January 23rd and high reflection of solar radiation (up to about 80%), which caused less solar radiation absorption during the day throughout the most part of January 2004. Among non-meteorological factors are Cache Valley's small-basin geographical structure which traps air, with no big body of water to help the air circulation (as a result of differential heating and cooling rates for land and water), motor vehicle emissions, and existence of excess ammonia gas as a byproduct of livestock manure and urine. Concentration of PM 2.5 was monitored in downtown Logan. On January 15, 2004, the 24-h, filter-based concentration reached about 132.5 μg per cubic meter of air, an astonishingly high value compared to the values of 65 μg m - 3 and over, indicating a health alert for everyone. These tiny particles in the air have an enormous impact on health, aggravating heart and lung disease, triggering asthma and even death. The causes of this inversion and some suggestions to alleviate the wintertime particle concentration in Cache Valley will be addressed in this article.

  18. Prevalence of hepatitis B infection among young and unsuspecting Hmong blood donors in the Central California Valley.

    PubMed

    Sheikh, Muhammad Y; Atla, Pradeep R; Raoufi, Rahim; Sadiq, Humaira; Sadler, Patrick C

    2012-02-01

    Chronic hepatitis B virus (HBV) infection may result in cirrhosis and/or hepatocellular carcinoma and is one of the leading causes of mortality in Asian Americans including Hmong Americans. The Central California Valley is home to a huge Hmong population. To date, the true prevalence of HBV among Hmong is largely unknown. The aim of this study was to contribute to the limited data on HBV prevalence and its trends in Hmong population in the Central California Valley. Between fiscal years 2006 and 2010, a total of 219, 450 voluntary donors were identified at Central California Blood Center in Fresno. Of these, 821 (399 males and 422 females) were Hmong donors. A cross-sectional review of the HBV (hepatitis B surface antigen) positivity among all donors was carried out. Prevalence estimates with 95% confidence intervals (CI) were calculated. Ninety-two percent of Hmong donors were between age groups 16 and 35 years, and only 8% were ≥36 years. The overall prevalence in Hmong was noted at 3.41% (95%CI 2.3-4.9) compared to 0.06% (95%CI 0.05-0.07) in donors of all ethnicities. The calculated prevalence could be an underestimate of the true HBV prevalence in Hmong as the study enrolled only healthy blood donors with predominant younger age (≤35 years) population. These results underscore the persistent burden of HBV infection and potentially increased risk of premature death even in the second generation Hmong community of the Central California Valley. This study reemphasizes the unequivocal need to develop robust preventive and treatment strategies for HBV in Hmong community.

  19. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, U.S.A.

    USGS Publications Warehouse

    Ericksen, G.E.; Hosterman, J.W.; St., Amand

    1988-01-01

    The clay-hill nitrate deposits of the Amargosa River valley, California, are caliche-type accumulations of water-soluble saline minerals in clay-rich soils on saline lake beds of Miocene, Pliocene(?) and Pleistocene age. The soils have a maximum thickness of ??? 50 cm, and commonly consist of three layers: (1) an upper 5-10 cm of saline-free soil; (2) an underlying 15-20 cm of rubbly saline soil; and (3) a hard nitrate-rich caliche, 10-20 cm thick, at the bottom of the soil profile. The saline constituents, which make up as much as 50% of the caliche, are chiefly Cl-, NO-3, SO2-4 and Na+. In addition are minor amounts of K+, Mg2+ and Ca2+, varying, though generally minor, amounts of B2O3 and CO2-3, and trace amounts of I (probably as IO-3), NO-2, CrO2-4 and Mo (probably as MoO2-4). The water-soluble saline materials have an I/Br ratio of ??? 1, which is much higher than nearly all other saline depostis. The principal saline minerals of the caliche are halite (NaCl), nitratite (NaNO3), darapskite (Na3(SO4)(NO3)??H2O), glauberite (Na2Ca(SO4)2), gypsum (CaSO4??2H2O) and anhydrite (CaSO4). Borax (Na2B4O5(OH)4??8H2O), tincalconite (Na2B4O5(OH)4??3H2O) and trona (Na3(CO3)(HCO3)??2H2O) are abundant locally. The clay-hill nitrate deposits are analogous to the well-known Chilean nitrate deposits, and probably are of similar origin. Whereas the Chilean deposits are in permeable soils of the nearly rainless Atacama Desert, the clay-hill deposits are in relatively impervious clay-rich soils that inhibited leaching by rain water. The annual rainfall in the Death Valley region of ??? 5 cm is sufficient to leach water-soluble minerals from the more permeable soils. The clay-hill deposits contain saline materials from the lake beds beneath the nitrate deposits are well as wind-transported materials from nearby clay-hill soils, playas and salt marshes. The nitrate is probably of organic origin, consisting of atmospheric nitrogen fixed as protein by photoautotrophic blue-green algae, which are thought to form crusts on soils at the sites of the deposits when moistened by rainfall. The protein is subsequently transformed to nitrate by autotophic bacteria. ?? 1988.

  20. Ruiz Volcano: Preliminary report

    NASA Astrophysics Data System (ADS)

    Ruiz Volcano, Colombia (4.88°N, 75.32°W). All times are local (= GMT -5 hours).An explosive eruption on November 13, 1985, melted ice and snow in the summit area, generating lahars that flowed tens of kilometers down flank river valleys, killing more than 20,000 people. This is history's fourth largest single-eruption death toll, behind only Tambora in 1815 (92,000), Krakatau in 1883 (36,000), and Mount Pelée in May 1902 (28,000). The following briefly summarizes the very preliminary and inevitably conflicting information that had been received by press time.

  1. Ethnoarchaeological Investigations of the Mountain Creek Area, North Central Texas. Volume 2. Historic Farming on the Hogwallow Prairies

    DTIC Science & Technology

    1988-05-01

    Engineers, Publishing Co., Dallas. Fort Worth District. Durkheim , Emile 1982 Part II: Historical Archaeology. In 1933 On the Division of Labor in...Holveck Dee Ella Ho/Yard 3-4-1905 John Emil 6.11-1895/6-29-1972 232 Architectural Trends Table 18-2 MORTUARY ARCHITECTURE: STONE SHAPES Tablet Pulpit...CEMETERY LISTINGS Map Name Birth/Death Commemoration Stone Type Pleasant Valley 2 John Emil Holveck 6-11-1895/6-29-1972 Texas Pvt. US Army WWI Flat Granite

  2. NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT EDGE IS THE SINGLE CYLINDER “HOT SHOT” ENGINE THAT PROVIDED POWER FOR THE MILL. JUST IN FRONT OF IT IS AN ARRASTRA. AT CENTER IS THE BALL MILL AND SECONDARY ORE BIN. JUST TO THE RIGHT OF THE BALL MILL IS A RAKE CLASSIFIER, AND TO THE RIGHT ARE THE CONCENTRATION TABLES. WARM SPRINGS CAMP IS IN THE DISTANCE. SEE CA-292-4 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  3. NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF GOLD HILL MILL, LOOKING SOUTH. AT LEFT EDGE IS THE SINGLE CYLINDER “HOT SHOT” ENGINE THAT PROVIDED POWER FOR THE MILL. JUST IN FRONT OF IT IS AN ARRASTRA. AT CENTER IS THE BALL MILL AND SECONDARY ORE BIN. JUST TO THE RIGHT OF THE BALL MILL IS A RAKE CLASSIFIER, AND TO THE RIGHT ARE THE CONCENTRATION TABLES. WARM SPRINGS CAMP IS IN THE DISTANCE. SEE CA-292-17 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  4. Recovery of compacted soils in Mojave Desert ghost towns.

    USGS Publications Warehouse

    Webb, R.H.; Steiger, J.W.; Wilshire, H.G.

    1986-01-01

    Residual compaction of soils was measured at seven sites in five Mojave Desert ghost towns. Soils in these Death Valley National Monument townsites were compacted by vehicles, animals, and human trampling, and the townsites had been completely abandoned and the buildings removed for 64 to 75 yr. Recovery times extrapolated using a linear recovery model ranged from 80 to 140 yr and averaged 100 yr. The recovery times were related to elevation, suggesting freeze-thaw loosening as an important factor in ameliorating soil compaction in the Mojave Desert. -from Authors

  5. Boiling Water at Hot Creek - The Dangerous and Dynamic Thermal Springs in California's Long Valley Caldera

    USGS Publications Warehouse

    Farrar, Christopher D.; Evans, William C.; Venezky, Dina Y.; Hurwitz, Shaul; Oliver, Lynn K.

    2007-01-01

    The beautiful blue pools and impressive boiling fountains along Hot Creek in east-central California have provided enjoyment to generations of visitors, but they have also been the cause of injury or death to some who disregarded warnings and fences. The springs and geysers in the stream bed and along its banks change location, temperature, and flow rates frequently and unpredictably. The hot springs and geysers of Hot Creek are visible signs of dynamic geologic processes in this volcanic region, where underground heat drives thermal spring activity.

  6. DETAIL VIEW OF ARRASTRA, LOOKING SOUTHEAST. THIS OLD TECHNOLOGY IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ARRASTRA, LOOKING SOUTHEAST. THIS OLD TECHNOLOGY IS AN ANACHRONISM OF THIS MILL. ORE WAS DUMPED INTO THE STONE LINED TROUGH. AS THE ARRASTRA TURNED LARGE STONES CONNECTED TO THE FOUR ARMS WERE DRAGGED AROUND OVER THE ORE TO CRUSH IT. IT IS CLEAR THAT THIS ARRASTRA WAS POWERED BY MACHINE THOUGH IT IS UNCLEAR EXACTLY HOW IT WAS POWERED. THE WHITE PINE TALC MINE OPENING IS SEEN IN THE DISTANCE AT THE CENTER LEFT EDGE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  7. Flood Plain Information, Little Bushkill Creek and Shoeneck Creek, Northampton County, Pennsylvania.

    DTIC Science & Technology

    1973-04-01

    plans can reduce the incidence of personal injury and death. Flood warning and forecasting - The National Weather Service Branch of the National...velocity of three or more feet per second could easily sweep an adult person off his feet; this creates a definite danger of injury or drowning...Lehigh Valley R.R. 0.04 279.0 282.9 284.8 Private Rd. 0.63 299.2 301.1 303.0 Tatamy Rd. 0.65 303.4 305.9 308.8 Private Rd.(b) 0.83 304.0 308.2 310.1

  8. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    PubMed

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  9. Late Permian vertebrate community of the Pranhita Godavari valley, India

    NASA Astrophysics Data System (ADS)

    Ray, Sanghamitra; Bandyopadhyay, Saswati

    2003-03-01

    The Kundaram Formation of the Pranhita-Godavari valley yields the only Late Permian multispecies terrestrial vertebrate assemblage from India. This includes various medium and small dicynodonts such as Endothiodon, Oudenodon, Kingoria, Emydops, Cistecephalus and Pristerodon. At present two species of Endothiodon ( E. mahalanobisi and E. uniseries) are known. Apart from these dicynodonts, the Kundaram vertebrate fauna also contains a medium-sized gorgonopsian and a small captorhinid. The material, from the red mudstone dominated Kundaram Formation, includes numerous isolated, disarticulated skulls and lower jaws. Postcranial elements are relatively rare except for a few broken limb ends and vertebrae. The bones are encrusted by iron rich matrix and most of them had suffered deformation. This skull dominant accumulation is attributed to prolonged aerial exposure prior to burial resulting in disarticulation of the skeletons and subsequent inundation by floodwater. The limb bones and other postcranial elements of the already disarticulated skeletons were winnowed out by shallow competent flow while the relatively heavier skulls and lower jaws resisting transportation were buried near the site of death. The Late Permian scenario of the Pranhita-Godavari valley was characterised by the dominance of herbivores. This abundance of herbivores at the base and the presence of relatively few carnivores and omnivores at the top of the Kundaram food pyramid indicate a trophic structure similar to that of the modern-day terrestrial ecosystem.

  10. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice

    PubMed Central

    Indran, Sabarish V.; Lihoradova, Olga A.; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A.; Tigabu, Bersabeh; Smith, Jennifer K.; Zhang, Lihong; Juelich, Terry L.; Gong, Bin; Freiberg, Alexander N.

    2013-01-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV. PMID:23515022

  11. Palaeodemography of the Nasca valley: reconstruction of the human ecology in the southern Peruvian coast.

    PubMed

    Drusini, A G; Carrara, N; Orefici, G; Rippa Bonati, M

    2001-01-01

    This study is based on skeletons and mummies belonging to 582 individuals excavated at sites of Pueblo Viejo, Cahuachi, Estaqueria and Atarco in the Nasca valley, South Coast of Peru. Archaeological evidence distinguishes three cultural phases: Nasca (400 BC-550 AD), Wari (600-1100 AD) and Chincha (1100-1412 AD). Since the Chincha human remains were too exiguous (27 individuals), only Nasca and Wari were considered. For the Nasca population, sex ratio was 113 men to 100 women (53% of males); for the Wari population, sex ratio was 117 men to 100 women (54% of males). The palaeodemographic data show that the infant mortality rate was 33@1000 for Nasca and 105@1000 for Wari. Life expectancy was 38-43 years for Nasca and 31-36 years for Wari. Death percentages in all the age groups increased from Nasca to Wari phase. ANOVA and t-test for paired comparison were applied in order to examine if dental and bone ages were statistically different. Long bones and teeth showed an allometric development, and the age estimated from the tooth formation and eruption was generally higher than the age estimated from the maximum lengths of long bones. The anthropological study of the Nasca valley skeletal populations confirmed the archaeological hypothesis of worse conditions of the Wari population in comparison with the previous Nasca people.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornaggia, F.; Congo, S.A.; Agostino, M.

    Kitina field is located in Marine VII permit, offshore Congo. The field was discovered in 1991 by a joint venture composed of Agip Recherches Congo (operator), Hydrocongo and Chevron International Limited. The field is a structural four-way dip closure trap shaped as turtle-back. Halokinetic movements are responsible for the structuring. The seismic imaging of the reservoir is affected by strong lateral velocity variations caused by different sedimentation across the paleo-shelf edge in the post-Albian sequence. One pass 3D poststack depth migration, performed with a velocity field obtained by means of geostatistical integration of 2D seismic and wellbore velocities, achieved amore » good compromise between high dip reflector imaging and depths at well location. Three main reservoirs of lower Albian age exist between -2100 and -3100m. They are separated by tight mudstones which act as intraformational seal. Seismic trace inversion improved the resolution of petrophysical variations in some of the field reservoirs, which have the following characteristics (from top to bottom): reservoir 2A is composed of bioclastic and oolitic packstone-grainstone laid down during regional regressive phase in insulated offshore bars on the crest of structural high. Early diagenetic phenomena lead to the development of world class permeability framework. Reservoir 1A-1B are composed of sandstone bodies which were deposited as shoreface to offshore bars during short-term regressive pulse. The 1A-1B reservoir, are embedded in mudstones deposited during long lasting phases of relative high stand in relatively deep offshore setting characterised by high, halokinetic driven subsidence.« less

  13. Geophysical characterization of transtensional fault systems in the Eastern California Shear Zone-Walker Lane Belt

    NASA Astrophysics Data System (ADS)

    McGuire, M.; Keranen, K. M.; Stockli, D. F.; Feldman, J. D.; Keller, G. R.

    2011-12-01

    The Eastern California Shear Zone (ECSZ) and Walker Lane belt (WL) accommodate ~25% of plate motion between the North American and Pacific plates. Faults within the Mina deflection link the ECSZ and the WL, transferring strain from the Owens Valley and Death Valley-Fish Lake Valley fault systems to the transcurrent faults of the central Walker Lane. During the mid to late Miocene the majority of strain between these systems was transferred through the Silver Peak-Lone Mountain (SPLM) extensional complex via a shallowly dipping detachment. Strain transfer has since primarily migrated north to the Mina Deflection; however, high-angle faults bounding sedimentary basins and discrepancies between geodetic and geologic models indicate that the SPLM complex may still actively transfer a portion of the strain from the ECSZ to the WL on a younger set of faults. Establishing the pattern and amount of active strain transfer within the SPLM region is required for a full accounting of strain accommodation, and provides insight into strain partitioning at the basin scale within a broader transtensional zone. To map the active structures in and near Clayton Valley, within the SPLM region, we collected seismic reflection and refraction profiles and a dense grid of gravity readings that were merged with existing gravity data. The primary goals were to determine the geometry of the high-angle fault system, the amount and sense of offset along each fault set, connectivity of the faults, and the relationship of these faults to the Miocene detachment. Seismic reflection profiles imaged the high-angle basin-bounding normal faults and the detachment in both the footwall and hanging wall. The extensional basin is ~1 km deep, with a steep southeastern boundary, a gentle slope to the northwest, and a sharp boundary on the northwest side, suggestive of another fault system. Two subparallel dip-slip faults bound the southeast (deeper) basin margin with a large lateral velocity change (from ~2.0 km/sec in the basin fill to 4.5-5.5 km/sec in the footwall) across the basin-bounding normal fault system. Very fast (approaching 6.0 km/sec) basement underlies the basin fill. The residual gravity anomaly indicates that Clayton Valley is divided into a shallower northern basin, imaged by the seismic lines, and a deeper, more asymmetric southern basin. Faults within Clayton Valley are curvilinear in nature, similar to faults observed in other step-over systems (e.g., the Mina Deflection). Gravity profiles support the seismic reflection interpretation and indicate a high angle fault (>60 degrees) bounding the northern sub-basin on its southeast margin, with a shallower fault bounding it to the northwest. A basement high trends west-northwest and separates the northern and southern basins, and is likely bounded on its southern edge by a predominantly strike-slip fault crossing the valley. Much of the strain accommodated within the southern sub-basin appears to be transferred into southern Big Smoky Valley, northwest of Clayton Valley, via these dextral strike-slip faults that obliquely cross Clayton Valley.

  14. Geospatial Analysis of Drug Poisoning Deaths Involving Heroin in the USA, 2000-2014.

    PubMed

    Stewart, Kathleen; Cao, Yanjia; Hsu, Margaret H; Artigiani, Eleanor; Wish, Eric

    2017-08-01

    We investigate the geographic patterns of drug poisoning deaths involving heroin by county for the USA from 2000 to 2014. The county-level patterns of mortality are examined with respect to age-adjusted rates of death for different classes of urbanization and racial and ethnic groups, while rates based on raw counts of drug poisoning deaths involving heroin are estimated for different age groups and by gender. To account for possible underestimations in these rates due to small areas or small numbers, spatial empirical Baye's estimation techniques have been used to smooth the rates of death and alleviate underestimation when analyzing spatial patterns for these different groups. The geographic pattern of poisoning deaths involving heroin has shifted from the west coast of the USA in the year 2000 to New England, the Mid-Atlantic region, and the Great Lakes and central Ohio Valley by 2014. The evolution over space and time of clusters of drug poisoning deaths involving heroin is confirmed through the SaTScan analysis. For this period, White males were found to be the most impacted population group overall; however, Blacks and Hispanics are highly impacted in counties where significant populations of these two groups reside. Our results show that while 35-54-year-olds were the most highly impacted age group by county from 2000 to 2010, by 2014, the trend had changed with an increasing number of counties experiencing higher death rates for individuals 25-34 years. The percentage of counties across the USA classified as large metro with deaths involving heroin is estimated to have decreased from approximately 73% in 2010 to just fewer than 56% in 2014, with a shift to small metro and non-metro counties. Understanding the geographic variations in impact on different population groups in the USA has become particularly necessary in light of the extreme increase in the use and misuse of street drugs including heroin and the subsequent rise in opioid-related deaths in the USA.

  15. Orogenic inheritance in Death Valley region, western US Basin and Range: implications for Neogene crustal extension.

    NASA Astrophysics Data System (ADS)

    Lima, R. D.; Hayman, N. W.; Prior, M. G.; Stockli, D. F.; Kelly, E. D.

    2016-12-01

    Deformation and temperature evolution during orogenic stages may influence later fabric development, thus controlling large-scale extensional processes that can occur millions of years later. Here, we describe pressure-temperature and fabric evolution from the Death Valley (DV) region and show how inherited fabrics, formed in late orogenic stages during Late Cretaceous time, influenced later Neogene age Basin and Range (BR) extension. The DV region is one of the most extended and thinned regions in the western US BR province, and the two of the ranges that bound the eastern valley expose basement rocks exhumed during the Neogene extension. In the Funeral range, it has been established that older (Precambrian) basement underwent Mesozoic age syn-deformational metamorphism during the Sevier-Laramide orogeny. In contrast, the Black Mountains record widespread tectonic stretching and magmatism of Miocene age on Precambrian basement, and have, overall, been lacking previous evidence of Mesozoic metamorphism and fabric development. In the Funeral Range Late Cretaceous migmatitic fabrics were overprinted by zones of high-strain fabrics formed due to melt-consuming reaction that define an overall P-T cooling path likely during late- to post-orogenesis. These fabrics form interconnected layers of quartz + biotite aggregates, in which individual quartz grains lack evidence of intracrystalline plastic deformation and show consistently random [c]-axis microfabrics. This suggests coupled reaction-diffusion processes that favored diffusion-assisted creep. New geochronometric results of melt products in the Black Mountains show evidence of partial melting of Late Cretaceous age. Contrasting with the neighboring Funeral Range, overprinting by extensional fabrics of Miocene age is widespread, and consists of high-strain, anastomosing foliation composed of retrograde products from preexisting, higher-temperature fabrics. These include interconnected fine-grained chlorite + quartz and sericite aggregates showing [c]-axis quartz microfabrics consistent with diffusion-assisted creep. In both ranges, the formation of new-over-old fabric due to the extensional deformation is favored by local heterogeneities in bulk composition due previous melt segregation during late- to post-orogenic stages.

  16. The geohydrologic setting of Yucca Mountain, Nevada

    USGS Publications Warehouse

    Stuckless, J.S.; Dudley, W.W.

    2002-01-01

    This paper provides a geologic and hydrologic framework of the Yucca Mountain region for the geochemical papers in this volume. The regional geologic units, which range in age from late Precambrian through Holocene, are briefly described. Yucca Mountain is composed of dominantly pyroclastic units that range in age from 11.4 to 15.2 Ma. The principal focus of study has been on the Paintbrush Group, which includes two major zoned and welded ash-flow tuffs separated by an important hydrogeologic unit referred to as the Paintbrush non-welded (PTn). The regional structural setting is currently one of extension, and the major local tectonic domains are presented together with a tectonic model that is consistent with the known structures at Yucca Mountain. Streamflow in this arid to semi-arid region occurs principally in intermittent or ephemeral channels. Near Yucca Mountain, the channels of Fortymile Wash and Amargosa River collect infrequent runoff from tributary basins, ultimately draining to Death Valley. Beneath the surface, large-scale interbasin flow of groundwater from one valley to another occurs commonly in the region. Regional groundwater flow beneath Yucca Mountain originates in the high mesas to the north and returns to the surface either in southern Amargosa Desert or in Death Valley, where it is consumed by evapotranspiration. The water table is very deep beneath the upland areas such as Yucca Mountain, where it is 500-750 m below the land surface, providing a large thickness of unsaturated rocks that are potentially suitable to host a nuclear-waste repository. The nature of unsaturated flow processes, which are important for assessing radionuclide migration, are inferred mainly from hydrochemical or isotopic evidence, from pneumatic tests of the fracture systems, and from the results of in situ experiments. Water seeping down through the unsaturated zone flows rapidly through fractures and more slowly through the pores of the rock matrix. Although capillary forces are expected to divert much of the flow around repository openings, some may drip onto waste packages, ultimately causing release of radionuclides, followed by transport down to the water table. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    USGS Publications Warehouse

    Frankel, K.L.; Brantley, K.S.; Dolan, J.F.; Finkel, R.C.; Klinger, R.E.; Knott, J.R.; Machette, M.N.; Owen, L.A.; Phillips, F.M.; Slate, J.L.; Wernicke, B.P.

    2007-01-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ???297 ?? 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36C1 geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ?? 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ???8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant. Copyright 2007 by the American Geophysical Union.

  18. Cosmogenic 10Be and 36Cl geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone

    NASA Astrophysics Data System (ADS)

    Frankel, Kurt L.; Brantley, Katherine S.; Dolan, James F.; Finkel, Robert C.; Klinger, Ralph E.; Knott, Jeffrey R.; Machette, Michael N.; Owen, Lewis A.; Phillips, Fred M.; Slate, Janet L.; Wernicke, Brian P.

    2007-06-01

    The northern Death Valley fault zone (NDVFZ) has long been recognized as a major right-lateral strike-slip fault in the eastern California shear zone (ECSZ). However, its geologic slip rate has been difficult to determine. Using high-resolution digital topographic imagery and terrestrial cosmogenic nuclide dating, we present the first geochronologically determined slip rate for the NDVFZ. Our study focuses on the Red Wall Canyon alluvial fan, which exposes clean dextral offsets of seven channels. Analysis of airborne laser swath mapping data indicates ˜297 ± 9 m of right-lateral displacement on the fault system since the late Pleistocene. In situ terrestrial cosmogenic 10Be and 36Cl geochronology was used to date the Red Wall Canyon fan and a second, correlative fan also cut by the fault. Beryllium 10 dates from large cobbles and boulders provide a maximum age of 70 +22/-20 ka for the offset landforms. The minimum age of the alluvial fan deposits based on 36Cl depth profiles is 63 ± 8 ka. Combining the offset measurement with the cosmogenic 10Be date yields a geologic fault slip rate of 4.2 +1.9/-1.1 mm yr-1, whereas the 36Cl data indicate 4.7 +0.9/-0.6 mm yr-1 of slip. Summing these slip rates with known rates on the Owens Valley, Hunter Mountain, and Stateline faults at similar latitudes suggests a total geologic slip rate across the northern ECSZ of ˜8.5 to 10 mm yr-1. This rate is commensurate with the overall geodetic rate and implies that the apparent discrepancy between geologic and geodetic data observed in the Mojave section of the ECSZ does not extend north of the Garlock fault. Although the overall geodetic rates are similar, the best estimates based on geology predict higher strain rates in the eastern part of the ECSZ than to the west, whereas the observed geodetic strain is relatively constant.

  19. The 2007 Rift Valley Fever Outbreak in Sudan

    PubMed Central

    Hassan, Osama Ahmed; Ahlm, Clas; Sang, Rosemary; Evander, Magnus

    2011-01-01

    Rift Valley fever (RVF) is a neglected, emerging, mosquito-borne disease with severe negative impact on human and animal health and economy. RVF is caused by RVF virus (RVFV) affecting humans and a wide range of animals. The virus is transmitted through bites from mosquitoes and exposure to viremic blood, body fluids, or tissues of infected animals. During 2007 a large RVF outbreak occurred in Sudan with a total of 747 confirmed human cases including 230 deaths (case fatality 30.8%); although it has been estimated 75,000 were infected. It was most severe in White Nile, El Gezira, and Sennar states near to the White Nile and the Blue Nile Rivers. Notably, RVF was not demonstrated in livestock until after the human cases appeared and unfortunately, there are no records or reports of the number of affected animals or deaths. Ideally, animals should serve as sentinels to prevent loss of human life, but the situation here was reversed. Animal contact seemed to be the most dominant risk factor followed by animal products and mosquito bites. The Sudan outbreak followed an unusually heavy rainfall in the country with severe flooding and previous studies on RVF in Sudan suggest that RVFV is endemic in parts of Sudan. An RVF outbreak results in human disease, but also large economic loss with an impact beyond the immediate influence on the directly affected agricultural producers. The outbreak emphasizes the need for collaboration between veterinary and health authorities, entomologists, environmental specialists, and biologists, as the best strategy towards the prevention and control of RVF. PMID:21980543

  20. Methods for using groundwater model predictions to guide hydrogeologic data collection, with application to the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Tiedeman, C.R.; Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2003-01-01

    Calibrated models of groundwater systems can provide substantial information for guiding data collection. This work considers using such models to guide hydrogeologic data collection for improving model predictions by identifying model parameters that are most important to the predictions. Identification of these important parameters can help guide collection of field data about parameter values and associated flow system features and can lead to improved predictions. Methods for identifying parameters important to predictions include prediction scaled sensitivities (PSS), which account for uncertainty on individual parameters as well as prediction sensitivity to parameters, and a new "value of improved information" (VOII) method presented here, which includes the effects of parameter correlation in addition to individual parameter uncertainty and prediction sensitivity. In this work, the PSS and VOII methods are demonstrated and evaluated using a model of the Death Valley regional groundwater flow system. The predictions of interest are advective transport paths originating at sites of past underground nuclear testing. Results show that for two paths evaluated the most important parameters include a subset of five or six of the 23 defined model parameters. Some of the parameters identified as most important are associated with flow system attributes that do not lie in the immediate vicinity of the paths. Results also indicate that the PSS and VOII methods can identify different important parameters. Because the methods emphasize somewhat different criteria for parameter importance, it is suggested that parameters identified by both methods be carefully considered in subsequent data collection efforts aimed at improving model predictions.

  1. Introduction to the special issue on the changing Mojave Desert

    USGS Publications Warehouse

    Berry, Kristin H.; Murphy, R.W.; Mack, Jeremy S.; Quillman, W.

    2006-01-01

    The Mojave Desert, which lies between the Great Basin Desert in the north and the Sonoran Desert in the south, covers an estimated 114 478–130 464 km2 of the south-western United States and includes parts of the states of Nevada, Utah, Arizona, and California, with the amount of land mass dependent on the definition (Fig. 1; Rowlands et al., 1982; McNab and Avers, 1994; Bailey, 1995; Groves et al., 2000). This desert is sufficiently diverse to be subdivided into five regions: northern, south-western, central, south-central, and eastern (Rowlands et al., 1982). It is a land of extremes both in topography and climate. Elevations range from below sea level at Death Valley National Park to 3633 m on Mt. Charleston in the Spring Range of Nevada. Temperatures exhibit similar extreme ranges with mean minimum January temperatures of −2.4 °C in Beatty, Nevada and mean maximum July temperatures of 47 °C in Death Valley. Mean annual precipitation varies throughout the regions (42–350 mm), is highest on mountain tops, but overall is low (Rowlands et al., 1982; Rowlands, 1995a). The distribution of precipitation varies from west to east and north to south, with >85% of rain falling in winter in the northern, south-western and south-central regions. In contrast, the central and eastern regions receive a substantial amount of precipitation in both winter and summer. The variability in topographic and climatic features contributes to regional differences in vegetation.

  2. Impact of climate change upon vector born diseases in Europe and Africa using ENSEMBLES Regional Climate Models

    NASA Astrophysics Data System (ADS)

    Caminade, Cyril; Morse, Andy

    2010-05-01

    Climate variability is an important component in determining the incidence of a number of diseases with significant human/animal health and socioeconomic impacts. The most important diseases affecting health are vector-borne, such as malaria, Rift Valley Fever and including those that are tick borne, with over 3 billion of the world population at risk. Malaria alone is responsible for at least one million deaths annually, with 80% of malaria deaths occurring in sub-Saharan Africa. The climate has a large impact upon the incidence of vector-borne diseases; directly via the development rates and survival of both the pathogen and the vector, and indirectly through changes in the environmental conditions. A large ensemble of regional climate model simulations has been produced within the ENSEMBLES project framework for both the European and African continent. This work will present recent progress in human and animal disease modelling, based on high resolution climate observations and regional climate simulations. Preliminary results will be given as an illustration, including the impact of climate change upon bluetongue (disease affecting the cattle) over Europe and upon malaria and Rift Valley Fever over Africa. Malaria scenarios based on RCM ensemble simulations have been produced for West Africa. These simulations have been carried out using the Liverpool Malaria Model. Future projections highlight that the malaria incidence decreases at the northern edge of the Sahel and that the epidemic belt is shifted southward in autumn. This could lead to significant public health problems in the future as the demography is expected to dramatically rise over Africa for the 21st century.

  3. Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Elliott, Peggy E.

    2002-01-01

    The use of geologic information such as lithology and rock properties is important to constrain conceptual and numerical hydrogeologic models. This geologic information is difficult to apply explicitly to numerical modeling and analyses because it tends to be qualitative rather than quantitative. This study uses a compilation of hydraulic-conductivity measurements to derive estimates of the probability distributions for several hydrogeologic units within the Death Valley regional ground-water flow system, a geologically and hydrologically complex region underlain by basin-fill sediments, volcanic, intrusive, sedimentary, and metamorphic rocks. Probability distributions of hydraulic conductivity for general rock types have been studied previously; however, this study provides more detailed definition of hydrogeologic units based on lithostratigraphy, lithology, alteration, and fracturing and compares the probability distributions to the aquifer test data. Results suggest that these probability distributions can be used for studies involving, for example, numerical flow modeling, recharge, evapotranspiration, and rainfall runoff. These probability distributions can be used for such studies involving the hydrogeologic units in the region, as well as for similar rock types elsewhere. Within the study area, fracturing appears to have the greatest influence on the hydraulic conductivity of carbonate bedrock hydrogeologic units. Similar to earlier studies, we find that alteration and welding in the Tertiary volcanic rocks greatly influence hydraulic conductivity. As alteration increases, hydraulic conductivity tends to decrease. Increasing degrees of welding appears to increase hydraulic conductivity because welding increases the brittleness of the volcanic rocks, thus increasing the amount of fracturing.

  4. Climate change, shifting seasons, and the ecohydrology of Devils Hole, Death Valley National Park

    NASA Astrophysics Data System (ADS)

    Hausner, M. B.; Wilson, K. P.; Gaines, D. B.; Suarez, F. I.; Tyler, S. W.

    2011-12-01

    Devils Hole, a water-filled fracture in the carbonate aquifer of the Death Valley Regional Flow System, comprises an ecosystem that can serve as a bellwether of climate change. This 50 square meter pool of unknown depth is home to the only extant population of the endangered Devils Hole pupfish (Cyprinodon diabolis). A shallow shelf in the system provides the most suitable habitat for spawning, and the past pupfish population counts have been correlated to the water level in the system. Recently, however, population declines unrelated to water level have been observed. The 33° C waters of Devils Hole are near the upper threshold for most Cyprinodon species, and the shallow shelf experiences the greatest diurnal and seasonal temperature variability. The extremely limited habitat, small population (the spring, 2011 population survey counted approximately 100 individuals), and precarious nature of populations near survival thresholds combine to make the system exceptionally susceptible to the impacts of climate change. A hydrodynamic model of the shallow shelf was developed to simulate thermal convection in response to a number of energy fluxes, including climatic drivers such as air temperature and solar radiation. Simulations of current conditions demonstrate seasonal and diurnal changes in the temperature of the water and the substrate in which adult pupfish spawn, eggs hatch, and larvae develop. The simulated convection patterns also influence the oxygen dynamics, nutrient cycling, and the food web of the ecosystem. Simulations of future conditions using a delta change methodology point towards changes in the seasonal cycles, which may limit or shift the reproductive season of the species.

  5. Establishment of a preclinical ovine model for tibial segmental bone defect repair by applying bone tissue engineering strategies.

    PubMed

    Reichert, Johannes C; Epari, Devakara R; Wullschleger, Martin E; Saifzadeh, Siamak; Steck, Roland; Lienau, Jasmin; Sommerville, Scott; Dickinson, Ian C; Schütz, Michael A; Duda, Georg N; Hutmacher, Dietmar W

    2010-02-01

    Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties; however, they are limited in access and availability and associated with donor-site morbidity, hemorrhage, risk of infection, insufficient transplant integration, graft devitalization, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench-to-bedside translations are still infrequent as the process toward approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence, commercialization, is referred to as the "Valley of Death" and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes and scalable designs and to apply these in preclinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopedic bone engineering from bench to bedside by establishing a preclinical ovine critical-sized tibial segmental bone defect model, and we discuss our preliminary data relating to this decisive step.

  6. Death Valley regional ground-water flow system, Nevada and California -- hydrogeologic framework and transient ground-water flow model

    USGS Publications Warehouse

    Belcher, Wayne R.

    2004-01-01

    A numerical three-dimensional (3D) transient ground-water flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the ground-water flow system and previous less extensive ground-water flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect ground-water flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley Regional Ground-Water Flow System (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the ground-water flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural ground-water discharge occurring through evapotranspiration and spring flow; the history of ground-water pumping from 1913 through 1998; ground-water recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional ground-water flow system. Ground-water flow in the Death Valley region is composed of several interconnected, complex ground-water flow systems. Ground-water flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional ground-water flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and evapotranspiration (ET) are the dominant natural ground-water discharge processes. Ground water also is withdrawn for agricultural, commercial, and domestic uses. Ground-water flow in the DVRFS was simulated using MODFLOW-2000, a 3D finite-difference modular ground-water flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 m on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins, also simulated by drains. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient model gener

  7. Health Beliefs and Breast Self-Examination among Undergraduate Female Students in Public Universities in Klang Valley, Malaysia.

    PubMed

    Akhtari-Zavare, Mehrnoosh; Juni, Muhamad Hanafiah; Ismail, Irmi Zarina; Said, Salmiah Md; Latiff, Latiffah A

    2015-01-01

    Breast cancer is the most frequently occurring cancer in women and the most common cause of cancer death worldwide. A cross-sectional study was carried out among 792 female undergraduate students in public universities in Klang Valley, Malaysia, from January to April 2011. Data were collected using a validated questionnaire developed for this study. The mean age of respondents was 21.7±1.2 years. Most of them were single (96.8%), Malay (91.9%) and 150 (19.6%) claimed they had practiced BSE. There was a significant differences between performers and non-performers correlated to age, marital status, check breast by doctor, and being trained about BSE. Performers had lower mean scores for perceived barriers and susceptibility and higher mean score for confidence. Stepwise logistic regression analysis yielded four significant predictor variables. Overall our findings indicate that the practice of BSE while perceived as being important is not frequently practiced among female in Malaysia. Targeted education should be implemented to improve early detection of breast cancer.

  8. The role of signal transducer and activator of transcription 3 in Rift Valley fever virus infection.

    PubMed

    Pinkham, Chelsea; An, Soyeon; Lundberg, Lindsay; Bansal, Neha; Benedict, Ashwini; Narayanan, Aarthi; Kehn-Hall, Kylene

    2016-09-01

    Rift Valley fever (RVF) is a zoonotic disease that can cause severe illness in humans and livestock, triggering spontaneous abortion in almost 100% of pregnant ruminants. In this study, we demonstrate that signal transducer and activator of transcription 3 (STAT3) is phosphorylated on its conserved tyrosine residue (Y705) following RVFV infection. This phosphorylation was dependent on a major virulence factor, the viral nonstructural protein NSs. Loss of STAT3 had little effect on viral replication, but rather resulted in cells being more susceptible to RVFV-induced cell death. Phosphorylated STAT3 translocated to the nucleus, coinciding with inhibition of fos, jun, and nr4a2 gene expression, and the presence of STAT3 and NSs at the nr4a2 promoter. NSs was found predominantly in the cytoplasm of STAT3 null cells, indicating that STAT3 influences NSs nuclear localization. Collectively, these data demonstrate that STAT3 functions in a pro-survival capacity through modulation of NSs localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. 37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. DETAIL OF CYANIDE LEACHING TANK DRAIN DOOR AND PIPING SYSTEM. NOTE SPIGOT UNDER BOARD AT UPPER LEFT INSERTS INTO HOLE IN PIPE AT BOTTOM OF FRAME. CYANIDE SOLUTION WAS PUMPED INTO THE TANKS AND THE PREGNANT SOLUTION DRAINED OUT OF THE TANKS THROUGH THIS PIPE, AND BACK INTO A SEPARATE HOLDING TANK ON THE EAST SIDE OF THE MILL. TAILINGS WERE REMOVED FROM THE TANKS THROUGH THE ROUND DRAIN DOOR IN THE BOTTOM OF THE TANK (MISSING) SEEN AT TOP CENTER. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  10. From Research to Flight: Surviving the TRL Valley of Death for Robotic and Human Exploration

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Fundamental research is critical to taking the next giant leap in the scientific exploration of space. NASA should be pushing the envelope and asking "what if?" .. Technology push enables new capabilities. When NASA began, everything was enabling. .. Technology pull is often required to meet current mission requirements. Technology management requires more than issuing NRAs and overseeing contracts. Continuous assessment, peer review, and system systems studies are vital to credible TRL advancement. A strategy for taking technology R&D to new heights will lead to discoveries at far-reaching destinations..

  11. Quantifying Vertical Exhumation in Intracontinental Strike-Slip Faults: the Garlock fault zone, southern California

    NASA Astrophysics Data System (ADS)

    Chinn, L.; Blythe, A. E.; Fendick, A.

    2012-12-01

    New apatite fission-track ages show varying rates of vertical exhumation at the eastern terminus of the Garlock fault zone. The Garlock fault zone is a 260 km long east-northeast striking strike-slip fault with as much as 64 km of sinistral offset. The Garlock fault zone terminates in the east in the Avawatz Mountains, at the intersection with the dextral Southern Death Valley fault zone. Although motion along the Garlock fault west of the Avawatz Mountains is considered purely strike-slip, uplift and exhumation of bedrock in the Avawatz Mountains south of the Garlock fault, as recently as 5 Ma, indicates that transpression plays an important role at this location and is perhaps related to a restricting bend as the fault wraps around and terminates southeastward along the Avawatz Mountains. In this study we complement extant thermochronometric ages from within the Avawatz core with new low temperature fission-track ages from samples collected within the adjacent Garlock and Southern Death Valley fault zones. These thermochronometric data indicate that vertical exhumation rates vary within the fault zone. Two Miocene ages (10.2 (+5.0/-3.4) Ma, 9.0 (+2.2/-1.8) Ma) indicate at least ~3.3 km of vertical exhumation at ~0.35 mm/yr, assuming a 30°C/km geothermal gradient, along a 2 km transect parallel and adjacent to the Mule Spring fault. An older Eocene age (42.9 (+8.7/-7.3) Ma) indicates ~3.3 km of vertical exhumation at ~0.08 mm/yr. These results are consistent with published exhumation rates of 0.35 mm/yr between ~7 and ~4 Ma and 0.13 mm/yr between ~15 and ~9 Ma, as determined by apatite fission-track and U-Th/He thermochronometry in the hanging-wall of the Mule Spring fault. Similar exhumation rates on both sides of the Mule Spring fault support three separate models: 1) Thrusting is no longer active along the Mule Spring fault, 2) Faulting is dominantly strike-slip at the sample locations, or 3) Miocene-present uplift and exhumation is below detection levels using apatite fission-track thermochronometry. In model #1 slip on the Mule Spring fault may have propagated towards the range front, and may be responsible for the fault-propagation-folding currently observed along the northern branch of the Southern Death Valley fault zone. Model #2 may serve to determine where faulting has historically included a component of thrust faulting to the east of sample locations. Model #3 would further determine total offset along the Mule Spring fault from Miocene-present. Anticipated fission-track and U-Th/He data will help distinguish between these alternative models.

  12. How Long a Life Is Enough Life?

    PubMed

    Callahan, Daniel; Gaylin, Willard

    2017-07-01

    Humans have long been troubled by the prospect of old age and its culmination in death. Whether to rebel against or accept this fate have been wrestled with down through the centuries. But new medical technologies and the growing science of aging have sided with rebellion. We know that aging can be pushed back and improved in its quality. That progress is well under way, but now intensified by many scientists and Silicon Valley entrepreneurs. In 2016, Mark Zuckerberg and Priscilla Chan pledged three billion dollars toward eventually "preventing, curing or managing all diseases." And some visionaries have made the elimination of death or its indefinite postponement a goal. To put those aspirations in a broader context, it is helpful to keep in mind where population growth and aging trends stand. Apart from any success in the explicit efforts to increase longevity, there will be a steady increase in the number of elderly worldwide-and a much higher percentage of the elderly as part of the overall population. Most of the largest changes will be in developing countries. They will be overburdened by the death of the elderly from expensive chronic diseases-already a vexing problem for affluent countries. © 2017 The Hastings Center.

  13. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  14. Status of volcanic hazard studies for the Nevada Nuclear Waste Storage Investigations. Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.M.; Wohletz, K.H.; Vaniman, D.T.

    1986-01-01

    Volcanic hazard investigations during FY 1984 focused on five topics: the emplacement mechanism of shallow basalt intrusions, geochemical trends through time for volcanic fields of the Death Valley-Pancake Range volcanic zone, the possibility of bimodal basalt-rhyolite volcanism, the age and process of enrichment for incompatible elements in young basalts of the Nevada Test Site (NTS) region, and the possibility of hydrovolcanic activity. The stress regime of Yucca Mountain may favor formation of shallow basalt intrusions. However, combined field and drill-hole studies suggest shallow basalt intrusions are rare in the geologic record of the southern Great Basin. The geochemical patterns ofmore » basaltic volcanism through time in the NTS region provide no evidence for evolution toward a large-volume volcanic field or increases in future rates of volcanism. Existing data are consistent with a declining volcanic system comparable to the late stages of the southern Death Valley volcanic field. The hazards of bimodal volcanism in this area are judged to be low. The source of a 6-Myr pumice discovered in alluvial deposits of Crater Flat has not been found. Geochemical studies show that the enrichment of trace elements in the younger rift basalts must be related to an enrichment of their mantle source rocks. This geochemical enrichment event, which may have been metasomatic alteration, predates the basalts of the silicic episode and is, therefore, not a young event. Studies of crater dimensions of hydrovolcanic landforms indicate that the worst case scenario (exhumation of a repository at Yucca Mountain by hydrovolcanic explosions) is unlikely. Theoretical models of melt-water vapor explosions, particularly the thermal detonation model, suggest hydrovolcanic explosion are possible at Yucca Mountain. 80 refs., 21 figs., 5 tabs.« less

  15. A method for evaluating the importance of system state observations to model predictions, with application to the Death Valley regional groundwater flow system

    USGS Publications Warehouse

    Tiedeman, Claire; Ely, D. Matthew; Hill, Mary C.; O'Brien, Grady M.

    2004-01-01

    We develop a new observation‐prediction (OPR) statistic for evaluating the importance of system state observations to model predictions. The OPR statistic measures the change in prediction uncertainty produced when an observation is added to or removed from an existing monitoring network, and it can be used to guide refinement and enhancement of the network. Prediction uncertainty is approximated using a first‐order second‐moment method. We apply the OPR statistic to a model of the Death Valley regional groundwater flow system (DVRFS) to evaluate the importance of existing and potential hydraulic head observations to predicted advective transport paths in the saturated zone underlying Yucca Mountain and underground testing areas on the Nevada Test Site. Important existing observations tend to be far from the predicted paths, and many unimportant observations are in areas of high observation density. These results can be used to select locations at which increased observation accuracy would be beneficial and locations that could be removed from the network. Important potential observations are mostly in areas of high hydraulic gradient far from the paths. Results for both existing and potential observations are related to the flow system dynamics and coarse parameter zonation in the DVRFS model. If system properties in different locations are as similar as the zonation assumes, then the OPR results illustrate a data collection opportunity whereby observations in distant, high‐gradient areas can provide information about properties in flatter‐gradient areas near the paths. If this similarity is suspect, then the analysis produces a different type of data collection opportunity involving testing of model assumptions critical to the OPR results.

  16. Carbon associated nitrate (CAN) in the Ediacaran Johnnie Formation, Death Valley, California and links to the Shuram negative carbon isotope excursion

    NASA Astrophysics Data System (ADS)

    Dilles, Z. Y. G.; Prokopenko, M. G.; Bergmann, K.; Loyd, S. J.; Corsetti, F. A.; Berelson, W.; Gaines, R. R.

    2014-12-01

    Nitrogen, a major nutrient of marine primary production whose many redox states are linked through biological processes to O2, may afford better understanding of changes in post-Great Oxidation Event (GOE) environmental redox conditions. Using a novel approach to quantify nitrate content in carbonates, we identified a trend of CAN increase in the late-Proterozoic, including several distinct peaks within a carbonate succession of the Sonora province, Mexico, deposited ~630-500 Ma. The goal of the current study was to investigate CAN variability in the context of the global "Shuram" event, a large negative δ13C excursion expressed in Rainstorm member carbonates of the Johnnie Formation in Death Valley, CA. The lower Rainstorm Member "Johnnie Oolite", a time-transgressive, regionally extensive, shallow dolomitic oolite, was sampled. CAN concentrations ranged from 7.31 to 127.36 nmol/g, with higher values measured toward the base of the bed. This trend held at each sampled locality, along with a tendency towards decreasing CAN with larger magnitude negative δ13C excursions. Modern analog ooids formed in low-latitude marine environments lack CAN, consistent with their formation in low-nitrate waters of the euphotic zone characteristic of the modern ocean nitrogen cycling. In contrast, maximum values within the Johnnie oolite exceed by a factor of five to seven CAN measured in carbonates deposited below the main nitracline in the modern ocean, implying high nitrate content within shallow depositional environments. Johnnie oolite data, broadly consistent with the Sonora sequence findings, may indicate large perturbations in the Ediacaran nitrogen cycle immediately preceding the negative δ13C excursion. The implication of these findings for possible changes in the Ediacaran nitrogen, oxygen and carbon biogeochemical cycling will be further discussed.

  17. Potential Visual Impacts of Utility-Scale Solar Energy Development within Solar Energy Zones on Selected Viewpoints in Death Valley and Joshua Tree National Parks, and El Camino Real De Tierra Adentro National Historic Trail

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert G.; Abplanalp, Jennifer M.; Cantwell, Brian L.

    In connection with the Bureau of Land Management’s (BLM’s) Solar Programmatic Environmental Impact Statement (Solar PEIS), Argonne National Laboratory (Argonne) has conducted an extended visual impact analysis for selected key observation points (KOPs) within three National Park Service (NPS) units located within the 25-mi (40-km) viewshed of four solar energy zones (SEZs) identified in the Solar PEIS. The analysis includes only those NPS units that the Solar PEIS identified as potentially subject to moderate or strong visual contrasts associated with solar development within the SEZs. The NPS units included in the analysis are Death Valley and Joshua Tree National Parksmore » and El Camino Real De Tierra Adentro National Historic Trail. The analysis showed that certain KOPs in each of these NPS units could potentially be subject to major visual contrast and impacts from solar development within the SEZs, but many of the KOPs would likely be subject to moderate, minor, or negligible contrasts and impacts, generally because they were relatively distant from the relevant SEZ, had views of the SEZ partially blocked by intervening terrain, and/or had very low vertical angles of view toward the SEZ. For all three NPS units, power tower facilities were found to be major contributors to potential visual contrasts, primarily because of the long-distance visibility of intensely bright reflection of light from the receivers on the central towers, but also because of the height and strong vertical line of the tower structures and the potential for night-sky impacts from FAA-mandated hazard navigation lighting.« less

  18. A systematic review of Rift Valley Fever epidemiology 1931–2014

    PubMed Central

    Nanyingi, Mark O.; Munyua, Peninah; Kiama, Stephen G.; Muchemi, Gerald M.; Thumbi, Samuel M.; Bitek, Austine O.; Bett, Bernard; Muriithi, Reese M.; Njenga, M. Kariuki

    2015-01-01

    Background Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis that was first isolated and characterized in 1931 in Kenya. RVF outbreaks have resulted in significant losses through human illness and deaths, high livestock abortions and deaths. This report provides an overview on epidemiology of RVF including ecology, molecular diversity spatiotemporal analysis, and predictive risk modeling. Methodology Using the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched for relevant RVF publications in repositories of the World Health Organization Library and Information Networks for Knowledge (WHOLIS), U.S Centers for Disease Control and Prevention (CDC), and Food and Agricultural Organization (FAO). Detailed searches were performed in Google Scholar, SpringerLink, and PubMed databases and included conference proceedings and books published from 1931 up to 31st January 2015. Results and discussion A total of 84 studies were included in this review; majority (50%) reported on common human and animal risk factors that included consumption of animal products, contact with infected animals and residing in low altitude areas associated with favorable climatic and ecological conditions for vector emergence. A total of 14 (16%) of the publications described RVF progressive spatial and temporal distribution and the use of risk modeling for timely prediction of imminent outbreaks. Using distribution maps, we illustrated the gradual spread and geographical extent of disease; we also estimated the disease burden using aggregate human mortalities and cumulative outbreak periods for endemic regions. Conclusion This review outlines common risk factors for RVF infections over wider geographical areas; it also emphasizes the role of spatial models in predicting RVF enzootics. It, therefore, explains RVF epidemiological status that may be used for design of targeted surveillance and control programs in endemic countries. PMID:26234531

  19. Multiple High-Frequency Carbon Isotope Excursions Across the Precambrian-Cambrian Boundary: Implications for Correlations and Environmental Change

    NASA Astrophysics Data System (ADS)

    Smith, E. F.; Macdonald, F. A.; Schrag, D. P.; Laakso, T.

    2014-12-01

    The GSSP Precambrian-Cambrian boundary in Newfoundland is defined by the first appearance datum (FAD) of Treptichnus pedum, which is considered to be roughly coincident with the FAD of small shelly fossils (SSFs) and a large negative carbon isotope excursion. An association between the FAD of T. pedum and a negative carbon isotope excursion has previously been documented in Northwest Canada (Narbonne et al., 1994) and Death Valley (Corsetti and Hagadorn, 2000), and since then has been used as an chronostratigraphic marker of the boundary, particularly in siliciclastic poor sections that do not preserve T. pedum. Here we present new high-resolution carbon isotope (δ13C ) chemostratigraphy from multiple sections in western Mongolia and the western United States that span the Ediacaran-Cambrian transition. High-resolution sampling (0.2-1 m) reveals that instead of one large negative excursion, there are multiple, high-frequency negative excursions with an overall negative trend during the latest Ediacaran. These data help to more precisely calibrate changes in the carbon cycle across the boundary as well as to highlight the potential problem of identifying the boundary with just a few negative δ13C values. We then use a simple carbon isotope box model to explore relationships between phosphorous delivery to the ocean, oxygenation, alkalinity, and turnovers in carbonate secreting organisms. Corsetti, F.A., and Hagadorn, J.W., 2000, Precambrian-Cambrian transition: Death Valley, United States: Geology, v. 28, no. 4, p. 299-302. Narbonne, G.M., Kaufman, A.J., and Knoll, A.H., 1994, Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: Implications for Neoproterozoic correlations and the early evolution of animals: Geological Society of America Bulletin, v. 106, no. 10, p. 1281-1292.

  20. Assessing the causes of under-five mortality in the Albert Schweitzer Hospital service area of rural Haiti.

    PubMed

    Perry, Henry B; Ross, Allen G; Fernand, Facile

    2005-09-01

    Limited information is available regarding the causes of under-five mortality in nearly all of the countries in which mortality is the highest. The purpose of this study was to use a standard computerized protocol for defining the leading causes of death among children in a high-mortality rural population of Haiti and to highlight the need for similar studies else-where in Haiti and throughout the high-mortality areas of Latin America and the Caribbean. In 2001 a standardized, closed-ended verbal autopsy questionnaire endorsed by the World Health Organization was administered to a representative, population-based sample of the mothers or other caregivers of 97 children who had died before reaching 5 years of age between 1995 and 1999 in the service area of the Albert Schweitzer Hospital, which is located in the rural Artibonite Valley of Haiti. With the data from the questionnaires we used a computerized algorithm to generate diagnoses of the cause of death; the algorithm made it possible to have more than one cause of death. Acute lower respiratory infection (ALRI) was the leading diagnosis, present in 45% of all under-five deaths, followed by enteric diseases, present in 21% of deaths. Neonatal tetanus, preterm birth, and other early neonatal causes unassociated with ALRI or diarrhea were present in 41% of the neonatal deaths. Among children 1-59 months of age, ALRI was present in 51% of the deaths, and enteric diseases in 30%. Deaths were concentrated during the first few months of life, with 35% occurring during the first month. Among the neonatal deaths, 27% occurred on the first day of life, and 80% occurred during the first 10 days of life. In the Albert Schweitzer Hospital program area--and presumably in other areas of Haiti as well--priority needs to be given to the prevention of and the early, effective treatment of ALRI, diarrhea, and early neonatal conditions. This study points to the need for more, similar standardized assessments to guide local, regional, and national programs.

  1. DETAIL VIEW OF LOWER CYANIDE PROCESSING WORKS, LOOKING SOUTHWEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOWER CYANIDE PROCESSING WORKS, LOOKING SOUTHWEST FROM LARGE TAILINGS PILE. THE REMAINS OF THREE TEN FOOT DIAMETER SETTLING TANKS ARE AT CENTER. THE SCATTER IN THE CENTER FOREGROUND IS THE REMAINS OF A LARGE RECTANGULAR HOLDING TANK POSSIBLY A SETTLING TANK. THIS AREA WAS MOST LIKELY CONSTRUCTED LATER IN THE TWENTIETH CENTURY AFTER MINING HAD CEASED AND ONLY TAILINGS WERE BEING RECLAIMED. AN EXACT DATE CANNOT BE DETERMINED HOWEVER THESE WORKS ARE DISTINCTLY DIFFERENT THAN THE ORIGINAL LAYOUT. THE SANDY AREA THAT OCCUPIES THE FOREGROUND AND THE CENTER ARE TAILINGS. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  2. Geologic interpretation of HCMM and aircraft thermal data

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Progress on the Heat Capacity Mapping Mission (HCMM) follow-on study is reported. Numerous image products for geologic interpretation of both HCMM and aircraft thermal data were produced. These include, among others, various combinations of the thermal data with LANDSAT and SEASAT data. The combined data sets were displayed using simple color composites, principal component color composites and black and white images, and hue, saturation intensity color composites. Algorithms for incorporating both atmospheric and elevation data simultaneously into the digital processing for creation of quantitatively correct thermal inertia images, are in the final development stage. A field trip to Death Valley was undertaken to field check the aircraft and HCMM data.

  3. Implications of information from LANDSAT-4 for private industry

    NASA Technical Reports Server (NTRS)

    Everett, J. R.; Dykstra, J. D. (Principal Investigator)

    1983-01-01

    The broader spectral coverage and higher resolution of LANDSAT-4 Thematic Mapper (TM) data open the door for identification from space of spectral phenomena associated with mineralization and microseepage of hydrocarbon. Digitally enhanced image products generated from TM data allow the mapping of many major and minor structural features that mark or influence emplacement of mineralization and accumulation of hydrocarbons. These improvements in capabilities over multispectral scanner data should accelerate the acceptance and integration of satellite data as a routinely used exploration tool that allows rapid examination of large areas in considerable detail. Imagery of Southern Ontario, Canada as well as of Cement, Oklahoma and Death Valley, California is discussed.

  4. Recombinant Rift Valley fever vaccines induce protective levels of antibody in baboons and resistance to lethal challenge in mice

    PubMed Central

    Papin, James F.; Verardi, Paulo H.; Jones, Leslie A.; Monge-Navarro, Francisco; Brault, Aaron C.; Holbrook, Michael R.; Worthy, Melissa N.; Freiberg, Alexander N.; Yilma, Tilahun D.

    2011-01-01

    Rift Valley fever (RVF) is a zoonotic disease endemic in Africa and the Arabian Peninsula caused by the highly infectious Rift Valley fever virus (RVFV) that can be lethal to humans and animals and results in major losses in the livestock industry. RVF is exotic to the United States; however, mosquito species native to this region can serve as biological vectors for the virus. Thus, accidental or malicious introduction of this virus could result in RVFV becoming endemic in North America. Such an event would likely lead to significant morbidity and mortality in humans, and devastating economic effects on the livestock industry. Currently, there are no licensed vaccines for RVF that are both safe and efficacious. To address this issue, we developed two recombinant RVFV vaccines using vaccinia virus (VACV) as a vector for use in livestock. The first vaccine, vCOGnGc, was attenuated by the deletion of a VACV gene encoding an IFN-γ binding protein, insertional inactivation of the thymidine kinase gene, and expression of RVFV glycoproteins, Gn and Gc. The second vaccine, vCOGnGcγ, is identical to the first and also expresses the human IFN-γ gene to enhance safety. Both vaccines are extremely safe; neither resulted in weight loss nor death in severe combined immunodeficient mice, and pock lesions were smaller in baboons compared with the controls. Furthermore, both vaccines induced protective levels of antibody titers in vaccinated mice and baboons. Mice were protected from lethal RVFV challenge. Thus, we have developed two safe and efficacious recombinant vaccines for RVF. PMID:21873194

  5. Seroepidemiological Survey of Rift Valley Fever Virus in Ruminants in Garissa, Kenya.

    PubMed

    Nanyingi, Mark O; Muchemi, Gerald M; Thumbi, Samuel M; Ade, Fredrick; Onyango, Clayton O; Kiama, Stephen G; Bett, Bernard

    2017-02-01

    Rift Valley fever (RVF) is a vector-borne zoonotic disease caused by phlebovirus in the family Bunyaviridae. In Kenya, major outbreaks occurred in 1997-1998 and 2006-2007 leading to human deaths, huge economic losses because of livestock morbidity, mortality, and restrictions on livestock trade. This study was conducted to determine RVF seroprevalence in cattle, sheep, and goats during an interepidemic period in Garissa County in Kenya. In July 2013, we performed a cross-sectional survey and sampled 370 ruminants from eight RVF-prone areas of Garissa County. Rift Valley fever virus (RVFV) antibodies were detected using a multispecies competitive enzyme-linked immunosorbent assay. Mixed effect logistic regression models were used to determine the association between RVF seropositivity and species, sex, age, and location of the animals. A total of 271 goats, 87 sheep, and 12 cattle were sampled and the overall immunoglobulin G seroprevalence was 27.6% (95% CI [23-32.1]). Sheep, cattle, and goats had seroprevalences of 32.2% (95% CI [20.6-31]), 33.3% (95% CI [6.7-60]), and 25.8% (95% CI [22.4-42]), respectively. Seropositivity in males was 31.8% (95% CI [22.2-31.8]), whereas that of females was 27% (95% CI [18.1-45.6]). The high seroprevalence suggests RVFV circulation in domestic ruminants in Garissa and may be indicative of a subclinal infection. These findings provide evidence of RVF disease status that will assist decision-makers to flag areas of high risk of RVF outbreaks and prioritize the implementation of timely and cost-effective vaccination programs.

  6. Comprehensive Phylogenetic Reconstructions of Rift Valley Fever Virus: The 2010 Northern Mauritania Outbreak in the Camelus dromedarius Species

    PubMed Central

    Lo, Modou M.; Thiongane, Yaya; Diop, Mariame; Isselmou, Katia; Doumbia, Baba; Baba, Mohammed Ould; El Arbi, Ahmed S.; Lancelot, Renaud; Kane, Y.; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2014-01-01

    Abstract Rift valley fever (RVF) is a mosquito-borne disease of domestic and wild ruminants caused by RVF virus (RVFV), a phlebovirus (Bunyaviridae). RVF is widespread in Sub-Saharan Africa. In September of 2010, an RVF outbreak occurred in northern Mauritania involving mass abortions in small ruminants and camels (Camelus dromedarius) and at least 63 human clinical cases, including 13 deaths. In camels, serological prevalence was 27.5–38.5% (95% confidence interval, n=279). For the first time, clinical signs other than abortions were reported in this species, including hemorrhagic septicemia and severe respiratory distress in animals. We assessed the presence of RVFV in camel sera sampled during this outbreak and generated whole-genome sequences of RVFV to determine the possible origin of this RVFV strain. Phylogenetic analyses suggested a shared ancestor between the Mauritania 2010 strain and strains from Zimbabwe (2269, 763, and 2373), Kenya (155_57 and 56IB8), South Africa (Kakamas, SA75 and SA51VanWyck), Uganda (Entebbe), and other strains linked to the 1987 outbreak of RVF in Mauritania (OS1, OS3, OS8, and OS9). PMID:25514121

  7. Comprehensive phylogenetic reconstructions of Rift Valley fever virus: the 2010 northern Mauritania outbreak in the Camelus dromedarius species.

    PubMed

    El Mamy, Ahmed B; Lo, Modou M; Thiongane, Yaya; Diop, Mariame; Isselmou, Katia; Doumbia, Baba; Baba, Mohammed Ould; El Arbi, Ahmed S; Lancelot, Renaud; Kane, Y; Albina, Emmanuel; Cêtre-Sossah, Catherine

    2014-12-01

    Rift valley fever (RVF) is a mosquito-borne disease of domestic and wild ruminants caused by RVF virus (RVFV), a phlebovirus (Bunyaviridae). RVF is widespread in Sub-Saharan Africa. In September of 2010, an RVF outbreak occurred in northern Mauritania involving mass abortions in small ruminants and camels (Camelus dromedarius) and at least 63 human clinical cases, including 13 deaths. In camels, serological prevalence was 27.5-38.5% (95% confidence interval, n=279). For the first time, clinical signs other than abortions were reported in this species, including hemorrhagic septicemia and severe respiratory distress in animals. We assessed the presence of RVFV in camel sera sampled during this outbreak and generated whole-genome sequences of RVFV to determine the possible origin of this RVFV strain. Phylogenetic analyses suggested a shared ancestor between the Mauritania 2010 strain and strains from Zimbabwe (2269, 763, and 2373), Kenya (155_57 and 56IB8), South Africa (Kakamas, SA75 and SA51VanWyck), Uganda (Entebbe), and other strains linked to the 1987 outbreak of RVF in Mauritania (OS1, OS3, OS8, and OS9).

  8. Earth Observations taken by the Expedition 13 crew

    NASA Image and Video Library

    2006-09-17

    ISS013-E-81687 (17 Sept. 2006) --- A forest fire in southern California is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. The day fire started in Los Padres National Forest north of Los Angeles on Sept. 4, 2006. Easterly winds on Sept. 17 blew the smoke west out to sea, and this wind shift was observed by station crewmembers. The forested mountains north of Los Angeles appear dark green, the smoke a dusky gray. Dense farmland at the south end of California's central valley is framed by the forested Sierra Nevada mountain range. White patches near the center of the view are dry lakes of the Mojave Desert, one of which acts as a landing site for the space shuttle. The dark irregular shape at image right is part of the space station. Death Valley and Las Vegas are visible at image right. The extent of the day fire smoke plume can be gauged from the gray urban region of greater Los Angeles (center) which stretches along 50 miles of coastline. The plume obscures the northern Channel Islands, but the southern Channel Islands are silhouetted against the ocean.

  9. Magnetic Orbital and Reversal Stratigraphy of the Johnnie Formation, Death Valley region, with implications for the Shuram Carbon Isotope Excursion

    NASA Astrophysics Data System (ADS)

    Minguez, D. A.; Kodama, K. P.; Hillhouse, J. W.

    2012-12-01

    This study demonstrates a ~720 kyr depositional period for 33 meters of dolomites from the Johnnie Formation at the Winters Pass Hills locality in Death Valley, CA. These dolomites have been shown to record the Shuram carbon isotope anomaly (Corsetti and Kaufman, 2003). We provide a new record of the anomaly that demonstrates the presence of the Shuram excursion from its nadir of δ13C= -12 ‰ to a recovered value of -8 ‰. By comparison to a full stratigraphic reconstruction of the Shuram Excursion by Verdel et al. (2011) the measured section from this study represents roughly 1/10 of the Shuram excursion, suggesting a 7.2 myr duration for the complete excursion, significantly shorter than the 50 myr estimate of Le Guerroué et al. (2006). The orbitally-forced stratigraphy used to make this measurement was obtained by performing multi-taper method spectral analysis on data series of magnetic susceptibility and a magnetically measured goethite to hematite ratio. Cyclic variations in magnetic susceptibility with wavelengths of 18.6 m and 5.4 m are observed in the spectrum above the 95% significance level with respect to the robust red noise and are interpreted to represent varying concentrations of paramagnetic clay particles forced by climate controlled weathering and transport of sediment to the ancient Laurentian passive margin. 0.63m and 0.71 m wavelength cycles with spectral peaks above the 95% significance level are also observed. A magnetic reversal stratigraphy developed by thermal demagnetization of oriented samples demonstrates three polarity intervals in the dolomites of the Winters Pass Hills, constraining the depositional period of the dolomites to <1 myr (estimate of magnetic reversal frequency for the Meso-NeoProterozoic based on Pavlov and Gallet, 2010). This suggests that cycles with wavelengths of 18.6m, 5.4m, and 0.71m represent long eccentricity, short eccentricity, and precession, respectively. The ratio of goethite to hematite also varies cyclically with wavelengths of 18.6m, 5.8m, and 0.63m. The goethite is most likely the product of present day weathering and may represent variations in depositional Fe-rich clay particles. These results replicate results obtained by Kodama and Hillhouse (2011) in the Nopah Range of Death Valley, approximately 40 km to the north. The Nopah Range rocks were deposited in a more distal sedimentary environment in the same depositional basin. The agreement between the two studies suggests a basin wide response to climatic forcing of depositional processes observable by the rock magnetic cyclostratigraphy. Assuming the period of Earth's long eccentricity has not varied significantly since the Ediacaran period (Laskar et al., 2011; Berger and Loutre, 1994) and that the magnetostratigraphy constrains the 33 m section to <1 myr, depositional cycles of 18.6m represent ~400 kyr, 5.4 m cycles represent ~116 kyr, and 0.71m cycles represent ~15 kyr.

  10. Volcanic hazards: Perspectives from eruption prediction to risk assessment for disposal of radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, B.

    1980-12-31

    This document summarizes an oral presentation that described the potential for volcanic activity at the proposed Yucca Mountain, Texas repository site. Yucca Mountain is located in a broad zone of volcanic activity known as the Death Valley-Pancake Ridge volcanic zone. The probability estimate for the likelihood that some future volcanic event will intersect a buried repository at Yucca Mountain is low. Additionally, the radiological consequences of penetration of a repository by basaltic magma followed by eruption of the magma at the surface are limited. The combination of low probability and limited consequence suggests that the risk posed by waste storagemore » at this site is low. (TEM)« less

  11. DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING NORTHEAST TOWARD THE REAR OF THE STRUCTURE. THE WHEELS AT THE TOP OF THE TRAM BUCKETS RODE OFF THE STATIONARY CABLES ONTO THE TRACK SUPPORTED BY THE "C" IRONS SUSPENDED FROM THE TOP TIMBERS, CLEARLY SEEN AT THE TOP OF THE FRAME. THE ANCHOR POINTS FOR THE TWO STATIONARY CABLES ARE AT BOTTOM CENTER, JUST BELOW THE CABLE WHEEL. THE MAIN CABLE WHEEL IS IN THE DISTANCE AT CENTER LEFT. THE ORE CHUTES COMING FROM THE ORE BIN ARE AT LEFT CENTER EDGE. TRAM BUCKETS WERE CHARGED HERE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  12. OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF REMAINS OF DEWATERING BUILDING, LOOKING SOUTH TOWARD CYANIDE PROCESSING AREA. WATER USED IN PROCESSING AT THE STAMP MILL WAS CIRCULATED HERE FOR RECLAMATION. SANDS WERE SETTLED OUT AND DEPOSITED IN ONE OF TWO TAILINGS HOLDING AREAS. CLEARED WATER WAS PUMPED BACK TO THE MILL FOR REUSE. THIS PROCESS WAS ACCOMPLISHED BY THE USE OF SETTLING CONES, EIGHT FEET IN DIAMETER AND SIX FEET HIGH. THE REMAINS OF FOUR CONES ARE AT CENTER, BEHIND THE TANK IN THE FOREGROUND. TO THE LEFT IS THE MAIN ACCESS ROAD BETWEEN THE MILL AND THE PARKING LOT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  13. Characterization of the Venom of C. d. cumanesis of Colombia: Proteomic Analysis and Antivenomic Study

    PubMed Central

    Vargas, Leidy Johana; Bueno-Sánchez, Julio César; Alarcón, Juan Carlos

    2018-01-01

    The Colombian rattlesnake Crotalus durissus cumanensis is distributed in three geographic zones of the country: the Atlantic Coast, the upper valley of the Magdalena River, and the eastern plains of the Colombian Orinoquía. Its venom induces neurological symptoms, such as eyelid ptosis, myasthenic facies, and paralysis of the respiratory muscles, which can lead to death. Identification and analysis of C. d. cumanensis showed nine groups of proteins responsible for the neurotoxic effect, of which the crotoxin complex was the most abundant (64.71%). Immunorecognition tests of C. d. cumanensis showed that the use of a commercial antivenom manufactured in Mexico resulted in immunoreactivity. PMID:29462980

  14. Bacterial Presence in Layered Rock Varnish-Possible Mars Analog?

    NASA Astrophysics Data System (ADS)

    Krinsley, D.; Rusk, B. G.

    2000-08-01

    Rock varnish from locations in Death Valley, California; Peru; Antarctica; and Hawaii reveal nanometer scale layering (less than 1 nm to about 75 nm) when studied with transmission electron microscopy (TEM). Parallel layers of clay minerals containing evidence of presumed bacteria were present in all samples. Samples range in age from a few thousand years to perhaps a million years. Diagenesis is relatively limited, as chemical composition is variable, both from top to bottom and along layers in these varnish samples. Also, occasional exotic minerals occur randomly in most varnish sections, and vary in size and hardness, again suggesting relative lack of diagenetic alteration. Additional information can be found in the original extended abstract.

  15. Seismic-reflection investigations of the Texas Springs Syncline for ground water development, Death Valley National Park

    USGS Publications Warehouse

    Machette, Michael N.; Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.; Dart, R.L.

    2000-01-01

    The U.S. Geological Survey has completed an integrated geologic and geophysical study of the Texas Springs syncline for the National Park Service with the intention of locating a new production water well near existing water-collection and distribution facilities. Subsurface information was required to determine which, if any, sites within the syncline would be favorable for a well. About 4.2 km (2.6 mi.) of high-resolution seismic-reflection data were collected across and along the Texas Springs syncline. Two of our three lines, designated DV-1 and DV-3, cross the syncline, whereas the third line (DV-2) runs parallel to the north-northwest-trending syncline axis.

  16. DETAIL VIEW OF TRAM BUCKET FRAME, SHOWING CLAMPING MECHANISM,WITHOUT ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF TRAM BUCKET FRAME, SHOWING CLAMPING MECHANISM,WITHOUT ORE BUCKET AND WHEELS. THE FRAME IS LYING ON ITS SIDE. THE ORE BUCKET WAS ATTACHED TO THE LEFT SIDE, AND TWO WHEELS WERE ATTACHED TO THE SPINDLE ON THE RIGHT. THE FRAME AND BUCKET ARE SUSPENDED FROM THE STATIONARY CABLE BY THE TWO WHEELS, WITH THE ORE BUCKET HANGING BELOW. THE WHEEL AND LEVER AT CENTER WERE ACTIVATED BY THE OPENING AND CLOSING MECHANISMS ON THE TRAM TERMINALS TO LOCK OR RELEASE THE BUCKET ONTO THE MOVING CABLE THAT RAN THROUGH THE SQUARE BLOCK AT CENTER. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. A very public death: dying of mesothelioma and asbestos-related lung cancer (M/ARLC) in the Latrobe Valley, Victoria, Australia.

    PubMed

    Lee, Susan F; O'Connor, Margaret M; Chapman, Ysanne; Hamilton, Vicki; Francis, Karen

    2009-01-01

    It is anticipated that in Australia the number of cases of mesothelioma will continue to rise significantly over the next 15 years with power station workers having a risk second only to asbestos mill workers. Mesothelioma responds poorly to treatment and is almost always fatal, yet there have been few studies related to the palliative care needs of this diagnostic group and none focussing on the Latrobe Valley, Victoria, Australia. The aims of this pilot study were to identify common issues and to explore the needs and experiences of people with mesothelioma and asbestos-related lung cancer (M/ARLC), their carers, and service providers in the Latrobe Valley community, in particular in relation to palliative care. The study employed a case study design using in-depth interviews, media reports, local authority and employer reports and historical data, which were content analysed. The constant comparative method was used to identify common themes and issues. The Latrobe Valley is the fourth largest regional area in Victoria. The electricity industry and brown coal mining at the town of Yallourn were the primary industries. Former power workers are contracting mesothelioma at a rate seven times the national average. A total of 13 participants from the Latrobe Valley were interviewed, comprising five key stakeholders who were local legal and healthcare providers; two people who had been diagnosed with mesothelioma; and six family carers. Most people with M/ARLC in the Latrobe Valley are older males who were employed by the electricity and related industries, while their carers are mostly female wives and daughters. There were three major themes identified in the data: illness experience; carer and family roles; and services and service gaps. The results indicated that those with M/ARLC and their families experience diagnosis and treatment as being filled with unpredictability and fear. The older males with M/ARLC were characterised as stoic and reluctant to seek help, contributing to a delayed diagnosis. However, their rural health services compounded these delays because of the unpredictability of health professional availability. Although there are some cancer treatment and legal services locally, people with M/ARLC are often required to travel to metropolitan services for care and advice. The effort and time required to seek compensation at a time of declining health was particularly burdensome. Participants expressed the tension between feelings of loyalty to their employers and anger at the perceived betrayal of the same employers, who were reported to have ignored asbestos warnings. Access to palliative care was delayed by a discomfort associated with acknowledgement of dying and resulted in poor symptom control and a lack of support to significantly burdened carers. People with M/ARLC have a strong desire to die at home but issues of rurality, isolation and late referral to palliative care services often complicate their care. This pilot study explored the needs of people with M/ARLC in the Latrobe Valley and the results indicated that their experience is complicated by unpredictability, lack of information and the rural location. The study recommended that innovative models of care be investigated to improve communication and continuity of care in the Latrobe Valley community, in addition to the barriers and enablers to local health and legal service provision. Further, the study indicates that a comprehensive education strategy for local health providers and community members, and strategies to prevent and manage volunteer and health professional burnout are needed.

  18. Geologic map of the Oasis Valley basin and vicinity, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fridrich, C.J.; Minor, S.A.; Ryder, P.L.

    2000-01-13

    This map and accompanying cross sections present an updated synthesis of the geologic framework of the Oasis Valley area, a major groundwater discharge site located about 15 km west of the Nevada Test Site. Most of the data presented in this compilation is new geologic map data, as discussed below. In addition, the cross sections incorporate new geophysical data that have become available in the last three years (Grauch and others, 1997; written comm., 1999; Hildenbrand and others, 1999; Mankinen and others, 1999). Geophysical data are used to estimate the thickness of the Tertiary volcanic and sedimentary rocks on themore » cross sections, and to identify major concealed structures. Large contiguous parts of the map area are covered either by alluvium or by volcanic units deposited after development of the major structures present at the depth of the water table and below. Hence, geophysical data provide critical constraints on our geologic interpretations. A companion paper by Fridrich and others (1999) and the above-cited reports by Hildenbrand and others (1999) and Mankinen and others (1999) provide explanations of the interpretations that are presented graphically on this map. This map covers nine 7.5-minute quadrangles in Nye County, Nevada, centered on the Thirsty Canyon SW quadrangle, and is a compilation of one published quadrangle map (O'Connor and others, 1966) and eight new quadrangle maps, two of which have been previously released (Minor and others, 1997; 1998). The cross sections that accompany this map were drawn to a depth of about 5 km below land surface at the request of hydrologists who are modeling the Death Valley groundwater system.« less

  19. In situ measurement and source apportionment of aerosols in the Kathmandu valley, Nepal, April 2015.

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Werden, B.; Goetz, J. D.; Giordano, M.; Bhave, P.; Jayarathne, T. S.; Stockwell, C.; Christian, T. J.; Nadler, W.; Panday, A. K.; Yokelson, R. J.; Stone, E. A.

    2017-12-01

    The Kathmandu Valley in Nepal is home to over 2.5 Million people, and is one of the fastest growing metropolitan areas in South Asia. It is subject to extreme pollution events due to numerous unregulated localized pollution sources and regional transport from the Indo-Gangetic Plain (IGP). Over 10% of Nepali fatalities are from lung disorders, making it the most common cause of death in the country. Previous field work has studied gas species, wintertime VOCs and PM in the valley. The Nepal Ambient Measurement and Site Testing Experiment [NAMaSTE] is the first deployment of a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) in Nepal and allows for a more comprehensive analysis of aerosol species and their source contributions. Ambient measurements for the NAMaSTE campaign were made in Bode, 8 km east of Kathmandu. Intensive measurements were made in April 2015, but cut short by the 2015 Gorka earthquake. HR-ToF-AMS measurements provided detailed chemical composition information on particulate matter in the valley. Ancillary measurements of chemical species CO, CO2, CH4, H2O, O3, NOx, BC and PM were carried out and compared to AMS data and meteorological parameters. AMS species show a clear diurnal pattern, with extremely elevated concentrations in the morning, with a wind shift to westerly in the afternoon. PMF was performed on the ambient data set, and mass spectral data was compared to source mass spectra generated from emission testing of various local sources measured during the campaign. The mean concentration of PM2.5 was 83 ± 45 µg/m3, which is above the 24 hour WHO exposure threshold of 25 µg/m3 and annual continous exposure limit of 10 µg/m3­­. Localized sources of anthropogenic emissions such as garbage burning, coal for brick kilns, dung and biomass burning for cooking and agriculture are likely sources of elevated pollutant emissions. Unmitigated burning of trash and biomass coupled with irregular fuels are a major source of pollutant species and aerosols in the undeveloped world.

  20. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    PubMed

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  1. Consequences of a Refuge for the Predator-Prey Dynamics of a Wolf-Elk System in Banff National Park, Alberta, Canada

    PubMed Central

    Goldberg, Joshua F.; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027–0.186 and 0.001–0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9–2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013–0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146–0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031–0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge. PMID:24670632

  2. Emerging and Reemeriging Human Bunyavirus Infections and Climate Change

    NASA Technical Reports Server (NTRS)

    Sutherland, Laura J.; Anyamba, Assaf; LaBeaud, A. Desiree

    2013-01-01

    The Bunyaviridae family includes a growing number of viruses that have contributed to the burden of emerging and reemerging infectious diseases around the globe. Many of these viruses cause severe clinical outcomes in human and animal populations, the results of which can be detrimental to public health and the economies of affected communities. The threat to endemic and non-native regions is particularly high, and national and international public health agencies are often on alert. Many of the bunyaviruses cause severe clinical disease including hemorrhage, organ failure, and death leading to their high-risk classification. Hantaviruses and Rift Valley fever virus (RVFV) (genus Phlebovirus) are National Institute of Allergy and Infectious Diseases Category A priority pathogens in the United States. Viral hemorrhagic fevers, a classification that includes many bunyaviruses, are immediately notifiable in the European Union. The emergence of new and reemerging bunyaviruses has resulted in numerous human and animal fatalities. Outbreaks of Rift Valley fever (RVF) in East Africa (1997/1998, 2006/2007), Sudan (2007), Southern Africa (2008-2010), Kenya (1997/1998, 2006/2007) (Anyamba et al., 2009, 2010; Breiman et al., 2010; Grobbelaar et al., 2011; Woods et al., 2002) and Saudi Arabia & Yemen (2000, 2010) (Food and Agriculture Organization, 2000; Hjelle and Glass, 2000; Madani et al., 2003) and the emergence of Sin Nombre virus (1993) (Hjelle and Glass, 2000) and most recently Schmallenberg virus (2011) (DEFRA, 2012) are prime examples of the devastating and worldwide toll bunyaviruses have on health and economies. Climate variability (precipitation and temperature in particular) greatly influence the ecological conditions that drive arboviral disease outbreaks across the globe. Several human and animal disease outbreaks have been influenced by changes in climate associated with the El Niño Southern Oscillation (ENSO) phenomenon including the bunyaviruses RVFV and Sin Nombre (an etiologic agent of hantavirus pulmonary syndrome (HPS)), as well as Murray Valley encephalitis, chikungunya, and malaria to name but a few (Anyamba et al., 2009; Bouma and Dye, 1997; Chretien et al., 2007; Engelthaler et al., 1999; Kovats et al., 2003; Linthicum et al., 1999; Nicholls, 1986). Most bunyaviruses exhibit episodic outbreak patterns with seasonal or annual trends dependent upon climate conditions, vector abundance, and the proximity of a susceptible population. The implications for continued climate change are dire, especially with regard to vector-borne diseases, many of which can cause severe morbidity, sequelae, and death. Increased rainfall and widening endemicity as a result of climate change, compounded by the emergence of new viruses, poses a serious threat to a greater geographic range beyond the regions of endemicity.

  3. The hazards of eruptions through lakes and seawater

    USGS Publications Warehouse

    Mastin, L.G.; Witter, J.B.

    2000-01-01

    Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.

  4. Bridging the Technology Readiness "Valley of Death" Utilizing Nanosats

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.; Millar, Pamela S.; Norton, Charles D.

    2015-01-01

    Incorporating new technology is a hallmark of space missions. Missions demand ever-improving tools and techniques to allow them to meet the mission science requirements. In Earth Science, these technologies are normally expressed in new instrument capabilities that can enable new measurement concepts, extended capabilities of existing measurement techniques, or totally new detection capabilities, and also, information systems technologies that can enhance data analysis or enable new data analyses to advance modeling and prediction capabilities. Incorporating new technologies has never been easy. There is a large development step beyond demonstration in a laboratory or on an airborne platform to the eventual space environment that is sometimes referred to as the "technology valley of death." Studies have shown that non-validated technology is a primary cause of NASA and DoD mission delays and cost overruns. With the demise of the New Millennium Program within NASA, opportunities for demonstrating technologies in space have been rare. Many technologies are suitable for a flight project after only ground testing. However, some require validation in a relevant or a space flight environment, which cannot be fully tested on the ground or in airborne systems. NASA's Earth Science Technology Program has initiated a nimble program to provide a fairly rapid turn-around of space validated technologies, and thereby reducing future mission risk in incorporating new technologies. The program, called In-Space Validation of Earth Science Technology (InVEST), now has five tasks in development. Each are 3U CubeSats and they are targeted for launch opportunities in the 2016 time period. Prior to formalizing an InVEST program, the technology program office was asked to demonstrate how the program would work and what sort of technologies could benefit from space validation. Three projects were developed and launched, and have demonstrated the technologies that they set out to validate. This paper will provide a brief status of the pre-InVEST CubeSats, and discuss the development and status of the InVEST program. Figure

  5. Preliminary Characterization of a Microbial Community of Rock Varnish from Death Valley, California

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; LaDuc, M. T.; Kuhlman, G. M.; Anderson, R. C.; Newcombe, D. A.; Fusco, W.; Steucker, T.; Allenbach, L.; Ball, C.; Crawford, R. L.

    2003-01-01

    Rock varnish (also referred to as desert varnish in the literature because it is particularly noticeable in desert environments) is a dark, thin (typically 50-500 m thick), layered veneer composed of clay minerals cemented together by oxides and hydroxides of manganese and iron. Some scientists suggest that varnish may provide a historical record of environmental processes such as global warming and long-term climate change. However, despite more than 30 years of study using modern microanalytical and microbial culturing techniques, the nucleation and growth mechanisms of rock varnish remain a mystery. Rock varnish is of interest to the Mars science community because a varnish-like sheen has been reported on the rocks at the Viking Lander sites. It therefore important for us to understand the formation mechanisms of terrestrial varnish abiotic, biotic, or a combination of the two -- as this understanding may give us clues concerning the chemical and physical processes occurring on the surface of Mars. It is strongly believed by some in the biogeochemistry community that microbes have a role in forming rock varnish, and iron- and manganese-oxidation by microbes isolated from varnish has been extensively investigated. Only two of these studies have investigated the microbial genetics of varnish. These studies examined the morphological, physiological and molecular characteristics of microbes that had previously been cultured from various rock varnishes and identified the cultivars using 16S rDNA sequencing techniques. However, it is well known that most of organisms existing in nature are refractory to cultivation, so many important organisms would have been missed. The currently described work investigates the genetics of rock varnish microbial community from a site in the Whipple Mtns., south of Death Valley, CA, near Parker, Arizona. We employed both cultural and molecular techniques to characterize the microorganisms found within the varnish and surrounding soil with the objectives of (a) identifying microorganisms potentially involved in varnish formation, and (b) discovering microorganisms that simply use the varnish as an extreme habitat.

  6. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the Devils Hole area.

  7. Digital geologic map of the Nevada Test Site and vicinity, Nye, Lincoln, and Clark Counties, Nevada, and Inyo County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slate, J.L.; Berry, M.E.; Rowley, P.D.

    2000-03-08

    This digital geologic map of the Nevada Test Site (NTS) and vicinity, as well as its accompanying digital geophysical maps, are compiled at 1:100,000 scale. The map area covers two 30 {times} 60-minute quadrangles-the Pahute Mesa quadrangle to the north and the Beatty quadrangle to the south-plus a strip of 7 1/2-minute quadrangles on the east side. In addition to the NTS, the map area includes the rest of the southwest Nevada volcanic field, part of the Walker Lane, most of the Amargosa Desert, part of the Funeral and Grapevine Mountains, some of Death Valley, and the northern Spring Mountains.more » This geologic map improves on previous geologic mapping of the same area by providing new and updated Quaternary and bedrock geology, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. This publication also includes a new isostatic gravity map and a new aeromagnetic map. The primary purpose of the three maps is to provide an updated geologic framework to aid interpretation of ground-water flow through and off the NTS. The NTS is centrally located within the area of the Death Valley regional ground-water flow system of southwestern Nevada and adjacent California. During the last 40 years, DOE and its predecessor agencies have conducted about 900 nuclear tests on the NTS, of which 100 were atmospheric tests and the rest were underground tests. More than 200 of the tests were detonated at or beneath the water table, which commonly is about 500 to 600 m below the surface. Because contaminants introduced by these test may move into water supplies off the NTS, rates and directions of ground-water flow must be determined. Knowledge about the ground water also is needed to properly appraise potential future effects of the possible nuclear waste repository at Yucca Mountain, adjacent to the NTS.« less

  8. Comment on “An unconfined groundwater model of the Death Valley Regional Flow System and a comparison to its confined predecessor” by R.W.H. Carroll, G.M. Pohll and R.L. Hershey [Journal of Hydrology 373/3–4, pp. 316–328

    USGS Publications Warehouse

    Faunt, Claudia C.; Provost, Alden M.; Hill, Mary C.; Belcher, Wayne R.

    2011-01-01

    Carroll et al. (2009) state that the United States Geological Survey (USGS) Death Valley Regional Flow System (DVRFS) model, which is based on MODFLOW, is “conceptually inaccurate in that it models an unconfined aquifer as a confined system and does not simulate unconfined drawdown in transient pumping simulations.” Carroll et al. (2009) claim that “more realistic estimates of water availability” can be produced by a SURFACT-based model of the DVRFS that simulates unconfined groundwater flow and limits withdrawals from wells to avoid excessive drawdown. Differences in results from the original MODFLOW-based model and the SURFACT-based model stem primarily from application by Carroll et al. (2009) of head limits that can also be applied using the existing MODLOW model and not from any substantial difference in the accuracy with which the unconfined aquifer is represented in the two models. In a hypothetical 50-year predictive simulation presented by Carroll et al. (2009), large differences between the models are shown when simulating pumping from the lower clastic confining unit, where the transmissivity is nearly two orders of magnitude less than in an alluvial aquifer. Yet even for this extreme example, drawdowns and pumping rates from the MODFLOW and SURFACT models are similar when the head-limit capabilities of the MODFLOW MNW Package are applied. These similarities persist despite possible discrepancies between assigned hydraulic properties. The resulting comparison between the MODFLOW and SURFACT models of the DVRFS suggests that approximating the unconfined system in the DVRFS as a constant-saturated-thickness system (called a “confined system” by Carroll et al., 2009) performs very well.

  9. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  10. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  11. Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model

    PubMed Central

    Caroline, Amy L.; Kujawa, Michael R.; Oury, Tim D.; Reed, Douglas S.; Hartman, Amy L.

    2016-01-01

    Rift Valley fever (RVF) is an emerging viral disease that causes significant human and veterinary illness in Africa and the Arabian Peninsula. Encephalitis is one of the severe complications arising from RVF virus (RVFV) infection of people, and the pathogenesis of this form of RVF is completely unknown. We use a novel reproducible encephalitic disease model in rats to identify biomarkers of lethal infection. Lewis rats were infected with RVFV strain ZH501 by aerosol exposure, then sacrificed daily to determine the course of infection and evaluation of clinical, virological, and immunological parameters. Weight loss, fever, and clinical signs occurred during the last 1–2 days prior to death. Prior to onset of clinical indications of disease, rats displayed marked granulocytosis and thrombocytopenia. In addition, high levels of inflammatory chemokines (MCP-1, MCS-F, Gro/KC, RANTES, and IL-1β) were detected first in serum (3–5 dpi) followed by brain (5–7 dpi). The results of this study are consistent with clinical data from human RVF patients and validate Lewis rats as an appropriate small animal model for RVF encephalitis. The biomarkers we identified here will be useful in future studies evaluating the efficacy of novel vaccines and therapeutics. PMID:26779164

  12. Agriculture is a major source of NOx pollution in California

    PubMed Central

    Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z.

    2018-01-01

    Nitrogen oxides (NOx = NO + NO2) are a primary component of air pollution—a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NOx pollution, several of the United States’ worst–air quality districts remain in rural regions of the state. Site-based findings suggest that NOx emissions from California’s agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NOx pollution in California, with especially high soil NOx emissions from the state’s Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NOx emissions and (ii) top-down airborne observations of atmospheric NOx concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NOx source from cropland soil, which is estimated to increase the NOx budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NOx emissions from the soil. Our results highlight opportunities to limit NOx emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California. PMID:29399630

  13. The genetic basis for susceptibility to Rift Valley fever disease in MBT/Pas mice.

    PubMed

    Tokuda, S; Do Valle, T Z; Batista, L; Simon-Chazottes, D; Guillemot, L; Bouloy, M; Flamand, M; Montagutelli, X; Panthier, J-J

    2015-01-01

    The large variation in individual response to infection with Rift Valley fever virus (RVFV) suggests that host genetic determinants play a role in determining virus-induced disease outcomes. These genetic factors are still unknown. The systemic inoculation of mice with RVFV reproduces major pathological features of severe human disease, notably the hepatitis and encephalitis. A genome scan performed on 546 (BALB/c × MBT) F2 progeny identified three quantitative trait loci (QTLs), denoted Rvfs-1 to Rvfs-3, that were associated with disease susceptibility in MBT/Pas mice. Non-parametric interval-mapping revealed one significant and two suggestive linkages with survival time on chromosomes 2 (Rvfs-1), 5 (Rvfs-3) and 11 (Rvfs-2) with respective logarithm of odds (LOD) scores of 4.58, 2.95 and 2.99. The two-part model, combining survival time and survival/death, identified one significant linkage to Rvfs-2 and one suggestive linkage to Rvfs-1 with respective LOD scores of 5.12 and 4.55. Under a multiple model, with additive effects and sex as a covariate, the three QTLs explained 8.3% of the phenotypic variance. Sex had the strongest influence on susceptibility. The contribution of Rvfs-1, Rvfs-2 and Rvfs-3 to survival time of RVFV-infected mice was further confirmed in congenic mice.

  14. Relating coccidioidomycosis (valley fever) incidence to soil moisture conditions.

    PubMed

    Coopersmith, E J; Bell, J E; Benedict, K; Shriber, J; McCotter, O; Cosh, M H

    2017-04-17

    Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp. , in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness and death can occur when the infection spreads to other regions of the body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those estimates, this work connects periods of higher and lower soil moisture in Arizona and California between 2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of months have been atypically wet or dry, depending on the location.

  15. Evidence of a major fault zone along the California-Nevada state line 35 deg 30 min to 36 deg 30 min north latitude

    NASA Technical Reports Server (NTRS)

    Liggett, M. A.; Childs, J. F.

    1973-01-01

    The author has identified the following significant results. Geologic reconnaissance guided by analysis of ERTS-1 and Apollo-9 satellite imagery and intermediate scale photography from X-15 and U-2 aircraft has confirmed the presence of a major fault zone along the California-Nevada state line, between 35 deg 30 min and 36 deg 30 min north latitude. The name Pahrump Fault Zone has been suggested for this feature after the valley in which it is best exposed. Field reconnaissance has indicated the existence of previously unreported faults cutting bedrock along range fronts, and displacing Tertiary and Quaternary basin sediments. Gravity data support the interpretation of regional structural discontinuity along this zone. Individual fault traces within the Pahrump Fault Zone form generally left-stepping en echelon patterns. These fault patterns, the apparent offset of a Laramide age thrust fault, and possible drag folding along a major fault break suggest a component of right lateral displacement. The trend and postulated movement of the Pahrump Fault Zone are similar to the adjacent Las Vegas Shear Zone and Death Valley-Furnace Creek Faults, which are parts of a regional strike slip system in the southern Basin-Range Province.

  16. Relating coccidioidomycosis (valley fever) incidence to soil moisture conditions

    PubMed Central

    Coopersmith, E. J.; Bell, J. E.; Benedict, K.; Shriber, J.; McCotter, O.; Cosh, M. H.

    2017-01-01

    Coccidioidomycosis (also called Valley fever) is caused by a soilborne fungus, Coccidioides spp., in arid regions of the southwestern United States. Though some who develop infections from this fungus remain asymptomatic, others develop respiratory disease as a consequence. Less commonly, severe illness and death can occur when the infection spreads to other regions of the body. Previous analyses have attempted to connect the incidence of coccidioidomycosis to broadly available climatic measurements, such as precipitation or temperature. However, with the limited availability of long-term, in situ soil moisture data sets, it has not been feasible to perform a direct analysis of the relationships between soil moisture levels and coccidioidomycosis incidence on a larger temporal and spatial scale. Utilizing in situ soil moisture gauges throughout the southwest from the U.S. Climate Reference Network and a model with which to extend those estimates, this work connects periods of higher and lower soil moisture in Arizona and California between 2002 and 2014 to the reported incidence of coccidioidomycosis. The results indicate that in both states, coccidioidomycosis incidence is related to soil moisture levels from previous summers and falls. Stated differently, a higher number of coccidioidomycosis cases are likely to be reported if previous bands of months have been atypically wet or dry, depending on the location. PMID:29124249

  17. Systematics of a widely distributed western North American springsnail, Pyrgulopsis micrococcus (Caenogastropoda, Hydrobiidae), with descriptions of three new congeners.

    PubMed

    Hershler, Robert; Liu, Hsiu-Ping; Bradford, Corbin

    2013-01-01

    We describe three new species of springsnails (genus Pyrgulopsis) from the Amargosa River basin, California and Nevada (P. licina sp. n., P. perforata sp. n., P. sanchezi sp. n.), each of which was previously considered to be part of P. micrococcus. We also restrict P. micrococcus to its type locality area (Oasis Valley) and redefine a regional congener, P. turbatrix, to include populations from the central Death Valley region and San Bernardino Mountains that had been previously identified as P. micrococcus. The five species treated herein form genetically distinct lineages that differ from each other by 4.2-12.6% for mtCOI and 5.2-13.6% for mtNDI (based on previously published and newly obtained data), and are diagnosable by shell and/or penial characters. The new molecular data presented herein confirm sympatry of P. licina and P. sanchezi in Ash Meadows (consistent with morphological evidence) and delineate an additional lineage of P. micrococcus (in the broad sense) that we do not treat taxonomically owing to the paucity of morphological material. Conservation measures are needed to ensure the long term persistence of populations of P. micrococcus and a genetically differentiated lineage of P. sanchezi which live in disturbed habitats on private lands.

  18. Pintail and mallard survival in California relative to habitat, abundance, and hunting

    USGS Publications Warehouse

    Fleskes, J.P.; Yee, J.L.; Yarris, G.S.; Miller, M.R.; Casazza, Michael L.

    2007-01-01

    The influence of habitat, waterfowl abundance, and hunting on winter survival of waterfowl is not well understood. We studied late August-March survival of 163 after-hatch-year (AHY) and 128 hatch-year (HY) female mallards (Anas platyrhynchos) radiotagged in Sacramento Valley (SACV) and 885 AHY female northern pintails (A. acuta) radiotagged throughout the Central Valley of California, USA, relative to flooded habitat (HAB), January abundance of each species (JMAL or JPIN), hunter-days (HDY), and a hunting pressure index (HPI) that combined these variables. From EARLY (1987-1994) to LATE (1998-2000), HAB increased 39%, JPIN increased 45%, JMAL increased 53%, HDY increased 21%, duck-hunting season increased from 59 days to 100 days, and the female daily bag limit doubled to 2 for mallards but remained 1 for pintails. Survival (?? SE) was greater during LATE versus EARLY for pintails radiotagged in each region (SACV: 93.2 ?? 2.1% vs. 87.6 ?? 3.0%; Suisun Marsh: 86.6 ?? 3.2% vs. 77.0 ?? 3.7%; San Joaquin Valley: 86.6 ?? 3.1% vs. 76.9 ?? 4.1%) but not for SACV mallards (AHY: 70.6 ?? 7.2% to 74.4 ?? 7.7% vs. 80.1 ?? 7.2% to 82.8 ?? 5.6%; HY: 48.7 ?? 9.1% [1999-2000 only] vs. 63.5 ?? 8.8% to 67.6 ?? 8.0%). Most pintail (72%) and mallard (91%) deaths were from hunting, and lower HPI and higher JPIN or JMAL were associated with reduced mortality. Increased HAB was associated with reduced winter mortality for pintails but not for SACV mallards. Pintail survival rates that we measured were within the range reported for other North American wintering areas, and during LATE were higher than most, even though our study duration was 68-110 days longer. Winter survival rates of SACV mallards were also within the reported range. However, with higher bag limits and longer seasons, mallard survival during LATE was lower than in most other wintering areas, especially during 1999-2000, when high winds on opening weekend resulted in high hunting mortality. Habitat conservation and favorable agriculture practices helped create a Central Valley wintering environment where natural mortality of mallards and pintails was low and survival varied with hunting mortality. We recommend regulations and habitat management that continue to minimize natural mortality while allowing sustainable harvest at a level that helps maintain strong incentive for management of Central Valley waterfowl habitats, including the large portion that is privately owned.

  19. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Zhao, Fu-Li; Chen, Min; Dong, Jian-Wen

    2017-07-01

    The valley has been exploited as a binary degree of freedom to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials, in which valley-contrasting physics is indispensable in making the valley index an information carrier. In this Rapid Communication, we reveal valley-contrasting physics in all-dielectric valley photonic crystals. The link between the angular momentum of light and the valley state is discussed, and unidirectional excitation of the valley chiral bulk state is realized by sources carrying orbital angular momentum with proper chirality. Characterized by the nonzero valley Chern number, valley-dependent edge states and the resultant broadband robust transport is found in such an all-dielectric system. Our work has potential in the orbital angular momentum assisted light manipulation and the discovery of valley-protected topological states in nanophotonics and on-chip integration.

  20. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  1. Graphene Nanobubbles as Valley Filters and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka

    2016-12-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  2. Academic-Pharma drug discovery alliances: seeking ways to eliminate the valley of death.

    PubMed

    Hammonds, Tim

    2015-01-01

    Industrial pharmaceutical companies (Pharma) share a common goal with academic scientists (Academia) in that they wish to create an environment in which patients are treated for diseases with ever more effective therapies. As disease biology has proven to be ever more complex and money and new drugs are becoming more elusive, Pharma and Academia are reaching toward each other with ever greater collaborative intent. There are a growing number of collaboration models that allow scientists to work together and profit from the creation of new drugs. Here I give a personal view of how we came to where we are, present an overview of a number of these models and look to the future in terms of running successful discovery alliances.

  3. DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING SOUTH TOWARD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF UPPER TRAM TERMINAL STRUCTURE, LOOKING SOUTH TOWARD THE FRONT OF THE STRUCTURE. THE WHEELS AT THE TOP OF THE TRAM BUCKETS RODE OFF THE STATIONARY CABLES ONTO THE TRACK SUPPORTED BY THE "C" IRONS SUSPENDED FROM THE TOP TIMBERS ON THE LEFT AND RIGHT. THE BUCKET OPENING MECHANISM IS ON THE LEFT, AND PART OF THE CLOSING MECHANISM ON THE RIGHT EDGE OF THE FRAME. THE TWO CABLES AT CENTER ARE THE STATIONARY TRAM CABLES THAT RUN ALONG THE TOP OF THE SUPPORT TOWERS ON WHICH THE WHEELS OF THE TRAM BUCKETS RODE. THEY ARE ANCHORED AT GROUND LEVEL JUST OFF FRAME TO THE LOWER LEFT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  4. OVERVIEW OF STAMP MILL SITE,LOOKING SOUTHWEST. THE LOWER TRAM TERMINAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF STAMP MILL SITE,LOOKING SOUTHWEST. THE LOWER TRAM TERMINAL IS OUT OF FRAME, JUST TO THE RIGHT. WATER TANK, LOADING PLATFORM, AND TRAM TRESTLE LEADING UP TO THE TRAM TERMINAL ARE AT RIGHT. THE STRUCTURE AT EXTREME RIGHT BELOW THE TRESTLE, ARE REMAINS OF A SECONDARY ORE BIN, WITH BALL MILL FOUNDATIONS AND WOOD DEBRIS JUST BELOW ON THE SECOND LEVEL. AT CENTER IS A BOILER AND THE FRAME WORK OF A FILTER PRESS. THE SMALL STRUCTURE AT CENTER LEFT IS AN INTERPRETIVE SIGN PLACED BY THE PARK SERVICE. AT LOWER LEFT, THIRD LEVEL OF THE MILL, ARE THE REMAINS OF A BLACKSMITH'S FORGE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  5. DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER FOUNDATION, AND BALL MILL FOUNDATIONS, LOOKING NORTH NORTHWEST. ORE FROM THE MINES WAS DUMPED FROM THE TRAM BUCKETS INTO THE PRIMARY ORE BIN UNDER THE TRAM TERMINAL. A SLIDING CONTROL DOOR INTRODUCED THE INTO THE JAW CRUSHER (FOUNDATIONS,CENTER). THE CRUSHED ORE WAS THEN CONVEYED INTO THE SECONDARY ORE BIN AT CENTER LEFT. A HOLE IN THE FLOOR OF THE ORE BIN PASSED ORE ONTO ANOTHER CONVEYOR THAT BROUGHT IT OUT TO THE BALL MILL(FOUNDATIONS,CENTER BOTTOM). THIS SYSTEM IS MOST LIKELY NOT THE ORIGINAL SET UP, PROBABLY INSTALLED IN THE MINE'S LAST OCCUPATION IN THE EARLY 1940s. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  6. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  7. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  8. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE PAGES

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin; ...

    2017-07-26

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  9. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  10. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  11. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond Valley, flow is from valley margins toward the irrigated area. In northern Diamond Valley, flow appears to remain generally northward to the large discharge area. Subsurface flow through mountain ranges has been identified from Garden Valley (outside the study area) through the Sulphur Springs Range to Diamond Valley and from southeastern Antelope Valley through the Fish Creek Range to Little Smoky Valley (outside the study area). In both cases, the flow is probably through carbonate rocks. Ground-water levels in the Diamond Valley flow system have changed during the past 40 years. These changes are the result of pumpage for irrigation, municipal, domestic, and mining uses, mostly in southern Diamond Valley, and annual and longer-term variations in precipitation in undeveloped parts of the study area. A large area of ground-water decline that underlies an area about 10 miles wide and 20 miles long has developed in the basin-fill aquifer of southern Diamond Valley. Water levels beneath the main part of the irrigated area have declined as much as 90 feet. In undeveloped parts of the study area, annual water-level fluctuations generally have been no more than a few feet.

  12. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  13. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Current research on Transition Metal Dichalcogenide (TMD) Monolayers is stimulated by their strong light-matter interaction and the possibility to use the valley index in addition to spin as an information carrier. The direct gap interband transitions in TMD monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Very recently the optical generation of valley polarization and valley coherence (coherent superposition of valley states) have been reported. In this work we go a step further by discussing the coherent manipulation of valley states. Linearly polarized laser excitation prepares a coherent superposition of valley states. We demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. The induced valley Zeeman splitting between K+ and K- results in a change of the oscillation frequency of the superposition of the valley states, which corresponds to a rotation of the exciton valley pseudo-spin. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9T and discuss valley coherence in other TMD monolayer materials. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom. In collaboration with X. Marie, T. Amand, C. Robert, F. Cadiz, P. Renucci, B. Urbaszek (Université de Toulouse, INSA-CNRS-UPS, LPCNO, France), B. L. Liu (Institute of Physics, Chinese Academy of Sciences, China) and we acknowledge ERC Grant No. 306719.

  14. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  15. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  16. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  17. The Iceman's last weeks

    NASA Astrophysics Data System (ADS)

    Spindler, Konrad

    1994-06-01

    The author presents the archaeological, botanical and anatomical of medical evidence relating to the events of the last few days of the Iceman's life. The unfinished arrows and the half-completed bow indicate that he had lost his weapons and was in the process of re-arming himself. The quiver and the two primed arrows show clear signs of damage that has been proved to originate from before entombment in the ice of Hauslabjoch. An intravital series of fractured ribs and atrophic changes to the humerus on the same side of the body are also indicative of a violent conflict. The presence of threshing and winnowing fragments proves that, shortly before his death, the Iceman spent some time in a human settlement in which the grain crop was threshed. The theory is therefore proposed that shortly before his death the Iceman suffered some personal catastrophe involving damage to his possessions and physical injury. He fled in the direction of the inner Ötz Valley, a region of high alpine pastures he may have been familiar with from summer transhumance. Just beyond the ridge of the main Alpine chain he was caught by a sudden fall in temperature and snowfall, which he did not survive.

  18. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  19. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  20. EPA Region 1 - Map Layers for Valley ID Tool (Hosted Feature Service)

    EPA Pesticide Factsheets

    The Valley Service Feature Layer hosts spatial data for EPA Region 1's Valley Identification Tool. These layers contain attribute information added by EPA R1 GIS Center to help identify populated valleys:- Fac_2011NEI: Pollution sources selected from the National Emissions Inventory (EPA, 2011).- NE_Towns_PopValleys: New England Town polygons (courtesy USGS), with Population in Valleys and Population Density in Valleys calculated by EPA R1 GIS, from 2010 US Census blocks. - VT_E911: Vermont residences (courtesy VT Center for Geographic Information E-911).

  1. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  2. Hydrology of stock-water development on the public domain of western Utah

    USGS Publications Warehouse

    Snyder, Charles T.

    1963-01-01

    A geologic and hydrologic reconnaissance was made on the public domain of western Utah to appraise the water resources of the area and to provide a basis for locating and developing sources of stock water. The study area includes the Bonneville, Pahvant, and Virgin Grazing Districts, in parts of Tooele, Utah, Juab, Millard, Beaver, Iron, and Washington Counties, Utah.Western Utah is in the Great Basin section of the Basin and Range physiographic province and is typified by northward-trending parallel mountain ranges, and basins of interior drainage. Precipitation ranges from 5 to 9 inches annually in most of the valleys but in some places it is as much as 15 or 16 inches and probably is considerably greater in the mountains.The valleys of western Utah have been classified in the report according to their hydrologic and topographic characteristics. The Great Salt Lake valley and the Sevier Lake valley are closed or terminal valleys having no outlet for the discharge of water except by evaporation. Such valleys are topographically closed and hydrologically undrained. Valleys tributary to these terminal valleys are topographically open valleys from which water is discharged by gravity flow to the terminal valley. Quality of ground water in the valleys of western Utah depends upon the valley type and place where the water is sampled with respect to the body of ground water in the valley fill. Quality of the water in the drained parts of the valleys is usually good whereas water in the undrained parts of the valleys may be heavily charged with dissolved mineral contaminants. Limits of tolerance for use of salt-contaminated water are cited.The adequacy of distribution of water supplies in western Utah was determined by application of the service area concept to the existing supplies. Stock-water supplies are obtained from wells, springs, and reservoirs. Most of the wells are in the valleys where water is obtained from valley fill; the depth to water ranges from a few tens of feet to several hundred feet. Ground water generally cannot be obtained in the mountains because the rocks either lack permeability or are drained.Data collected in 13 valleys, each valley forming a ground-water unit, are listed in the tables and are used to evaluate the prospects for obtaining additional water supplies.

  3. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations were made.

  4. Agriculture is a major source of NO x pollution in California.

    PubMed

    Almaraz, Maya; Bai, Edith; Wang, Chao; Trousdell, Justin; Conley, Stephen; Faloona, Ian; Houlton, Benjamin Z

    2018-01-01

    Nitrogen oxides (NO x = NO + NO 2 ) are a primary component of air pollution-a leading cause of premature death in humans and biodiversity declines worldwide. Although regulatory policies in California have successfully limited transportation sources of NO x pollution, several of the United States' worst-air quality districts remain in rural regions of the state. Site-based findings suggest that NO x emissions from California's agricultural soils could contribute to air quality issues; however, a statewide estimate is hitherto lacking. We show that agricultural soils are a dominant source of NO x pollution in California, with especially high soil NO x emissions from the state's Central Valley region. We base our conclusion on two independent approaches: (i) a bottom-up spatial model of soil NO x emissions and (ii) top-down airborne observations of atmospheric NO x concentrations over the San Joaquin Valley. These approaches point to a large, overlooked NO x source from cropland soil, which is estimated to increase the NO x budget by 20 to 51%. These estimates are consistent with previous studies of point-scale measurements of NO x emissions from the soil. Our results highlight opportunities to limit NO x emissions from agriculture by investing in management practices that will bring co-benefits to the economy, ecosystems, and human health in rural areas of California.

  5. Use of SPOT and ERS-1 SAR data to study the tectonic and climatic history of arid regions

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Peltzer, Gilles F.

    1993-01-01

    In order to separate the effects of the different tectonic and climatic processes on the shapes of desert piedmonts, a modified conic equation was fitted to digital topographic data for individual alluvial fans in Death Valley (California, U.S.). The topographic data were obtained from a SPOT panchromatic stereo pair and from the airborne interferometric SAR (Synthetic Aperture Radar) (TOPSAR). The conic fit allows parameters for the epex position, slope, and radial curvature to be compared with unit age, uplift rate, and climatic conditions. Preliminary results indicate that slope flattens with age and radial curvature is concave up, but decreases with age. Work is continuing on correlation of fit residuals and apex position with fan unit age. This information will help in the determination of tectonic uplift rates and the climatic history of the western U.S. ERS-1 SAR images were used to study an area of western China where a large strike slip fault crosses a series of alluvial fans and stream valleys. Previous analysis of SPOT panchromatic images of the area shows that offsets fans and streams can be recognized. Measurement of the rate of motion of this fault will help in the overall model of deformation of the Asian tectonic plate in response to the collision of the Indian plate.

  6. The Mojave River from sink to source: The 2018 Desert Symposium Field Trip Road Log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Groover, Krishangi D.; Buesch, David C.; Brown, H. J.; Cromwell, Geoffrey; Densmore-Judy, Jill; Garcia, A.L.; Hughson, D.; Knott, J.R.; Lovich, Jeffrey E.

    2018-01-01

    The Mojave River evolved over the past few million years by “fill and spill” from upper basins near its source in the Transverse Ranges to lower basins. Each newly “spilled into” basin in the series? sustained a long-lived lake but gradually filled with Mojave River sediment, leading to spill to a yet lower elevation? basin. The Mojave River currently terminates at Silver Lake, near Baker, CA, but previously overflowed this terminus onward to Lake Manly in Death Valley during the last glacial cycle. The river’s origin and evolution are intricately interwoven with tectonic, climatic, and geomorphic processes through time, beginning with San Andreas fault interactions that created a mountain range across a former externally draining river. We will see and discuss the Mojave River’s predecessor streams and basins, its evolution as it lengthened to reach the central Mojave Desert, local and regional tectonic controls, groundwater flow, flood history, and support of isolated perennial stream reaches that host endemic species. In association with these subjects are supporting studies such as paleoclimate records, location and timing for groundwater and wetlands in the central Mojave Desert, and effects of modern water usage. The trip introduces new findings for the groundwater basin of Hinkley Valley, including an ongoing remediation project that provides a wealth of information on past and present river flow and associated development of the groundwater system.

  7. 27 CFR 9.132 - Rogue Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rogue Valley. 9.132... Rogue Valley. (a) Name. The name of the viticultural area described in this section is “Rouge Valley.” (b) Approved map. The appropriate map for determining the boundaries of the Rogue Valley viticultural...

  8. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  9. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  10. Observation of Exciton-Exciton Interaction Mediated Valley Depolarization in Monolayer MoSe2.

    PubMed

    Mahmood, Fahad; Alpichshev, Zhanybek; Lee, Yi-Hsien; Kong, Jing; Gedik, Nuh

    2018-01-10

    The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long time scales (hundreds of nanoseconds). However, time-resolved measurements report valley lifetimes of only a few picoseconds. This has been attributed to mechanisms such as phonon-mediated intervalley scattering and a precession of the valley pseudospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe 2 . We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.

  11. Interface roughness mediated phonon relaxation rates in Si quantum dots.

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Hsueh, Yuling; Klimeck, Gerhard; Rahman, Rajib

    2015-03-01

    Si QDs are promising candidates for solid-state quantum computing due to long spin coherence times. However, the valley degeneracy in Si adds an additional degree of freedom to the electronic structure. Although the valley and orbital indices can be uniquely identified in an ideal Si QD, interface roughness mixes valley and orbital states in realistic dots. Such valley-orbit coupling can strongly influence T1 times in Si QDs. Recent experimental measurements of various relaxation rates differ from previous predictions of phonon relaxation in ideal Si QDs. To understand how roughness affects different relaxation rates, for example spin relaxation due to spin-valley coupling, which is a byproduct of spin-orbit and valley-orbit coupling, we need to understand the effect of valley-orbit coupling on valley relaxation first. Using a full-band atomistic tight-binding description for both the system's electron and electron-phonon hamiltonian, we analyze the effect of atomic-scale interface disorder on phonon induced valley relaxation and spin relaxation in a Si QD. We find that, the valley splitting dependence of valley relaxation rate governs the magnetic field dependence of spin relaxation rate. Our results help understand experimentally measured relaxation times.

  12. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide

    NASA Astrophysics Data System (ADS)

    Ye, Yu; Xiao, Jun; Wang, Hailong; Ye, Ziliang; Zhu, Hanyu; Zhao, Mervin; Wang, Yuan; Zhao, Jianhua; Yin, Xiaobo; Zhang, Xiang

    2016-07-01

    Electrically controlling the flow of charge carriers is the foundation of modern electronics. By accessing the extra spin degree of freedom (DOF) in electronics, spintronics allows for information processes such as magnetoresistive random-access memory. Recently, atomic membranes of transition metal dichalcogenides (TMDCs) were found to support unequal and distinguishable carrier distribution in different crystal momentum valleys. This valley polarization of carriers enables a new DOF for information processing. A variety of valleytronic devices such as valley filters and valves have been proposed, and optical valley excitation has been observed. However, to realize its potential in electronics it is necessary to electrically control the valley DOF, which has so far remained a significant challenge. Here, we experimentally demonstrate the electrical generation and control of valley polarization. This is achieved through spin injection via a diluted ferromagnetic semiconductor and measured through the helicity of the electroluminescence due to the spin-valley locking in TMDC monolayers. We also report a new scheme of electronic devices that combine both the spin and valley DOFs. Such direct electrical generation and control of valley carriers opens up new dimensions in utilizing both the spin and valley DOFs for next-generation electronics and computing.

  13. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as being formed from stress relief. As stress-relief fractures have been described in other valleys of the Appalachian Plateaus, the same aquifer conditions may exist in those valleys.

  14. Active tectonics of the northern Mojave Desert: The 2017 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Phelps, Geoffrey; Honke, Jeff; Cyr, Andrew J.; Buesch, David C.; Schmidt, Kevin M.; Losson, G.

    2017-01-01

    The 2017 Desert Symposium field trip will highlight recent work by the U.S. Geological Survey geologists and geophysicists, who have been mapping young sediment and geomorphology associated with active tectonic features in the least well-known part of the eastern California Shear Zone (ECSZ). This area, stretching from Barstow eastward in a giant arc to end near the Granite Mountains on the south and the Avawatz Mountains on the north (Fig. 1-1), encompasses the two major structural components of the ECSZ—east-striking sinistral faults and northwest-striking dextral faults—as well as reverseoblique and normal-oblique faults that are associated with topographic highs and sags, respectively. In addition, folds and stepovers (both restraining stepovers that form pop-up structures and releasing stepovers that create narrow basins) have been identified. The ECSZ is a segment in the ‘soft’ distributed deformation of the North American plate east of the San Andreas fault (Fig. 1-1), where it takes up approximately 20-25% of plate motion in a broad zone of right-lateral shear (Sauber et al., 1994) The ECSZ (sensu strictu) begins in the Joshua Tree area and passes north through the Mojave Desert, past the Owens Valley-to-Death Valley swath and northward, where it is termed the Walker Lane. It has been defined as the locus of active faulting (Dokka and Travis, 1990), but when the full history from about 10 Ma forward is considered, it lies in a broader zone of right shear that passes westward in the Mojave Desert to the San Andreas fault (Mojave strike-slip province of Miller and Yount, 2002) and passes eastward to the Nevada state line or beyond (Miller, this volume).We will visit several accessible highlights for newly studied faults, signs of young deformation, and packages of syntectonic sediments. These pieces of a complex active tectonic puzzle have yielded some answers to longstanding questions such as: How is fault slip transfer in this area accommodated between northwest-striking dextral faults and eaststriking sinistral faults?How is active deformation on the Ludlow fault transferred northward, presumably to connect to the southern Death Valley fault zone?When were faults in this area of the central Mojave Desert initiated?Are faults in this area more or less active than faults in the ECSZ to the west?What is the role of NNW-striking faults and when did they form?How has fault slip changed over time? Locations and fault names are provided in figure 1-2. Important turns and locations are identified with locations in the projection: UTM, zone 11; datum NAD 83: (578530 3917335).

  15. A reconnaissance space sensing investigation of crustal structure for a strip from the eastern Sierra Nevada to the Colorado Plateau

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. Research progress in an investigation using ERTS-1 MSS imagery to study regional tectonics and related natural resources is summarized. Field reconnaissance guided by analysis of ERTS-1 imagery has resulted in development of a tectonic model relating strike-slip faulting to crustal extension in the southern Basin Range Province. The tectonics of the northern Death Valley-Furnace Creek Fault Zone and spacially associated volcanism and mercury mineralization were also investigated. Field work in the southern Sierra Nevada has confirmed the existence of faults and diabase dike swarms aligned along several major lineaments first recognized in ERTS-1 imagery. Various image enhancement and analysis techniques employed in the study of ERTS-1 data are summarized.

  16. DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM TERMINAL, LOOKING NORTHEAST. THE CABLE FROM THIS ENGINE LEADS DOWN INTO THE DEEP RAVINE IN FRONT OF THE UPPER TRAM TERMINAL. IT WAS PROBABLY USED TO DRAG MATERIALS UP TOWARD THE TERMINAL WHEN THE TERMINAL WAS BEING CONSTRUCTED, OR IN TIMES OF TRAMWAY BREAKDOWN. THE DRIVE ENGINE IS IN THE BACKGROUND. TWO LONG OPERATING LEVERS FOR THE ENGINE ARE IN THE CENTER FOREGROUND. AN EXTRA SPOOL OF CABLE IS ON THE GROUND TO THE RIGHT OF THE ENGINE. A WATER PIPELINE STRETCHES ACROSS THE SLOPE IN THE BACKGROUND, CARRYING WATER TO THE UPPER MINES. SEE CA-291-37 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  17. DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF WINCHING ENGINE LOCATED AT THE UPPER TRAM TERMINAL LOOKING NORTHEAST. THE CABLE FROM THIS ENGINE LEADS DOWN INTO THE DEEP RAVINE IN FRONT OF THE UPPER TRAM TERMINAL. IT WAS PROBABLY USED TO DRAG MATERIALS UP TOWARD THE TERMINAL WHEN THE TERMINAL WAS BEING CONSTRUCTED, OR IN TIMES OF TRAMWAY BREAK DOWN. THE DRIVE ENGINE IS IN THE BACKGROUND. TWO LONG OPERATING LEVERS FOR THE ENGINE ARE IN THE CENTER FOREGROUND. AN EXTRA SPOOL OF CABLE IS ON THE GROUND TO THE RIGHT OF THE ENGINE. A WATER PIPELINE STRETCHES ACROSS THE SLOPE IN THE BACKGROUND, CARRYING WATER TO THE UPPER MINES. SEE CA-291-52 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  18. Evaluating observations in the context of predictions for the death valley regional groundwater system

    USGS Publications Warehouse

    Ely, D.M.; Hill, M.C.; Tiedeman, C.R.; O'Brien, G. M.

    2004-01-01

    When a model is calibrated by nonlinear regression, calculated diagnostic and inferential statistics provide a wealth of information about many aspects of the system. This work uses linear inferential statistics that are measures of prediction uncertainty to investigate the likely importance of continued monitoring of hydraulic head to the accuracy of model predictions. The measurements evaluated are hydraulic heads; the predictions of interest are subsurface transport from 15 locations. The advective component of transport is considered because it is the component most affected by the system dynamics represented by the regional-scale model being used. The problem is addressed using the capabilities of the U.S. Geological Survey computer program MODFLOW-2000, with its Advective Travel Observation (ADV) Package. Copyright ASCE 2004.

  19. Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States

    USGS Publications Warehouse

    Schmidt, K.M.; Menges, C.M.; ,

    2003-01-01

    Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.

  20. LANDSAT 4 investigations of Thematic Mapper and multispectral scanner applications. [Death Valley, California; Silver Bell Copper Mine, Arizona, and Dulles Airport near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Lauer, D. T. (Principal Investigator)

    1984-01-01

    The optimum index factor package was used to choose TM band for color compositing. Processing techniques were also used on TM data over several sites to: (1) reduce the amount of data that needs to be processed and analyzed by using statistical methods or by combining full-resolution products with spatially compressed products; (2) digitally process small subareas to improve the visual appearance of large-scale products or to merge different-resolution image data; and (3) evaluate and compare the information content of the different three-band combinations that can be made using the TM data. Results indicate that for some applications the added spectral information over MSS is even more important than the TM's increased spatial resolution.

  1. Use of radiologic modalities in coccidioidal meningitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadalnik, R.C.; Goldstein, E.; Hoeprich, P.D.

    1981-01-01

    The diagnostic utility of pentetate indium trisodium CSF studies, technetium Tc 99m brain scans, and computerized tomographic (CT) scans was evaluated in eight patients in whom coccidioidal meningitis developed following a dust storm in the Central Valley of California. The 111In flow studies and the CT scans demonstrated hydrocephalus in five patients with clinical findings suggesting this complication. Ventriculitis has not previously been diagnosed before death in patients with coccidioidal meningitis; however, it was demonstrated in two patients by the technetium Tc 99m brain scan. The finding that communicating hydrocephalus occurs early in meningitis and interferes with CSF flow intomore » infected basilar regions has important therapeutic implications in that antifungal agents injected into the lumbar subarachnoid space may not reach these regions.« less

  2. 9. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS OF THE MILL CAN BE CLEARLY SEEN HERE. THE UPPER MOST LEVEL CONSISTS OF A CONVEORY THAT BROUGHT ORE TO A JAW CRUSHER. THE CRUSHED ORE WAS CHANNELED DIRECTLY INTO A LARGE ORE BIN LOCATED BEHIND THE COVERED WALL (CENTER). THE NEXT LEVEL SHOWS THE BULL (DRIVE) WHEEL ON THE UPPER PART OF THE STAMP BATTERIES. THE NEXT LEVEL DOWN (STAIRS) IS THE LOWER PORTION OF THE STAMP BATTERIES WITH THE MORTAR BLOCKS AND APRONS. THE NEXT LEVEL DOWN (LOWER RIGHT) HELD CONCENTRATION (SHAKING) TABLES AND A CLASSIFIER. MOST EXTERIOR WALL COVERING, TIMBERS, AND ROOF IS MISSING FROM THE MILL. SEE CA-290-42 (CT) FOR IDENTICAL COLOR TRANSPARENCY - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  3. 42. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. EAST ELEVATION OF SKIDOO MILL, LOOKING WEST. THE LEVELS OF THE MILL CAN BE CLEARLY SEEN HERE. THE UPPER MOST LEVEL CONSISTS OF A CONVEORY THAT BROUGHT ORE TO A JAW CRUSHER. THE CRUSHED ORE WAS CHANNELED DIRECTLY INTO A LARGE ORE BIN LOCATED BEHIND THE COVERED WALL (CENTER). THE NEXT LEVEL SHOWS THE BULL (DRIVE) WHEEL ON THE UPPER PART OF THE STAMP BATTERIES THE NEXT LEVEL DOWN (STAIRS) IS THE LOWER PORTION OF THE STAMP BATTERIES WITH MORTAR BLOCKS AND APRONS. THE NEXT LEVEL DOWN (LOWER RIGHT) HELD CONCENTRATION (SHAKING) TABLES AND A CLASSIFIER. MOST EXTERIOR WALL COVERING, TIMBERS, AND ROOF IS MISSING FROM THE MILL. SEE CA-290-9 FOR IDENTICAL B&W NEGATIVE. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  4. Bridging the translational gap: collaborative drug development and dispelling the stigma of commercialization.

    PubMed

    Yu, Helen W H

    2016-02-01

    The current drug discovery and development process is stalling the translation of basic science into lifesaving products. Known as the 'Valley of Death', the traditional technology transfer model fails to bridge the gap between early-stage discoveries and preclinical research to advance innovations beyond the discovery phase. In addition, the stigma associated with 'commercialization' detracts from the importance of efficient translation of basic research. Here, I introduce a drug discovery model whereby the respective expertise of academia and industry are brought together to take promising discoveries through to proof of concept as a way to derisk the drug discovery and development process. Known as the 'integrated drug discovery model', I examine here the extent to which existing legal frameworks support this model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.

    PubMed

    Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

    2011-12-23

    Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite.

  6. Mg- and K-bearing borates and associated evaporites at Eagle Borax spring, Death Valley, California: A spectroscopic exploration

    USGS Publications Warehouse

    Crowley, J.K.

    1996-01-01

    Efflorescent crusts at the Eagle Borax spring in Death Valley, California, contain an array of rare Mg and K borate minerals, several of which are only known from one or two other localities. The Mg- and/or K-bearing borates include aristarainite, hydroboracite, kaliborite, mcallisterite, pinnoite, rivadavite, and santite. Ulexite and probertite also occur in the area, although their distribution is different from that of the Mg and K borates. Other evaporite minerals in the spring vicinity include halite, thenardite, eugsterite, gypsum-anhydrite, hexahydrite, and bloedite. Whereas the first five of these minerals are found throughout Death Valley, the last two Mg sulfates are more restricted in occurrence and are indicative of Mg-enriched ground water. Mineral associations observed at the Eagle Borax spring, and at many other borate deposits worldwide, can be explained by the chemical fractionation of borate-precipitating waters during the course of evaporative concentration. The Mg sulfate and Mg borate minerals in the Eagle Borax efflorescent crusts point to the fractionation of Ca by the operation of a chemical divide involving Ca carbonate and Na-Ca borate precipitation in the subsurface sediments. At many other borate mining localities, the occurrence of ulexite in both Na borate (borax-kernite) and Ca borate (ulexite-colemanite) deposits similarly reflects ulexite's coprecipitation with Ca carbonate at an early concentration stage. Such ulexite may perhaps be converted to colemanite by later reaction with the coexisting Ca carbonate - the latter providing the additional Ca2+ ions needed for the conversion. Mg and Ca-Mg borates are the expected late-stage concentration products of waters forming ulexite-colemanite deposits and are therefore most likely to occur in the marginal zones or nearby mud facies of ulexite-colemanite orebodies. Under some circumstances, Mg and Ca-Mg borates might provide a useful prospecting guide for ulexite-colemanite deposits, although the high solubility of Mg borate minerals may prevent their formation in lacustrine settings and certainly inhibits their geologic preservation. The occurrence of Mg borates in borax-kernite deposits is also related to fractionation processes and points to the operation of an Mg borate chemical divide, characterized by Mg borate precipitation ahead of Mg carbonate. All of these considerations imply that Mg is a significant chemical component of many borate-depositing ground waters, even though Mg borate minerals may not be strongly evident in borate orebodies. The Eagle Borax spring borates and other evaporite minerals were studied using spectroscopic and X-ray powder diffraction methods, which were found to be highly complementary. Spectral reflectance measurements provide a sensitive means for detecting borates present in mixtures with other evaporites and can be used to screen samples rapidly for X-ray diffraction analysis. The apparently limited occurrence of Mg and K borate minerals compared to Ca and Na borates may stem partly from the inefficiency of X-ray diffraction methods for delineating the mineralogy of large and complex deposits. Spectral reflectance measurements can be made in the laboratory, in the field, on the mine face, and even remotely. Reflectance data should have an important role in studies of existing deposit mineralogy and related chemical fractionation processes, and perhaps in the discovery of new borate mineral resources.

  7. Stable Ca Isotopes in Tamarix aphylla Tree Rings, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Yang, W.; Depaolo, D. J.; Ingram, B. L.; Owens, T. L.

    2008-12-01

    As a dune stabilizer and windbreak, Tamarix aphylla is an exotic perennial and evergreen tree in Death Valley. Its tap roots can reach down to 30 m depth and sub-superficial side roots may reach 50 m horizontally. The species can store large amounts of water in its roots and undergoes high evapotranspiration. Since Tamarix aphylla is a perennial tree growing in desert environments and its roots reach deep to the water table, it could be a proxy for desert ecological and hydrologic systems through time. We measured Ca isotopes in the soluble fraction of 8 tree ring samples from a 50-year-old specimen growing on an alluvial fan in Death Valley near Furnace Creek. Previous studies (Yang et al, GCA 60, 1996) indicate that this tree's rings contain high sulfur concentrations (4-6% expressed as sulfate) with chemical composition of CaSO4 (0.15-0.62 H2O). The δ34S values of soluble sulfate increase from +13.5 to +18 permil VCDT from the core to the bark, which are interpreted as reflecting deeper sulfate sources as the tree grew. The δ13C variations of the tree-ring cellulose (-27.6 to -24.0 permil VPDB) reflect changes in the local precipitation and show that Tamarix aphylla undergoes C3 photosynthesis. The δ44Ca for the soluble sulfate Ca through the tree-ring section, which covers a time period from 1945 to 1993, have an average value -2.52 permil (-3.4 permil relative to seawater). Only small variations are observed, from -2.69 to -2.28; the highest value (for 1990) occurs near the end of an extended drought. These are the first measurements of tree rings, but the low δ44Ca values are consistent with previous measurements of beech roots and stems from a temperate forest (Page et al., Biogeochem. 88, 2008). In our case, the tree has only one Ca source, which is expected to be isotopically uniform and similar to both local rainfall and limestones (δ44Ca ~ -0.6 permil), and with the minimal vegetation and extensive deep root system it is unlikely that there is a significant depletion of soil Ca due to plant uptake. Thus the Ca isotopic fractionation between trunk and source (ΔCa = -2 permil) is clearly defined by the data. By analogy to the results of Page et al., the Ca fractionation between root and source may be larger (ΔCa ~ -3 permil). This biological Ca isotope fractionation is no doubt due to transport processes during root uptake of Ca, but the magnitude is significantly larger than that observed for inorganic processes such as mineral precipitation or aqueous diffusion. The slight increase in δ44Ca in drought conditions suggests that when the tree is stressed there may be less Ca isotope fractionation, either because the Ca is held more tightly in small pores in the soil, or because the available Ca pool shrinks such that the soil Ca starts to shift to more positive δ44Ca values due to depletion of light Ca by the plant. The slowly accumulating database on Ca isotopes in plants continues to suggest that systematic Ca isotope studies may be fruitful for understanding cation transport in plants, and soil ecological conditions in general.

  8. Predictors of incompletion of immunization among children residing in the slums of Kathmandu valley, Nepal: a case-control study.

    PubMed

    Shrestha, Sumina; Shrestha, Monika; Wagle, Rajendra Raj; Bhandari, Gita

    2016-09-13

    Immunization is one of the most effective health interventions averting an estimated 2-3 million deaths every year. In Nepal, as in most low-income countries, infants are immunized with standard WHO recommended vaccines. However, 16.4 % of children did not receive complete immunization by 12 months of age in Nepal in 2011. Studies from different parts of the world showed that incomplete immunization is even higher in slums. The objective of this study was to identify the predictors of incompletion of immunization among children aged 12-23 months living in the slums of Kathmandu Valley, Nepal. The unmatched case-control study was conducted in 22 randomly selected slums of Kathmandu Valley. The sampling frame was first identified by complete enumeration of entire households of the study area from which 59 incompletely immunized children as cases and 177 completely immunized children as controls were chosen randomly in 1:3 ratio. Data were collected from the primary caretakers of the children. Backward logistic regression with 95 % confidence interval and adjusted odds ratio (AOR) were applied to assess the factors independently associated with incomplete immunization. Twenty-six percent of the children were incompletely vaccinated. The coverage of BCG vaccine was 95.0 % while it was 80.5 % for measles vaccine. The significant predictors of incomplete immunization were the home delivery of a child, the family residing on rent, a primary caretaker with poor knowledge about the schedule of vaccination and negative perception towards vaccinating a sick child, conflicting priorities, and development of abscess following immunization. Reduction of abscess formation rate can be a potential way to improve immunization rates. Community health volunteers should increase their follow-up on children born at home and those living in rent. Health institutions and volunteers should be influential in creating awareness about immunization, its schedule, and post-vaccination side effects.

  9. A case-crossover analysis of forest fire haze events and mortality in Malaysia

    NASA Astrophysics Data System (ADS)

    Sahani, Mazrura; Zainon, Nurul Ashikin; Wan Mahiyuddin, Wan Rozita; Latif, Mohd Talib; Hod, Rozita; Khan, Md Firoz; Tahir, Norhayati Mohd; Chan, Chang-Chuan

    2014-10-01

    The Southeast Asian (SEA) haze events due to forest fires are recurrent and affect Malaysia, particularly the Klang Valley region. The aim of this study is to examine the risk of haze days due to biomass burning in Southeast Asia on daily mortality in the Klang Valley region between 2000 and 2007. We used a case-crossover study design to model the effect of haze based on PM10 concentration to the daily mortality. The time-stratified control sampling approach was used, adjusted for particulate matter (PM10) concentrations, time trends and meteorological influences. Based on time series analysis of PM10 and backward trajectory analysis, haze days were defined when daily PM10 concentration exceeded 100 μg/m3. The results showed a total of 88 haze days were identified in the Klang Valley region during the study period. A total of 126,822 cases of death were recorded for natural mortality where respiratory mortality represented 8.56% (N = 10,854). Haze events were found to be significantly associated with natural and respiratory mortality at various lags. For natural mortality, haze events at lagged 2 showed significant association with children less than 14 years old (Odd Ratio (OR) = 1.41; 95% Confidence Interval (CI) = 1.01-1.99). Respiratory mortality was significantly associated with haze events for all ages at lagged 0 (OR = 1.19; 95% CI = 1.02-1.40). Age-and-gender-specific analysis showed an incremental risk of respiratory mortality among all males and elderly males above 60 years old at lagged 0 (OR = 1.34; 95% CI = 1.09-1.64 and OR = 1.41; 95% CI = 1.09-1.84 respectively). Adult females aged 15-59 years old were found to be at highest risk of respiratory mortality at lagged 5 (OR = 1.66; 95% CI = 1.03-1.99). This study clearly indicates that exposure to haze events showed immediate and delayed effects on mortality.

  10. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most of the tracer mass, which enters the slope wind layer at the valley bottom, is leaving it again through horizontal fluxes at the height of the intrusion and therefore remains inside the valley.

  11. Trends and Patterns of Geographic Variation in Cardiovascular Mortality Among US Counties, 1980–2014

    PubMed Central

    Roth, Gregory A.; Dwyer-Lindgren, Laura; Bertozzi-Villa, Amelia; Stubbs, Rebecca W.; Morozoff, Chloe; Naghavi, Mohsen; Mokdad, Ali H.; Murray, Christopher J. L.

    2017-01-01

    IMPORTANCE In the United States, regional variation in cardiovascular mortality is well-known but county-level estimates for all major cardiovascular conditions have not been produced. OBJECTIVE To estimate age-standardized mortality rates from cardiovascular diseases by county. DESIGN AND SETTING Deidentified death records from the National Center for Health Statistics and population counts from the US Census Bureau, the National Center for Health Statistics, and the Human Mortality Database from 1980 through 2014 were used. Validated small area estimation models were used to estimate county-level mortality rates from all cardiovascular diseases, including ischemic heart disease, cerebrovascular disease, ischemic stroke, hemorrhagic stroke, hypertensive heart disease, cardiomyopathy, atrial fibrillation and flutter, rheumatic heart disease, aortic aneurysm, peripheral arterial disease, endocarditis, and all other cardiovascular diseases combined. EXPOSURES The 3110 counties of residence. MAIN OUTCOMES AND MEASURES Age-standardized cardiovascular disease mortality rates by county, year, sex, and cause. RESULTS From 1980 to 2014, cardiovascular diseases were the leading cause of death in the United States, although the mortality rate declined from 507.4 deaths per 100 000 persons in 1980 to 252.7 deaths per 100 000 persons in 2014, a relative decline of 50.2% (95% uncertainty interval [UI], 49.5%–50.8%). In 2014, cardiovascular diseases accounted for more than 846 000 deaths (95% UI, 827–865 thousand deaths) and 11.7 million years of life lost (95% UI, 11.6–11.9 million years of life lost). The gap in age-standardized cardiovascular disease mortality rates between counties at the 10th and 90th percentile declined 14.6% from 172.1 deaths per 100 000 persons in 1980 to 147.0 deaths per 100 000 persons in 2014 (posterior probability of decline >99.9%). In 2014, the ratio between counties at the 90th and 10th percentile was 2.0 for ischemic heart disease (119.1 vs 235.7 deaths per 100 000 persons) and 1.7 for cerebrovascular disease (40.3 vs 68.1 deaths per 100 000 persons). For other cardiovascular disease causes, the ratio ranged from 1.4 (aortic aneurysm: 3.5 vs 5.1 deaths per 100 000 persons) to 4.2 (hypertensive heart disease: 4.3 vs 17.9 deaths per 100 000 persons). The largest concentration of counties with high cardiovascular disease mortality extended from southeastern Oklahoma along the Mississippi River Valley to eastern Kentucky. Several cardiovascular disease conditions were clustered substantially outside the South, including atrial fibrillation (Northwest), aortic aneurysm (Midwest), and endocarditis (Mountain West and Alaska). The lowest cardiovascular mortality rates were found in the counties surrounding San Francisco, California, central Colorado, northern Nebraska, central Minnesota, northeastern Virginia, and southern Florida. CONCLUSIONS AND RELEVANCE Substantial differences exist between county ischemic heart disease and stroke mortality rates. Smaller differences exist for diseases of the myocardium, atrial fibrillation, aortic and peripheral arterial disease, rheumatic heart disease, and endocarditis. PMID:28510678

  12. Meter-Scale Characteristics of Martian Channels and Valleys

    USGS Publications Warehouse

    Carr, M.H.; Malin, M.C.

    2000-01-01

    Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.

  13. Scaling the Morphology of Sapping and Pressurized Groundwater Experiments to Martian Valleys

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; Kleinhans, M. G.

    2013-12-01

    Various valleys exist on Mars, which shows the former existence of fluvial activity and thus liquid water at the surface. Although these valleys show similarities with some valleys on Earth, many morphological features are unique for Mars or are very rare on Earth. Therefore, we lack knowledge about the formative processes of these enigmatic valleys. In this study, we explored possible groundwater scenarios for the formation of these valleys using flume experiments, as there are no pure Earth analogues for these systems. We aim to infer their formative processes from morphological properties. A series of flume experiments were carried out in a 4x6x1 m experimental setup, where we observed the valley formation as result from seeping groundwater by both local and distal groundwater sources and by pressurized groundwater release. Time-lapse imagery and DEMs of the experiments show the morphological development, associated processes, and landscape evolution. Indicators of the processes where we particularly looked at were changes in valley slope, cross-sectional shape, the relations between valley dimensions, and regional landscape properties as drainage density and valley size distributions. Hydrological modelling assists in scaling the observed experimental features to real-world systems. Additionally, we looked at valleys on Earth in the Atacama Desert, at Box canyon in Idaho, valleys around Kohala on Hawaii and Apalachicola bluffs in Florida to test the applicability of our methods to real-world systems. In the seeping groundwater valleys, valleys develop due to a combination of mass-wasting failures, mudflows and fluvial flow. The latter two processes are expressed in the final morphology by a break in slope. The mass wasting processes result in U-shaped valleys, which are more pronounced in distal groundwater cases. However, in real-world cases of similar shaped valleys, the cross-sectional shape seems strongly influenced by the strength of the material as well. Groundwater flow piracy of multiple valleys within one system are characterized by equal ratios of width and length development, a property that is absent in case of a local groundwater source which does not induce flow piracy. In case of pressurized groundwater release, the sediment surface in the source area fractured and pits developed due to high groundwater pressure. The resulting valley head consisted of feather-shaped converging flow features. Scaling of the non-fluvial features that relate to groundwater pressure is possible by using hydrological modelling of groundwater pressure and geophysical modelling of the behaviour of the material under such pressures. Our results on sapping valley formation, combined with insights from multiple terrestrial sites of similar valleys contribute to the discussion of some enigmatic valleys on Mars. We provide several quantitative morphological measures, which directly relate to the formative process, which is valuable in linking morphology to the formative process. Our results on pressurized groundwater release prove a long-standing hypothesis on the formation on some of the largest valleys observed in our solar system. In both cases, the insights in the formative processes enable us to quantify the amount of water required for the formation of groundwater-induced Martian valleys.

  14. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate [[Page 22747

  15. 76 FR 18542 - Copper Valley Electric Association; Notice of Scoping Document 2 and Soliciting Scoping Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley.... Applicant: Copper Valley Electric Association (Copper Valley) d. Name of Project: Allison Creek Project. e.... 791(a)-825(r). g. Applicant Contact: Robert A. Wilkinson, CEO, Copper Valley Electric Association, P.O...

  16. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  17. 76 FR 67055 - Amendment of Class E Airspace; Valley City, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0605; Airspace Docket No. 11-AGL-13] Amendment of Class E Airspace; Valley City, ND AGENCY: Federal... Valley City, ND. Decommissioning of the Valley City non-directional beacon (NDB) at Barnes County Municipal Airport, Valley City, ND, has made this action necessary to enhance the safety and management of...

  18. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    PubMed

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  19. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  20. Paleodrainage insights into the fluvial and glacial history of the western Chukchi margin, Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Stockmaster, B. A.; Hill, J. C.; Klotsko, S.; Driscoll, N. W.

    2016-12-01

    CHIRP subbottom data collected from the Chukchi shelf offshore of northwest Alaska reveal extensive paleodrainage networks that incised the margin during sea level lowstands. These features are cut into folded Cretaceous bedrock strata and likely represent multiple sea level cycles. Several large incised valleys, 10s of km wide and up to 50m deep, as well as numerous smaller, individual channels have been identified. Possible sources of fluvial input include drainage from the Hope Valley to the south, as well as several smaller rivers on the northwest Alaskan coast such as the Utukok, Kokolik, Kukpowruk, and Kuk Rivers. Correlation of sediment infill patterns provides insight to paleochannels and paleovalleys as well as outlining potential drainage networks. This new data will be used to examine sediment infill and erosion patterns to assess whether some of the valleys were formed by non-fluvial (i.e. glacial) processes. Preliminary results indicate the presence of six paleodrainage networks across the eastern Chukchi shelf, based on shape, size and infill of the paleovalleys: Incised Valley, Middle Valley, Northern Valley, Borderlands Valley, the Hanna Bank Valley and the Barrow Valley. All of the paleodrainage valleys are oriented perpendicular to the coast except for Barrow Valley, which follows the northwest coastline, and the Hanna Bank Valley, which is oriented parallel. The Barrow Valley also displays several interesting features in the subsurface. In all of the profiles across this paleovalley, the fluvial infill is overlain by high amplitude, acoustically laminated reflectors that appear to represent hemipelagic marine sediment, indicating rapid sea level rise flooded the shelf. There also appears to be 1 m erosional relief on the transgressive surface, which suggests there may have been an additional source of erosion within the Barrow Valley during sea level rise, possibly from an ice shelf or other glacial features. The presence of ice could also possibly explain the occupation of Barrow Canyon that would have diverted the Barrow Valley drainage.

  1. Preliminary remote sensing assessment of the catastrophic avalanche in Langtang Valley induced by the 2015 Gorkha earthquake, Nepal

    NASA Astrophysics Data System (ADS)

    Nagai, Hiroto; Watanabe, Manabu; Tomii, Naoya

    2016-04-01

    A major earthquake, measuring 7.8 Mw, occurred on April 25, 2015, in Lamjung district, central Nepal, causing more than 9,000 deaths and 23,000 injuries. During the event, termed the 2015 Gorkha earthquake, the most catastrophic collapse of the mountain side was reported in the Langtang Valley, located 60 km north of Kathmandu. In this collapse, a huge boulder-rich avalanche and a sudden air pressure wave traveled from a steep south-facing slope to the bottom of a U-shaped valley, resulting in more than 170 deaths. Accurate in-situ surveys are necessary to investigate such events, and to find out ways to avoid similar catastrophic events in the future. Geospatial information obtained from multiple satellite observations is invaluable for such surveys in remote mountain regions. In this study, we (1) identify the collapsed sediment using synthetic aperture radar, (2) conduct detailed mapping using high-resolution optical imagery, and (3) estimate sediment volumes from digital surface models in order to quantify the immediate situation of the avalanched sediment. (1) Visual interpretation and coherence calculations using Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images give a consistent area of sediment cover. Emergency observation was carried out the day after the earthquake, using the PALSAR-2 onboard the Advanced Land Observing Satellite-2 (ALOS-2, "DAICHI-2"). Visual interpretation of orthorectified backscatter amplitude images revealed completely altered surface features, over which the identifiable sediment cover extended for 0.73 km2 (28°13'N, 85°30'E). Additionally, measuring the decrease in normalized coherence quantifies the similarity between the pre- and post-event surface features, after the removal of numerous noise patches by focal statistics. Calculations within the study area revealed high-value areas corresponding to the visually identified sediment area. Visual interpretation of the amplitude images and the coherence calculations thus produce similar extractions of collapse sediment. (2) Visual interpretation of high-resolution satellite imagery suggests multiple layers of sediment with different physical properties. A DigitalGlobe satellite, WorldView-3, observed the Langtang Valley on May 8, 2015, using a panchromatic sensor with a spatial resolution of 0.3 m. Identification and mapping of avalanche-induced surface features were performed manually. The surface features were classified into 15 segments on the basis of sediment features, including darkness, the dominance of scattering or flowing features, and the recognition of boulders. Together, these characteristics suggest various combinations of physical properties, such as viscosity, density, and ice and snow content. (3) Altitude differences between the pre- and post-quake digital surface models (DSM) suggest the deposition of 5.2×105 m3 of sediment, mainly along the river bed. A 5 m-grid pre-event DSM was generated from PRISM stereo-pair images acquired on October 12, 2008. A 2 m-grid post-event DSM was generated from WorldView-3 images acquired on May 8, 2015. Comparing the two DSMs, a vertical difference of up to 22±13 m is observed, mainly along the river bed. Estimates of the total avalanched volume reach 5.2×105 m^3, with a possible range of 3.7×105 to 10.7×105 m^3.

  2. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  3. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  4. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  5. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope CA, I.I.I.

    This study assessed the association between respiratory hospital admissions and PM10 pollution in Utah, Salt Lake, and Cache valleys during April 1985 through March 1989. Utah and Salt Lake valleys had high levels of PM10 pollution that violated both the annual and 24-h standards issued by the Environmental Protection Agency (EPA). Much lower PM10 levels occurred in the Cache Valley. Utah Valley experienced the intermittent operation of its primary source of PM10 pollution: an integrated steel mill. Bronchitis and asthma admissions for preschool-age children were approximately twice as frequent in Utah Valley when the steel mill was operating versus whenmore » it was not. Similar differences were not observed in Salt Lake or Cache valleys. Even though Cache Valley had higher smoking rates and lower temperatures in winter than did Utah Valley, per capita bronchitis and asthma admissions for all ages were approximately twice as high in Utah Valley. During the period when the steel mill was closed, differences in per capita admissions between Utah and Cache valleys narrowed considerably. Regression analysis also demonstrated a statistical association between respiratory hospital admissions and PM10 pollution. The results suggest that PM10 pollution plays a role in the incidence and severity of respiratory disease.« less

  6. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    Licus Vallis is a 350 km long valley system located along the dichotomy boundary on Mars. The main trunk of the valley is incised 200-700 m into the surrounding terrain. The valley heads at an outlet breach of a shallow, 30 km diameter impact crater, and is also fed by a system of tributaries incised into the plateau surrounding Licus Vallis. Many of the tributary valleys, as well as the main stem of the valley fed by the paleolake outlet, have profiles that are not smoothly graded, but rather have distinct reaches with concave downward topography. These sections are either knickpoints or hanging valleys that develop in response to changes in the effective local base level, changes in climate conditions during incision of the valley, or lithologic boundaries in the substrate. Here we present remote sensing observations from images and topography to test these competing hypotheses and further characterize the evolution of this large valley system. Slope-watershed area relationships for the tributaries and main trunk valley are used to distinguish between knickpoints and hanging valleys. Analysis of orbital images does not reveal any distinct layer above which knickpoints develop, and the elevation of knickpoints show no systematic trends that might be expected of a regional lithologic unit(s). Our preliminary results suggest that the distance of knickpoint retreat is correlated with the position of the tributary valley and not the watershed area. Downstream valleys have retreated the most, suggesting they have had the most time to adjust to lowering of the local base level associated with incision of the main valley. These results are most consistent with a wave of incision sweeping up the valley system as it adjusts to a low base level in the northern plains. This conclusion is also consistent with observations of the incision depth of Licus Vallis, which increases approximately linearly downstream. Understanding this signature of base level control on the incision of valley network systems such as Licus Vallis provides a unique opportunity to develop predictions for the evolution of regional hydrology and the martian hydrologic cycle.

  7. Evolution of collapse valleys in karst - examples from the Carpatho-Balkanides of Serbia

    NASA Astrophysics Data System (ADS)

    Petrović, Aleksandar S.; Ćalić, Jelena; Spalević, Aleksandra; Pantić, Marko

    2016-04-01

    Development of valleys in karst is an issue which has not been sufficiently studied in karst surface morphology. THESE valleys are long linear forms whose orthogonal projections resemble normal valleys, but most of their characteristics are strongly influenced by karst process. In largest number of relevant references, this subject is either only briefly mentioned or completely lacking. This paper presents the examples of a particular type of valley in karst formed by cave ceiling collapse close to the topographical surface. Karst of the Carpatho-Balkanides in eastern Serbia is characterized by uneven spatial distribution in several large massifs, but also in a large number of relatively small outcrops (patches and belts), which enable the development of contact karst and fluviokarst. Many morphological elements are of fluvial origin, subsequently modified by karst process. Collapse valleys occur mostly at the downstream contacts (where a seasonal watercourse leaves limestones) or in karst/limestone belts. In the first phase, which is visible on the example of the Radovanska Reka, the river course sinks to the swallets in the riverbed and forms a blind valley. After sinking, the water flows through the tunnel cave, while largest part of the valley remains above the cave. The bottom of the dry valley is dissected by deep dolines, reaching almost to the cave roof. In this part of the study, the area was scanned by a multistation Leica Nova MS 50 (resolution 20 cm @ 10 m). In the second phase, the doline bottoms reach the cave ceilings which develop holes at certain points, as it is case at the Zamna River valley. These hollows tend to enlarge with time, and the surface of the cave ceiling is reduced. The third, final phase is characterised by collapse of larger segments of cave ceilings. Only the natural bridges remain, as the remnants of former caves (e.g. in the Vratna River valley, Ravna Reka valley). These parts of valleys in karst are usually narrow, steep-sided, resembling classical gorges. A closer look to the morphogenesis of this type of valleys is discussed. Key words: valley in karst, collapse valley, karst surface relief, Carpatho-Balkanides.

  8. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  9. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  10. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  11. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  12. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  13. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  14. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  15. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  16. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  17. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  18. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-09-18

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  19. Victor Valley College Agreement between the Victor Valley Community College District and the Victor Valley College California Teachers Association Chapter 1170. July 1989 - June 1992.

    ERIC Educational Resources Information Center

    Victor Valley Community Coll. District, Victorville, CA.

    The collective bargaining agreement between the Victor Valley College Board of Trustees and the Victor Valley College California Teachers Association/National Education Association is presented. This contract, covering the period from July 1989 through June 1992, deals with the following topics: bargaining agent recognition; district and…

  20. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  1. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  2. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  3. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  4. The vertical structure of the circulation and dynamics in Hudson Shelf Valley

    USGS Publications Warehouse

    Lentz, Steven J.; Butman, Bradford; Harris, Courtney K.

    2014-01-01

    Hudson Shelf Valley is a 20–30 m deep, 5–10 km wide v-shaped submarine valley that extends across the Middle Atlantic Bight continental shelf. The valley provides a conduit for cross-shelf exchange via along-valley currents of 0.5 m s−1 or more. Current profile, pressure, and density observations collected during the winter of 1999–2000 are used to examine the vertical structure and dynamics of the flow. Near-bottom along-valley currents having times scales of a few days are driven by cross-shelf pressure gradients setup by wind stresses, with eastward (westward) winds driving onshore (offshore) flow within the valley. The along-valley momentum balance in the bottom boundary layer is predominantly between the pressure gradient and bottom stress because the valley bathymetry limits current veering. Above the bottom boundary layer, the flow veers toward an along-shelf (cross-valley) orientation and a geostrophic balance with some contribution from the wind stress (surface Ekman layer). The vertical structure and strength of the along-valley current depends on the magnitude and direction of the wind stress. During offshore flows driven by westward winds, the near-bottom stratification within the valley increases resulting in a thinner bottom boundary layer and weaker offshore currents. Conversely, during onshore flows driven by eastward winds the near-bottom stratification decreases resulting in a thicker bottom boundary layer and stronger onshore currents. Consequently, for wind stress magnitudes exceeding 0.1 N m−2, onshore along-valley transport associated with eastward wind stress exceeds the offshore transport associated with westward wind stress of the same magnitude.

  5. Morphological properties of tunnel valleys of the southern sector of the Laurentide Ice Sheet and implications for their formation

    NASA Astrophysics Data System (ADS)

    Livingstone, Stephen J.; Clark, Chris D.

    2016-07-01

    Tunnel valleys have been widely reported on the bed of former ice sheets and are considered an important expression of subglacial meltwater drainage. Although known to have been cut by erosive meltwater flow, the water source and development of channels has been widely debated; ranging between outburst flood events through to gradually occurring channel propagation. We have mapped and analysed the spatial pattern and morphometry of tunnel valleys and associated glacial landforms along the southern sector of the former Laurentide Ice Sheet from high-resolution digital elevation models. Around 2000 tunnel valleys have been mapped, revealing an organised pattern of sub-parallel, semi-regularly spaced valleys that form in distinctive clusters. The tunnel valleys are typically < 20 km long, and 0.5-3 km wide, although their width varies considerably down-valley. They preferentially terminate at moraines, which suggests that formation is time dependent; while we also observe some tunnel valleys that have grown headwards out of hill-hole pairs. Analysis of cross-cutting relationships between tunnel valleys, moraines and outwash fans permits reconstruction of channel development in relation to the retreating ice margin. This palaeo-drainage reconstruction demonstrates incremental growth of most valleys, with some used repeatedly or for long periods, during deglaciation, while others were abandoned shortly after their formation. Our data and interpretation support gradual (rather than a single-event) formation of most tunnel valleys with secondary contributions from flood drainage of subglacial and or supraglacially stored water down individual tunnel valleys. The distribution and morphology of tunnel valleys is shown to be sensitive to regional factors such as basal thermal regime, ice and bed topography, timing and climate.

  6. Successfully Engaging Scientists in NASA Education and Public Outreach: Examples from a Teacher Professional Development Workshop Series and a Planetary Analog Festival

    NASA Astrophysics Data System (ADS)

    Jones, A. P.; Hsu, B. C.; Bleacher, L.; Shaner, A. J.

    2014-12-01

    The Lunar Workshops for Educators are a series of weeklong workshops for grade 6-9 science teachers focused on lunar science and exploration, sponsored by the Lunar Reconnaissance Orbiter (LRO). These workshops have been held across the country for the past five years, in places underserved with respect to NASA workshops and at LRO team member institutions. MarsFest is a planetary analog festival that has been held annually in Death Valley National Park since 2012, made possible with support from the Curiosity (primarily the Sample Analysis at Mars) Education and Public Outreach team, NASA's Ames Research Center, NASA's Goddard Space Flight Center, the SETI Institute, and Death Valley National Park. Both the Lunar Workshops for Educators and MarsFest rely strongly on scientist engagement for their success. In the Lunar Workshops, scientists and engineers give talks for workshop participants, support facility tours and field trips, and, where possible, have lunch with the teachers to interact with them in a less formal setting. Teachers have enthusiastically appreciated and benefited from all of these interactions, and the scientists and engineers also provide positive feedback about their involvement. In MarsFest, scientists and engineers give public presentations and take park visitors on field trips to planetary analog sites. The trips are led by scientists who do research at the field trip sites whenever possible. Surveys of festival participants indicate an appreciation for learning about scientific research being conducted in the park from the people involved in that research, and scientists and engineers report enjoying sharing their work with the public through this program. The key to effective scientist engagement in all of the workshops and festivals has been a close relationship and open communication between the scientists and engineers and the activity facilitators. I will provide more details about both of these programs, how scientists and engineers are involved in them, and offer suggestions for others who would like to engage scientists and engineers in similar activities.

  7. Aquifer-test evaluation and potential effects of increased ground-water pumpage at the Stovepipe Wells Hotel area, Death Valley National Monument, California

    USGS Publications Warehouse

    Woolfenden, L.R.; Martin, Peter; Baharie, Brian

    1988-01-01

    Ground-water use in the Stovepipe Wells Hotel area in Death Valley National Monument is expected to increase significantly if the nonpotable, as well as potable, water supply is treated by reverse osmosis. During the peak tourist season, October through March, ground-water pumpage could increase by 37,500 gallons per day, or 76%. The effects of this additional pumpage on water levels in the area, particularly near a strand of phreatophytes about 10,000 feet east of the well field, are of concern. In order to evaluate the effects of increased pumpage on water levels in the Stovepipe Wells Hotel area well field, two aquifer tests were performed at the well field to determine the transmissivity and storage coefficients of the aquifer. Analysis of the aquifer test determined that a transmissivity of 1,360 feet squared per day was representative of the aquifer. The estimated value of transmissivity and the storage-coefficient values that are representative of confined (1.2 x .0004) and unconfined (0.25) conditions were used in the Theis equation to calculate the additional drawdown that might occur after 1, 10, and 50 years of increased pumpage. The drawdown calculated by using the lower storage-coefficient value represents the maximum additional drawdown that might be expected from the assumed increase in pumpage; the drawdown calculated by using the higher storage-coefficient value represents the minimum additional drawdown. Calculated additional drawdowns after 50 years of pumping range from 7.8 feet near the pumped well to 2.4 feet at the phreatophyte stand assuming confined conditions, and from 5.7 feet near the pumped well to 0.3 foot at the phreatophyte stand assuming unconfined conditions. Actual drawdowns probably will be somewhere between these values. Drawdowns measured in observation wells during 1973-85, in response to an average pumpage of 34,200 gallons per day at the Stovepipe Wells Hotel well field, are similar to the drawdowns calculated by the Theis equation for the assumed increase in pumpage. (Author 's abstract)

  8. Understanding Himalayan extreme rainfall to inform disaster governance

    NASA Astrophysics Data System (ADS)

    Ek, M. B.; Kumar, A.

    2017-12-01

    The hydrological aspects of the Himalayan flooding events were investigated with the coupled atmospheric and Hydrological (WRF-LIS) modeling tool. The Convective storms occurring at the steep edge of broad high topography, such as the Rocky Mountains and Himalayas, are notorious for producing surprising and lethal flash floods. We investigated two recent Himalayan flood events (a) 2010 Ladakh flood: A flash flood and landslide in the Leh region of the Indus Valley in the Indian state of Jammu and Kashmir on 5-6 August 2010 resulted in hundreds of deaths and great property damage. (b) 2013 Uttrakhand flood: Over a three-day period in June 2013, approximately 500-1000 mm of rain fell over Uttarakhand and its river valleys as well as neighboring Nepal. The extensive precipitation and runoff led to devastating floods and landslides throughout the region and resulted in much destruction and loss of life (over 4,000 villages were affected, and the death toll exceeded 5,000). The Uttarakhand flood had characteristics in common with major 2013 floods in the Rocky Mountains in Colorado and Alberta. Our study examines the land-atmosphere interactions & cloud structure and dynamics of these flooding events in more detail, identifying the synoptic, mesoscale, convective, orographic, and land-surface components of the storm. We include satellite observations, ground-based radar imagery, and convection-permitting model simulations down to 1 km grid resolution to show the three-dimensional character of the precipitating cloud systems in more detail than previous studies. Our Land Information System (LIS) calculations suggest that soil moisture preconditioning by prior storms in the area in a vulnerable watershed is a hydrologic ingredient that should be taken into account along with the meteorological ingredients. In this regard, our results will be seen to reinforce the position taken by Doswell et al. (1996) that local forecasting of flood situations is ideally based on identifying key meteorological and hydrologic "ingredients" for a variety of flash flood-producing storms provides lessons for understanding and predicting flash floods and leads to insights into flash flood-producing scenarios in various regions of the world.

  9. Searching for Life in Death Valley (and Other Deserts) - Microchemical Investigations on Desert Varnish

    NASA Astrophysics Data System (ADS)

    Andreae, M. O.; Al-Amri, A. M.; Jochum, K. P.; Kappl, M.; Kilcoyne, A. D.; Macholdt, D.; Müller, M.; Pöhlker, C.; Weber, B.; Weigand, M.

    2014-12-01

    Desert varnishes are thin, shiny, blackish to brown coatings frequently found on the surfaces of exposed rocks in deserts around the globe. They have been proposed as terrestrial analogues of superficial hematite enrichments observed on Mars. While the first scientific studies of such varnishes go back to Darwin and von Humboldt, and intensive studies by a variety of techniques have been conducted over the last few decades, their origin is still a matter of debate. Microscopic and molecular studies have shown the presence of fungi and bacteria, but it is still unclear whether they are involved in the formation of the varnish material or just opportunistic colonizers on available surfaces. We have analysed samples of desert varnish from sites in Death Valley, the Mojave Desert, the Negev of Israel, Central Saudi Arabia, and the Succulent Karoo by a variety of microanalytical techniques. Measurements by UV-femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry show enrichments of manganese, iron, barium and other elements. Isotopic and trace chemical signatures show that these enriched elements cannot originate from the rocks that form the substrate on which the crusts have been deposited, but most likely are the result of (bio?)chemical transformation of windblown material. For a more detailed investigation of the internal structure of the crusts, we prepared ultra-thin sections (~100 nm) using focused ion beam slicing and analysed them by Scanning Transmission X-ray Microscopy with Near-Edge X-ray Absorption Fine Structure spectroscopy (STXM-NEXAFS). This technique revealed layered or chaotic structures consisting of alternating Mn and Fe-rich zones. Some of these layers are enriched in organic carbon with spectral features dominated by aromatic and carboxylate functionalities, indicating a biological origin of some of the crust material. Some crusts also show cavities that are lined with similar organic material. Since the age of these crusts is of the order of 100-10,000 of years, this organic matter must represent fossil evidence that has survived intensive solar radiation, extreme temperatures, and chemical weathering over long periods of time within microns from the varnish surface.

  10. Eruptive history of the Ubehebe Crater cluster, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Fierstein, Judy; Hildreth, Wes

    2017-04-01

    A sequence of late Holocene eruptions from the Ubehebe Crater cluster in Death Valley was short-lived, emplacing several phreatomagmatic and magmatic deposits. Seven craters form the main group, which erupted along a north-south alignment 1.5 km long. At least five more make a 500-m east-west alignment west of the main crater group. One more is an isolated shallow crater 400 m south of that alignment. All erupted through Miocene fanglomerate and sandstone, which are now distributed as comminuted matrix and lithic clasts in all Ubehebe deposits. Stratigraphic evidence showing that all Ubehebe strata were emplaced within a short time interval includes: (1) deposits from the many Ubehebe vents make a multi-package sequence that conformably drapes paleo-basement topography with no erosive gullying between emplacement units; (2) several crater rims that formed early in the eruptive sequence are draped smoothly by subsequent deposits; and (3) tack-welded to agglutinated spatter and bombs that erupted at various times through the sequence remained hot enough to oxidize the overlying youngest emplacement package. In addition, all deposits sufficiently consolidated to be drilled yield reliable paleomagnetic directions, with site mean directions showing no evidence of geomagnetic secular variation. Chemical analyses of juvenile components representing every eruptive package yield a narrow range in major elements [SiO2 (48.65-50.11); MgO (4.98-6.23); K2O (2.24-2.39)] and trace elements [Rb (28-33); Sr (1513-1588); Zr (373-404)]. Despite lithologic similarities, individual fall units can be traced outward from vent by recording layer thicknesses, maximum scoria and lithic sizes, and juvenile clast textural variations. This permits reconstruction of the eruptive sequence, which produced a variety of eruptive styles. The largest and northernmost of the craters, Ubehebe Crater, is the youngest of the group. Its largely phreatomagmatic deposits drape all of the others, thicken in paleogullies and thin over several newly created crater rims. Evidence in-hand virtually requires that the Ubehebe cluster of craters erupted over a brief time interval, not protracted over centuries.

  11. Gram-negative Biomass in Clay Minerals Analogs: Testing Habitability Potential for the 2011 Mars Science Laboratory Mission

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, R.; McKay, C. P.

    2009-12-01

    Landing sites of next missions to Mars i.e., the US 2011 Mars Science Laboratory (MSL11) and the ESA2016 Pasteur ExoMars, will include phyllosilicate outcrops as targets for investigating the geological and biological history of that planet. In this context, we present a study assessing the living biomass and habitability potential in mineralogical Mars analogs such as phyllosilicates and hematite-rich deposits encompassing a broad arid-hyper-arid climate range (annual rainfall <0.2 to ~700mm/y). Samples from the Atacama Desert (Chile), the Death Valley (CA), and the California Coast (USA) were analyzed for microbial lipopolysaccharide (LPS) as proxy for Gram-negatives biomass with the Limulus-Amebocite-Lysate (LAL) assay. Mineral phases were identified using X-Ray-Diffraction (XRD). These samples resulted to contain phyllosilicate phases similar to those identified, or inferred [1], on the surface of Mars by the OMEGA-Mars/Express [e.g., 2], the Mars Reconnaissance Orbiter (MRO) instruments (HiRISE and CRISM) [3]. Basic observations were: 1) there is no systematic pattern in biomass content of clays vs. non-clays (oxidized) materials from the study sites; 2) Atacama desiccation polygons (muscovite and kaolinite) and contiguous hematite-rich hyper-arid deposits contain the lowest biomass, i.e., ~104to-105 cells/g, respectively; 3) the hyper-arid clays contain three-order magnitude lower Gram-negative biomass than those (montmorillonite, illite, and chlorite) from the arid Death Valley site (~107cells/g); and 4) finally, the Gram-negative (~107cells/g) of clay minerals-rich materials from the arid site is about the same than that (~1.5 to ~3.0 x 107cells/g) of water-saturated massive deposits (kaolinite, illite, and vermiculite) from the wetter California coast. Results from this investigation will help testing for the habitability potential of phyllosilicate deposits sampled by the MSL11 Mission. REFERENCES:[1] Bibring et al., 2006, Science 312:400-404; [2] Wang et al., 2006 JGR E02S16 Vol.111; [3] Bishop et al., 2008. Science, 321,830-833.

  12. Decoding sediment transport dynamics on alluvial fans from spatial changes in grain size, Death Valley, California

    NASA Astrophysics Data System (ADS)

    Brooke, Sam; Whittaker, Alexander; Watkins, Stephen; Armitage, John

    2017-04-01

    How fluvial sediment transport processes are transmitted to the sedimentary record remains a complex problem for the interpretation of fluvial stratigraphy. Alluvial fans represent the condensed sedimentary archive of upstream fluvial processes, controlled by the interplay between tectonics and climate over time, infused with the complex signal of internal autogenic processes. With high sedimentation rates and near complete preservation, alluvial fans present a unique opportunity to tackle the problem of landscape sensitivity to external boundary conditions such as climate. For three coupled catchments-fan systems in the tectonically well-constrained northern Death Valley, we measure grain size trends across well-preserved Holocene and Late-Pleistocene deposits, which we have mapped in detail. Our results show that fan surfaces from the Late-Pleistocene are, on average, 50% coarser than counterpart active or Holocene fan surfaces, with clear variations in input grain sizes observed between surfaces of differing age. Furthermore, the change in ratio between mean grain size and standard deviation is stable downstream for all surfaces, satisfying the statistical definition of self-similarity. Applying a self-similarity model of selective deposition, we derive a relative mobility function directly from our grain size distributions, and we evaluate for each fan surface the grain size for which the ratio of the probability of transport to deposition is 1. We show that the "equally mobile" grain size lies in the range of 20 to 35 mm, varies over time, and is clearly lower in the Holocene than in the Pleistocene. Our results indicate that coarser grain sizes on alluvial fans are much less mobile than in river systems where such an analysis has been previously applied. These results support recent findings that alluvial fan sediment characteristics can be used as an archive of past environmental change and that landscapes are sensitive to environmental change over a glacial-interglacial cycle. Significantly, the self-similarity methodology offers a means to constrain relative mobility of grain sizes from field measurements where hydrological information is lost or irretrievable.

  13. Characterization of VOC Emissions from Various Components of Dairy Farming and their effect on San Joaquin Valley Air Quality

    NASA Astrophysics Data System (ADS)

    Yang, M. M.; Meinardi, S.; Krauter, C.; Blake, D.

    2008-12-01

    The San Joaquin Valley Air Basin in Central California is classified by the U.S. Environmental Protection Agency (EPA) as a serious non-attainment area for health-based eight-hour federal ozone (smog) standard (1). In August 2005, the San Joaquin Valley Air Pollution Control District issued a report identifying dairies as a main source of Volatile Organic Compounds (VOCs) and fine particulate matter in the valley (2). Among these compounds, we have found that ethanol, methanol, acetone and acetaldehyde are produced in major quantities throughout the San Joaquin valley as by-products of yeast fermentation of silage and photochemical oxidation. These oxygenates, especially ethanol, play an important role in ozone (O3) formation within the valley. Three different types of sampling protocols were employed in order to determine the degree of enhancement of the four oxygenates in the valley air shed, as well as to determine their sources, emission profiles and emission rates. An assessment of the emissions of these oxygenates in the valley was achieved using data obtained on low altitude flights through the valley and from ground level samples collected thoughout the valley. The photochemical production of ozone was calculated for each of the four oxygenates and approximately one hundred other quantified VOCs. Based on the Maximum Incremental Reactivity (MIR) scale and concentrations of each oxygenate in the atmosphere, as much as 20% of O3 production in the valley is from ethanol and its photochemical by-product acetaldehyde. Our findings suggest that improvement to the valley air quality may be obtained by focusing on instituting new silage containment practices and regulations. 1. Lindberg, J. "Analysis of the San Joaquin Valley 2007 Ozone Plan." State of California Air Resources Board. Final Draft Staff Report. 5/30/2007. 2. Crow, D., executive director/APCO. "Air Pollution Control Officer's Determination of VOC Emisison Factors for Dairies." San Joaquin Valley Air Pollution Control District. Aug. 1st 2005.

  14. Incision of Licus Vallis, Mars, From Multiple Lake Overflow Floods

    NASA Astrophysics Data System (ADS)

    Goudge, Timothy A.; Fassett, Caleb I.

    2018-02-01

    Licus Vallis is a large valley (>350 km long, >2 km wide, and >150 m deep) that heads at the outlet breach of an 30 km diameter impact crater. We present observations of the geomorphology and topography of this paleolake outlet valley and associated tributary valleys to constrain the history of incision of the Licus Vallis system. Licus Vallis has an abrupt increase in gradient by a factor of approximately 4 along its longitudinal profile, and a knickpoint that drops 200 m over a reach of 2 km approximately 12 km downstream from the valley head. We also describe a set of paired terraces within Licus Vallis, which are continuous for tens of kilometers and define an interior valley >2 km in width. We interpret the geomorphology of Licus Vallis as recording at least two discrete, major episodes of valley incision, both driven by lake overflow floods. The main portion of Licus Vallis formed by overflow flooding from a large ( 103-104 km2) lake contained in an intercrater basin. Subsequently, overflow flooding from a lake within the 30 km diameter impact crater reactivated Licus Vallis, forming a major knickpoint at the valley head and establishing the upstream section of the valley at a lower slope. Farther down the valley, this flood event incised an interior valley bounded by paired terraces. Regional tributary valleys that feed Licus Vallis also have prominent knickpoints, which have retreated farthest for downstream valleys. We conclude that these knickpoints record successive waves of incision that swept up Licus Vallis during lake overflow flooding, with erosion in the main trunk of the valley (from overflow floods) significantly outpacing erosion in the tributary valleys (from regional surface runoff). These observations of Licus Vallis illustrate how lake overflow floods may have provided an important control on the pace of landscape evolution on Mars.

  15. A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness

    PubMed Central

    Kätsyri, Jari; Förger, Klaus; Mäkäräinen, Meeri; Takala, Tapio

    2015-01-01

    The uncanny valley hypothesis, proposed already in the 1970s, suggests that almost but not fully humanlike artificial characters will trigger a profound sense of unease. This hypothesis has become widely acknowledged both in the popular media and scientific research. Surprisingly, empirical evidence for the hypothesis has remained inconsistent. In the present article, we reinterpret the original uncanny valley hypothesis and review empirical evidence for different theoretically motivated uncanny valley hypotheses. The uncanny valley could be understood as the naïve claim that any kind of human-likeness manipulation will lead to experienced negative affinity at close-to-realistic levels. More recent hypotheses have suggested that the uncanny valley would be caused by artificial–human categorization difficulty or by a perceptual mismatch between artificial and human features. Original formulation also suggested that movement would modulate the uncanny valley. The reviewed empirical literature failed to provide consistent support for the naïve uncanny valley hypothesis or the modulatory effects of movement. Results on the categorization difficulty hypothesis were still too scarce to allow drawing firm conclusions. In contrast, good support was found for the perceptual mismatch hypothesis. Taken together, the present review findings suggest that the uncanny valley exists only under specific conditions. More research is still needed to pinpoint the exact conditions under which the uncanny valley phenomenon manifests itself. PMID:25914661

  16. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  17. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Kim, Jonghwan; Utama, M. Iqbal Bakti; Regan, Emma C.; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-01

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS2)–tungsten diselenide (WSe2) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field–free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices.

  18. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  19. Wilderness, water, and quality of life in the Bitterroot Valley

    Treesearch

    Kari Gunderson; Clint Cook

    2007-01-01

    The Bitterroot Valley is located in western Montana, U.S.A. Most of the Bitterroot Range above the Bitterroot Valley is protected as wilderness, and is a source of much of the water that flows down and through the valley floor. With an annual precipitation of only 12.3 inches, the Bitterroot Valley is classified as a high desert environment. Today the quality of life...

  20. 75 FR 69666 - Granting of Request for Early Termination of the Waiting Period Under the Premerger Notification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ....P. G Technicolor S.A. G Thomson 000. G Grass Valley Spain SA. G Brazil GV Newco. G Thomson Licensing SAS. G Grass Valley Germany GmbH. G Grass Valley Australia PTY Limited. G Grass Valley Singapore PTE Ltd. G Canopus Asia Co. Limited. G Grass Valley Canada, Inc. G US GV Newco (to be formed). G Grass...

  1. Valley Hall effect and Nernst effect in strain engineered graphene

    NASA Astrophysics Data System (ADS)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  2. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  3. Screening effects due to carrier doping on valley relaxation in transition metal dichalcogenide monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konabe, Satoru

    2016-08-15

    This work theoretically investigated the mechanism of valley polarization relaxation in monolayers of transition metal dichalcogenides, focusing on the exchange interactions between electrons and holes. In particular, we elucidated the effects of screening resulting from carrier doping on valley depolarization dynamics. The results show that the valley relaxation time is highly dependent on the extent of carrier doping. In addition, a finite degree of doping is predicted to induce additional valley relaxation temperature dependence at low temperatures, an effect that is absent at zero doping. Our calculation results suggest the possibility of increasing the valley relaxation time by tuning carriermore » doping, which could present a means of manipulating the valley degrees of freedom.« less

  4. 75 FR 74052 - Change in Bank Control Notices; Acquisitions of Shares of a Bank or Bank Holding Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ..., Moorpark, California; to acquire additional voting shares of Mission Valley Bancorp, Sun Valley, California, and thereby indirectly acquire shares of Mission Valley Bank, Sun Valley, California. Board of...

  5. Volume of Valley Networks on Mars and Its Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was estimated to be ~7.1×1017 m3. Because of the coarse resolution of MOLA data, this is a conservative lower bound. Comparing with the hypothesized northern ocean volume 2.3×1016 m3 estimated by Carr and Head (2003), our estimate of water volume suggests and confirms an active hydrologic cycle for early Mars. Further hydrologic analysis will improve the estimate accuracy.

  6. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  7. Ground-water hydrology of the San Pitch River drainage basin, Sanpete County, Utah

    USGS Publications Warehouse

    Robinson, Gerald B.

    1971-01-01

    The San Pitch River drainage basin in central Utah comprises an area of about 850 square miles; however, the investigation was concerned primarily with the Sanpete and Arapien Valleys, which comprise about 250 square miles and contain the principal ground-water reservoirs in the basin. Sanpete Valley is about 40 miles long and has a maximum width of 13 miles, and Arapien Valley is about 8 miles long and 1 mile wide. The valleys are bordered by mountains and plateaus that range in altitude from 5,200 to 11,000 feet above mean sea level.The average annual precipitation on the valleys is about 12 inches, but precipitation on the surrounding mountains reaches a maximum of about 40 inches per year. Most of the precipitation on the mountains falls as snow, and runoff from snowmelt during the spring and summer is conveyed to the valleys by numerous tributaries of the San Pitch River. Seepage from the tributary channels and underflow beneath the channels are the major sources of recharge to the ground-water reservoir in the valleys.Unconsolidated valley fill constitutes the main ground-water reservoir in Sanpete and Arapien Valleys. The fill, which consists mostly of coalescing alluvial fans and flood deposits of the San Pitch River, ranges in particle size from clay to boulders. Where they are well sorted, these deposits yield large quantities of water to wells.Numerous springs discharge from consolidated rocks in the mountains adjacent to the valleys and along the west margin of Sanpete Valley, which is marked by the Sevier fault. The Green River Formation of Tertiary age and several other consolidated formations yield small to large quantities of water to wells in many parts of Sanpete Valley. Most water in the bedrock underlying the valley is under artesian pressure, and some of this water discharges upward into the overlying valley fill.The water in the valley fill in Sanpete Valley moves toward the center of the valley and thence downstream. The depth to water along parts of the sides of the valley is more than 100 feet, but in much of the central part of the valley, the water level is at or above the land surface. The valley fill pinches out in the southern part of the valley, and most of the ground water moves to the surface, where it discharges into the San Pitch River or is consumed by evapotranspiration.Ground water is discharged principally by wells, springs, and evapotranspiration. The discharge from wells varies considerably from year to year because most of the water is used for irrigation, and the wells are used only as necessary to supplement the available surface-water supply. Thus, in 1965, a year of above-normal precipitation, the discharge from wells was 12,000 acre-feet, whereas in 1966, a year of below-normal precipitation, the wells discharged 21,000 acre-feet. The discharge from springs during 1966 was estimated to be 36,000 acre-feet, and an additional 113,000 acre-feet of water was discharged by phreatophytes.Water levels in the valleys, for the most part, fluctuate in direct response to variations in precipitation, and the discharge from wells has had little long-term effect on water levels. Approximately 3 million acre-feet of water available to wells is stored in the upper 200 feet of saturated valley fill.The ground water in most parts of the valleys is fresh and suitable for public supply and irrigation. The Green River and Crazy Hollow Formations may, in some places, yield slightly or moderately saline water.

  8. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  9. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  10. Proposed work plan for the study of hydrologic effects of ground-water development in the Wet Mountain Valley, Colorado

    USGS Publications Warehouse

    Robson, S.G.

    1985-01-01

    Large-scale development of groundwater resources in the Wet Mountain Valley, Colorado, could adversely affect other water rights in the valley or in the Arkansas River Basin. Such infringement on senior water rights could severely limit development of additional water supplies in the valley. A work plan is presented for a study that is intended to define the hydrologic system in the valley better, and to determine the extent that the quantity and chemical quality of both surface and groundwater in the valley might be affected by proposed development. (USGS)

  11. Ground-water resources of the Sevier River basin between Yuba Dam and Leamington Canyon, Utah

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Robinson, Gerald B.

    1968-01-01

    The area investigated is a segment of the Sevier River basin, Utah, comprising about 900 square miles and including a 19-mile reach of the Sevier River between Yuba Dam and Leamington Canyon. The larger valleys in the area are southern Juab, Round, and Scipio Valleys. The smaller valleys are Mills, Little, Dog, and Tinctic Wash Valleys.The geology of parts of Scipio, Little, and Mills Valleys and parts of the surrounding highlands was mapped and studied to explain the occurrence of numerous sinkholes in the thre valleys and to show their relation to the large springs in Mills Valley. The sinkholes, which are formed in the alluvium, are alined along faults, which penetrate both the alluvium and the underlying bedrock, and they have been formed by collapse of solution cavities in the underlying bedrock. The bedrock is mostly sandy limestone beds of the upper part of the North Horn Formation and of the Flagstaff Limestone. The numerous faults traversing Scipio Valley in a north-northeasterly direction trend directly toward Molter and Blue Springs in Mills Valley. One fault, which can be traced directly between the springs, probably is the principal channelway for the ground water moving from Scipio and Little Valleys to the springs.

  12. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  13. Reconnaissance of Stream Geomorphology, Low Streamflow, and Stream Temperature in the Mountaintop Coal-Mining Region, Southern West Virginia, 1999-2000

    USGS Publications Warehouse

    Wiley, Jeffrey B.; Evaldi, Ronald D.; Eychaner, James H.; Chambers, Douglas B.

    2001-01-01

    The effects of mountaintop removal coal mining and the valley fills created by this mining method in southern West Virginia were investigated by comparing data collected at valley-fill, mined, and unmined sites. Bed material downstream of valley-fill sites had a greater number of particles less than 2 millimeters and a smaller median particle size than the mined and unmined sites. At the 84th percentile of sampled data, however, bed material at each site type had about the same size particles. Bankfull cross-sectional areas at a riffle section were approximately equal at valley-fill and unmined sites, but not enough time has passed and insufficient streamflows since the land was disturbed may have prevented the stream channel at valley-fill sites from reaching equilibrium. The 90-percent flow durations at valley-fill sites generally were 6-7 times greater than at unmined sites. Some valley-fill sites, however, exhibited streamflows similar to unmined sites, and some unmined sites exhibited streamflows similar to valley-fill sites. Daily streamflows from valley-fill sites generally are greater than daily streamflows from unmined sites during periods of low streamflow. Valley-fill sites have a greater percentage of base-flow and a lower percentage of flow from storm runoff than unmined sites. Water temperatures from a valley-fill site exhibited lower daily fluctuations and seasonal variations than water temperatures from an unmined site.

  14. Observation of valley-dependent beams in photonic graphene.

    PubMed

    Deng, Fusheng; Sun, Yong; Wang, Xiao; Xue, Rui; Li, Yuan; Jiang, Haitao; Shi, Yunlong; Chang, Kai; Chen, Hong

    2014-09-22

    Valley-dependent propagation of light in an artificial photonic hexagonal lattice, akin to electrons in graphene, is investigated in microwave regime. Both numerical and experimental results show that the valley degeneracy in the photonic graphene is broken when the frequency is away from the Dirac point. The peculiar anisotropic wave transport property due to distinct valleys is analyzed using the equifrequency contours. More interestingly, the valley-dependent self-collimation and beam splitting phenomena are experimentally demonstrated with the armchair and zigzag interfaces, respectively. Our results confirm that there are two inequivalent Dirac points that lead to two distinct valleys in photonic graphene, which could be used to control the flow of light and might be used to carry information in valley polarized beam splitter, collimator or guiding device.

  15. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2017-09-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  16. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  17. Constraining Subsurface Structure and Composition Using Seismic Refraction Surveys of Proglacial Valleys in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Glas, R. L.; Lautz, L.; McKenzie, J. M.; Mark, B. G.; Baker, E. A.; Aubry-Wake, C.; Somers, L. D.; Wigmore, O.

    2015-12-01

    As tropical glaciers rapidly recede in response to climate change, the storage and discharge of groundwater will play an increasing role in regulating river baseflow, particularly during the dry season, when stream flow is currently sustained predominantly by glacial melt. Little is understood regarding the hydrogeologic processes controlling base flow characteristics of low-gradient proglacial valleys of the Cordillera Blanca in Northwestern Peru, which has the world's highest density of tropical glaciers. To better understand the processes of groundwater storage and discharge in proglacial meadows, we completed seismic refraction surveys in three representative valleys of the Cordillera Blanca range: the Quilcayhuanca, Yanamarey, and Pachacoto valleys. The locations of survey transects were chosen based on locations of previous sediment core sampling, GPR lines, and quantification of groundwater-surface water interaction derived from dye and temperature tracing experiments. The seismic surveys consisted of 48 vertical component geophones with 2.5 m spacing. Across the three representative valleys a total of 15 surveys were conducted, covering a distance of 1800 m in cross, down, and oblique-valley directions. Preliminary interpretation of the seismic refraction data indicates a maximum imaging depth of 16 m below land surface, and a transition from glacio-lacustrine sediments to buried saturated talus at a depth of 6 m in the Quilcayhuanca valley. The organic-rich glacio-lacustrine sediments in the Yanamarey valley have seismic velocities ranging from 300 to 800 m/s and are >16 m in thickness at mid- valley. Weathered metasedimentary bedrock in the Pachacoto valley was imaged at ~5 m below the valley surface, exhibiting a p-wave velocity of 3400 m/s. The knowledge of hydrogeologic structure derived from seismic refraction surveys will provide crucial boundary conditions for future groundwater models of the valleys of the Cordillera Blanca.

  18. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests (P-53)

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  19. Proposed Deactivation and Closure of Federal Prison Camp, Nellis Air Force Base, Nevada. Environmental Assessment

    DTIC Science & Technology

    2006-01-01

    SITE CHARACTERISTICS l. Topography Nellis A1r Force Base is situated in the Basin and Range physiographic province, which is characterized by...nrrmerous elongated mountain ranges separated by similarly shaped valleys ( basins ). The difference in elevations between mountaintops and adjacent valley...s1tuated within the w Vegas Basin portion of Las Vegas Valley. Topography ts characterized prtmartly by flat alluVlal deposits \\\\~thin the valley

  20. 1980 Weather summary

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The weather in the United States during 1980 was bad. A 3-month heat wave in the southwest caused about $20 billion in ruined crops, an increase in power consumption, and damage to roads and highways. Nationwide, the heat killed 1320 people. Floods caused more than $1 billion in losses. Hurricane Allen caused about $500 million in property losses and took two lives.The highest temperature reading during 1980, 51°C (124°F), was reached five times. Locations were at Bull Head, Arizona; Death Valley, California; and three times at Baker, California. Preliminary figures also show that the lowest temperature for the year was recorded at Tok weather station, 150 miles southeast of Fairbanks, Alaska. There the mercury plummeted to -56°C (-68°F). In the lower 48 states the minimum thermometer reading was -44°C at Wisdom, Montana.

  1. ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE MINES ABOVE AT THE RIDGELINE AND TO THE RIGHT WAS CONVEYED TO THIS AREA AND DUMPED INTO THE SHAFT AT CENTER. THIS SHAFT OPENS INTO THE ADIT AT BOTTOM CENTER. THERE IS ANOTHER SHAFT OPENING INTO THE ADIT JUST ABOVE THE ADIT BEHIND THE STONE WALL. THE ORE WAS LOADED INTO TRAM CARS INSIDE THE ADIT AND CONVEYED ON TRACKS TO THE TRESTLE LEADING TO THE PRIMARY ORE BIN AT THE TRAM TERMINAL. TRACKS CAN BE SEEN LEADING FROM THE ADIT AND TO THE LEFT. THE ORE WAS THEN DUMPED INTO A CHUTE AT THE END OF THE TRESTLE CARRYING IT INTO THE ORE BIN AT THE TRAM TERMINAL(SEE CHUTE ON CA-291-30). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  2. TOP VIEW OF UPPER TRAM TERMINAL, PRIMARY ORE BIN, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOP VIEW OF UPPER TRAM TERMINAL, PRIMARY ORE BIN, AND ORE CHUTE,LOOKING SOUTHWEST. TRAM MACHINERY AND GEARS ARE AT LOWER CENTER. A SMALL ELECTRIC MOTOR AT THE REAR LEFT OF THE TERMINAL PROBABLY WAS ADDED AFTER THE ORIGINAL CONSTRUCTION. THE MOVING CABLE OF THE TRAM WAS DRIVEN BY THESE GEARS AND THE LARGE WHEEL UNDERNEATH (SEE CA-291-31 FOR DETAIL). EMPTY TRAM BUCKETS CAME IN FROM THE LEFT, SWINGING AROUND TO THE CHUTES FROM THE ORE BIN TO BE LOADED FOR THE TRIP DOWN TO THE MILL (SEE CA-291-35 FOR DETAIL). THE BREAK OVER TOWER CAN BE SEEN IN THE DISTANCE AT TOP LEFT. THE SUPPORT TOWER BETWEEN THE UPPER TERMINAL AND THE BREAK OVER TOWER IS COLLAPSED. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    USGS Publications Warehouse

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Tréhu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  4. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    NASA Astrophysics Data System (ADS)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our experiments show that different sources of water form valleys of similar size in quite different timescales.

  5. Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley

    NASA Astrophysics Data System (ADS)

    Weigel, Andreas P.; Rotach, Mathias W.

    2004-10-01

    Aircraft measurements, radio soundings and sonic data--obtained during the MAP-Riviera field campaign in autumn 1999 in southern Switzerland--are used to investigate the flow structure, temperature profiles and turbulence characteristics of the atmosphere in a steep and narrow Alpine valley under convective conditions. On all predominantly sunny days of the intensive observation periods, a pronounced valley-wind system develops. In the southern half of the valley, the daily up-valley winds have a jet-like structure and are shifted towards the eastern slope. These up-valley winds advect potentially colder air, a process which appears to be balanced by vertical warm air advection from above. The profiles of potential temperature show that, with the onset of up-valley winds, the mixed layer consistently stops growing or--on days with very strong up-valley winds--even stabilizes almost throughout the entire valley atmosphere. This is probably due to a pronounced secondary circulation in the southern part of the valley, which induces advection of warm air from above. The secondary circulation appears to be a consequence of sharp curvature in the along-valley topography. Turbulence variables are calculated from flight legs in the along-valley direction. Turbulent kinetic energy (TKE) scales surprisingly well (i) if a TKE criterion (TKE > 0.5 m2s-2) is employed as a definition of the boundary layer height and (ii) if the 'surface fluxes'--which exhibit a substantial spatial variability--from the slope sites are used rather than those from directly beneath the profile considered. Significant site-to-site differences in incoming solar radiation seem to be the reason for this characteristic behaviour. Profiles of momentum flux--scaled with a surface friction velocity--reveal more scatter than the TKE profiles, but still show a consistent behaviour. A surprisingly strong shear in the cross-valley direction can be observed and is probably a result of the secondary circulation.

  6. Imaging of pure spin-valley diffusion current in WS2-WSe2 heterostructures.

    PubMed

    Jin, Chenhao; Kim, Jonghwan; Utama, M Iqbal Bakti; Regan, Emma C; Kleemann, Hans; Cai, Hui; Shen, Yuxia; Shinner, Matthew James; Sengupta, Arjun; Watanabe, Kenji; Taniguchi, Takashi; Tongay, Sefaattin; Zettl, Alex; Wang, Feng

    2018-05-25

    Transition metal dichalcogenide (TMDC) materials are promising for spintronic and valleytronic applications because valley-polarized excitations can be generated and manipulated with circularly polarized photons and the valley and spin degrees of freedom are locked by strong spin-orbital interactions. In this study we demonstrate efficient generation of a pure and locked spin-valley diffusion current in tungsten disulfide (WS 2 )-tungsten diselenide (WSe 2 ) heterostructures without any driving electric field. We imaged the propagation of valley current in real time and space by pump-probe spectroscopy. The valley current in the heterostructures can live for more than 20 microseconds and propagate over 20 micrometers; both the lifetime and the diffusion length can be controlled through electrostatic gating. The high-efficiency and electric-field-free generation of a locked spin-valley current in TMDC heterostructures holds promise for applications in spin and valley devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    NASA Astrophysics Data System (ADS)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  8. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (<5000 km2) . Using observations from aircraft-based, balloon-based, and surface-based platforms deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  9. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks, a school, and several farms and small businesses. Most groundwater that is withdrawn from pumped wells is returned to the groundwater system via septic systems. Groundwater in the upper and basal confined aquifers in the upper Sixmile Creek valley is under artesian conditions everywhere except where the water discharges to springs along bluffs in the western end of the Sixmile Creek valley. Principal sources of recharge to the confined aquifers are (1) the sides of the valley where the confined aquifers may extend up along the flank of the bedrock valley wall and crop out at land surface or are overlain and in contact with surficial coarse-grained deltaic and fluvial sediments that provide a pathway through which direct precipitation and seepage losses from tributary streams can reach the buried aquifers, or (2) where the buried aquifers are isolated and receive recharge only from adjacent fine-grained sediment and bedrock. The base-flow and runoff components of total streamflow at two streamgages, Sixmile Creek at Brooktondale and Sixmile Creek at Bethel Grove, were calculated using hydrograph-separation techniques from 2003 to 2007 discharge records. Base flow constituted 64 and 56 percent of the total annual flow at the Brooktondale and Bethel Grove streamgages, respectively. Water-quality samples were collected from 2003 to 2005, with 10 surface-water samples collected seasonally during base-flow conditions at the Sixmile Creek at Brooktondale streamgage, and 12 samples were collected during base-flow conditions at several selected tributaries from 2004 to 2005. The predominant cation detected in the surface-water samples was calcium, but moderate amounts of magnesium, silica, and sodium were also detected; the major anions were bicarbonate, chloride, and sulfate. Sodium and chloride concentrations were relatively low in all samples but increased downstream from the Sixmile Creek sampling site at Six Hundred Road near Slaterville Springs, NY, to B

  10. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of water resources in the area is primarily through domestic wells, most of which are completed in fractured bedrock in upland areas. A few villages in the Susquehanna River valley have supply wells that draw water from beneath alluvial fans and near the Susquehanna River, which is a large potential source of water from induced infiltration.

  11. 3D morphometry of valley networks on Mars from HRSC/MEX DEMs: Implications for climatic evolution through time

    NASA Astrophysics Data System (ADS)

    Ansan, V.; Mangold, N.

    2013-09-01

    valley networks have been identified mainly in the Noachian heavily cratered uplands. Eight dense branching valley networks were studied in Noachian terrains of Huygens, Newcomb and Kepler craters, south Tyrrhena Terra, and Thaumasia, in Hesperian terrains of Echus Plateau and west Eberswalde craters, and in Amazonian terrains of Alba Patera, using images and digital elevation models from the Mars Express High Resolution Stereo Camera to determine 2D and 3D morphometric parameters. Extracted geomorphic parameters show similar geometry to terrestrial valleys: drainage densities, organization from bifurcation ratios and lengths ratios, Hack exponent consistent with terrestrial values of ~0.6, and progressive deepening of valleys with increasing Strahler order. In addition, statistics on valley depths indicate a deeper incision of Noachian valleys compared to younger post-Noachian valleys (<25 m for Amazonian ones compared to >100 m for Noachian ones), showing a strong difference in fluvial erosion. These characteristics show that dense Martian valley networks formed by overland flows in relation to a global atmospheric water cycle in Noachian epoch and confirm that the later stages of activity may be related to shorter duration of activity, distinct climatic conditions, and/or regional processes, or conditions.

  12. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.

    PubMed

    Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan

    2014-01-08

    Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

  13. Orbital and Rover-based Exploration of Perseverance Valley, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Gadal, C.; Blois, G.; Palucis, M. C.; Goudge, T. A.; Morgan, A. M.; Day, M.; Sullivan, R. J., Jr.; Umurhan, O. M.; Pähtz, T.; Birch, S.; Morgan, A. M.; Goudge, T. A.; Palucis, M. C.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Blois, G.; Gadal, C.; Morgan, A. M.; Sullivan, R. J., Jr.; Day, M.; Arvidson, R. E.

    2017-12-01

    Perseverance Valley, based on orbital observations from the Mars Reconnaisance Orbiter HiRISE image data, is a 180 m long, 20 m wide anastomosing shallow channel system superimposed on the Cape Byron rim segment of the 22 km diameter Noachian-age Endeavour Crater on Mars. Several impact craters are superimposed on the valley system, indicating antiquity, although the valley's high degree of preservation indicates that it formed after significant regional-scale fluvial erosion and diffusive smoothing of Endeavour and its rim segments. The valley cuts into the inner, eastern rim on a 10˚ to 15˚ slope, and starts at a local low area on the rim crest. A set of shallow channels, some lined with perimeter rocks, extends from the west to meet the entrance to the valley. The western rim tilts to the west 0.8˚ and thus the channels tilt away from the valley entrance. The Mars Rover Opportunity has explored the western shallow channels leading up to the entrance to the valley. As of this writing Opportunity is located on the southern side of the valley entrance, with the Athena Science Team waiting until after solar conjunction to command the rover to descend into the valley to search for geomorphic and sedimentologic evidence related to valley formation. Wind erosion along radial fractures extending into and down Cape Byron is a possibility. Debris flows are also under consideration, perhaps enabled by melting ice at the rim crest. Dry avalanches are unlikely due to the low slopes. A fluvial origin is a strong contender based on models that show it is possible to have had a western catchment present when the Burns formation hydrated sulfates were being emplaced, followed by self-compaction of these sediments that tilted the western plains away from the rim crest. The key to testing among the various hypotheses for formation of the valley and shallow channels leading into the entrance will be the detailed stereo and multispectral imaging observations Opportunity will make of morphology and deposits at 20 m intervals during its descent along the valley floor. This will in fact be the first ground-based exploration of a candidate fluvial valley system on Mars, and will provide unique information on formation processes, including the role of water in shaping valley landforms.

  14. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of Ventura, Oxnard, Camarillo, Simi Valley, Newhall, and Santa Clarita. Currently, groundwater pumping for agricultural use accounts for the greatest amount of discharge from the aquifer system in the SCRV study unit, followed by municipal use. Recharge to the groundwater system is through stream-channel infiltration from the three main river systems and by direct infiltration of precipitation and irrigation. Recharge facilities in the Oxnard forebay play an important role in recharging the local aquifer systems.

  15. 78 FR 45114 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... the Antelope Valley Air Quality Management District (AVAQMD) portion of the California State... for the South Coast Air Quality Management District (SCAQMD). The Antelope Valley Air Pollution...

  16. 78 FR 59840 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ...] Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management District... of plan. * * * * * (c) * * * (428) * * * (i) * * * (B) Antelope Valley Air Quality Management...) * * * (i) * * * (B) Antelope Valley Air Quality Management District. (1) Rule 431.1, ``Sulfur Content of...

  17. 75 FR 54402 - Post Office Closing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... POSTAL REGULATORY COMMISSION [Docket No. A2010-6; Order No. 527] Post Office Closing AGENCY... the closing of the Renfro Valley Post Office, Renfro Valley, Kentucky 40473, has been filed. It... closing of the Renfro Valley Post Office, Renfro Valley, Kentucky 40473. The appeal, which appears to be...

  18. 78 FR 34127 - Notice of Inventory Completion: Coachella Valley History Museum, Indio, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-06

    ... Valley History Museum professional staff in consultation with representatives of Torres Martinez Desert....R50000] Notice of Inventory Completion: Coachella Valley History Museum, Indio, CA AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Coachella Valley History Museum has completed an inventory...

  19. Structure and Velocities of the Northeastern Santa Cruz Mountains and the Western Santa Clara Valley, California, from the SCSI-LR Seismic Survey

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Gandhok, G.

    2006-01-01

    Introduction: The Santa Clara Valley is located in the southern San Francisco Bay area of California and generally includes the area south of the San Francisco Bay between the Santa Cruz Mountains on the southwest and the Diablo Ranges on the northeast. The area has a population of approximately 1.7 million including the city of San Jose, numerous smaller cities, and much of the high-technology manufacturing and research area commonly referred to as the Silicon Valley. Major active strands of the San Andreas Fault system bound the Santa Clara Valley, including the San Andreas fault to the southwest and the Hayward and Calaveras faults to the northeast; related faults likely underlie the alluvium of the valley. This report focuses on subsurface structures of the western Santa Clara Valley and the northeastern Santa Cruz Mountains and their potential effects on earthquake hazards and ground-water resource management in the area. Earthquake hazards and ground-water resources in the Santa Clara Valley are important considerations to California and the Nation because of the valley's preeminence as a major technical and industrial center, proximity to major earthquakes faults, and large population. To assess the earthquake hazards of the Santa Clara Valley better, the U.S. Geological Survey (USGS) has undertaken a program to evaluate potential earthquake sources and potential effects of strong ground shaking within the valley. As part of that program, and to better assess water resources of the valley, the USGS and the Santa Clara Valley Water District (SCVWD) began conducting collaborative studies to characterize the faults, stratigraphy, and structures beneath the alluvial cover of the Santa Clara Valley in the year 2000. Such geologic features are important to both agencies because they directly influence the availability and management of groundwater resources in the valley, and they affect the severity and distribution of strong shaking from local or regional earthquakes sources. As one component of these joint studies, the U. S. Geological Survey acquired more than 28 km of combined seismic reflection/refraction data from the Santa Cruz Mountains to the central Santa Clara Valley in December 2000. The seismic investigation included both high-resolution (~5-m shot and sensor spacing) and relatively lower-resolution (~50-m sensor) seismic surveys from the central Santa Cruz Mountains to the central part of the valley. Collectively, we refer to these seismic investigations as the 2000 western Santa Clara Seismic Investigations (SCSI).

  20. Groundwater model of the Great Basin carbonate and alluvial aquifer system version 3.0: Incorporating revisions in southwestern Utah and east central Nevada

    USGS Publications Warehouse

    Brooks, Lynette E.

    2017-12-01

    The groundwater model described in this report is a new version of previously published steady-state numerical groundwater flow models of the Great Basin carbonate and alluvial aquifer system, and was developed in conjunction with U.S. Geological Survey studies in Parowan, Pine, and Wah Wah Valleys, Utah. This version of the model is GBCAAS v. 3.0 and supersedes previous versions. The objectives of the model for Parowan Valley were to simulate revised conceptual estimates of recharge and discharge, to estimate simulated aquifer storage properties and the amount of reduction in storage as a result of historical groundwater withdrawals, and to assess reduction in groundwater withdrawals necessary to mitigate groundwater-level declines in the basin. The objectives of the model for the area near Pine and Wah Wah Valleys were to recalibrate the model using new observations of groundwater levels and evapotranspiration of groundwater; to provide new estimates of simulated recharge, hydraulic conductivity, and interbasin flow; and to simulate the effects of proposed groundwater withdrawals on the regional flow system. Meeting these objectives required the addition of 15 transient calibration stress periods and 14 projection stress periods, aquifer storage properties, historical withdrawals in Parowan Valley, and observations of water-level changes in Parowan Valley. Recharge in Parowan Valley and withdrawal from wells in Parowan Valley and two nearby wells in Cedar City Valley vary for each calibration stress period representing conditions from March 1940 to November 2013. Stresses, including recharge, are the same in each stress period as in the steady-state stress period for all areas outside of Parowan Valley. The model was calibrated to transient conditions only in Parowan Valley. Simulated storage properties outside of Parowan Valley were set the same as the Parowan Valley properties and are not considered calibrated. Model observations in GBCAAS v. 3.0 are groundwater levels at wells and discharge locations; water-level changes; and discharge to springs, evapotranspiration of groundwater, rivers, and lakes. All observations in the model outside of Parowan Valley are considered to represent steady-state conditions. Composite scaled sensitivities indicate the observations of discharge to rivers and springs provide more information about model parameters in the model focus area than do water-level observations. Water levels and water-level changes, however, provide the only information about specific yield and specific storage parameters and provide more information about recharge and withdrawals in Parowan Valley than any other observation group. Comparisons of simulated water levels and measured water levels in Parowan Valley indicated that the model fits the overall trend of declining water levels and provides reasonable estimates of long-term reduction in storage and of storage changes from 2012 to 2013. The conceptual and simulated groundwater budgets for Parowan Valley from November 2012 to November 2013 are similar, with recharge of about 20,000 acre-feet and discharge of about 45,000 acre-feet. In the simulation, historical withdrawals averaging about 28,000 acre-feet per year (acre-ft/yr) cause major changes in the groundwater system in Parowan Valley. These changes include the cessation of almost all natural discharge in the valley and the long-term removal of water from storage. Simulated recharge in Pine Valley of 11,000 acre-ft/yr and in Wah Wah Valley of 3,200 acre-ft/yr is substantially less in GBCAAS v. 3.0 than that simulated by previous model versions. In addition, the valleys have less simulated inflow from and outflow to other hydrographic areas than were simulated by previous model versions. The effects of groundwater development in these valleys, however, are independent of the amount of water recharging in and flowing through the valleys. Groundwater withdrawals in Pine and Wah Wah Valleys will decrease groundwater storage (causing drawdown) until discharge in surrounding areas and mountain springs around the two valleys is reduced by the rate of withdrawal. The model was used to estimate that reducing withdrawals in Parowan Valley from 35,000 to about 22,000 acre-ft/yr would likely stabilize groundwater levels in the valley if recharge varies as it did from about 1950 to 2012. The model was also used to demonstrate that withdrawals of 15,000 acre-ft/yr from Pine Valley and 6,500 acre-ft/yr from Wah Wah Valley could ultimately cause long-term steady-state water-level declines of about 1,900 feet near the withdrawal wells and of more than 5 feet in an area of about 10,500 square miles. The timing of drawdown and capture and the ultimate amount of drawdown are dependent on the proximity to areas of simulated natural groundwater discharge, simulated transmissivity, and simulated storage properties. The model projections are a representation of possible effects.

  1. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  2. Nonstructural NSs protein of rift valley fever virus interacts with pericentromeric DNA sequences of the host cell, inducing chromosome cohesion and segregation defects.

    PubMed

    Mansuroglu, Z; Josse, T; Gilleron, J; Billecocq, A; Leger, P; Bouloy, M; Bonnefoy, E

    2010-01-01

    Rift Valley fever virus (RVFV) is an emerging, highly pathogenic virus; RVFV infection can lead to encephalitis, retinitis, or fatal hepatitis associated with hemorrhagic fever in humans, as well as death, abortions, and fetal deformities in animals. RVFV nonstructural NSs protein, a major factor of the virulence, forms filamentous structures in the nuclei of infected cells. In order to further understand RVFV pathology, we investigated, by chromatin immunoprecipitation, immunofluorescence, fluorescence in situ hybridization, and confocal microscopy, the capacity of NSs to interact with the host genome. Our results demonstrate that even though cellular DNA is predominantly excluded from NSs filaments, NSs interacts with some specific DNA regions of the host genome such as clusters of pericentromeric gamma-satellite sequence. Targeting of these sequences by NSs was correlated with the induction of chromosome cohesion and segregation defects in RVFV-infected murine, as well as sheep cells. Using recombinant nonpathogenic virus rZHDeltaNSs210-230, expressing a NSs protein deleted of its region of interaction with cellular factor SAP30, we showed that the NSs-SAP30 interaction was essential for NSs to target pericentromeric sequences, as well as for induction of chromosome segregation defects. The effect of RVFV upon the inheritance of genetic information is discussed with respect to the pathology associated with fetal deformities and abortions, highlighting the main role played by cellular cofactor SAP30 on the establishment of NSs interactions with host DNA sequences and RVFV pathogenesis.

  3. Against the current— The Mojave River from sink to source: The 2018 Desert Symposium field trip road log

    USGS Publications Warehouse

    Miller, David; Reynolds, R.E.; Groover, Krishangi D.; Buesch, David C.; Brown, H. J.; Cromwell, Geoffrey; Densmore-Judy, Jill; Garcia, A.L.; Hughson, D.; Knott, J.R.; Lovich, Jeffrey E.

    2018-01-01

    The Mojave River evolved over the past few million years by “fill and spill” from upper basins near its source in the Transverse Ranges to lower basins. Each newly “spilled into” basin in the series? sustained a long-lived lake but gradually filled with Mojave River sediment, leading to spill to a yet lower elevation? basin. The Mojave River currently terminates at Silver Lake, near Baker, CA, but previously overflowed this terminus onward to Lake Manly in Death Valley during the last glacial cycle. The river’s origin and evolution are intricately interwoven with tectonic, climatic, and geomorphic processes through time, beginning with San Andreas fault interactions that created a mountain range across a former externally draining river. We will see and discuss the Mojave River’s predecessor streams and basins, its evolution as it lengthened to reach the central Mojave Desert, local and regional tectonic controls, groundwater flow, flood history, and support of isolated perennial stream reaches that host endemic species. In association with these subjects are supporting studies such as paleoclimate records, location and timing for groundwater and wetlands in the central Mojave Desert, and effects of modern water usage. The trip introduces new findings for the groundwater basin of Hinkley Valley, including an ongoing remediation project that provides a wealth of information on past and present river flow and associated development of the groundwater system.

  4. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  5. Evaluating connection of aquifers to springs and streams, Great Basin National Park and vicinity, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Sweetkind, Donald S.; Jackson, Tracie R.; Dotson, K. Elaine; Plume, Russell W.; Hatch, Christine E.; Halford, Keith J.

    2015-12-22

    Groundwater flow from southern Spring Valley continues through the western side of Hamlin Valley before being directed northeast toward the south end of Snake Valley. This flow is constrained by southward-flowing groundwater from Big Spring Wash and northward-flowing groundwater beneath central Hamlin Valley. The redirection to the northeast corresponds to a narrowing of the width of flow in southern Snake Valley caused by a constriction formed by a steeply dipping middle Paleozoic siliciclastic confining unit exposed in the flanks of the mountains and hills on the east side of southern Snake Valley and shallowly buried beneath basin fill in the valley. The narrowing of groundwater flow could be responsible for the large area where groundwater flows to springs or is lost to evapotranspiration between Big Springs in Nevada and Pruess Lake in Utah.

  6. 75 FR 9095 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Hayden, CO, Yampa Valley, ILS OR LOC/DME Y RWY 10, Amdt 3 Hayden, CO, Yampa Valley, RNAV (GPS) RWY 28, Amdt 1 Hayden, CO, Yampa Valley, RNAV (GPS) Y RWY 10, Amdt 2 Hayden, CO, Yampa Valley, RNAV (RNP) Z RWY...

  7. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  8. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  9. 76 FR 38572 - Revisions to the California State Implementation Plan, Antelope Valley Air Quality Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... the California State Implementation Plan, Antelope Valley Air Quality Management District AGENCY... approve revisions to the Antelope Valley Air Quality Management District (AVAQMD) portion of the... approving with the dates that they were adopted by the Antelope Valley Air Quality Management District...

  10. Hazardous Waste Cleanup: West Valley Demonstration Project USDOE in West Valley, New York

    EPA Pesticide Factsheets

    The U.S. Department of Energy's West Valley Demonstration Project is located at 10282 Rock Spring Road in West Valley, New York. This is a 167 acre, Department of Energy (DOE)-operated portion of a 3,300-acre site owned by the New York State Energy

  11. 77 FR 42722 - Copper Valley Electric Association; Notice of Updated Environmental Analysis Preparation Schedule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13124-002] Copper Valley...: Original License Application. b. Project No.: 13124-002. c. Applicant: Copper Valley Electric Association (Copper Valley). d. Name of Project: Allison Creek Project. e. Location: On the south side of Port Valdez...

  12. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundary of the San Antonio Valley...) Hames Valley, California, 1949, photorevised 1978; (2) Tierra Redonda Mountain, California, 1949... southeast corner of section 14, T23S, R9E, on the Hames Valley map; (2) From the beginning point, proceed...

  13. ASSESSING TRANSBOUNDARY INFLUENCES IN THE LOWER RIO GRANDE VALLEY (COMMUNITY SUMMARY)

    EPA Science Inventory

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was done to determine if movement of air pollutants across the U.S.-Mexico border was occurring in the Lower Rio Grande Valley (hereinafter called "the Valley") and, if so, the extent. The study w...

  14. 75 FR 27494 - Proposed Amendment of Class E Airspace; Pauls Valley, OK

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... 0182; Airspace Docket No. 10-ASW-4] Proposed Amendment of Class E Airspace; Pauls Valley, OK AGENCY... action proposes to amend Class E airspace at Pauls Valley, OK. Additional controlled airspace is necessary to accommodate new Standard Instrument Approach Procedures (SIAPs) at Pauls Valley Municipal...

  15. 76 FR 76046 - Interim Final Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... Determination To Defer Sanctions, San Joaquin Valley Unified Air Pollution Control District AGENCY... Valley Unified Air Pollution Control District (SJVUAPCD or District) portion of the California State...), we finalized a limited approval and limited disapproval of San Joaquin Valley Unified Air Pollution...

  16. 76 FR 41745 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... approval and limited disapproval of revisions to the San Joaquin Valley Unified Air Pollution Control... Valley Unified Air Pollution Control District (SJVUAPCD) Rule 4682, Polystyrene, Polyethylene, and...

  17. 76 FR 68103 - Revisions to the California State Implementation Plan, San Joaquin Valley Unified Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... the California State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District... revisions to the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) portion of the... State Implementation Plan, San Joaquin Valley Unified Air Pollution Control District Rule 4692...

  18. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer. Groundwater flows from the high-altitude recharge areas downward toward the basin-fill aquifer in Parowan Valley. Almost all groundwater discharge occurs as withdrawals from irrigation wells in the valley with a small amount of discharge from phreatophytic evapotranspiration. Subsurface groundwater discharge to Cedar Valley is likely minimal. Withdrawals from wells during 2013 were about 32,000 acre-ft. The estimated withdrawals from wells from 1994 to 2013 have ranged from 22,000 to 39,000 acre-ft per year. Declining water levels are an indication of the estimated average annual decrease in groundwater storage of 15,000 acre-ft from 1994 to 2013.Groundwater and surface-water samples were collected from 46 sites in Parowan Valley and Cedar Valley near the town of Enoch during June 2013. Groundwater samples from 34 wells were submitted for geochemical analysis. The total dissolved-solids concentration in water from these wells ranged from 142 to 886 milligrams per liter. Results of stable isotope analysis of oxygen and deuterium from groundwater and surface-water samples indicate that most of the groundwater in Parowan Valley and in Cedar Valley near Enoch is similar in isotopic composition to water from mountain streams, which reflects meteoric water recharged in high-altitude areas east of the valley. In addition, results of stable isotope analysis of a subset of samples from wells located near Little Salt Lake may indicate recharge of precipitation that occurred during cooler climatic conditions of the Pleistocene Epoch.

  19. HOSPITALIZATIONS FOR CHOLECYSTITIS AND CHOLELITHIASIS IN THE STATE OF RIO GRANDE DO SUL, BRAZIL

    PubMed Central

    NUNES, Emeline Caldana; ROSA, Roger dos Santos; BORDIN, Ronaldo

    2016-01-01

    ABSTRACT Background: The cholelithiasis is disease of surgical resolution with about 60,000 hospitalizations per year in the Sistema Único de Saúde (SUS - Brazilian National Health System) of the Rio Grande do Sul state. Aim: To describe the profile of hospitalizations for cholecystitis and cholelithiasis performed by the SUS of Rio Grande do Sul state, 2011-2013. Methods: Hospital Information System data from the National Health System through morbidity list for cholelithiasis and cholecystitis (ICD-10 K80-K81). Variables studied were sex, age, number of hospitalizations and approved Hospitalization Authorizations (AIH), total amount and value of hospital services generated, days and average length of stay, mortality, mortality and case fatality ratio, from health regions of the Rio Grande do Sul. Results: During 2011-2013 there were 60,517 hospitalizations for cholecystitis and cholelithiasis, representing 18.86 hospitalizations per 10,000 inhabitants/year, most often in the age group from 60 to 69 years (41.34 admissions per 10,000 inhabitants/year) and female (27.72 hospitalizations per 10,000 inhabitants/year). The fatality rate presented an inverse characteristic: 13.52 deaths per 1,000 admissions/year for males, compared with 7.12 deaths per 1,000 admissions/year in females. The state had an average total amount spent and value of hospital services of R$ 16,244,050.60 and R$ 10,890,461.31, respectively. The health region "Capital/Gravataí Valley" exhibit the highest total expenditure and hospital services, and the largest number of deaths, and average length of stay. Conclusion: The hospitalization and lethality coefficients, the deaths, the length of stay and spending related to admissions increased from 50 years old. Females had a higher frequency and higher values ​​spent on hospitalization, while the male higher coefficient of mortality and mean hospital stay. PMID:27438030

  20. Overdose Deaths Related to Fentanyl and Its Analogs - Ohio, January-February 2017.

    PubMed

    Daniulaityte, Raminta; Juhascik, Matthew P; Strayer, Kraig E; Sizemore, Ioana E; Harshbarger, Kent E; Antonides, Heather M; Carlson, Robert R

    2017-09-01

    Ohio is experiencing unprecedented loss of life caused by unintentional drug overdoses (1), with illicitly manufactured fentanyl (IMF) emerging as a significant threat to public health (2,3). IMF is structurally similar to pharmaceutical fentanyl, but is produced in clandestine laboratories and includes fentanyl analogs that display wide variability in potency (2); variations in chemical composition of these drugs make detection more difficult. During 2010-2015, unintentional drug overdose deaths in Ohio increased 98%, from 1,544 to 3,050.* In Montgomery County (county seat: Dayton), one of the epicenters of the opioid epidemic in the state, unintentional drug overdose deaths increased 40% in 1 year, from 249 in 2015 to 349 in 2016 (estimated unadjusted mortality rate = 57.7 per 100,000) (4). IMFs have not been part of routine toxicology testing at the coroner's offices and other types of medical and criminal justice settings across the country (2,3). Thus, data on IMF test results in the current outbreak have been limited. The Wright State University and the Montgomery County Coroner's Office/Miami Valley Regional Crime Laboratory (MCCO/MVRCL) collaborated on a National Institutes of Health study of fentanyl analogs and metabolites and other drugs identified in 281 unintentional overdose fatalities in 24 Ohio counties during January-February 2017. Approximately 90% of all decedents tested positive for fentanyl, 48% for acryl fentanyl, 31% for furanyl fentanyl, and 8% for carfentanil. Pharmaceutical opioids were identified in 23% of cases, and heroin in 6%, with higher proportions of heroin-related deaths in Appalachian counties. The majority of decedents tested positive for more than one type of fentanyl. Evidence suggests the growing role of IMFs, and the declining presence of heroin and pharmaceutical opioids in unintentional overdose fatalities, compared with 2014-2016 data from Ohio and other states (3-5). There is a need to include testing for IMFs as part of standard toxicology panels for biological specimens used in the medical, substance abuse treatment, and criminal justice settings.

Top