A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999
Morton, Douglas M.; Hauser, Rachel M.
2001-01-01
This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.
Age of Palos Verdes submarine debris avalanche, southern California
Normark, W.R.; McGann, M.; Sliter, R.
2004-01-01
The Palos Verdes debris avalanche is the largest, by volume, late Quaternary mass-wasted deposit recognized from the inner California Borderland basins. Early workers speculated that the sediment failure giving rise to the deposit is young, taking place well after sea level reached its present position. A newly acquired, closely-spaced grid of high-resolution, deep-tow boomer profiles of the debris avalanche shows that the Palos Verdes debris avalanche fills a turbidite leveed channel that extends seaward from San Pedro Sea Valley, with the bulk of the avalanche deposit appearing to result from a single failure on the adjacent slope. Radiocarbon dates from piston-cored sediment samples acquired near the distal edge of the avalanche deposit indicate that the main failure took place about 7500 yr BP. ?? 2003 Elsevier B.V. All rights reserved.
Dense Granular Avalanches: Mathematical Description and Experimental Validation
NASA Astrophysics Data System (ADS)
Tai, Y.-C.; Hutter, K.; Gray, J. M. N. T.
Snow avalanches, landslides, rock falls and debris flows are extremely dangerous and destructive natural phenomena. The frequency of occurrence and amplitudes of these disastrous events appear to have increased in recent years perhaps due to recent climate warming. The events endanger the personal property and infra-structure in mountainous regions. For example, from the winters 1940/41 to 1987/88 more than 7000 snow avalanches occurred in Switzerland with damaged property leading to a total of 1269 deaths. In February 1999, 36 people were buried by a single avalanche in Galtür, Austria. In August 1996, a very large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approximate property damage of more than 19 billion NT dollars (ca. 600 million US dollars) [18]. In Europe, a suddenly released debris flow in North Italy in August 1998 buried 5 German tourists on the Superhighway "Brenner-Autobahn". The topic has gained so much significance that in 1990 the United Nations declared the International Decade for Natural Disasters Reduction (IDNDR); Germany has its own Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V. Special conferences are devoted to the theme, e.g., the CALAR conference on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January 2000), INTERPRAEVENT, annual conferences on the protection of habitants from floods, debris flows and avalanches, special conferences on debris flow hazard mi tigation and those exclusively on Avalanches.
NASA Astrophysics Data System (ADS)
Roverato, M.; Capra, L.
2010-12-01
Colima volcano is an andesitic stratovolcano located in the western part of the Trans-Mexican Volcanic Belt (TMVB) and at the southern end of the N-S trending Colima graben, about 70 km from the Pacific Ocean coast. It is probably the most active Mexican volcano in historic time and one of the most active of North America. Colima volcano yielded numerous partial edifice collapses with emplacement of debris avalanche deposits (DADs) of contrasting volume, morphology, texture and origin. This work has the aim to provide the evidences of how the climatic condition during the 13 ka flank collapse of the Colima volcano affected the textural characteristic and the mobility of the debris avalanche and debris flow originated from this event that occurred just after the Last Glacial Maximum in Mexico (18.4-14.5 ka 14C BP with snow line at 3600 m a.s.l. up to 13 ka BP). The 13,000 yrs old debris avalanche deposit, here named Tonila (TDAD) presents the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) but at approximately 13 km from the source, the deposit transforms to an hybrid phase with debris avalanche fragments imbedded in a finer, homogenous and indurated matrix more similar to a debris flow deposit. The debris avalanche deposit is directly overly by debris flows, often more than 10 m thick that contains large amount of logs from pine tree, mostly accumulated toward the base and imbricated down flow. Fluvial deposits also occur throughout all successions, representing periods of stream and river reworking highly localized and re-establishment. All these evidences point to the presence of water in the mass previous to the failure. The event here described represent an anomalous event between the previously described deposit associated to volcanic complex, and evidence as climatic condition can alter and modifies the depositional sequences incrementing the hazard.
Diaz-Castellon, Rodolfo; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Rodríguez-Vargas, José Luis
2012-01-01
Cofre de Perote volcano is a compound, shield-like volcano located in the northeastern Trans-Mexican volcanic belt. Large debris avalanche and lahar deposits are associated with the evolution of Cofre. The two best preserved of these debris-avalanche and debris-flow deposits are the ∼42 ka “Los Pescados debris flow” deposit and the ∼11–13 ka “Xico avalanche” deposit, both of which display contrasting morphological and textural characteristics, source materials, origins and emplacement environments. Laboratory X-ray diffraction and visible-infrared reflectance spectroscopy were used to identify the most abundant clay, sulfate, ferric-iron, and silica minerals in the deposits, which were either related to hydrothermal alteration or chemical weathering processes. Cloud-free Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing imagery, supporting EO-1 Hyperion image spectra, and field ground truth samples were used to map the mineralogy and distribution of hydrothermally altered rocks on the modern summit of Cofre de Perote. The results were then compared to minerals identified in the two debris-avalanche and debris-flow deposits in order to assess possible source materials and origins for the two deposits.The older Los Pescados debris-flow deposit contains mostly halloysite and hydrous silica minerals, which match the dominant mineralogy of soils and weathered volcanic deposit in the surrounding flanks of Cofre de Perote. Its source materials were most likely derived from initially noncohesive or clay-poor flows, which subsequently bulked with clay-rich valley soils and alluvium in a manner similar to lahars from Nevado del Ruiz in 1985, but on a larger scale. The younger Xico avalanche deposit contains abundant smectite, jarosite, kaolinite, gypsum, and mixed-layered illite/smectite, which are either definitely or most likely of hydrothermal alteration origin. Smectite in particular appears to be the most abundant and spectrally dominant mineral in summit ground truth samples, ASTER mapping results, Xico avalanche deposit, and an older (pre-Xico avalanche) deposit derived from collapse(s) of ancestral Cofre de Perote edifice. However, both Xico avalanche and Los Pescados debris flow deposits show some evidence of secondary, postemplacement weathering and induration, which is evident by the presence of gibbsite, and hydroxyl interlayered minerals, in addition to recently formed halloysite and hydrous silica (i.e., indurating) cements. Field-based, visible infrared image spectroscopy (VIS/IR) spectral measurements offer the possibility of distinguishing primary minerals of hydrothermal alteration origin in debris-avalanche and debris-flow deposits from those produced either by in situ chemical weathering or bulked from weathered source materials.
Reevaluation of tsunami formation by debris avalanche at Augustine Volcano, Alaska
Waythomas, C.F.
2000-01-01
Debris avalanches entering the sea at Augustine Volcano, Alaska have been proposed as a mechanism for generating tsunamis. Historical accounts of the 1883 eruption of the volcano describe 6- to 9-meter-high waves that struck the coastline at English Bay (Nanwalek), Alaska about 80 kilometers east of Augustine Island. These accounts are often cited as proof that volcanigenic tsunamis from Augustine Volcano are significant hazards to the coastal zone of lower Cook Inlet. This claim is disputed because deposits of unequivocal tsunami origin are not evident at more than 50 sites along the lower Cook Inlet coastline where they might be preserved. Shallow water (<25 m) around Augustine Island, in the run-out zone for debris avalanches, limits the size of an avalanche-caused wave. If the two most recent debris avalanches, Burr Point (A.D. 1883) and West Island (<500 yr. B.P.) were traveling at velocities in the range of 50 to 100 meters per second, the kinetic energy of the avalanches at the point of impact with the ocean would have been between 1014 and 1015 joules. Although some of this energy would be dissipated through boundary interactions and momentum transfer between the avalanche and the sea, the initial wave should have possessed sufficient kinetic energy to do geomorphic work (erosion, sediment transport, formation of wave-cut features) on the coastline of lowwer Cook Inlet. Because widespread evidence of the effects of large waves cannot be found, it appears that the debris avalanches could not have been traveling very fast when they entered the sea, or they happened during low tide and displaced only small volumes of water. In light of these results, the hazard from volcanigenic tsunamis from Augustine Volcano appears minor, unless a very large debris avalanche occurs at high tide.
Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington
Glicken, Harry
1996-01-01
This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.
NASA Astrophysics Data System (ADS)
Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G.
2011-10-01
Throughout its history, Colima Volcano has experienced numerous partial edifice collapses with associated emplacement of debris avalanche deposits of contrasting volume, morphology and texture. A detailed stratigraphic study in the south-eastern sector of the volcano allowed the recognition of two debris avalanche deposits, named San Marcos (> 28,000 cal yr BP, V = ~ 1.3 km 3) and Tonila (15,000-16,000 cal yr BP, V = ~ 1 km 3 ). This work sheds light on the pre-failure conditions of the volcano based primarily on a detailed textural study of debris avalanche deposits and their associated pyroclastic and volcaniclastic successions. Furthermore, we show how the climate at the time of the Tonila collapse influenced the failure mechanisms. The > 28,000 cal yr BP San Marcos collapse was promoted by edifice steep flanks and ongoing tectonic and volcanotectonic deformation, and was followed by a magmatic eruption that emplaced pyroclastic flow deposits. In contrast, the Tonila failure occurred just after the Last Glacial Maximum (22,000-18,000 cal BP) and, in addition to the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) it shows a hybrid facies characterized by debris avalanche blocks embedded in a finer, homogenous and partially cemented matrix, a texture more characteristic of debris flow deposits. The Tonila debris avalanche is directly overlain by a 7-m thick hydromagmatic pyroclastic succession. Massive debris flow deposits, often more than 10 m thick and containing large amounts of tree trunk logs, represent the top unit in the succession. Fluvial deposits also occur throughout all successions; these represent periods of highly localized stream reworking. All these lines of evidence point to the presence of water in the edifice prior to the Tonila failure, suggesting it may have been a weakening factor. The Tonila failure appears to represent an anomalous event related to the particular climatic conditions at the time of the collapse. The presence of extensive water at the onset of deglaciation modified the mobility of the debris avalanche, and led to the formation of a thick sequence of debris flows. The possibility that such a combination of events can occur, and that their probability is likely to increase during the rainy season, should be taken into consideration when evaluating hazards associated with future collapses at Colima volcano.
NASA Astrophysics Data System (ADS)
Hayakawa, Yuichi S.; Yoshida, Hidetsugu; Obanawa, Hiroyuki; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi; Kontani, Ryoichi
2018-02-01
Debris avalanches caused by volcano sector collapse often form characteristic depositional landforms such as hummocks. Sedimentological and geomorphological analyses of debris avalanche deposits (DADs) are crucial to clarify the size, mechanisms, and emplacement of debris avalanches. We describe the morphology of hummocks on the northeastern flank of Mt. Erciyes in Kayseri, central Turkey, likely formed in the late Pleistocene. Using a remotely piloted aircraft system (RPAS) and the structure-from-motion and multi-view stereo (SfM-MVS) photogrammetry, we obtained high-definition digital elevation model (DEM) and orthorectified images of the hummocks to investigate their geometric features. We estimated the source volume of the DAD by reconstructing the topography of the volcano edifice using a satellite-based DEM. We examined the topographic cross sections based on the slopes around the scar regarded as remnant topography. Spatial distribution of hummocks is anomalously concentrated at a certain distance from the source, unlike those that follow the distance-size relationship. The high-definition land surface data by RPAS and SfM revealed that many of the hummocks are aligned toward the flow direction of the debris avalanche, suggesting that the extensional regime of the debris avalanche was dominant. However, some displaced hummocks were also found, indicating that the compressional regime of the flow contributed to the formation of hummocks. These indicate that the flow and emplacement of the avalanche were constrained by the topography. The existing caldera wall forced the initial eastward flow to move northward, and the north-side caldera wall forced the flow into the narrow and steepened outlet valley where the sliding debris underwent a compressional regime, and out into the unconfined terrain where the debris was most likely emplaced on an extensional regime. Also, the estimated volume of 12-15 × 108 m3 gives a mean thickness of 60-75 m, which is much deeper than the reported cases of other DADs. This suggests that the debris avalanche must have flowed further downstream and beyond the current DAD extent. Assessments of the DAD incorporating the topographic constraints can provide further insights into the risk and mitigation of potential disasters in the study area.
Unusual gravitational failures on lava domes of Tatun Volcanic Group, Northern Taiwan.
NASA Astrophysics Data System (ADS)
Belousov, Alexander; Belousova, Marina; Chen, Chang-Hwa; Zellmer, Georg
2010-05-01
Tatun Volcanic Group of Northern Taiwan was formed mainly during the Pleistocene - Early Holocene. Most of the volcanoes are represented by andesitic lava domes of moderate sizes: heights up to 400 m (absolute altitudes 800-1100 m a.s.l.), base diameters up to 2 km, and volumes up to 0.3 km³. Many of the domes have broadly opened (0.5-1.0 km across and up to 140° wide), shallow-incised horseshoe-shaped scars formed by gravitational collapses. The failure planes did not intersect the volcanic conduits, and the scars were not filled by younger volcanic edifices: most of the collapses occurred a long time after the eruptions had ceased. The largest collapse, with a volume 0.1 km³, occurred at eastern part of Datun lava dome. Specific feature of the collapse was that the rear slide blocks did not travel far from the source; they stopped high inside the collapse scar, forming multiple narrow toreva blocks descending downslope. The leading slide blocks formed a low mobile debris avalanche (L~5 km; H~1 km; H/L~0.2). The deposit is composed mainly of block facies. The age of the collapse is older than 24,000 yrs, because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche was formed as a result of collapse of southern part of a small flank dome. Specific feature of the resulted avalanche - it was hot during deposition. The deposit contains carbonized wood; andesite boulders within the deposit frequently have radial cooling joints, and in rare cases "bread-crust" surfaces. The paucity of fine fractions in the deposit can be connected with elutriation of fines into the convective cloud when the hot avalanche travelled downslope. However in several locations the deposit is represented by typical avalanche blocks surrounded by heterolithologic mixed facies containing abundant clasts of Miocene sandstone (picked up from the substrate). Thus the deposit bears features of both debris avalanches and lithic-rich block-and-ash flows. The avalanche was rather mobile (L~6 km; H~1 km; H/L~0.16), despite its small volume (0.02 km³). Its speed reached 40 m/s at a distance of 5 km from the source (based on 80 m high runup of the avalanche). The characteristics of the avalanche deposit indicate that crystallized, degassed, but still hot material of a newly extruded lava dome was involved in the collapse. Unusual low mobile debris avalanche was formed as a result of collapse of western slope of Mt. Cising. A former lava coulee, which was involved in the collapse, underwent only weak disintegration: debris avalanche deposit is represented by big boulders with few fine grained matrix. Leading snout of the landslide traveled only 2 km, while rear slide blocks stopped near the landslide source forming multiple narrow toreva blocks descending downslope. Volume of the collapse 0.05 km³; maximum dropped height 0.5 km, H/L 0.25. Around the distal snout of the avalanche a "bulldozer facies" is well developed. Dating of vegetation entrained into the deposit gave 14C calibrated age 6000-6080 BP. Mobility of the studied debris avalanches was twice smaller than the average mobility of volcanic debris avalanches. Relatively small volume of the collapses, the particular type of material involved (massive lava domes) and the fact that the collapses occurred long after the volcanoes stopped erupting may have played a role in the low mobility of the debris avalanches of the Tatun Group.
Waythomas, C.F.
2001-01-01
The formation of lahars and a debris avalanche during Holocene eruptions of the Spurr volcanic complex in south-central Alaska have led to the development of volcanic debris dams in the Chakachatna River valley. Debris dams composed of lahar and debris-avalanche deposits formed at least five times in the last 8000-10,000 years and most recently during eruptions of Crater Peak vent in 1953 and 1992. Water impounded by a large debris avalanche of early Holocene (?) age may have destabilized an upstream glacier-dammed lake causing a catastrophic flood on the Chakachatna River. A large alluvial fan just downstream of the debris-avalanche deposit is strewn with boulders and blocks and is probably the deposit generated by this flood. Application of a physically based dam-break model yields estimates of peak discharge (Qp) attained during failure of the debris-avalanche dam in the range 104 < Qp < 106 m3 s-1 for plausible breach erosion rates of 10-100 m h-1. Smaller, short-lived, lahar dams that formed during historical eruptions in 1953, and 1992, impounded smaller lakes in the upper Chakachatna River valley and peak flows attained during failure of these volcanic debris dams were in the range 103 < Qp < 104 m3 s-1 for plausible breach erosion rates. Volcanic debris dams have formed at other volcanoes in the Cook Inlet region, Aleutian arc, and Wrangell Mountains but apparently did not fail rapidly or result in large or catastrophic outflows. Steep valley topography and frequent eruptions at volcanoes in this region make for significant hazards associated with the formation and failure of volcanic debris dams. Published by Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Vickers, H.; Eckerstorfer, M.; Malnes, E.; Larsen, Y.; Hindberg, H.
2016-11-01
Avalanches are a natural hazard that occur in mountainous regions of Troms County in northern Norway during winter and can cause loss of human life and damage to infrastructure. Knowledge of when and where they occur especially in remote, high mountain areas is often lacking due to difficult access. However, complete, spatiotemporal avalanche activity data sets are important for accurate avalanche forecasting, as well as for deeper understanding of the link between avalanche occurrences and the triggering snowpack and meteorological factors. It is therefore desirable to develop a technique that enables active mapping and monitoring of avalanches over an entire winter. Avalanche debris can be observed remotely over large spatial areas, under all weather and light conditions by synthetic aperture radar (SAR) satellites. The recently launched Sentinel-1A satellite acquires SAR images covering the entire Troms County with frequent updates. By focusing on a case study from New Year 2015 we use Sentinel-1A images to develop an automated avalanche debris detection algorithm that utilizes change detection and unsupervised object classification methods. We compare our results with manually identified avalanche debris and field-based images to quantify the algorithm accuracy. Our results indicate that a correct detection rate of over 60% can be achieved, which is sensitive to several algorithm parameters that may need revising. With further development and refinement of the algorithm, we believe that this method could play an effective role in future operational monitoring of avalanches within Troms and has potential application in avalanche forecasting areas worldwide.
The extreme mobility of debris avalanches: A new model of transport mechanism
NASA Astrophysics Data System (ADS)
Perinotto, Hélène; Schneider, Jean-Luc; Bachèlery, Patrick; Le Bourdonnec, François-Xavier; Famin, Vincent; Michon, Laurent
2015-12-01
Large rockslide-debris avalanches, resulting from flank collapses that shape volcanoes and mountains on Earth and other object of the solar system, are rapid and dangerous gravity-driven granular flows that travel abnormal distances. During the last 50 years, numerous physical models have been put forward to explain their extreme mobility. The principal models are based on fluidization, lubrication, or dynamic disintegration. However, these processes remain poorly constrained. To identify precisely the transport mechanisms during debris avalanches, we examined morphometric (fractal dimension and circularity), grain size, and exoscopic characteristics of the various types of particles (clasts and matrix) from volcanic debris avalanche deposits of La Réunion Island (Indian Ocean). From these data we demonstrate for the first time that syn-transport dynamic disintegration continuously operates with the increasing runout distance from the source down to a grinding limit of 500 µm. Below this limit, the particle size reduction exclusively results from their attrition by frictional interactions. Consequently, the exceptional mobility of debris avalanches may be explained by the combined effect of elastic energy release during the dynamic disintegration of the larger clasts and frictional reduction within the matrix due to interactions between the finer particles.
A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation
NASA Astrophysics Data System (ADS)
Özdemir, Yavuz; Akkaya, İsmail; Oyan, Vural; Kelfoun, Karim
2016-02-01
The Quaternary Süphan debris avalanche deposit is located in Eastern Anatolia, Turkey. The avalanche formed by the sector collapse of a major stratovolcano towards the north, possibly during a single catastrophic event. The deposit has an estimated volume of 4 km3 and ran out over 25 km to cover an area of approximately 200 km2. Products of the collapse are overlain by younger eruptive units from the Süphan volcano. We have tested the numerical code VolcFlow to first reproduce the emplacement of the Quaternary Süphan debris avalanche and then to develop a hazard assessment for potential future sector collapses and subsequent emplacement of debris avalanches and associated tsunami. The numerical model captures the main features of the propagation process, including travel distance, lateral spread, and run up. The best fit obtained for the existing flow has a constant retarding stress of 50 kPa and a collapse scar volume of 4 km3. Analysis of potential future collapse scenarios reveals that northern sector debris avalanches (up to 6 km3) could affect several towns. In the case of a sector collapse towards the south, a tsunami will reach the city of Van and several of the biggest towns on the southern shoreline of Lake Van. Cities most affected by the larger amplitude waves would be Van, Edremit, Gevaş, Tatvan, and, to a lesser extent, Erciş, with wave amplitudes (first waves after the onset of the collapse) between 8 and 10 m.
NASA Astrophysics Data System (ADS)
Huang, P. C.; Hsu, S. K.; Tsai, C. H.; Chen, S. C.
2016-12-01
Based on the ignimbrite layers, previous studies have shown that Kueishantao volcanic island has probably erupted four times in 7000 years. Strong smell of sulfur can easily detect at east of the island with some plumes from the seabed. In May 2016, an earthquake with magnitude 5 occurred to northeast of the island which has triggered small collapse events in the eastern subaerial part. Recent geophysical surveys have also revealed the distribution of submarine debris avalanches in the north, south and east part off Kueishantao volcanic island. With high-resolution swath bathymetric data, we can observe some debris avalanches distributed with hummocky relief around the island. In this study, we present the marine geophysical data in order to have better understanding of the landslide mechanism from the offshore data of the Kueishantao island, especially with the multi-beam bathymetric data, acoustic backscatter analysis, subbottom profile, sidescan sonar and 3.5kHz echo-sounder. At the north of the island, large-scale debris avalanches extend around 4 km northward with the several blocks height up to more than twenty meters; and, the offshore area of deposit is about 5 km2 of hummocky topography distribution. The scale of debris avalanches may be related to the horseshoe scar of subaerial flank and also submarine flank collapsed events. Nevertheless, to identify the landslide history, we need to analyze the related core data in the future. By analyzing the high-resolution geophysical data, we will discuss the possible mechanism or factors that trigger subaerial flank collapse events and also the transportation of the debris avalanches to the submarine basin. The large-scale collapse events may produce tsunamis and directly affect the coast of northeastern Taiwan.
Acoustic Fluidization and the Extraordinary Mobility of Sturzstroms
NASA Astrophysics Data System (ADS)
Collins, G. S.; Melosh, H. J.
2002-12-01
Sturzstroms are a rare category of rock avalanche that travel vast horizontal distances with only a comparatively small vertical drop in height. Their extraordinary mobility appears to be a consequence of sustained fluid-like behavior during motion that persists even for driving stresses well below those normally associated with large rock avalanches. One mechanism with the potential for explaining this temporary increase in the mobility of rock debris is acoustic fluidization; where transient, high-frequency pressure fluctuations, generated during the initial collapse and subsequent flow of a mass of rock debris, may locally relieve overburden stresses in the rock mass and thus reduce the frictional resistance to slip between fragments. Here we will present the acoustic fluidization model for the mechanics of sturzstroms, and discuss the conditions under which this process may sustain fluid-like flow of large rock avalanches at low driving stresses. Our work has focused on developing equations for describing the temporal and spatial evolution of acoustic energy within a mass of dry rock debris. We apply this model to the specific process of large, dry rock avalanches. To solve the complex system of equations we have: (1) sought steady state solutions to investigate the circumstances under which acoustic fluidization might facilitate fluid-like motion of the debris at low driving stresses; and (2) simulated the flow of dry rock debris in the presence of acoustic vibrations using a hydrocode, to test the stability of the steady state solutions, investigate the effect of initial conditions and study the avalanche termination process. Results from our modeling work are consistent with the characteristic observations of sturzstroms on Earth. They predict that, under realistic conditions, the flow of a mass of dry rock debris can retain and regenerate enough acoustic energy to perpetuate its own motion, even at very low slope angles; thereby explaining the peculiar long-runout of large rock avalanches. Observations of fluid-like behavior of sturzstroms are supported by our modeling work. The predicted velocity profile through the acoustically fluidized rock avalanche is parabolic; the sturzstrom flows with an effective viscosity that is almost independent of depth within the rock avalanche.
Catastrophic debris avalanche deposit of Socompa volcano, northern Chile
NASA Technical Reports Server (NTRS)
Francis, P. W.; Gardeweg, M.; Ramirez, C. F.; Rothery, D. A.
1985-01-01
Between 10,000 and 500 yr ago the Socompa volcano in northern Chile experienced a catastrophic collapse of a 70 deg sector of the original cone, causing a debris avalanche that descended nearly 3000 m vertically and traveled more than 35 km from the volcano. The deposits cover some 490 sq km and have a minimum volume of 15 cu km. Parts of the original cone slumped in a nearly coherent form and are now preserved as large blocks more than 400 m high. The primary avalanche traveled northwestward over sloping ground before coming to rest transiently, forming a prominent marginal ridge, and then slid away northeastward to form a secondary flow, overriding much of the primary avalanche deposit. Abundant, prismatic, jointed dacite blocks within the debris avalanche deposit and a thin, fine-grained pumiceous deposit beneath it suggest that the collapse was triggered by magmatic activity and may have been accompanied by a violent lateral blast. Collapse was followed by eruption of pumiceous pyroclastic flows and extrusion of voluminous dacite domes.
Drainage evolution in the debris avalanche deposits near Mount Saint Helens, Washington
NASA Technical Reports Server (NTRS)
Beach, G. L.; Dzurisin, D.
1984-01-01
The 18 May 1980 eruption of Mount St. Helens was initiated by a massive rockslide-debris avalanche which completely transformed the upper 25 km of the North Fork Toutle River valley. The debris was generated by one of the largest gravitational mass movements ever recorded on Earth. Moving at an average velocity of 35 m/s, the debris avalanche buried approximately 60 sq km of terrain to an average depth of 45 m with unconsolidated, poorly sorted volcaniclastic material, all within a period of 10 minutes. Where exposed and unaltered by subsequent lahars and pyroclastic flows, the new terrain surface was characterized predominantly by hummocks, closed depressions, and the absence of an identifiable channel network. Following emplacement of the debris avalanche, a complex interrelationship of fluvial and mass wasting processes immediately began operating to return the impacted area to an equilibrium status through the removal of material (potential energy) and re-establishment of graded conditions. In an attempt to chronicle the morphologic evolution of this unique environmental setting, a systematic series of interpretative maps of several selected areas was produced. These maps, which document the rate and character of active geomorphic processes, are discussed.
Using landslide risk analysis to protect fish habitat
R. M. Rice
1986-01-01
The protection of anadromous fish habitat is an important water quslity concern in the Pacific Northwest. Sediment from logging-related debris avalanches can cause habitat degradation. Research on conditions associated with the sites where debris avalanches originate has resulted in a risk assessment methodology based on linear discriminant analysis. The probability...
NASA Astrophysics Data System (ADS)
Grieco, F.; Capra, L.; Groppelli, G.; Norini, G.
2007-05-01
The present study concerns the numerical modeling of debris avalanches on the Nevado de Toluca Volcano (Mexico) using TITAN2D simulation software, and its application to create hazard maps. Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age, located in central México near to the cities of Toluca and México City; its past activity has endangered an area with more than 25 million inhabitants today. The present work is based upon the data collected during extensive field work finalized to the realization of the geological map of Nevado de Toluca at 1:25,000 scale. The activity of the volcano has developed from 2.6 Ma until 10.5 ka with both effusive and explosive events; the Nevado de Toluca has presented long phases of inactivity characterized by erosion and emplacement of debris flow and debris avalanche deposits on its flanks. The largest epiclastic events in the history of the volcano are wide debris flows and debris avalanches, occurred between 1 Ma and 50 ka, during a prolonged hiatus in eruptive activity. Other minor events happened mainly during the most recent volcanic activity (less than 50 ka), characterized by magmatic and tectonic-induced instability of the summit dome complex. According to the most recent tectonic analysis, the active transtensive kinematics of the E-W Tenango Fault System had a strong influence on the preferential directions of the last three documented lateral collapses, which generated the Arroyo Grande and Zaguàn debris avalanche deposits towards E and Nopal debris avalanche deposit towards W. The analysis of the data collected during the field work permitted to create a detailed GIS database of the spatial and temporal distribution of debris avalanche deposits on the volcano. Flow models, that have been performed with the software TITAN2D, developed by GMFG at Buffalo, were entirely based upon the information stored in the geological database. The modeling software is built upon equations solved by a parallel and adaptive mesh, that can concentrate computing power in region of special interest. First of all, simulations of known past events, were compared with the geological data validating the effectiveness of the method. Afterwards, numerous simulations have been executed varying input parameters as friction angles, starting point and initial volume, in order to obtain a global perspective over the possible expected debris avalanche scenarios. The input parameters were selected considering the geological, structural and topographic factors controlling instability of the volcanic cone, especially in case of renewed eruptive activity. The interoperability between TITAN2D and GIS softwares permitted to draw a semi-quantitative hazard map by crossing simulation outputs with the distribution of deposits generated by past episodes of instability, mapped during the field work.
Mobility statistics and automated hazard mapping for debris flows and rock avalanches
Griswold, Julia P.; Iverson, Richard M.
2008-01-01
Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon Coast Range. This application requires use of high-resolution topographic data derived form LIDAR surveys, knowledge of local geology to specify a suitable range of prospective debris-flow volumes, and development and use of a new algorithm for identification of prospective debris-flow source areas in finely dissected terrain.
A mineralogical and granulometric study of Cayambe volcano debris avalanche deposit
NASA Astrophysics Data System (ADS)
Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Bustillos, J.; Sonnet, P.; Opfergelt, S.
2013-12-01
Volcano flank/sector collapse represents one of the most catastrophic volcanic hazards. Various volcanic and non-volcanic processes are known to decrease the stability of a volcanic cone, eventually precipitating its gravitational failure. Among them, hydrothermal alteration of volcanic rocks leading to clay mineral formation is recognized as having a large negative impact on rock strength properties. Furthermore, the presence of hydrothermal clays in the collapsing mass influences the behavior of the associated volcanic debris avalanche. In particular, clay-containing debris avalanches seem to travel farther and spread more widely than avalanches of similar volume but which do not incorporate hydrothermally-altered materials. However, the relationship between hydrothermal alteration, flank collapse and debris avalanche behavior is not well understood. The objective of this study is to better determine the volume and composition of hydrothermal clay minerals in the poorly characterized debris avalanche deposit (DAD) of Cayambe composite volcano, located in a densely populated area ~70 km northeast of Quito, Ecuador. Cayambe DAD originated from a sector collapse, which occurred less than 200 ka ago. The DAD is 10-20 m thick and has an estimated total volume of ~0.85 Km3. The H/L ratio (where H is the vertical drop and L is the travel distance of the avalanche) for Cayambe DAD is ~0.095, suggesting a high mobility. In the medial-distal zone, at 9-20 km from its source, the DAD consists of an unstratified and unsorted matrix supporting millimetric to metric clasts. It has a matrix facies (i.e. rich in particles < 2 mm) enriched in hydrothermally-altered materials. Preliminary results of granulometry measurements indicate that the matrix corresponds to ~55 wt.% of the deposit and suggest that the DAD behaved as a cohesive debris flow. Analysis of 13 matrix samples reveals a large variability in particle size distribution. This may reflect poor mixing of the collapsed material during transport. The clay fraction content in the matrix ranges from 15 to 30 wt.%, and does not show a relationship with the sample position in the DAD. Mineralogical determinations are in progress and will be presented.
Record of late holocene debris avalanches and lahars at Iliamna Volcano, Alaska
Waythomas, C.F.; Miller, T.P.; Beget, J.E.
2000-01-01
Iliamna Volcano is a 3053-meter high, glaciated stratovolcano in the southern Cook Inlet region of Alaska and is one of seven volcanoes in this region that have erupted multiple times during the past 10,000 yr. Prior to our studies of Iliamna Volcano, little was known about the frequency, magnitude, and character of Holocene volcanic activity. Here we present geologic evidence of the most recent eruptive activity of the volcano and provide the first outline of Late Holocene debris-avalanche and lahar formation. Iliamna has had no documented historical eruptions but our recent field investigations indicate that the volcano has erupted at least twice in the last 300 yr. Clay-rich lahar deposits dated by radiocarbon to ???1300 and ???90 yr BP are present in two major valleys that head on the volcano. These deposits indicate that at least two large, possibly deep-seated, flank failures of the volcanic edifice have occurred in the last 1300 yr. Noncohesive lahar deposits likely associated with explosive pyroclastic eruptions date to 2400-1300,>1500,???300, and <305 yr BP. Debris-avalanche deposits from recent and historical small-volume slope failures of the hydrothermally altered volcanic edifice cover most of the major glaciers on the volcano. Although these deposits consist almost entirely of hydrothermally altered rock debris and snow and ice, none of the recently generated debris avalanches evolved to lahars. A clay-rich lahar deposit that formed <90??60 radiocarbon yr BP and entered the Johnson River Valley southeast of the volcano cannot be confidently related to an eruption of Iliamna Volcano, which has had no known historical eruptions. This deposit may record an unheralded debris avalanche and lahar. ?? 2000 Elsevier Science B.V. All rights reserved.
Modeling the Rock Glacier Cycle
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Anderson, L. S.
2016-12-01
Rock glaciers are common in many mountain ranges in which the ELA lies above the peaks. They represent some of the most identifiable components of today's cryosphere in these settings. Their oversteepened snouts pose often-overlooked hazards to travel in alpine terrain. Rock glaciers are supported by avalanches and by rockfall from steep headwalls. The winter's avalanche cone must be sufficiently thick not to melt entirely in the summer. The spatial distribution of rock glaciers reflects this dependence on avalanche sources; they are most common on lee sides of ridges where wind-blown snow augments the avalanche source. In the absence of rockfall, this would support a short, cirque glacier. Depending on the relationship between rockfall and avalanche patterns, "talus-derived" and "glacier-derived" rock glaciers are possible. Talus-derived: If the spatial distribution of rock delivery is similar to the avalanche pattern, the rock-ice mixture will travel an englacial path that is downward through the short accumulation zone before turning upward in the ablation zone. Advected debris is then delivered to the base of a growing surface debris layer that reduces the ice melt rate. The physics is identical to the debris-covered glacier case. Glacier-derived: If on the other hand rockfall from the headwall rolls beyond the avalanche cone, it is added directly to the ablation zone of the glacier. The avalanche accumulation zone then supports a pure ice core to the rock glacier. We have developed numerical models designed to capture the full range of glacier to debris-covered glacier to rock glacier behavior. The hundreds of meter lengths, tens of meters thicknesses, and meter per year speeds of rock glaciers are well described by the models. The model can capture both "talus-derived" and "glacier-derived" rock glaciers. We explore the dependence of glacier behavior on climate histories. As climate warms, a pure ice debris-covered glacier can transform to a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers have much longer response times to climate change than their pure ice cousins.
Plant succession on the Mount St. Helens debris-avalanche deposit and the role of non-native species
USDA-ARS?s Scientific Manuscript database
The debris-avalanche deposit is one of the most severely disturbed areas created by the 1980 eruption of Mount St. Helens, with little survival of a few plant fragments, and primary succession mostly being initiated by the seeds dispersed onto the newly emplaced material. Vegetation changes on the d...
Transient events in bright debris discs: Collisional avalanches revisited
NASA Astrophysics Data System (ADS)
Thebault, P.; Kral, Q.
2018-01-01
Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an avalanche would be a two-belt structure, with an inner belt (at 1 or 10 au for the "warm" and "cold" disc cases, respectively) of fractional luminosity f ≳ 10-4 where breakups of massive planetesimals occur, and a more massive outer belt, with τ of a few 10-3, into which the avalanche chain reaction develops and propagates.
NASA Astrophysics Data System (ADS)
Shea, Thomas; van Wyk de Vries, Benjamin; Pilato, Martín
2008-07-01
We study the lithology, structure, and emplacement of two debris-avalanche deposits (DADs) with contrasting origins and materials from the Quaternary-Holocene Mombacho Volcano, Nicaragua. A clear comparison is possible because both DADs were emplaced onto similar nearly flat (3° slope) topography with no apparent barrier to transport. This lack of confinement allows us to study, in nature, the perfect case scenario of a freely spreading avalanche. In addition, there is good evidence that no substratum was incorporated in the events during flow, so facies changes are related only to internal dynamics. Mombacho shows evidence of at least three large flank collapses, producing the two well-preserved debris avalanches of this study; one on its northern flank, “Las Isletas,” directed northeast, and the other on its southern flank, “El Crater,” directed south. Other south-eastern features indicate that the debris-avalanche corresponding to the third collapse (La Danta) occurred before Las Isletas and El Crater events. The materials involved in each event were similar, except in their alteration state and in the amount of substrata initially included in the collapse. While “El Crater” avalanche shows no signs of substratum involvement and has characteristics of a hydrothermal weakening-related collapse, the “Las Isletas” avalanche involves significant substratum and was generated by gravity spreading-related failure. The latter avalanche may have interacted with Lake Nicaragua during transport, in which case its run-out could have been modified. Through a detailed morphological and structural description of the Mombacho avalanches, we provide two contrasting examples of non-eruptive volcanic flank collapse. We show that, remarkably, even with two distinct collapse mechanisms, the debris avalanches developed the same gross stratigraphy of a coarse layer above a fine layer. This fine layer provided a low friction basal slide layer. Whereas DAD layering and the run-outs are roughly similar, the distribution of structures is different and related to lithology: Las Isletas has clear proximal faults replaced distally by inter-hummock depressions where basal unit zones are exhumed, whereas El Crater has faults throughout, but the basal layer is hidden in the distal zone. Hummocky forms depend on material type, with steep hummocks being formed of coherent lava units, and low hummocks by matrix-rich units. In both avalanches, extensional structures predominate; the upper layers exclusively underwent longitudinal and lateral extension. This is consistent with evidence of only small amounts of block-to-block interactions during bulk horizontal spreading. The base of the moving mass accommodated transport by large amounts of simple shear. We suggest that contractional structures and inter-block collisions seen in many other avalanches are artifacts related to topographic confinement.
Plant succession on the Mount St. Helens debris-avalanche deposit.
Virginia H. Dale; Daniel R. Campbell; Wendy M. Adams; Charles M. Crisafulli; Virginia I. Dains; Peter M. Frenzen; Robert F. Holland
2005-01-01
Debris avalanches occasionally occur with the partial collapse of a volcano, and their ecological impacts have been studied worldwide. Examples include Mt. Taranaki in New Zealand (Clarkson 1990), Ksudach in Russia (Grishin et al. 19961, the Ontake volcano in Japan (Nakashizuka et al. 1993), and Mount Katmai in the state of Alaska in the United States (Griggs 1918a,b,...
Volcanic tsunamis and prehistoric cultural transitions in Cook Inlet, Alaska
Beget, J.; Gardner, C.; Davis, K.
2008-01-01
The 1883 eruption of Augustine Volcano produced a tsunami when a debris avalanche traveled into the waters of Cook Inlet. Older debris avalanches and coeval paleotsunami deposits from sites around Cook Inlet record several older volcanic tsunamis. A debris avalanche into the sea on the west side of Augustine Island ca. 450??years ago produced a wave that affected areas 17??m above high tide on Augustine Island. A large volcanic tsunami was generated by a debris avalanche on the east side of Augustine Island ca. 1600??yr BP, and affected areas more than 7??m above high tide at distances of 80??km from the volcano on the Kenai Peninsula. A tsunami deposit dated to ca. 3600??yr BP is tentatively correlated with a southward directed collapse of the summit of Redoubt Volcano, although little is known about the magnitude of the tsunami. The 1600??yr BP tsunami from Augustine Volcano occurred about the same time as the collapse of the well-developed Kachemak culture in the southern Cook Inlet area, suggesting a link between volcanic tsunamis and prehistoric cultural changes in this region of Alaska. ?? 2008 Elsevier B.V.
Volcanic mixed avalanches: a distinct eruption-triggered mass-flow process at snow-clad volcanoes
Pierson, T.C.; Janda, R.J.
1994-01-01
A generally unrecognized type of pyroclastic deposit was produced by rapid avalanches of intimately mixed snow and hot pyroclastic debris during eruptions at Mount St. Helens, Nevado del Ruiz, and Redoubt Volcano between 1982 and 1989. These "mixed avalanches' traveled as far as 14 km at velocities up to ~27 m/s, involved as much as 107 m3 of rock and ice, and left unmelted deposits of single flow units as thick as 5 m. During flow downslope, heat transfer from hot rocks to snow produced meltwater that partially saturated the mixtures, apparently giving these mixed avalanches mobilities equal to or greater than those of "dry' debris avalanches of similar volume. After melting and desiccation, the deposits are highly susceptible to erosion and unlikely to be well preserved in the stratigraphic record. -Authors
Mechanics of debris flows and rock avalanches: Chapter 43
Iverson, Richard M.; Fernando, Harindra Joseph
2012-01-01
Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.
Waythomas, C.F.; Wallace, K.L.
2002-01-01
An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.
NASA Astrophysics Data System (ADS)
Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.
2017-02-01
The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction < 4.76 mm, point out that shear strength for cohesionless sandy materials is only due to effective friction angle, and show a quite homogeneous behaviour over the set of tested samples. The investigated post-4.5 pyroclastic deposits constitute a 5-12 m thick sequence of poorly consolidated materials that are interlayered with lava flows. Their geotechnical analyses have evidenced a strong variability in grain size distribution, reflecting the depositional processes, and a generally high porosity. Consolidated drained triaxial compression tests delineated a similar shear stress-strain behaviour among the different units, where shear strength is only due to friction angle. Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work underlies the general necessity for a site-specific, and interdisciplinary approach in the characterization of volcanic successions to provide reliable data for gravitational instability studies.
NASA Astrophysics Data System (ADS)
Zhou, Jia-wen; Huang, Kang-xin; Shi, Chong; Hao, Ming-hui; Guo, Chao-xu
2015-03-01
The dynamic process of a debris avalanche in mountainous areas is influenced by the landslide volume, topographical conditions, mass-material composition, mechanical properties and other factors. A good understanding of the mass movement and loose material supplying the gully process is very important for understanding the dynamic properties of debris avalanches. Three-dimensional particle flow code (PFC3D) was used to simulate a debris avalanche in Quaternary deposits at the Bayi Gully, Southwest China. FORTRAN and AutoCAD were used for the secondary development to display the mass movement process and to quantitatively describe the mass movement and loose material supplying the gully process. The simulated results show that after the landslide is initiated, the gravitational potential energy is converted into kinetic energy with a variation velocity for the sliding masses. Two stages exist for the average-movement velocity: the acceleration stage and the slowdown stage, which are influenced by the topographical conditions. For the loose materials supplying the gully process, the cumulative volume of the sliding masses into the gully gradually increases over the time. When the landslide volume is not large enough, the increasing landslide volume does not obviously influence the movement process of the sliding masses. The travel distance and movement velocity increase with the decreasing numerical parameters, and the mass-movement process is finished more quickly using low-value parameters. The deposition area of the sliding masses decreases with the increasing numerical parameters and the corresponding deposition thickness increases. The mass movement of the debris avalanche is not only influenced by the mechanical parameters but is also controlled by the topographical conditions.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Cas, R. A. F.; Davis, B. K.
2004-11-01
The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.
NASA Astrophysics Data System (ADS)
Tost, M.; Cronin, S. J.
2016-06-01
Large volcanic debris avalanches are triggered by failure of the steep flanks of long-lived composite cones. Their huge deposits change the landscape and drainage pattern surrounding stratovolcanoes for thousands of years. At Mt. Ruapehu, New Zealand, we identified seven major flank-collapse events that produced debris avalanches travelling down pre-existing river catchments for up to 90 km from source. In two cases the extreme mass flux into the river valleys led to their complete truncation from the volcano, while four drainage systems were subsequently re-established along similar pathways influenced by regional strike-slip faulting, which caused localized graben formation. In all cases the volcanic debris-avalanche deposits currently form distinctive plateaus at or near the highest topographic elevations of each river valley margin. The timing of the flank failures indicate that inter-eruptive cone destabilization of Mt. Ruapehu is affected by climate change and occurs most commonly during interstadials when glaciers on the cone are in retreat, whereas syn-eruptive collapses are most prominent during cold stages. Dated debris-avalanche deposit levels, along with those of up to four stadial-related aggradational gravel terraces between c. 125 and 18 ka, were used to calculate regional uplift rates in this area. Rates of between 0.2 ± 0.1 mm yr- 1 to 3.8 ± 0.8 mm yr- 1 are found for four river systems dissecting the central North Island of New Zealand. In three cases incision below the diamicton sequences and into the basement, allowed quantification of sediment-flux rates into the Tasman Sea of 107,000 ± 1,200 m3 yr- 1 to 177,000 ± 3,500 m3 yr- 1 since debris-avalanche emplacement.
The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling
NASA Astrophysics Data System (ADS)
Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.
2008-12-01
The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size until they disappear entirely in the most distal reaches. The granulometric analysis and the comparison between the debris avalanche of the Tancitaro and other collapses with similar morphometric features (vertical relief during runout, travel distance, volume and area of the deposit) indicate that the collapse was most likely not primed by any type of eruption, but rather triggered by a strong seismic shock that could have induced the failure of a portion of the edifice, already deeply altered by intense hydrothermal fluid circulation. It is also possible to hypothesize that mechanical fluidization may have been the mechanism controlling the long runout of the avalanche, as has been determined for other well-known events. The behavior of the Tancitaro debris avalanche was numerically modeled using the DAN-W code. By opportunely modifying the rheological parameters of the different models selectable within DAN, it was determined that the two-parameter 'Voellmy model' provides the best approximation of the avalanche movement. The Voellmy model produces the most realistic results in terms of runout distance, velocity and spatial distribution of the failed mass. Since the Tancitaro event was not witnessed directly, it is possible to infer approximate velocities only from comparisons with similar and documented events, namely the Mt. St. Helens debris avalanche occurred on May 18, 1980.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
NASA Astrophysics Data System (ADS)
Chiang, Eugene; Fung, Jeffrey
2017-10-01
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ˜35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.
Mellors, R.A.; Waitt, R.B.; Swanson, D.A.
1988-01-01
Several hot-rock avalanches have occurred during the growth of the composite dome of Mount St. Helens, Washington between 1980 and 1987. One of these occurred on 9 May 1986 and produced a fan-shaped avalanche deposit of juvenile dacite debris together with a more extensive pyroclastic-flow deposit. Laterally thinning deposits and abrasion and baking of wooden and plastic objects show that a hot ash-cloud surge swept beyond the limits of the pyroclastic flow. Plumes that rose 2-3 km above the dome and vitric ash that fell downwind of the volcano were also effects of this event, but no explosion occurred. All the facies observed originated from a single avalanche. Erosion and melting of craterfloor snow by the hot debris caused debris flows in the crater, and a small flood that carried juvenile and other clasts north of the crater. A second, broadly similar event occured in October 1986. Larger events of this nature could present a significant volcanic hazard. ?? 1988 Springer-Verlag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glicken, H.
Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material pickedmore » up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.« less
NASA Astrophysics Data System (ADS)
Collins, B. D.; Reid, M. E.; Vallance, J. W.; Iverson, R. M.; Schmidt, K. M.
2014-12-01
The March 22, 2014 landslide near Oso, Washington devastated a community, killing 43 people, destroying dozens of homes, and temporarily closing a section of State Route (SR) 530. The landslide, characterized as a debris avalanche - debris flow - rotational slide, was triggered by heavy precipitation in the region and initiated from a 200 m tall section of Pleistocene glacial deposits. The entire landslide encompassed an area of 1.2 km2. To understand the mobility of this landslide, we performed geological and geomorphological mapping throughout the initiation, transport, and deposition zones. In addition, we mapped a 450-m-long cross-section through the western distal lobe created by the excavation to reopen the SR530 roadbed to temporary traffic. Samples collected during mapping were used for geotechnical testing to evaluate the mobility of the landslide materials. Our detailed (1:300) geological mapping of the excavation revealed the juxtaposition of sand (glacial outwash) and clay (glaciolacustrine) debris avalanche hummocks towards the distal end of the landslide. Further, we found that two sections of the roadbed, having a combined length of at least 150 m, were entrained in the landslide. Throughout the debris avalanche deposit, 1:1200-scale geomorphological mapping identified a preponderance of sand boils located within thinner deposits between hummocks, suggesting that liquefaction played a role in the landslides mobility. In the central distal end of the landslide, we mapped on-lap deposits, wherein distal debris flow material overrode smaller hummocks of the larger debris avalanche deposit. Discovery of these deposits indicates that the run out of the landslide might have been even longer in places had topographic barriers (i.e., the other side of the valley) not reflected the flow back towards itself.
Rockfalls and Avalanches from Little Tahoma Peak on Mount Rainier, Washington
Crandell, Dwight Raymond; Fahnestock, Robert K.
1965-01-01
In December 1963 rockfalls from Little Tahoma Peak on the east side of Mount Rainier volcano fell onto Emmons Glacier and formed avalanches of rock debris that traveled about 4 miles down the glacier and the White River valley. In this distance, the rock debris descended as much as 6,200 feet in altitude. Minor lithologic differences and crosscutting relations indicate that the rockfalls caused at least seven separate avalanches, having an estimated total volume of 14 million cubic yards. The initial rockfall may have been caused by a small steam explosion near the base of Little Tahoma Peak. During movement, some of the avalanches were deflected from one side of the valley to the other. Calculations based on the height to which the avalanches rose on the valley walls suggest that their velocity reached at least 80 or 90 miles per hour. The unusually long distance some of the avalanches were transported is attributed to a cushion of trapped and compressed air at their base, which buoyed them up amid reduced friction.
The Morsárjökull rock avalanche in the southern part of the Vatnajökull glacier, south Iceland
NASA Astrophysics Data System (ADS)
Sæmundsson, Şorsteinn; Sigurősson, Ingvar A.; Pétursson, Halldór G.; Decaulne, Armelle; Jónsson, Helgi P.
2010-05-01
On the 20th of March 2007 a large rock avalanche fell on Morsárjökull, one of the outlet glaciers from the southern part of the Vatnajökull ice cap, in south Iceland. This is considered to be one of the largest rock avalanches which have occurred in Iceland during the last decades. It is believed that it fell in two separate stages, the main part fell on the 20th of March and the second and smaller one, on the 17th of April 2007. The Morsárjökull outlet glacier is about 4 km long and surrounded by up to 1000 m high valley slopes. The outlet glacier is fed by two ice falls which are partly disconnected to the main ice cap of Vatnajökull, which indicates that the glacier is mainly fed by ice avalanches. The rock avalanche fell on the eastern side of the uppermost part of the Morsárjökull outlet glacier and covered about 1/5 of the glacier surface, an area of about 720,000 m2. The scar of the rock avalanche is located on the north face of the headwall above the uppermost part of the glacier. It is around 330 m high, reaching from about 620 m up to 950 m, showing that the main part of the slope collapsed. It is estimated that about 4 million m3 of rock debris fell on the glacier, or about 10 million tons. The accumulation lobe is up to 1.6 km long, reaching from 520 m a.s.l., to about 350 m a.s.l. Its width is from 125 m to 650 m, or on average 480 m. The total area which the lobe covers is around 720.000 m2 and its mean thickness 5.5 m. The surface of the lobe shows longitudinal ridges and grooves and narrow flow-like lobes, indicating that the debris mass evolved down glacier as a mixture of a slide and debris flow. The debris mass is coarse grained and boulder rich. Blocks over 5 to 8 m in diameter are common on the edges of the lobe up to 1.6 km from the source. No indication was observed of any deformation of the glacier surface under the debris mass. The first glaciological measurements of Morsárjökull outlet glacier were carried out in the year 1896 and it is evident that since that time the glacier has retreated considerably and during the last decade the melting has been very rapid. It is thought that undercutting of the mountain slope by glacial erosion and the retreat of the glacier are the main contributing factors leading to the rock avalanche. The glacial erosion has destabilized the slope, which is mainly composed of palagonite and dolerite rocks, affected by geothermal alteration. Hence a subsequent fracture formation has weakened the strength of the bedrock. However the exact triggering factor is not known. No seismic activity or meteorological signal such as heavy rainfall or intensive snowmelt recorded prior to the rock avalanche which could be interpreted as triggering factors. From 2007 considerable changes have been observed on the glacier. The ice-front has retreated considerably and the debris lobe of the rock avalanche has moved downward along with the glacier ice about 90-100 m per year. The rocky material, by insulating the ice, has reduced its melting, leading to a relative "thickening" of the ice beneath the rock avalanche debris up to 11-15 m per year. After three melting seasons the debris mass was about 29 m above the surrounding ice surface.
Multiple voluminous sector collapses at Volcán Barú, Panama
NASA Astrophysics Data System (ADS)
Herrick, J. A.; Rose, W. I.
2010-12-01
Our recent work on Volcán Barú, an andesitic dome complex in Western Panama, has revealed a significant hazard from debris avalanches. Field observations of volcanic debris avalanche deposits and study of aerial photo data have revealed two avalanche units from Barú, the Barriles and the Caisán Deposits, both attributed to sector collapse of the western flank. Sherrod and others, 2007, also recognized this as one of the potential volcanic hazards of Panama's youngest volcanic center. The Barriles Deposit yielded two radiocarbon ages: 8590 ±50 ybp and 8000 ±30 ybp. The Caisán Deposit was also dated and is beyond the radiocarbon range (>43,000 ybp). From satellite imagery and field observations of distal hummocks, the total runout length of the Caisán deposit was ˜50 km covering 1180-km2. The Barriles Deposit extended to about 43 km. Despite heavy vegetation of the field area, 576-km2 were analyzed and over 4000 individual hummocks were digitized from aerial photography. Statistical analysis of hummock locations and geometries depict flow patterns over the entire debris fan and reflect the effects of underlying topography. The Barriles avalanche deposit has an estimated volume of 39 km3 to 61 km3 while the Caisán Deposit is slightly larger: 57 km3 to 64 km3. We conclude that debris avalanches of Volcán Barú are rare examples of unconfined volcanic debris avalanche deposits that rank among the world's most voluminous such as ancestral Mount Shasta, USA; Socompa, Chile/Argentina; and Shiveluch, Russia. Supported by the NSF Partnerships in International Research and Education Grant [0530109] this work is part of an on-going collaboration between the Michigan Tech Geology Department and Peace Corps. Reference: Sherrod, D.R., Vallance, J.W., Tapia Espinosa, A., and McGeehin, J.P., 2007, Volcán Barú eruptive history and volcano-hazards assessment, Open-File Report 2007-1401: Reston, VA, The U.S. Geological Survey, p. 33. A view East into the crater of Volcán Barú, Panama. The modern dome marks the highest elevation within the breached rim.
Vallance, J.W.; Scott, K.M.
1997-01-01
The 3.8 km3 Osceola Mudflow began as a water-saturated avalanche during phreatomagmatic eruptions at the summit of Mount Rainier about 5600 years ago. It filled valleys of the White River system north and northeast of Mount Rainier to depths of more than 100 m, flowed northward and westward more than 120 km, covered more than 200 km2 of the Puget Sound lowland, and extended into Puget Sound. The lahar had a velocity of ???19 m/s and peak discharge of ???2.5 ?? 106 m3/s, 40 to 50 km downstream, and was hydraulically dammed behind a constriction. It was coeval with the Paradise lahar, which flowed down the south side of Mount Rainier, and was probably related to it genetically. Osceola Mudflow deposits comprise three facies. The axial facies forms normally graded deposits 1.5 to 25 m thick in lowlands and valley bottoms and thinner ungraded deposits in lowlands; the valley-side facies forms ungraded deposits 0.3 to 2 m thick that drape valley slopes; and the hummocky facies, interpreted before as a separate (Greenwater) lahar, forms 2-10-m-thick deposits dotted with numerous hummocks up to 20 m high and 60 m in plan. Deposits show progressive downstream improvement in sorting, increase in sand and gravel, and decrease in clay. These downstream progressions are caused by incorporation (bulking) of better sorted gravel and sand. Normally graded axial deposits show similar trends from top to bottom because of bulking. The coarse-grained basal deposits in valley bottoms are similar to deposits near inundation limits. Normal grading in deposits is best explained by incremental aggradation of a flow wave, coarser grained at its front than at its tail. The Osceola Mudflow transformed completely from debris avalanche to clay-rich (cohesive) lahar within 2 km of its source because of the presence within the preavalanche mass of large volumes of pore water and abundant weak hydrothermally altered rock. A survey of cohesive lahars suggests that the amount of hydrothermally altered rock in the preavalanche mass determines whether a debris avalanche will transform into a cohesive debris flow or remain a largely unsaturated debris avalanche. The distinction among cohesive lahar, noncohesive lahar, and debris avalanche is important in hazard assessment because cohesive lahars spread much more widely than noncohesive lahars that travel similar distances, and travel farther and spread more widely than debris avalanches of similar volume. The Osceola Mudflow is documented here as an example of a cohesive debris flow of huge size that can be used as a model for hazard analysis of similar flows.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Eugene; Fung, Jeffrey, E-mail: echiang@astro.berkeley.edu, E-mail: jeffrey.fung@berkeley.edu
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ∼35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanchemore » zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.« less
Brown, Richard P; Hoskisson, Paul A; Welton, John-Henry; Báez, Marcos
2006-10-01
Several processes have been described that could explain geographical variation and speciation within small islands, including fragmentation of populations through volcanic eruptions. Massive landslides, or debris avalanches, could cause similar effects. Here we analyse the potential impact of the 0.8 million-year-ago (Ma) Güimar valley debris avalanche on the phylogeography of the lizard Gallotia galloti on the Canary Island of Tenerife. Distributions of mitochondrial DNA lineages (based on cytochrome b sequences) were analysed on a 60-km southeastern coast transect centred on this area. Three main clades were detected, which can be divided into northern (one clade) and southern (two clades) groups that introgress across the valley. Maximum-likelihood estimates of migration rates (scaled for mutation rate) revealed highly asymmetric patterns, indicating that long-term gene flow into this region from both the northern and the southern populations greatly exceeded that in the opposite directions, consistent with recolonization of the area. The ancestral Tenerife node on the G. galloti tree is estimated at 0.80 Ma, matching closely with the geological estimate for the debris avalanche. Morphological variation (body dimensions and scalation) was also analysed and indicated a stepped cline in female scalation across the valley, although the patterns for male scalation and male and female body dimensions were not as clear. Together these findings provide support for the hypothesis that the debris avalanche has shaped the phylogeography of G. galloti and may even have been a primary cause of the within-island cladogenesis through population fragmentation and isolation. Current estimates of timing of island unification mean that the original hypothesis that within-island diversity is explained by the secondary contact of populations from the two ancient precursor islands of Teno and Anaga is less plausible for this and some other Tenerife species. Large-scale landslides have occurred on many volcanic islands, and so may have been instrumental in shaping within-island diversities.
Caught in Action: Avalanches on North Polar Scarps
2008-03-03
Amazingly, this image has captured at least four Martian avalanches, or debris falls, in action. It was taken on February 19, 2008, by the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.
Volcanic hazards from Bezymianny- and Bandai-type eruptions
Siebert, L.; Glicken, H.; Ui, T.
1987-01-01
Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1-1 km3 average 0.13 and range 0.09-0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5-0.13. Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity. ?? 1987 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Belousova, M.; Belousov, A.; Chen, C.
2009-12-01
The dominantly andesitic Tatun Volcanic Group of Northern Taiwan was formed during the Pleistocene - Early Holocene. The volcanoes are represented by lava domes of moderate sizes: heights up to 350 m (absolute altitudes 800 - 1120 m a.s.l.), base diameters up to 1.5 km, and volumes up to 0.3 km3. Many of the domes have broad, shallow horseshoe-shaped scars (0.5-1.0 km across) formed by gravitational collapses. Field examination revealed deposits of collapses of volcanoes Datun, Cising, Siaoguanyin, Cigu, and Dajianhou. The largest of the collapses (V ~ 0.1 km3) occurred at Mt. Datun. The collapse formed a typical debris avalanche deposit composed mainly of block facies. The avalanche traveled a distance L ~ 5 km, dropped a height H ~ 1 km, and was moderately mobile H/L ~ 0.2. The age of the collapse is > 24,000 yrs because the related debris avalanche deposit is covered by a younger debris avalanche deposit of Siaoguanyin volcano containing charcoal having calibrated 14C age 22,600-23,780 BP. The Siaoguanyin debris avalanche deposit (V~ 0.02 km3; L ~ 6 km; H ~ 1 km; H/L ~ 0.16) is composed of massive, very coarse-grained, fines-poor, gravelly material represented predominantly by very dense, dark-grey andesite. The avalanche was hot during deposition; material of a lava dome which had no time to cool down completely after extrusion was involved into the collapse. The avalanche speed was 40 m/s at a distance 5 km from the source, basing on 80 m of the avalanche run-up. The latest (calibrated age 6000-6080 BP) large-scale collapse (V~0.05 km3, H/L ~ 0.25) occurred at Mt. Cising in the form of numerous retrogressive landslide blocks, which did not transform into a long runout debris avalanche. The leading snout of the landslide traveled 2.0 km, while rear slide blocks traveled only several hundred meters and stopped near the landslide source. Its maximum dropped height is only ~0.5 km. A former lava coulee, which was involved in the collapse, underwent weak disintegration: material of the collapse is represented by big boulders with few fine grained matrix. Collapses of Cigu and Dajianhou volcanoes had the smallest volumes, ~ 0.01 km3, and their character is transitional to large rockfalls. The studied collapses occurred after the volcanoes had stopped erupting, and thus were not triggered by volcanic activity. Hydrothermally altered rocks do not compose significant parts of the studied debris avalanches, although hydrothermal fields are common in the scars of the collapses. Probably weakening of mechanical properties of the volcanic edifices due to hydrothermal alteration did not play a key role in the studied collapses, but elevated fluid pressure and hydrothermal alteration in the foundations of the volcanoes might have had some role. Scars of the collapses are located on intersections of the edifices with active tectonic faults of NNE-SSW and/or W-E strike, which are expressed in relief and clearly visible on space images. Thus, the collapsed parts of the volcanic edifices were detached by tectonic motions, and the collapses were possibly triggered by seismic activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Elsie M.; Dale, Virginia H.
The abstract is published online only. If you did not include a short abstract for the online version when you submitted the manuscript, the first paragraph or the first 10 lines of the chapter will be displayed here. If possible, please provide us with an informative abstract. The debris-avalanche deposit is one of the most disturbed areas created by the 1980 eruption of Mount St. Helens, with little survival of a few plant fragments and primary succession mostly being initiated by the seeds dispersed onto the newly emplaced material. Vegetation changes on the debris-avalanche deposit during the first 30 yearsmore » post eruption are analyzed considering the role of non-native species and potential future vegetation patterns on the deposit. We found that the aerial distribution of largely non-native seeds on a subset of plots at Mount St. Helens in 1980 has had a pronounced and enduring effect on subsequent vegetation communities.« less
Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen
1992-01-01
Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.
Numerical simulation of tsunami generation by cold volcanic mass flows at Augustine Volcano, Alaska
Waythomas, C.F.; Watts, P.; Walder, J.S.
2006-01-01
Many of the world's active volcanoes are situated on or near coastlines. During eruptions, diverse geophysical mass flows, including pyroclastic flows, debris avalanches, and lahars, can deliver large volumes of unconsolidated debris to the ocean in a short period of time and thereby generate tsunamis. Deposits of both hot and cold volcanic mass flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet, indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by cold granular subaerial volcanic mass flows using examples from Augustine Volcano in southern Cook Inlet. Augustine Volcano is the most historically active volcano in the Cook Inlet region, and future eruptions, should they lead to debris-avalanche formation and tsunami generation, could be hazardous to some coastal areas. Geological investigations at Augustine Volcano suggest that as many as 12-14 debris avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during an A.D. 1883 eruption may have initiated a tsunami that was observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. Numerical simulation of mass-flow motion, tsunami generation, propagation, and inundation for Augustine Volcano indicate only modest wave generation by volcanic mass flows and localized wave effects. However, for east-directed mass flows entering Cook Inlet, tsunamis are capable of reaching the more populated coastlines of the southwestern Kenai Peninsula, where maximum water amplitudes of several meters are possible.
Earth Observations taken by the Expedition 35 Crew
2013-04-08
ISS035-E-18006 (8 April 2013) --- One of the Expedition 35 crew members aboard the Earth-orbiting International Space Station photographed this image of Tata Sabaya Volcano, located in the Altiplano region of Bolivia. The volcano rises to a summit elevation of 5430 meters above sea level. While its current form is that of a “youthful” stratovolcano, the regional geological evidence indicates an older, eventful history, according to scientists. The scientists say that prior to approximately 12,000 years ago (during the late Pleistocene Epoch), a large debris avalanche was formed by collapse of the ancestral Tata Sabaya volcano. Debris from the avalanche swept into the nearby Salar de Coipasa –at that time filled with a lake larger than today – significantly changing its northwestern coastline. Timing of the event is obtained from tufa deposits formed on debris islands during a high stand of the Coipasa lake – illustrating the geological principle of cross-cutting relationships, in that the debris avalanche had to have occurred before the tufa deposits were formed in the lake. The Tata Sabaya stratovolcano is located at image center. Several young lava flows are visible on the northwestern and western flanks of the volcano. Peaks visible to the northeast and southwest appear to be volcanoes as well, but unlike Tata Sabaya there is no record of recent activity from either of them (according to the Smithsonian National Museum of Natural History’s Global Volcanism Program). As the Altiplano became more arid and the Coipasa Lake shrank, much of the hummocky terrain of the debris avalanche became exposed over an area of more than 300 square kilometers. The hummocky terrain is clearly visible at image right. White salt deposits of the salar surround many of the individual hummocks, making them “islands” once again.
Caldera formation at Volcán Colima, Mexico, by a large large holocene volcanic debris avalanche
NASA Astrophysics Data System (ADS)
Luhr, James F.; Prestegaard, Karen L.
1988-12-01
About 4,300 years ago, 10 km 3 of the upper cone of ancestral Volcán Colima collapsed to the southwest leaving a horseshoe-shaped caldera 4 km in diameter. The collapse produced a massive volcanic debris avalanche deposit covering over 1550 km 2 on the southern flanks of the volcano and extending at least 70 km from the former summit. The avalanche followed a steep topographic gradient unobstructed by barriers, resulting in an unusually high area/volume ratio for the Colima deposit. The apparent coefficient of friction (fall height/distance traveled) for the Colima avalanche is 0.06, a low value similar to those of other large-volume deposits. The debris avalanche deposit contains 40-75% angular volcanic clasts from the ancestral cone, a small proportion of vesicular blocks that may be juvenile, and in distal exposures, rare carbonate clasts plucked from the underlying surface by the moving avalanche. Clasts range in size to over 20 m in diameter and are brecciated to different degrees, pulverized, and surrounded by a rock-flour matrix. The upper surface of the deposit shows prominent hummocky topography with closed depressions and surface boulders. A thick, coarse-grained, compositionally zoned scoria-fall layer on the upper northeastern slope of the volcano may have erupted at the time of collapse. A fine-grained surge layer is present beneath the avalanche deposit at one locality, apparently representing an initial blast event. Most of the missing volume of the ancestral volcano has since been restored at an average rate of 0.002 km 3/yr through repeated eruptions from the post-caldera cone. As a result, the southern slope of Volcán Colima may again be susceptible to collapse. Over 200,000 people are now living on primary or secondary deposits of the debris avalanche, and a repetition of this event would constitute a volcanic disaster of great magnitude. Ancestral Volcán Colima grew on the southern, trenchward flank of the earlier and larger volcano Nevado de Colima. Trenchward collapse was favored by the buttressing effect of Nevado, the rapid elevation drop to the south, and the intrusion of magma into the southern flank of the ancestral volcano. Other such trenchward-younging, paired volcanoes are known from Mexico, Guatemala, El Salvador, Chile, and Japan. The trenchward slopes of the younger cones are common sites for cone collapse to form avalanche deposits, as occurred at Colima and Popocatepetl in Mexico and at San Pedro Volcano in Chile.
Forecasting runout of rock and debris avalanches
Iverson, Richard M.; Evans, S.G.; Mugnozza, G.S.; Strom, A.; Hermanns, R.L.
2006-01-01
Physically based mathematical models and statistically based empirical equations each may provide useful means of forecasting runout of rock and debris avalanches. This paper compares the foundations, strengths, and limitations of a physically based model and a statistically based forecasting method, both of which were developed to predict runout across three-dimensional topography. The chief advantage of the physically based model results from its ties to physical conservation laws and well-tested axioms of soil and rock mechanics, such as the Coulomb friction rule and effective-stress principle. The output of this model provides detailed information about the dynamics of avalanche runout, at the expense of high demands for accurate input data, numerical computation, and experimental testing. In comparison, the statistical method requires relatively modest computation and no input data except identification of prospective avalanche source areas and a range of postulated avalanche volumes. Like the physically based model, the statistical method yields maps of predicted runout, but it provides no information on runout dynamics. Although the two methods differ significantly in their structure and objectives, insights gained from one method can aid refinement of the other.
Modelling Mass Movements for Planetary Studies
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Glaze, L.; Barnouin-Jha, O.; Murphy, W.; Neumann, G.
2002-01-01
Use of an empirical model in conjunction with data from the Chaos Jumbles rock avalanches constrain to first order their flow behavior, and provide a method to interpret rock/debris avalanche emplacement on Mars. Additional information is contained in the original extended abstract.
New advances for modelling the debris avalanches
NASA Astrophysics Data System (ADS)
Cuomo, Sabatino; Cascini, Leonardo; Pastor, Manuel; Castorino, Giuseppe Claudio
2013-04-01
Flow-like landslides are a major global hazard and they occur worldwide causing a large number of casualties, significant structural damages to property and infrastructures as well as economic losses. When involving open slopes, these landslides often occur in triangular source areas where initial slides turn into avalanches through further failures and/or eventual soil entrainment. This paper deals with the numerical modelling of the propagation stage of debris avalanches which provides information such as the propagation pattern of the mobilized material, its velocity, thickness and run-out distance. In the paper, a "depth integrated" model is used which allows: i) adequately taking into account the irregular topography of real slopes which greatly affect the propagation stage and ii) using a less time consuming model than fully 3D approaches. The used model is named "GeoFlow_SPH" and it was formerly applied to theoretical, experimental and real case histories (Pastor et al., 2009; Cascini et al., 2012). In this work the behavior of debris avalanches is analyzed with special emphasis on the apical angle, one of the main features of this type of landslide, in relation to soil rheology, hillslope geometry and features of triggering area. Furthermore, the role of erosion has been investigated with reference to the uppermost parts of open slopes with a different steepness. These analyses are firstly carried out for simplified benchmark slopes, using both water-like materials (with no shear strength) and debris type materials. Then, three important case studies of Campania region (Cervinara, Nocera Inferiore e Sarno) are analyzed where debris avalanches involved pyroclastic soils originated from the eruptive products of Vesusius volcano. The results achieved for both benchmark slopes and real case histories outline the key role played by the erosion on the whole propagation stage of debris avalanches. The results are particularly satisfactory since they indicate the "GeoFlow_SPH" model as a suitable tool for the analysis of these phenomena. References Pastor, M., Haddad, B., Sorbino, G., Cuomo, S., Drempetic V. (2009). A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. International Journal for Numerical and Analytical Methods in Geomechanics, 33, 143-184. Cascini L., Cuomo S., Pastor M., Sorbino G., Piciullo L. (2012). Modeling of propagation and entrainment phenomena for landslides of the flow type: the May 1998 case study. Proc. of 11th Int. Symposium on Landslides: Landslides and Engineered Slopes, Banf, Canada June 3-8, 2012, Ed. E. Eberhardt, C. Froese, K. Turner, S. Leroueil, ISBN 978-0-415-62423-6, 1723-1729.
NASA Astrophysics Data System (ADS)
Tortini, Riccardo; Carn, Simon; van Wyk de Vries, Benjamin
2015-04-01
The failure of destabilized volcano flanks is a likely occurrence during the lifetime of a stratovolcano, generating large debris avalanches and drastically changing landforms around volcanoes. The significant hazards associated with these events in the Cascade range were demonstrated, for example, by the collapse of Mt St Helens (WA), which triggered its devastating explosive eruption in 1980. The rapid modification of the landforms due to these events makes it difficult to estimate the magnitude of prehistoric avalanches. However, the widespread preservation of hummocks along the course of rockslide-debris avalanches is highly significant for understanding the physical characteristics of these landslides. Mt Shasta is a 4,317 m high, snow-capped, steep-sloped stratovolcano located in Northern California. The current edifice began forming on the remnants of an ancestral Mt Shasta that collapsed ~300-380k years ago producing one of the largest debris avalanches known on Earth. The debris avalanche deposit (DAD) covers a surface of ~450 km2 across the Shasta valley, with an estimated volume of ~26 km3. We analyze ALS data on hummocks from the prehistoric Shasta valley DAD in northern California (USA) to derive the relationship between hummock size and distance from landslide source, and interpret the geomorphic significance of the intercept and slope coefficients of the observed functional relationships. Given the limited extent of the ALS survey (i.e. 40 km2), the high-resolution dataset is used for validation of the morphological parameters extracted from freely available, broader coverage DTMs such as the National Elevation Dataset (NED). The ALS dataset also permits the identification of subtle topographic features not apparent in the field or in coarser resolution datasets, including a previously unmapped fault, of crucial importance for both seismic and volcanic hazard assessment in volcanic areas. We present evidence from the Shasta DAD of neotectonic deformation along a north south tending fault and a comparison with the NED-derived DTM. This work aims to improve our understanding of the Shasta DAD morphology and dynamics, and provide insight into the cause and timing of events as well as the mode of emplacement of the DAD. The Cascade range includes numerous large extinct, dormant or active stratovolcanoes. Size-distance relationships will enable us to estimate the volume of the collapsed mass and the travel distance of the avalanche, and the knowledge of the link between basement structures and the Shasta DAD will elucidate the causes of edifice instability and may be used to target priority areas for volcanic hazard mapping.
Volcanic Processes and Geology of Augustine Volcano, Alaska
Waitt, Richard B.; Beget, James E.
2009-01-01
Augustine Island (volcano) in lower Cook Inlet, Alaska, has erupted repeatedly in late-Holocene and historical times. Eruptions typically beget high-energy volcanic processes. Most notable are bouldery debris avalanches containing immense angular clasts shed from summit domes. Coarse deposits of these avalanches form much of Augustine's lower flanks. A new geologic map at 1:25,000 scale depicts these deposits, these processes. We correlate deposits by tephra layers calibrated by many radiocarbon dates. Augustine Volcano began erupting on the flank of a small island of Jurassic clastic-sedimentary rock before the late Wisconsin glaciation (late Pleistocene). The oldest known effusions ranged from olivine basalt explosively propelled by steam, to highly explosive magmatic eruptions of dacite or rhyodacite shed as pumice flows. Late Wisconsin piedmont glaciers issuing from the mountainous western mainland surrounded the island while dacitic eruptive debris swept down the south volcano flank. Evidence is scant for eruptions between the late Wisconsin and about 2,200 yr B.P. On a few south-flank inliers, thick stratigraphically low pumiceous pyroclastic-flow and fall deposits probably represent this period from which we have no radiocarbon dates on Augustine Island. Eruptions between about 5,350 and 2,200 yr B.P. we know with certainty by distal tephras. On Shuyak Island 100 km southeast of Augustine, two distal fall ashes of Augustinian chemical provenance (microprobe analysis of glass) date respectively between about 5,330 and 5,020 yr B.P. and between about 3,620 and 3,360 yr B.P. An Augustine ash along Kamishak Creek 70 km southwest of Augustine dates between about 3,850 and 3,660 yr B.P. A probably Augustinian ash lying within peat near Homer dates to about 2,275 yr B.P. From before 2,200 yr B.P. to the present, Augustine eruptive products abundantly mantle the island. During this period, numerous coarse debris avalanches swept beyond Augustine's coast, most recently in A.D. 1883. The decapitated summit after the 1883 eruption, replaced by andesite domes of six eruptions since, shows a general process: collapse of steep summit domes, then the summit regrown by later dome eruptions. The island's stratigraphy is based on six or seven coarse-pumice tephra 'marker beds'. In upward succession they are layers G (2,100 yr B.P.), I (1,700 yr B.P.), H (1,400 yr B.P.), C (1,200-1,000 yr B.P.), M (750 yr B.P.), and B (390 yr B.P.). A coarse, hummocky debris-avalanche deposit older than about 2,100 yr B.P. - or perhaps a stack of three of them - lies along the east coast, the oldest exposed such bouldery diamicts on Augustine Island. Two large debris avalanches swept east and southeast into the sea between about 2,100 and 1,800 yr B.P. A large debris avalanche shed east and east-northeast into the sea between 1,700 and 14,00 yr B.P. Between about 1,400 and 1,100 yr B.P. debris avalanches swept into the sea on the volcano's south, southwest, and north-northwest. Pumiceous pyroclastic fans spread to the southeast and southwest, lithic pyroclastic flows and lahars (?) to the south and southeast. Pyroclastic flows, pyroclastic surges, and lahars swept down the west and south flanks between about 1,000 and 750 yr B.P. A debris avalanche swept into the sea on the west, and a small one on the south-southeast, between about 750 and 400 yr B.P. Large lithic pyroclastic flows shed to the southeast; smaller ones descended existing swales on the southwest and south. Between about 400 yr B.P. and historical time (late 1770s), three debris avalanches swept into the sea on the west-northwest, north-northwest, and north flanks. One of them (West Island) was large and fast: most of it rode to sea far beyond a former sea cliff, and its surface includes geomorphic evidence of having initiating a tsunami. Augustine's only conspicuous lava flow erupted on the north flank. During this prehistoric period numerous domes grew at th
Lahar hazards at Mombacho Volcano, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.
2001-01-01
Mombacho volcano, at 1,350 meters, is situated on the shores of Lake Nicaragua and about 12 kilometers south of Granada, a city of about 90,000 inhabitants. Many more people live a few kilometers southeast of Granada in 'las Isletas de Granada and the nearby 'Peninsula de Aseses. These areas are formed of deposits of a large debris avalanche (a fast moving avalanche of rock and debris) from Mombacho. Several smaller towns with population, in the range of 5,000 to 12,000 inhabitants are to the northwest and the southwest of Mombacho volcano. Though the volcano has apparently not been active in historical time, or about the last 500 years, it has the potential to produce landslides and debris flows (watery flows of mud, rock, and debris -- also known as lahars when they occur on a volcano) that could inundate these nearby populated areas. -- Vallance, et.al., 2001
D.N. Swanston
1974-01-01
Natural soil-mass-movements on forested slopes in the Western United States can be divided into two major groups of closely related landslide types. These include, in order of decreasing importance and regional frequency of occurrence: (1) debris slides, debris avalanches, debris flows, and debris torrents; and (2) creep, slumps, and earth flows. Each type requires the...
NASA Astrophysics Data System (ADS)
Chernomorets, Sergey; Savernyuk, Elena; Petrakov, Dmitry; Dokukin, Mikhail; Gotsiridze, George; Gavardashvili, Givi; Drobyshev, Valery; Tutubalina, Olga; Zaporozhchenko, Eduard; Kamenev, Nikolay; Kamenev, Vladimir; Kääb, Andreas; Kargel, Jeffrey; Huggel, Christian
2016-04-01
We have studied catastrophic glacial events of 2014 in the Kazbek-Dzhimaray massif, Caucasus Mts., Georgia. The first event is a so called "Kazbek blockage" of the Georgian Military Road, on 17 May 2014, which formed as a result of an ice-rock avalanche onto the Devdorak Glacier, and is similar to blockages which occurred in the same location in the 18th-19th century. The second event is a consequent debris flow on 20 August 2014. In May, June 2014 and September 2015 we conducted three field investigations of the disaster zone, which includes Devdorak Glacier, Amilishka and Kabakhi river valleys, the Terek River valley near the Kabakhi River mouth, and a temporary lake.We analyzed field research data, interpreted SPOT 6, Landsat-8 OLI, Terra ASTER, and Pleiades satellite imagery, as well as post-disaster helicopter imagery. To assess dynamic features of the ice-rock flow on 17 May 2014, we measured valley crossections with Bushnell laser ranger. In 2015 we have marked a 180-m baseline for ground stereosurvey and made a stereopair of the Devdorak glacier terminus from a distance of 700 m. The 17 May 2014 ice-rock avalanche initiated at 4500 m. a.s.l. It collapsed onto the tongue of the Devdorak Glacier which reaches down to 2300 m a.s.l. Downstream of the tongue, the avalanche transformed into an ice-rock "avalanche flow" which blocked the Terek River valley. The traffic on Military Georgian Road (part of E117 highway) which connects Russia with Georgia was stopped. 7 people were killed in their vehicles. The total length of the ice-rock avalanche and the subsequent flow was over 10 km. A temporary lake formed in the Terek river valley, reaching 300 m in length, and over 10 m in depth. For several hours, the lake was threatening another debris flow downstream the Terek river valley. According to field estimates at the Devdorak glacier tongue and in Amilishka, Kabakhi and Terek river valleys, the volume of the transported ice-rock avalanche mass, which deposited in the middle and lower course of the valley below 3000 m a.s.l. was about 2 million cubic metres, while the ice content in the deposits reached 25-30%. It is planned to assess the volume of the trigger mass in the initiation zone later. The flow went along the valley with characteristic superelevations and run-ups, as it moved from one valley side to the other. We identified six superelevaions in fresh deposits, with differences of up to 45 m in flow height on the left and right valley banks. Instrumental measurements of superelevations and subsequent calculations yield the flow velocities of over 200 km/hour. These results lead to a reassessment of similar events which occurred in this valley in 18-19th centuries. Previously the trigger of these events was supposed to be the ice accumulation during surges of Devdorak glacier with subsequent temporary damming of the Amilishka River valley. The analysis of the 2014 event demonstrates that a similar trigger was possible in the past: an ice-rock avalanche onto Devdorak glacier tongue from significantly higher locations. Following the field data analysis, we issued a warning through mass media on 12 August 2014, forecasting a high risk of a new glacial disaster in this site and a new blockage of the Terek River valley and of Military Georgian Road. This forecast came true on 20 August 2014: a glacial debris flow reached the Terek River valley, and partially buried the Dariali hydropower station (under construction), the customs and border control buildings. Three people have been killed. We studied the deposits of this debris flow and morphology of the gully. The deposits entrained by the flow were previously deposited by the ice-rock avalanche of 17 May 2014. The debris flow started after shower rains. The debris flow-gully has a box-like crossection. At the confluence of Amilishka and Chach rivers it reached 30-32 m in width, and eroded the deposits of 17 May 2014 by 7 m. The channel slope at this location was about 7 degrees. Remnant ice in the transit zone has nearly melted by September 2015; however, the ice remains in the deposits near the glacier tongue and in the ice-rock avalanche deposits on the tongue. We have registered the advance of one of the termini of Devdorak Glacier. It moved forward by about 200 m from summer 2014 to September 2015, and became significantly higher. This part of the glacier was overloaded by the ice-rock avalanche deposits which provoked its advance, and should be closely monitored as it can raise the debris flow activity further. The hazard of new ice-rock avalanches and debris flows in the Devdorak gorge remains high. We have developed recommendation on the installation of an early warning system, continuation of glacier hazard monitoring, and suggestions on the construction of a road tunnel to mitigate the risk and avoid casualties in the future.
Tsunami Warning Protocol for Eruptions of Augustine Volcano, Cook Inlet, Alaska
NASA Astrophysics Data System (ADS)
Whitmore, P.; Neal, C.; Nyland, D.; Murray, T.; Power, J.
2006-12-01
Augustine is an island volcano that has generated at least one tsunami. During its January 2006 eruption coastal residents of lower Cook Inlet became concerned about tsunami potential. To address this concern, NOAA's West Coast/ Alaska Tsunami Warning Center (WC/ATWC) and the Alaska Volcano Observatory (AVO) jointly developed a tsunami warning protocol for the most likely scenario for tsunami generation at Augustine: a debris avalanche into the Cook Inlet. Tsunami modeling indicates that a wave generated at Augustine volcano could reach coastal communities in approximately 55 minutes. If a shallow seismic event with magnitude greater than 4.5 occurred near Augustine and the AVO had set the level of concern color code to orange or red, the WC/ATWC would immediately issue a warning for the lower Cook Inlet. Given the short tsunami travel times involved, potentially affected communities would be provided as much lead time as possible. Large debris avalanches that could trigger a tsunami in lower Cook Inlet are expected to be accompanied by a strong seismic signal. Seismograms produced by these debris avalanches have unique spectral characteristics. After issuing a warning, the WC/ATWC would compare the observed waveform with known debris avalanches, and would consult with AVO to further evaluate the event using AVO's on-island networks (web cameras, seismic network, etc) to refine or cancel the warning. After the 2006 eruptive phase ended, WC/ATWC, with support from AVO and the University of Alaska Tsunami Warning and Environmental Observatory for Alaska program (TWEAK), developed and installed "splash-gauges" which will provide confirmation of tsunami generation.
Glaciation of alpine valleys: The glacier - debris-covered glacier - rock glacier continuum
NASA Astrophysics Data System (ADS)
Anderson, Robert S.; Anderson, Leif S.; Armstrong, William H.; Rossi, Matthew W.; Crump, Sarah E.
2018-06-01
Alpine ice varies from pure ice glaciers to partially debris-covered glaciers to rock glaciers, as defined by the degree of debris cover. In many low- to mid-latitude mountain ranges, the few bare ice glaciers that do exist in the present climate are small and are found where snow is focused by avalanches and where direct exposure to radiation is minimized. Instead, valley heads are more likely to be populated by rock glaciers, which can number in the hundreds. These rock-cloaked glaciers represent some of the most identifiable components of the cryosphere today in low- to mid-latitude settings, and the over-steepened snouts pose an often overlooked hazard to travel in alpine terrain. Geomorphically, rock glaciers serve as conveyor belts atop which rock is pulled away from the base of cliffs. In this work, we show how rock glaciers can be treated as an end-member case that is captured in numerical models of glaciers that include ice dynamics, debris dynamics, and the feedbacks between them. Specifically, we focus on the transition from debris-covered glaciers, where the modern equilibrium line altitude (ELA) intersects the topography, to rock glaciers, where the modern ELA lies above the topography. On debris-covered glaciers (i.e., glaciers with a partial rock mantle), rock delivered to the glacier from its headwall, or from sidewall debris swept into the glacier at tributary junctions, travels englacially to emerge below the ELA. There it accumulates on the surface and damps the rate of melt of underlying ice. This allows the termini of debris-covered glaciers to extend beyond debris-free counterparts, thereby decreasing the ratio of accumulation area to total area of the glacier (AAR). In contrast, rock glaciers (i.e., glaciers with a full rock mantle) occur where and when the environmental ELA rises above the topography. They require avalanches and rockfall from steep headwalls. The occurrence of rock glaciers reflects this dependence on avalanche sources because they are most common on lee sides of ridges and peaks where wind-blown snow enhances the strength of the avalanche source. To maintain positive mass balance, the avalanche cone developed in the winter must be sufficiently thick not to melt entirely in the summer, thus providing an ice accumulation area for the rock glacier. In the absence of rockfall, this would support a short cirque glacier. The presence of debris, however, facilitates the development of rock glaciers with lengths of hundreds of meters, thicknesses of tens of meters, and speeds of meters per year that are well described by numerical models. Numerical models are used to explore the alpine glacier response to its climate history. In warming climates, a debris-covered glacier can transform into a much shorter rock glacier, leaving in its wake a thinning ice-cored moraine. Rock glaciers will persist in landscapes well beyond debris-free counterparts because they have much longer response times to climate change. The headwaters of alpine basins with steep headwalls will therefore oscillate between glacier and rock glacier occupation over glacial-interglacial cycles, maintaining a means by which rock from the headwall can be conveyed away. This enhances the asymmetry of alpine ridgelines, with downwind valleys biting deeply into the range crests, as originally noted by G.K. Gilbert.
The Tancitaro Debris Avalanche: Characterization, propagation and modeling
NASA Astrophysics Data System (ADS)
Morelli, Stefano; Monroy, Victor Hugo Garduño; Gigli, Giovanni; Falorni, Giacomo; Rocha, Eleazar Arreygue; Casagli, Nicola
2010-06-01
The Tancitaro volcano (3860 m) is an andesitic-dacitic stratovolcano located in the western portion of the Trans-Mexican Volcanic Belt within the state of Michoacán (Mexico). The tectonic activity of this area has likely contributed to a large sector collapse of the volcano. The first findings of a multidisciplinary investigation into this debris avalanche are presented here. Geomorphological analyses, based on the interpretation of orthophotos, satellite imagery and on GIS elaborations, had the objective of determining the main morphometric features of the landslide. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), while the deposit forms a large fan that is 66 km long, covers an area of approximately 1155 km 2 and has an estimated volume of 18 km 3. Event volume was established by reconstructing the paleo-edifice in a GIS and taking into account volumetric expansion. Cross sections measured in the field were also used for this purpose. Field investigations also highlighted the presence of two texturally distinct units, which are referred to as the "block facies" and the "matrix facies", respectively. The first is responsible for the typical hummock morphologies found in the proximal area. A transitional zone contains a "mixed block and matrix facies" while in the distal portion blocks and megablocks, some of which have a jigsaw puzzle texture, gradually decrease in size until they disappear entirely. A number of matrix samples were collected to conduct direct shear tests, granulometric analyses and classification of the materials. The data and analyses described above were used to discuss the mechanism controlling the long runout of the avalanche. Based on the comparison between the Tancitaro debris avalanche and similar events we propose that mechanical fluidization was the mechanism responsible for the remarkable mobility of the landslide. The predisposing factors leading to the collapse were also considered. Field observations suggest that these are mainly related to weakening processes operating both in volcanoes and in non-volcanic areas. The runout of the Tancitaro debris avalanche was numerically modeled using DAN-W. The geotechnical parameters determined in the field and from the laboratory analyses were used as input. The DAN-W code models longitudinal spreading and the thickness and velocity of the failed mass by opportunely selecting a specific rheological model (Voellmy, Frictional, Bingham). Thus, it was determined that the two-parameter "Voellmy model" provided the best simulation of the Tancitaro debris avalanche movement, and the best fitting rheological parameters have been found through back analysis.
NASA Astrophysics Data System (ADS)
Hayakawa, Yuichi S.; Obanawa, Hiroyuki; Yoshida, Hidetsugu; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi
2016-04-01
Debris avalanche caused by sector collapse of a volcanic mountain often forms depositional landforms with characteristic surface morphology comprising hummocks. Geomorphological and sedimentological analyses of debris avalanche deposits (DAD) at the northeastern face of Mt. Erciyes in central Turkey have been performed to investigate the mechanisms and processes of the debris avalanche. The morphometry of hummocks provides an opportunity to examine the volumetric and kinematic characteristics of the DAD. Although the exact age has been unknown, the sector collapse of this DAD was supposed to have occurred in the late Pleistocene (sometime during 90-20 ka), and subsequent sediment supply from the DAD could have affected ancient human activities in the downstream basin areas. In order to measure detailed surface morphology and depositional structures of the DAD, we apply structure-from-motion multi-view stereo (SfM-MVS) photogrammetry using unmanned aerial system (UAS) and a handheld camera. The UAS, including small unmanned aerial vehicle (sUAV) and a digital camera, provides low-altitude aerial photographs to capture surface morphology for an area of several square kilometers. A high-resolution topographic data, as well as an orthorectified image, of the hummocks were then obtained from the digital elevation model (DEM), and the geometric features of the hummocks were examined. A handheld camera is also used to obtain photographs of outcrop face of the DAD along a road to support the seimentological investigation. The three-dimensional topographic models of the outcrop, with a panoramic orthorectified image projected on a vertical plane, were obtained. This data enables to effectively describe sedimentological structure of the hummock in DAD. The detailed map of the DAD is also further examined with a regional geomorphological map to be compared with other geomorphological features including fluvial valleys, terraces, lakes and active faults.
Numerical simulation of granular flows : comparison with experimental results
NASA Astrophysics Data System (ADS)
Pirulli, M.; Mangeney-Castelnau, A.; Lajeunesse, E.; Vilotte, J.-P.; Bouchut, F.; Bristeau, M. O.; Perthame, B.
2003-04-01
Granular avalanches such as rock or debris flows regularly cause large amounts of human and material damages. Numerical simulation of granular avalanches should provide a useful tool for investigating, within realistic geological contexts, the dynamics of these flows and of their arrest phase and for improving the risk assessment of such natural hazards. Validation of debris avalanche numerical model on granular experiments over inclined plane is performed here. The comparison is performed by simulating granular flow of glass beads from a reservoir through a gate down an inclined plane. This unsteady situation evolves toward the steady state observed in the laboratory. Furthermore simulation exactly reproduces the arrest phase obtained by suddenly closing the gate of the reservoir once a thick flow has developped. The spreading of a granular mass released from rest at the top of a rough inclined plane is also investigated. The evolution of the avalanche shape, the velocity and the characteristics of the arrest phase are compared with experimental results and analysis of the involved forces are studied for various flow laws.
NASA Astrophysics Data System (ADS)
Carey, Steven; Ballard, Robert; Bell, Katherine L. C.; Bell, Richard J.; Connally, Patrick; Dondin, Frederic; Fuller, Sarah; Gobin, Judith; Miloslavich, Patricia; Phillips, Brennan; Roman, Chris; Seibel, Brad; Siu, Nam; Smart, Clara
2014-11-01
Remotely operated vehicle (ROV) exploration at the distal margins of a debris avalanche deposit from Kick'em Jenny submarine volcano in Grenada has revealed areas of cold seeps with chemosynthetic-based ecosystems. The seeps occur on steep slopes of deformed, unconsolidated hemipelagic sediments in water depths between 1952 and 2042 m. Two main areas consist of anastomosing systems of fluid flow that have incised local sediments by several tens of centimeters. No temperature anomalies were observed in the vent areas and no active flow was visually observed, suggesting that the venting may be waning. An Eh sensor deployed on a miniature autonomous plume recorder (MAPR) recorded a positive signal and the presence of live organisms indicates at least some venting is still occurring. The chemosynthetic-based ecosystem included giant mussels (Bathymodiolus sp.) with commensal polychaetes (Branchipolynoe sp.) and cocculinid epibionts, other bivalves, Siboglinida (vestimentiferan) tubeworms, other polychaetes, and shrimp, as well as associated heterotrophs, including gastropods, anemones, crabs, fish, octopods, brittle stars, and holothurians. The origin of the seeps may be related to fluid overpressure generated during the collapse of an ancestral Kick'em Jenny volcano. We suggest that deformation and burial of hemipelagic sediment at the front and base of the advancing debris avalanche led to fluid venting at the distal margin. Such deformation may be a common feature of marine avalanches in a variety of geological environments especially along continental margins, raising the possibility of creating large numbers of ephemeral seep-based ecosystems.
NASA Astrophysics Data System (ADS)
Rath, C. A.; Browne, B. L.
2011-12-01
Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.
NASA Astrophysics Data System (ADS)
Zhao, J.; Mangeney, A.; Moretti, L.; Stutzmann, E.; Calder, E. S.; Smith, P. J.; Capdeville, Y.; Le Friant, A.; Cole, P.; Luckett, R.; Robertson, R.
2011-12-01
Gravitational instabilities such as debris avalanches or pyroclastic flows represent one of the major natural hazards for populations who live in mountainous or volcanic areas. Detection and understanding of the dynamics of these events is crucial for risk assessment. Furthermore, during an eruption, a series of explosions and gravitational flows can occur, making it difficult to retrieve the characteristics of the individual gravitational events such as their volume, velocity, etc. In this context, the seismic signal generated by these events provides a unique tool to extract information on the history of the eruptive process and to validate gravitational flow models. We analyze here a series of events including explosions, debris avalanche and pyroclastic flows occurring in Montserrat in December 1997. This seismic signal is composed of six main pulses. The characteristics of the seismic signals generated by pyroclastic flows (amplitude, emergent onset, frequency spectrum, etc.) are described and linked to the volume of the individual events estimated from past field surveys. As a first step, we simulate the waveform of each event by assuming that the generation process reduces to a simple force applied at the surface of the topography. Going further, we perform detailed numerical simulation of the Boxing Day debris avalanche and of the following pyroclastic flow using a landslide model able to take into account the 3D topography. The stress field generated by the gravitational flows on the topography is then applied as surface boundary condition in a wave propagation model, making it possible to simulate the seismic signal generated by the avalanche and pyroclastic flow. Comparison between the simulated signal and the seismic signal recorded at the Puerto Rico seismic station located 450 km away from the source, show that this method allows us to reproduce the low frequency seismic signal and to constrain the volume and frictional behavior of the individual events. As a result, simulation of seismic signals generated by gravitational flows provides insight into the history of eruptive sequences and into the characteristics of the individual events.
Post-glacial rock avalanches in the Obersee Valley, Glarner Alps, Switzerland
NASA Astrophysics Data System (ADS)
Nagelisen, Jan; Moore, Jeffrey R.; Vockenhuber, Christoph; Ivy-Ochs, Susan
2015-06-01
The geological record of prehistoric rock avalanches provides invaluable data for assessing the hazard posed by these rare but destructive mass movements. Here we investigate two large rock avalanches in the Obersee valley of the Glarner Alps, Switzerland, providing detailed mapping of landslide and related Quaternary phenomena, revised volume estimates for each event, and surface exposure dating of rock avalanche deposits. The Rautispitz rock avalanche originated from the southern flank of the Obersee valley, releasing approximately 91 million m3 of limestone on steeply-dipping bedding planes. Debris had maximum horizontal travel distance of ~ 5000 m, a fahrboeschung angle (relating fall height to length) of 18°, and was responsible for the creation of Lake Obersee; deposits are more than 130 m thick in places. The Platten rock avalanche encompassed a source volume of 11 million m3 sliding from the northern flank of the Obersee valley on similar steeply-dipping limestone beds (bedrock forms a syncline under the valley). Debris had a maximum horizontal travel distance of 1600 m with a fahrboeschung angle of 21°, and is more than 80 m thick in places. Deposits of the Platten rock avalanche are superposed atop those from the Rautispitz event at the end of the Obersee valley where they dam Lake Haslensee. Runout for both events was simulated using the dynamic analysis code DAN3D; results showed excellent match to mapped deposit extents and thickness and helped confirm the hypothesized single-event failure scenarios. 36Cl cosmogenic nuclide surface exposure dating of 13 deposited boulders revealed a Younger Dryas age of 12.6 ± 1.0 ka for the Rautispitz rock avalanche and a mid-Holocene age of 6.1 ± 0.8 ka for the Platten rock avalanche. A seismological trigger is proposed for the former event due to potentially correlated turbidite deposits in nearby Lake Zurich.
Denlinger, Roger P.
2012-01-01
The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.
Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador
NASA Astrophysics Data System (ADS)
Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.
2017-04-01
We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (<13 ky) mass movement of high-altitude (>3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.
Parallel adaptive discontinuous Galerkin approximation for thin layer avalanche modeling
NASA Astrophysics Data System (ADS)
Patra, A. K.; Nichita, C. C.; Bauer, A. C.; Pitman, E. B.; Bursik, M.; Sheridan, M. F.
2006-08-01
This paper describes the development of highly accurate adaptive discontinuous Galerkin schemes for the solution of the equations arising from a thin layer type model of debris flows. Such flows have wide applicability in the analysis of avalanches induced by many natural calamities, e.g. volcanoes, earthquakes, etc. These schemes are coupled with special parallel solution methodologies to produce a simulation tool capable of very high-order numerical accuracy. The methodology successfully replicates cold rock avalanches at Mount Rainier, Washington and hot volcanic particulate flows at Colima Volcano, Mexico.
The forest ecosystem of southeast Alaska: 5. Soil mass movement.
Douglas N. Swanston
1974-01-01
Research in southeast Alaska has identified soil mass movement as the dominant erosion process, with debris avalanches and debris flows the most frequent events on characteristically steep, forested slopes. Periodically high soil water levels and steep slopes are controlling factors. Bedrock structure and the rooting characteristics of trees and other vegetation exert...
The role of forests in reducing hydrogeomorphic hazards.
Matt E. Sakals; John L. Innes; David J. Wilford; Roy C. Sidle; Gordon E. Grant
2006-01-01
Increasingly, forests are being valued for goods and services beyond wood fibre; one of these is protection forests. Functions provided by natural and managed forests have been associated with reduced hazards from floods, debris floods, debris flows, snow avalanches and rockfalls. Maintaining a high level of protection may require active management, as forests are...
Surge dynamics coupled to pore-pressure evolution in debris flows
Savage, S.B.; Iverson, R.M.; ,
2003-01-01
Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.
Major, Jon J.; Mosbrucker, Adam; Spicer, Kurt R.; Crisafulli, Charles; Dale, V.
2018-01-01
Exceptional sediment yields persist in Toutle River valley more than 30 years after the major 1980 eruption of Mount St. Helens. Differencing of decadal-scale digital elevation models shows the elevated load comes largely from persistent lateral channel erosion across the debris-avalanche deposit. Since the mid-1980s, rates of channel-bed-elevation change have diminished, and magnitudes of lateral erosion have outpaced those of channel incision. A digital elevation model of difference from 1999 to 2009 shows erosion across the debris-avalanche deposit is more spatially distributed compared to a model from 1987 to 1999, in which erosion was strongly focused along specific reaches of the channel.
Granular avalanches on the Moon: Mass-wasting conditions, processes, and features
NASA Astrophysics Data System (ADS)
Kokelaar, B. P.; Bahia, R. S.; Joy, K. H.; Viroulet, S.; Gray, J. M. N. T.
2017-09-01
Seven lunar crater sites of granular avalanches are studied utilizing high-resolution images (0.42-1.3 m/pixel) from the Lunar Reconnaissance Orbiter Camera; one, in Kepler crater, is examined in detail. All the sites are slopes of debris extensively aggraded by frictional freezing at their dynamic angle of repose, four in craters formed in basaltic mare and three in the anorthositic highlands. Diverse styles of mass wasting occur, and three types of dry-debris flow deposit are recognized: (1) multiple channel-and-lobe type, with coarse-grained levees and lobate terminations that impound finer debris, (2) single-surge polylobate type, with subparallel arrays of lobes and fingers with segregated coarse-grained margins, and (3) multiple-ribbon type, with tracks reflecting reworked substrate, minor levees, and no coarse terminations. The latter type results from propagation of granular erosion-deposition waves down slopes dominantly of fine regolith, and it is the first recognized natural example. Dimensions, architectures, and granular segregation styles of the two coarse-grained deposit types are like those formed in natural and experimental avalanches on Earth, although the timescale of motion differs due to the reduced gravity. Influences of reduced gravity and fine-grained regolith on dynamics of granular flow and deposition appear slight, but we distinguish, for the first time, extensive remobilization of coarse talus by inundation with finer debris. The (few) sites show no clear difference attributable to the contrasting mare basalt and highland megaregolith host rocks and their fragmentation. This lunar study offers a benchmarking of deposit types that can be attributed to formation without influence of liquid or gas.
Avalanche ecology and large magnitude avalanche events: Glacier National Park, Montana, USA
Fagre, Daniel B.; Peitzsch, Erich H.
2010-01-01
Large magnitude snow avalanches play an important role ecologically in terms of wildlife habitat, vegetation diversity, and sediment transport within a watershed. Ecological effects from these infrequent avalanches can last for decades. Understanding the frequency of such large magnitude avalanches is also critical to avalanche forecasting for the Going-to-the-Sun Road (GTSR). In January 2009, a large magnitude avalanche cycle occurred in and around Glacier National Park, Montana. The study site is the Little Granite avalanche path located along the GTSR. The study is designed to quantify change in vegetative cover immediately after a large magnitude event and document ecological response over a multi-year period. GPS field mapping was completed to determine the redefined perimeter of the avalanche path. Vegetation was inventoried using modified U.S. Forest Service Forest Inventory and Analysis plots, cross sections were taken from over 100 dead trees throughout the avalanche path, and an avalanche chronology was developed. Initial results indicate that the perimeter of this path was expanded by 30%. The avalanche travelled approximately 1200 vertical meters and 3 linear kilometers. Stands of large conifers as old as 150 years were decimated by the avalanche, causing a shift in dominant vegetation types in many parts of the avalanche path. Woody debris is a major ground cover up to 3 m in depth on lower portions of the avalanche path and will likely affect tree regrowth. Monitoring and measuring the post-avalanche vegetation recovery of this particular avalanche path provides a unique dataset for determining the ecological role of avalanches in mountain landscapes.
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; van Wyk de Vries, Benjamin; Barba, Diego; Leyrit, Hervé; Robin, Claude; Alcaraz, Samantha; Samaniego, Pablo
2008-09-01
Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km 3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km 2, and has a volume of > 11 km 3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15-25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10-14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.
Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.
2001-01-01
Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and precipitation, as well as magmatic activity and eruptions. (3) Risk of collapse begins with initial magmatic activity and increases as intrusion proceeds. An archetypal debris flow from volcanic terrain occurred in Colombia with a tectonic earthquake (M 6.4) in 1994. The Rio Piez conveyed a catastrophic wave of debris flow over 100 kilometers, coalesced from multiple slides of surflcial material weakened both by weathering and by hydrothermal alteration in a large strato- volcano. Similar seismogenic flows occurred in Mexico in 1920 (M -6.5), Chile in 1960 (M 9.2), and Ecuador in 1987 (M 6.1 and 6.9). Velocities of wave fronts in two examples were 60 to 90 km/hr (17-25 meters per second) over the initial 30 kilometers. Volcano flank and sector collapses may produce untransformed debris avalanches, as occurred initially at Mount St. Helens in 1980. However, at least as common is direct transformation of the failed mass to a debris flow. At two other volcanoes in the Cascade Range-- Mount Rainier and Mount Baker--rapid transformation and high mobility were typical of most of at least 15 Holocene flows. This danger exists downstream from many stratovolcanoes worldwide; the population at risk is near 150,000 and increasing at Mount Rainier. The first step in preventing future catastrophes is documenting past flows. Deposits of some debris flows, however, can be mistaken for those of less-mobile debris avalanches on the basis of mounds formed by buoyed megaclasts. Megaclasts may record only the proximal phase of a debris flow that began as a debris avalanche. Runout may have extended much farther, and thus furore flow mobility may be underestimated. Processes and behaviors of megaclast-bearing paleoflows are best inferred from the intermegaclast matrix. Mitigation strategy can respond to volcanic flows regardless of type and trigger by: (1) Avoidance: Limit settlement in flow pathways to numbers that can be evacuated after event warnings (flow is occurring). (2) Instrumental even
Erosional and Depositional Aspects of Hurricane Camille in Virginia, 1969
Williams, Garnett P.; Guy, Harold P.
1973-01-01
Probably the worst natural disaster in central Virginia's recorded history was the flood resuiting from an 8-hour deluge of about 28 inches (710 mm) of rain on the night of August 19-20, 1969. This study examines some of the intensive sediment erosion and deposition that resulted from the storm and flood. Most of the 150 people whom the flood killed in this mountainous area died from broken bones and other blunt-force injuries, rather than by drowning. The transport of sediment and other debris by the water therefore was very significant in loss of life and in property damage. Erosion resulted mainly from debris avalanches down the mountain-sides and channel scour along streams and head-water tributaries. Total amounts of sediment yield from certain mountainous areas in Nelson County were about 3.2-4.6 million cubic feet per square mile, probably the equivalent of several thousand years of normal denudation. Characteristics of the debris avalanches were that (1) they usually followed pre-existing depressions on hillsides and occurred on slopes greater than 35 percent, (2) the upslope tip of the avalanche scar tended to be located at the steepest part of the hillside, where the convex slope merged with the concave or planar zone immediately below, (3) hillsides facing north, northeast and east were more susceptible to avalanching than slopes facing other directions, and (4) debris-avalanches caused rapid and devastating surges of water and sediment in the mountain-stream channels. Such surges in some instances temporarily blocked the channel flow upstream. Slightly more than half of the total sediment contributed to the stream system was from erosion of stream channels. Channel erosion was very irregularly distributed; some ravines 10-20 feet wide and 5-10 feet deep were scoured in places which formerly had only a very small channel, whereas other channels only a few hundred yards away experienced little or no channel erosion. By the use of figures for the total amount of sediment removed from a drainage basin and the duration of the storm, estimates were made of the storm-average sediment-transport rate at the mouth of various basins. For drainage basins ranging up to about 1.5 square miles, the estimated storm-average sediment-transport rates varied from practically nothing to as much as 172,000 pounds per second (7.4 million tons per day). The types of sediment deposits were (1) debris-avalanche deposits, rather rare, at the base of hillslopes, (2) mountain-stream channel deposits, usually in scattered sediment patches but locally occurring as large wedge-shaped deposits behind debris dams, (3) alluvial fans, (4) delta-like deposits at the junction of a stream and major highway, where water backed up during the flood due to plugging of a culvert, and (5) accretion deposits on flood plains. The highway deltas and some downstream flood-plain sediments consisted mostly of sand-sized grains, but the other types of deposits usually contained particles ranging from silt or clay to boulders 5-10 feet in diameter. Changes in grain size and in volume of deposition with distance downstream were measured, and sedimentary features of the various types of deposits are described.
NASA Astrophysics Data System (ADS)
Evans, S. G.; Roberts, N. J.; Guthrie, R. H.
2006-12-01
In February 2006, a disastrous rock avalanche occurred in tropical mountain terrain, on Leyte Island, Central Philippines. Over 1,100 people perished when the village of Guinsaugon was overwhelmed directly in the path of the landslide. We characterized the landslide using a SRTM 90 m DEM to generate topographic data, a pre- disaster high resolution SPOT 5 image, and a cloud-obscured post-event ASTER image. This data was augmented by GPS controlled field traverses to develop a first order characterization of the rock avalanche. The rock avalanche was initiated by the failure of a 450 m high rock slope within the Philippine Fault Zone where the rock mass consisted of sheared and brecciated volcanic, sedimentary and volcaniclastic rocks. Tectonic weakening of the failed rock mass had resulted from active strike-slip movements along the Philippine Fault which have been estimated by other workers at 2.5 cm/year. We estimate that the rock avalanche involved a total volume of 15Mm3 and ran out a horizontal distance of 4040 m over a vertical distance of 810 m, equivalent to a fahrböschung of 11 degrees. Run-out distance was enhanced by friction reduction due to undrained loading when the debris encountered flooded paddy fields in the valley bottom at a path distance of 2600 m. There was no direct trigger for the landslide but the landslide did follow a period of very heavy rainfall with a lag time of four days. Analysis of the pre-landslide rainfall pattern was assisted by TRMM data from NASA. The rock avalanche is one of several disastrous landslides to have occurred in the Philippines in the last twenty years. In terms of loss of life, the Guinsaugon rock avalanche is the most devastating single-event landslide to have occurred worldwide since the Casita Volcano rock avalanche-debris flow which was triggered by Hurricane Mitch in Nicaragua in 1998.
Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami
2015-01-01
Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.
r.avaflow, the GIS simulation model for avalanche and debris flows: new developments and challenges
NASA Astrophysics Data System (ADS)
Mergili, Martin; Queiroz de Oliveira, Gustavo; Fischer, Jan-Thomas; Krenn, Julia; Kulisch, Helmut; Malcherek, Andreas; Pudasaini, Shiva P.
2016-04-01
We present the latest developments and discuss some of the key challenges with regard to the novel and unified computational tool r.avaflow, representing an advanced, comprehensive, GIS-based open source simulation environment for two-phase geophysical mass flows such as avalanches of snow or rock, flows of debris or mud, and related process chains. r.avaflow is freely available and adoptable as a raster module of the GRASS GIS software (http://www.avaflow.org). We focus on the following issues: (1) We back-calculate a laboratory-scale debris flow experiment with r.avaflow and thereby show that different types of drag may govern the evolving flow dynamics, depending on the initial flow configuratiuon. In particular, it appears necessary to consider viscous ambient drag in order to achieve simulation results in line with experimentally measurements. (2) We employ a set of well-documented rock avalanche events to illustrate the use of a built-in functionality for parameter sensitivity analysis and optimization. To do so, we demonstrate possible strategies going beyond the deficient one-at-a-time simulation approach. They allow us to test three or more parameters at once with a limited number of model runs. Computational times are kept at an acceptable level by multi-core processing strategies and use of the Vienna Scientific Cluster. We further discuss a number of key issues with regard to (i) arbitrary mountain topography; and (ii) entrainment and deposition of material. Most tests indicate a good model performance when the affected areas predicted for a late stage of the flow simulation are compared with observed affected areas. However, we note that such a validation is not fully justified without the implementation of a physically correct model for the deposition process. Acknowledgement: The work was conducted as part of the international cooperation project "A GIS simulation model for avalanche and debris flows (avaflow)" supported by the Austrian Science Fund (FWF, project number I 1600-N30) and the German Research Foundation (DFG, project number PU 386/3-1).
Sedimentary control of volcanic debris-avalanche structures and transformation into lahars
NASA Astrophysics Data System (ADS)
Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo
2017-04-01
Volcanic debris avalanche structures and related transformations into lahars have been extensively analysed in order to establish a sedimentary classification of the deposits. Textural and structural variations of eight debris-avalanche deposits (DADs) have been correlated with Shape Preferred Orientation of 30,000 clasts together with grain-size distributions and statistical parameters from 156 sieved matrix samples. Granular segregation patterns have been observed with structural fault controls: proximal granular-segregation structures of the Tutupaca DAD ridges in Peru, basal sheared bands along overthrust lateral levee (Mt. Dore, France), mixing and cataclasis of fault-controlled deposits in half-graben during lateral spreading of distal thrust lobe (Pichu-Pichu, Peru), neo-cataclasis at the frontal thrust lobe (Meager, Canada and Mt. Dore, France). A logarithmic regression characterises the % matrix vs. matrix/gravels showing proximal and primary cataclasis, hybrid DADs with polymodal matrix and mixed facies up to transformations into lahar (Misti, Mt Dore). The sequential fragmentation helps to distinguish DAD that belong to Andean and Cascade Volcanic arcs (Tutupaca and Misti, Peru; Meager, Canada) to the hybrid DADs, before distal transformation into lahars (Pichu-Pichu); and hydrovolcanic fragmentation characterises the transformed lahar deposits (Misti). The fractal values of 150 sieved samples range between 2.3 and 2.7, implying extensional fractures with granular disaggregation. Skewness vs. kurtosis values help to distinguish the proximal mass wasting deposits and the transformed deposits by dilution. The sorting vs. median values enable us to differentiate the hybrid DADs with the transformed deposits by dilution. The sedimentological statistical parameters with Shape Preferred Orientation analysis that have been correlated with textural and structural observations show textural fabrics resulting from kinematic processes: cataclasis, hybrid matrix facies and transformations. Inherited fractures from tectono-volcanic structures contribute to the particle size distributions of DAD and associated deposits such as pyroclastic and lahar deposits (Misti, Mt Dore, Tutupaca). The statistical results highlight granular structure and kinematic process of DAD transformations into lahars and associated deposits, which would contribute to understand the rheological process behind the excess DAD run-out and to test granular models for DAD transformations. Key words: volcanic debris-avalanche deposits, lahar transformation, structure, sedimentology, hazard
Reardon, Blase; Lundy, Chris
2004-01-01
The annual spring opening of the Going-to-the-Sun Road in Glacier National Park presents a unique avalanche forecasting challenge. The highway traverses dozens of avalanche paths mid-track in a 23-kilometer section that crosses the Continental Divide. Workers removing seasonal snow and avalanche debris are exposed to paths that can produce avalanches of destructive class 4. The starting zones for most slide paths are within proposed Wilderness, and explosive testing or control are not currently used. Spring weather along the Divide is highly variable; rain-on-snow events are common, storms can bring several feet of new snow as late as June, and temperature swings can be dramatic. Natural avalanches - dry and wet slab, dry and wet loose, and glide avalanches - present a wide range of hazards and forecasting issues. This paper summarizes the forecasting program instituted in 2002 for the annual snow removal operations. It focuses on tools and techniques for forecasting natural wet snow avalanches by incorporating two case studies, including a widespread climax wet slab cycle in 2003. We examine weather and snowpack conditions conducive to wet snow avalanches, indicators for instability, and suggest a conceptual model for wet snow stability in a northern intermountain snow climate.
Submarine landslides of the Southern California Borderland
Lee, H.J.; Greene, H. Gary; Edwards, B.D.; Fisher, M.A.; Normark, W.R.
2009-01-01
Conventional bathymetry, sidescan-sonar and seismic-reflection data, and recent, multibeam surveys of large parts of the Southern California Borderland disclose the presence of numerous submarine landslides. Most of these features are fairly small, with lateral dimensions less than ??2 km. In areas where multibeam surveys are available, only two large landslide complexes were identified on the mainland slope- Goleta slide in Santa Barbara Channel and Palos Verdes debris avalanche on the San Pedro Escarpment south of Palos Verdes Peninsula. Both of these complexes indicate repeated recurrences of catastrophic slope failure. Recurrence intervals are not well constrained but appear to be in the range of 7500 years for the Goleta slide. The most recent major activity of the Palos Verdes debris avalanche occurred roughly 7500 years ago. A small failure deposit in Santa Barbara Channel, the Gaviota mudflow, was perhaps caused by an 1812 earthquake. Most landslides in this region are probably triggered by earthquakes, although the larger failures were likely conditioned by other factors, such as oversteepening, development of shelf-edge deltas, and high fluid pressures. If a subsequent future landslide were to occur in the area of these large landslide complexes, a tsunami would probably result. Runup distances of 10 m over a 30-km-long stretch of the Santa Barbara coastline are predicted for a recurrence of the Goleta slide, and a runup of 3 m over a comparable stretch of the Los Angeles coastline is modeled for the Palos Verdes debris avalanche. ?? 2009 The Geological Society of America.
Slope failures in Northern Vermont, USA
Lee, F.T.; Odum, J.K.; Lee, J.D.
1997-01-01
Rockfalls and debris avalanches from steep hillslopes in northern Vermont are a continuing hazard for motorists, mountain climbers, and hikers. Huge blocks of massive schist and gneiss can reach the valley floor intact, whereas others may trigger debris avalanches on their downward travel. Block movement is facilitated by major joints both parallel and perpendicular to the glacially over-steepened valley walls. The slope failures occur most frequently in early spring, accompanying freeze/thaw cycles, and in the summer, following heavy rains. The study reported here began in August 1986 and ended in June 1989. Manual and automated measurements of temperature and displacement were made at two locations on opposing valley walls. Both cyclic-reversible and permanent displacements occurred during the 13-month monitoring period. The measurements indicate that freeze/thaw mechanisms produce small irreversible incremental movements, averaging 0.53 mm/yr, that displace massive blocks and produce rockfalls. The initial freeze/thaw weakening of the rock mass also makes slopes more susceptible to attrition by water, and heavy rains have triggered rockfalls and consequent debris flows and avalanches. Temperature changes on the rock surface produced time-dependent cyclic displacements of the rock blocks that were not instantaneous but lagged behind the temperature changes. Statistical analyses of the data were used to produce models of cyclic time-dependent rock block behavior. Predictions based solely on temperature changes gave poor results. A model using time and temperature and incorporating the lag effect predicts block displacement more accurately.
Mass wasting triggered by the 5 March 1987 Ecuador earthquakes
Schuster, R.L.; Nieto, A.S.; O'Rourke, T. D.; Crespo, E.; Plaza-Nieto, G.
1996-01-01
On 5 March 1987, two earthquakes (Ms=6.1 and Ms=6.9) occurred about 25 km north of Reventador Volcano, along the eastern slopes of the Andes Mountains in northeastern Ecuador. Although the shaking damaged structures in towns and villages near the epicentral area, the economic and social losses directly due to earthquake shaking were small compared to the effects of catastrophic earthquake-triggered mass wasting and flooding. About 600 mm of rain fell in the region in the month preceding the earthquakes; thus, the surficial soils had high moisture contents. Slope failures commonly started as thin slides, which rapidly turned into fluid debris avalanches and debris flows. The surficial soils and thick vegetation covering them flowed down the slopes into minor tributaries and then were carried into major rivers. Rock and earth slides, debris avalanches, debris and mud flows, and resulting floods destroyed about 40 km of the Trans-Ecuadorian oil pipeline and the only highway from Quito to Ecuador's northeastern rain forests and oil fields. Estimates of total volume of earthquake-induced mass wastage ranged from 75-110 million m3. Economic losses were about US$ 1 billion. Nearly all of the approximately 1000 deaths from the earthquakes were a consequence of mass wasting and/ or flooding.
Aaron, Jordan; McDougall, Scott; Moore, Jeffrey R.; Coe, Jeffrey A.; Hungr, Oldrich
2017-01-01
BackgroundRock avalanches are flow-like landslides that can travel at extremely rapid velocities and impact surprisingly large areas. The mechanisms that lead to the unexpected mobility of these flows are unknown and debated. Mechanisms proposed in the literature can be broadly classified into those that rely on intrinsic characteristics of the rock avalanche material, and those that rely on extrinsic factors such as path material. In this work a calibration-based numerical model is used to back-analyze three rock avalanche case histories. The results of these back-analyses are then used to infer factors that govern rock avalanche motionResultsOur study has revealed two key insights that must be considered when analyzing rock avalanches. Results from two of the case histories demonstrate the importance of accounting for the initially coherent phase of rock avalanche motion. Additionally, the back-analyzed basal resistance parameters, as well as the best-fit rheology, are different for each case history. This suggests that the governing mechanisms controlling rock avalanche motion are unlikely to be intrinsic. The back-analyzed strength parameters correspond well to those that would be expected by considering the path material that the rock avalanches overran.ConclusionOur results show that accurate simulation of rock avalanche motion must account for the initially coherent phase of movement, and that the mechanisms governing rock avalanche motion are unlikely to be intrinsic to the failed material. Interaction of rock avalanche debris with path materials is the likely mechanism that governs the motion of many rock avalanches.
Volcano hazards at Fuego and Acatenango, Guatemala
Vallance, J.W.; Schilling, S.P.; Matías, O.; Rose, William I.; Howell, M.M.
2001-01-01
The Fuego-Acatenango massif comprises a string of five or more volcanic vents along a north-south trend that is perpendicular to that of the Central American arc in Guatemala. From north to south known centers of volcanism are Ancient Acatenango, Yepocapa, Pico Mayor de Acatenango, Meseta, and Fuego. Volcanism along the trend stretches back more than 200,000 years. Although many of the centers have been active contemporaneously, there is a general sequence of younger volcanism, from north to south along the trend. This massive volcano complex towers more than 3500 meters (m) above the Pacific coastal plain to the south and 2000 m above the Guatemalan Highlands to the north. The volcano complex comprises remnants of multiple eruptive centers, which periodically have collapsed to form huge debris avalanches. The largest of these avalanches extended more than 50 kilometers (km) from its source and covered more than 300 square km. The volcano has potential to produce huge debris avalanches that could inundate large areas of the Pacific coastal plain. In areas around the volcanoes and downslope toward the coastal plain, more than 100,000 people are potentially at risk from these and other flowage phenomena.
Preliminary volcano-hazard assessment for Augustine Volcano, Alaska
Waythomas, Christopher F.; Waitt, Richard B.
1998-01-01
Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.
NASA Astrophysics Data System (ADS)
Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.
2018-01-01
The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions inappropriate for promoting granular fingering can explain why ridges are absent in many deposits.
The development of structures in analogue and natural debris avalanches
NASA Astrophysics Data System (ADS)
Paguican, Engielle Mae; van Wyk de Vries, Benjamin; Mahar Francisco Lagmay, Alfredo; Grosse, Pablo
2010-05-01
All types of rockslide-debris avalanches present a plethora of internal structures that are also well observed on the surface. Many of these are seen as faults and folds that can be used to determine deformation history and kinematics. We present two sets of simple and well-constrained experiments of reduced basal friction laboratory rockslides, equivalent to a highly deformed simple shear layer, with plug-flow. These follow the original ramp-slide work of Shea and van Wyk de Vries (Geosphere, 2008). The experiments used a curved ramp where materials accelerate until reaching a gently-sloped depositional surface and a constantly inclined ramp with a more regular slope and longer slides. A detailed description of deposit structures, their sequential formation and morphology is then used to investigate the transport type and deformation chronology from slide initiation to runout stopping of avalanches. Results using a curved ramp show accumulation and thickening at where the slope decreases. The thickened mass then further remobilises and advances by secondary collapse of the mass. Such a stop-start process may be important in many mountainous avalanches where there are rapid changes in slope. The constantly inclined ramp shows shearing and extensional structures at the levees and a set of compression and extension structures in the middle. We noted that frontal accumulation during flow occurs as materials at the front move slower relative to those in the medial and proximal zones. This also leads to secondary frontal collapse, and helps to maintain a thicker mass that can flow further. Descriptions and analyses of these structures are then applied to the kinematics and dynamics of natural examples. We study the 2006 Guinsaugon Rockslide event in the Philippines and find that frontal accumulation and secondary avalanching had also occurred and were important in determining the distribution and runout of the mass. Frontal bulking and collapse may also have occurred at the Tacna Avalanche, Peru and the Pajonales-Aracar event in Argentina.
A two-fluid model for avalanche and debris flows.
Pitman, E Bruce; Le, Long
2005-07-15
Geophysical mass flows--debris flows, avalanches, landslides--can contain O(10(6)-10(10)) m(3) or more of material, often a mixture of soil and rocks with a significant quantity of interstitial fluid. These flows can be tens of meters in depth and hundreds of meters in length. The range of scales and the rheology of this mixture presents significant modelling and computational challenges. This paper describes a depth-averaged 'thin layer' model of geophysical mass flows containing a mixture of solid material and fluid. The model is derived from a 'two-phase' or 'two-fluid' system of equations commonly used in engineering research. Phenomenological modelling and depth averaging combine to yield a tractable set of equations, a hyperbolic system that describes the motion of the two constituent phases. If the fluid inertia is small, a reduced model system that is easier to solve may be derived.
The 22 March 2014 Oso landslide, Washington, USA
NASA Astrophysics Data System (ADS)
Wartman, Joseph; Montgomery, David R.; Anderson, Scott A.; Keaton, Jeffrey R.; Benoît, Jean; dela Chapelle, John; Gilbert, Robert
2016-01-01
The Oso, Washington, USA, landslide occurred on the morning of Saturday, 22 March 2014 and claimed the lives of 43 people. The landslide began within an 200-m-high hillslope comprised of unconsolidated glacial and previous landslide/colluvial deposits; it continued as a debris avalanche/debris flow that rapidly inundated a neighborhood of 35 single-family residences. An intense three-week rainfall that immediately preceded the event most likely played a role in triggering the landslide; and other factors that likely contributed to destabilization of the landslide mass include alteration of the local groundwater recharge and hydrogeological regime from previous landsliding, weakening and alteration of the landslide mass caused by previous landsliding, and changes in stress distribution resulting from removal and deposition of material from earlier landsliding. Field reconnaissance following the event revealed six distinctive zones and several subzones that are characterized on the basis of geomorphic expression, styles of deformation, geologic materials, and the types, size, and orientation of vegetation. Seismic recording of the landslide indicate that the event was marked by several vibration-generating episodes of mass movement. We hypothesize that the landslide occurred in two stages, with the first being a sequential remobilization of existing slide masses from the most recent (2006) landslide and from an ancient slide that triggered a devastating debris avalanche/debris flow. The second stage involved headward extension into previously unfailed material that occurred in response to unloading and redirection of stresses.
Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado
NASA Astrophysics Data System (ADS)
Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.
2015-12-01
The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.
Finn, C.A.; Deszcz-Pan, M.; Anderson, E.D.; John, D.A.
2007-01-01
Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of the altered, edifice. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock, and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. In addition, the electromagnetic data identified water in the brecciated core of the upper 100-200 m of the volcano. Water helps alter the rocks, reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore knowing the distribution of water is also important for hazard assessments. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water aiding evaluation of the debris avalanche hazard.
Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.
2005-01-01
A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.
Earth observation taken by the Expedition 29 crew
2011-10-07
ISS029-E-020003 (7 Oct. 2011) --- Parinacota Volcano in the Chile-Bolivia border region, South America is featured in this image photographed by an Expedition 29 crew member on the International Space Station. Volcan Parinacota (?flamingo lake? in the regional Aymara language) is a potentially active stratovolcano located on the Altiplano, a high plateau situated within the Andes Mountains of west-central South America. While no direct observations of eruptive activity are recorded, surface exposure age-dating of lava flows suggests that activity occurred as recently as 290 AD approximately 300 years, according to scientists. Local Aymara stories also suggest that the volcano has erupted during the past 1,000 years. This detailed photograph highlights the symmetrical cone of Parinacota, with its well-developed summit crater (elevation 6,348 meters above sea level) at center. Dark brown to dark gray surfaces to the east and west of the summit include lava flows, pyroclastic deposits, and ash. A companion volcano, Pomerape, is located across a low saddle to the north ? scientists believe this volcano last erupted during the Pleistocene Epoch (extending from approximately 3 million to 12,000 years ago). The summits of both volcanoes are covered by white permanent snowpack and small glaciers. Together, the two volcanoes form the Nevados de Payachata volcanic area. Eruptive activity at Parinacota has directly influenced development of the local landscape beyond the emplacement of volcanic deposits ? approximately 8,000 years ago the western flank of the volcano collapsed, creating a debris avalanche that traveled 22 kilometers to the west. This debris avalanche blocked drainages, leading to the formation of Lake Chungara to the south (upper right). The uneven, hummocky surface of the debris avalanche deposit provides ample catchments for water, as evidenced by the numerous small ponds and Cotacotani Lake to the west.
Study of mass movements from a seismological point of view (1995-2017)
NASA Astrophysics Data System (ADS)
Suriñach, Emma; Pérez-Guillén, Cristina; Tapia, Mar; Roig, Pere
2017-04-01
Since 1995 our group has been investigating the seismic signals generated by snow avalanches with the aim of detection using the information in the time and frequency domains (Sabot et al., 1995). Once the reproducibility and repetitivity of the avalanche seismic signals were demonstrated, the use of these signals for detecting and/or studying avalanche dynamics gains value (Suriñach et al., 2000). It was in 2003 when the time evolution of the frequency content of the signals generated was first considered, and the additional information obtained led us to introduce the term mass movement and to study their development from this point of view (Biescas et al., 2003). Subsequently, different surface mass movements were seismically studied. In 2005 landslides were included, in 2008 and 2014 rock falls and debris flows, respectively, and in 2016 lahars were incorporated into the study (Suriñach et al., 2005; Vilajosana et al., 2008; Kogelnig et al., 2014; Vázquez et al., 2016). Since 2008, the infrasound wave field generated by snow avalanches and by debris flows have been compared with the seismic wave field recorded by the appropriate sensors. Although the term mass movement is a global one, particularities in the seismic signals of each event can be observed. Additionally, terrain, geographical and instrumental conditions determine the characteristics of the seismic signals. Different results of the studies carried out to date are presented, including the limitations due to the transmission of the seismic wave field across imperfect media. References Biescas, B., Dufour, F., Furdada, G., Khazaradze, G. Suriñach, E. (2003). Frequency content evolution of snow avalanche seismic signals. Surveys in Geophysics, 24, 447-464. Kogelnig; A., Hübl, J. Suriñach, E., Vilajosana, I. Mc. Ardell,W. (2014). Infrasound produced by debris flow: propagation and frequency content evolution. Natural Hazards, 70, 1713-1733. Sabot, F., Martínez, P., Suriñach, E., Olivera, C., Gavaldà , J. (1995). Les apports de la recherche scientifique á la sécurité neige, glace et avalanches. Editions ANENA-CEMAGREF, 19-24. Suriñach, E., Sabot, F., Furdada, G., Vilaplana, J. M. (2000). Study of seismic signals of artificially released snow avalanches for monitoring purposes. Phys. and Chem. of the Earth (B), 25, 9, 721-727. Suriñach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., Vilaplana, J.M. (2005). Seismic detection and characterization of landsides and other mass movements. NHESS, 5, 1-8. Vilajosana, I., Suriñach, E., Abellán, A., Khazaradze, G., García, D., Llosa, J. (2008). Rockfall induced seismic signals: case study in Montserrat, Catalunya. NHESS, 8, 805-812. Vázquez, R., Suriñach, E., Capra, L., Arámbula-Mendoza, R., Reyes-Dávila, G. (2016). Seismic characterization of lahars at Volcán de Colima, México. Bull. of Volcanol. 78: 8.
Uhrich, Mark A.
2010-01-01
A debris flow and sediment torrent occurred on the flanks of Mt Jefferson in Oregon on November 6, 2006, inundating 150 acres of forest. The massive debris flow was triggered by a rock and snow avalanche from the Milk Creek glaciers and snowfields during the early onset of an intense storm originating near the Hawaiian Islands. The debris flow consisted of a heavy conglomerate of large boulders, cobbles, and coarse-grained sediment that was deposited at depths of up to 15 ft and within 3 mi of the glaciers, and a viscous slurry that deposited finer-grained sediments at depths of 0.5 to 3 ft. The muddy slurry coated standing trees within the lower reaches of Milk Creek as it moved downslope.
Forest management to minimize landslide risk
Raymond M. Rice
1977-01-01
Mass wasting is the dominant erosional process in most steep-sloped catchments. major mechanism in this process is the landslide (2, 6, 8, 19, 24, 25, 29). In this paper, unless explicitly stated to the contrary, the reference to debris avalanches and other forms of shallow failures
Jolly, A.D.; Jousset, P.; Lyons, J.J.; Carniel, R.; Fournier, R.; Fry, B.; Miller, C.
2016-01-01
The 6 August 2012 Te Maari eruption comprises a complex eruption sequence including multiple eruption pulses, a debris avalanche that propagated ~ 2 km from the vent, and the formation of a 500 m long, arcuate chasm, located ~ 300 m from the main eruption vent. The eruption included 6 distinct impulses that were coherent across a local infrasound network marking the eruption onset at 11:52:18 (all times UTC). An eruption energy release of ~ 3 × 1012 J was calculated using a body wave equation for radiated seismic energy. A similar calculation based on the infrasound record, shows that ~ 90% of the acoustic energy was released from three impulses at onset times 11:52:20 (~ 20% of total eruption energy), 11:52:27 (~ 50%), and 11:52:31 (~ 20%). These energy impulses may coincide with eyewitness accounts describing an initial eastward directed blast, followed by a westward directed blast, and a final vertical blast. Pre-eruption seismic activity includes numerous small unlocatable micro-earthquakes that began at 11:46:50. Two larger high frequency earthquakes were recorded at 11:49:06 and 11:49:21 followed directly by a third earthquake at 11:50:17. The first event was located within the scarp based on an arrival time location from good first P arrival times and probably represents the onset of the debris avalanche. The third event was a tornillo, characterised by a 0.8 Hz single frequency resonance, and has a resonator attenuation factor of Q ~ 40, consistent with a bubbly fluid filled resonator. This contrasts with a similar tornillo event occurring 2.5 weeks earlier having Q ~ 250–1000, consistent with a dusty gas charged resonator. We surmise from pre-eruption seismicity, and the observed attenuation change, that the debris avalanche resulted from the influx of fluids into the hydrothermal system, causing destabilisation and failure. The beheaded hydrothermal system may have then caused depressurisation frothing of the remaining gas charged system leading to the onset of explosive activity.
Gohn, G.S.; Powars, D.S.; Dypvik, H.; Edwards, L.E.
2009-01-01
An unusually thick section of sedimentary breccias dominated by target-sediment clasts is a distinctive feature of the late Eocene Chesapeake Bay impact structure. A cored 1766-m-deep section recovered from the central part of this marine-target structure by the International Continental Scientific Drilling Program (ICDP)-U.S. Geological Survey (USGS) drilling project contains 678 m of these breccias and associated sediments and an intervening 275-m-thick granite slab. Two sedimentary breccia units consist almost entirely of Cretaceous nonmarine sediments derived from the lower part of the target sediment layer. These sediments are present as coherent clasts and as autoclastic matrix between the clasts. Primary (Cretaceous) sedimentary structures are well preserved in some clasts, and liquefaction and fluidization structures produced at the site of deposition occur in the clasts and matrix. These sedimentary breccias are interpreted as one or more rock avalanches from the upper part of the transient-cavity wall. The little-deformed, unshocked granite slab probably was transported as part of an extremely large slide or avalanche. Water-saturated Cretaceous quartz sand below the slab was transported into the seafloor crater prior to, or concurrently with, the granite slab. Two sedimentary breccia units consist of polymict diamictons that contain cobbles, boulders, and blocks of Cretaceous nonmarine target sediments and less common shocked-rock and melt ejecta in an unsorted, unstratified, muddy, fossiliferous, glauconitic quartz matrix. Much of the matrix material was derived from Upper Cretaceous and Paleogene marine target sediments. These units are interpreted as the deposits of debris flows initiated by the resurge of ocean water into the seafloor crater. Interlayering of avalanche and debris-flow units indicates a partial temporal overlap of the earlier avalanche and later resurge processes. A thin unit of stratified turbidite deposits and overlying laminated fine-grained deposits at the top of the section represents the transition to normal shelf sedimentation. ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Janu, Stefan; Mehlhorn, Susanne; Moser, Markus
2013-04-01
Analysis and reconstructed modelling of the debris flow event of the 21st of July 2012 of St. Lorenzen (Styria, Austria) Authors: Stefan Janu, Susanne Mehlhorn, Markus Moser The village of St. Lorenzen, in the Styrian Palten valley is situated on the banks of the Lorenz torrent, in which a debris flow event occurred in the early morning hours of the 21st of July 2012, causing catastrophic damage to residential buildings and other infrastructural facilities. In the ministry-approved hazard zone map of 2009, the flood water discharge and bedload volume associated with a 150-year event was estimated at 34 m³/s and 25,000 m³ respectively for the 5.84 km² catchment area. The bedload transport capacity of the torrent was classified as ranging from 'heavy' to 'capable of producing debris flows'. The dominant process type of the mass movement event may be described as a fine-grained debris flow. The damage in the residential area of St.Lorenzen was caused by a debris flow pulse in the lower reach of the Lorenz torrent. This debris flow pulse was in turn caused by numerous landslides along the middle reaches of the torrent, some of which caused blockages, ultimately leading to an outburst event in the main torrent. Discharge cross-sections ranging from 65 - 90 m², and over 100 m² in a few instances, were measured upstream of the St. Lorenzen residential area. Back-calculations of velocities yielded an average debris flow velocity along the middle reaches of the torrent between 11 and 16 m/s. An average velocity of 9 m/s was calculated for the debris flow at the neck of the alluvial fan directly behind the center of the village. Due to both the high discharge values as well as to the height of the mass movement deposits, the natural hazard event of 21 July 2012 in St. Lorenzen is clearly to be described as having had an extreme intensity. A total of 67 buildings were damaged along the Lorenz torrent, 7 of were completely destroyed. According to the Austrian Service for Torrent and Avalanche Control, a great number of protection measures have in the past been realized in the Lorenz torrent, which with certainty contributed significantly to an even greater amount of damage in the St. Lorenz residential area having been prevented. Attempts at reconstructing the event processes as well simulating the debris flow in 2D were undertaken in the course of the event documentation and analysis. The thus obtained discharge heights, flow velocities and impact pressure values corresponded with the well documented event. The two dimensional simulations were carried out with the program FLO-2D, which is capable of simulating debris flows. The rheological parameters of the debris flow material were determined with the aid of a viscometer and a debris rotation drum. The debris flow hydrograph, bedload and bedload ratio were reconstructed using data from the event documentation, such as difference models, geological mapping, wetted perimeters, witness's statements, etc. The aim of the very detailed event documentation and analysis was to reconstruct the extreme process sequence along with the damaging effects that they had in the build-up area of St. Lorenzen. There was a large media interest in this event. The results should therefore serve to answer the multitude of questions about this event that lie in the public as well political interests. Additional and substantial protection measures were also planned for the village of St. Lorenzen on the basis of these event analysis results. These are comprised of two debris flow barriers in the lower gorge streches with a capacity of 15,000 m³ each as well as a bedload retention basin directly above, with a capacity of 30,000 m³. Construction of these technical protection measures has already begun. Authoŕs adresses: DI Stefan Janu Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, GBL Ennstal und Salzatal Schönaustraße 50 8940 Liezen Dipl.Geogr. Susanne Mehlhorn Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, BMLFUW Abt. IV/5 Marxergasse 2 1030 Wien DI Markus Moser Fachbereich Wildbachprozesse Austrian Service for Torrent and Avalanche Control, GBL Lungau Johann Löcker Str. 3 5580 Tamsweg
NASA Astrophysics Data System (ADS)
Kargel, J. S.; Fischer, L.; Furfaro, R.; Huggel, C.; Korup, O.; Leonard, G. J.; Uhlmann, M.; Wessels, R. L.; Wolfe, D. F.
2009-12-01
Medial moraines are visually dominant structures of most large valley glaciers in the Copper River Basin (CRB), Alaska. Areally extensive but thin (usually <20 cm) accumulations of debris pose challenges for glacier mapping based on multispectral imagery, as done, for instance, in the GLIMS project. The sources of this material include large discrete landslides from wallrocks and from lateral moraines; diffuse contributions from rock falls and talus creep; rocks delivered via snow and ice avalanches; ingestion of lateral moraines along tributary convergences; and basal erosional debris. Evidence indicates that in CRB glaciers, discrete large avalanches predominate as the major contributors of moraine mass. Subglacial erosional debris is predominantly pulverized to small grain sizes and flushed. Many large, young avalanches exist on CRB glaciers. Evidence from colorimetry indicates that many medial moraines actually are landslides that have been sheared and swept downglacier, thus mimicking the form of other types of medial moraines formed where tributaries coalesce and flow down valley. Landcover classification of ASTER imagery, qualitative observations from air photos, and semiquantitative field-based estimations of rock color types indicate that on Allen Glacier, and other CRB glaciers, landslides are the sources of most medial moraines. On Allen and Root Glacier, for example, we see very few boulders with obvious signs of basal abrasion, whereas nearly all boulders exhibit signs of irregular fracture, for example in landslides. Such landslides have large effects on the thermal and mass balance of CRB glaciers, sometimes opposing or in other cases accentuating the effects of global/regional climate change. Considering the link between landslides and seismicity, and that Magnitude 8-9 earthquakes may occur nearby only about once a century, which is also the characteristic response time of large glaciers to climate shifts, seismicity must be considered along with climate change induced glacier responses in the CRB. Ultimately, climate has the final word, and already this is evident in the glacier record. Glacial flour is probably almost entirely from bed erosion. We will present estimates of the contributions of landslides and subglacially pulverized glacial rock flour to the overall rock mass budget of Allen Glacier. Each of the components of the rock mass budget differs in its probable distribution on the surface and within a typical glacier. We will present some preliminary empirical determinations of the influence of various thicknesses of supraglacial rock debris on the local mass balance of Allen Glacier; the net zero influence is exhibited for debris thicknesses on the order of 1 cm of fine debris or ~50% coverage by cobbles or boulders.
NASA Astrophysics Data System (ADS)
Iturrizaga, Lasafam
2016-04-01
There is a growing concern about extreme mass movements from combined ice-rock avalanches in glaciated environments areas in the light of increasing settlement activities in mountains and their forelands. Recent devastating events, such as those from Huascaran (Peru) in 1970 or Kolka (Caucasus) in 2002, have been an eye-opener in terms of the large run-out-distances and their hazard potential. At the same time there is a variety of topographic settings and distinct triggers of ice and rock failures, which leads in turn to a broad spectrum of multi-phase processes, such as the possible propagation of rock-ice-masses onto glacial surfaces with subsequent debris flows. These events are often not directly observable, and a sound interpretation of the sedimentary record is needed. However, the origin and process dynamics of giant debris accumulations in different mountain regions of the world is discussed increasingly controversially. In the last decade a lot of debris accumulations, which were classified formerly as moraines, were reinterpreted as products of mass movements. In this context, the study presented here, focuses on a case example from the upper Chapursan Valley at the Afghan-Pakistan border (Karakoram Range, Pakistan). The Chapursan Valley floor and the adjacent sediment cones are covered with an outstanding hummocky debris landscape over a length of about 10 km and a width of up to 1 km with individual hummocks reaching about 10 m in height. These landforms overlap with the zone of permanent settlement. According to local legends and reports of early travelers in this region, one of the largest settlement concentrations formerly occurred in the upper Chapursan Valley and was destroyed by a natural disaster. Geomorphological field investigations, sedimentological studies, a comparison of satellite images, an analysis of historical data and interviews with the local inhabitants were carried out to unravel the origin of the hummocky terrain. The results show that complex geomorphological processes, consisting of a glacier advance and followed by glacier lake outbursts and ice avalanches, contributed to the formation of the hummocky debris landforms. The Kit-ke-Jerav and Yishkuk Glaciers in the upper Chapursan Valley seem to have experienced extraordinary fluctuations in historical and recent times. The new findings on past processes forming large-scaled debris accumulations have wider implications for the recent hazard potential of settlements located in glaciated high mountain regions, especially in seismic active regions.
Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.
2016-01-01
On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a thin, liquefied basal layer, and a thicker and stronger overriding layer.
Maturation of large scale mass-wasting along the Hawaiian Ridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torresan, M.E.; Clague, D.A.; Moore, J.G.
1990-06-01
Extensive GLORIA side-scan sonar mapping of the Hawaiian Ridge from Hawaii to St. Rogatien Bank shows that massive slumps and blocky debris avalanches are the major degradational processes that affect the island and ridge areas. About 30 failures have been imaged in the region surveyed; they range in area from 250 to > 6,000 km{sup 2} and in volume from 500 to > 5,000 km{sup 3}. Four are rotational slumps, and the rest are blocky debris avalanches. Such deposits cover 125,000 km{sup 2} of the Hawaiian Ridge and adjacent seafloor. The slumps are wide (up to 110 km), short (30-35more » km), thick (about 10 km), and slow moving. They are broken into comparatively few major rotational blocks that have not moved far and are characterized by steep toes and transverse ridges. Back rotation of the blocks has elevated their seaward edges, producing transverse ridges and perched basins filled with 5 to > 35 m of sediment. Compared to the slumps, the debris avalanches are lobate, long (up to 230 km), thin (0.5-2 km), and fast-moving. These deposits cross the Hawaiian Trough and run upslope onto the Hawaiian Arch (up to 550 m in elevation over a distance of 140 km). These failures commonly have amphitheaters and subaerial canyons at their heads. Their distal ends are hummocky, and blocky debris litters the seafloor adjacent to the ridge. As one proceeds west from Hawaii to St. Rogatien Bank, the GLORIA sonographs and seismic reflection profiles show a progression from youthful to mature failures and from active to about 12 Ma volcanoes. The Alika and Hilina slide complexes are examples of youthful failures on active volcanoes. Slumping in the Hilina slide is ongoing (7.2 magnitude earthquake in 1975). Little to no sediment covers the blocks and hummocky terrane of the Alika (about 100 ka), whereas the older deposits along the western part of the ridge are covered by up to 30 m of transparent sediment.« less
NASA Astrophysics Data System (ADS)
Delmelle, P.; Opfergelt, S.; Boivin, P.; Delvaux, B.
2006-12-01
In October 1998, a relatively small collapse (1 600 000 cubic meters) of a pre-existing scarp occurred on the southern flank of the dormant Casita volcano, Nicaragua. It resulted in a debris avalanche, which quickly transformed into a disastrous debris flow that destroyed two towns and killed more than 2500 people. The failure was shown to be triggered by an excess pore water pressure within highly fractured rocks, following prolonged seasonal rains and precipitations from Hurricane Mitch. This pressure was linked to the water saturation of a hydrothermally-altered clay bedrock impeding in-depth infiltration. Yet, the nature and amounts of the clay material involved in the slope failure were still unknown. Here we report on physical, chemical and mineralogical investigations aimed at quantifying the clay content, and identifying the layer silicates of the hydrothermally-altered clays uncovered by the 1998 debris avalanche. The fine clay material was exceptionally rich in smectite (up to 50 wt. percent), which swells upon wetting and shrinks during dry conditions (Opfergelt et al., 2006, Geophys. Res. Lett., 33 (15), L15305). The smectite belonged to the beidellite-montmorillonite series. The pervasive presence of water-saturated smectitic clay strongly reduced the permeability in depth, and also altered the rheological and mechanical properties of both the pre-failure rock mass and flow materials. The shrink-swell behavior progressively decreased the rock's shear strength, and gradually destabilized the overlying rock mass in the decades and centuries before the landslide, thereby contributing to slope instability. Prolonged intense rainfall led to the formation of incipient weak failure surfaces in the superficial rock mass. As provoked by water saturation, this process was likely favored by the rapid change of the mechanical properties of smectite-rich clays deposited in fracture, joint and gouge interfaces. We suggest that hazard assessments associated with unstable volcanic slopes, especially on volcanoes hosting a long-lived hydrothermal system, should include the potential long and short-term impacts of swelling clays.
Guide to Geologic Hazards in Alaska | Alaska Division of Geological &
content Guide to Geologic Hazards in Alaska Glossary Coastal and river hazards image Coastal and river Storm surge Tsunami Earthquake related hazards image Earthquake related hazards Earthquake Earthquake Subsidence Surface fault rupture Tsunami Uplift Glacier hazards image Glacier hazards Avalanche Debris flow
NASA Astrophysics Data System (ADS)
Sánchez Burillo, Guillermo; Beguería, Santiago; Latorre, Borja; Burguete, Javier
2014-05-01
Debris flows, snow and rock avalanches, mud and earth flows are often modeled by means of a particular realization of the so called shallow water equations (SWE). Indeed, a number of simulation models have been already developed [1], [2], [3], [4], [5], [6], [7]. Debris flow equations differ from shallow water equations in two main aspects. These are (a) strong bed gradient and (b) rheology friction terms that differ from the traditional SWE. A systematic analysis of the numerical solution of the hyperbolic system of equations rising from the shallow water equations with different rheological laws has not been done. Despite great efforts have been done to deal with friction expressions common in hydraulics (such as Manning friction), landslide rheologies are characterized by more complicated expressions that may deal to unphysical solutions if not treated carefully. In this work, a software that solves the time evolution of sliding masses over complex bed configurations is presented. The set of non- linear equations is treated by means of a first order upwind explicit scheme, and the friction contribution to the dynamics is treated with a suited numerical scheme [8]. In addition, the software incorporates various rheological models to accommodate for different flow types, such as the Voellmy frictional model [9] for rock and debris avalanches, or the Herschley-Bulkley model for debris and mud flows. The aim of this contribution is to release this code as a free, open source tool for the simulation of mass movements, and to encourage the scientific community to make use of it. The code uses as input data the friction coefficients and two input files: the topography of the bed and the initial (pre-failure) position of the sliding mass. In addition, another file with the final (post-event) position of the sliding mass, if desired, can be introduced to be compared with the simulation obtained result. If the deposited mass is given, an error estimation is computed by means of the Nash-Shutcliffe statistic [10]. This error estimation can be used to calibrate the input friction coefficients, providing an efficient tool for risk analysis in many regions of the world and specially in areas with steep topographic gradients such as mountain ranges, heavily incised river networks, coastal cliffs, etc. References: [1] H. J. Koerner, "Reichweite und geschwindigkeit von bergstürzen und fleisschneelawinen". Rock Mechanics, 8, 225-256 (1976) [2] P. J. McLellan and P. K. Kaiser, "Application of a two-parameter model to rock avalanches in the mackenzine mountains". 4th International Symposium on Landslides, 135-140 (1984). [3] A. Kent and O. Hungr, "Runout characteristics of debris from dump failures in mountainous terrain: stage 2: analysis, modelling and prediction". British Columbia Mine Waste Rock Pile Research Committee and CANMET (1995). [4] O. Hungr and S. G. Evans, "Rock avalanche runout prediction using a dynamic model". 7th International Symposium on Landslides, 233-238 (1996). [5] D. Rickenmann and T. Koch, "Comparison of debris flow modelling approaches". First International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. ASCE, ed. New York. C.L. Chen (1997). [6] P. Bertolo and G. F. Wieczorek, "Calibration of numerical models for small debris flows in Yosemite Valley, California, USA". Natural Hazards in Earth System Sciences (5) 993-1001 (2005). [7] S. Beguería and Th. J. van Asch and J. P. Malet and S. Gröndahl, "A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain". Natural Hazards in Earth System Sciences (9) 1897-1909 (2009). [8] G. Sánchez Burillo, S. Beguería, B. Latorre and J. Burguete, "Numerical treatment of the friction term in upwind schemes in debris flow runout modelling". ASCE Journal of Hydraulic Engineering (sent for publication). [9] A. Voellmy, Über die Zerstörungskraft von Lawinen. Schweizer. Bauzeitung (1955). [10] J. E. Nash and J. V. Shutcliffe, "River flow forecasting through conceptual models part I - A discussion of principles". Journal of Hydrology, 10 (3) 282-290 (1970).
Emplacement of rock avalanche material across saturated sediments, Southern Alp, New Zealand
NASA Astrophysics Data System (ADS)
Dufresne, A.; Davies, T. R.; McSaveney, M. J.
2012-04-01
The spreading of material from slope failure events is not only influenced by the volume and nature of the source material and the local topography, but also by the materials encountered in the runout path. In this study, evidence of complex interactions between rock avalanche and sedimentary runout path material were investigated at the 45 x 106 m3 long-runout (L: 4.8 km) Round Top rock avalanche deposit, New Zealand. It was sourced within myolinitic schists of the active strike-slip Alpine Fault. The narrow and in-failure-direction elongate source scarp is deep-seated, indicating slope failure was triggered by strong seismic activity. The most striking morphological deposit features are longitudinal ridges aligned radially to source. Trenching and geophysical surveys show bulldozed and sheared substrate material at ridge termini and laterally displaced sedimentary strata. The substrate failed at a minimum depth of 3 m indicating a ploughing motion of the ridges into the saturated material below. Internal avalanche compression features suggest deceleration behind the bulldozed substrate obstacle. Contorted fabric in material ahead of the ridge document substrate disruption by the overriding avalanche material deposited as the next down-motion hummock. Comparison with rock avalanches of similar volume but different emplacement environments places Round Top between longer runout avalanches emplaced over e.g. playa lake sediments and those with shorter travel distances, whose runout was apparently retarded by topographic obstacles or that entrained high-friction debris. These empirical observations indicate the importance of runout path materials on tentative trends in rock avalanche emplacement dynamics and runout behaviour.
Mount St. Helens 30 years later: a landscape reconfigured.
Rhonda Mazza
2010-01-01
On May 18, 1980, after two months of tremors, Mount St. Helens erupted spectacularly and profoundly changed a vast area surrounding the volcano. The north slope of the mountain catastrophically failed, forming the largest landslide witnessed in modern times. The largest lobe of this debris avalanche raced 14 miles down the Toutle River...
A soft-rigid contact model of MPM for granular flow impact on retaining structures
NASA Astrophysics Data System (ADS)
Li, Xinpo; Xie, Yanfang; Gutierrez, Marte
2018-02-01
Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.
Scalloped margin domes: What are the processes responsible and how do they operate?
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Michaels, G.; Saunders, S.
1993-01-01
Studies of scalloped margin domes (SMD) indicate the scallops are the result of slope failure. SMD's have similar but smaller average diameters (26.5 km) to unmodified domes (29.8 km), and the majority plot at altitudes ranging from 0.5-4.7 km, relative to the mean planetary diameter. A range of morphological types exist from those least modified to those that show heavy modification. Of the 200 SMD's examined, 33 have clearly discernible debris aprons. Examination and comparison of debris aprons with mass movement features on the Moon, Mars, and in sub-aerial and submarine environments on Earth using H/L against area (km(sup 2)), suggests there are three main types of failure; debris avalanche, slumps, and debris flow. The five examples representing the morphological range within the SMD's, show the different modified forms and the different types of slope failures that have occurred.
Dynamics of glide avalanches and snow gliding
NASA Astrophysics Data System (ADS)
Ancey, Christophe; Bain, Vincent
2015-09-01
In recent years, due to warmer snow cover, there has been a significant increase in the number of cases of damage caused by gliding snowpacks and glide avalanches. On most occasions, these have been full-depth, wet-snow avalanches, and this led some people to express their surprise: how could low-speed masses of wet snow exert sufficiently high levels of pressure to severely damage engineered structures designed to carry heavy loads? This paper reviews the current state of knowledge about the formation of glide avalanches and the forces exerted on simple structures by a gliding mass of snow. One particular difficulty in reviewing the existing literature on gliding snow and on force calculations is that much of the theoretical and phenomenological analyses were presented in technical reports that date back to the earliest developments of avalanche science in the 1930s. Returning to these primary sources and attempting to put them into a contemporary perspective are vital. A detailed, modern analysis of them shows that the order of magnitude of the forces exerted by gliding snow can indeed be estimated correctly. The precise physical mechanisms remain elusive, however. We comment on the existing approaches in light of the most recent findings about related topics, including the physics of granular and plastic flows, and from field surveys of snow and avalanches (as well as glaciers and debris flows). Methods of calculating the forces exerted by glide avalanches are compared quantitatively on the basis of two case studies. This paper shows that if snow depth and density are known, then certain approaches can indeed predict the forces exerted on simple obstacles in the event of glide avalanches or gliding snow cover.
Brabb, Earl E.; Colgan, Joseph P.; Best, Timothy C.
2000-01-01
Introduction Debris flows, debris avalanches, mud flows and lahars are fast-moving landslides that occur in a wide variety of environments throughout the world. They are particularly dangerous to life and property because they move quickly, destroy objects in their paths, and often strike without warning. This map represents a significant effort to compile the locations of known debris flows in United Stated and predict where future flows might occur. The files 'dfipoint.e00' and 'dfipoly.e00' contain the locations of over 6600 debris flows from published and unpublished sources. The locations are referenced by numbers that correspond to entries in a bibliography, which is part of the pamphlet 'mf2329pamphlet.pdf'. The areas of possible future debris flows are shown in the file 'susceptibility.tif', which is a georeferenced TIFF file that can be opened in an image editing program or imported into a GIS system like ARC/INFO. All other databases are in ARC/INFO export (.e00) format.
Landslide overview map of the conterminous United States
Radbruch-Hall, Dorothy H.; Colton, Roger B.; Davies, William E.; Lucchitta, Ivo; Skipp, Betty A.; Varnes, David J.
1982-01-01
The accompanying landslide overview map of the conterminous United States is one of a series of National Environmental Overview Maps that summarize geologic, hydrogeologic, and topographic data essential to the assessment of national environmental problems. The map delineates areas where large numbers of landslides exist and areas which are susceptible to landsliding. It was prepared by evaluating the geologic map of the United States and classifying the geologic units according to high, medium, or low landslide incidence (number) and high, medium, or low susceptibility to landsliding. Rock types, structures, topography, precipitation, landslide type, and landslide incidence are mentioned for each physical subdivision of the United States. The differences in slope stability between the Colorado Plateau, the Appalachian Highlands, the Coast Ranges of California, and the Southern Rocky Mountains are compared in detail, to illustrate the influence of various natural factors on the types of landsliding that occur in regions having different physical conditions. These four mountainous regions are among the most landslide-prone areas in the United States. The Colorado Plateau is a deformed platform where interbedded sedimentary rocks of varied lithologic properties have been gently warped and deeply eroded. The rocks are extensively fractured. Regional fracture systems, joints associated with individual geologic structures, and joints parallel to topographic surfaces, such as cliff faces, greatly influence slope stability. Detached blocks at the edges of mesas, as well as columns, arched recesses, and many natural arches on the Colorado Plateau, were formed wholly or in part by mass movement. In the Appalachian Highlands, earth flows, debris flows, and debris avalanches predominate in weathered bedrock and colluvium. Damaging debris avalanches result when persistent steady rainfall is followed by a sudden heavy downpour. Landsliding in unweathered bedrock is controlled locally by joint systems similar to those on the Colorado Plateau. In some places, outward gravitational movement of valley walls due to stress release has formed anticlines and caused thrusting in the center of valleys. In the Coast Ranges of California, slopes are steep, and rocks are varied and extensively deformed. One of the most slide-prone terrains of the Coast Ranges is the tectonic melange of the Franciscan assemblage, on which huge masses of debris are moving slowly downslope. In southern California, debris flows generated by soil slips are particularly damaging. Similar flows are common in poorly consolidated Tertiary rocks of the central part of the State. Like the debris avalanches of the Appalachian Highlands, the flows form during intense rainfall after previous steady rain. The Southern Rocky Mountains are complex in rock type and climate, so that the landslides there are also complex. Slides range from rock-falls at one extreme to slumps and debris flows at the other. They include ?sackungen,? which are distinguished by ridgetop grabens associated with uphill-facing scarps on ridge sides, both features of gravitational origin. Extensive regional joint patterns have not been recognized, and shallow soil slips are only a minor hazard.
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2016-10-01
Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are necessary to fully understand these processes.
Volcanic Hazards Associated with the NE Sector of Tacaná Volcano, Guatemala.
NASA Astrophysics Data System (ADS)
Hughes, S. R.; Saucedo, R.; Macias, J.; Arce, J.; Garcia-Palomo, A.; Mora, J.; Scolamacchia, T.
2003-12-01
Tacaná volcano, with a height of 4,030 m above sea level, straddles the southern Mexico/Guatemala border. Last active in 1986, when there was a small phreatic event with a duration of a few days, this volcano presents an impending hazard to over 250,000 people. The NE sector of the volcano reveals the violent volcanic history of Tacaná that may be indicative of a serious potential risk to the area. Its earliest pyroclastic history appears to consist of fall, flow, and surge deposits, together with lavas, that have formed megablocks within a series of old debris avalanche deposits. This sector collapse event is overlain by a sequence of pumice fall and ash flow deposits, of which the youngest, less-altered pumice fall deposit shows a minimum thickness of > 4 m, with a dispersal axis trending toward the NE. A second debris avalanche deposit, separated from the above deposits by a paleosoil, is dominated by megablocks of lava and scoriaceous dome material. The current topography around the northeastern flank of the volcano is determined by a third, and most recent debris avalanche deposit, a thick (> 20 m) sequence of six block and ash flows dated at around 16,000 years BP, each separated by 1-10 cm thick ash cloud surge deposit, together with secondary lahar deposits. These are followed by a at least 4 lava flows that extend 2 km down the flank of the volcano. It appears that the most recent pyroclastic event at Tacaná is also recorded in this sector of the volcano: above the block and ash flows occurs a > 1 m thick ash flow unit that can be seen at least 5 km from the vent. Lastly, the Santa Maria Ash fall deposit, produced in 1902, has capped most of the deposits at Tacaná.
Analysis of geohazards events along Swiss roads from autumn 2011 to present
NASA Astrophysics Data System (ADS)
Voumard, Jérémie; Jaboyedoff, Michel; Derron, Marc-Henri
2014-05-01
In Switzerland, roads and railways are threatened throughout the year by several natural hazards. Some of these events reach transport infrastructure many time per year leading to the closing of transportation corridors, loss of access, deviation travels and sometimes infrastructures damages and loss of human lives (3 fatalities during the period considered). The aim of this inventory of events is to investigate the number of natural events affecting roads and railways in Switzerland since autumn 2011 until now. Natural hazards affecting roads and railway can be classified in five categories: rockfalls, landslides, debris flows, snow avalanches and floods. They potentially cause several important direct damages on transportation infrastructure (roads, railway), vehicles (slightly or very damaged) or human life (slightly or seriously injured person, death). These direct damages can be easily evaluated from press articles or from Swiss police press releases. Indirect damages such as deviation cost are not taken into account in this work. During the two a half last years, about 50 events affecting the Swiss roads and Swiss railways infrastructures were inventoried. The proportion of events due to rockfalls is 45%, to landslides 25%, to debris flows 15%, to snow avalanches 10% and to floods 5%. During this period, three fatalities and two persons were injured while 23 vehicles (car, trains and coach) and 24 roads and railways were damaged. We can see that floods occur mainly on the Swiss Plateau whereas rockfalls, debris flow, snow avalanches and landslides are mostly located in the Alpine area. Most of events occur on secondary mountain roads and railways. The events are well distributed on the whole Alpine area except for the Gotthard hotspot, where an important European North-South motorway (hit in 2003 with two fatalities) and railway (hit three times in 2012 with one fatalities) are more frequently affected. According to the observed events in border regions of Switzerland, the trend in the Alps is similar.
NASA Astrophysics Data System (ADS)
Finn, C.; Bedrosian, P.; Wisniewski, M.; Deszcz-Pan, M.
2015-12-01
Groundwater position, abundance, and flow rates within a volcano affect the transmission of fluid pressure, transport of mass and heat and formation of mechanically weak hydrothermal alteration influencing the stability of volcanoes. In addition, eruptions can shatter volcanic rocks, weakening the edifice. Helicopter magnetic and electromagnetic (HEM) data collected over Mt. Baker and Mt. St. Helens volcanoes reveal the distribution of water, shattered volcanic rocks and hydrothermal alteration essential to evaluating volcanic landslide hazards. These data, combined with geological mapping and rock property measurements, indicate the presence of localized <100 m thick zones of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. Nuclear magnetic resonance data indicate that the hydrothermal clays contain ~50% bound water with no evidence for free water ponded beneath the ice. The HEM data suggest water-saturated fresh volcanic rocks from the surface to the detection limit (~100 m) over the entire summit of Mt. Baker (below the ice). A 50-100 m thick high resistivity layer (>1500 ohm-m) corresponding to domes, debris avalanche, volcanic rocks and glaciers mantles the crater at Mt. St. Helens. Shallow low resistivity layers corresponding to fresh, cold water and hot brines are observed below the high resistivity surface in EM data. Shallow ground water mainly concentrates in shattered dome material in the crater of Mt. St. Helens. Aeromagnetic data indicate the location of basalts sandwiched between debris avalanche deposits and shattered dome material. The combination of the EM and magnetic data help map the location of the shattered dome material that is considered to be the failure surface for the 1980 debris avalanche. The EM data image the regional groundwater table near the base of the volcano. The geophysical identification of groundwater and weak layers constrain landslide hazards assessments.
Volcanic Tsunami Generation in the Aleutian Arc of Alaska
NASA Astrophysics Data System (ADS)
Waythomas, C. F.; Watts, P.
2003-12-01
Many of the worlds active volcanoes are situated on or near coastlines, and during eruptions the transfer of mass from volcano to sea is a potential source mechanism for tsunamis. Flows of granular material off of volcanoes, such as pyroclastic flow, debris avalanche, and lahar, often deliver large volumes of unconsolidated debris to the ocean that have a large potential tsunami hazard. The deposits of both hot and cold volcanic grain flows produced by eruptions of Aleutian arc volcanoes are exposed at many locations along the coastlines of the Bering Sea, North Pacific Ocean, and Cook Inlet indicating that the flows entered the sea and in some cases may have initiated tsunamis. We evaluate the process of tsunami generation by granular subaerial volcanic flows using examples from Aniakchak volcano in southwestern Alaska, and Augustine volcano in southern Cook Inlet. Evidence for far-field tsunami inundation coincident with a major caldera-forming eruption of Aniakchak volcano ca. 3.5 ka has been described and is the basis for one of our case studies. We perform a numerical simulation of the tsunami using a large volume pyroclastic flow as the source mechanism and compare our results to field measurements of tsunami deposits preserved along the north shore of Bristol Bay. Several attributes of the tsunami simulation, such as water flux and wave amplitude, are reasonable predictors of tsunami deposit thickness and generally agree with the field evidence for tsunami inundation. At Augustine volcano, geological investigations suggest that as many as 14 large volcanic-rock avalanches have reached the sea in the last 2000 years, and a debris avalanche emplaced during the 1883 eruption may have initiated a tsunami observed about 80 km east of the volcano at the village of English Bay (Nanwalek) on the coast of the southern Kenai Peninsula. By analogy with the 1883 event, previous studies concluded that tsunamis could have been generated many times in the past. If so, geological evidence of tsunamis, such as tsunami deposits on land, should be found in the area around Augustine Island. Paradoxically, unequivocal evidence for tsunami inundation has been found. Augustine Volcano is the most historically active volcano in the Cook Inlet region and a future tsunami from the volcano would have devastating consequences to villages, towns, oil-production facilities, and the fishing industry, especially if it occurred at high tide (the tidal range in this area is about 5 m). Numerical simulation experiments of tsunami generation, propagation and inundation using a subaerial debris avalanche source at Augustine volcano indicate only modest wave generation because of the shallow water surrounding the volcano (maximum water depth about 25 m). Lahar flows produced during eruptions at snow and ice clad volcanoes in the Aleutian arc also deliver copious amounts of sediment to the sea. These flows only rarely transform to subaqueous debris flows that may become tsunamigenic. However, the accumulation of loose, unconsolidated sediment on the continental shelf may lead to subaqueous debris flows and landslides if these deposits become mobilized by large earthquakes. Tsunamis produced by this mechanism could potentially reach coastlines all along the Pacific Rim. Finally, recent work in the western Aleutian Islands indicates that many of the island volcanoes in this area have experienced large-scale flank collapse. Because these volcanoes are surrounded by deep water, the tsunami hazard associated with a future sector collapse could be significant.
Numerical modeling of the debris flows runout
NASA Astrophysics Data System (ADS)
Federico, Francesco; Cesali, Chiara
2017-06-01
Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.
Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China
NASA Astrophysics Data System (ADS)
Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun
2016-10-01
Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.
NASA Astrophysics Data System (ADS)
Casteller, Alejandro; Häfelfinger, Thomas; Cortés Donoso, Erika; Podvin, Karen; Kulakowski, Dominik; Bebi, Peter
2018-04-01
Gravitational natural hazards such as snow avalanches, rockfalls, shallow landslides and volcanic activity represent a risk to mountain communities around the world. In particular, where documentary records about these processes are rare, decisions on risk management and land-use planning have to be based on a variety of other sources including vegetation, tree-ring data and natural hazard process models. We used a combination of these methods in order to evaluate dynamics of natural hazards with a focus on snow avalanches at Valle Las Trancas, in the Biobío region in Chile. Along this valley, natural hazards threaten not only the local human population, but also the numerous tourists attracted by outdoor recreational activities. Given the regional scarcity of documentary records, tree-ring methods were applied in order to reconstruct the local history of snow avalanches and debris flow events, which are the most important weather-related processes at respective tracks. A recent version of the model Rapid Mass MovementS (RAMMS), which includes influences of forest structure, was used to calculate different avalanche parameters such as runout distances and maximum pressures, taking into consideration the presence or absence of forest along the tracks as well as different modeled return periods. Our results show that local Nothofagus broadleaf forests contribute to a reduction of avalanche runout distances as well as impact pressure on present infrastructure, thus constituting a valuable ecosystem disaster risk reduction measure that can substitute or complement other traditional measures such as snow sheds.
NASA Technical Reports Server (NTRS)
Sullivan, R. J.
1992-01-01
Back-analysis (reconstruction) of the stability of thirty avalanche chutes was performed in the very limited areas where high resolution imaging overlapped with available 1:500 K topographic map coverage. A new technique was developed to incorporate the third dimension (width) of an avalanche chute in stability back-analysis in order to yield unambiguous values of cohesion and angle of internal friction. The procedure is based upon extending the ordinary method of slices to three dimensions, in order to construct avalanche chute cross-sections whose widths and depths vary as a function of gradient, gravity, density of material, and phi and c. Applying the technique to the well documented slide at Lodalen, Norway as a test produces excellent correspondence with reality. Generally, the technique reveals that the width:depth ratio of any avalanche chute decreases with increasing contrast between the average slope angle and the angle of internal friction. Applying this technique to the martian avalanche chute yields results consistent with indications from earlier work, but with greater certainty. Values of cohesion and angle of internal friction identify the materials at the time of failure as moderately cohesive debris. If Sharp's identification of these features as avalanche chutes is correct, then the results here imply that weathering processes have had a significant effect to depths of tens of meters (where failure has occured) below the martian surface. It is also implied that on relatively steep slopes within Valles Marineris, sizable, unaltered, unmantled bedrock exposures for high resolution spectral and spatial scanning by Mars Observer may be scarce.
Geomorphology of the Arteara Holocene rock-avalanche deposit, Gran Canaria Island
NASA Astrophysics Data System (ADS)
Yepes, Jorge; Lomoschitz, Alejandro
2010-05-01
Abundant slide deposits cover the southern ravines of Grand Canary. These are mainly volcanic debris avalanches consisting of rock slides and debris slides. The main course of the Fataga ravine is entrenched 600m into the Phonolite Formation. At Arteara an accumulation of large reddish blocks has been characterised covering the right side of the ravine. The deposit has a surface area of 0.565 km2 and has been dated as a Holocene rock avalanche, because of its good state of conservation. The blocks cover a previous relief formed by a rock slide with a surface area of 1.236km2 and thought to be Pleistocene. The whole of the deposit is covered at its head by an active scree sequence. The rock slide deposit varies in thickness from 25m to 100m and has head and foot zones. The flanks are indicated by tributary streams with an arching course and anomalous confluence with the main ravine. Several fragmented rocky wedges can be seen at the head with local tilting against the slope. In addition, an elongated depression has formed coinciding with the fracture through the rocky wedges. This depression is partially masked by the rock avalanche deposits. The slide scar is hidden behind the rocky wedges, coinciding with the col between the Morro Garito and the erosion surface defined at the top of the Phonolite Formation. The foot of the rocky slide is affected by an incipient drainage network at present masked by the rock avalanche. These palaeochannels show the presence of several reactivation episodes that would have broken up the foot of the rock slide into several bodies. There is a mass of broken rock on the northern flank, presumably caused by a rock slide movement. There is a mass of disorganised rock in the central sector of the foot, probably caused by a debris slide-slump movement, as suggested by an elongated depression, the deformation of the layers and a reappearance of the deposit in the distal zone. This second gravitational deposit collided with the opposite side, where some remains can still be recognised. This was later covered by a layer of ordered rubble from the left bank. Blockage of the main course gave rise to an alluvial-torrential plain of boulders and gravels along the section upstream from Arteara. A network of braided channels has developed on this plain. At present, the advance of the rising erosion has cut through the slope deposit and is dismantling the alluvial-torrential plain. The rock avalanche defines an elongated tongue in the direction of flow, of varying thickness (1-15m) and L/H = 2.47 (displacement/total fall=1325m/535m), reappearing at the foot (Hr=15m). In general, the rock avalanche is adapted to the previous slide, although it has small overspill lobes on the lateral flanks. The low angle of friction deduced (=21.47°) agrees with the high mobility estimated from the L/H ratio and is due to the existence of a previous relief defined by the rock slide and the lubrication provided by the ignimbrite. This easily weathered material must have made up the gravel layer over which the lava blocks moved. The rock avalanche deposit varies widely in size and is structured in bands of loose blocks with a bimodal distribution (0.1-3m3; 10.30m3) and low selection. The blocks lie on a layer of loose, flat, angular gravels. The blocks are angular and show numerous signs of impact, including split and fragmented blocks, faces with conchoidal fractures, chipped edges and broken corners. The movement of the rock avalanche would have been a swift, dry granular flow. The avalanche would have had a leap component at the head, turbulent flow in the intermediate corridor and laminar flow in the distal zone. The leap component is identified by the accumulation of blocks in crests transversal to the flow and the presence of megablocks aligned with the flow. The turbulent component is identified by the chaotic accumulation of blocks in the palaeochannels and overspill lobes covering the flanks. The laminar component is identified by the bimodal distribution of blocks as concentric propagation waves. The available data are not sufficient to suggest a link between the rock avalanche and freeze-melt processes. However, evidence from several humid-subtropical episodes in the Quaternary suggests undermining of the scarp and triggering of the previous rock slide. The subsequent variation in the state of tensions on the shelf and the penetrating nature of the thermal retraction diaclases would justify the detachment of an approximately 2.82*106m3 block.
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
Risk Management and Physical Modelling for Mountainous Natural Hazards
NASA Astrophysics Data System (ADS)
Lehning, Michael; Wilhelm, Christian
Population growth and climate change cause rapid changes in mountainous regions resulting in increased risks of floods, avalanches, debris flows and other natural hazards. Xevents are of particular concern, since attempts to protect against them result in exponentially growing costs. In this contribution, we suggest an integral risk management approach to dealing with natural hazards that occur in mountainous areas. Using the example of a mountain pass road, which can be protected from the danger of an avalanche by engineering (galleries) and/or organisational (road closure) measures, we show the advantage of an optimal combination of both versus the traditional approach, which is to rely solely on engineering structures. Organisational measures become especially important for Xevents because engineering structures cannot be designed for those events. However, organisational measures need a reliable and objective forecast of the hazard. Therefore, we further suggest that such forecasts should be developed using physical numerical modelling. We present the status of current approaches to using physical modelling to predict snow cover stability for avalanche warnings and peak runoff from mountain catchments for flood warnings. While detailed physical models can already predict peak runoff reliably, they are only used to support avalanche warnings. With increased process knowledge and computer power, current developments should lead to a enhanced role for detailed physical models in natural mountain hazard prediction.
Harp, Edwin L.; Crone, Anthony J.
2006-01-01
The October 8, 2005, Kashmir earthquake (M 7.6) triggered several thousand landslides, mainly rock falls and rock slides, in the epicentral area near the cities of Muzafarrabad and Balakot, Pakistan. Most of these were shallow, coalescing rock slides emanating from highly sheared and deformed limestone and dolomite of the Precambrian Muzafarrabad Formation. The largest landslide triggered by the earthquake is located approximately 32 kilometers southeast of Muzafarrabad in a tributary valley of the Jhelum River. This landslide is a debris avalanche of approximately 80 million cubic meters volume within the Miocene Murree Formation consisting of mixed sandstone, mudstone, shale, and limestone. The avalanche buried the village of Dandbeh and resulted in approximately 1,000 fatalities, according to local residents. The avalanche deposit traveled approximately 1.5 kilometers downslope and 300 meters or more up the opposite slope in the adjacent Karli stream drainage and also extended into the Tang stream drainage where the Tang stream joins the Karli drainage. The landslide mass has impounded two lakes within the blocked drainages. The lake in the Karli drainage was approximately 800 meters long and 20 meters deep as of December 19, 2005. The lake in the Tang drainage was approximately 400 meters long and 10 meters deep as of this same date. Downstream populations are at risk from possible flash flooding when these debris dams are overtopped by the reservoir water. The closest village, Hattian, is 2.8 kilometers downstream at the junction of the Jhelum River and the landslide-dammed Karli tributary. Other populations along the Jhelum River may also be at risk. Pakistan military engineers are preparing to construct a spillway within the landslide deposits to lessen the severity of the flood if the lake in the Karli stream drainage breaches the landslide dam catastrophically.
Flood of October 1986 at Seward, Alaska
Jones, S.H.; Zenone, Chester
1988-01-01
Broad areas along the lower Resurrection River and Salmon Creek as well as the surfaces of several adjacent alluvial fans in the Seward area were flooded as a result of the intensive rainstorm of October 9-11, 1986. Severe erosion took place through the steep gradient, mountain canyons and near the apex of the fans, while rock and debris were deposited on the distal parts of the fans. In Godwin, Lost, Box Canyon, Japanese, and Spruce Creek basins, and perhaps others, landslides or debris avalanches dammed the streams temporarily. Subsequent failure or overtopping of these dams led to ' surge-release ' flooding; peak discharge of such a flood at Spruce Creek was 13,600 cu ft/sec, four times as great as any previously known maximum discharge from the basin and 2.5 times as great as the runoff rate from the debris dam. Flood discharges were determined indirectly--using the slope-area method--at ten high-gradient reaches on nine streams. Computed peak discharges for several small basins were the largest since records began in 1963. The largest rainfall-runoff rate unaffected by surge-release was 1 ,020 cu ft per sec per sq mi at Rudolph Creek, which has a drainage area of 1.00 sq mi. The 15.05 inches of rain that fell in one 24-hour period during the storm was assigned a recurrence interval of 100 years or greater. The length of the streamflow record available for most Seward area streams-25 years or less-is inadequate to reliably define flood frequency relations for recurrence intervals as great as 100 years. However, the slope-area determined discharge of Spruce Creek above the debris avalanche indicates a recurrence interval of a 100 years or greater. In addition, conventional flood-frequency analysis techniques are not applicable to peak discharges that are affected by surge-release phenomena. Large, damaging floods have repeatedly caused major damage in the Seward area, and the potential for catastrophic, debris-laden floods is an ever-present threat to areas bordering the many steep mountain streams. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Brook, Martin; Winkler, Stefan
2016-04-01
Glaciation on the central North Island of New Zealand is limited to the volcanoes of Tongariro National Park, including Mt Ruapehu, the largest and most active andesitic stratovolcano on the North Island. At 2797 m asl, Mt Ruapehu represents the only peak in the North Island to currently intercept the permanent snowline, with small cirque glaciers descending to an altitude of ~2300 m. During the last glacial maximum (LGM), small ice-caps existed on Mt Ruapehu and the Tongariro Massif (15 km to the NNE of Ruapehu), with a series of small (<10 km-long) valley glaciers radiating out from domes centered on the summit areas to altitudes of ~1200 m. Holocene glacier advances have left smaller deposits inboard of some of the LGM moraines. However, understanding of moraine deposition and reconstructing former glacier extent is limited by: (1) the fragmentary nature of glacier moraines in this high precipitation environment; and (2) the broad range of possible process-origins for unconsolidated debris ridges on active volcanoes. Here, we describe the clast roundness, clast shape and textural characteristics associated with active and former glaciers on Mt Ruaephu and the Tongariro Massif, in order to assist in classifying the process-origin of sediments on glaciated volcanic mountains. Supraglacial inputs include rockfall, tephra, and avalanche material delivered to the surface of glaciers. Basal debris, where observed at the terminus of active cirque glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by proglacial streams, debris flows and lahars. Within the vicinity of glaciers, the dominant facies appear to be: (i) bouldery gravel with angular clasts on steep slopes surrounding glaciers, (ii) silty-sandy boulder gravel, with mainly subangular clasts, forming lateral moraines, (iii) boulder/cobble gravel with mainly subrounded clasts and associated laminated sediments representing fluvially-reworked material; and (iv) debris-avalanche deposits including fragmental rock clasts with an unsorted inter-clast matrix. As some of these deposits appear to include unambiguous indicators of glacial transport, interpretation of unconsolidated debris ridges on volcanic mountains should not necessarily exclude the contribution of glacial processes.
Preliminary volcano-hazard assessment for Mount Spurr Volcano, Alaska
Waythomas, Christopher F.; Nye, Christopher J.
2001-01-01
Mount Spurr volcano is an ice- and snow-covered stratovolcano complex located in the north-central Cook Inlet region about 100 kilometers west of Anchorage, Alaska. Mount Spurr volcano consists of a breached stratovolcano, a lava dome at the summit of Mount Spurr, and Crater Peak vent, a small stratocone on the south flank of Mount Spurr volcano. Historical eruptions of Crater Peak occurred in 1953 and 1992. These eruptions were relatively small but explosive, and they dispersed volcanic ash over areas of interior, south-central, and southeastern Alaska. Individual ash clouds produced by the 1992 eruption drifted east, north, and south. Within a few days of the eruption, the south-moving ash cloud was detected over the North Atlantic. Pyroclastic flows that descended the south flank of Crater Peak during both historical eruptions initiated volcanic-debris flows or lahars that formed temporary debris dams across the Chakachatna River, the principal drainage south of Crater Peak. Prehistoric eruptions of Crater Peak and Mount Spurr generated clouds of volcanic ash, pyroclastic flows, and lahars that extended to the volcano flanks and beyond. A flank collapse on the southeast side of Mount Spurr generated a large debris avalanche that flowed about 20 kilometers beyond the volcano into the Chakachatna River valley. The debris-avalanche deposit probably formed a large, temporary debris dam across the Chakachatna River. The distribution and thickness of volcanic-ash deposits from Mount Spurr volcano in the Cook Inlet region indicate that volcanic-ash clouds from most prehistoric eruptions were as voluminous as those produced by the 1953 and 1992 eruptions. Clouds of volcanic ash emitted from the active vent, Crater Peak, would be a major hazard to all aircraft using Ted Stevens Anchorage International Airport and other local airports and, depending on wind direction, could drift a considerable distance beyond the volcano. Ash fall from future eruptions could disrupt many types of economic and social activities, including oil and gas operations and shipping activities in the Cook Inlet area. Eruptions of Crater Peak could involve significant amounts of ice and snow that would lead to the formation of large lahars, formation of volcanic debris dams, and downstream flooding. The greatest hazards in order of importance are described below and shown on plate 1.
Bogoyavlenskaya, G.E.; Braitseva, O.A.; Melekestsev, I.V.; Kiriyanov, V. Yu; Dan, Miller C.
1985-01-01
This paper describes catastrophic eruptions of Mount St. Helens (1980), Bezymianny (1955-1956), and Shiveluch (1964) volcanoes. A detailed description of eruption stages and their products, as well as the quantitative characteristics of the eruptive process are given. The eruptions under study belong to the directed-blast type. This type is characterized by the catastrophic character of the climatic stage during which a directed blast, accompanied by edifice destruction, the profound ejection of juvenile pyroclastics and the formation of pyroclastic flows, occur. The climatic stage of all three eruptions has similar characteristics, such as duration, kinetic energy of blast (1017-1018 J), the initial velocity of debris ejection, morphology and size of newly-formed craters. But there are also certain differences. At Mount St. Helens the directed blast was preceeded by failure of the edifice and these events produced separable deposits, namely debris avalanche and directed blast deposits which are composed of different materials and have different volumes, thickness and distribution. At Bezymianny, failure did not precede the blast and the whole mass of debris of the old edifice was outburst only by blast. The resulting deposits, represented by the directed blast agglomerate and sand facies, have characteristics of both the debris avalanche and the blast deposit at Mount St. Helens. At Shiveluch directed-blast deposits are represented only by the directed-blast agglomerate; the directed-blast sand facies, or blast proper, seen at Mount St. Helens is absent. During the period of Plinian activity, the total volumes of juvenile material erupted at Mount St. Helens and at Besymianny were roughly comparable and exceeded the volume of juvenile material erupted at Shiveluch, However, the volume of pyroclastic-flow deposits erupted at Mount St. Helens was much less. The heat energy of all three eruptions is comparable: 1.3 ?? 1018, 3.8-4.8 ?? 1018 and 1 ?? 1017 J for Shiveluch, Bezymianny, and Mount St. Helens, respectively. ?? 1985.
Particle size segregation in granular avalanches: A brief review of recent progress
NASA Astrophysics Data System (ADS)
Gray, J. M. N. T.
2010-05-01
Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are very efficient at sorting particles by size, with the smaller ones percolating down towards the base and squeezing the larger grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of recent theoretical advances in describing segregation and remixing with relatively simple hyperbolic and parabolic models. The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage & Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions. In the limit of no diffusion, the theory is hyperbolic and the grains tend to separate out into completely segregated inversely graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking waves and the large and small particles paths can be computed exactly using the model. The theory is able to capture the key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is connected to an inversely graded avalanche in the interior. The theory is simple enough to couple it to the bulk flow field to investigate segregation-mobility feedback effects that spontaneously generate self-channelizing leveed avalanches, which can significantly enhance the total run-out distance of geophysical mass flows.
NASA Astrophysics Data System (ADS)
Busby, Cathy; Fackler Adams, Benjamin; Mattinson, James; Deoreo, Stephen
2006-01-01
The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U-Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111-110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane. The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption. Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic-ultramafic substrate.
Volcanic avalanche fault zone with pseudotachylite and gouge in French Massif Central
NASA Astrophysics Data System (ADS)
Bernard, Karine; van Wyk de Vries, Benjamin
2017-11-01
Structures and textures with sedimentological variations at different scales of the lithofacies assemblage help us to constrain the basal kinematic transition from non-depositional to depositional conditions during volcanic avalanche emplacement. In the well-exposed impact-sheared contact along volcanic avalanche fault zone in the French Massif Central, we observe how the granular textures of the pseudotachylite and fault gouge have recorded the propagation of shock wave with granular oscillatory stress. Sequential events of basal aggradation along avalanche fault zone have been established related to fractal D-values, temperature pressure regime and oscillatory stress during slow wave velocity. A typical lithofacies assemblage with a reverse grading shows the pseudotachylite and fault gouge. A cataclastic gradient is characterised by the fractal D-values from 2.7 in jigsaw breccias with pseudotachylite partial melt, to 2.6 in the polymodal gouge. Shock, brecciation and comminution produce cataclastic shear bands in the pseudotachylite and quartz microstructures along the basal contact of the volcanic debris-avalanche deposit. Gouge microstructures show granular segregation, cataclasis with antithetic rotational Riedel shear, and an arching effect between the Riedel shear bands. X-ray microtomography provided 3D microfabrics along the clastic vein in the sandy-gouge. From the available statistical dataset, a few equations have been developed implicating the same cataclastic origin with a co-genetic evolution of lithofacies. An impact wave during primary shear propagation may contribute to produce hydroclastic matrix, pseudotachylite partial melt and proximal gouge thixotropy with v 50m/s and a T < 654 °C. The interseismic period with oscillatory stress is related to crushed clasts and basaltic melt around 800 °C, Riedel shear bands with granular segregation along the fault gouge. The secondary shock by matrix-rich avalanche (ΔP = 10GPa, T ≥ 1000-1500 °C) contributes to quartz microstructures along the avalanche basal contact and quartz spheroids in microscopic cataclastic shear bands. Decompression around 654-800 °C is related to tertiary sub-vertical oscillations with a backward moving shock and antithetic rotational fault megablock. Semi-quantitative analyses of seismogenic fault basement contribute to establish the localised conditions related to sequential aggradation along volcanic avalanche fault zone.
Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska
Waythomas, Christopher F.; Watts, Philip; Shi, Fengyan; Kirby, James T.
2009-01-01
We analyze mass-flow tsunami generation for selected areas within the Aleutian arc of Alaska using results from numerical simulation of hypothetical but plausible mass-flow sources such as submarine landslides and volcanic debris avalanches. The Aleutian arc consists of a chain of volcanic mountains, volcanic islands, and submarine canyons, surrounded by a low-relief continental shelf above about 1000–2000 m water depth. Parts of the arc are fragmented into a series of fault-bounded blocks, tens to hundreds of kilometers in length, and separated from one another by distinctive fault-controlled canyons that are roughly normal to the arc axis. The canyons are natural regions for the accumulation and conveyance of sediment derived from glacial and volcanic processes. The volcanic islands in the region include a number of historically active volcanoes and some possess geological evidence for large-scale sector collapse into the sea. Large scale mass-flow deposits have not been mapped on the seafloor south of the Aleutian Islands, in part because most of the area has never been examined at the resolution required to identify such features, and in part because of the complex nature of erosional and depositional processes. Extensive submarine landslide deposits and debris flows are known on the north side of the arc and are common in similar settings elsewhere and thus they likely exist on the trench slope south of the Aleutian Islands. Because the Aleutian arc is surrounded by deep, open ocean, mass flows of unconsolidated debris that originate either as submarine landslides or as volcanic debris avalanches entering the sea may be potential tsunami sources. To test this hypothesis we present a series of numerical simulations of submarine mass-flow initiated tsunamis from eight different source areas. We consider four submarine mass flows originating in submarine canyons and four flows that evolve from submarine landslides on the trench slope. The flows have lengths that range from 40 to 80 km, maximum thicknesses of 400–800 m, and maximum widths of 10–40 km. We also evaluate tsunami generation by volcanic debris avalanches associated with flank collapse, at four locations (Makushin, Cleveland, Seguam and Yunaska SW volcanoes), which represent large to moderate sized events in this region. We calculate tsunami sources using the numerical model TOPICS and simulate wave propagation across the Pacific using a spherical Boussinesq model, which is a modified version of the public domain code FUNWAVE. Our numerical simulations indicate that geologically plausible mass flows originating in the North Pacific near the Aleutian Islands can indeed generate large local tsunamis as well as large transoceanic tsunamis. These waves may be several meters in elevation at distal locations, such as Japan, Hawaii, and along the North and South American coastlines where they would constitute significant hazards.
Initiation and Frequency of Debris Flows in Grand Canyon, Arizona
1996-01-01
illustrations. Ed Holroyd, U.S. Bureau of Reclamation in Denver, Colorado, gave extensive technical help and advice with the GIS software. Steve Sutley, of the...value. Drainage-basin boundaries were drawn by hand on topographic maps, digitized, and entered into a GIS , which calculated drainage areas and centroids...overlying cliffs of more indurated sandstones and limestones. These processes result in rockfalls and rock avalanches that occur in all seasons, and under a
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
Digital Data for Volcano Hazards from Mount Rainier, Washington, Revised 1998
Schilling, S.P.; Doelger, S.; Hoblitt, R.P.; Walder, J.S.; Driedger, C.L.; Scott, K.M.; Pringle, P.T.; Vallance, J.W.
2008-01-01
Mount Rainier at 4393 meters (14,410 feet) is the highest peak in the Cascade Range; a dormant volcano having glacier ice that exceeds that of any other mountain in the conterminous United States. This tremendous mass of rock and ice, in combination with great topographic relief, poses a variety of geologic hazards, both during inevitable future eruptions and during the intervening periods of repose. The volcano's past behavior is the best guide to possible future hazards. The written history (about A.D. 1820) of Mount Rainier includes one or two small eruptions, several small debris avalanches, and many small lahars (debris flows originating on a volcano). In addition, prehistoric deposits record the types, magnitudes, and frequencies of other events, and areas that were affected. Mount Rainier deposits produced since the latest ice age (approximately during the past 10,000 years) are well preserved. Studies of these deposits indicate we should anticipate potential hazards in the future. Some phenomena only occur during eruptions such as tephra falls, pyroclastic flows and surges, ballistic projectiles, and lava flows while others may occur without eruptive activity such as debris avalanches, lahars, and floods. The five geographic information system (GIS) volcano hazard data layers used to produce the Mount Rainier volcano hazard map in USGS Open-File Report 98-428 (Hoblitt and others, 1998) are included in this data set. Case 1, case 2, and case 3 layers were delineated by scientists at the Cascades Volcano Observatory and depict various lahar innundation zones around the mountain. Two additional layers delineate areas that may be affected by post-lahar sedimentation (postlahar layer) and pyroclastic flows (pyroclastic layer).
Estimation of a Stopping Criterion for Geophysical Granular Flows Based on Numerical Experimentation
NASA Astrophysics Data System (ADS)
Yu, B.; Dalbey, K.; Bursik, M.; Patra, A.; Pitman, E. B.
2004-12-01
Inundation area may be the most important factor for mitigation of natural hazards related to avalanches, debris flows, landslides and pyroclastic flows. Run-out distance is the key parameter for inundation because the front deposits define the leading edge of inundation. To define the run-out distance, it is necessary to know when a flow stops. Numerical experiments are presented for determining a stopping criterion and exploring the suitability of a Savage-Hutter granular model for computing inundation areas of granular flows. The TITAN2D model was employed to run numerical experiments based on the Savage-Hutter theory. A potentially reasonable stopping criterion was found as a function of dimensionless average velocity, aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Slumping piles on a horizontal surface and geophysical flows over complex topography were simulated. Several mountainous areas, including Colima volcano (MX), Casita (Nic.), Little Tahoma Peak (WA, USA) and the San Bernardino Mountains (CA, USA) were used to simulate geophysical flows. Volcanic block and ash flows, debris avalanches and debris flows occurred in these areas and caused varying degrees of damage. The areas have complex topography, including locally steep open slopes, sinuous channels, and combinations of these. With different topography and physical scaling, slumping piles and geophysical flows have a somewhat different dependence of dimensionless stopping velocity on power-law constants associated with aspect ratio of pile, internal friction angle, bed friction angle and bed slope in the flow direction. Visual comparison of the details of the inundation area obtained from the TITAN2D model with models that contain some form of viscous dissipation point out weaknesses in the model that are not evident by investigation of the stopping criterion alone.
Relating rock avalanche morphology to emplacement processes
NASA Astrophysics Data System (ADS)
Dufresne, Anja; Prager, Christoph; Bösmeier, Annette
2015-04-01
The morphology, structure and sedimentological characteristics of rock avalanche deposits reflect both internal emplacement processes and external influences, such as runout path characteristics. The latter is mainly predisposed by topography, substrate types, and hydrogeological conditions. Additionally, the geological setting at the source slope controls, e.g. the spatial distribution of accumulated lithologies and hence material property-related changes in morphology, or the maximum clast size and amount of fines of different lithological units. The Holocene Tschirgant rock avalanche (Tyrol, Austria) resulted from failure of an intensely deformed carbonate rock mass on the southeast face of a 2,370-m-high mountain ridge. The initially sliding rock mass rapidly fragmented as it moved towards the floor of the Inn River valley. Part of the 200-250 x 106 m3 (Patzelt 2012) rock avalanche debris collided with and moved around an opposing bedrock ridge and flowed into the Ötz valley, reaching up to 6.3 km from source. Where the Tschirgant rock avalanche spread freely it formed longitudinal ridges aligned along motion direction as well as smaller hummocks. Encountering high topography, it left runup ridges, fallback patterns (i.e. secondary collapse), and compressional morphology (successively elevated, transverse ridges). Further evidence for the mechanical landslide behaviour is given by large volumes of mobilized valley-fill sediments (polymict gravels and sands). These sediments indicate both shearing and compressional faulting within the rock avalanche mass (forming their own morphological units through, e.g. in situ bulldozing or as distinctly different hummocky terrain), but also indicate extension of the spreading landslide mass (i.e. intercalated/injected gravels encountered mainly in morphological depressions between hummocks). Further influences on its morphology are given by the different lithological units. E.g. the transition from massive dolomite/limestone sequences to weaker siliciclastic and evaporitic beds (sand-/siltstones, rauhwacken) can be pinpointed on LiDAR shaded relief images of the rock avalanche deposit. Hence, several morphological signatures are clearly related to differences in mechanical behaviour of the involved lithologies, whereas others reflect particular emplacement modes of the same rock unit: e.g. rockslide motion versus rock avalanche spreading. Reference Patzelt G. 2012. The rock avalanches of Tschirgant and Haiming (Upper Inn Valley, Tyrol, Austria), comment on the map supply. (German language only). Jahrbuch der Geologischen Bundesanstalt 152(1-4): 13-24.
NASA Astrophysics Data System (ADS)
Benjamin, J.; Rosser, N. J.; Dunning, S.; Hardy, R. J.; Karim, K.; Szczucinski, W.; Norman, E. C.; Strzelecki, M.; Drewniak, M.
2014-12-01
Risk assessments of the threat posed by rock avalanches rely upon numerical modelling of potential run-out and spreading, and are contingent upon a thorough understanding of the flow dynamics inferred from deposits left by previous events. Few records exist of multiple rock avalanches with boundary conditions sufficiently consistent to develop a set of more generalised rules for behaviour across events. A unique cluster of 20 large (3 x 106 - 94 x 106 m3) rock avalanche deposits along the Vaigat Strait, West Greenland, offers a unique opportunity to model a large sample of adjacent events sourced from a stretch of coastal mountains of relatively uniform geology and structure. Our simulations of these events were performed using VolcFlow, a geophysical mass flow code developed to simulate volcanic debris avalanches. Rheological calibration of the model was performed using a well-constrained event at Paatuut (AD 2000). The best-fit simulation assumes a constant retarding stress with a collisional stress coefficient (T0 = 250 kPa, ξ = 0.01), and simulates run-out to within ±0.3% of that observed. Despite being widely used to simulate rock avalanche propagation, other models, that assume either a Coulomb frictional or a Voellmy rheology, failed to reproduce the observed event characteristics and deposit distribution at Paatuut. We applied this calibration to 19 other events, simulating rock avalanche motion across 3D terrain of varying levels of complexity. Our findings illustrate the utility and sensitivity of modelling a single rock avalanche satisfactorily as a function of rheology, alongside the validity of applying the same parameters elsewhere, even within similar boundary conditions. VolcFlow can plausibly account for the observed morphology of a series of deposits emplaced by events of different types, although its performance is sensitive to a range of topographic and geometric factors. These exercises show encouraging results in the model's ability to simulate a series of events using a single set of parameters obtained by back-analysis of the Paatuut event alone. The results also hold important implications for our process understanding of rock avalanches in confined fjord settings, where correctly modelling material flux at the point of entry into the water is critical in tsunami generation.
O'Connor, J. E.; Costa, J.E.
1993-01-01
Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches. ?? 1993 Kluwer Academic Publishers.
Glaciohydrologic and Glaciohydraulic Effects on Runoff and Sediment Yield in Glacierized Basins
1993-11-01
3 (17) wateron ice layers(Colbeck 1979). These complex- ities can be somewhat simplified by considering where (x = a constant = p, gi ...debris is reworked and modified ited on the ice by mass movements- rockfalls , by weathering, especially freeze-thaw, and by avalanches, slushflows (e.g...hydrological and glaciological studies have been supported by Grande Dixence over the last 40 where gi is the viscosity of water. As stated in an years at
Multirisk analysis along the Road 7, Mendoza Province, Argentina
NASA Astrophysics Data System (ADS)
Wick, Emmanuel; Baumann, Valérie; Michoud, Clément; Derron, Marc-Henri; Jaboyedoff, Michel; Rune Lauknes, Tom; Marengo, Hugo; Rosas, Mario
2010-05-01
The National Road 7 crosses Argentina from East to West, linking Buenos Aires to the Chile border. This road is an extremely important corridor crossing the Andes Cordillera, but it is exposed to numerous natural hazards, such as rockfalls, debris flows and snow avalanches. The study area is located in the Mendoza Province, between Potrerillos and Las Cuevas in the Chilean border. This study has for main goals to achieve a regional mapping of geohazards susceptibility along the Road 7 corridor using modern remote sensing and numerical modelling techniques completed by field investigations. The main topics are: - Detection and monitoring of deep-seated gravitational slope deformations by time-series satellite radar interferometry (InSAR) methods. The area of interest is mountainous with almost no vegetation permitting an optimized InSAR processing. Our results are based on applying the small-baseline subset (SBAS) method to a time-series of Envisat ASAR images. - Rockfalls susceptibility mapping is realized using statistical analysis of the slope angle distribution, including external knowledge on the geology and land cover, to detect the potential source areas (quantitative DEM analysis). The run-outs are assessed with numerical methods based on the shallow angle method with Conefall. A second propagation is performed using the alpha-beta methodology (3D numerical modelling) with RAS and is compared to the first one. - Debris flow susceptibility mapping is realized using DF-IGAR to detect starting and spreading areas. Slope, flow accumulations, contributive surfaces, plan curvature, geological and land use dataset are used. The spreading is simulated by a multiple flow algorithm (rules the path that the debris flow will follow) coupled to a run-out distance calculation (energy-based). - Snow avalanches susceptibility mapping is realized using DF-IGAR to map sources areas and propagations. To detect the sources areas, slope, altitude, land-use and minimum surfaces are needed. DF-IGAR simulates the spreading by means of the "Perla" methodology. Furthermore, RAS performs the spreading based on the "alpha-beta" method. All these methods are based on Aster and SRTM DEM (grid 30 m) and observations of both optical and radar satellite imagery (Aster, Quickbird, Worldview, Ikonos, Envisat ASAR) and aerial photographs. Several field campaigns are performed to calibrate the regional models with adapted parameters. Susceptibility maps of the entire area for rockfalls, debris flows and snow avalanches at a scale of 1:100'000 are created. Those maps and the field investigations are cross-checked to identify and prioritize hotspots. It appears that numerous road sectors are subject to highly active phenomena. Some mitigation works already exist but they are often under-dimensioned, inadequate or neglected. Recommendations for priority and realistic mitigation measures along the endangered road sectors identified are proposed.
Two coarse pyroclastic flow deposits, northern Mono-Inyo Craters, CA
NASA Astrophysics Data System (ADS)
Dennen, R. L.; Bursik, M. I.; Stokes, P. J.; Lagamba, M.; Fontanella, N.; Hintz, A. R.; Jayko, A. S.
2010-12-01
The ~1350 A.D., rhyolitic North Mono eruption, Mono-Inyo Craters, CA, included the extrusion and destruction of Panum Dome and associated clastic deposits. Overlying the tephras of the North Mono sequence, the Panum deposits include a block-and-ash flow (BAF) deposit, covering ~3.5 km2. Blocks within the deposit are typically lithic rhyolite and banded gray micro-vesicular glass, showing white, almost powdery marks ranging from circular to linear in shape. These marks are interpreted as friction marks resulting from collisions between clasts. The deposit also contains bread-crusted obsidians with pressed-in clasts as well as reticulite with a bread-crusted surface texture. Near the centerline of the deposit is a ridge-topping train of jigsaw fractured blocks, often with reddish-orange alteration. One house sized jigsaw block sits upstream of a long, thinning pile of reddish orange debris; this “flow shadow” indicates that the block remained relatively stationary while the block and ash flow continued to propagate around it. The bread-crusted reticulite is most common at proximal localities. It is proposed that the dome destruction included a debris avalanche emplacing the train of jigsaw fractured blocks and creating a topographic high, the block-and-ash flow (the farthest reaching deposit from this event) which flowed around the debris avalanche deposits, and a final “lateral expansion” of a magma foam, creating the reticulite seen concentrated at proximal locations. Another coarse pyroclastic flow (here termed the “lower blast deposit”) underlies the North Mono tephra. It is more obsidian rich and finer grained than the Panum BAF. The lower blast deposit may have originated from Pumice Pit vent, which is now capped with an older dome ~0.5 km southeast of Panum. The lower blast deposit extends farther from the Panum vent than does the Panum BAF deposit, and apparently was mistaken for the Panum BAF deposit by previous workers. Hence the run-out distance of the Panum BAF is smaller than previously reported. Thus, there are multiple, coarse pyroclastic flow-like deposits at the northern end of the Mono-Inyo Craters, reflecting multiple phases of dome destruction. The lower blast deposit is proposed to be a blast event predating the Panum eruption, possibly originating from Pumice Pit. The Panum BAF consists of three main facies, formed by three separate, sequential events. A debris avalanche deposited a train of jigsaw clasts along a narrow path, followed by a block and ash flow that spread material over a wider region. Finally, molten rhyolite was exposed by the earlier events, resulting in rapid foam expansion and creation of a bread crusted reticulite-bearing facies.
TerraSAR-X/TanDEM-X data for natural hazards research in mountainous regions of Uzbekistan
NASA Astrophysics Data System (ADS)
Semakova, Eleonora; Bühler, Yves
2017-07-01
Accurate and up-to-date digital elevation models (DEMs) are important tools for studying mountain hazards. We considered natural hazards related to glacier retreat, debris flows, and snow avalanches in two study areas of the Western Tien-Shan mountains, Uzbekistan. High-resolution DEMs were generated using single TerraSAR-X/TanDEM-X datasets. The high quality and actuality of the DEMs were proved through a comparison with Shuttle Radar Topography Mission, Advanced Spaceborne Emission and Reflection Radiometer, and Topo DEMs, using Ice, Cloud, and Land Elevation Satellite data as the reference dataset. For the first study area, which had high levels of economic activity, we applied the generated TanDEM-X DEM to an avalanche dynamics simulation using RAMMS software. Verification of the output results showed good agreement with field observations. For the second study area, with a wide spatial distribution of glaciers, we applied the TanDEM-X DEM to an assessment of glacier surface elevation changes. The results can be used to calculate the local mass balance in glacier ablation zones in other areas. Models were applied to estimate the probability of moraine-dammed lake formation and the affected area of a possible debris flow resulting from glacial lake outburst. The natural hazard research methods considered here will minimize costly ground observations in poorly accessible mountains and mitigate the impacts of hazards on the environment of Uzbekistan.
Iverson, Richard M.; George, David L.
2016-01-01
A paper recently published by Bartelt and Buser (hereafter identified as “the authors”) aims to clarify relationships between granular dilatancy and dispersive pressure and to question the effective stress principle and its application to shallow granular avalanches (Bartelt and Buser in Act Geotech 11:549–557, 2). The paper also criticizes our own recent work, which utilizes the concepts of evolving dilatancy and effective stress to model the initiation and dynamics of water-saturated landslides and debris flows. Here we first explain why we largely agree with the authors’ views of dilatancy and dispersive pressure as they apply to depth-integrated granular avalanche models, and why we disagree with their views of effective stress and pore-fluid pressure. We conclude by explaining why the authors’ characterization of our recently developed D-Claw model is inaccurate.
Landslides triggered by the 8 October 2005 Kashmir earthquake
Owen, L.A.; Kamp, U.; Khattak, G.A.; Harp, E.L.; Keefer, D.K.; Bauer, M.A.
2008-01-01
The 8 October 2005 Kashmir earthquake triggered several thousand landslides. These were mainly rock falls and debris falls, although translational rock and debris slides also occurred. In addition, a sturzstrom (debris avalanche) comprising ??? 80??million m3 buried four villages and blocked streams to create two lakes. Although landsliding occurred throughout the region, covering an area of > 7500??km2, the failures were highly concentrated, associated with six geomorphic-geologic-anthropogenic settings, including natural failures in (1) highly fractured carbonate rocks comprising the lowest beds in the hanging wall of the likely earthquake fault; (2) Tertiary siliciclastic rocks along antecedent drainages that traverse the Hazara-Kashmir Syntaxis; (3) steep (> 50??) slopes comprising Precambrian and Lower Paleozoic rocks; (4) very steep (?? 50??) lower slopes of fluvially undercut Quaternary valley fills; and (5) ridges and spur crests. The sixth setting was associated with road construction. Extensive fissuring in many of the valley slopes together with the freshly mobilized landslide debris constitutes a potential hazard in the coming snowmelt and monsoon seasons. This study supports the view that earthquake-triggered landslides are highly concentrated in specific zones associated with the lithology, structure, geomorphology, topography, and human presence. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheridan, M. F.; Stinton, A. J.; Patra, A.; Pitman, E. B.; Bauer, A.; Nichita, C. C.
2005-01-01
The Titan2D geophysical mass-flow model is evaluated by comparing its simulation results and those obtained from another flow model, FLOW3D, with published data on the 1963 Little Tahoma Peak avalanches on Mount Rainier, Washington. The avalanches, totaling approximately 10×10 6 m 3 of broken lava blocks and other debris, traveled 6.8 km horizontally and fell 1.8 km vertically ( H/ L=0.246). Velocities calculated from runup range from 24 to 42 m/s and may have been as high as 130 m/s while the avalanches passed over Emmons Glacier. Titan2D is a code for an incompressible Coulomb continuum; it is a depth-averaged, 'shallow-water', granular-flow model. The conservation equations for mass and momentum are solved with a Coulomb-type friction term at the basal interface. The governing equations are solved on multiple processors using a parallel, adaptive mesh, Godunov scheme. Adaptive gridding dynamically concentrates computing power in regions of special interest; mesh refinement and coarsening key on the perimeter of the moving avalanche. The model flow initiates as a pile defined as an ellipsoid by a height ( z) and an elliptical base defined by radii in the x and y planes. Flow parameters are the internal friction angle and bed friction angle. Results from the model are similar in terms of velocity history, lateral spreading, location of runup areas, and final distribution of the Little Tahoma Peak deposit. The avalanches passed over the Emmons Glacier along their upper flow paths, but lower in the valley they traversed stream gravels and glacial outwash deposits. This presents difficulty in assigning an appropriate bed friction angle for the entire deposit. Incorporation of variable bed friction angles into the model using GIS will help to resolve this issue.
NASA Astrophysics Data System (ADS)
Sepulveda, S. A.; Serey, A.; Hermanns, R. L.; Redfield, T. F.; Oppikofer, T.; Duhart, P.
2011-12-01
The fjordland of the Chilean Patagonia is subject to active tectonics, with large magnitude subduction earthquakes, such as the M 9.5 1960 earthquake, and shallow crustal earthquakes along the regional Liquiñe-Ofqui Fault Zone (LOFZ). One of the latter (M 6.2) struck the Aysen Fjord region (45.5 S) on the 21st of April 2007, triggering dozens of landslides in the epicentral area along the fjord coast and surroundings. The largest rock slides and rock avalanches induced a local tsunami that together with debris flows caused ten fatalities and severely damaged several salmon farms, the most important economic activity of the area. Multi-scale studies of the landslides triggered during the Aysen earthquake have been carried out, including landslide mapping and classification, slope stability back-analyses and structural and geomorphological mapping of the largest failures from field surveys and high-resolution digital surface models created from terrestrial laser scanning. The failures included rock slides, rock avalanches, rock-soil slides, soil slides and debris flows. The largest rock avalanche had a volume of over 20 million cubic metres. The landslides affected steep slopes of intrusive rocks of the North Patagonian batholith covered by a thin layer of volcanic soils, which supports a high forest. The results of geotechnical analyses suggest a site effect due to topographic amplification on the generation of the landslides, with peak ground accelerations that may have reached between about 1.0 and 2.0 g for rock avalanches and between 0.6 and 1.0 g for shallow rock-soil slides, depending on the amount of assumed vertical acceleration and the applied method (limit equilibrium and Newmark). Attenuation relationships for shallow crustal seismicity indicate accelerations below 0.5 g for earthquakes of a similar magnitude and epicentral distances. Detailed field structural analyses of the largest rock avalanche in Punta Cola indicate a key role in the failure mechanics of brittle faults and jointing related to the LOFZ. The basal failure plane closely followed an older (epidote chlorite facies) thrust fault. Later fracture patterns suggest the thrust relaxed under gravitational stress following rock column uplift. Failure probably utilized a combination of these structures. Digital geomorphic models allowed establishing a sequence of events during failure which together make up the complex rock avalanche deposit. The volume of each individual slide could be more accurately determined. These and ongoing studies will allow a unique characterization of earthquake-induced slope failures in fjord coastal environments, providing new tools for landslide, seismic and tsunami hazard assessment in Patagonia and similar geomorphological settings around the world. This work was funded by Fondecyt project 11070107, the International Center for Geohazards, the Millenium Nucleus 'International Earthquake Research Center Montessus de Ballore', FNDR-Project 'Geological-Mining Environmental Research in Aysen' of the Chilean Government and the Andean Geothermal Center of Excellence.
Late Pleistocene and Holocene Geology and Hazards at Glacier Peak Volcano, Washington
NASA Astrophysics Data System (ADS)
Vallance, J. W.; Van Eaton, A. R.; Ramsey, D. W.
2015-12-01
Recent fieldwork, improved radiocarbon dating, and mapping on recently acquired LiDAR base have better delineated timing, frequency, and style of volcanism at Glacier Peak. The work shows that, after Mount St. Helens, Glacier Peak is one of the most frequently active Cascade volcanoes. The volcano has erupted multiple times 13-14 ka, 5-7 ka, 1-2.5 ka, and perhaps as recently as a few hundred years ago. The plinian eruptions of ~13.5 ka were much more voluminous than those of Mount St. Helens in 1980 and show that Glacier Peak is among the most explosive of Cascade volcanoes. These eruptions dispersed ash fallout hundreds of kilometers downwind in Idaho, Montana and Wyoming; produced a partly welded ignimbrite and a small debris avalanche; and caused lahars and flooding far across Puget Sound lowland. Numerous more recent eruptions during the periods 5-7 ka and 1-2.5 ka extruded lava domes whose hot rock avalanched across snow and ice to produce pyroclastic flows and lahars. These eruptions dispersed ash tens of to a hundred or more kilometers downwind. Resulting lahars and floods inundated as far as Puget Sound lowland. Glacier Peak is remote and hidden from most areas of the densely populated Puget Sound lowland; hence, it gets less attention than other prominent Cascade volcanoes like Mounts Rainier, Baker, and St. Helens. Despite its remote location, Glacier Peak poses substantial hazard because even small eruptions on ice-clad volcanoes can have devastating consequences. Distal threats include hazard to air traffic owing to ash plumes. Lahars and potential long-term sedimentation and flooding downstream pose threats to communities near rivers along Skagit and Stillaguamish River drainages. Farther downstream, sedimentation is likely to decrease channel capacity, increasing likelihood of floods. Lava flows, pyroclastic flows, and debris avalanches will threaten hikers in the wilderness near Glacier Peak.
NASA Astrophysics Data System (ADS)
Scherler, Dirk
2017-04-01
Glacial landscapes respond rapidly to global warming: glaciers retreat, permafrost degrades, and snow cover diminishes. These changes affect the stability of glacial landscapes, manifested by enhanced rockfall activity and more frequent catastrophic slope failures. Similar changes have accompanied deglaciation after the last glacial maximum, albeit of much greater magnitude, and with potentially important feedbacks between the dynamics of mountain glaciers and the landscapes they reside in. Here, I summarize recent observations from debris-covered valley glaciers and put them into context with a more general conceptual model of how glacial landscapes respond to warming periods. I will identify key research problems and provide preliminary results from ongoing studies. Ice-free areas that are located above glaciers generally consist of steep bedrock hillslopes (headwalls), where ambient temperatures are low enough to form bedrock permafrost, but the topography is too steep to accumulate significant amounts of ice on the surface. Because headwalls erode by rockfalls and rock avalanches that mobilize fractured bedrock, the rate-limiting factor is the growth of bedrock fractures. Current theory posits that bedrock fractures in cold regions primarily expand by segregation ice growth at subfreezing temperatures, which is known as frost cracking. Because frost cracking is temperature sensitive, there exists a temperature window of high frost-cracking intensity, which is thought to correspond to an elevation zone of enhanced sediment production. During warming periods, changes in the frost-cracking intensity combine with permafrost degradation and changing stresses due to ice thinning to destabilize steep headwalls and likely increase the flux of rocks that is shed to valley glaciers below. Even if temporarily buried in the ice, most rocks eventually melt out at the ice surface and form a supraglacial debris cover. Because debris cover thicker than 2 cm reduces conductive heat transport and thus ice melt rates, heavily debris-covered glaciers are longer and extent to lower and warmer elevations compared to debris-free glaciers, all other things being equal. Therefore, if warming induces an increase in headwall erosion rates, the increased supply of rocks should lead to an increase in supraglacial debris cover, which would reduce ice melting and slow down glacier retreat. Theoretically this effect could offset part of the warming-induced glacier shrinking. Large slope failures that result in a sudden increase in debris cover may even trigger glacier advances, as has been proposed for a few glaciers already. Such geomorphic feedbacks between headwalls and valley glaciers ought to be most pronounced in steep landscapes like the Himalaya, where existing glacial chronologies often lack spatial coherence. Some heavily debris-covered valley glaciers can be found to lie entirely below the regional climatic snowline where they are sustained by snow avalanches. Such glaciers typically flow at low velocities and their key role in glacial landscape evolution may lie in keeping the base of headwalls free from talus deposits and thereby sustain a steep and retreating headwall.
Iverson, R.M.; Denlinger, R.P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces, govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, threedimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.; Denlinger, Roger P.
2001-01-01
Rock avalanches, debris flows, and related phenomena consist of grain-fluid mixtures that move across three-dimensional terrain. In all these phenomena the same basic forces govern motion, but differing mixture compositions, initial conditions, and boundary conditions yield varied dynamics and deposits. To predict motion of diverse grain-fluid masses from initiation to deposition, we develop a depth-averaged, three-dimensional mathematical model that accounts explicitly for solid- and fluid-phase forces and interactions. Model input consists of initial conditions, path topography, basal and internal friction angles of solid grains, viscosity of pore fluid, mixture density, and a mixture diffusivity that controls pore pressure dissipation. Because these properties are constrained by independent measurements, the model requires little or no calibration and yields readily testable predictions. In the limit of vanishing Coulomb friction due to persistent high fluid pressure the model equations describe motion of viscous floods, and in the limit of vanishing fluid stress they describe one-phase granular avalanches. Analysis of intermediate phenomena such as debris flows and pyroclastic flows requires use of the full mixture equations, which can simulate interaction of high-friction surge fronts with more-fluid debris that follows. Special numerical methods (described in the companion paper) are necessary to solve the full equations, but exact analytical solutions of simplified equations provide critical insight. An analytical solution for translational motion of a Coulomb mixture accelerating from rest and descending a uniform slope demonstrates that steady flow can occur only asymptotically. A solution for the asymptotic limit of steady flow in a rectangular channel explains why shear may be concentrated in narrow marginal bands that border a plug of translating debris. Solutions for static equilibrium of source areas describe conditions of incipient slope instability, and other static solutions show that nonuniform distributions of pore fluid pressure produce bluntly tapered vertical profiles at the margins of deposits. Simplified equations and solutions may apply in additional situations identified by a scaling analysis. Assessment of dimensionless scaling parameters also reveals that miniature laboratory experiments poorly simulate the dynamics of full-scale flows in which fluid effects are significant. Therefore large geophysical flows can exhibit dynamics not evident at laboratory scales.
Massive edifice failure at Aleutian arc volcanoes
Coombs, M.L.; White, S.M.; Scholl, D. W.
2007-01-01
Along the 450-km-long stretch of the Aleutian volcanic arc from Great Sitkin to Kiska Islands, edifice failure and submarine debris-avalanche deposition have occurred at seven of ten Quaternary volcanic centers. Reconnaissance geologic studies have identified subaerial evidence for large-scale prehistoric collapse events at five of the centers (Great Sitkin, Kanaga, Tanaga, Gareloi, and Segula). Side-scan sonar data collected in the 1980s by GLORIA surveys reveal a hummocky seafloor fabric north of several islands, notably Great Sitkin, Kanaga, Bobrof, Gareloi, Segula, and Kiska, suggestive of landslide debris. Simrad EM300 multibeam sonar data, acquired in 2005, show that these areas consist of discrete large blocks strewn across the seafloor, supporting the landslide interpretation from the GLORIA data. A debris-avalanche deposit north of Kiska Island (177.6?? E, 52.1?? N) was fully mapped by EM300 multibeam revealing a hummocky surface that extends 40??km from the north flank of the volcano and covers an area of ??? 380??km2. A 24-channel seismic reflection profile across the longitudinal axis of the deposit reveals a several hundred-meter-thick chaotic unit that appears to have incised into well-bedded sediment, with only a few tens of meters of surface relief. Edifice failures include thin-skinned, narrow, Stromboli-style collapse as well as Bezymianny-style collapse accompanied by an explosive eruption, but many of the events appear to have been deep-seated, removing much of an edifice and depositing huge amounts of debris on the sea floor. Based on the absence of large pyroclastic sheets on the islands, this latter type of collapse was not accompanied by large eruptions, and may have been driven by gravity failure instead of magmatic injection. Young volcanoes in the central and western portions of the arc (177?? E to 175?? W) are located atop the northern edge of the ??? 4000-m-high Aleutian ridge. The position of the Quaternary stratocones relative to the edge of the Aleutian ridge appears to strongly control their likelihood for, and direction of, past collapse. The ridge's steep drop to the north greatly increases potential runout length for slides that originate at the island chain. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Thea; Krøgli, Ingeborg; Boje, Søren; Colleuille, Hervé
2017-04-01
Since 2013 the Norwegian Water Resources and Energy Directorate (NVE) has operated a landslide early warning system (LEWS) for mainland Norway. The Svalbard islands, situated 800 km north of the Norwegian mainland, and 1200 km from the North Pole, are not part of the conventional early warning service. However, following the fatal snow avalanche event 19 Dec. 2015 in the settlement of Longyearbyen (78° north latitude), local authorities and the NVE have initiated monitoring of the hydro-meteorological conditions for the area of Longyearbyen, as an extraordinary precaution. Two operational forecasting teams from the NVE; the snow avalanche and the landslide hazard forecasters, perform hazard assessment related to snow avalanches, slush flows, debris flows, shallow slides and local flooding. This abstract will focus on recent experiences made by the landslide hazard team during the autumn 2016 landslide events, caused by a record setting wet and warm summer and autumn of 2016. The general concept of the Norwegian LEWS is based on frequency intervals of extreme hydro-meteorological conditions. This general concept has been transposed to the Longyearbyen area. Although the climate is considerably colder and drier than mainland Norway, experiences so far are positive and seem useful to the local authorities. Initially, the landslide hazard evaluation was intended to consider only slush flow hazard during the snow covered season. However, due to the extraordinary warm and wet summer and autumn 2016, the landslide hazard forecasters unexpectedly had to issue warnings for the local authorities due to increased risk of shallow landslides and debris flows. This was done in close cooperation with the Norwegian Meteorological Institute, who provided weather forecasts from the recently developed weather prediction model, AROME-Arctic. Two examples, from 14-15 Oct and 8-9 Nov 2016, will be given to demonstrate how the landslide hazard assessment for the Longyearbyen area is carried out. Several aspects contrast hazard monitoring and forecasting on the mainland, such as the challenges that transpire with sparse observations of hydrometeorologial variables, landslide inventories and hydrological simulations. Particular challenges that are faced on Svalbard, are the even greater remoteness of the settlements and the strong effect permafrost has on the soil structure. The planned development for improving the monitoring of slush avalanches and landslide hazards in the Longyearbyen area will also be presented.
Natural hazard risk assessment and management in the Matter valley, Swiss Alps
NASA Astrophysics Data System (ADS)
Herz, T.; King, L.; Philippi, S.
2003-04-01
The Matter valley has a length of about 40 km and is surrounded by some of the highest peaks of the Alps resulting in extreme altitudinal differences and a continental character of the climate. These climatic conditions cause a high glacier equilibrium line and therefore a periglacial belt of a large vertical extend. Due to the high relief energy, all kinds of natural hazards typical for high mountain environments occur. The steep western slopes are dominated by rockfalls, slope instabilities in bedrock and avalanches. A widespread cover of unconsolidated sediments on the eastern slopes induces landslides and debris flows, which often reach down to the valley bottom where they can dam up the river. Increasing population and modern land use forms required a more and more sensitive attitude towards natural hazard potentials in this endangered area. Assessment and management of natural hazard risks have been much improved during the last fifteen years and increasing amounts of money are spent each year in order to safeguard settlements, traffic lines, and other objects of the technical infrastructure. Numerous investigations concerning natural hazard risks have been made and the results are considered in the actual land use planning of the Canton. The planning law of the Canton Valais defines risk zones as areas, which are endangered by natural hazards like avalanches, rockfalls, landslides and floodings. Risk assessment is done by overview maps (scale 1:25,000) which are specified by detailed risk analyses consisting of registers and detailed maps (scale 1:2,000 to 1:10,000). These analyses are integrated in the land zoning by defining zones of high, medium and low danger, associated with corresponding prohibitions, restrictions and conditions for utilisation. At present, the incorporation of the avalanche and rockfall register in local zoning plans is completed in most communities of the Canton Valais. An additional inventory of 200 slope instabilities was elaborated and must be considered in present and future local zonation updates. However, zones threatened by floods are only indicated on maps of overview and no planning standards for the management of debris flow hazards exist so far. The Canton is currently carrying out numerous projects of active disaster prevention comprising measurements and constructional precautions against avalanches and slope instabilities as well as monitoring systems and early warning stations.
NASA Astrophysics Data System (ADS)
Roberti, Gioachino; van Wyk de vries, Benjamin; Ward, Brent; Clague, John; Friele, Pierre; Perotti, Luigi; Giardino, Marco
2016-04-01
This study examines the large landslide that occurred at Mt. Meager, 200 km NNW of Vancouver, British Columbia, Canada, on August 6, 2010. We studied the source area and deposits to reconstruct the failure of the south flank of Mt. Meager from slow deformation to catastrophic collapse, the subsequent transformation into a debris avalanche, and the 11 km run-out. We use a Structure from Motion (SfM) photogrammetric approach and processed both historical British Columbia Provincial airphotos (1948, 1962, 1964-1965, 1973, 1981, 1990, and 2006) and digital images taken with a commercial camera during low-level helicopter traverses. The SfM products have been used to calculate volumes and the geometry of the south flank of Mt. Meager before and after the catastrophic failure, and to produce an orthophoto that we have used to map and describe the deposit. Oblique helicopter photos provide information on the scar geometry and rock units exposed by the failure. The SfM-derived orthophoto and ground observations allowed us to map deposit facies, lithologies, and structures, including thrust, normal, and strike-slip faults. We identified five sub-areas in the accumulation zone based on the association of facies and deformation structures. Based on our interpretation of the remotely sensed data and ground observations, we propose that the landslide had two main rheological phases: one richer in water and highly mobile, and another massive and water-poor. The water-rich phase spread quickly and superelevated high on valley walls as it moved down valley. It left a discontinuous veneer of debris, typically <1 m thick. The main, unsaturated mass moved more slowly and left a thicker (up to about 20 m) deposit with hummocks and brittle-ductile faults and shear zone in the distal part of the run-out zone.
NASA Astrophysics Data System (ADS)
Grant, G.; Major, J. J.; Lewis, S.
2016-12-01
The 18 May 1980 eruption of Mount St. Helens, Washington, spawned a massive (109 m3) debris avalanche, a violent and extensive pyroclastic density current, lahars, pyroclastic flows, and ashfall. It fundamentally transformed the proximal landscape, and created potential secondary hazards that remain legacies of the eruption over 35 years later. The debris avalanche raised the level of Spirit Lake—a picturesque lake at the foot of the volcano—by 60 m and blocked its outlet. Abruptly, the lake went from charming to menacing, capable of releasing a potentially catastrophic outburst flood (108 m3) that could transform into a massive (109 m3) debris flow if rising lake water breached the blockage. To reduce risk of an uncontrolled breach, and under Presidential emergency declaration, the U.S. Army Corps of Engineers (USACE) bored a 2,590-m-long outlet tunnel through bedrock within the U.S. Forest Service (USFS)-administered Mount St. Helens National Volcanic Monument. Drainage through the tunnel maintains a safe lake level below a geologic contact in the blockage where seepage erosion could result in failure. Although the tunnel has performed its mission for over 30 years, episodic deformation has reduced its outlet capacity, necessitating expensive (>$1 million) repairs and closures which temporarily caused precarious lake rises, and prompted re-examination of the strategy to maintain a safe lake level. Here we discuss how federal researchers (USFS and U.S. Geological Survey) interact with Monument and USFS land managers, USACE, the National Academy of Sciences, and the public at large to develop and evaluate, under Congressional mandate, alternative strategies for reducing the risk of catastrophic flooding. Amidst this nexus of institutions, agendas, and perspectives, set against the backdrop of a rapidly evolving landscape subject to a trio of hazards (eruptions, earthquakes, floods), competing interests, costs, and natural risks must be balanced and managed.
NASA Astrophysics Data System (ADS)
Mangeney, A.; Peruzzetto, M.; Rosas-Carbajal, M.; Komorowski, J. C.; Le Friant, A.; Legendre, Y.
2016-12-01
Over the past 7800 years, at least 8 partial flank collapses have occurred at La Soufrière de Guadeloupe volcano. Given a highly altered and heterogeneous dome and the presence of highly conductive acid fluid-saturated regions controlled by regional faults and listric detachment planes, this is a likely future scenario. Recent electrical tomography of the hydrothermal system constrains collapse scenarios. We developed a MATLAB interface (see figure attached) to "slice" the topography to define initial 3-D geometries and volumes (1 to 60 Mm³). We simulate the dynamics of the resulting debris avalanches as granular flows with the thin-layer depth-averaged numerical model SHALTOP. In this model, the complex rheological behavior of natural debris is simply described by an effective friction coefficient. Sensitivity analysis shows that the initial slope of the detachment plane strongly controls emplacement dynamics, causing premature arrest of the material for values lower than the friction angle, unless the collapse involves significant hydrothermal fluid that favors high mobility. In other cases, proximal topography has a predominant control over initial geometry. Indeed, the main pathways and dynamics are common to all scenarios. Friction coefficients control the final run-out distance and flow speed (up to 9km and 50m/s), but the type of friction law has little influence. Using low friction coefficients is justified by field evidence of highly mobile volcanic debris avalanches, even for relatively small volumes. In the worst case scenario tested (60 Mm³, friction angle of 8°), the material enters the sea 9 km downslope. Given the current prolonged and intensifying hydrothermal unrest at La Soufrière, and that flank instability can be triggered by seismic, hydrothermal, magmatic, and meteorologic forcing, our results have implications for risk assessment and continuing monitoring strategies on La Soufrière de Guadeloupe volcano.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter
2017-08-02
This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a “master teacher.” The 1980 eruption and studies both before and after 1980 played a major role in the establishment of the modern U.S. Geological Survey Volcano Hazards Program and our understanding of flank collapses, debris avalanches, cryptodomes, blasts, pyroclastic density currents, and lahars, as well as the dynamics of magma ascent and eruption.
Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A.
1990-01-01
A complex sequence of pyroclastic flows and surges erupted by Nevado del Ruiz volcano on 13 November 1985 interacted with snow and ice on the summit ice cap to trigger catastrophic lahars (volcanic debris flows), which killed more than 23,000 people living at or beyond the base of the volcano. The rapid transfer of heat from the hot eruptive products to about 10 km2 of the snowpack, combined with seismic shaking, produced large volumes of meltwater that flowed downslope, liquefied some of the new volcanic deposits, and generated avalanches of saturated snow, ice and rock debris within minutes of the 21:08 (local time) eruption. About 2 ?? 107 m3 of water was discharged into the upper reaches of the Molinos, Nereidas, Guali, Azufrado and Lagunillas valleys, where rapid entrainment of valley-fill sediment transformed the dilute flows and avalanches to debris flows. Computed mean velocities of the lahars at peak flow ranged up to 17 m s-1. Flows were rapid in the steep, narrow upper canyons and slowed with distance away from the volcano as flow depth and channel slope diminished. Computed peak discharges ranged up to 48,000 m3 s-1 and were greatest in reaches 10 to 20 km downstream from the summit. A total of about 9 ?? 107 m3 of lahar slurry was transported to depositional areas up to 104 km from the source area. Initial volumes of individual lahars increased up to 4 times with distance away from the summit. The sedimentology and stratigraphy of the lahar deposits provide compelling evidence that: (1) multiple initial meltwater pulses tended to coalesce into single flood waves; (2) lahars remained fully developed debris flows until they reached confluences with major rivers; and (3) debris-flow slurry composition and rheology varied to produce gradationally density-stratified flows. Key lessons and reminders from the 1985 Nevado del Ruiz volcanic eruption are: (1) catastrophic lahars can be generated on ice- and snow-capped volcanoes by relatively small eruptions; (2) the surface area of snow on an ice cap can be more critical than total ice volume when considering lahar potential; (3) placement of hot rock debris on snow is insufficient to generate lahars; the two materials must be mechanically mixed together for sufficiently rapid head transfer; (4) lahars can increase their volumes significantly by entrainment of water and eroded sediment; and (5) valley-confined lahars can maintain relatively high velocities and can have catastrophic impacts as far as 100 km downstream. ?? 1990.
DEM modeling of flexible structures against granular material avalanches
NASA Astrophysics Data System (ADS)
Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno
2016-04-01
This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
NASA Astrophysics Data System (ADS)
John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.
2005-12-01
Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudasaini, Shiva P.; Miller, Stephen A.
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include amore » dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.« less
Rock avalanche deposits in Alai Valley, Central Asia: misinterpretation of glacial record
NASA Astrophysics Data System (ADS)
Reznichenko, Natalya; Davies, Tim; Robinson, Tom; De Pascale, Gregory
2013-04-01
The reconstruction of Quaternary glaciations has been restricted by conventional approaches with resulting contradictions in interpretation of the regional glacial record, that recently have been subjected to critical re-evaluation. Along with uncertainties in dating techniques and their applicability to particular landforms (Kirkbride and Winkler, 2012), it has recently been demonstrated that the presence of rock avalanche debris in a landform can be unequivocally detected; this allows for the first time definitive identification of and distinction between glacial moraines and landslide deposits. It also identifies moraines that have formed due to rock avalanche deposition on glaciers, possibly with no associated climatic signal (Reznichenko et al., 2012). Confusion between landslide deposits and moraines is evident for ranges in Central Asia (e.g., Hewitt, 1999) where the least-studied glacial record is selectively correlated with established glacial chronologies in Alpine ranges, which in turn masks the actual glacial extent and their responses to climate change, tectonics and landsliding activity. We describe examples in the glaciated Alai Valley, large intermountain depression between the Zaalay Range of the Northern Pamir and the Alay Range of the Southern Tien-Shan, showing that some large Quaternary deposits classically interpreted as moraines are of rock avalanche origin. Sediment from these deposits has been tested for the presence of agglomerates that are only produced under high stress conditions during rock avalanche motion, and are absent from glacial sediments (Reznichenko et al., 2012). This reveals that morphologically-similar deposits have radically different geneses: rock avalanche origin for a deposit in the Komansu river catchment and glacial origin for deposits in the Ashiktash and Kyzylart catchments. The enormous Komansu rock avalanche deposit, probably triggered by a rupture of the Main Pamir thrust, currently covers about 100 km2 with a minimum estimated volume more than 1 x 109 m3. Another smaller rock avalanche deposit rests on the Lenin Glacial sediment in the neighbour Ashiktash river catchment, which was previously suggested to originate from Mt. Lenin (7134 m). The revised origin of these deposits highlights the role of rock avalanches in glacial activity and in the resulting glacial record in this valley and other actively tectonic areas of Central Asia. Although further investigation is required to detail the geneses, magnitudes and ages for these and other landforms in the valley, this study contributes explicit evidence for contamination of palaeoclimate proxies with data from non-climatic events, and reinforces the urgent need for revised interpretation of the glacial chronologies. Hewitt, K., 1999. Quaternary moraines vs. catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research, v. 51, p. 220-237. Kirkbride, M.P., and Winkler, S., 2012. Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution: Quaternary Science Reviews, v. 46, p. 1-29. Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H, 2012. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology, v. 40, p. 319-322.
NASA Astrophysics Data System (ADS)
Steckloff, Jordan K.; Graves, Kevin; Hirabayashi, Masatoshi; Melosh, H. Jay; Richardson, James E.
2016-07-01
Comet 103P/Hartley 2 has diurnally controlled, CO2-driven activity on the tip of the small lobe of its bilobate nucleus. Such activity is unique among the comet nuclei visited by spacecraft, and suggests that CO2 ice is very near the surface, which is inconsistent with our expectations of an object that thermophysically evolved for ∼45 million years prior to entering the Jupiter Family of comets. Here we explain this pattern of activity by showing that a very plausible recent episode of rapid rotation (rotation period of ∼11 [10-13] h) would have induced avalanches in Hartley 2's currently active regions that excavated down to CO2-rich ices and activated the small lobe of the nucleus. At Hartley 2's current rate of spindown about its principal axis, the nucleus would have been spinning fast enough to induce avalanches ∼3-4 orbits prior to the DIXI flyby (∼1984-1991). This coincides with Hartley 2's discovery in 1986, and implies that the initiation of CO2 activity facilitated the comet's discovery. During the avalanches, the sliding material would either be lofted off the surface by gas activity, or possibly gained enough momentum moving downhill (toward the tip of the small lobe) to slide off the tip of the small lobe. Much of this material would have failed to reach escape velocity, and would reimpact the nucleus, forming debris deposits. The similar size frequency distribution of the mounds observed on the surface of Hartley 2 and chunks of material in its inner coma suggest that the 20-40 m mounds observed by the DIXI mission on the surface of Hartley 2 are potentially these fallback debris deposits. As the nucleus spun down (rotation period increased) from a period of ∼11-18.34 h at the time of the DIXI flyby, the location of potential minima, where materials preferentially settle, migrated about the surface, allowing us to place relative ages on most of the terrains on the imaged portion of the nucleus.
The rock avalanche of the Mt. Peron (Eastern Alps, Italy): new insights from 36Cl exposure dating
NASA Astrophysics Data System (ADS)
Martin, Silvana; Ivy-ochs, Susan; Alfimov, Vasili; Vockenhuber, %Christof; Surian, Nicola; Campedel, Paolo; Rigo, Manuel; Viganò, Alfio; De Zorzi, Manuel
2016-04-01
In the Late Pleistocene, in the southern side of the Eastern Alps (Veneto region, Italy), when the glacier tongues retreated from the end moraine system areas towards the Dolomitic region, large rock avalanches took place. In the Belluno Valley, occupied by the Piave river, the left side is represented by the Belluno Prealps range, corresponding to the northern flank of a km-scale WSW-ENE oriented alpine syncline formed by rocks from Late Triassic to Late Tertiary in age. The Mt. Peron, belonging to this mountain range, shows its southern lower slope covered by debris cones with scattered boulders and its higher slope, corresponding to the scarp, made of vertical rock strata. At the foot of Mt. Peron, at a distance varying from 500 to 4500 m, there is a 4.5 km2 fan like area delimited by a perimeter of about 15 km. This is a hilly area of poortly sorted, chaotic deposits composed of heterogeneous debris, sandy and silty gravels, angular blocks and very large boulders of carbonatic rocks up to 20 m in diameter. The average thickness of the deposit was estimated to be 80 m, with maximum of 120 m. According to previous works, the main event occurred during the first phases of deglaciation, between 17,000 and 15,000 years BP. Popular stories narrate about two legendary villages destroyed by a mass of stones rolling down in the valley. This is confirmed by archeological findings in the Piave valley which indicate the presence of almost one pre-historic settlement dating 40000-20000 years a B.P., (i.e. before the Last Glacial Maximum).. Recent 36Cl exposure dating have yielded historical ages for both the boulders at the foot of the Mt Peron and those located a few km far from the main scarp. According to these exposure ages we can not exclude the hypothesis that earthquakes related to the Venetian faults could have played a key role for triggering of the rock avalanche and that the main gravitational event took place in historical times rather than during the deglaciation.
How seismic waves can be used to understand and constrain landslide dynamics
NASA Astrophysics Data System (ADS)
Mangeney, A.; Favreau, P.; Moretti, L.; Lucas, A.; Le Friant, A.; Bouchut, F.
2010-12-01
Gravitational instabilities such as debris flows, landslide or avalanches play a key role in erosion processes on the Earth’s surface and represent one of the major natural hazard threatening life and property in mountainous, volcanic, seismic and coastal areas. Despite the great amount of experimental, numerical and field studies, the understanding of landslide dynamics is still an open question. In particular, there is no consensus to explain the high mobility of natural avalanches. Field measurements relevant to the dynamics of natural landslides are scarce. This is due to their unpredictability and destructive power and prevents detailed investigation of the mechanical properties of the flowing material. Recent studies have shown that the seismic signal generated by landslides provides a unique way to detect gravitational instabilities and to get information on their dynamics and geometrical characteristics. In particular, Favreau et al. [2009] show that simulation of landslides and generated seismic waves reproduce the main features of the recorded low frequency seismic signal, making it possible to discriminate between possible alternative scenarios for flow dynamics and to provide first estimates of the rheological parameters. We propose here to go further in this direction by investigating the following key questions: What is the effect of the topography and of the landslide volume on the generated seismic signal? What is the sensitivity of the generated seismic signal to the mechanical behavior of the landslide? At what distance and frequency is the point source approximation correct? To address these issues, numerical simulation of two well constrained landslides has been performed: the 2.5 Mm3 Thurwieser landslide that occurred in Italy in 2004 and the 60 Mm3 Boxing Day debris avalanche that occurred in Montserrat in 1997 during the volcanic eruption. For both landslides, simulation shows the major role of topography curvature on the generated seismic signal even for the signal recorded as far as 450 km from the source. Furthermore, comparison between observed and simulated seismic signal in Montserrat provides insights into the time sequence of the gravitational events associated to the eruption.
Multi-event behavior of El Golfo landslide (El Hierro Island, Canary Archipelago)
NASA Astrophysics Data System (ADS)
León, Ricardo; Biain, Ander; Urgeles, Roger; Somoza, Luis; Ferrer, Mercedes; García-Crespo, Jesús; Francisco Mediato, José; Galindo, Inés; Yepes, Jorge; Gimenez-Moreno, Julia
2017-04-01
Based on the re-interpretation of a vast onshore-offshore data set, a new morpho-structural characterization of the El Golfo giant landslide in the island of El Hierro (Canary Archipelago, Spain) is presented. Offshore multibeam echosounder data, chirp sub-bottom profiles, multichannel seismic reflection data and onshore information from water wells and galleries have been analyzed to determine the nature of the event. The subaerial headscarp shows a non-continuous arcuate profile formed by two nested semi-circular amphitheaters that extend offshore along a smooth chute, suggesting the occurrence of at least two large retrogressive events. Channels/gullies and escarpments developed along the submarine sector of the scar also indicate smaller-scale events and predominance of sediment bypass. At the base of submerged island, two subunits within the related submarine mass transport deposit (MTD) are identified on multichannel seismic reflection profiles confirming the multi-event nature of the landslide. The MTD, identified as a debris avalanche, has a total estimated volume of 318 km3: 84 km3 and 234 km3, for the lower and upper subunits respectively. Data from wells and galleries show abrasion platforms with beach deposits at sea-level (0 masl) formed after the landslide scar and buried by the El Golfo post-collapse infill lavas, suggesting an age at least older than 23.5-82.5 ka for the landslide. This work has been supported by the projects IGCP-640 S4SLIDE, High resolution seabed mapping EASME/EMFF/2016/005 and CTM2010-09496-E. Keywords: Submarine landslides, volcanic islands, debris avalanche, Canary Islands
Denlinger, R.P.; Iverson, R.M.
2001-01-01
Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.
NASA Astrophysics Data System (ADS)
Thompson, Sarah; Nicholson, Lindsey; Klug, Christoph; Rieg, Lorenzo; Sailer, Rudolf; Bucher, Tilman; Brauchle, Jörg
2017-04-01
In the high, steep terrain of the Khumbu Himal, Nepal, snow avalanches play an important role in glacier mass balance, and rockfall supplies much of the rock material that forms the extensive debris covers on glaciers in the region. Information on the frequency and size of gravitational mass movements is helpful for understanding current and future glacier behaviour but currently lacking. In this study we use a combination of high resolution Pleiades optical satellite imagery in conjunction with airborne HDR imagery of slopes in deep shadow or overexposed snow slopes, provided by the German Aerospace Center (DLR) MACS system (see Brauchle et al., MM3.2/GI2.12/GMPV6.4/HS11.13/NH8.9/SSS12.24), to undertake a qualitative observational study of the gravitational processes evident in these sets of imagery. We classify the features found and discuss their likely frequency in the context of previously published research findings. Terrain analysis based upon digital terrain models derived from the same Pleiades imagery is used to investigate the slope angle, degree of confinement, curvature and aspect of observed avalanche and rock fall tracks. This work presents a first overview of the types of gravitational slides affecting glaciers of the Khumbu Himal. Subsequent research efforts will focus on attempting to quantify volumes of mass movement using repeat satellite imagery.
NASA Astrophysics Data System (ADS)
Koschuch, Richard; Brauner, Michael; Hu, Kaiheng; Hübl, Johannes
2016-04-01
Automatic monitoring of alpine mass movement is a major challenge in dealing with natural hazards. The presented research project shows a new approach in measurment and alarming technology for water level changes an debris flow by using a high-frequency Pulse Doppler RADAR. The detection system was implemented on 3 places (2 in Tirol/Austria within the monitoring systems of the IAN/BOKU; 1 in Dongchuan/China within the monitoring systems of the IMHE/Chinese Academy of Science) in order to prove the applicability of the RADAR in monitoring torrential activities (e.g. debris-flows, mudflows, flash floods, etc.). The main objective is to illustrate the principles and the potential of an innovative RADAR system and its versatility as an automatic detection system for fast (> 1 km/h - 300 km/h) alpine mass movements of any kind. The high frequency RADAR device was already successfully tested for snow avalanches in Sedrun/Switzerland (Lussi et al., 2012), in Ischgl/Austria (Kogelnig et al., 2012). The experience and the data of the five year showed the enormous potential of the presented RADAR technology in use as an independent warning and monitoring system in the field of natural hazard. We have been able to measure water level changes, surface velocities and several debris flows and can compare this data with the other installed systems.
NASA Astrophysics Data System (ADS)
Stark, C. P.; Wolovick, M.; Ekstrom, G.
2012-12-01
Glacier surges are thought to result from changes in resistance to sliding at the base of the ice mass. The reasons for such changes in basal conditions are not entirely understood, and this is in part because empirical constraints are severely limited. Recent work in the Karakoram and Pamir mountains, home to the majority of Earth's surging mountain glaciers, has boosted observational data, but has led to diametrically opposed interpretations of their glacier surging mechanics, ranging from thermal to hydrological switching. In this context we describe a surge of the RGO (Russian Geographical Society) Glacier in the Pamirs triggered by a massive rock avalanche off Mt Garmo in 2001. Initial reports pegged the RGO Glacier landslide as having been triggered in 2002 by strong ground motion originating from a nearby tectonic earthquake. We used multitemporal satellite imagery to establish failure must have struck in August-September 2001. This revised date was confirmed by reexamining teleseismic data recorded at stations in central Asia: it became clear that a landslide seismic source of magnitude Msw≈5.4 on 2001/09/02 had been misinterpreted as two tectonic sources located within kilometers of Mt Garmo. Exploiting a new technique we have developed for inverting long-period seismic waveforms, we show that a mass of rock and ice around 2.8×{}1011 kg collapsed to the SSE from an elevation of around 5800m, accelerated to a peak speed of about 60m/s, collided with the valley wall ˜ 2 km to the south and turned east to run out a further 6km over significant fractions of the accumulation and ablation zones of the RGO Glacier. Based on this estimate of landslide mass, we deduce that the supraglacial debris blanket generated by this rock avalanches averaged about 20m in thickness. By this reckoning, the Mt Garmo landslide is one of the largest in the last 33 years. Next we mapped the velocity field of the RGO Glacier over time using multitemporal satellite imagery. We performed image correlation velocimetry (sometimes known as feature tracking or optical flow velocimetry) using around 120 Landsat 7 ETM+ scenes spanning 1999 through 2012. Reliable velocity fields were generated even after the loss of scan-line correction (SLC-off scenes) in 2003. Our preliminary results reveal two phases of glacier surge. The first began within a few months of the rock avalanche during the winter of 2001, with ice flow speeds rising by more than an order of magnitude to nearly 1000m/y mid-glacier at the landslide toe, and propagating as a wave down-glacier in less than a year. This phase ended in 2002-3. The second, milder surge phase began in 2005 and ended in 2007. Each phase led to an advance of the terminus over several 100m. We interpret surge initiation as being the direct consequence of rock avalanche deposition on the glacier. To explore the apparent link between rock avalanching and glacier surging, we have developed a 2D thermomechanical, higher-order, flowline model coupled to a basal hydrology scheme. We conclude with a discussion of the behavior of this model when heavily perturbed by abrupt debris deposition, and we explore whether the occurrence of landslide-triggered surging can in any way advance our understanding of glacier surge mechanics in general.
NASA Astrophysics Data System (ADS)
Mascellaro, Neri; Guerriero, Luigi; Revellino, Paola; Grelle, Gerardo; Guadagno, Francesco M.
2017-04-01
As effect of the ongoing climate change, heavy meteorological events are increasing in frequency all over the world. The Campania Region in southern Italy is among the areas mostly affected by severe rainstorms and is periodically hit by their effect like floods and landslides. In October 2015, two intense rainfall events hit the central and southern regions of Italy but the most destructive effects occurred in the Benevento province (Campania region). The first storm, a self-healing V-shaped storm, began around at 7 p.m. of 14th October and stopped around at 3:00 a.m. of 15th October and was originated by the development of a cyclogenesis. The rain gages recorded a maximum cumulative value of 415.6 mm of rain in Paupisi (BN) and a strong increase in temperature; the maxima for the Benevento province was 24°C. The second storm began around at 12 a.m. of 19th October and stopped around at 7 p.m. of 20th October with a maximum cumulative value of 146.8 mm of rain in Colle Sannita(BN). These storms triggered a set of different effects that devastated more than 60 municipalities of the Sannio Province and were responsible for two casualties, €700 million of damage to infrastructures (estimates from Campania region) and about €1 billion damages to agriculture (Italian farmer Confederation). The the Calore river of the Benevento province and some of its tributaries overflowed destroying the surrounding area; major damages were recorded in the industrial area of the Benevento town. In the central and in the eastern sectors of the Benevento Province characterized by the outcropping of flyschoid units, the heavy rain triggered shallow earth flows, debris flows induced by rilling and soil slides. Debris avalanches and runoff-initiated debris flows reshaped the creeks of the Taburno-Camposauro massif and damaged a lot of infrastructure of the surrounding area. Flood events from the Calore river in the Benevento district have significant historical precedents. The most important events recorded in the past are: 1) the flood of the 2nd of October, 1949, that caused 20 fatalities, and 2) the flooding of May 1729. As first step of our study we reconstructed the spatial pattern and the temporal evolution of the storms affecting the Sannio area using the rainfall data recorded by the meteorological stations distributed across the Benevento Province. Subsequently we mapped all the effects to the landscape caused by the storms as: earth flows, soil slides, flooded area, runoff initiated debris flows and debris avalanches, debris flows initiated by rilling and soil erosion (using mainly Google earth images and field survey). We compered the location of these phenomena with the geological and topographic characteristics to understand likely controls in promote the triggering and the development of this unusual combination of different hazardous effects.
Determining the Compositions of Extraterrestrial Lava Flows
NASA Technical Reports Server (NTRS)
Fink, Jonathan H.
2002-01-01
The primary purpose of this research project has been to develop techniques that allow the emplacement conditions of volcanic landforms on other planets to be related to attributes that can be remotely detected with available instrumentation. The underlying assumption of our work is that the appearance of a volcano, lava flow, debris avalanche, or exhumed magmatic intrusion can provide clues about the conditions operating when that feature was first emplaced. Magma composition, amount of crustal heat flow, state of tectonic stress, and climatic conditions are among the important variables that can be inferred from the morphology and texture of an igneous body.
Geophysical granular and particle-laden flows: review of the field.
Hutter, Kolumban
2005-07-15
An introduction is given to the title theme, in general, and the specific topics treated in detail in the articles of this theme issue of the Philosophical Transactions. They fit into the following broader subjects: (i) dense, dry and wet granular flows as avalanche and debris flow events, (ii) air-borne particle-laden turbulent flows in air over a granular base as exemplified in gravity currents, aeolian transport of sand, dust and snow and (iii) transport of a granular mass on a two-dimensional surface in ripple formations of estuaries and rivers and the motion of sea ice.
NASA Technical Reports Server (NTRS)
Beach, G. L.
1984-01-01
A small explosive eruption of Mount St. Helens set into motion an unusually complex series of geomorphic and hydrologic processes that had not previously been described in the literature. This event was unusual in that a laterally-directed eruption dislodged and mobilized a thick snowpack from the surrounding crater floor and walls, resulting in the formation of a temporary lake. Catastrophic release of this self-impounded lake spawned a series of destructive debris avalanches and debris flows that moved rapidly down the volcano's north flank and into the North Toutle River valley. Catastrophic release of volatiles mobilized by volcanic activity has been discussed as a possible mechanism to explain a class of outflow channels on Mars. The eruption of Mount St. Helens provides a unique opportunity to study the deposits and landforms created by such an event; a more detailed field study and examination of Viking photographs of martian outflow channels is underway.
The effects of growth and collapse on the magmatic system below Mt Taranaki, New Zealand.
NASA Astrophysics Data System (ADS)
Procter, Jonathan; Marcroft, Grace; Zellmer, Georg; Zernack, Anke
2017-04-01
Mt. Taranaki exhibits one of the best long-term records of volcanic growth and destruction of any volcano worldwide, making it ideal for understanding the long-term effects of changing lithostatic pressure, or loading and unloading, on the magma chamber and magma supply. The ring-plain around Mt. Taranaki houses volcaniclastic deposits that provide a near continuous record of the evolution of the volcano, yet these records have remained relatively unexploited when investigating the interrelated cyclical phases of volcano collapse and growth, the geochemical evolution of the centre, and the consequent time-varying hazard potential. In this study, we systematically sampled pumice-rich tephra and pumice-rich mass flow deposits that were stratigraphically immediately before and after the 24,801 ± 268 years BP Pungarehu Formation debris avalanche ( 7.5 km3). Crystals (clinopyroxene and plagioclase) were characterised in detail. Mg and Fe zoning across selected crystals from samples pre-and post-debris avalanche were found to have completely equilibrated, yet zoning patterns in Al remained intact and showed major differences in their formation, allowing for the calculation of diffusion rates. These have enabled the determination of maximum residence times (depths and pressure regimes) of the magma system. It is intended that this technique will be applied across the stratigraphic record, which contains 14 collapse events. This will provide insights into crustal magma transport and residence times, and the propagation of fissures and the buoyancy of the magma pre- and post-collapse, in order to characterise the evolution of the centre and quantify the long-term relationship between magmatic rise and volcano growth and destruction.
Yokose, H.; Lipman, P.W.
2004-01-01
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington
Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.
2003-01-01
At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or above the elevations of glacier termini and extend down valley. This report discusses potential hazards from debris flows induced by hydrologic events such as glacial outburst floods and torrential rain at Mount Rainier and the surrounding area bounded by Mount Rainier National Park. The report also shows, in the accompanying hazard-zonation maps, which areas are likely to be at risk from future such debris flows at Mount Rainier. Lahar hazards related to avalanches of altered rock and to the interactions of hot rock and ice during eruptions are discussed in Scott and Vallance (1995) and Hoblitt et al. (1998) and are not addressed in this report.
Flood hazard assessment of the Hoh River at Olympic National Park ranger station, Washington
Kresch, D.L.; Pierson, T.C.
1987-01-01
Federal regulations require buildings and public facilities on Federal land to be located beyond or protected from inundation by a 100-year flood. Flood elevations, velocities and boundaries were determined for the occurrence of a 100-year flood through a reach, approximately 1-mi-long, of the Hoh River at the ranger station complex in Olympic National Park. Flood elevations, estimated by step-backwater analysis of the 100-year flood discharge through 14 channel and flood-plain cross sections of the Hoh River, indicate that the extent of flooding in the vicinity of buildings or public facilities at the ranger station complex is likely to be limited mostly to two historic meander channels that lie partly within loop A of the public campground and that average flood depths of about 2 feet or less would be anticipated in these channels. Mean flow velocities at the cross sections, corresponding to the passage of a 100-year flood, ranged from about 5 to over 11 ft/sec. Flooding in the vicinity of either the visitors center or the residential and maintenance areas is unlikely unless the small earthen dam at the upstream end of Taft Creek were to fail. Debris flows with volumes on the order of 100 to 1,000 cu yards could be expected to occur in the small creeks that drain the steep valley wall north of the ranger station complex. Historic debris flows in these creeks have generally traveled no more than about 100 yards out onto the valley floor. The potential risk that future debris flows in these creeks might reach developed areas within the ranger station complex is considered to be small because most of the developed areas within the complex are situated more than 100 yards from the base of the valley wall. Landslides or rock avalanches originating from the north valley wall with volumes potentially much larger than those for debris flows could have a significant impact on the ranger station complex. The probability that such landslides or avalanches may occur is unknown. Inspection of aerial photographs of the Hoh River valley revealed the apparent presence, along the ridge crest of the north valley wall, of ridge-top depressions--geologic features that are sometimes associated with the onset of deep-seated slope failures. However, evaluation of the potential landslide hazard associated with these depressions would require an onsite examination of the area by trained personnel. Such an effort was outside the scope of this study. (Author 's abstract)
Posteruption glacier development within the crater of Mount St. Helens, Washington, USA
Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y.
2004-01-01
The cataclysmic eruption of Mount St. Helens on May 18, 1980, resulted in a large, north-facing amphitheater, with a steep headwall rising 700 m above the crater floor. In this deeply shaded niche a glacier, here named the Amphitheater glacier, has formed. Tongues of ice-containing crevasses extend from the main ice mass around both the east and the west sides of the lava dome that occupies the center of the crater floor. Aerial photographs taken in September 1996 reveal a small glacier in the southwest portion of the amphitheater containing several crevasses and a bergschrund-like feature at its head. The extent of the glacier at this time is probably about 0.1 km2. By September 2001, the debris-laden glacier had grown to about 1 km2 in area, with a maximum thickness of about 200 m, and contained an estimated 120,000,000 m3 of ice and rock debris. Approximately one-third of the volume of the glacier is thought to be rock debris derived mainly from rock avalanches from the surrounding amphitheater walls. The newly formed Amphitheater glacier is not only the largest glacier on Mount St. Helens but its aerial extent exceeds that of all other remaining glaciers combined. Published by University of Washington.
NASA Astrophysics Data System (ADS)
Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
The formation of granular fronts in debris flow - A combined experimental-numerical study
NASA Astrophysics Data System (ADS)
Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.
2015-04-01
Granular fronts are amongst the most spectacular features of debris flows, and are also one of the reasons why such events are associated with a strong destructive power. They are usually believed to be the result of the convective mechanism of the debris flow, combined with internal size segregation of the grains. However, the knowledge about the conditions leading to the formation of a granular front is not up to date. We present a combined study with experimental and numerical features that aims at providing insight into the phenomenon. A stationary, long-lived avalanche is created within a rotating drum. In order to mimic the composition of an actual debris flow, the material is composed by a mixture of a plastic fluid, obtained with water and kaolin powder, and a collection of monodisperse spherical particles heavier than the fluid. Tuning the material properties and the drum settings, we are able to reproduce and control the formation of a granular front. To gain insight into the internal mechanism, the same scenario is replicated in a numerical environment, using a coupling technique between a discrete solver for the particles, the Discrete Element Method, and a continuum solver for the plastic fluid, the Lattice-Boltzmann Method. The simulations compare well with the experiments, and show the internal reorganization of the material transport. The formation of a granular front is shown to be favored by a higher drum rotational speed, which in turn forces a higher shear rate on the particles, breaks their internal organization, and contrasts their natural tendency to settle. Starting from dimensional analysis, we generalize the obtained results and are able to draw implications for debris flow research.
Tracking Pyroclastic Flows at Soufrière Hills Volcano
NASA Astrophysics Data System (ADS)
Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Poggi, Pasquale; Williams, Carlisle; Marchetti, Emanuele; Delle Donne, Dario; Ulivieri, Giacomo
2009-07-01
Explosive volcanic eruptions typically show a huge column of ash and debris ejected into the stratosphere, crackling with lightning. Yet equally hazardous are the fast moving avalanches of hot gas and rock that can rush down the volcano's flanks at speeds approaching 280 kilometers per hour. Called pyroclastic flows, these surges can reach temperatures of 400°C. Fast currents and hot temperatures can quickly overwhelm communities living in the shadow of volcanoes, such as what happened to Pompeii and Herculaneum after the 79 C.E. eruption of Italy's Mount Vesuvius or to Saint-Pierre after Martinique's Mount Pelée erupted in 1902.
Vallance, James W.; Iverson, Richard M.
2015-01-01
Lahars occur during volcanic eruptions--or, less predictably, through other processes on steep volcanic terrain--when large masses of water mixed with sediment sweep down and off volcano slopes and commonly incorporate additional sediment and water. Because lahars are water-saturated, both liquid and solid interactions influence their behavior and distinguish them from other related phenomena common to volcanoes, such as debris avalanches and floods. The rock fragments carried by lahars make them especially destructive; the abundant liquid contained in them allows them to flow over gentle gradients and inundate areas far away from their sources. People in such distal areas commonly neither expect the danger nor anticipate the destructive power of lahars.
NASA Astrophysics Data System (ADS)
Kataoka, Kyoko; Nagahashi, Yoshitaka
2017-04-01
Adatara and Bandai volcanoes in the northeast Japan are very close to each other ( 18 km). Bandai volcano is well known for a large-scale debris avalanche following the phreatic eruption in AD1888 that took more than 400 fatalities. Eruptive history consists of at least 6 more debris avalanche events, 3 more phreatic eruptions, 6 lava flows, and 4 Vulcanian/sub-Plinian eruptions during the last 50,000 years revealed by subaerial proximal deposits. Whereas, the eruptive history of Adatara volcano comprises 6 Vulcanian and 5 phreatic eruptions during the last 10,000 years. The most recent eruption occurred in AD1899-1900. The studied sedimentary core (INW2012) was drilled out from Lake Inawashiro-ko, the largest dammed lake in Japan, that was formed by the 50 ka Okinajima debris avalanche event at Bandai volcano. The lake is 94 m deep, and drilling site is located at the central part of the lake ( 90 m deep). In the 28 m long core sequence, in contrast to background lake sediments deposited under a deep offshore environment, very frequent (70) intercalations of event layers are recognized. Eight types of event layers can be recognized: 1) gray muddy layer (Gm), 2) gray sandy layer (Gs), 3) brown muddy layer (Bm), 4) brown sandy layer (Bs), 5) olive-gray muddy layer, 6) pale-brown sandy layer, and 7) yellow sandy layer, and 8) 2011 earthquake-induced turbidite, based on the characteristics of sedimentary facies, petrography, grainsize, mineral assemblages (XRD) and vertical variation of chemistry (micro-XRF). There are many tephra-fall layers but most of them are extra-basinal origin, i.e., of other volcanoes than Adatara and Bandai. Gm is usually a few millimeters to centimeters thick, blue-gray color, homogenized, and finer than background sediments. Gs is accompanied with coarser subunits and thicker than Gm. Especially, Gm/Gs contain pyrite, sulfate minerals and smectite, and are characterized by high sulfur contents. Bm and Bs are 1 to 6 cm thick and are normally graded with a sharp erosive base. Fresh glass shards and organic material are commonly present. The gray units (Gm/Gs) can be correlated with muddy lahars (cohesive debris flows/mudflows) in the Sukawa River catchment of Adatara volcano. High-sulfur contents indicate syn- or post-eruptive lahars in relation with phreatic eruptions or degradation of hydrothermally altered source rocks nearby the crater. The brown units (Bm/Bs) are thicker than those of gray units that suggest more proximal origin. The fresh glass shards and chemistry of those shards in brown units are unlikely to be reworking of pre-existing old tephra deposits, and therefore the events are attributed to magmatic eruption-fed density currents from Bandai. Since depositional rates of background lake sediments are stable, the frequent eruption-related events both from Adatara and Bandai volcanoes can be well dated. These event deposits reveal unknown eruptive history of Adatara and Bandai as they were more active during the last 50,000 years than previously known. Appropriate evaluation for small-scale but high frequent eruptions and their risk assessments are necessary for Inawashiro Town (15,000 population) located at the foot/downstream of the volcanoes.
NASA Astrophysics Data System (ADS)
Arnaud-Fassetta, Gilles; Lissak, Candide; Fort, Monique; Bétard, François; Carlier, Benoit; Cossart, Etienne; Madelin, Malika; Viel, Vincent; Charnay, Bérengère; Bletterie, Xavier
2014-05-01
In the upper, wider reaches of Alpine valleys, shaping of active channels is usually subject to rapid change. It mostly depends upon hydro-climatic variability, runoff concentration and sediment supply, and may result in alternating sequences of fluvial and debris-flow pulses, as recorded in alluvial fans and terraces. Our study, carried in the frame of SAMCO (ANR) project, focuses on the upper Guil River Valley (Queyras, Southern French Alps) cut into the slaty shale "schistes lustrés". Steep, lower order drains carry a contrasted solid discharge, including predominantly sandy-loam particles mixed with gravels and boulders (sandstone schists, ophiolites). Abundant sediment supply by frost shattering, snow avalanche and landslides is then reworked during snowmelt or summer storm runoff events, and may result in catastrophic, very destructive floods along the main channel, as shown by historical records. Following the RI-30 year 2000 flood, our investigations included sediment budgets, i.e. balance of erosion and deposition, and the mapping of the source, transport and storage of various sediments (talus, colluvium, torrential fans, terraces). To better assess sediment fluxes and sediment delivery into the main channel network, we implemented tracers (pit-tags) in selected sub-catchments, significantly contributing to the sediment yield of the valley bottoms during the floods and/or avalanches: Maloqueste, Combe Morel, Bouchouse and Peyronnelle catchments. The first three are direct tributaries of the Guil River whereas the Peyronnelle is a left bank tributary of the Peynin River, which joins the Guil River via an alluvial cone with high human and material stakes. The Maloqueste and the Combe Morel are two tributaries facing each other in the Guil valley, representing a double lateral constraint for the road during flood events of the Guil River. After pit-tag initialisation in laboratory, we set them up along the four tributaries: Maloqueste (20 pit-tags), Combe Morel (20 pit-tags), Bouchouse (40 pit-tags), Peyronnelle (100 pit-tags). All pit-tags were installed high upstream enough in each catchment to avoid their loss and/or burying, and permit their monitoring over several years. The grain size (D50 = 30-220 cm) of the selected blocks reflects the average size of the bed load. Smaller blocks were discarded to avoid losing their track from the first event. The blocks were positioned according to two logics: (i) Longitudinally, we implemented every 20-30 m a series of nested blocks into the channel; (ii) Transversally, we selected blocks placed in low and high position to quantify the transport dynamics during events of low (torrential) and high (debris flow) magnitude. The sites were mapped at high resolution, and blocks were spotted thanks to fluorescent painting, GPS surveys and detailed photographs. We emplaced the pit-tags in September 2013, before expected avalanches and debris flows during winter and spring 2014. Pit-tags detection, Lidar and photogrammetric surveys are planned for early summer 2014, during which we expect quantifying movement, distance and sorting of blocks along the thalwegs during "ordinary" snowmelt runoff. We intend to continue this monitoring long enough to put observed current and future dynamics in relation to short-term climatic changes.
Early warning, warning or alarm systems for natural hazards? A generic classification.
NASA Astrophysics Data System (ADS)
Sättele, Martina; Bründl, Michael; Straub, Daniel
2013-04-01
Early warning, warning and alarm systems have gained popularity in recent years as cost-efficient measures for dangerous natural hazard processes such as floods, storms, rock and snow avalanches, debris flows, rock and ice falls, landslides, flash floods, glacier lake outburst floods, forest fires and even earthquakes. These systems can generate information before an event causes loss of property and life. In this way, they mainly mitigate the overall risk by reducing the presence probability of endangered objects. These systems are typically prototypes tailored to specific project needs. Despite their importance there is no recognised system classification. This contribution classifies warning and alarm systems into three classes: i) threshold systems, ii) expert systems and iii) model-based expert systems. The result is a generic classification, which takes the characteristics of the natural hazard process itself and the related monitoring possibilities into account. The choice of the monitoring parameters directly determines the system's lead time. The classification of 52 active systems moreover revealed typical system characteristics for each system class. i) Threshold systems monitor dynamic process parameters of ongoing events (e.g. water level of a debris flow) and incorporate minor lead times. They have a local geographical coverage and a predefined threshold determines if an alarm is automatically activated to warn endangered objects, authorities and system operators. ii) Expert systems monitor direct changes in the variable disposition (e.g crack opening before a rock avalanche) or trigger events (e.g. heavy rain) at a local scale before the main event starts and thus offer extended lead times. The final alarm decision incorporates human, model and organisational related factors. iii) Model-based expert systems monitor indirect changes in the variable disposition (e.g. snow temperature, height or solar radiation that influence the occurrence probability of snow avalanches) or trigger events (e.g. heavy snow fall) to predict spontaneous hazard events in advance. They encompass regional or national measuring networks and satisfy additional demands such as the standardisation of the measuring stations. The developed classification and the characteristics, which were revealed for each class, yield a valuable input to quantifying the reliability of warning and alarm systems. Importantly, this will facilitate to compare them with well-established standard mitigation measures such as dams, nets and galleries within an integrated risk management approach.
NASA Astrophysics Data System (ADS)
Esposito, C.; Bianchi-Fasani, G.; Martino, S.; Scarascia-Mugnozza, G.
2013-10-01
This paper focuses on a study aimed at defining the role of geological-structural setting and Quaternary morpho-structural evolution on the onset and development of a deep-seated gravitational slope deformation which affects the western slope of Mt. Genzana ridge (Central Apennines, Italy). This case history is particularly significant as it comprises several aspects of such gravitational processes both in general terms and with particular reference to the Apennines. In fact: i) the morpho-structural setting is representative of widespread conditions in Central Apennines; ii) the deforming slope partially evolved in a large rockslide-avalanche; iii) the deformational process provides evidence of an ongoing state of activity; iv) the rockslide-avalanche debris formed a stable natural dam, thus implying significant variations in the morphologic, hydraulic and hydrogeological setting; v) the gravitational deformation as well as the rockslide-avalanche reveal a strong structural control. The main study activities were addressed to define a detailed geological model of the gravity-driven process, by means of geological, structural, geomorphological and geomechanical surveys. As a result, a robust hypothesis about the kinematics of the process was possible, with particular reference to the identification of geological-structural constraints. The process, in fact, involves a specific section of the slope exactly where a dextral transtensional structure is present, thus implying local structural conditions that favor sliding processes: the rock mass is intensively jointed by high angle discontinuity sets and the bedding attitude is quite parallel to the slope angle. Within this frame the gravitational process can be classified as a structurally constrained translational slide, locally evolved into a rockslide-avalanche. The activation of such a deformation can be in its turn related to the Quaternary morphological evolution of the area, which was affected by a significant topographic stress increase, testified by stratigraphic and morphologic evidence.
Modeling the GLOF Hazard Process Chain at Imja Lake in the Nepal Himalaya
NASA Astrophysics Data System (ADS)
Lala, J.; McKinney, D. C.; Rounce, D.
2017-12-01
The Hindu Kush-Himalaya region contains more glacial ice than any other non-polar region on earth. Many glacial lakes in Nepal are held in place by natural moraine dams, which are inherently unstable. Avalanches or landslides entering glacial lakes can cause tsunami-like waves that can overtop the moraines and trigger glacial lake outburst floods (GLOF). Mass loss at the Imja glacier is the highest in the Mount Everest region, and contributes to the expansion of Imja Tsho, a lake with several villages downstream. A GLOF from the lake might destroy both property and human life, making an understanding of flood triggering processes beneficial for both the downstream villages and other GLOF-prone areas globally. The process chain for an avalanche-induced GLOF was modeled numerically. The volume and velocity of debris from avalanches entering various future lake extents were calculated using RAMMS. Resulting waves and downstream flooding were simulated using BASEMENT to evaluate erosion at the terminal moraine. Wave characteristics in BASEMENT were validated with empirical equations to ensure the proper transfer of momentum from the avalanche to the lake. Moraine erosion was determined for two geomorphologic scenarios: a site-specific scenario using field samples, and a worst-case scenario based on past literature. Both cases resulted in no flooding outside the river channel at downstream villages. Worst-case scenario geomorphology resulted in increased channelization of the lake outlet and some moraine erosion but no catastrophic collapse. Site-specific data yielded similar results but with even less erosion and downstream discharge. While the models confirmed that Imja Tsho is unlikely to produce a catastrophic GLOF in the near future, they also highlight the importance of continued monitoring of the lake. Furthermore, the ease and flexibility of these methods allows for their adoption by a wide range of stakeholders for modeling other high-risk lakes.
NASA Astrophysics Data System (ADS)
Siebe, Claus; Salinas, Sergio; Arana-Salinas, Lilia; Macías, José Luis; Gardner, James; Bonasia, Rosanna
2017-03-01
The White Pumice (WP) is one of the thickest and most voluminous Plinian fallouts produced by Popocatépetl volcano in central Mexico during the Late Pleistocene-Holocene. Its eruption 23,500 14C y BP (27,800 cal BP) was triggered by the catastrophic failure of the SW flank of the volcano. The resulting debris avalanche was highly mobile reaching 72 km from the cone with an apparent coefficient of friction (L/H) of 0.06. The deposit covers an area of 1200 km2, and has a volume of 10.4 km3. This gigantic landslide, characterized by exceptionally large proximal hummocks (> 400 m) provoked the sudden decompression of the hydrothermal and magmatic systems, which produced an initial blast followed by the rise of a Plinian column that reached an altitude of 33 km. The isopach map allows the recognition of a dispersal axis pointing toward the south, where an area of 2490 km2 was covered by > 10 cm of pumice and ash. The total volume of the pumice fallout was estimated at 1.9 km3 DRE (Dense Rock Equivalent). Pumice clasts are dacitic (62-66 wt.% SiO2, anhydrous basis), highly vesicular (55-88 vol.%) and display a seriate texture with phenocrysts of plagioclase + hornblende + augite + hypersthene + oxides (Ti-magnetite and ilmenite) + apatite. As the eruption advanced, discharge rates became more intermittent and the height of the column fluctuated and finally collapsed, generating pumice-and-ash flows that were emplaced around the volcano. This short but intense activity was followed during subsequent years by rain-induced lahars that reached great distances from the volcano. At the same time, more degassed andesitic-dacitic (61-65 wt.% SiO2) magma was erupted effusively (4.4 km3, DRE) in the new horseshoe-shaped 5 km-wide crater from which the Tochimilco lava flow descended toward the SSE, where it inundated an area of 68 km2 and reached as far as 22 km from its source. Since then, multiple eruptions have reconstructed the summit cone, almost completely obliterating the horseshoe-shaped crater. During the course of this catastrophic eruption (VEI = 5) a total volume of 6.3 km3 (DRE) of juvenile magma (pumice and lava) were emitted and at least an additional 10 km3 of pre-existing rocks (debris avalanche) mobilized. It surpasses in magnitude most other known Plinian eruptions from Popocatépetl and can be envisaged as an example of a worst-case scenario for hazard evaluation purposes. It dramatically changed the morphology of the volcano and had profound and far-reaching effects beyond its immediate vicinity along rivers draining surrounding plains as well as on the lacustrine basins (e.g. Chalco) to the NE. A repeat of such an eruption in this densely populated area would certainly cause a major calamity of unprecedented dimensions.
Early warning of orographically induced floods and landslides in Western Norway
NASA Astrophysics Data System (ADS)
Leine, Ann-Live; Wang, Thea; Boje, Søren
2017-04-01
In Western Norway, landslides and debris flows are commonly initiated by short-term orographic rainfall or intensity peaks during a prolonged rainfall event. In recent years, the flood warning service in Norway has evolved from being solely a flood forecasting service to also integrating landslides into its early warning systems. As both floods and landslides are closely related to the same hydrometeorological processes, particularly in small catchments, there is a natural synergy between monitoring flood and landslide risk. The Norwegian Flood and Landslide Hazard Forecasting and Warning Service issues regional landslide hazard warnings based on hydrological models, threshold values, observations and weather forecasts. Intense rainfall events and/or orographic precipitation that, under certain topographic conditions, significantly increase the risk of debris avalanches and debris floods are lately receiving more research focus from the Norwegian warning service. Orographic precipitation is a common feature in W-Norway, when moist and relatively mild air arrives from the Atlantic. Steep mountain slopes covered by glacial till makes the region prone to landslides, as well as flooding. The operational early warning system in Norway requires constant improvement, especially with the enhanced number of intense rainfall events that occur in a warming climate. Here, we examine different cases of intense rainfall events which have lead to landslides and debris flows, as well as increased runoff in fast responding small catchments. The main objective is to increase the understanding of the hydrometeorological conditions related to these events, in order to make priorities for the future development of the warning service.
NASA Astrophysics Data System (ADS)
Beylich, A. A.
2012-04-01
By the combined, longer-term and quantitative recording of relevant denudative slope processes and stream work in four selected catchment systems in sub-arctic oceanic Eastern Iceland (Hrafndalur and Austdalur), arctic-oceanic Swedish Lapland (Latnjavagge) and sub-arctic oceanic Finnish Lapland (Kidisjoki), information on the absolute and relative importance of the different denudative processes is collected. Direct comparison of the four catchment geo-systems (the catchment sizes range from 7 km2 to 23 km2) allows conclusions on major controls of sediment transfers, sedimentary budgets and relief development in theses cold climate environments. To allow direct comparison of the different processes, all mass transfers are calculated as tonnes multiplied by meter per year, i.e. as the product of the annually transferred mass and the corresponding transport distance. Ranking the different processes according to their annual mass transfers shows that stream work dominates over slope denudation. For Hrafndalur (Eastern Iceland) the following order of denudative processes is found after nine years of process studies (2001 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Creep processes, (7) Avalanches, (8) Debris flows, (9) Translation slides, (10) Deflation. Compared to that, in Austdalur the following ranking is given after fourten years of process studies (1996 - 2010): (1) Fluvial suspended sediment plus bedload transport, (2) Fluvial solute transport, (3) Mechanical fluvial slope denudation (slope wash), (4) Chemical slope denudation, (5) Avalanches, (6) Rock falls plus boulder falls, (7) Creep processes, (8) Debris flows, (9) Deflation, (10) Translation slides. In the Latnjavagge catchment (Swedish Lapland) the ranking is (eleven-years period of studies, 1999 - 2010): (1) Fluvial solute transport, (2) Fluvial suspended sediment plus bedload transport, (3) Rock falls plus boulder falls, (4) Chemical slope denudation, (5) Mechanical fluvial slope denudation (slope wash), (6) Avalanches, (7) Creep processes and solifluction, (8) Slush flows, (9) Debris flows, (10) Translation slides, (11) Deflation. In Kidisjoki (Finnish Lapland) the order of processes, as determined after a nine-years period (2001 - 2010) of geomorphic process studies, is: (1) Fluvial solute transport, (2) Chemical slope denudation, (3) Fluvial suspended sediment plus bedload transport, (4) Mechanical fluvial slope denudation, (5) Creep processes, (6) Avalanches and slush flows, (7) Debris flows and slides, (8) Rock and boulder falls, (9) Deflation. As a result, in all four selected cold climate study areas the intensity of contemporary denudative processes and mass transfers is altogether rather low, which is in opposition to the earlier postulated oppinion of a generally high intensity of geomorphic processes in cold climate environments. A direct comparison of the annual mass transfers summarises that there are differences between process intensities and the relative importance of different denudative processes within the four study areas. The major controls of these detected differences are: (i) Climate: The higher annual precipitation along with the larger number of extreme rainfall events and the higher frequency of snowmelt and rainfall generated peak runoff events in Eastern Iceland as compared to Swedish Lapland and Finnish Lapland lead to higher mass transfers, (ii) Lithology: The low resistance of rhyolites in Hrafndalur causes especially high weathering rates and connected mass transfers in this catchment. Due to the lower resistance of the rhyolites as compared to the basalts found in Austdalur Postglacial modification of the glacially formed relief is clearly further advanced in Hrafndalur as compared to Austdalur, (iii) Relief: The greater steepness of the Icelandic catchments leads to higher mass transfers here as compared to Latnjavagge and Kidisjoki, (iv) Vegetation cover: The significant disturbance of the vegetation cover by human impacts in Easter Iceland causes higher mass transfers (slope wash) whereas restricted sediment availability is a main reason for lower mass transfers in Swedish Lapland and Finnish Lapland. The applied catchment-based approach seems to be effective for analysing sediment budgets and trends of Postglacial relief development in selected study areas with given environmental settings. Direct comparison of investigated catchments will improve possibilities to model relief development as well as possible effects of projected climate change in cold climate environments.
The formation and failure of natural dams
Costa, J.E.; Schuster, R.L.
1987-01-01
Of the numerous kinds of dams that form by natural processes, dams formed from landslides, glacial ice, and neoglacial moraines present the greatest threat to people and property. The most common types of mass movements that form landslide dams are rock and debris avalanches, rock and soil slumps and slides, and mud, debris, and earth flows. The most common initiation mechanisms for dam-forming landslides are excessive rainfall and snowmelt and earthquakes. Landslide dams can be classified into six categories based on their relation with the valley floor. Type I dams (11%) of the 81 landslide dams around the world that were classifed do not reach from one valley side to the other. Type II dams (44%) span the entire valley flood, occasionally depositing material high up on opposite valley sides. Type III dams (41%) move considerable distances both upstream and downstream from the landslide failure. Type IV dams (1%) are rare and involve the contemporaneous failure of material from both sides of a valley. Type V dams (1%) are also rare, and are created when a single landslide sends multiple tongues of debris into a valley forming two or more landslide dams in the same surfaces, that extend under the stream or valley and emerge on the opposite valley side. Many landslide dams fail shortly after formation. Overtopping is by far the most common cause of failure. Glacial ice dams can produce at least nine kinds of ice-dammed lakes. The most dangerous are lakes formed in main valleys dammed by tributary glaciers. Failure can occur by erosion of a drainage tunnel under or through the ice dam or by a channel over the ice dam. Cold polar ice dams generally drain supraglacially or marginally by downmelting of an outlet channel. Warmer temperate-ice dams tend to fail by sudden englacial or subglacial breaching and drainage. Late neoglacial moraine-dammed lakes are located in steep mountain areas affected by the advances and retreats of valley glaciers in the last several centuries. The most common reported failure mechanism is overtopping and breaching by a wave or series of waves in the lake, generated by icefalls, rockfalls, or snow or rock avalanches. Melting of ice-cores or frozen ground and piping and seepage are other possible failure mechanisms. (Lantz-PTT)
2017-01-02
Impact craters expose the subsurface materials on steep slopes. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust. The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events. http://photojournal.jpl.nasa.gov/catalog/PIA14454
NASA Astrophysics Data System (ADS)
Geertsema, Marten
2016-04-01
The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.
Volcano Hazards - A National Threat
,
2006-01-01
When the violent energy of a volcano is unleashed, the results are often catastrophic. The risks to life, property, and infrastructure from volcanoes are escalating as more and more people live, work, play, and travel in volcanic regions. Since 1980, 45 eruptions and 15 cases of notable volcanic unrest have occurred at 33 U.S. volcanoes. Lava flows, debris avalanches, and explosive blasts have invaded communities, swept people to their deaths, choked major riverways, destroyed bridges, and devastated huge tracts of forest. Noxious volcanic gas emissions have caused widespread lung problems. Airborne ash clouds have disrupted the health, lives, and businesses of hundreds of thousands of people; caused millions of dollars of aircraft damage; and nearly brought down passenger flights.
Geologic Map of the Katmai Volcanic Cluster, Katmai National Park, Alaska
Hildreth, Wes; Fierstein, Judy
2002-01-01
This digital publication contains all the geologic map information used to publish U.S. Geological Survey Geologic Investigations Map Series I-2778 (Hildreth and Fierstein, 2003). This is a geologic map of the Katmai volcanic cluster on the Alaska Peninsula (including Mount Katmai, Trident Volcano, Mount Mageik, Mount Martin, Mount Griggs, Snowy Mountain, Alagogshak volcano, and Novarupta volcano), and shows the distribution of ejecta from the great eruption of June, 1912 at Novarupta. Widely scattered erosional remnants of volcanic rocks, unrelated to but in the vicinity of the Katmai cluster, are also mapped. Distribution of glacial deposits, large landslides, debris avalanches, and surficial deposits are a snapshot of an ever-changing landscape.
New views of granular mass flows
Iverson, R.M.; Vallance, J.W.
2001-01-01
Concentrated grain-fluid mixtures in rock avalanches, debris flows, and pyroclastic flows do not behave as simple materials with fixed rheologies. Instead, rheology evolves as mixture agitation, grain concentration, and fluid-pressure change during flow initiation, transit, and deposition. Throughout a flow, however, normal forces on planes parallel to the free upper surface approximately balance the weight of the superincumbent mixture, and the Coulomb friction rule describes bulk intergranular shear stresses on such planes. Pore-fluid pressure can temporarily or locally enhance mixture mobility by reducing Coulomb friction and transferring shear stress to the fluid phase. Initial conditions, boundary conditions, and grain comminution and sorting can influence pore-fluid pressures and cause variations in flow dynamics and deposits.
NASA Astrophysics Data System (ADS)
Ragettli, S.; Pellicciotti, F.; Immerzeel, W.
2014-12-01
In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.
Consequence assessment of large rock slope failures in Norway
NASA Astrophysics Data System (ADS)
Oppikofer, Thierry; Hermanns, Reginald L.; Horton, Pascal; Sandøy, Gro; Roberts, Nicholas J.; Jaboyedoff, Michel; Böhme, Martina; Yugsi Molina, Freddy X.
2014-05-01
Steep glacially carved valleys and fjords in Norway are prone to many landslide types, including large rockslides, rockfalls, and debris flows. Large rockslides and their secondary effects (rockslide-triggered displacement waves, inundation behind landslide dams and outburst floods from failure of landslide dams) pose a significant hazard to the population living in the valleys and along the fjords shoreline. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected more than 230 unstable slopes with significant postglacial deformation. This large number necessitates prioritisation of follow-up activities, such as more detailed investigations, periodic displacement measurements, continuous monitoring and early-warning systems. Prioritisation is achieved through a hazard and risk classification system, which has been developed by a panel of international and Norwegian experts (www.ngu.no/en-gb/hm/Publications/Reports/2012/2012-029). The risk classification system combines a qualitative hazard assessment with a consequences assessment focusing on potential life losses. The hazard assessment is based on a series of nine geomorphological, engineering geological and structural criteria, as well as displacement rates, past events and other signs of activity. We present a method for consequence assessment comprising four main steps: 1. computation of the volume of the unstable rock slope; 2. run-out assessment based on the volume-dependent angle of reach (Fahrböschung) or detailed numerical run-out modelling; 3. assessment of possible displacement wave propagation and run-up based on empirical relations or modelling in 2D or 3D; and 4. estimation of the number of persons exposed to rock avalanches or displacement waves. Volume computation of an unstable rock slope is based on the sloping local base level technique, which uses a digital elevation model to create a second-order curved surface between the mapped extent of the unstable rock slope. This surface represents the possible basal sliding surface of an unstable rock slope. The elevation difference between this surface and the topographic surface estimates the volume of the unstable rock slope. A tool has been developed for the present study to adapt the curvature parameters of the computed surface to local geological and structural conditions. The obtained volume is then used to define the angle of reach of a possible rock avalanche from the unstable rock slope by using empirical derived values of angle of reach vs. volume relations. Run-out area is calculated using FlowR; the software is widely used for run-out assessment of debris flows and is adapted here for assessment of rock avalanches, including their potential to ascend opposing slopes. Under certain conditions, more sophisticated and complex numerical run-out models are also used. For rock avalanches with potential to reach a fjord or a lake the propagation and run-up area of triggered displacement waves is assessed. Empirical relations of wave run-up height as a function of rock avalanche volume and distance from impact location are derived from a national and international inventory of landslide-triggered displacement waves. These empirical relations are used in first-level hazard assessment and where necessary, followed by 2D or 3D displacement wave modelling. Finally, the population exposed in the rock avalanche run-out area and in the run-up area of a possible displacement wave is assessed taking into account different population groups: inhabitants, persons in critical infrastructure (hospitals and other emergency services), persons in schools and kindergartens, persons at work or in shops, tourists, persons on ferries and so on. Exposure levels are defined for each population group and vulnerability values are set for the rock avalanche run-out area (100%) and the run-up area of a possible displacement wave (70%). Finally, the total number of persons within the hazard area is calculated taking into account exposure and vulnerability. The method for consequence assessment is currently tested through several case studies in Norway and, thereafter, applied to all unstable rock slopes in the country to assess their risk level. Follow-up activities (detailed investigations, periodic displacement measurements or continuous monitoring and early-warning systems) can then be prioritized based on the risk level and with a standard approach for whole Norway.
NASA Astrophysics Data System (ADS)
Michoud, Clément; Derron, Marc-Henri; Baumann, Valérie; Jaboyedoff, Michel; Rune Lauknes, Tom
2013-04-01
About 2'230 vehicles per day pass through the National Road 7 that link Buenos Aires to Santiago de Chile, crossing Andes Cordillera. This extremely important corridor, being the most important land pass between Argentina and Chile, is exposed to numerous natural hazards, such as snow avalanches, rockfalls and debris flows and remains closed by natural hazards several days per year. This goal of this study is to perform a regional mapping of geohazard susceptibilities along the Road 7 corridor, as started by Baumann et al. (2005), using modern remote sensing and numerical approaches with field checking. The area of interest is located in the Mendoza Province, between the villages Potrerillos and Las Cuevas near the Chilean border. The diversity of soil and rock conditions, the active geomorphological processes associated to post-glacial decompression, seasonal freeze and thaw and severe storms along the road corridor, increase the risk to natural hazard. With the support of the European Space Agency (ESA Category-1 Project 7154), we have in this study processed a large number of ERS and Envisat ASAR scenes, covering the period from 1995 to 2000. We applied both the small-baseline (SB) and the persistent scatterer (PSI) multi-temporal interferometric SAR (InSAR) techniques. The study area contains sparse vegetation, and the SB InSAR method is therefore well suited to map the area containing mainly distributed scatterers. Furthermore, PSI algorithms are also used for comparison for selected landslides in the inventory. Both approaches show a relatively good coherence within mountain areas, which is a good point for the landslide detections along the road. Indeed, the authors identified several large slope instabilities even active scree deposits. This inventory is finally compared with field observations and with existing susceptibility maps regarding snow avalanches, debris-flows and rockfalls. The final objective of this project is to develop a risk strategy that will help local authorities to manage the risk along this highway and also to provide guidelines.
NASA Astrophysics Data System (ADS)
Carto, Shannon L.; Eyles, Nick
2012-06-01
Neoproterozoic 'Avalonian-Cadomian' volcanic arc basins once lay peripheral to Gondwana and are now found around the North Atlantic Ocean in New England, Atlantic Canada and northwestern Europe as 'peri-Gondwanan terranes.' Their thick (up to 9 km) marine fills are dominated by turbidites, debrites (diamictites and variably graded conglomerates), slumps and olistostromes recording the dominance of mass flow processes in arc basins oversupplied with volcaniclastic sediment. Several diamictite horizons in these basins were identified as glacial tillites more than one hundred years ago on the basis of poor textural sorting, and the lack of any understanding of mass flow processes. An association with thin-bedded turbidite facies, then interpreted as glaciolacustrine varvites, was seen as evidence for widespread glacial conditions which is still the basis today of a near global 'Gaskiers glaciation' at c. 580 Ma, despite classic sedimentological work which shows that the 'tillites' and 'varvites' of these basins are deep marine sediment gravity flow deposits. Only in two basins (Gaskiers Formation, Avalon Peninsula in Newfoundland, and the Konnarock Formation of Virginia) is a distal and regionally-restricted glacial influence on marine sedimentation identified from ice-rafted, striated dropstones in turbidites but terrestrial 'ice-contact' facies are absent. As revealed in this study, terrestrial glacial facies may not have survived frequent volcanic activity such as seen today on glaciated active plate margin volcanoes such as Mount Rainier in Washington USA, and Cotopaxi Volcano in Ecuador where primary glacial sediment is frequently reworked by lahars, pyroclastic flows, debris avalanches and outburst floods. The weight of evidence presented in this study indicates that ice covers during the Gaskiers glaciation were not widespread across the Avalonian-Cadomian back arc basins; the deep marine Grenada Basin (Caribbean Sea) filled with turbidites, debrites (lahars) and debris avalanches from the adjacent Lesser Antilles Arc is identified here as a modern analogue for these ancient basins.
GLORIA mosaic of the U. S. Hawaiian exclusive economic zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torresan, M.E.
1990-06-01
Digital long-range side-scan sonar reconnaissance surveys using GLORIA have imaged about 65% of the nearly 2.4 million km{sup 2} of the Hawaiian EEZ. The images have been processed and compiled into one mosaic that comprises the EEZ area surrounding the principal Hawaiian islands (from Hawaii to Kauai); extending on the south side of the ridge west to Kure Island, and on the north side to St. Rogatien Bank. The GLORIA images depict a variety of features that include enormous slumps and debris avalanches, lava flows, seafloor spreading fabric, fracture zones, seamounts, and unusual sedimentation patterns with more detail than previouslymore » had been possible with typical seismic reflection techniques. Some of these features were unknown before the GLORIA surveys. In particular, the GLORIA images show that the major degradational processes that affect the island and ridge areas are massive, likely tsunamogenic, blocky debris avalanches and slumps. These failures mantle the flanks of the ridge; some extending across the trough and up on to the Hawaiian Arch (up to 230 km from their sources). Over 30 failures are identified, ranging in area from 250 to > 6,000 km{sup 2} and having volumes from 500 to > 5,000 km{sup 3}. Such deposits cover > 125,000 km{sup 3} of the Ridge and adjacent seafloor. Also imaged are large Cenozoic submarine volcanic flow fields situated on the Hawaiian Arch. One such field, the North Arch field, is located north of Oahu between the Molokai and Murray fracture zones, and covers about 200,000 km{sup 2}. Prior to the GLORIA imagery only a small portion of this flow field was mapped. In addition, the imagery depicts the finer details of the Molokai and Murray fracture zones, the Cretaceous seafloor spreading fabric, and tensional faults on the Hawaiian Arch.« less
Seamount subduction underneath an accretionary wedge: modelling mass wasting and wedge collapse
NASA Astrophysics Data System (ADS)
Mannu, Utsav; Ueda, Kosuke; Willett, Sean; Gerya, Taras; Strasser, Michael
2017-04-01
Seamounts (h >1 km) and knolls (h = 500 m-1000 m) cover about one-fifth of the total ocean floor area. These topographical highs of the ocean floor eventually get subducted. Subduction of these topographical features leads to severe deformation of the overriding plate and can cause extensive tectonic erosion and mass wasting of the frontal prism, which can ultimately cause a forearc wedge collapse. Large submarine landslides and the corresponding wedge collapse have previously been reported, for instance, in the northern part of the Hikurangi margin where the landslide is known as the giant Ruatoria debris avalanche, and have also been frequently reported in several seismic sections along the Costa Rica margin. Size and frequency relation of landslides suggest that the average size of submarine landslides in margins with rough subducting plates tends to be larger. However, this observation has not yet been tested or explained by physical models. In numerical subduction models, landslides take place, if at all, on a much larger timescale (in the order of 104-105 years, depending on the time steps of the model) than in natural cases. On the other hand, numerical models simulating mass wasting events such as avalanches and submarine landslides, typically model single events at a much smaller spatio-temporal domain, and do not consider long-term occurrence patterns of freely forming landslides. In this contribution, we present a multi-scale nested numerical approach to emulate short-term landslides within long-term progressive subduction. The numerical approach dynamically produces instantaneous submarine landslides and the resulting debris flow in the spatially and temporally refined inner model. Then we apply these convoluted changes in topography (e.g. due to the submarine landslide etc.) back to an outer larger-scale model instance that addresses wedge evolution. We use this approach to study the evolution of the accretionary wedge during seamount subduction.
Implications of new stratigraphic data on volcanic hazard assessment for Nisyros volcano, Greece
NASA Astrophysics Data System (ADS)
Volentik, A.; Vanderkluysen, L.; Principe, C.; Hernandez, J.; Hunziker, J. C.
2003-04-01
The active quaternary Nisyros volcano, at the eastern end of the Aegean volcanic arc, is composed of a succession of lava flows, tephra layers and interbedded epiclastic deposits. The volcano is topped by a recent caldera, on average 4 km in diameter and 200 m in depth. A detailed geological map including 35 stratigraphic units (lava flows, tephra layers and epiclastic deposits) has been recently completed at the 1:10'000 scale, based on new stratigraphical data. Based on the identification of new plinian sequences (Lakki and Melisseri pyroclastic series) in the lowermost section of the reconstructed stratigraphical succession, on the re-interpretation of previously described deposits and on the discovery of eruptive facies, we construct a set of hazard maps for volcanic events at Nisyros. Sequences of sub-marine lavas to subaerial epiclastites combined with the occurrence of a marine terrace deposit in the north-western sector of the island highlight the potential for rapid vertical movements, in particular in the area of Mandraki. A period of intense off-centred strombolian to phreatomagmatic activity occurred in quite recent times on Nisyros along the major tectonic trends (N^o030, No070, N^o120 and N^o340), building up several scoria cones and tuff cones all around the island. A number of these tectonic trends are still active, as demonstrated by faults cutting through recent deposits (including the youngest deposits of the hydrothermal eruptions, inside the present caldera of Nisyros). This implies that not only intra-caldera phreatic eruptions, but also potential magmatic eruption may occur along the island’s major zones of weakness, with increased hazards where magma/water interaction may take place. Finally a newly recognized debris avalanche deposit (the so-called Vunàri debris avalanche), affecting a wide sector in the northern part of the island, unveils a new type of volcanic hazard on Nisyros, related to flank collapse and destruction of the volcanic edifice.
NASA Astrophysics Data System (ADS)
Ivanik, Olena; Shevchuk, Viktor; Yahno, Evgen
2016-04-01
Mechanisms and factors of formation of landslide and debris flow processes are examined in terms of model objects in the Carpathians. The study area is within Eastern Carpathians and Transcarpathian depression (Tisa river basin). There were investigated more than 220 stabilized and active landslides. The analysis of water-gravitational processes in this region with complex heterogeneous geological structure confirmed the priority nature of occurrence of structural landslides in rheologically different geological environments, and made it possible to create a new classification of structural landslides and conditions of their formation with the decisive influence of destructive zones. This classification is the basis for constructing geological, physical and mathematical models of landslide slopes, and subsequent modeling of the landslide hazard based on the determination of the stress-strain state of slopes. Under the proposed mathematical model, the examined phenomenon is described as thermoelastic-plastic equilibrium of the isotropic matrix under effect of applied mass (gravitational field of the Earth) and surface efforts, inhomogeneous stationary temperature field. In addition, it is assumed that the Young modulus at each point of the matrix depends on the water saturation. Debris and mudflows in the Carpathians have a stage character, non-stationary and avalanche movements. The territory is prone to be affected by debris and mudflows, due to the geological, geomorphological and climatic conditions. Therefore the main conditions of the mudflow formation are as follows: the presence of the rock destruction products which could be a solid phase of debris mudflow; presence of the enough quantity of the rainfall runoff for the unconsolidated material removal; ruggedness of relief that provides simultaneous movement of the big values of the water-soil mass with the big velocities. The algorithm calculating the mudflow impact on infrastructure objects in Carpathians has been developed. It based on the empiric data and fundamental hydrodynamic lows, on formula Bernoulli in particular. Using this formula we obtain the expression for the impingement hydrodynamic pressure:
An overview of recent large landslides in northern British Columbia, Canada.
NASA Astrophysics Data System (ADS)
Geertsema, M.; Clague, J. J.; Schwab, J. W.; Evans, S. G.
2003-04-01
Within the last few decades, at least twenty-four, long-runout rapid landslides, each in excess of 1 million m^3, have occurred in northern British Columbia. Fifteen of the landslides have happened within the last 10 years alone. The landslides include low- gradient rapid flowslides in cohesive sediments, rock avalanches, and complex rock slide - flowslides and rock slide - debris flows. The flowslides have occurred in a variety of sediments, including glaciolacustrine deposits, clay-rich tills, and clay-rich colluvium. The rock failures have involved weak shales overlain by sandstone, and volcanic rocks. We are cataloguing these landslides in a compendium of natural hazards for northern British Columbia. Pre- and post-landslide aerial photographs have been obtained for fifteen of the landslides, and detailed topographic maps have been generated from these photographs. In addition we have determined soil properties, including Atterberg tests for six of the flowslides. The rock avalanches occur in three types of settings: (1) dip slopes in sedimentary rocks in the Rocky Mountain foothills; (2) escarpments of flat-lying sedimentary rocks where spreading is happening; and (3) unstable cirque walls. Infrastructure and resources at risk from these types of large landslides include settlements, forest roads and highways, pipelines, fish habitat, forests, and farmland. One rock avalanche terminated within 2 km of the Alaska Highway, and a rock slide came within a few kilometres of a farm house. Most of these landslides have impounded streams or rivers, thus the hazard associated with upstream inundation and catastrophic dam failure must also be considered. There appears to be an increase in the frequency of large landslides in northern British Columbia. Is this due to climate change? Can we expect this trend to continue?
Carrasco-Nunez, Gerardo; Diaz-Castellon, Rodolfo; Siebert, L.; Hubbard, B.; Sheridan, M.F.; Rodriguez, Sergio R.
2006-01-01
The Citlalte??petl-Cofre de Perote volcanic chain forms an important physiographic barrier that separates the Central Altiplano (2500??masl) from the Gulf Coastal Plain (GCP) (1300??masl). The abrupt eastward drop in relief between these provinces gives rise to unstable conditions and consequent gravitational collapse of large volcanic edifices built at the edge of the Altiplano. Eastward sloping substrate, caused by the irregular configuration of the basement rocks, is the dominant factor that controls the direction of collapsing sectors in all major volcanoes in the region to be preferentially towards the GCP. These collapses produced voluminous debris avalanches and lahars that inundated the well-developed drainages and clastic aprons that characterize the Coastal Plain. Large catastrophic collapses from Citlalte??petl, Las Cumbres, and Cofre de Perote volcanoes are well documented in the geologic record. Some of the avalanches and transformed flows have exceptionally long runouts and reach the Gulf of Mexico traveling more than 120??km from their source. So far, no direct evidence has been found for magmatic activity associated with the initiation of these catastrophic flank-collapses. Apparently, instability of the volcanic edifices has been strongly favored by very intense hydrothermal alteration, abrupt topographic change, and intense fracturing. In addition to the eastward slope of the substrate, the reactivation of pre-volcanic basement structures during the Late Tertiary, and the E-W to ENE-SSW oriented regional stress regimes may have played an important role in the preferential movement direction of the avalanches and flows. In addition to magmatic-hydrothermal processes, high amounts of rainfall in the area is another factor that enhances alteration and eventually weakens the rocks. It is very likely that seismic activity may be the principal triggering mechanism that caused the flank collapse of large volcanic edifices in the Eastern Mexican Volcanic Belt. However, critical pore water pressure from extraordinary amounts of rainfall associated with hurricanes or other meteorological perturbation cannot be ruled out, particularly for smaller volume collapses. There are examples in the area of small seismogenic debris flows that have occurred in historical times, showing that these processes are not uncommon. Assessing the stability conditions of major volcanic edifices that have experienced catastrophic sector collapses is crucial for forecasting future events. This is particularly true for the Eastern Mexican Volcanic Belt, where in many cases no magmatic activity was associated with the collapse. Therefore, edifice failure could occur again without any precursory warning. ?? 2006 Elsevier B.V. All rights reserved.
Long-lived structural control of Mt. Shasta's plumbing system illuminated by 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Calvert, A. T.; Christiansen, R. L.
2013-12-01
Mt. Shasta is the largest stratovolcano in the Cascade Arc, surpassed in volume only by the large rear-arc Medicine Lake and Newberry composite volcanoes. Including the material in the ~350 ka debris avalanche, it has produced more than 500 km3 of andesite and dacite from several superimposed central vents over its 700-850 kyr history. Earlier, between at least 970 to 1170 ka, the Rainbow Mountain volcano of similar composition and size occupied this latitude of the arc ~20 km further east. This shift of magmatic focus from within the arc axis (as defined by 6 Ma and younger calc-alkaline centers) to the arc front is poorly understood, but the current center's location appears structurally controlled. Most identifiable volcanic vents on Mt. Shasta lie within 1 km of a N-S line through the active summit cone. 40Ar/39Ar ages of map units occupying the vent alignment range from the Holocene (5×1 ka) current summit dome to at least the Middle Pleistocene (464×9 ka McKenzie Butte). The vast majority of eruptions have issued from central vents (Sargents Ridge, 300-135 ka; Misery Hill, 100-15 ka; and Hotlum, <10 ka), each 500 to 1000m north of its predecessor. A central vent for the pre-avalanche edifice is impossible to locate precisely, but was possibly on the same N-S trend and certainly no more than 4 km to the west, likely south of the Sargents Ridge central vent. ~15 of ~25 mapped flank vents lie on the alignment and the other ten lie west of the line. No identified volcanic vents lie east of the line until >12 km from Mt. Shasta (Ash Creek Butte, 227 ka; Basalt of McCloud River, 38 ka; The Whaleback, 102 ka), and monogenetic and polygenetic centers further east and northeast. From these observations we infer that: (1) magmas are localized along a ~20 km, long-lived, N-S trending structure running through the summit; (2) the upper crustal structure appears impermeable to magmas and resistant to dikes on its eastern side; (3) the western half of the area beneath the volcano appears substantially weaker, as dikes have fed flank vents 10-20 km from the summit over the history of the volcano; and (4) the orientation of the WNW-directed debris avalanche, coincident with the greatest concentration of flank vents, may indicate either structural weakness or failure following emplacement of a cryptodome similar to the 1980 events at Mt. St. Helens.
Hazard Map in Huaraz-Peru due to a Glacial Lake Outburst Flood from Palcacocha Lake
NASA Astrophysics Data System (ADS)
Somos-Valenzuela, M. A.; Chisolm, R. E.; McKinney, D. C.; Rivas, D.
2013-12-01
Palcacocha lake is located in the Ancash Region in the Cordillera Blanca at an elevation of 4,567 m in the Quilcay sub-basin, province of Huaraz, Peru. The lake drains into the Quebrada Cojup, which subsequently drains into the Quilcay River. The Quilcay River passes through the City of Huaraz emptying its water into the Santa River, which is the primary river of the basin. This location has a special interest since the city of Huaraz, which is located at the bottom of the Quilcay sub-basin, was devastated by a glacial lake outburst flood (GLOF) released from Lake Palcacocha on December 13, 1941. In that event, many lost their lives. In recent years Palcacocha has grown to the point where the lake is once again dangerous. Ice/rock avalanches from the steep surrounding slopes can now directly reach the lake. A process chain of debris flow and hyper-concentrated flow from Lake Palcacocha could easily reach the city of Huaraz with the current lake volume. Local authorities and people living in Huaraz are concerned about the threat posed by Lake Palcacocha, and consequently they have requested technical support in order to investigate the impacts that a GLOF could have in the city of Huaraz. To assess the hazard for the city of Huaraz a holistic approach is used that considers a chain of processes that could interact in a GLOF event from Lake Palcacocha. We assume that an avalanche from Palcaraju glacier, located directly above the lake, could be a GLOF trigger, followed by the formation of waves in the lake that can overtop the damming moraine starting an erosive process. The wave and avalanche simulations are described in another work, and here we use those results to simulate the propagation of the inundation downstream using FLO-2D, a model that allows us to include debris flow. GLOF hydrographs are generated using a dam break module in Mike 11. Empirical equations are used to calculate the hydrograph peaks and calibrate the inundation model. In order to quantify the hazard we implement a combination of criteria from different countries (Switzerland, Austria and the U.S.), these criteria consider that the level of flooding hazard in an urban area is a function of the maximum velocity and inundation depth. We have found that 30,000 people, approximately one third of the city of Huaraz, could be affected by a GLOF from Lake Palcacocha.
The 2012 Seti River flood disaster and alpine cryospheric hazards facing Pokhara, Nepal
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey; Leonard, Gregory; Paudel, Lalu; Regmi, Dhananjay; Bajracharya, Samjwal; Fort, Monique; Joshi, Sharad; Poudel, Khagendra; Thapa, Bhabana; Watanabe, Teiji
2014-05-01
We have identified the likeliest cause of the Seti River disaster of May 5, 2012, in which a flash flood killed or left missing 72 people. A cascade of deadly physical Earth processes combined with imprudent habitation on the lowest flood terraces and floodplain. The process cascade started with rockfalls into the Seti River gorge (observed via repeat ASTER imaging). The last rockfall-one to several weeks prior to the disaster-affected a knickpoint in the Seti River gorge and impounded glacial meltwater and spring snowmelt. The trigger was a large rock/ice avalanche originating from cornice ice on Annapurna IV, where part of the mass was channeled into the impoundment reservoir. That violent ground-surge event, plus possibly an air blast caused by a violent gravity flow of airborne debris-then burst the rockfall dam. This was not a glacier lake outburst flood. Glaciers were involved in the disaster by supplying meltwater, which was impounded by the rockfall dam, by triggering the disaster with collapse of cornice ice, and by contributing ice to the landslide and outburst flood. Debuttressing of moraine debris and ancient glacial lake sediment by retreat and thinning of glaciers also may have played a role-this is the only possible indirect link of the disaster to climate change. The rockfall and avalanche mass movements occurred independently of climate change. The narrow and easily blocked Seti River gorge was a key factor in the 2012 disaster, and it remains a unique component of this physiographic setting. A similar flood in this area may happen by a different cascade of Earth surface processes. An enormous mass of ancient unconsolidated glaciolacustrine and moraine sediment-many cubic kilometers-was discovered and is vulnerable to production of debris flows and hyperconcentrated slurry flows. Some aggravating processes occurring in the Sabche Cirque are related to climate change. Glaciers in that area are melting, and small lakes are forming. Although the lakes were not implicated in the 2012 disaster, the possibility exists for a small glacial lake outburst flood to trigger a larger mass movement. Such a debris flow could reach Pokhara directly. More likely, a debris flow in the Sabche Cirque could form another temporary and potentially dangerous impoundment dam in the gorge. Furthermore, the type of rockfall blockage that produced 2012's natural impoundment reservoir is likely to happen repeatedly. Hence, there is a high capacity of the Earth system in this area to produce comparable or even bigger flash floods or mass flows. The likelihood of a further disaster is magnified by imprudent habitation of the river channel and lower floodplain. Of all the changes to the Pokhara Valley, human encroachment on the flood plain is the factor most related to increasing vulnerability, but it is also the one factor that could be remedied by a complete ban on construction on lower terraces, if that is politically feasible. Warning systems could help, but fairly relocating people in jeopardy would be more effective. Supported by NASA/USAID SERVIR Applied Sciences and USAID Climbers' Science.
NASA Astrophysics Data System (ADS)
Nüsser, Marcus; Schmidt, Susanne
2017-04-01
Against the background of the prominent Himalayan glacier debate of the past decade, global concerns were raised about the severe consequences of detected and expected changes in the South Asian cryosphere. Due to the lack of historical glaciological data in the Himalayan region, studies of glacier changes over long time periods are rare. The present study seeks to analyze and quantify glacier changes in the Nanga Parbat region between 1856 and 2016. Due to the steep topography and great vertical span, the debris-covered glaciers of the mountain massif are largely fed by avalanches of different size. This impact of snow and ice re-distribution by avalanches is often neglected in glacier mass-balances. Therefore, an integrated approach was used to investigate the glacier changes and the impact of avalanches. This approach includes (1) a re-photographic survey with images from several expeditions between 1934 and 2010, (2) mapping during own field surveys between 1992 and 2010, as well as (3) the analyses of remote sensing data (Corona, QuickBird, KompSat, Landsat, etc. and DEM) and (4) historical topographic maps. The re-photographic survey allows for direct comparisons and illustrates glacier changes over a span of seventy years. Changes of glacier lengths were quantified by using remote sensing data and the topographic map of 1934. In order to calculate glacier surface changes, a digital elevation model (DEM) with a spatial resolution of 30 x 30 m2 was derived from the digitized contour lines of the topographic map from 1934 and compared to SRTM-DEM (30 x 30 m2) and ALOS-DSM. Based on remote sensing time-series, avalanche deposits on glaciers were mapped in order to identify their magnitude and frequencies. To calculate the potential glacier catchment, area of steep rock walls and the ratio between accumulation and ablation zones were calculated for each glacier basin. Our field based investigations show that the glaciers in the Rupal Valley are characterized by small retreating rates since 1856, when Adolph Schlagintweit mapped them for the first time; others such as the Raikot Glacier on the northern side of the Nanga Parbat are fluctuating since 1934.
NASA Technical Reports Server (NTRS)
Friedman, J. D. (Principal Investigator)
1974-01-01
The author has identified the following significant results. By the end of 1973, aerial infrared scanner traverses for thermal anomaly recordings of all Cascade Range volcanoes were essentially completed. Amplitude level slices of the Mount Baker anomalies were completed and compiled at a scale of 1:24,000, thus producing, for the first time, an accurate map of the distribution and intensity of thermal activity on Mount Baker. The major thermal activity is concentrated within the crater south of the main summit and although it is characterized by intensive solfataric activity and warm ground, it is largely subglacial, causing the development of sizable glacier perforation features. The outgoing radiative flux from the east breach anomalies is sufficient to account for the volume of ice melted to form the glacier perforations. DCP station 6251 has been monitoring a thermally anomalous area on the north slope of Mount Baker. The present thermal activity of Mount Baker accounts for continuing hydrothermal alteration in the crater south of the main summit and recurrent debris avalanches from Sherman Peak on its south rim. The infrared anomalies mapped as part of the experiment SR 251 are considered the basic evidence of the subglacial heating which was the probable triggering mechanism of an avalanche down Boulder Glacier on August 20-21, 1973.
Williams, Richard S.; Ferrigno, Jane G.
1998-01-01
Landsat images, together with maps and aerial photographs, have been used to produce glacier inventories, define glacier locations, and study glacier dynamics in the countries of South America, along with the Andes Mountains. In Venezuela, Colombia, Ecuador, and Bolivia, the small glaciers have been undergoing extensive glacier recession since the late 1800's. Glacier-related hazards (outburst floods, mud flows, and debris avalanches) occur in Colombia, in Ecuador, and associated with the more extensive (2,600 km2) glaciers of Peru. The largest area of glacier ice is found in Argentina and Chile, including the northern Patagonian ice field (about 4,200 km2) and the southern Patagonian ice field (about 13,000 km2), the largest glacier in the Southern Hemisphere outside Antarctica.
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Colleuille, Hervé; Boje, Søren; Sund, Monica; Krøgli, Ingeborg; Devoli, Graziella
2015-04-01
The Norwegian Water Resources and Energy Directorate (NVE) runs a national early warning system (EWS) for shallow landslides in Norway. Slope failures included in the EWS are debris slides, debris flows, debris avalanches and slush flows. The EWS has been operational on national scale since 2013 and consists of (a) quantitative landslide thresholds and daily hydro-meteorological prognosis; (b) daily qualitative expert evaluation of prognosis / additional data in decision to determine warning levels; (c) publication of warning levels through various custom build internet platforms. The effectiveness of an EWS depends on both the quality of forecasts being issued, and the communication of forecasts to the public. In this analysis a preliminary evaluation of landslide forecasts from the Norwegian EWS within the period 2012-2014 is presented. Criteria for categorizing forecasts as correct, missed events or false alarms are discussed and concrete examples of forecasts falling into the latter two categories are presented. The evaluation show a rate of correct forecasts exceeding 90%. However correct forecast categorization is sometimes difficult, particularly due to poorly documented landslide events. Several challenges has to be met in the process of further lowering rates of missed events of false alarms in the EWS. Among others these include better implementation of susceptibility maps in landslide forecasting, more detailed regionalization of hydro-meteorological landslide thresholds, improved prognosis on precipitation, snowmelt and soil water content as well as the build-up of more experience among the people performing landslide forecasting.
The rockfall observatory in the Reintal, Wetterstein Massif, German Alps
NASA Astrophysics Data System (ADS)
Schöpa, Anne; Turowski, Jens M.; Hovius, Niels
2017-04-01
The Reintal is an Alpine valley in the Wetterstein Massif close to the Zugspitze, Germany's highest mountain. Due to the variety of active geomorphic processes, including rockfalls off the steep limestone cliffs, debris flows, and snow avalanches, and the river Partnach, the Reintal has been the field area of many geomorphological and hydrological research campaigns over the last few decades. In 2014, the Geomorphology Section of the GFZ Potsdam started to install a monitoring network to detect and classify rockfalls in the Reintal. The network includes six seismic stations, optical and infrared cameras, and two weather stations measuring air and rock temperature, air pressure and relative humidity, precipitation, wind speed and direction, and solar radiation. The continuous observations of the network are supplemented by repeated field campaigns including terrestrial laser scans of a prominent rockfall niche at the Hochwanner mountain. The about 1,500 m high north face of the Hochwanner experienced the detachment of a 2.8 Mio m3 rockfall about 500 years ago that created the so-called Steingerümpel (German for rock debris deposit) and dammed the river Partnach. The cliff still shows high rockfall activity, and an 80,000 m3 block can be expected to fall in the near future. In this contribution, the layout of the observatory and details of the seismic network centered around the Hochwanner north face are described. Furthermore, the network data of a severe thunderstorm event in June 2016, that triggered many rockfalls and debris flows in the Reintal, is presented.
Numerical modeling and characterization of rock avalanches and associated seismic signal
NASA Astrophysics Data System (ADS)
Moretti, L.; Mangeney, A.; Capdeville, Y.; Stutzmann, E.; Lucas, A.; Huggel, C.; Schneider, D.; Crosta, G. B.; Bouchut, F.
2012-04-01
Gravitational instabilities, such as landslides, avalanches or debris flows play a key role in erosion processes and represent one of the major natural hazards in mountainous, coastal or volcanic regions. Despite the great amount of field, experimental and numerical work devoted to this problem, the understanding of the physical processes at work in gravitational flow is still an open issue, in particular due to the lack of observations relevant to their dynamics. In this context, the seismic signal generated by gravitational flows is a unique opportunity to get information on their dynamics. Indeed, as shown recently by Favreau et al., (2010), simulation of the seismic signal generated by landslides makes it possible to discriminate different flow scenarios and estimate the rheological parameters during the flow. Because global and regional seismic networks continuously record gravitational instabilities, this new method will help gathering new data on landslide behavior. The purpose of our research is to establish new relations making it possible to extract landslide characteristics such as volume, mass, geometry and location, from seismic observations (amplitude, duration, energy…). The 2005 Mount Steller (Alaska) rock-ice avalanche and the 2004 Thurwieser (Italy) landslide have been simulated [Huggel et al., 2008; Favreau et al., 2010]. The Mount Steller landslide has been recorded by ten seismic stations located between 37 and 630 km from the source (i.e. landquake source) at different azimuths.The Thurwieser landslide was recorded by two seismic stations a few tens kilometers from the landslide . For the two rock avalanches we simulated the associated seismic signal. The comparison between simulated and recorded seismic signal makes it possible to discriminate between different landslides scenarios. Some simulations show a remarkably good fit to the seismic recordings, suggesting that these scenarios are closer to reality. Sensitivity analysis show how the recorded seismic signal depends on the characteristics of the landslide (volume, mass, friction coefficient…) and on the earth model (seismic waves velocity, number of layers…) used to calculate wave propagation. Favreau, P., Mangeney, A., Lucas, A., Crosta, G.B., and F. Bouchut, Numerical modeling of landquakes. Geophysical Research Letters, VOL. 37, L15305, doi:10.1029/2010GL043512, 2010 Huggel, C., Caplan-Auerbach, J., Molnia, B. and Wessels R. (2008), The 2005 Mt. Steller, Alaska, rock-ice avalanche: A large slope failure in cold permafrost, Proceedings of the Ninth International Conference on Permafrost, vol. 1., p. 747-752, Univ. of Alaska Fairbanks
Large mass movements related to deglaciation effects in southern Peru (Cusco)
NASA Astrophysics Data System (ADS)
Giráldez, Claudia; Choquevilca, Walter; Fernández, Felipe; Frey, Holger; García, Javier; Haeberli, Wilfried; Huggel, Christian; Ludena, Sebastián; Rohrer, Mario; Suarez, Wilson
2013-04-01
The Andes of Peru are among the regions most severely affected by glacier and high-mountain hazards over the past 100 years. Large-scale disasters with thousands of people killed are on record, including ice/rock avalanches, debris flows, and glacier lake outburst floods (GLOF's). Effects of climate change such as glacier retreat and formation of glacier lakes have been one of the drivers of hazards in the past. Now, there is an increasing concern about the destabilizing effect that recent and further warming has a on perennially frozen bedrock and on steep glaciers in the steep flanks of high-mountain peaks, with potentially severe consequences to ice/rock avalanches, which may impact existing and new lakes, producing far-reaching outburst floods. Risks are also changing due to the socio-economic development in the Andean region and need to be considered using integrative approaches. Most research so far has concentrated on the Cordillera Blanca region where the most devastating disasters occurred during the 20th century. Very little is known about glacier and high-mountain hazards in the southern Peruvian Cordilleras of Cusco although some of the largest debris flows worldwide affected this region in recent years. In fact, very little is known about the nature, origin and exact dimensions of mass movements in this area, and long-term climatic records are neither available. Here we analyze these recent events in the Santa Teresa region based on field work, satellite images, available meteorological data, and numerical modeling of mass movements. These studies are part of a larger effort towards an integrative risk management. Most of the mass movements that caused disasters have their origin in glaciated catchments draining towards Santa Teresa with catchment sizes between about 100 and 300 km2, and glacier areas of 6 to 16 km2 per catchment. It is known that the enormous 1998 debris flow (ca. 25 million m3) that destroyed the Machu Picchu hydropower plant originated from a big landslide in deglaciated terrain which mobilized large sediment reservoirs after a period of intense rainfall. For other events on record, ongoing fieldwork studies and first modeling results are carried out to analyze their origin, trigger and characteristics. Satellite based studies on glacier lakes revealed a significant number of potentially hazardous lakes in the catchments that, together with big landslides, need to be integrated in a comprehensive risk management system which takes into account the high dynamics of such high-mountain environment under climate change.
NASA Astrophysics Data System (ADS)
Petley, D. N.
2013-12-01
Kedarnath is small town built around in important Hindu temple in the Rudraprayag district, Uttarakhand in northern India. Located at an elevation of 3,583 m, it is situated in a remote valley with no vehicular access. In summer, the temple is an important pilgrimage destination, with thousands of visitors per day, all of whom have to access the location via a 14 km trek or horse ride along a paved pathway, or via a helicopter ride. Between 14th and 17th June 2013, Uttarakhand was affected by unusually heavy early monsoonal rainfall. Whilst the rainfall totals did not reach record levels, the precipitation fell onto thawing snow, inducing very large debris flows. Kedarnath was affected by two major debris flows. According to eyewitness reports the first struck without warning in the evening of 16th June at about 7 pm local time. The second, larger, event occurred the following morning at about 6 am. The two debris flows destroyed most of the buildings in Kedarnath, although the temple survived with some damage. Across Uttarakhand it is estimated that about 5700 people died in the debris flows; the majority of these losses were at Kedarnath and in the immediate downstream communities. In the aftermath of the disaster there was considerable uncertainty as to the cause of the debris flows, with much speculation about the possibility that either a rock avalanche had developed on the flanks of the adjacent mountains or that there had been a catastrophic glacial collapse event upstream of the town. On 18th June the Indian Remote Sensing Organisation (IRSO) captured and released a RISAT-1 image of Kedarnath. Although the resolution was insufficient to determine what had occurred to trigger the disaster, it served to highlight two potential sources of the debris flows. One of these was an area of disturbance at the snout of the Charobari Glacier upslope from the town; the other was a possible landslide scar on an adjacent slope. On 23rd June 2013 NASA captured a Landsat 8 image of the site, which suggested that both of these sources might have been responsible for the debris flows. Finally, on 27th June IRSO released a high resolution RISAT-1 image of the Kedarnath region. This showed clearly that the first (16th June) debris flow originated from a landslide event upstream and to the east of the town. This took the form of an initially small, superficial landslide that entrained large volumes of debris before striking the town as a highly mobile debris flow. The second debris flow (on 17th June) was caused when an ephemeral lake, trapped behind a lateral moraine from the Charobari glacier upstream and to the east of the town, overtopped and catastrophically breached its barrier. The resultant flood scoured a large volume of sediment from the steep channel above the town, generating a very dense debris flow that was exceptionally destructive. Subsequent analyses by ground-based teams has suggested that this initial interpretation from remotely-sensed data was correct. Both of the sources of the debris flows were clearly evident on images captured before the event, and it is also clear that temple and the adjacent town were built on a terrace constructed in an earlier debris event. Thus, remotely sensed images could have played a role in the management of the hazard prior to the disaster.
NASA Technical Reports Server (NTRS)
2003-01-01
MGS MOC Release No. MOC2-504, 5 October 2003
This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a valley near Nilus Chaos, around 25.2oN, 80.3oW. The scene has a uniform albedo, indicating that all of the landforms are probably mantled by fine, bright dust. Dark streaks on the valley walls indicate places where recent dust avalanches have occurred. The ripple-like dune features on the valley floor were formed by wind, but today they are inactive and covered with dust. A few craters, created by impacting debris, have formed on the dunes, again attesting to their inactivity in the modern martian environment. The image covers an area 3 km (1.9 mi) wide; it is illuminated by sunlight from the lower left.Holocene hillslope processes and deposits in two U-shaped mountain valleys in western Norway
NASA Astrophysics Data System (ADS)
Laute, K.; Beylich, A. A.
2012-04-01
This doctoral research project is integrated in the Norwegian Research Council (NFR) funded SedyMONT-Norway Project within the ESF EUROCORES TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) Programme. Research is carried out within two steep, U-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) on the western side of the Jostedalsbreen ice cap in western Norway. Contemporary denudative processes in both valley systems include rock and boulder falls, avalanches, slush flows, debris flows, creep processes, wash- and chemical denudation and fluvial transport of solutes, suspended sediments and bedload. The main aims of this research project which are approached within a Holocene to contemporary timescale are: (i) to investigate the spatio-temporal variability of Holocene hillslope development, (ii) to analyse more specificly the morphometric influences and geomorphic consequences of the Little Ice Age (LIA) glacier advance on selected hillslope systems within defined headwater areas in both valleys, (iii) to study morphometric and meteorological controls of contemporary denudative slope processes as well as (iv) to quantify the rates of sediment delivery from headwater areas and its changes over time. A process-based approach is applied using a variety of different methods and techniques. Focus is on different temporal (Holocene to contemporary) and spatial (selected hillslope systems, headwater areas and entire valley system) scales. The applied methods include orthophoto- and topographical map interpretation, GIS and DEM computing, geomorphological fieldmapping and hillslope profile surveying complemented by relative dating techniques (lichenometry and dendrochronology), geophysical investigations and terrestrial laser scanning (LIDAR). For monitoring contemporary rates of slope processes a designed monitoring programme (running since 2009) with a wide spectrum of instrumentation; e.g. installed nets for collecting freshly accumulated rockfall debris, continuous photo-monitoring of rapid mass movement events (avalanches, slush- and debris flows) as well as installed temperature loggers both in rock walls and talus slopes for analysing rock temperatures and mechanical weathering is applied at selected hillslope test sites within the two valley systems. The overall tendency of landscape development is a Postglacial modification of the defined U-shaped valley morphometry (valley widening) throughout rockwall retreat and connected accumulation of debris material beneath these rockwalls. Active fluvial material removal at the base of slopes is almost negligible due to a very limited hillslope-channel coupling in both valleys. Results regarding the spatio-temporal variability of Holocene hillslope development show Holocene rockwall retreat rates for the two valleys which are in a comparable range with other estimates of rockwall retreat rates in other cold mountain environments worldwide. Further on the findings indicate probably higher accumulation rates of slope deposits mainly throughout an enhanced rockfall activity shortly after the glacier retreat as compared to subrecent and contemporary rates. Within the LIA period a recognizable modification of hillslopes in proximity to the outlet glaciers of the Jostedalsbreen is noticeable. A more complex hillslope morphometry (steepening of lower hillslope segments) as well as a more complex composition (inherited by a combination of debris from gravitational processes and lateral moraine ridges) of loose material generating a higher intensity of currently acting slope processes within the hillslope systems located inside of the LIA glacial advance limit as compared to hillslopes situated outside of this limit is found.
NASA Astrophysics Data System (ADS)
Grant, G.; Cashman, K.; O'Connor, J.
2007-12-01
Interactions between hillslopes and channels can include a diverse range of geophysical processes, including debris flows, landslides, water floods, and volcanic flows. Each has its own characteristic time-energy trajectory. In some cases the energy of an event increases as it propagates through a landscape, primarily through the addition of mass and momentum; examples of these"rolling snowball" include the initiation and runout phases of volcanic lahars, avalanches, and debris flows. In other cases, loss of both mass and momentum from a moving body or fluid causes the energy of an event to dissipate with distance, similar to the unwinding of a rug; examples of these "magic carpets" include the depositional phases of lahars, pyroclastic flows, lava flows, and debris flows. Both snowballs and carpets leave distinctive imprints or tracks on the landscape that reflect the resultant mass flux from hill slope to channel. The efficiency of this mass transfer depends on the width and slope of the receiving channel and the rheological properties of the transported material. At one extreme, the channel easily accommodates mass flux from the slope, sometimes accompanied by fractionation into constituent phases. At the other extreme, mass from the hill slope can inundate and block the channel; these "sleeping dragons" modulate subsequent mass transfer down channel by changing the channel profile and bed properties. They also have the potential to "wake up" suddenly as mass failure and/or outbreak floods. Hazard prediction requires that the time-energy trajectory of each type of event be assessed; here we suggest some first order controls.
Filling of Spirit Lake, Washington, May 18, 1980 to July 31, 1982
Meyer, William; Carpenter, Philip J.
1983-01-01
The rockslide/debris avalanche from the north face of Mount St. Helens that precipitated the volcano 's eruption on May 18, 1980 , blocked outflow from Spirit Lake, Washington. There has been no surface outflow since that time. From May 21, 1980, when the first measurement of lake level was made, to August 1, 1982, Spirit Lake has increased its volume from 122,800 acre-ft to 264 ,000 acre-ft, an increase of 115%. Lake level has risen approximately 54 ft during this period. Hydrologic and geologic properties of the debris dam are unknown, but the materials obviously are easily erodible. Steep walled channels up to 60 ft deep have been eroded into the dam and are extending headward toward the lowest points on the crest. In addition, it appears that the lower areas on the crest of the dam are underlain by ash cloud deposits of low density. Indications are that the debris dam could fail by headward erosion, by overtopping with rapid downcutting, or by ' piping ' and rapid erosion. Each type of failure can produce rapid release of stored lake water with very high discharge rates. On the basis of observed filling rates of the lake over the last two yr and precipitation records at four long-term, low altitude National Weather Service stations, it is expected that normal precipitation will fill the lake to the dam crest in December 1985. This estimate is also based on the assumption that loss of water from the lake by seepage continues at the present rate until December 1985. With normal precipitation during the coming yr (August 1982 through July 1983 the lake will fill to a level 50 ft below the lowest existing point on the crest of the debris dam, which is at 3,532 ft altitude. If precipitation exceeds normal by 1.5 times during this coming year, the lake level will be 40 ft below the 3 ,532-ft crest of the debris dam by the end of July 1983. This same lake level can be reached by the end of March 1983 if precipitation from October through March is twice the winter mean. (Author 's abstract)
Wieczorek, Gerald F.; Jakob, Matthias; Motyka, Roman J.; Zirnheld, Sandra L.; Craw, Patricia
2003-01-01
A large potential rock avalanche above the northern shore of Tidal Inlet, Glacier Bay National Park, Alaska, was investigated to determine hazards and risks of landslide-induced waves to cruise ships and other park visitors. Field and photographic examination revealed that the 5 to 10 million cubic meter landslide moved between AD 1892 and 1919 after the retreat of Little Ice Age glaciers from Tidal Inlet by AD 1890. The timing of landslide movement and the glacial history suggest that glacial debuttressing caused weakening of the slope and that the landslide could have been triggered by large earthquakes of 1899-1900 in Yakutat Bay. Evidence of recent movement includes fresh scarps, back-rotated blocks, and smaller secondary landslide movements. However, until there is evidence of current movement, the mass is classified as a dormant rock slump. An earthquake on the nearby active Fairweather fault system could reactivate the landslide and trigger a massive rock slump and debris avalanche into Tidal Inlet. Preliminary analyses show that waves induced by such a landslide could travel at speeds of 45 to 50 m/s and reach heights up to 76 m with wave runups of 200 m on the opposite shore of Tidal Inlet. Such waves would not only threaten vessels in Tidal Inlet, but would also travel into the western arm of Glacier Bay endangering large cruise ships and their passengers.
NASA Astrophysics Data System (ADS)
Yugsi Molina, F. X.; Hermanns, R. L.; Crosta, G. B.; Dehls, J.; Sosio, R.; Sepúlveda, S. A.
2012-04-01
Iquique is a city of about 215,000 inhabitants (Chilean national census 2002) settled on one of the seismic gaps in the South American subduction zone, where a M >8 earthquake with overdue return periods of ca. 100 yr is expected in the near future. The city has only two access roads coming from the east and south. The road to the east comes down along the escarpment that connects the Coastal Cordillera to the Coastal Plain. The road has been blocked by small magnitude earthquake-triggered landslides at least once in recent years. The second road, coming from the south, crosses along the Coastal Plain and connects the city to the airport where at least ten ancient debris deposits related to rock avalanches are found. These facts show the importance of determining the effects of a future high magnitude earthquake on the stability of the slopes in the area and the impact of possible slope failures on people, infrastructure and emergency management. The present work covers an area of approximately 130 km2 parallel to the coastline to the south of Iquique, divided into the two main morphological units briefly mentioned above. The eastern part corresponds to the Coastal Cordillera, a set of smoothed hills and shallow valleys that reaches up to 1200 m asl. This sector is limited to the west by a steep escarpment followed by the Coastal Plain and a narrow emerged marine plateau (1-3 km wide) locally overlaid by deposits of recent rock avalanches. Rock avalanche events have recurrently occurred at two sites to the north and center of the study area on the Coastal Cordillera escarpment. Another major single event has been mapped to the south. Marls, red and black shales, and shallow marine glauconitic deposits from Jurassic constitute the source rock for the rock avalanches in all sites. Clusters of deposits are found in the first two sites (retrogressive advance) with younger events running shorter distances and partially overlaying the older ones. Multiple lobes have been mapped characterized by well defined lateral levees and clear internal morphological features (ridges and furrows, hummocks). Rock avalanche run out simulations have been carried out to back analyze the sites using DAN 3D and a 3 m pixel resolution digital elevation model (DEM) obtained from stereoscopic Geoeye-1 images to assess parameters that controlled propagation mechanism and impact area extent of the events. The older lobes were dated by radiocarbon methods. Results indicate ages higher than 40,000 yr BP for the northern site. The second site could only be dated relatively with an underlying terrace that resulted older than the age limit of radiocarbon dating (43.500 yr BP). All the deposits are positioned well above (40-70 m) the present sea level rise, and at the reported uplift rates for the area, they could be associated to events older than some hundreds of thousand years. A more complete record of the failure history of the sites will be obtained when results of cosmogenic nuclides (CN) and luminescence dating will become available later this year. Several other smaller rock avalanches have been mapped in the study area. Satellite-based radar interferometry (InSAR) was performed using ERS-1 and ERS-2 scenes from 1995-2000 as well as ENVISAT ASAR scenes from 2004-2010. Both datasets show only small deformation in the area. This deformation includes sliding of small surficial slope deposits and subsidence apparently due to local groundwater withdrawal. No deformation of bedrock along the escarpment edge is observed. Results show that only major rock avalanches could reach the main access roads to Iquique and currently no large slope segments show signs of large displacement rates. Moreover, there is no strong correlation between M > 8 earthquakes return periods and age of the dated deposits, which implies that large rock avalanches could have been triggered by other factors. Hence, from a hazard and risk perspective, it is unlikely that large rock avalanches, that could block the access roads to the city, would occur in the near future. Results from CN and luminescence dating will help to get a better understanding of the conditioning and triggering of past events.
Roeloffs, Evelyn A.
1994-01-01
A numerical simulation of the ground-water flow system in the Castle Lake debris dam, calibrated to data from the 1991 and 1992 water years, was used to estimate factors of safety against heave and internal erosion. The Castle Lake debris dam, 5 miles northwest of the summit of Mount St. Helens, impounds 19,000 acre-ft of water that could pose a flood hazard in the event of a lake breakout. A new topographic map of the Castle Lake area prior to the 1980 eruption of Mount St. Helens was prepared and used to calculate the thickness of the debris avalanche deposits that compose the dam. Water levels in 22 piezometers and discharges from seeps on the dam face measured several times per year beginning in 1990 supplemented measurements in 11 piezometers and less frequent seep discharge measurements made since 1983. Observations in one group of piezometers reveal heads above the land surface and head gradients favoring upward flow that correspond to factors of safety only slightly greater than 2. The steady-state ground-water flow system in the debris dam was simulated using a threedimensional finite difference computer program. A uniform, isotropic model having the same shape as the dam and a hydraulic conductivity of 1.55 ft/day simulates the correct water level at half the observation points, but is in error by 10 ft or more at other points. Spatial variations of hydraulic conductivity were required to calibrate the model. The model analysis suggests that ground water flows in both directions between the debris dam and Castle Lake. Factors of safety against heave and internal erosion were calculated where the model simulated upward flow of ground water. A critical gradient analysis yields factors of safety as low as 2 near the piezometers where water level observations indicate low factors of safety. Low safety factors are also computed near Castle Creek where slumping was caused by a storm in January, 1990. If hydraulic property contrasts are present in areas of the debris dam unsampled by piezometers, then low safety factors may exist that are not evident in the numerical model analysis. Numerical model simulations showed that lowering Castle Lake by 40 feet increases many factors of safety by 0.1, but increases greater than 1 are limited to the area of 1990 slumping.
NASA Astrophysics Data System (ADS)
Pérez, Francisco L.
2012-02-01
The vascular vegetation of alpine talus slopes between 2035 and 3095 m altitude was studied at Lassen Volcanic National Park (California) in the Cascade Range. Taluses show a diverse flora, with 79 plant species; growth forms include coniferous trees, shrubs, suffrutices, herbs, graminoids, and ferns. Spatial patterns of plant distribution were studied along 40 point-intercept transects. Plant cover was low (0-32.7%) on all slopes, spatially variable, and showed no consistent trends. Sedimentological characteristics were determined by photosieving next to 1500 plants; this census indicated preferential plant growth on blocks and cobbles, with 43.2% and 23.3% of the plants growing on these stones, respectively; fewer specimens were rooted on pebbles (13%) or on stone-free gravel areas (20.5%). Growth forms displayed different substrate preferences: 92.5% of the shrubs and 83% of the suffrutices colonized blocks or cobbles, but only 57.2% of the herbs and 59.8% of the graminoids grew on large stones. Plants are associated with large clasts because (1) coarse talus is more stable than fine sediment areas, which are more frequently disturbed by various geomorphic processes, and (2) large stones help conserve substrate water beneath them while moisture quickly evaporates from fine debris. Root patterns were studied for 30 plant species; 10 specimens for each species were excavated and inspected, and several root growth ratios calculated. All species exhibited pronounced root asymmetry, as roots for most plants grew upslope from their shoot base. For 23 species, all specimens had 100% of their roots growing upslope; for the other 7 species, 92.2-99.3% of below-ground biomass extended uphill. This uneven root distribution is ascribed to continual substrate instability and resulting talus shift; as cascading debris progressively buries roots and stems, plants are gradually pushed and/or stretched downhill. Various disturbance events affect root development. Slope erosion following rubble removal often exposes plant roots. Debris deposition can completely bury plants; some may survive sedimentation, producing new shoots that grow through accumulated debris. Shrubs may propagate by layering, as adventitious roots develop along buried stems; or produce new clones along their roots. Slope processes may damage and transport plant pieces downhill; some species can sprout from severed, displaced root or stem fragments. Vegetation interacts with several geomorphic processes, including debris flows, grain flows, rockfall, snow avalanches, frost creep, and runoff. Larger plants may alter local patterns of debris movement and deposition, damming cascading debris on their upslope side and deflecting sediments laterally to plant margins, where they form narrow elongated stone stripes.
NASA Astrophysics Data System (ADS)
Seghedi, I.; Fülöp, A.
2009-05-01
The recent identification of debris avalanche deposits (DADs) originating from the southern edge of the Ignis peak (1306m, highest of the Gutai Mts.) has important implications for understanding its genesis in the geological context of the broader area, rich in hydrothermal intrusive-related base metal and gold-silver deposits closely connected to the Dragos Voda - Bogdan Voda strike-slip fault system. Pyroxene andesite lavas are exposed below the Ignis peak followed by hornblende and pyroxene andesites the only ones found in the DAD. The flank failure event has left an E-W-oriented horseshoe shaped scar with an estimated volume of material removed of at least 0.35 km3 and an estimated area covered by DADs of 4,345 km2 as a minimum. The deposit is a mega breccia with a variable amount of coarse matrix with jigsaw-fractured blocks, large boulders, and several southward-elongated hummocks up to 1.8 km distance from the scar. Between 720-850 m altitude the DADs contain megablocks of 5-12 m thick and up to 100 m long of layered fine-grained poorly consolidated pyroclastic materials of interlayered ash and lapillistone of fallout origin, and clay beds rich in vegetation remnants(known as the 'Chiuzbaia flora' of similar age as the surrounding lava flows, i.e. ca. 10-7 Ma) and diatoms. These megablocks found in various positions, suggest a lithological discontinuity likely representing the detachment surface of the gravity-driven instability phenomenon and the deep excavation of the volcano flank by the sector collapse event. The clayey material of these blocks acted probably as an efficient barrier to water infiltration and helped destabilization of the overlying rock mass. Since no explosive products have been observed to follow the DAD, it is possible that the sliding was triggered by pressure release of hydrothermal system along an E-W fault parallel to the Dragos Voda-Bogdan Voda fault system, with related high-grade ore deposits. This suggests the possible presence of unidentified hydrothermal ore deposits at depth in connection with the volcano instability-related tectonic features.
NASA Astrophysics Data System (ADS)
Genareau, K. D.; Cronin, S. J.; Stewart, C.; Back, E.
2015-12-01
Explosive volcanic eruptions are known to be a significant geohazard, but post- or inter-eruptive processes (such as lahars, landslides, and debris avalanches) can be equally damaging to local and regional areas by remobilizing deposits. Numerous studies have found that soluble salts bound to ash grain surfaces may be quickly released into exposed waters, often lowering pH and adding trace metals with both beneficial and deleterious effects on marine flora and fauna (e.g., Fe influx initiating blooms of marine phytoplankton). Most of the cation content of pyroclastic deposits is released slowly into the environment through weathering and alteration processes. However, other pathways exist through the physical comminution of pyroclasts in fluvial and marine settings. In this case, mechanical fracturing of pyroclasts during progressive stages of disaggregation will lead to exposure of reactive particle surfaces. This study evaluates the potential, ongoing effects on water quality by experimental, mechanical milling of pyroclasts and the evaluation of released metals into exposed waters using the pyroclastic density current deposits of both the 2010 eruption of Merapi and the 2014 eruption of Kelud (Java, Indonesia), which have a bulk basaltic andesite/andesite composition (60-65 wt% SiO2). The electrical conductivity (EC) of water samples positively correlates with Ca and Sr concentrations in the case of bulk ash, whole, and crushed lapilli, but correlates with Na for the milled samples. Compared to other stages of pyroclast disaggregation, milled lapilli have the greatest effect on the concentration of alkali elements and produce a significant increase in Ca, Na, K, and Si. Mechanical milling of pyroclasts grinds down minerals and glass, resulting in an increased EC, pH, and Na concentration of exposed waters. Similar experiments are currently being conducted using basalt (50 wt% SiO2) and rhyolite (70 wt% SiO2) deposits, and these results will be presented. Mechanical milling of volcanic deposits may occur during transport of lahars, submarine landslides, or debris avalanches, sometimes decades or centuries after the initial eruptive activity, providing a sudden input of elements into marine environments that can affect a range of flora and fauna.
Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska
Miller, Thomas P.
2004-01-01
The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U.S. and Europe to Asia. Activity of the type described could produce eruption columns to heights of 15 km and result in significant amounts of ash 250-300 km downwind.
NASA Astrophysics Data System (ADS)
Saemundsson, Thorsteinn; Margeirsson, Guðbjörn
2016-04-01
During the last 15 years several mass movements of various size and origin, e.g. rock avalanches, rock slides and debris slides have been observed to have fall on outlet glaciers in Iceland. This should not come as a surprise in this type of glacial environment, but in a way it does. When looking at the history only few mass movements are recorded to have fall on outlet glaciers in Iceland, during the decades before the year 2000 or since 1960. This "lack of mass movements" can be explained by the fact that fewer observations and monitoring were done in the past, but is it so or are we seeing increasing activity? Looking at the distribution of the known mass movements, two activity periods cam be identified. The former one around 1970 and the second one starting around 2000 and is still ongoing. Both of these periods are characterized by warmer climate leading to retreating phases of glaciers. Two larger mass movements are known from these two retreating periods. The former one occurred in January 1967. Then a large rockslide fell on the snout and into the glacial lake of the Steinholtsjökull outlet glacier in the northern side of the Eyjafjallajökull ice cap. The rockslide broke up the snout of the glacier and caused large floodwave bursting down the Steinholtsdalur valley transporting large volume of sediments down its path. The later one occurred in 2007, when a large rockavalanche fell on the Morsárjökull outlet glacier, in the southern side of the Vatnajökull ice cap. The avalanche debris covered around 1/5 of the glacier surface. Today the retreat and thinning of glaciers in Iceland are extremely rapid. The consequences of such a rapid retreat are e.g. unstable valley slopes surrounding the outlet glaciers, both in loose sediments and bedrock, thawing of mountain permafrost and not least formation of glacial lakes in front of the rapid retreating ice margins. Such conditions can become extremely hazardous, as seen by the above mentioned examples, both for all infrastructure but not least for the rapidly increasing tourism in Iceland.
Scaled experiments to determine the role of density on granular flows behavior: preliminary results
NASA Astrophysics Data System (ADS)
Rodriguez Sedano, L. A.; Sarocchi, D.; Borselli, L.; Segura, O.
2013-12-01
Geological granular flows are very complex, gravity driven phenomena which can show different behaviors depending on its origin and the characteristics of the constituent material. Due to their dangerous nature, and multiple scientific and technological applications, these phenomena has being studied deeply in order to have a better comprehension, however, after more than one century of scientific research it remains as an open topic with more questions than answers. One of the aspects that still need exhaustive research is the effect of clast density on the flowing granular material, as pointed out by previous laboratory and field studies. There are anyway few studies which have tried to explain the role of bulk density, as well the density of different phases, as it increasing or decreasing on the kinematic and the rheological characteristics of geological granular flows. The content of low density juvenile material seems to condition the processes of transformations of debris flows to more diluted phases, as well the transport and emplacing mechanisms. It is well known that the content of clay in debris flows has great influence on its behavior, physical processes and the deposits characteristics for this reason lahars has being subdivided in base of this parameter. Our hypothesis is that, in like manner, the presence of low density material inside the granular flows (dry and wet) could conditioning its physical characteristics and its behavior. In order to put this to the test, we made some laboratory experiments using a five meter long and 0.3 m wide experimental flume equipped with a wide range of sensors and laser barriers to precisely measure the rheological properties and kinematic of the sliding avalanches. A special effort was devoted to determine a threshold or critical level in the amount of low density material at which the avalanche behavior suffer appreciable changes. The obtained preliminary results confirm our hypothesis and encouraged to perform further experiments. Such studies are important because they could provide useful information for developing analog models that take into account this important physical property.
Natural hazard fatalities in Switzerland from 1946 to 2015
NASA Astrophysics Data System (ADS)
Andres, Norina; Badoux, Alexandre; Techel, Frank
2017-04-01
Switzerland, located in the middle of the Alps, is prone to several different natural hazards which regularly cause fatalities. To explore temporal trends as well as demographic and spatial patterns in the number of natural hazard fatalities, a database comprising all natural hazard events causing fatalities was compiled for the years 1946 until 2015. The new database includes avalanche, flood, lightning, windstorm, landslide, debris flow, rockfall, earthquake and ice avalanche processes. Two existing databases were incorporated and the resulting dataset extended by a comprehensive newspaper search. In total the database contains 635 natural hazard events causing 1023 fatalities. The database does not include victims which exposed themselves to an important danger on purpose (e.g. high risk sports). The most common causes of death were snow avalanches (37 %), followed by lightning (16 %), floods (12 %), windstorms (10 %), rockfall (8 %), landslides (7 %) and other processes (9 %). Around 14.6 fatalities occurred on average each year. A distinct decrease of natural hazard fatalities could be shown over the last 70 years, which was mostly due to the decline in the number of avalanche and lightning fatalities. Thus, nearly three times as many people were killed by natural hazard processes from 1946 to 1980 than from 1981 to 2015. Normalisation of fatality data by population resulted in a clearly declining annual crude mortality rate: 3.9 deaths per million persons for the first 35 years and 1.1 deaths per million persons for the second 35 years of the study period. The average age of the victims was approximately 36 years and about 75% were males. Most people were killed in summer (JJA, 42%) and winter (DJF, 32 %). Furthermore, almost two-thirds of the fatalities took place in the afternoon and evening. The spatial distribution of the natural hazard fatalities over Switzerland was quite homogeneous. However, mountainous parts of the country (Prealps, Alps) were somewhat more prone to fatal events compared to the Swiss Plateau and the Jura. It appears that the overall natural hazard mortality rate in Switzerland over the past 70 years has been relatively low in comparison to rates in other countries or rates of other types of fatal accidents in Switzerland. Nevertheless, the collected data provides a valuable base for analysis and helps authorities to better identify higher risk demographic groups and regions, and accordingly target these to reduce the number of victims.
Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy)
NASA Astrophysics Data System (ADS)
Ivy-Ochs, S.; Martin, S.; Campedel, P.; Hippe, K.; Alfimov, V.; Vockenhuber, C.; Andreotti, E.; Carugati, G.; Pasqual, D.; Rigo, M.; Viganò, A.
2017-08-01
The Marocche di Dro deposits in the lower Sarca Valley are some of the most distinctive rock avalanche deposits of the Alps. We use geomorphology and cosmogenic 36Cl exposure dating of boulders to divide the Marocche di Dro deposits into two rock avalanche bodies; the Marocca Principale to the north and the Kas to the south. The deposits were previously undated and had been mapped as up to five different events. The largest event Marocca Principale, which comprises an estimated 1000 106 m3 of predominantly Rotzo Formation limestones, occurred 5300 ± 860 yr ago. The release area is located mainly in the alcove between Mt. Casale and Mt. Granzoline, but likely extends all the way to Mt. Brento. The Kas event took place 1080 ± 160 yr ago with detachment below Mt. Brento. The Kas debris, with an estimated volume of 300 106 m3, buried the southern third of the Marocca Principale deposit. Kas presents a barren, stark landscape dominated by house-sized Tovel Member Rotzo Formation boulders bearing distinctive chert lenses. Both the extreme relief of the rock wall (more than 1300 m) and the tectonic setting predispose the range front to massive failure. For the two events, initially translational movement likely quickly evolved into complex failure and massive collapse. Run-out across the valley of several kilometers and run-up on the opposite slope of hundreds of meters followed. A summary of all dated and large historical landslides in the Alps underlines the periods of enhanced slope activity discussed in the literature: 10-9 kyr, 5-3 kyr, and 2-1 kyr, the latter especially for the Southern Alps. No deposits of the first temporal cluster are found at Marocche di Dro. The age of Marocca Principale at 5300 ± 860 yr suggests occurrence during the second period. Failure may have been related to the shift to wetter, colder climate at the transition from the middle to the late Holocene. Nevertheless, a seismic trigger cannot be ruled out. For the Kas rock avalanche at 1080 ± 160 yr ago we implicate the ;Middle Adige Valley; (1046 CE) earthquake as trigger. Its epicentral distance is much closer to the Sarca Valley in comparison to that of the Verona earthquake (1117 CE).
Debris flow early warning systems in Norway: organization and tools
NASA Astrophysics Data System (ADS)
Kleivane, I.; Colleuille, H.; Haugen, L. E.; Alve Glad, P.; Devoli, G.
2012-04-01
In Norway, shallow slides and debris flows occur as a combination of high-intensity precipitation, snowmelt, high groundwater level and saturated soil. Many events have occurred in the last decades and are often associated with (or related to) floods events, especially in the Southern of Norway, causing significant damages to roads, railway lines, buildings, and other infrastructures (i.e November 2000; August 2003; September 2005; November 2005; Mai 2008; June and Desember 2011). Since 1989 the Norwegian Water Resources and Energy Directorate (NVE) has had an operational 24 hour flood forecasting system for the entire country. From 2009 NVE is also responsible to assist regions and municipalities in the prevention of disasters posed by landslides and snow avalanches. Besides assisting the municipalities through implementation of digital landslides inventories, susceptibility and hazard mapping, areal planning, preparation of guidelines, realization of mitigation measures and helping during emergencies, NVE is developing a regional scale debris flow warning system that use hydrological models that are already available in the flood warning systems. It is well known that the application of rainfall thresholds is not sufficient to evaluate the hazard for debris flows and shallow slides, and soil moisture conditions play a crucial role in the triggering conditions. The information on simulated soil and groundwater conditions and water supply (rain and snowmelt) based on weather forecast, have proved to be useful variables that indicate the potential occurrence of debris flows and shallow slides. Forecasts of runoff and freezing-thawing are also valuable information. The early warning system is using real-time measurements (Discharge; Groundwater level; Soil water content and soil temperature; Snow water equivalent; Meteorological data) and model simulations (a spatially distributed version of the HBV-model and an adapted version of 1-D soil water and energy balance model COUP). The data are presented in a web- and GIS-based system with daily nationwide maps showing the meteorological and hydrological conditions for the present and the near future from quantitative weather prognosis. In addition a division of the country in homogenous debris flow-prone regions is also under progress based on geomorfological, topographic parameters and loose quaternary deposits distribution. Threshold-levels are being investigated by using statistical analyses of historical debris flows events and measured hydro-meteorological parameters. The debris flow early warning system is currently being tested and is expected to be operational in 2013. Final products will be warning messages and a map showing the different hazard levels, from low to high, indicating the landslide probability and the type of expected damages in a certain area. Many activities are realized in strong collaboration with the road and railway authorities, the geological survey and private consultant companies.
NASA Astrophysics Data System (ADS)
Karki, A.; Kargel, J. S.
2017-12-01
Landslides and ice avalanches kill >5000 people annually (D. Petley, 2012, Geology http://dx.doi.org/10.1130/G33217.1); destroy or damage homes and infrastructure; and create secondary hazards, such as flooding due to blocked rivers. Critical roles of surface slope, earthquake shaking, soil characteristics and saturation, river erosional undercutting, rainfall intensity, snow loading, permafrost thaw, freeze-thaw and frost shattering, debuttressing of unstable masses due to glacier thinning, and vegetation burn or removal are well-known factors affecting landslides and avalanches. Lithology-dependent bedrock physicochemical-mechanical properties—especially brittle elastic and shear strength, and chemical weathering properties that affect rock strength, are also recognized controls on landsliding and avalanching, but are not commonly considered in detail in landslide susceptibility assessment. Lithology controls the formation of weakened, weathered bedrock; the formation and accumulation of soils; soil saturation-related properties of grain size distribution, porosity, and permeability; and soil creep related to soil wetting-drying and freeze-thaw. Lithology controls bedrock abrasion and glacial erosion and debris production rates, the formation of rough or smoothed bedrock surface by glaciation, fluvial, and freeze-thaw processes. Lithologic variability (e.g., bedding; fault and joint structure) affects contrasts in chemical weathering rates, porosity, and susceptibility to frost shattering and chemical weathering, hence formation of overhanging outcrops and weakened slip planes. The sudden failure of bedrock or sudden slip of ice on bedrock, and many other processes depend on rock lithology, microstructure (porosity and permeability), and macrostructure (bedding; faults). These properties are sometimes considered in gross terms for landslide susceptibility assessment, but in detailed applications to specific development projects, and in detailed mapping over large areas, the details of rock lithology, weathering state, and structure are rarely considered. We have initiated a geological and rock mechanical properties approach to landslide susceptibility assessments in areas of high concern for human and infrastructure safety.
Characterization of granular collapse onto hard substrates by acoustic emissions
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien
2013-04-01
Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï
2014-05-01
Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.
Characterization of blocks impacts from elastic waves: insights from laboratory experiments
NASA Astrophysics Data System (ADS)
Farin, M.; Mangeney, A.; Toussaint, R.; De Rosny, J.; Shapiro, N.
2013-12-01
Rockfalls, debris flows and rock avalanches constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what types of features in the signal are affected by individual shocks or by the large scale geometry of the avalanche.
A depth integrated model for dry geophysical granular flows
NASA Astrophysics Data System (ADS)
Rossi, Giulia; Armanini, Aronne
2017-04-01
Granular flows are rapid to very rapid flows, made up of dry sediment (rock and snow avalanches) or mixture of water and sediment (debris flows). They are among the most dangerous and destructive natural phenomena and the definition of run-out scenarios for risk assessment has received wide interest in the last decades. Nowadays there are many urbanized mountain areas affected by these phenomena, which cause several properties damages and loss of lives. The numerical simulation is a fundamental step to analyze these phenomena and define the runout scenarios. For this reason, a depth-integrated model is developed to analyze the case of dry granular flows, representative of snow avalanches or rock avalanches. The model consists of a two-phase mathematical description of the flow motion: it is similar to the solid transport equations but substantially different since there is no water in this case. A set of partial differential equations is obtained and written in the form of a hyperbolic system. The numerical solution is computed through a path-conservative SPH (Smoothed Particles Hydrodynamics) scheme, in the two dimensional case. Appropriate closure relations are necessary, with respect to the concentration C and the shear stress at the bed τ0. In first approximation, it is possible to derive a formulation for the two closure relations from appropriate rheological models (Bagnold theory and dense gas analogy). The model parameters are determined by means of laboratory tests on dry granular material and the effectiveness of the closure relation verified through a comparison with the experimental results. In particular, the experimental investigation aims to reproduce two case of study for dry granular material: the dam-break test problem and the stationary motion with changes in planimetry. The experiments are carried out in the Hydraulic Laboratory of the University of Trento, by means of channels with variable slope and variable shape. The mathematical model will be tested by comparing the numerical results with the experimental data.
Preventing volcanic catastrophe; the U.S. International Volcano Disaster Assistance Program
Ewert, J.W.; Murray, T.L.; Lockhart, A. B.; Miller, C.D.
1993-01-01
Unfortunately, a storm on November 13, 1985, obscured the glacier-clad summit of Nevado del Ruiz. On that night an explosive eruption tore through the summit and spewed approximately 20 million cubic meters of hot ash and rocks across the snow-covered glacier. These materials were transported across the snow pack by avalanches of hot volcanic debris (pyroclastic flows) and fast-moving, hot, turbulent clouds of gas and ash (pyroclastic surges). The hot pyroclastic flows and surges caused rapid melting of the snow and ice and created large volumes of water that swept down canyons leading away from the summit. As these floods of water descended the volcano, they picked up loose debris and soil from the canyon floors and walls, growing both in volume and density, to form hot lahars. In the river valleys farther down the volcano's flanks, the lahars were as much as 40 m thick and traveled at velocities as fast as 50 km/h. Two and a half hours after the start of the eruption one of the lahars reachered Armero, 74 km from the explosion crater. In a few short minutes most of the town was swept away or buried in a torrent of mud and boulders, and three quaters of the townspeople perished.
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase
2010-01-01
Wet slab and glide slab snow avalanches are dangerous and yet can be particularly difficult to predict. Both wet slab and glide slab avalanches are thought to depend upon free water moving through the snowpack but are driven by different processes. In Glacier National Park, Montana, both types of avalanches can occur in the same year and affect the Going-to-the-Sun Road (GTSR). Both wet slab and glide slab avalanches along the GTSR from 2003-2010 are investigated. Meteorological data from two high-elevation weather stations and one SNOTEL site are used in conjunction with an avalanche database and snowpit profiles. These data were used to characterize years when only glide slab avalanches occurred and those years when both glide slab and wet slab avalanches occurred. Results of 168 glide slab and 57 wet slab avalanches along the GTSR suggest both types of avalanche occurrence depend on sustained warming periods with intense solar radiation (or rain on snow) to produce free water in the snowpack. Differences in temperature and net radiation metrics between wet slab and glide slab avalanches emerge as one moves from one day to seven days prior to avalanche occurrence. On average, a more rapid warming precedes wet slab avalanche occurrence. Glide slab and wet slab avalanches require a similar amount of net radiation. Wet slab avalanches do not occur every year, while glide slab avalanches occur annually. These results aim to enhance understanding of the required meteorological conditions for wet slab and glide slab avalanches and aid in improved wet snow avalanche forecasting.
NASA Astrophysics Data System (ADS)
Garankina, Ekaterina; Belyaev, Vladimir; Ivanov, Maxim; Romanenko, Fedor; Gurinov, Artem; Tulyakov, Egor; Kuzmenkova, Natalia
2017-04-01
The Khibiny Mountains located in central part of the Kola Peninsula (Northern European Russia) are characterized by harsh climatic conditions and frequent occurrence of hazardous or even catastrophic processes. Most widespread of those are snow avalanches taking place every year and slushflows with average recurrence interval of about 10 years. The latter represent specific type of hyperconcentrated gravitational flow of oversaturated mixture of snow and water (20 to 70%) with relatively low sediment concentration (up to 10-15%). Most often slushflows form during spring snowmelt in small mountainous basins (in most cases up to 3-6 km2) with thick snowpacks or snow dams caused by avalanches in stream channels. Typically observed volumes vary in a range of 20000-40000 m3, while rare catastrophic events can reach 200000-500000 m3. Kinetic energy of frontal wave that can be up to several meters high and concentrates most of the largest debris is most likely lower than that of typical debris flow of similar size, mainly because of much lower slushflow density (900-1200 kg m-3). Nevertheless, rare occasional measurements of front wave velocity gave dramatic values of 20-25 m s-1 maximum. Such characteristics combined with unpredictable rapid formation make slushflows definitely hazardous processes that can cause serious damage to industrial and residential infrastructure as well as injuries or causalities to people. For example, the Khibiny Mountains have at least 200 locations where formation of slushflows was detected at least ones over the last 50 years. Widespread constructions and communications associated with intensive exploration of mineral resources as well as growing interest to the area as touristic attraction for skiing and other wintertime activities make the Khibiny Mountains an area of serious geomorphic hazards associated with slushflows. In this particular study, we considered the Hackman basin where heavy debris flows occur at least ones per several decades. One of the unique features of that basin is that there was radioactive ore mine active in late 1930s on one of the steep valley sides. The mine was active only for several years as the production of radioactive minerals appeared to be much lower than expected. However, mine wastes are still remaining there as scree slopes on right valley side in its middle reach under several mine entrances. Colluvial material on these screes is highly enriched by several natural radionuclides including members of the 232Th decay chain. We have made an attempt to use this feature for fingerprinting sediment redistribution along the valley by slushflows and fluvial processes. Results of gamma-spectrometric analysis of finer sediment fractions from different geomorphic settings within the Hackman basin have shown that there is a systematic non-uniform spatial distribution of 232Th decay chain natural radionuclides closely related to its geological background and geomorphological structure. It proves that natural lithogenic radionuclide content in clastic sediments can be used for fingerprinting of slushflows debris sources and sinks and, possibly for distinguishing between in situ slushflow deposits and those partly reworked by later fluvial activities.
Arctic Warming and Sea Ice Diminution Herald Changing Glacier and Cryospheric Hazard Regimes
NASA Astrophysics Data System (ADS)
Kargel, Jeffrey; Bush, Andrew; Leonard, Gregory
2013-04-01
The recent expansion of summertime melt zones in both Greenland and some Arctic ice caps, and the clearing of perennial sea ice from much of the Arctic, may presage more rapid shifts in mass balances of land ice than glaciologists had generally expected. The summer openings of vast stretches of open water in the Arctic, particularly in straits and the Arctic Ocean shores of the Queen Elizabeth Islands and along some Greenland coastal zones, must have a large impact on summer and early autumn temperatures and precipitation now that the surface boundary condition is no longer limited by the triple-point temperature and water-vapor pressure of H2O. This state change in the Arctic probably is part of the explanation for the expanded melt zones high in the Greenland ice sheet. However, Greenland and the Canadian Arctic are vast regions subject to climatic influences of multiple marine bodies, and the situation with sea ice and climate change remains heterogeneous, and so the local climate feedbacks from sea ice diminution remain patchy. Projected forward just a few decades, it is likely that sea ice will play a significant role in the Queen Elizabeth Islands and around Greenland only in the winter months. The region is in the midst of a dramatic climate change that is affecting the mass balances of the Arctic's ice bodies; some polar-type glaciers must be transforming to polythermal, and polythermal ones to maritime-temperate types. Attendant with these shifts, glacier response times will shorten, the distribution and sizes of glacier lakes will change, unconsolidated debris will be debuttressed, and hazards-related dynamics will shift. Besides changes to outburst flood, debris flow, and rock avalanche occurrences, the tsunami hazard (with ice and debris landslide/avalanche triggers) in glacierized fjords and the surge behaviors of many glaciers is apt to increase or shift locations. For any given location, the past is no longer the key to the present, and the present is not the key to future behavior of ice in this region. Hence, as major infrastructural development and population increases, careful consideration must be given to changing dynamics of the cryospheric landscape system. Glacier lake outburst floods never have been important considerations in most of the Canadian Arctic/Greenland region due both to sparseness of population and infrastructure and low frequency and distribution of occurrence of potentially hazardous glacier dynamics. This may no longer be the case; in particular, many lakes are starting to develop where previously they were small, few, or absent; furthermore, the conditions tending toward reduction in ice flow, thinning glaciers, and debris accumulation that commonly precede lake development are now widely present. 20th century maritime glacierized parts of Alaska may be a model for the 21st century Queen Elizabeth Islands and Greenland. In Alaska, the fury and impact of glacier lake outburst floods felt in other parts of the world have largely been mitigated by wise and limited development patterns. This can hold true for Arctic Canada and Greenland this century if consideration is given to the changing crysophere.
Characterizing the nature and variability of avalanche hazard in western Canada
NASA Astrophysics Data System (ADS)
Shandro, Bret; Haegeli, Pascal
2018-04-01
The snow and avalanche climate types maritime, continental and transitional are well established and have been used extensively to characterize the general nature of avalanche hazard at a location, study inter-seasonal and large-scale spatial variabilities and provide context for the design of avalanche safety operations. While researchers and practitioners have an experience-based understanding of the avalanche hazard associated with the three climate types, no studies have described the hazard character of an avalanche climate in detail. Since the 2009/2010 winter, the consistent use of Statham et al. (2017) conceptual model of avalanche hazard in public avalanche bulletins in Canada has created a new quantitative record of avalanche hazard that offers novel opportunities for addressing this knowledge gap. We identified typical daily avalanche hazard situations using self-organizing maps (SOMs) and then calculated seasonal prevalence values of these situations. This approach produces a concise characterization that is conducive to statistical analyses, but still provides a comprehensive picture that is informative for avalanche risk management due to its link to avalanche problem types. Hazard situation prevalence values for individual seasons, elevations bands and forecast regions provide unprecedented insight into the inter-seasonal and spatial variability of avalanche hazard in western Canada.
Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses
NASA Astrophysics Data System (ADS)
Simon, A.
2010-12-01
The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event triggered a debris flow which cutoff tributary channels to Glacier Creek and redirected Step and Loowit Creeks thereby forcing enhanced flow volumes through the main channel. Very coarse, armored bed materials were mobilized allowing for deep incision into the substrate. Incision continues today at slower rates but it is again the lateral shifting and widening of the channels that is dominant. Low and moderate flows undercut the toe of 30 m-high pyroclastic flow deposits causing significant erosion. As the channel continues to widen incision will attenuate non-linearly. Channels such as the multiple Step Creek channels will coalesce as narrow ridges erode by undercutting and mass failure much as reaches of lower Loowit Creek did in the late 1980’s. The resulting enlarged and over-widened sections will then again (as in downstream reaches) have lowered transporting power.
Composition and Structure of Mauna Loa's Submarine West Flank, Hawaii
NASA Astrophysics Data System (ADS)
Borchers, D.; Morgan, J. K.; Clague, D. A.; Moore, G. F.
2003-12-01
James Moore's pioneering work on submarine landslides in the Hawaiian Islands contributed significantly to early models for the structure and evolution of Mauna Loa's submarine western flank. The west flank experienced catastrophic failure in the past, generating massive blocks and debris fields offshore. Moore recognized that the midslope bench near the base of the submarine flank must have postdated the debris avalanche, but little data existed to determine if it formed in response to further landsliding or to deeper volcanic processes. As the processes that shaped Mauna Loa are thought to be analogous to those currently active at Kilauea, an improved understanding of Mauna Loa's history can provide valuable insight into the future of the younger Hawaiian volcanoes. Several recent marine surveys in the area, including submersible surveys conducted by MBARI and JAMSTEC, and a multi-channel seismic (MCS) survey carried out by the University of Hawaii, provide important new data about the composition and structure of Mauna Loa's submarine west flank. We carried out detailed geochemical, petrographic and structural analyses of rock samples and dive videos collected from the exposed northern wall of the midslope bench, documenting a repeated sequences of volcaniclastic sandstones and breccias. This stratigraphy contrasts with the predominantly subaerially erupted basalts composing the upper flank. Several thick ponded flows or sill-like diabase units are also interspersed in the section. The volcaniclastic units are highly cemented, and many contain hydrothermal alteration products, including chlorite, zeolites, and actinolite. The most altered rocks occur near the base of the bench and the degree of alteration decreases upward in the section. Samples collected from the outer scarp of the bench show evidence for intense shearing and cataclasis at all scales. The new MCS line crosses Mauna Loa's southern submarine flank and central bench. More than 500 m of finely layered slope strata overlie the upper flank to the south, and are truncated above the Ka Lae avalanche scar. The central bench to the north, sampled by the MBARI dives, shows only thin sediment cover above a poorly reflective interior. Strong deep reflections in both locations begin to resolve the underlying oceanic crust, as well as probable fault planes that may be responsible for flank deformation in this area. The abundance of volcaniclastic rocks with Mauna Loa affinities within the bench supports the idea that giant landslides from Mauna Loa were the source of much of the offshore debris. The stratal repetition, deformation fabrics, and cementation of the volcaniclastics also suggest that the rocks composing the bench were once deeply buried and have been subsequently exhumed by thrusting, most likely driven by deep volcanic spreading.
NASA Astrophysics Data System (ADS)
Mohammed, F.
2016-12-01
Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data for landslides and tsunamis.
Assessing the importance of terrain parameters on glide avalanche release
NASA Astrophysics Data System (ADS)
Peitzsch, E.; Hendrikx, J.; Fagre, D. B.
2013-12-01
Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.
Assessing the importance of terrain parameters on glide avalanche release
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.
2014-01-01
Glide snow avalanches are dangerous and difficult to predict. Despite recent research there is still a lack of understanding regarding the controls of glide avalanche release. Glide avalanches often occur in similar terrain or the same locations annually and observations suggest that topography may be critical. Thus, to gain an understanding of the terrain component of these types of avalanches we examined terrain parameters associated with glide avalanche release as well as areas of consistent glide crack formation but no subsequent avalanches. Glide avalanche occurrences visible from the Going-to-the-Sun Road corridor in Glacier National Park, Montana from 2003-2013 were investigated using an avalanche database derived of daily observations each year from April 1 to June 15. This yielded 192 glide avalanches in 53 distinct avalanche paths. Each avalanche occurrence was digitized in a GIS using satellite, oblique, and aerial imagery as reference. Topographical parameters such as area, slope, aspect, elevation and elevation were then derived for the entire dataset utilizing GIS tools and a 10m DEM. Land surface substrate and surface geology were derived from National Park Service Inventory and Monitoring maps and U.S. Geological Survey surface geology maps, respectively. Surface roughness and glide factor were calculated using a four level classification index. . Then, each avalanche occurrence was aggregated to general avalanche release zones and the frequencies were compared. For this study, glide avalanches released in elevations ranging from 1300 to 2700 m with a mean aspect of 98 degrees (east) and a mean slope angle of 38 degrees. The mean profile curvature for all glide avalanches was 0.15 and a plan curvature of -0.01, suggesting a fairly linear surface (i.e. neither convex nor concave). The glide avalanches occurred in mostly bedrock made up of dolomite and limestone slabs and talus deposits with very few occurring in alpine meadows. However, not all glide avalanches failed as cohesive slabs on this bedrock surface. Consequently, surface roughness proved to be a useful descriptive variable to discriminate between slopes that avalanched and those that did not. Annual 'repeat offender' glide avalanche paths were characterized by smooth outcropping rock plates with stratification planes parallel to the slope. Combined with aspect these repeat offenders were also members of the highest glide category. Using this understanding of the role of topographic parameters on glide avalanche activity, a spatial terrain based model was developed to identify other areas with high glide avalanche potential outside of our immediate observation area.
Peitzsch, Erich H.; Fagre, Daniel B.; Dundas, Mark
2010-01-01
Snow avalanche paths are key geomorphologic features in Glacier National Park, Montana, and an important component of mountain ecosystems: they are isolated within a larger ecosystem, they are continuously disturbed, and they contain unique physical characteristics (Malanson and Butler, 1984). Avalanches impact subalpine forest structure and function, as well as overall biodiversity (Bebi et al., 2009). Because avalanches are dynamic phenomena, avalanche path geometry and spatial extent depend upon climatic regimes. The USGS/GNP Avalanche Program formally began in 2003 as an avalanche forecasting program for the spring opening of the ever-popular Going-to-the-Sun Road (GTSR), which crosses through 37 identified avalanche paths. Avalanche safety and forecasting is a necessary part of the GTSR spring opening procedures. An avalanche atlas detailing topographic parameters and oblique photographs was completed for the GTSR corridor in response to a request from GNP personnel for planning and resource management. Using ArcMap 9.2 GIS software, polygons were created for every avalanche path affecting the GTSR using aerial imagery, field-based observations, and GPS measurements of sub-meter accuracy. Spatial attributes for each path were derived within the GIS. Resulting products include an avalanche atlas book for operational use, a geoPDF of the atlas, and a Google Earth flyover illustrating each path and associated photographs. The avalanche atlas aids park management in worker safety, infrastructure planning, and natural resource protection by identifying avalanche path patterns and location. The atlas was created for operational and planning purposes and is also used as a foundation for research such as avalanche ecology projects and avalanche path runout modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nye, C.J.
1987-12-01
The Spurr Volcanic Complex (SVC) is a calcalkaline, medium-K, sequence of andesites erupted over the last quarter of a million years by the easternmost currently active volcanic center in the Aleutian Arc. The ancestral Mt. Spurr was built mostly of andesites of uniform composition (58 to 60% SiO/sub 2/), although andesite production was episodically interrupted by the introduction of new batches of more mafic magma. Near the end of the Pleistocene the ancestral Mt. Spurr underwent Bezyianny-type avalanche caldera formation, resulting in the production of a volcanic debris avalanche with overlying ashflows. Immediately afterward, a large dome (the present Mt.more » Spurr) was emplaced in the caldera. Both the ashflows and dome are made of acid andesite more silicic than any analyzed lavas from the ancestral Mt. Spurr (60 to 63% SiO/sub 2/), yet contain olivine and amphibole xenocrysts derived from more mafic magma. The mafic magma (53 to 57% SiO/sub 2/) erupted during and after dome emplacement, forming proto-Crater Peak and Crater Peak. Hybrid pyroclastic flows and lavas were also produced. Proto-Crater Peak underwent glacial dissection prior to the formation of Crater Peak in approximately the same location. Appendices II through VIII contain a summary of mineral compositions; Appendix I contains geochemical data. Appendix IX by R.J. Motyka and C.J. Nye describes the chemistry of geothermal fluids. 78 refs., 16 figs., 3 tabs.« less
Application of LANDSAT data to delimitation of avalanche hazards in Montane Colorado
NASA Technical Reports Server (NTRS)
Knepper, D. H., Jr. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Many avalanche hazard zones can be identified on LANDSAT imagery, but not consistently over a large region. Therefore, regional avalanche hazard mapping, using LANDSAT imagery, must draw on additional sources of information. A method was devised that depicts three levels of avalanche hazards according to three corresponding levels of certainty that active avalanches occur. The lowest level, potential avalanche hazards, was defined by delineating slopes steep enough to support avalanches at elevations where snowfall was likely to be sufficient to produce a thick snowpack. The intermediate level of avalanche hazard was interpreted as avalanche hazard zones. These zones have direct and indirect indicators of active avalanche activity and were interpreted from LANDSAT imagery. The highest level of known or active avalanche hazards was compiled from existing maps. Some landslides in Colorado were identified and, to a degree, delimited on LANDSAT imagery, but the conditions of their identification were highly variable. Because of local topographic, geologic, structural, and vegetational variations, there was no unique landslide spectral appearance.
A coupled DEM-CFD method for impulse wave modelling
NASA Astrophysics Data System (ADS)
Zhao, Tao; Utili, Stefano; Crosta, GiovanBattista
2015-04-01
Rockslides can be characterized by a rapid evolution, up to a possible transition into a rock avalanche, which can be associated with an almost instantaneous collapse and spreading. Different examples are available in the literature, but the Vajont rockslide is quite unique for its morphological and geological characteristics, as well as for the type of evolution and the availability of long term monitoring data. This study advocates the use of a DEM-CFD framework for the modelling of the generation of hydrodynamic waves due to the impact of a rapid moving rockslide or rock-debris avalanche. 3D DEM analyses in plane strain by a coupled DEM-CFD code were performed to simulate the rockslide from its onset to the impact with still water and the subsequent wave generation (Zhao et al., 2014). The physical response predicted is in broad agreement with the available observations. The numerical results are compared to those published in the literature and especially to Crosta et al. (2014). According to our results, the maximum computed run up amounts to ca. 120 m and 170 m for the eastern and western lobe cross sections, respectively. These values are reasonably similar to those recorded during the event (i.e. ca. 130 m and 190 m respectively). In these simulations, the slope mass is considered permeable, such that the toe region of the slope can move submerged in the reservoir and the impulse water wave can also flow back into the slope mass. However, the upscaling of the grains size in the DEM model leads to an unrealistically high hydraulic conductivity of the model, such that only a small amount of water is splashed onto the northern bank of the Vajont valley. The use of high fluid viscosity and coarse grain model has shown the possibility to model more realistically both the slope and wave motions. However, more detailed slope and fluid properties, and the need for computational efficiency should be considered in future research work. This aspect has also been investigated by Crosta et al. (2014) via 2D and 3D FEM ALE modelling without considering the water seepage in the slope mass has been used. Their results can be a good way to estimate the slope and wave motion for fast sliding conditions. The 3D modelling can also clarify the lateral motion of water and estimate the potential risk of water overtopping the dam crest. The DEM and FEM ALE modelling can be used together to analyse fast moving rockslides (i.e. flowslides, rockslides, rock and debris avalanches) both in dry conditions and for their interaction with water basins. References Zhao, T., Utili, S., Crosta, G.B. Rockslide and impulse wave modelling in the Vajont reservoir by DEM-CFD analyses. Rock Mechanics and rock Engineering, under review. Crosta, G.B., Imposimato, S. & Roddeman, D. 2014. Landslide spreading, impulse waves and modelling of the Vajont rockslide. Rock Mechanics and Rock Engineering, under review.
NASA Astrophysics Data System (ADS)
Marmoni, G. M.; Martino, S.; Heap, M. J.; Reuschlé, T.
2017-10-01
Ischia Island (Italy) is an impressive example of the rare phenomenon of caldera resurgence. The emplacement and replenishment of magmas at shallow depth resulted in a vertical uplift of about 900 m, concentrated in the western portion of Mt. Epomeo (789 m a.s.l.). As a consequence of this uplift, the island has experienced several slope instabilities at different scales since the Holocene, from shallow mass movements to large rock and debris avalanches. These mass wasting events, which mobilised large volumes of greenish alkali-trachytic tuff (the Mt. Epomeo Green Tuff, MEGT), were strictly related to volcano-tectonic activity and the interaction between the volcanic slopes and the hydrothermal system beneath the island. Deep-Seated Gravitational Slope Deformation (DSGSD) at Mt. Nuovo, located adjacent to densely populated coastal villages, is an ongoing process that covers an area of 1.6 km2. The Mt. Nuovo DSGSD involves a rock mass volume of 190 Mm3 and is accommodated by a main shear zone and a series of sub-vertical fault zones associated with high-angle joint sets. To improve our understanding of this gravity-induced process, we performed a physical (porosity and permeability) and mechanical (uniaxial and triaxial deformation experiments) characterisation of two ignimbrite deposits - both from the MEGT - that form a significant component of the NW sector of Mt. Epomeo. The main conclusions drawn from our experiments are twofold. First, the presence of water dramatically reduces the strength of the tuffs, suggesting that the movement of fluids within the hydrothermal system could greatly impact slope stability. Second, the transition from brittle (dilatant) to ductile (compactant) behaviour in the tuffs of the MEGT occurs at a very low effective pressure, analogous to a depth of a couple of hundred metres, and that this transition is likely moved closer to the surface in the presence of water. We hypothesise that compactant (porosity decreasing) behaviour at the base of the layer could therefore facilitate slope instability. Although our results show that transient exposure to 300 °C does not influence the short-term strength of the tuff, we speculate that the high in-situ temperature could increase the efficiency of brittle and compactant creep and therefore increase the rate of slope deformation. Taken together, our experimental data highlight a potentially important role for the hydrothermal system (that reaches a minimum depth of 1 km) in dictating the DSGSD at Mt. Nuovo. An understanding of this deformation process is not only important for the proximal coastal villages, at risk of engulfment by a large debris avalanche, but also for the towns and cities along the coast of the Gulf of Naples that are at risk to a secondary consequence of such an avalanche - a tsunami wave.
Meteorological variables associated with deep slab avalanches on persistent weak layers
Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.
2014-01-01
Deep slab avalanches are a particularly challenging avalanche forecasting problem. These avalanches are typically difficult to trigger, yet when they are triggered they tend to propagate far and result in large and destructive avalanches. For this work we define deep slab avalanches as those that fail on persistent weak layers deeper than 0.9m (3 feet), and that occur after February 1st. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl Ski Area to test the usefulness of meteorological variables for predicting deep slab avalanches. As in previous studies, we used data from the days preceding deep slab cycles, but we also considered meteorological metrics over the early months of the season. We utilized classification trees for our analyses. Our results showed warmer temperatures in the prior twenty-four hours and more loading over the seven days before days with deep slab avalanches on persistent weak layers. In line with previous research, extended periods of above freezing temperatures led to days with deep wet slab avalanches on persistent weak layers. Seasons with either dry or wet avalanches on deep persistent weak layers typically had drier early months, and often had some significant snow depth prior to those dry months. This paper provides insights for ski patrollers, guides, and avalanche forecasters who struggle to forecast deep slab avalanches on persistent weak layers late in the season.
Automated identification of potential snow avalanche release areas based on digital elevation models
NASA Astrophysics Data System (ADS)
Bühler, Y.; Kumar, S.; Veitinger, J.; Christen, M.; Stoffel, A.; Snehmani
2013-05-01
The identification of snow avalanche release areas is a very difficult task. The release mechanism of snow avalanches depends on many different terrain, meteorological, snowpack and triggering parameters and their interactions, which are very difficult to assess. In many alpine regions such as the Indian Himalaya, nearly no information on avalanche release areas exists mainly due to the very rough and poorly accessible terrain, the vast size of the region and the lack of avalanche records. However avalanche release information is urgently required for numerical simulation of avalanche events to plan mitigation measures, for hazard mapping and to secure important roads. The Rohtang tunnel access road near Manali, Himachal Pradesh, India, is such an example. By far the most reliable way to identify avalanche release areas is using historic avalanche records and field investigations accomplished by avalanche experts in the formation zones. But both methods are not feasible for this area due to the rough terrain, its vast extent and lack of time. Therefore, we develop an operational, easy-to-use automated potential release area (PRA) detection tool in Python/ArcGIS which uses high spatial resolution digital elevation models (DEMs) and forest cover information derived from airborne remote sensing instruments as input. Such instruments can acquire spatially continuous data even over inaccessible terrain and cover large areas. We validate our tool using a database of historic avalanches acquired over 56 yr in the neighborhood of Davos, Switzerland, and apply this method for the avalanche tracks along the Rohtang tunnel access road. This tool, used by avalanche experts, delivers valuable input to identify focus areas for more-detailed investigations on avalanche release areas in remote regions such as the Indian Himalaya and is a precondition for large-scale avalanche hazard mapping.
LANDSLIDE DAMMED LAKES AT MOUNT ST. HELENS, WASHINGTON.
Meyer, William; Sabol, Martha A.; Schuster, Robert; ,
1986-01-01
The collapse of the north face of Mount St. Helens on May 18, 1980, and the debris avalanche that resulted blocked outflow from Spirit Lake and Coldwater and South Fork Castle Creeks. Spirit Lake began to increase in size and lakes began to form in the canyons of Coldwater and South Fork Castle Creeks. Coldwater and Castle Lakes would have overtopped their respective blockages in late 1981 or early 1982. Catastrophic flooding would have occurred from the breakout of Coldwater Lake while serious flooding probably would have resulted from the breakout of Castle Lake. As a result, the level of both lakes was stabilized with spillways in 1981. The three blockages are stable against liquefaction and gravitationally induced slope failure. The existence of groundwater in the blockages was observed in piezometers installed between 1981 and 1983. Groundwater mounds with water levels above lake level exist under the crest of all of the blockages.
Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka.
Paris, Raphaël; Bravo, Juan J Coello; González, María E Martín; Kelfoun, Karim; Nauret, François
2017-05-15
Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.
A data-based model to locate mass movements triggered by seismic events in Sichuan, China.
de Souza, Fabio Teodoro
2014-01-01
Earthquakes affect the entire world and have catastrophic consequences. On May 12, 2008, an earthquake of magnitude 7.9 on the Richter scale occurred in the Wenchuan area of Sichuan province in China. This event, together with subsequent aftershocks, caused many avalanches, landslides, debris flows, collapses, and quake lakes and induced numerous unstable slopes. This work proposes a methodology that uses a data mining approach and geographic information systems to predict these mass movements based on their association with the main and aftershock epicenters, geologic faults, riverbeds, and topography. A dataset comprising 3,883 mass movements is analyzed, and some models to predict the location of these mass movements are developed. These predictive models could be used by the Chinese authorities as an important tool for identifying risk areas and rescuing survivors during similar events in the future.
A data base approach for prediction of deforestation-induced mass wasting events
NASA Technical Reports Server (NTRS)
Logan, T. L.
1981-01-01
A major topic of concern in timber management is determining the impact of clear-cutting on slope stability. Deforestation treatments on steep mountain slopes have often resulted in a high frequency of major mass wasting events. The Geographic Information System (GIS) is a potentially useful tool for predicting the location of mass wasting sites. With a raster-based GIS, digitally encoded maps of slide hazard parameters can be overlayed and modeled to produce new maps depicting high probability slide areas. The present investigation has the objective to examine the raster-based information system as a tool for predicting the location of the clear-cut mountain slopes which are most likely to experience shallow soil debris avalanches. A literature overview is conducted, taking into account vegetation, roads, precipitation, soil type, slope-angle and aspect, and models predicting mass soil movements. Attention is given to a data base approach and aspects of slide prediction.
Iverson, Richard M.; LeVeque, Randall J.
2009-01-01
A recent workshop at the University of Washington focused on mathematical and computational aspects of modeling the dynamics of dense, gravity-driven mass movements such as rock avalanches and debris flows. About 30 participants came from seven countries and brought diverse backgrounds in geophysics; geology; physics; applied and computational mathematics; and civil, mechanical, and geotechnical engineering. The workshop was cosponsored by the U.S. Geological Survey Volcano Hazards Program, by the U.S. National Science Foundation through a Vertical Integration of Research and Education (VIGRE) in the Mathematical Sciences grant to the University of Washington, and by the Pacific Institute for the Mathematical Sciences. It began with a day of lectures open to the academic community at large and concluded with 2 days of focused discussions and collaborative work among the participants.
Mass movements on Venus - Preliminary results from Magellan cycle 1 observations
NASA Technical Reports Server (NTRS)
Malin, Michael C.
1992-01-01
A preliminary assessment of mass movements and their geomorphic characteristics as determined from visual inspection of Magellan cycle 1 synthetic aperture radar images is described. The primary data set was a catalog of over 200 ten-inch square photographic prints of full-resolution mosaic image data records. Venus exhibits unambiguous evidence of mass movements at a variety of scales. Mass movements appear mostly in the form of block and rock movements; there is little evidence of regolith and sediment movements. Unique Venusian conditions may play a role in the creation of some mass movement features. Dark (smooth) surfaces surrounding many rockslide avalanches are probably fine materials emplaced as part of the mass movement process, as airfall, surface-hugging density flows, or coarse-depleted debris flows. The size and efficiency of emplacement of landslide deposits on Venus are comparable to those seen on Mars, which in turn generally resemble terrestrial occurrences.
Avalanche Accidents Causing Fatalities: Are They Any Different in the Summer?
Pasquier, Mathieu; Hugli, Olivier; Kottmann, Alexandre; Techel, Frank
2017-03-01
Pasquier, Mathieu, Olivier Hugli, Alexandre Kottmann, and Frank Techel. Avalanche accidents causing fatalities: are they any different in the summer? High Alt Med Biol. 18:67-72, 2017. This retrospective study investigated the epidemiology of summer avalanche accidents that occurred in Switzerland and caused at least one fatality between 1984 and 2014. Summer avalanche accidents were defined as those that occurred between June 1st and October 31st. Summer avalanches caused 21 (4%) of the 482 avalanches with at least one fatality occurring during the study period, and 40 (6%) of the 655 fatalities. The number of completely buried victims per avalanche and the proportion of complete burials among trapped people were lower in summer than in winter. Nevertheless, the mean number of fatalities per avalanche was higher in summer than in winter: 1.9 ± 1.2 (standard deviation; range 1-6) versus 1.3 ± 0.9 (range 1-7; p < 0.001). Trauma was the presumed cause of death in 94% (33 of 35) in summer avalanche accidents. Sixty-five percent of fully buried were found due to visual clues at the snow surface. Fatal summer avalanche accidents caused a higher mean number of fatalities per avalanche than winter avalanches, and those deaths resulted mostly from trauma. Rescue teams should anticipate managing polytrauma for victims in summer avalanche accidents rather than hypothermia or asphyxia; they should be trained in prehospital trauma life support and equipped accordingly to ensure efficient patient care.
Statistical analysis and trends of wet snow avalanches in the French Alps over the period 1959-2010
NASA Astrophysics Data System (ADS)
Naaim, Mohamed
2017-04-01
Since an avalanche contains a significant proportion of wet snow, its characteristics and its behavior change significantly (heterogeneous and polydisperse). Even if on a steep given slope, wet snow avalanches are slow. They can flow over gentle slopes and reach the same extensions as dry avalanches. To highlight the link between climate warming and the proliferation of wet snow avlanches, we crossed two well-documented avalanche databases: the permanent avalanche chronicle (EPA) and the meteorological re-analyzes. For each avalanche referenced in EPA, a moisture index I is buit. It represents the ratio of the thickness of the wet snow layer to the total snow thickness, at the date of the avalanche on the concerned massif at 2400 m.a.s.l. The daily and annual proportion of avalanches exceeding a given threshold of I are calculated for each massif of the French alps. The statistical distribution of wet avalanches per massif is calculated over the period 1959-2009. The statistical quantities are also calculated over two successive periods of the same duration 1959-1984 and 1984-2009, and the annual evolution of the proportion of wet avalanches is studied using time-series tools to detect potential rupture or trends. This study showed that about 77% of avalanches on the French alpine massif mobilize dry snow. The probability of having an avalanche of a moisture index greater than 10 % in a given year is 0.2. This value varies from one massif to another. The analysis between the two successive periods showed a significant growth of wet avalanches on 20 massifs and a decrease on 3 massifs. The study of time-series confirmed these trends, which are of the inter-annual variability level.
IFKIS - a basis for managing avalanche risk in settlements and on roads in Switzerland
NASA Astrophysics Data System (ADS)
Bründl, M.; Etter, H.-J.; Steiniger, M.; Klingler, Ch.; Rhyner, J.; Ammann, W. J.
2004-04-01
After the avalanche winter of 1999 in Switzerland, which caused 17 deaths and damage of over CHF 600 mill. in buildings and on roads, the project IFKIS, aimed at improving the basics of organizational measures (closure of roads, evacuation etc.) in avalanche risk management, was initiated. The three main parts of the project were the development of a compulsory checklist for avalanche safety services, a modular education and training course program and an information system for safety services. The information system was developed in order to improve both the information flux between the national centre for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local safety services on the one hand and the communication between avalanche safety services in the communities on the other hand. The results of this project make a valuable contribution to strengthening organizational measures in avalanche risk management and to closing the gaps, which became apparent during the avalanche winter of 1999. They are not restricted to snow avalanches but can also be adapted for dealing with other natural hazard processes and catastrophes.
NASA Astrophysics Data System (ADS)
Teich, M.; Feistl, T.; Fischer, J.; Bartelt, P.; Bebi, P.; Christen, M.; Grêt-Regamey, A.
2013-12-01
Two-dimensional avalanche simulation software operating in three-dimensional terrain are widely used for hazard zoning and engineering to predict runout distances and impact pressures of snow avalanche events. Mountain forests are an effective biological protection measure; however, the protective capacity of forests to decelerate or even to stop avalanches that start within forested areas or directly above the treeline is seldom considered in this context. In particular, runout distances of small- to medium-scale avalanches are strongly influenced by the structural conditions of forests in the avalanche path. This varying decelerating effect has rarely been addressed or implemented in avalanche simulation. We present an evaluation and operationalization of a novel forest detrainment modeling approach implemented in the avalanche simulation software RAMMS. The new approach accounts for the effect of forests in the avalanche path by detraining mass, which leads to a deceleration and runout shortening of avalanches. The extracted avalanche mass caught behind trees stops immediately and, therefore, is instantly subtracted from the flow and the momentum of the stopped mass is removed from the total momentum of the avalanche flow. This relationship is parameterized by the empirical detrainment coefficient K [Pa] which accounts for the braking power of different forest types per unit area. To define K dependent on specific forest characteristics, we simulated 40 well-documented small- to medium-scale avalanches which released in and ran through forests with varying K-values. Comparing two-dimensional simulation results with one-dimensional field observations for a high number of avalanche events and simulations manually is however time consuming and rather subjective. In order to process simulation results in a comprehensive and standardized way, we used a recently developed automatic evaluation and comparison method defining runout distances based on a pressure-based runout indicator in an avalanche path dependent coordinate system. Analyzing and comparing observed and simulated runout distances statistically revealed values for K suitable to simulate the combined influence of four forest characteristics on avalanche runout: forest type, crown coverage, vertical structure and surface roughness, e.g. values for K were higher for dense spruce and mixed spruce-beech forests compared to open larch forests at the upper treeline. Considering forest structural conditions within avalanche simulation will improve current applications for avalanche simulation tools in mountain forest and natural hazard management considerably. Furthermore, we show that an objective and standardized evaluation of two-dimensional simulation results is essential for a successful evaluation and further calibration of avalanche models in general.
Experimental Avalanches in a Rotating Drum
NASA Astrophysics Data System (ADS)
Hubard, Aline; O'Hern, Corey; Shattuck, Mark
We address the question of universality in granular avalanches and the system size effects on it. We set up an experiment made from a quasi-two-dimensional rotating drum half-filled with a monolayer of stainless-steel spheres. We measure the size of the avalanches created by the increased gravitational stress on the pile as we quasi-statically rotate the drum. We find two kinds of avalanches determined by the drum size. The size and duration distributions of the avalanches that do not span the whole system follow a power law and the avalanche shapes are self-similar and nearly parabolic. The distributions of the avalanches that span the whole system are limited by the maximal amount of potential energy stored in the system at the moment of the avalanche. NSF CMMI-1462439, CMMI-1463455.
Pederson, Gregory T.; Reardon, Blase; Caruso, C.J.; Fagre, Daniel B.
2006-01-01
Effective design of avalanche hazard mitigation measures requires long-term records of natural avalanche frequency and extent. Such records are also vital for determining whether natural avalanche frequency and extent vary over time due to climatic or biophysical changes. Where historic records are lacking, an accepted substitute is a chronology developed from tree-ring responses to avalanche-induced damage. This study evaluates a method for using tree-ring chronologies to provide spatially explicit differentiations of avalanche frequency and temporally explicit records of avalanche extent that are often lacking. The study area - part of John F. Stevens Canyon on the southern border of Glacier National Park – is within a heavily used railroad and highway corridor with two dozen active avalanche paths. Using a spatially geo-referenced network of avalanche-damaged trees (n=109) from a single path, we reconstructed a 96-year tree-ring based chronology of avalanche extent and frequency. Comparison of the chronology with historic records revealed that trees recorded all known events as well as the same number of previously unidentified events. Kriging methods provided spatially explicit estimates of avalanche return periods. Estimated return periods for the entire avalanche path averaged 3.2 years. Within this path, return intervals ranged from ~2.3 yrs in the lower track, to ~9-11 yrs and ~12 to >25 yrs in the runout zone, where the railroad and highway are located. For avalanche professionals, engineers, and transportation managers this technique proves a powerful tool in landscape risk assessment and decision making.
A new web-based system to improve the monitoring of snow avalanche hazard in France
NASA Astrophysics Data System (ADS)
Bourova, Ekaterina; Maldonado, Eric; Leroy, Jean-Baptiste; Alouani, Rachid; Eckert, Nicolas; Bonnefoy-Demongeot, Mylene; Deschatres, Michael
2016-05-01
Snow avalanche data in the French Alps and Pyrenees have been recorded for more than 100 years in several databases. The increasing amount of observed data required a more integrative and automated service. Here we report the comprehensive web-based Snow Avalanche Information System newly developed to this end for three important data sets: an avalanche chronicle (Enquête Permanente sur les Avalanches, EPA), an avalanche map (Carte de Localisation des Phénomènes d'Avalanche, CLPA) and a compilation of hazard and vulnerability data recorded on selected paths endangering human settlements (Sites Habités Sensibles aux Avalanches, SSA). These data sets are now integrated into a common database, enabling full interoperability between all different types of snow avalanche records: digitized geographic data, avalanche descriptive parameters, eyewitness reports, photographs, hazard and risk levels, etc. The new information system is implemented through modular components using Java-based web technologies with Spring and Hibernate frameworks. It automates the manual data entry and improves the process of information collection and sharing, enhancing user experience and data quality, and offering new outlooks to explore and exploit the huge amount of snow avalanche data available for fundamental research and more applied risk assessment.
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ripepe, M.; Ulivieri, G.; Kogelnig, A.
2015-11-01
Avalanche risk management is strongly related to the ability to identify and timely report the occurrence of snow avalanches. Infrasound has been applied to avalanche research and monitoring for the last 20 years but it never turned into an operational tool to identify clear signals related to avalanches. We present here a method based on the analysis of infrasound signals recorded by a small aperture array in Ischgl (Austria), which provides a significant improvement to overcome this limit. The method is based on array-derived wave parameters, such as back azimuth and apparent velocity. The method defines threshold criteria for automatic avalanche identification by considering avalanches as a moving source of infrasound. We validate the efficiency of the automatic infrasound detection with continuous observations with Doppler radar and we show how the velocity of a snow avalanche in any given path around the array can be efficiently derived. Our results indicate that a proper infrasound array analysis allows a robust, real-time, remote detection of snow avalanches that is able to provide the number and the time of occurrence of snow avalanches occurring all around the array, which represent key information for a proper validation of avalanche forecast models and risk management in a given area.
NASA Astrophysics Data System (ADS)
Zhan, Weiwei; Fan, Xuanmei; Huang, Runqiu; Pei, Xiangjun; Xu, Qiang; Li, Weile
2017-06-01
Rock avalanches are extremely rapid, massive flow-like movements of fragmented rock. The travel path of the rock avalanches may be confined by channels in some cases, which are referred to as channelized rock avalanches. Channelized rock avalanches are potentially dangerous due to their difficult-to-predict travel distance. In this study, we constructed a dataset with detailed characteristic parameters of 38 channelized rock avalanches triggered by the 2008 Wenchuan earthquake using the visual interpretation of remote sensing imagery, field investigation and literature review. Based on this dataset, we assessed the influence of different factors on the runout distance and developed prediction models of the channelized rock avalanches using the multivariate regression method. The results suggested that the movement of channelized rock avalanche was dominated by the landslide volume, total relief and channel gradient. The performance of both models was then tested with an independent validation dataset of eight rock avalanches that were induced by the 2008 Wenchuan earthquake, the Ms 7.0 Lushan earthquake and heavy rainfall in 2013, showing acceptable good prediction results. Therefore, the travel-distance prediction models for channelized rock avalanches constructed in this study are applicable and reliable for predicting the runout of similar rock avalanches in other regions.
Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations
NASA Astrophysics Data System (ADS)
Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe
2017-04-01
The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and the NDVI. The SAGM will be first elaborated for the focus sites and will then be extended to the entire Vaud Alps above 2000 m a.s.l. This information will be used to better understand the geomorphology-vegetation interactions and their spatialization.
NASA Astrophysics Data System (ADS)
Schoenbohm, Lindsay M.; Chen, Jie; Stutz, Jamey; Sobel, Edward R.; Thiede, Rasmus C.; Kirby, Benjamin; Strecker, Manfred R.
2014-09-01
Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modern glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data. We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects lithologic control (i.e., the location of crustal gneiss domes) and the formation of peaks that rise above the ELA and escape the glacial buzzsaw.
Measuring neuronal avalanches in disordered systems with absorbing states
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Tragtenberg, M. H. R.
2018-04-01
Power-law-shaped avalanche-size distributions are widely used to probe for critical behavior in many different systems, particularly in neural networks. The definition of avalanche is ambiguous. Usually, theoretical avalanches are defined as the activity between a stimulus and the relaxation to an inactive absorbing state. On the other hand, experimental neuronal avalanches are defined by the activity between consecutive silent states. We claim that the latter definition may be extended to some theoretical models to characterize their power-law avalanches and critical behavior. We study a system in which the separation of driving and relaxation time scales emerges from its structure. We apply both definitions of avalanche to our model. Both yield power-law-distributed avalanches that scale with system size in the critical point as expected. Nevertheless, we find restricted power-law-distributed avalanches outside of the critical region within the experimental procedure, which is not expected by the standard theoretical definition. We remark that these results are dependent on the model details.
NASA Astrophysics Data System (ADS)
Blahut, Jan; Klimes, Jan; Balek, Jan; Taborik, Petr; Juras, Roman; Pavlasek, Jiri
2015-04-01
Run-out modelling of snow avalanches is being widely applied in high mountain areas worldwide. This study presents application of snow avalanche run-out calculation applied to mid-mountain ranges - the Krkonose, Jeseniky and Kralicky Sneznik Mountains. All mentioned mountain ranges lie in the northern part of Czechia, close to the border with Poland. Its highest peak reaches only 1602 m a.s.l. However, climatic conditions and regular snowpack presence are the reason why these mountain ranges experience considerable snow avalanche activity every year, sometimes resulting in injuries or even fatalities. Within the aim of an applied project dealing with snow avalanche hazard prediction a re-assessment of permanent snow avalanche paths has been performed based on extensive statistics covering period from 1961/62 till present. On each avalanche path different avalanches with different return periods were modelled using the RAMMS code. As a result, an up-to-date snow avalanche hazard map was prepared.
Lahar Hazards at Casita and San Cristóbal Volcanoes, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.; Reid, M.E.; Howell, M.M.; Brien, D.L.
2004-01-01
Casita and San Cristóbal volcanoes are part of a volcano complex situated at the eastern end of the Cordillera de los Maribios. Other centers of volcanism in the complex include El Chonco, Cerro Moyotepe, and La Pelona. At 1745 m, San Cristóbal is the highest and only historically active volcano of the complex. The volcano’s crater is 500 to 600 m across and elongate east to west; its western rim is more than 100 m higher than its eastern rim. The conical volcano is both steep and symmetrical. El Chonco, which lies west of San Cristóbal, is crudely conical but has been deeply dissected by streams. Cerro Moyotepe to the northeast of San Cristóbal is even more deeply incised by erosion than El Chonco, and its crater is breached by erosion. Casita volcano, about 5 km east of San Cristóbal volcano, comprises a broad ridge like form, elongate along an eastwest axis, that is deeply dissected. Nested along the ridge are two craters. The younger one, La Ollada crater, truncates an older smaller crater to the east near Casita’s summit (1430 m). La Ollada crater is about 1 km across and 100 m deep. Numerous small fumarole fields occur near the summit of Casita and on nearby slopes outside of the craters. Casita volcano overlaps the 3-km-wide crater of La Pelona to the east. Stream erosion has deeply incised the slopes of La Pelona, and it is likely the oldest center of the Casita-San Cristóbal volcano complex. In late October and early November 1998, torrential rains of Hurricane Mitch caused numerous slope failures in Central America. The most catastrophic occurred at Casita volcano, on October 30, 1998. At Casita, five days of heavy rain triggered a 1.6-million-cubic-meter rock and debris avalanche that generated an 2- to 4- million-cubic-meter debris flow that swept down the steep slopes of the volcano. The debris flow spread out across the volcano’s apron, destroyed two towns, and killed more than 2500 people. In prehistoric time, Casita erupted explosively to form ash-fall deposits (tephra), debris avalanches, lava flows, and hot flowing mixtures of ash and rock (called pyroclastic flows). The chronology of activity at Casita is rather poorly known. Its last documented eruption occurred 8300 years ago, and included a pyroclastic flow. Tephra deposits exposed in the east crater suggest the possibility of subsequent eruptions. Work prior to Hurricane Mitch suggested that a part of the volcano’s apron that included the area inundated during the 1998 event south of Casita was a lahar pathway. Erosion during Hurricane Mitch revealed that at least three large lahars descended this pathway to distances of up to 10 km. This report describes the hazards of landslides and lahars in general, and discusses potential hazards from future landslides and lahars at San Cristóbal and Casita volcanoes in particular. The report also shows, in the accompanying lahar hazard-zonation maps, which areas are likely to be at risk from future landslides and lahars at Casita and San Cristóbal.
NASA Astrophysics Data System (ADS)
Mulas, M.; Bowman, L.; Roverato, M.; Larrea Marquez, P.; Casado, I.
2017-12-01
Debris avalanche deposits (DAD) are common products of catastrophic volcanic edifice collapses. These failure events leave peculiar horseshoe-shaped scars on the summits of stratovolcanoes. Cubilche Volcano (3826 masl), located S of the city of Ibarra (Imbabura Province) and E of the dormant Imbabura volcano, displays a distinct horseshoe-shaped scar towards the N. This post-collapse edifice that we name "Old Cubilche Volcano" (OCV) hosts an additional edifice, "Young Cubilche Volcano" (YCV), which partially covers the southern flank of OCV. Knowledge of Cubilche is critical because of its close proximity to the provincial capital of Ibarra. In fact, Imbabura edifice was built over the northwestern slope of OCV and partially covered it. The studied DAD (unknown age) has been recently linked to Imbabura Volcano as a product of its northwestern sector collapse (LePennec et al., 2011). Alternatively, previous work proposed that the DAD, covering 80 km2 and reaching >13 km distance with an estimated volume of 1.6 km3, was the product of the older OCV (Ruiz, 2003). To constrain the source of the DAD, detailed fieldwork with granulometric, petrological, and geochemical analyses of the deposit was conducted. Preliminary data points to Cubilche as the most likely source for this DAD in accordance with Ruiz (2003). The shaded relief image of the present day OCV shows that the morphology of the volcano is well-preserved on its southern, eastern, and western flanks. This allows the reconstruction of the morphology of OCV prior to the collapse through interpolation of elevation and altitude data of the preserved flanks. A DEM of the present day topography (12m horizontal resolution) obtained from TanDEM-X data was used for extrapolating the morphology. This methodology shows that the post-collapse base of the amphitheater was reconstructed by removing the relief of the present day YCV. The reconstructed topography of OCV shows that it could have been a symmetric cone, reaching a maximum elevation of 4300 masl with a missing volume of 1.2-1.5 km3. Based on this scenario, the deposit originating from OCV's main collapse should have a volume >1.2 km3 in accordance with the volume calculated for DAD.
NASA Astrophysics Data System (ADS)
Tormey, Daniel
2010-11-01
Glaciated mountains are among the most sensitive environments to climatic changes, and recent work has shown that large-scale glacial melting, including at the end of the Pleistocene, caused a significant increase in the incidence of large volcanic sector collapse and debris flows on then-active volcanoes. With current accelerated rates of glacial melting, glaciated active volcanoes are at an increasing risk of sector collapse, debris flow and landslide. These catastrophic events are Earth's most damaging erosion phenomenon, causing extensive property damage and loss of life. This paper illustrates these effects in well-studied settings, focusing on the end-Pleistocene to Holocene glaciovolcanic growth and destruction of the cone of the active volcano Planchon-Peteroa in the Andean Southern Volcanic Zone at latitude 35° 15' S, along the border between Chile and Argentina. The development of the volcano over the last 14,000 years illustrates how glacial melting and magmatic activity can trigger landslides and sector collapses. Planchon had a large sector collapse that produced a highly mobile and erosive debris avalanche 11,000 years BP, and other slope instabilities during the end-Pleistocene/early Holocene deglaciation. The summit amphitheater left after the sector collapse was subject to alternating periods of glaciation and melting-induced lake formation. Breaching of the moraine dams then formed lahars and landslides originating at the western edge of the summit amphitheater, and the deposits are preserved along the western flank of the volcano. Deep incision of moraine deposits further down the western slope of the volcano indicates that the lahars and landslides were water-rich and had high erosive power. As illustrated by Planchon-Peteroa, the interplay among glacial growth and melting, magmatic activity, and slope stability is complex, but must be accounted for in volcanic hazard assessment. Planchon-Peteroa currently has the southernmost temperate zone mountain glacier in the Andes. Accelerated glacial melting at present rates of climate change could lead to a recurrence of many of these post-Pleistocene events. A framework for augmenting hazard assessments and countermeasures is also proposed based on the types of hazards presented by accelerated glacial melting. Glacial melting may lead to volcanic hazards in areas not previously considered at risk, and hence there may be a low level of preparedness. Compared to the end-Pleistocene accelerated glacial melting and sector collapses, present-day glacial melting in volcanic terrain has the potential to affect large human populations. Human settlements, hydropower production, forestry, mining and wilderness tourism are all concentrated near some glaciated volcanic areas. For example, the area covered by the debris avalanche from Volcan Planchon currently supports a rich agricultural economy in Chile. Effective risk management is needed to address the issues of changing patterns in vulnerability, the nature and redistribution of hazards, and the potential socioeconomic consequences of glaciovolcanic events. Since these events are infrequent, local communities frequently do not have a memory of past occurrences, and therefore have a low awareness of the potential effects. Systematic and structured impact assessment allows objective risk analysis, uncertainty analysis, and a framework for balancing countermeasures and contingency measures with public need and acceptance. An impact assessment approach similar to that used in land use planning is presented here, with the following major elements: (i) hazard characterization; (ii) consequence characterization; (iii) risk assessment; (iv) risk control and countermeasures; and (v) risk communication. The emphasis is on effective risk communication, supported by facts, in order to address the increased hazards posed by accelerated glacial melting on volcanic cone stability. Decision makers must then weigh societal acceptance of the risk control and countermeasures against their costs and consequences.
Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers
Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.
2015-01-01
Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.
Dealing with the white death: avalanche risk management for traffic routes.
Rheinberger, Christoph M; Bründl, Michael; Rhyner, Jakob
2009-01-01
This article discusses mitigation strategies to protect traffic routes from snow avalanches. Up to now, mitigation of snow avalanches on many roads and railways in the Alps has relied on avalanche sheds, which require large initial investments resulting in high opportunity costs. Therefore, avalanche risk managers have increasingly adopted organizational mitigation measures such as warning systems and closure policies instead. The effectiveness of these measures is, however, greatly dependent on human decisions. In this article, we present a method for optimizing avalanche mitigation for traffic routes in terms of both their risk reduction impact and their net benefit to society. First, we introduce a generic framework for assessing avalanche risk and for quantifying the impact of mitigation. This allows for sound cost-benefit comparisons between alternative mitigation strategies. Second, we illustrate the framework with a case study from Switzerland. Our findings suggest that site-specific characteristics of avalanche paths, as well as the economic importance of a traffic route, are decisive for the choice of optimal mitigation strategies. On routes endangered by few avalanche paths with frequent avalanche occurrences, structural measures are most efficient, whereas reliance on organizational mitigation is often the most appropriate strategy on routes endangered by many paths with infrequent or fuzzy avalanche risk. Finally, keeping a traffic route open may be very important for tourism or the transport industry. Hence, local economic value may promote the use of a hybrid strategy that combines organizational and structural measures to optimize the resource allocation of avalanche risk mitigation.
Avalanches and Criticality in Driven Magnetic Skyrmions
NASA Astrophysics Data System (ADS)
Díaz, S. A.; Reichhardt, C.; Arovas, D. P.; Saxena, A.; Reichhardt, C. J. O.
2018-03-01
We show using numerical simulations that slowly driven Skyrmions interacting with random pinning move via correlated jumps or avalanches. The avalanches exhibit power-law distributions in their duration and size, and the average avalanche shape for different avalanche durations can be scaled to a universal function, in agreement with theoretical predictions for systems in a nonequilibrium critical state. A distinctive feature of Skyrmions is the influence of the nondissipative Magnus term. When we increase the ratio of the Magnus term to the damping term, a change in the universality class of the behavior occurs, the average avalanche shape becomes increasingly asymmetric, and individual avalanches exhibit motion in the direction perpendicular to their own density gradient.
Historic avalanches in the northern front range and the central and northern mountains of Colorado
M. Martinelli; Charles F. Leaf
1999-01-01
Newspaper accounts of avalanche accidents from the 1860s through 1950 have been compiled, summarized, and discussed. Many of the avalanches that caused fatalities came down rather small, innocuous-looking paths. Land use planners can use historical avalanche information as a reminder of the power of snow avalanches and to assure rational development in the future....
NASA Astrophysics Data System (ADS)
Lato, M. J.; Frauenfelder, R.; Bühler, Y.
2012-09-01
Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.
NASA Astrophysics Data System (ADS)
Cooray, Vernon; Cooray, Gerald; Marshall, Thomas; Arabshahi, Shahab; Dwyer, Joseph; Rassoul, Hamid
2014-11-01
In the present study, electromagnetic fields of accelerating charges were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This model of the avalanche was utilized to test the idea whether the source of the lightning signatures known as narrow bipolar pulses could be relativistic avalanches. The idea was tested by using the simultaneously measured electric fields of narrow bipolar pulses at two distances, one measured far away from the source and the other in the near vicinity. The avalanche parameters were extracted from the distant field and they are used to evaluate the close field. The results show that the source of the NBP can be modeled either as a single or a multiple burst of relativistic avalanches with speed of avalanches in the range of 2-3 × 108 m/s. The multiple avalanche model agrees better with the experimental data in that it can also generate the correct signature of the time derivatives and the HF and VHF radiation bursts of NBP.
Nano-multiplication region avalanche photodiodes and arrays
NASA Technical Reports Server (NTRS)
Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor); Cunningham, Thomas J. (Inventor)
2011-01-01
An avalanche photodiode with a nano-scale reach-through structure comprising n-doped and p-doped regions, formed on a silicon island on an insulator, so that the avalanche photodiode may be electrically isolated from other circuitry on other silicon islands on the same silicon chip as the avalanche photodiode. For some embodiments, multiplied holes generated by an avalanche reduces the electric field in the depletion region of the n-doped and p-doped regions to bring about self-quenching of the avalanche photodiode. Other embodiments are described and claimed.
Dynamic magnification factors for tree blow-down by powder snow avalanche air blasts
NASA Astrophysics Data System (ADS)
Bartelt, Perry; Bebi, Peter; Feistl, Thomas; Buser, Othmar; Caviezel, Andrin
2018-03-01
We study how short duration powder avalanche blasts can break and overturn tall trees. Tree blow-down is often used to back-calculate avalanche pressure and therefore constrain avalanche flow velocity and motion. We find that tall trees are susceptible to avalanche air blasts because the duration of the air blast is near to the period of vibration of tall trees, both in bending and root-plate overturning. Dynamic magnification factors for bending and overturning failures should therefore be considered when back-calculating avalanche impact pressures.
High mobility of large mass movements: a study by means of FEM/DEM simulations
NASA Astrophysics Data System (ADS)
Manzella, I.; Lisjak, A.; Grasselli, G.
2013-12-01
Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.
Trabant, D.C.; Waitt, R.B.; Major, J.J.
1994-01-01
Melting of snow and glacier ice during the 1989-1990 eruption of Redoubt Volcano caused winter flooding of the Drift River. Drift glacier was beheaded when 113 to 121 ?? 106 m3 of perennial snow and ice were mechanically entrained in hot-rock avalanches and pyroclastic flows initiated by the four largest eruptions between 14 December 1989 and 14 March 1990. The disruption of Drift glacier was dominated by mechanical disaggregation and entrainment of snow and glacier ice. Hot-rock avalanches, debris flows, and pyroclastic flows incised deep canyons in the glacier ice thereby maintaining a large ice-surface area available for scour by subsequent flows. Downvalley flow rheologies were transformed by the melting of snow and ice entrained along the upper and middle reaches of the glacier and by seasonal snowpack incorporated from the surface of the lower glacier and from the river valley. The seasonal snowpack in the Drift River valley contributed to lahars and floods a cumulative volume equivalent to about 35 ?? 106 m3 of water, which amounts to nearly 30% of the cumulative flow volume 22 km downstream from the volcano. The absence of high-water marks in depressions and of ice-collapse features in the glacier indicated that no large quantities of meltwater that could potentially generate lahars were stored on or under the glacier; the water that generated the lahars that swept Drift River valley was produced from the proximal, eruption-induced volcaniclastic flows by melting of snow and ice. ?? 1994.
Real time avalanche detection for high risk areas.
DOT National Transportation Integrated Search
2014-12-01
Avalanches routinely occur on State Highway 21 (SH21) between Lowman and Stanley, Idaho each winter. The avalanches pose : a threat to the safety of maintenance workers and the traveling public. A real-time avalanche detection system will allow the :...
Bessette-Kirton, Erin; Coe, Jeffrey A.; Zhou, Wendy
2018-01-01
The use of preevent and postevent digital elevation models (DEMs) to estimate the volume of rock avalanches on glaciers is complicated by ablation of ice before and after the rock avalanche, scour of material during rock avalanche emplacement, and postevent ablation and compaction of the rock avalanche deposit. We present a model to account for these processes in volume estimates of rock avalanches on glaciers. We applied our model by calculating the volume of the 28 June 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. We derived preevent and postevent 2‐m resolution DEMs from WorldView satellite stereo imagery. Using data from DEM differencing, we reconstructed the rock avalanche and adjacent surfaces at the time of occurrence by accounting for elevation changes due to ablation and scour of the ice surface, and postevent deposit changes. We accounted for uncertainties in our DEMs through precise coregistration and an assessment of relative elevation accuracy in bedrock control areas. The rock avalanche initially displaced 51.7 ± 1.5 Mm3 of intact rock and then scoured and entrained 13.2 ± 2.2 Mm3 of snow and ice during emplacement. We calculated the total deposit volume to be 69.9 ± 7.9 Mm3. Volume estimates that did not account for topographic changes due to ablation, scour, and compaction underestimated the deposit volume by 31.0–46.8 Mm3. Our model provides an improved framework for estimating uncertainties affecting rock avalanche volume measurements in glacial environments. These improvements can contribute to advances in the understanding of rock avalanche hazards and dynamics.
NASA Astrophysics Data System (ADS)
Chisolm, Rachel E.; McKinney, Daene C.
2018-05-01
This paper studies the lake dynamics for avalanche-triggered glacial lake outburst floods (GLOFs) in the Cordillera Blanca mountain range in Ancash, Peru. As new glacial lakes emerge and existing lakes continue to grow, they pose an increasing threat of GLOFs that can be catastrophic to the communities living downstream. In this work, the dynamics of displacement waves produced from avalanches are studied through three-dimensional hydrodynamic simulations of Lake Palcacocha, Peru, with an emphasis on the sensitivity of the lake model to input parameters and boundary conditions. This type of avalanche-generated wave is an important link in the GLOF process chain because there is a high potential for overtopping and erosion of the lake-damming moraine. The lake model was evaluated for sensitivity to turbulence model and grid resolution, and the uncertainty due to these model parameters is significantly less than that due to avalanche boundary condition characteristics. Wave generation from avalanche impact was simulated using two different boundary condition methods. Representation of an avalanche as water flowing into the lake generally resulted in higher peak flows and overtopping volumes than simulating the avalanche impact as mass-momentum inflow at the lake boundary. Three different scenarios of avalanche size were simulated for the current lake conditions, and all resulted in significant overtopping of the lake-damming moraine. Although the lake model introduces significant uncertainty, the avalanche portion of the GLOF process chain is likely to be the greatest source of uncertainty. To aid in evaluation of hazard mitigation alternatives, two scenarios of lake lowering were investigated. While large avalanches produced significant overtopping waves for all lake-lowering scenarios, simulations suggest that it may be possible to contain waves generated from smaller avalanches if the surface of the lake is lowered.
A field-shaping multi-well avalanche detector for direct conversion amorphous selenium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldan, A. H.; Zhao, W.
2013-01-15
Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes,more » and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.« less
NASA Astrophysics Data System (ADS)
Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.
2017-11-01
This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.
Timing of wet snow avalanche activity: An analysis from Glacier National Park, Montana, USA.
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.
2012-01-01
Wet snow avalanches pose a problem for annual spring road opening operations along the Going-to-the-Sun Road (GTSR) in Glacier National Park, Montana, USA. A suite of meteorological metrics and snow observations has been used to forecast for wet slab and glide avalanche activity. However, the timing of spring wet slab and glide avalanches is a difficult process to forecast and requires new capabilities. For the 2011 and 2012 spring seasons we tested a previously developed classification tree model which had been trained on data from 2003-2010. For 2011, this model yielded a 91% predictive rate for avalanche days. For 2012, the model failed to capture any of the avalanche days observed. We then investigated these misclassified avalanche days in the 2012 season by comparing them to the misclassified days from the original dataset from which the model was trained. Results showed no significant difference in air temperature variables between this year and the original training data set for these misclassified days. This indicates that 2012 was characterized by avalanche days most similar to those that the model struggled with in the original training data. The original classification tree model showed air temperature to be a significant variable in wet avalanche activity which implies that subsequent movement of meltwater through the snowpack is also important. To further understand the timing of water flow we installed two lysimeters in fall 2011 before snow accumulation. Water flow showed a moderate correlation with air temperature later in the season and no synchronous pattern associated with wet slab and glide avalanche activity. We also characterized snowpack structure as the snowpack transitioned from a dry to a wet snowpack throughout the spring. This helped to assess potential failure layers of wet snow avalanches and the timing of avalanches compared to water moving through the snowpack. These tools (classification tree model and lysimeter data), combined with standard meteorological and avalanche observations, proved useful to forecasters regarding the timing of wet snow avalanche activity along the GTSR.
NASA Astrophysics Data System (ADS)
Marchetti, Emanuele; van Herwijnen, Alec; Ripepe, Maurizio
2017-04-01
While flowing downhill a snow avalanche radiates seismic and infrasonic waves being coupled both with the ground and the atmosphere. Infrasound waves are mostly generated by the powder cloud of the avalanche, while seismic waves are mostly generated by the dense flowing snow mass on the ground, resulting in different energy partitioning between seismic and infrasound for different kinds of avalanches. This results into a general uncertainty on the efficiency of seismic and infrasound monitoring, in terms of the size and source-to-receiver distance of detectable events. Nevertheless, both seismic and infrasound have been used as monitoring systems for the remote detection of snow avalanches, being the reliable detection of snow avalanches of crucial importance to better understand triggering mechanisms, identify possible precursors, or improve avalanche forecasting. We present infrasonic and seismic array data collected during the winters of 2015- 2016 and 2016-2017 in the Dischma valley above Davos, Switzerland, where a five element infrasound array and a 7 element seismic array had been deployed at short distance from each other and with several avalanche paths nearby. Avalanche observation in the area is performed through automatic cameras providing additional information on the location, type (dry or wet), size and occurrence time of the avalanches released. The use of arrays instead of single sensors allows increasing the signal-to-noise ratio and identifying events in terms of back-azimuth and apparent velocity of the wave-field, thus providing indication on the source position of the recorded signal. For selected snow avalanches captured with automatic cameras, we therefore perform seismic and infrasound array processing to constrain the avalanche path and dynamics and investigate the partitioning of seismic and infrasound energy for the different portions of the avalanche path. Moreover we compare results of seismic and infrasound array processing for the whole 2015-2016 winter season in order to investigate the ability of the two monitoring systems to identify and characterize snow avalanches and the benefit of the combined seismo-acoustic analysis.
2012-10-09
When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet. By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. When NASA’s Terra satellite passed over Russia’s Kamchatka Peninsula at noon local time (00:00 Universal Time) on October 6, 2012, Shilveluch Volcano was quiet (top image). By the time NASA’s Aqua satellite passed over the area two hours later (bottom image), the volcano had erupted and sent a plume of ash over the Kamchatskiy Zaliv. The plume traveled about 90 kilometers (55 miles) toward the south-southeast, where a change in wind direction began pushing the plume toward the east. On October 6, 2012, the Kamchatka Volcanic Emergency Response Team (KVERT) reported that the ash plume from Shiveluch reached an altitude of 3 kilometers (9,800 feet) above sea level, and had traveled some 220 kilometers (140 miles) from the volcano summit. Shiveluch (also spelled Sheveluch) ranks among the biggest and most active volcanoes on the Kamchatka Peninsula. Rising to 3,283 meters (10,771 feet) above sea level, Shiveluch is a stratovolcano composed of alternating layers of hardened lava, compacted ash, and rocks ejected by previous eruptions. The beige-colored expanse of rock on the volcano’s southern slopes (visible in both images) is due to an explosive eruption that occurred in 1964. Part of Shiveluch’s southern flank collapsed, and the light-colored rock is avalanche debris left by that event. High-resolution imagery of Shiveluch shows very little vegetation within that avalanche zone. On October 6, 2012, KVERT cited observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on Terra and Aqua in detecting the Shiveluch eruption. This was not the first time that MODIS observed a Shiveluch eruption shortly after it started. In 2007, MODIS captured an image within minutes of the eruption’s start, before winds could blow the ash away from the summit. Credit: NASA Earth Observatory NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Crackling to periodic transition in a granular stick-slip experiment
NASA Astrophysics Data System (ADS)
Abed Zadeh, Aghil; BaréS, Jonathan; Behringer, Robert
We perform a stick-slip experiment to characterize avalanches in time and space for granular materials. In our experiment, a constant speed stage pulls a slider which rests on a vertical bed of circular photo-elastic particles in a 2D system. The stage is connected to the slider by a spring. We measure the force on the spring by a force sensor attached to the spring. We study the avalanche size statistics, and other seismicity laws of slip avalanches. Using the power spectrum of the force signal and avalanche statistics, we analyze the effect of the loading speed and of the spring stiffness and we capture a transition from crackling to periodic regime by changing these parameters. From a more local point of view and by using a high speed camera and the photo-elastic properties of our particles, we characterize the local stress change and flow of particles during slip avalanches. By image processing, we detect the local avalanches as connected components in space and time, and we study the avalanche size probability density functions (PDF). The PDF of avalanches obey power laws both at global and local scales, but with different exponents. We try to understand the correlation of local avalanches in space and the way they coarse grain to the global avalanches. NSF Grant DMR-1206351, NASA Grant NNX15AD38G, and the William M. Keck Foundation.
NASA Astrophysics Data System (ADS)
Romeo, Saverio; Di Matteo, Lucio; Melelli, Laura; Cencetti, Corrado; Dragoni, Walter; Fredduzzi, Andrea; De Rosa, Pierluigi
2017-04-01
The seismically induced landslides are among the most destructive and dangerous effects of an earthquake. In the Italian contest, this is also documented by a national catalogue that collects data related to earthquake-induced ground failures in the last millennium (CEDIT database). In particular, Central Italy has been affected by several historical landslides triggered by significant earthquakes, the last of which occurred in August-October 2016, representing the Italian strongest event after the 1980 Irpinia earthquake (Mw 6.9). The study presents the effects of recent seismically induced rockfalls occurred within the Central Italy seismic sequence (October 30, 2016) along the Nera River gorge between Umbria and Marche. The study area is completely included in the Monti Sibillini National Park, where the highest mountain chain in the Umbrian-Marchean Apennine is located. Most of rockfalls have affected the "Maiolica" formation, a stratified and fractured pelagic limestone dating to the Early Cretaceous. The seismic sequence produced diffuse instabilities along the SP 209 road within the Nera River gorge: boulders, debris accumulations and diffuse rockfalls have been mapped. Most of boulders have size ranging from 0.3 to 2.0 m in diameter. Although several strong quakes (Mw > 5) occurred during the August-October sequence, only the main quake triggered the Sasso Pizzuto rockfall producing a landslide dam along the Nera River. The landslide appears to have originated as a wedge failure, which evolved to free fall when the rock block lost the contact with the stable rock mass. In other words, the quake produced the "explosion" of the rock wall allowing the rockfall process. Once the rock mass reached the toe of the slope, it was broken triggering a rock avalanche that obstructed both the Nera River and SP 209 road. With the aim to estimate the total volume of involved rock, a field survey was carried out by using a laser rangefinder. Remote measures were acquired taking into account the inclination, horizontal, vertical and slope distance. Through topographical calculations and GIS analysis, it has been possible to reconstruct the size and shape of debris accumulation estimating a volume of about 70000 m3 (±8000 m3 due to measurements accuracy). This agrees with qualitative measures independently performed. The maximum distance between the debris accumulation and rockfall source area is about 200 m; the altitude difference is 270 m. The landslide debris partially dammed the Nera River, generating a lake upstream: currently the stream is flowing on the road among debris.
Landslides Triggered by the 12 May 2008, M 7.9 Wenchuan, China Earthquake
NASA Astrophysics Data System (ADS)
Harp, E.; Jibson, R.; Godt, J.
2009-04-01
The 12 May 2008, M 7.9 Wenchuan earthquake in eastern Sichuan Province of China triggered tens of thousands of rock falls, rock slides, rock avalanches, and deep, complex, landslides. Of the approximately 87,000 deaths caused by the earthquake, more than 20,000 have been attributed to landsides. Numerous villages were buried by large landslides. Air-blasts resulting from the rapid failure and movement of landslides were observed and documented from numerous eye-witness accounts. More than 100 landslide-dammed lakes were created by the earthquake, 33 of which were evaluated to determine if spillway construction was necessary to minimize flooding by future breaching of the landslide dams. Spillways were ultimately constructed on at least 16 landslide dams. Preliminary observations in the field and from satellite imagery indicate that the most common types of landslides were rock falls and rock slides that ranged in size from several hundred cubic meters to several hundred thousand cubic meters in volume. There were hundreds to perhaps as many as one thousand landslides exceeding 1 million cubic meters in volume. The largest landslide identified using Jaxa's Alos/Prism satellite imagery (2.5 m resolution) is nearly 1 billion cubic meters in volume and is located approximately 12 km north-northeast of the city of Hanwang. This landslide appears to have resulted from the failure of a 1.5-km section of ridge crest that now occupies most of the adjacent valley to the northeast; its toe spills over the next ridge crest to the northeast. The satellite imagery of 4 June 2008 shows two small lakes dammed by the slide debris. Within the mountainous areas in the near-field zone of shaking, rock slides dammed chains of lakes in many drainages. Sections of streams 2-3 km long have been completely covered by rock debris as of the 4 June imagery The debris from the triggered landslides is being redistributed rapidly by post-earthquake rainfall. A 100-year rainstorm in September 2008 remobilized many earthquake-triggered landslide deposits into debris flows, which resulted in additional fatalities, road closures, and flow restrictions of even large rivers such as the MinJiang River near Yingxiu. Increased sedimentation from the landslide debris triggered by the 12 May earthquake could significantly reduce storage capacities of the numerous reservoirs in the region. To assist with hazard mitigation and reconstruction efforts, the U.S. Geological Survey will collaborate with the China Geological Survey to transfer methods and technology to produce probabilistic landslide hazard maps for hazardous areas in Sichuan Province.
Revisiting the Field Geology of Taurus-Littrow
NASA Technical Reports Server (NTRS)
Schmitt, H. H.; Petro, N. E.; Wells, R. A.; Robinson, M. S.; Weiss, B. P.; Mercer, C. M.
2016-01-01
Integration of Apollo 17 field observations and photographs, sample investigations, Lunar Reconnaissance Orbiter Camera images, Chandrayaan-1 Moon Mineralogy Mapper (M(sup 3)) spectra, and Miniature Radio Frequency (Mini-RF) S-band radar images provides new insights into the geology of the valley of Taurus-Littrow on the Moon. Connecting the various remote observations to sample data enables a set of new conclusions to be drawn regarding the geological evolution of the valley. Structural considerations and published and recalculated Ar-40/Ar-39 analyses of samples from the North Massif and the Sculptured Hills indicate that the Crisium basin formed about 3.93 Ga; the Serenitatis basin about 3.82 Ga; and the Imbrium basin no earlier than 3.82 Ga and no later than the average of 3.72 Ga for 33 age dates from samples of the valley's mare basalts. Strong evidence continues to support the conclusion of others (Lucchitta, 1972; Spudis et al., 2011; Fassett et al., 2012) that the Sculptured Hills physiographic unit consists of Imbrium ejecta. Interpretation of M(sup 3) spectral data and Apollo 17 samples indicate that rock units of the Sculptured Hills consist of a largely coherent, Mg-suite pluton. LROC NAC stereo images and Mini-RF data indicate the presence of several exposed pyroclastic fissures across the Sculptured Hills. Rim boulders at Camelot Crater constitute nearly in situ wall rocks of that crater rather than ejecta and provide an opportunity for investigations of remanent magnetic field orientation at the time of the eruption of late mare basalt lavas in the valley. Paleomagnetic field orientation information also may be obtained relative to melt-breccia contacts in North Massif boulders that suggest original horizontal orientations. LROC images indicate the existence of two temporally separate light mantle avalanche deposits. The origin, potential flow mechanisms, and geology of the youngest avalanche from the South Massif have been clarified. The existence of two distinct light mantle avalanches raises doubt about the association of either light mantle avalanche with secondary impacts related to the Tycho impact event. Alternatively, the Lee-Lincoln thrust fault appears to have triggered the second light mantle avalanche between 70 and 110 Ma. A simple structural analysis shows that this thrust fault dips 20-25 degrees to the southwest where it crosses the North Massif and to the west where it crosses the valley floor. Mini-RF data reveal a line of reduced reflections roughly perpendicular to contours on the North Massif about 3 km to the east of the Lee-Lincoln fault. Although this line is possibly an older ancillary fault, LROC NAC stereo images indicate that it may be best explained as a pyroclastic fissure. A debris flow of dark, apparent pyroclastic ash lies below the southeast end of the potential fissure. Finally, young lunar impact glass sample 70019 has been precisely located within LROC NAC images and oriented for the first time using 60 mm (f.l.) sample documentation photographs. Sample 70019 can now be employed in lunar paleomagnetic field orientation studies.
Revisiting the field geology of Taurus-Littrow
NASA Astrophysics Data System (ADS)
Schmitt, H. H.; Petro, N. E.; Wells, R. A.; Robinson, M. S.; Weiss, B. P.; Mercer, C. M.
2017-12-01
Integration of Apollo 17 field observations and photographs, sample investigations, Lunar Reconnaissance Orbiter Camera images, Chandrayaan-1 Moon Mineralogy Mapper (M3) spectra, and Miniature Radio Frequency (Mini-RF) S-band radar images provides new insights into the geology of the valley of Taurus-Littrow on the Moon. Connecting the various remote observations to sample data enables a set of new conclusions to be drawn regarding the geological evolution of the valley. Structural considerations and published and recalculated 40Ar/39Ar analyses of samples from the North Massif and the Sculptured Hills indicate that the Crisium basin formed about 3.93 Ga; the Serenitatis basin about 3.82 Ga; and the Imbrium basin no earlier than 3.82 Ga and no later than the average of 3.72 Ga for 33 age dates from samples of the valley's mare basalts. Strong evidence continues to support the conclusion of others (Lucchitta, 1972; Spudis et al., 2011; Fassett et al., 2012) that the Sculptured Hills physiographic unit consists of Imbrium ejecta. Interpretation of M3 spectral data and Apollo 17 samples indicate that rock units of the Sculptured Hills consist of a largely coherent, Mg-suite pluton. LROC NAC stereo images and Mini-RF data indicate the presence of several exposed pyroclastic fissures across the Sculptured Hills. Rim boulders at Camelot Crater constitute nearly in situ wall rocks of that crater rather than ejecta and provide an opportunity for investigations of remanent magnetic field orientation at the time of the eruption of late mare basalt lavas in the valley. Paleomagnetic field orientation information also may be obtained relative to melt-breccia contacts in North Massif boulders that suggest original horizontal orientations. LROC images indicate the existence of two temporally separate light mantle avalanche deposits. The origin, potential flow mechanisms, and geology of the youngest avalanche from the South Massif have been clarified. The existence of two distinct light mantle avalanches raises doubt about the association of either light mantle avalanche with secondary impacts related to the Tycho impact event. Alternatively, the Lee-Lincoln thrust fault appears to have triggered the second light mantle avalanche between 70 and 110 Ma. A simple structural analysis shows that this thrust fault dips 20-25° to the southwest where it crosses the North Massif and to the west where it crosses the valley floor. Mini-RF data reveal a line of reduced reflections roughly perpendicular to contours on the North Massif about 3 km to the east of the Lee-Lincoln fault. Although this line is possibly an older ancillary fault, LROC NAC stereo images indicate that it may be best explained as a pyroclastic fissure. A debris flow of dark, apparent pyroclastic ash lies below the southeast end of the potential fissure. Finally, young lunar impact glass sample 70019 has been precisely located within LROC NAC images and oriented for the first time using 60 mm (f.l.) sample documentation photographs. Sample 70019 can now be employed in lunar paleomagnetic field orientation studies.
Modeling and Scaling of the Distribution of Trade Avalanches in a STOCK Market
NASA Astrophysics Data System (ADS)
Kim, Hyun-Joo
We study the trading activity in the Korea Stock Exchange by considering trade avalanches. A series of successive trading with small trade time interval is regarded as a trade avalanche of which the size s is defined as the number of trade in a series of successive trades. We measure the distribution of trade avalanches sizes P(s) and find that it follows the power-law behavior P(s) ~ s-α with the exponent α ≈ 2 for two stocks with the largest number of trades. A simple stochastic model which describes the power-law behavior of the distribution of trade avalanche size is introduced. In the model it is assumed that the some trades induce the accompanying trades, which results in the trade avalanches and we find that the distribution of the trade avalanche size also follows power-law behavior with the exponent α ≈ 2.
Waitt, R.B.
1989-01-01
The initial explosions at Mount St. Helens, Washington, on the moring of 18 May 1980 developed into a huge pyroclastic surge that generated catastrophic floods off the east and west flanks of the volcano. Near-source surge deposits on the east and west were lithic, sorted, lacking in accretionary lapilli and vesiculated ash, not plastered against upright obstacles, and hot enough to char wood - all attributes of dry pyroclastic surge. Material deposited at the surge base on steep slopes near the volcano transformed into high-concentration lithic pyroclastic flows whose deposits contain charred wood and other features indicating that these flows were hot and dry. Stratigraphy shows that even the tail of the surge had passed the east and west volcano flanks before the geomorphically distinct floods (lahars) arrived. This field evidence undermines hypotheses that the turbulent surge was itself wet and that its heavy components segregated out to transform directly into lahars. Nor is there evidence that meters-thick snow-slab avalanches intimately mixed with the surge to form the floods. The floods must have instead originated by swift snowmelt at the base of a hot and relatively dry turbulent surge. Impacting hot pyroclasts probably transferred downslope momentum to the snow surface and churned snow grains into the surge base. Melting snow and accumulating hot surge debris may have moved initially as thousands of small thin slushflows. As these flows removed the surface snow and pyroclasts, newly uncovered snow was partly melted by the turbulent surge base; this and accumulating hot surge debris in turn began flowing, a self-sustaining process feeding the initial flows. The flows thus grew swiftly over tens of seconds and united downslope into great slushy ejecta-laden sheetfloods. Gravity accelerated the floods to more than 100 km/h as they swept down and off the volcano flanks while the snow component melted to form great debris-rich floods (lahars) channeled into valleys. ?? 1989 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Finn, C.; Deszcz-Pan, M.; Bedrosian, P.; Minsley, B. J.
2016-12-01
Helicopter magnetic and electromagnetic (HEM) data, along with rock property measurements, local ground-based gravity, time domain electromagnetic (TEM) and nuclear magnetic resonance (NMR) data help identify alteration and water-saturated zones on Mount Baker, Washington. Hydrothermally altered rocks, particularly if water-saturated, can weaken volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. At Mount Baker volcano, collapses of hydrothermally altered rocks from the edifice have generated numerous debris flows that constitute their greatest volcanic hazards. Critical to quantifying this hazard is knowledge of the three-dimensional distribution of pervasively altered rock, shallow groundwater and ice that plays an important role in transforming debris avalanches to far traveled lahars. The helicopter geophysical data, combined with geological mapping and rock property measurements, indicate the presence of localized zones of less than 100 m thickness of water-saturated hydrothermally altered rock beneath Sherman Crater and the Dorr Fumarole Fields at Mt. Baker. New stochastic inversions of the HEM data indicate variations in resistivity in inferred perched aquifers—distinguishing between fresh and saline waters, possibly indicating the influence of nearby alteration and/or hydrothermal systems on water quality. The new stochastic results better resolve ice thickness than previous inversions, and also provide important estimates of uncertainty on ice thickness and other parameters. New gravity data will help constrain the thickness of the ice and alteration. Nuclear magnetic resonance data indicate that the hydrothermal clays contain 50% water with no evidence for water beneath the ice. The HEM data identify water-saturated fresh volcanic rocks from the surface to the detection limit ( 100 m) over the entire summit of Mt. Baker. Localized time domain EM soundings indicate that low resistivity layers extend at least to 250 m below the surface. The combined geophysical identification of groundwater and weak layers constrain landslide hazards assessments.
Negative feedback avalanche diode
NASA Technical Reports Server (NTRS)
Itzler, Mark Allen (Inventor)
2010-01-01
A single-photon avalanche detector is disclosed that is operable at wavelengths greater than 1000 nm and at operating speeds greater than 10 MHz. The single-photon avalanche detector comprises a thin-film resistor and avalanche photodiode that are monolithically integrated such that little or no additional capacitance is associated with the addition of the resistor.
DOT National Transportation Integrated Search
2009-04-01
The 151 Avalanche, near Jackson, Wyoming has, historically, avalanched to the road below 1.5 to 2 times a year. The road, US 89/191 is four lanes and carries an estimated 8,000 vehicles per day in the winter months. The starting zone of the 151 Avala...
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
Regional snow-avalanche detection using object-based image analysis of near-infrared aerial imagery
NASA Astrophysics Data System (ADS)
Korzeniowska, Karolina; Bühler, Yves; Marty, Mauro; Korup, Oliver
2017-10-01
Snow avalanches are destructive mass movements in mountain regions that continue to claim lives and cause infrastructural damage and traffic detours. Given that avalanches often occur in remote and poorly accessible steep terrain, their detection and mapping is extensive and time consuming. Nonetheless, systematic avalanche detection over large areas could help to generate more complete and up-to-date inventories (cadastres) necessary for validating avalanche forecasting and hazard mapping. In this study, we focused on automatically detecting avalanches and classifying them into release zones, tracks, and run-out zones based on 0.25 m near-infrared (NIR) ADS80-SH92 aerial imagery using an object-based image analysis (OBIA) approach. Our algorithm takes into account the brightness, the normalised difference vegetation index (NDVI), the normalised difference water index (NDWI), and its standard deviation (SDNDWI) to distinguish avalanches from other land-surface elements. Using normalised parameters allows applying this method across large areas. We trained the method by analysing the properties of snow avalanches at three 4 km-2 areas near Davos, Switzerland. We compared the results with manually mapped avalanche polygons and obtained a user's accuracy of > 0.9 and a Cohen's kappa of 0.79-0.85. Testing the method for a larger area of 226.3 km-2, we estimated producer's and user's accuracies of 0.61 and 0.78, respectively, with a Cohen's kappa of 0.67. Detected avalanches that overlapped with reference data by > 80 % occurred randomly throughout the testing area, showing that our method avoids overfitting. Our method has potential for large-scale avalanche mapping, although further investigations into other regions are desirable to verify the robustness of our selected thresholds and the transferability of the method.
Automatic detection of snow avalanches in continuous seismic data using hidden Markov models
NASA Astrophysics Data System (ADS)
Heck, Matthias; Hammer, Conny; van Herwijnen, Alec; Schweizer, Jürg; Fäh, Donat
2018-01-01
Snow avalanches generate seismic signals as many other mass movements. Detection of avalanches by seismic monitoring is highly relevant to assess avalanche danger. In contrast to other seismic events, signals generated by avalanches do not have a characteristic first arrival nor is it possible to detect different wave phases. In addition, the moving source character of avalanches increases the intricacy of the signals. Although it is possible to visually detect seismic signals produced by avalanches, reliable automatic detection methods for all types of avalanches do not exist yet. We therefore evaluate whether hidden Markov models (HMMs) are suitable for the automatic detection of avalanches in continuous seismic data. We analyzed data recorded during the winter season 2010 by a seismic array deployed in an avalanche starting zone above Davos, Switzerland. We re-evaluated a reference catalogue containing 385 events by grouping the events in seven probability classes. Since most of the data consist of noise, we first applied a simple amplitude threshold to reduce the amount of data. As first classification results were unsatisfying, we analyzed the temporal behavior of the seismic signals for the whole data set and found that there is a high variability in the seismic signals. We therefore applied further post-processing steps to reduce the number of false alarms by defining a minimal duration for the detected event, implementing a voting-based approach and analyzing the coherence of the detected events. We obtained the best classification results for events detected by at least five sensors and with a minimal duration of 12 s. These processing steps allowed identifying two periods of high avalanche activity, suggesting that HMMs are suitable for the automatic detection of avalanches in seismic data. However, our results also showed that more sensitive sensors and more appropriate sensor locations are needed to improve the signal-to-noise ratio of the signals and therefore the classification.
NASA Astrophysics Data System (ADS)
Techel, F.; Zweifel, B.; Winkler, K.
2015-09-01
Recreational activities in snow-covered mountainous terrain in the backcountry account for the vast majority of avalanche accidents. Studies analyzing avalanche risk mostly rely on accident statistics without considering exposure (or the elements at risk), i.e., how many, when and where people are recreating, as data on recreational activity in the winter mountains are scarce. To fill this gap, we explored volunteered geographic information on two social media mountaineering websites - bergportal.ch and camptocamp.org. Based on these data, we present a spatiotemporal pattern of winter backcountry touring activity in the Swiss Alps and compare this with accident statistics. Geographically, activity was concentrated in Alpine regions relatively close to the main Swiss population centers in the west and north. In contrast, accidents occurred equally often in the less-frequented inner-alpine regions. Weekends, weather and avalanche conditions influenced the number of recreationists, while the odds to be involved in a severe avalanche accident did not depend on weekends or weather conditions. However, the likelihood of being involved in an accident increased with increasing avalanche danger level, but also with a more unfavorable snowpack containing persistent weak layers (also referred to as an old snow problem). In fact, the most critical situation for backcountry recreationists and professionals occurred on days and in regions when both the avalanche danger was critical and when the snowpack contained persistent weak layers. The frequently occurring geographical pattern of a more unfavorable snowpack structure also explains the relatively high proportion of accidents in the less-frequented inner-alpine regions. These results have practical implications: avalanche forecasters should clearly communicate the avalanche danger and the avalanche problem to the backcountry user, particularly if persistent weak layers are of concern. Professionals and recreationists, on the other hand, require the expertise to adjust the planning of a tour and their backcountry travel behavior depending on the avalanche danger and the avalanche problem.
Risk analysis for dry snow slab avalanche release by skier triggering
NASA Astrophysics Data System (ADS)
McClung, David
2013-04-01
Risk analysis is of primary importance for skier triggering of avalanches since human triggering is responsible for about 90% of deaths from slab avalanches in Europe and North America. Two key measureable quantities about dry slab avalanche release prior to initiation are the depth to the weak layer and the slope angle. Both are important in risk analysis. As the slope angle increases, the probability of avalanche release increases dramatically. As the slab depth increases, the consequences increase if an avalanche releases. Among the simplest risk definitions is (Vick, 2002): Risk = (Probability of failure) x (Consequences of failure). Here, these two components of risk are the probability or chance of avalanche release and the consequences given avalanche release. In this paper, for the first time, skier triggered avalanches were analyzed from probability theory and its relation to risk for both the D and . The data consisted of two quantities : (,D) taken from avalanche fracture line profiles after an avalanche has taken place. Two data sets from accidentally skier triggered avalanches were considered: (1) 718 for and (2) a set of 1242 values of D which represent average values along the fracture line. The values of D were both estimated (about 2/3) and measured (about 1/3) by ski guides from Canadian Mountain Holidays CMH). I also analyzed 1231 accidentally skier triggered avalanches reported by CMH ski guides for avalanche size (representing destructive potential) on the Canadian scale. The size analysis provided a second analysis of consequences to verify that using D. The results showed that there is an intermediate range of both D and with highest risk. ForD, the risk (product of consequences and probability of occurrence) is highest for D in the approximate range 0.6 m - 1.0 m. The consequences are low for lower values of D and the chance of release is low for higher values of D. Thus, the highest product is in the intermediate range. For slope angles, the risk analysis showed there are two ranges: ˜ 320; × 460for which risk is lowest. In this case, both the range of and the consequences vary by about a factor of two so the probability of release dominates the risk analysis to yield low risk at the tails of the distribution of with highest risk in the middle (330 - 450) of the expected range (250 - 550).
Modeling of snow avalanches for protection measures designing
NASA Astrophysics Data System (ADS)
Turchaninova, Alla; Lazarev, Anton; Loginova, Ekaterina; Seliverstov, Yuri; Glazovskaya, Tatiana; Komarov, Anton
2017-04-01
Avalanche protection structures such as dams have to be designed using well known standard engineering procedures that differ in different countries. Our intent is to conduct a research on structural avalanche protection measures designing and their reliability assessment during the operation using numerical modeling. In the Khibini Mountains, Russia, several avalanche dams have been constructed at different times to protect settlements and mining. Compared with other mitigation structures dams are often less expensive to construct in mining regions. The main goal of our investigation was to test the capabilities of Swiss avalanche dynamics model RAMMS and Russian methods to simulate the interaction of avalanches with mitigation structures such as catching and reflecting dams as well as to reach the observed runout distances after the transition through a dam. We present the RAMMS back-calculation results of an artificially triggered and well-documented catastrophic avalanche occurred in the town of Kirovsk, Khibini Mountains in February 2016 that has unexpectedly passed through a system of two catching dams and took the lives of 3 victims. The estimated volume of an avalanche was approximately 120,000 m3. For the calculation we used a 5 m DEM including catching dams generated from field measurements in summer 2015. We simulated this avalanche (occurred below 1000 m.a.s.l.) in RAMMS having taken the friction parameters (µ and ζ) from the upper altitude limit (above 1500 m.a.s.l.) from the table recommended for Switzerland (implemented into RAMMS) according to the results of our previous research. RAMMS reproduced the observed avalanche behavior and runout distance. No information is available concerning the flow velocity; however, calculated values correspond in general to the values measured in this avalanche track before. We applied RAMMS using an option of adding structures to DEM (including a dam in GIS) in other to test other operating catching dams in Khibini Mountains by different avalanche scenarios and discuss the technical procedure and obtained results. RAMMS results were compared with field observations data and values received with Russian well-known one dimensional avalanche models. In the Caucasus, Russia, new ski resorts are being under the development which is impossible without avalanche protection. The choice of the avalanche mitigation type has to be done by experts depending on many factors. Within the ski resort Arkhyz, Caucasus we implemented RAMMS into the procedure of the structural measures type decision making. RAMMS as well as Russian well-known one-dimensional models were used to calculate the key input parameters for structures designing. The calculation results were coupled with field observations data and historical records. Finally we suggested the avalanche protection plan for the area of interest. The interpretation of RAMMS simulations including mitigation structures has been made in order to assess the reliability of the proposed protection.
Avalanche mode of motion - Implications from lunar examples.
NASA Technical Reports Server (NTRS)
Howard, K. A.
1973-01-01
A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as 'efficient' as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.
Avalanche mode of motion: Implications from lunar examples
Howard, K.A.
1973-01-01
A large avalanche (21 square kilometers) at the Apollo 17 landing site moved out several kilometers over flat ground beyond its source slope. If not triggered by impacts, then it was as "efficient" as terrestrial avalanches attributed to air-cushion sliding. Evidently lunar avalanches are able to flow despite the lack of lubricating or cushioning fluid.
Avalanches and scaling collapse in the large-N Kuramoto model
NASA Astrophysics Data System (ADS)
Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.
2018-04-01
We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.
Science guides search and rescue after the 2006 Philippine landslide.
Lagmay, Alfredo Mahar A; Tengonciang, Arlene Mae P; Rodolfo, Raymond S; Soria, Janneli Lea A; Baliatan, Eden G; Paguican, Engielle R; Ong, John Burtkenley T; Lapus, Mark R; Fernandez, Dan Ferdinand D; Quimba, Zareth P; Uichanco, Christopher L
2008-09-01
A rockslide-debris avalanche destroyed the remote village of Guinsaugon in Southern Leyte, Philippines, on 17 February 2006. Although search and rescue procedures were implemented immediately, the scale of the landslide and a lack of information about its nature resulted in unfocused and imprecise efforts in the early days of the operation. Technical support was only introduced five days after the event, provided by a team of volunteer geologists, geophysicists, and meteorologists. By the time search and rescue operations were transferred to specific target sites, however, the chances of finding survivors trapped under the rubble had diminished. In such critical situations, speed, accuracy, and the maximum appropriation of resources are crucial. We emphasise here the need for a systematic and technically informed approach to search and rescue missions in large-scale landslide disaster contexts, and the formulation of better disaster management policies in general. Standard procedures must be developed and enforced to improve how civil authorities respond to natural calamities.
Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka
Paris, Raphaël; Bravo, Juan J. Coello; González, María E. Martín; Kelfoun, Karim; Nauret, François
2017-01-01
Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario. PMID:28504256
NASA Technical Reports Server (NTRS)
Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.
1999-01-01
In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.
Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins
Pierson, Thomas C.; Major, Jon J.
2014-01-01
Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.
Preliminary Volcano-Hazard Assessment for Gareloi Volcano, Gareloi Island, Alaska
Coombs, Michelle L.; McGimsey, Robert G.; Browne, Brandon L.
2008-01-01
Gareloi Volcano (178.794 degrees W and 51.790 degrees N) is located on Gareloi Island in the Delarof Islands group of the Aleutian Islands, about 2,000 kilometers west-southwest of Anchorage and about 150 kilometers west of Adak, the westernmost community in Alaska. This small (about 8x10 kilometer) volcano has been one of the most active in the Aleutians since its discovery by the Bering expedition in the 1740s, though because of its remote location, observations have been scant and many smaller eruptions may have gone unrecorded. Eruptions of Gareloi commonly produce ash clouds and lava flows. Scars on the flanks of the volcano and debris-avalanche deposits on the adjacent seafloor indicate that the volcano has produced large landslides in the past, possibly causing tsunamis. Such events are infrequent, occurring at most every few thousand years. The primary hazard from Gareloi is airborne clouds of ash that could affect aircraft. In this report, we summarize and describe the major volcanic hazards associated with Gareloi.
Mars and earth - Comparison of cold-climate features
NASA Technical Reports Server (NTRS)
Lucchitta, B. K.
1981-01-01
On earth, glacial and periglacial features are common in areas of cold climate. On Mars, the temperature of the present-day surface is appropriate for permafrost, and the presence of water is suspected from data relating to the outgassing of the planet, from remote-sensing measurements over the polar caps and elsewhere on the Martian surface, and from recognition of fluvial morphological features such as channels. These observations and the possibility that ice could be in equilibrium with the high latitudes north and south of + or - 40 deg latitude suggest that glacial and periglacial features should exist on the planet. Morphological studies based mainly on Viking pictures indicate many features that can be attributed to the action of ice. Among these features are extensive talus aprons; debris avalanches; flows that resemble glaciers or rock glaciers; ridges that look like moraines; various types of patterned ground, scalloped scarps, and chaotically collapsed terrain that could be attributed to thermokarst processes; and landforms that may reflect the interaction of volcanism and ice.
Disordered artificial spin ices: Avalanches and criticality (invited)
NASA Astrophysics Data System (ADS)
Reichhardt, Cynthia J. Olson; Chern, Gia-Wei; Libál, Andras; Reichhardt, Charles
2015-05-01
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in the square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.
Risk assessment in the North Caucasus ski resorts
NASA Astrophysics Data System (ADS)
Komarov, Anton Y.; Seliverstov, Yury G.; Glazovskaya, Tatyana G.; Turchaninova, Alla S.
2016-10-01
Avalanches pose a significant problem in most mountain regions of Russia. The constant growth of economic activity, and therefore the increased avalanche hazard, in the North Caucasus region lead to demand for the development of large-scale avalanche risk assessment methods. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments.The requirement of natural hazard risk assessments is determined by the Federal Law of the Russian Federation (Federal Law 21.12.1994 N 68-FZ, 2016). However, Russian guidelines (SNIP 11-02-96, 2013; SNIP 22-02-2003, 2012) are not clearly presented concerning avalanche risk assessment calculations. Thus, we discuss these problems by presenting a new avalanche risk assessment approach, with the example of developing but poorly researched ski resort areas. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (appropriate, acceptable and inappropriate) and to suggest methods to decrease the individual risk to an acceptable level or better. The analysis makes it possible to compare risk quantitative data obtained from different regions, analyze them and evaluate the economic feasibility of protection measures.
Disordered artificial spin ices: Avalanches and criticality (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, Cynthia J. Olson, E-mail: cjrx@lanl.gov; Chern, Gia-Wei; Reichhardt, Charles
2015-05-07
We show that square and kagome artificial spin ices with disconnected islands exhibit disorder-induced nonequilibrium phase transitions. The critical point of the transition is characterized by a diverging length scale and the effective spin reconfiguration avalanche sizes are power-law distributed. For weak disorder, the magnetization reversal is dominated by system-spanning avalanche events characteristic of a supercritical regime, while at strong disorder, the avalanche distributions have subcritical behavior and are cut off above a length scale that decreases with increasing disorder. The different type of geometrical frustration in the two lattices produces distinct forms of critical avalanche behavior. Avalanches in themore » square ice consist of the propagation of locally stable domain walls separating the two polarized ground states, and we find a scaling collapse consistent with an interface depinning mechanism. In the fully frustrated kagome ice, however, the avalanches branch strongly in a manner reminiscent of directed percolation. We also observe an interesting crossover in the power-law scaling of the kagome ice avalanches at low disorder. Our results show that artificial spin ices are ideal systems in which to study a variety of nonequilibrium critical point phenomena as the microscopic degrees of freedom can be accessed directly in experiments.« less
NASA Astrophysics Data System (ADS)
Lucas, Célia; Bühler, Yves; Leinss, Silvan; Hajnsek, Irena
2017-04-01
Wet and full-depth glide snow avalanches can be of considerable danger for people and infrastructure in alpine regions. In Switzerland avalanche hazard predictions are performed by the Institute for Snow and Avalanche Research SLF. However these predictions are issued on regional scale and do not yield information about the current status of particular slopes of interest. To investigate the potential of radar technology for avalanche prediction on the slope scale, we performed the following experiment. During the winter seasons 2015/2016 and 2016/2017, a ground-based Ku-band radar was placed in the vicinity of Davos (GR) in order to monitor the Dorfberg slope with 4-minute measurement intervals [1]. With Differential Interferometry [2] line of sight movements on the order of a fraction of the radar wavelength (1.7 cm) can be measured. Applying this technique to the Dorfberg scenario, it was possible to detect snowpack displacement of up to 0.4 m over 3 days in the avalanche release area prior to a snow avalanche event. A proof of concept of this approach was previously made by [3-5]. The analysis of the snowpack displacement history of such release areas shows that an avalanche is generally released after several cycles of acceleration and deceleration of a specific area of the snowpack, followed by an abrupt termination of the movement at the moment of the avalanche release. The acceleration and deceleration trends are related to thawing and refreezing of the snowpack induced by the daily temperature variations. The proposed method for the detection of snowpack displacements as indication for potential wet and full-depth glide snow avalanches is a promising tool to increase avalanche safety on specific slopes putting infrastructure or people at risk. The identification of a singular signature to discriminate the time window immediately prior to the release is still under investigation, but the ability to monitor snowpack displacement allows for mapping of zones prone to wet and full-depth glide snow avalanches in the near future. Therefore in the current winter season, we attempt to automatically detect snowpack displacement and avalanche releases at Dorfberg. Automatic warnings issued by the radar about the presence and amount of displacement and information about location and altitude of creeping regions as well as released avalanches will be combined with simulated LWC (Liquid Water Content) for the observed area. This slope-specific knowledge will be evaluated for inclusion into the more regional avalanche bulletin issued by SLF. Two cameras capture photographs at 1 and 10 minute intervals respectively to reference the opening of optically visible tensile cracks and triggering of avalanches. [1] C. Lucas, Y. Buehler, A. Marino, I. Hajnsek: Investigation of Snow Avalanches wit Ground Based Ku-band Radar, EUSAR 2016; 11th European Conference on Synthetic Aperture Radar; Proceedings of, 2016 [2] R. Bamler, P. Hartl: Synthetic aperture radar interferometry, Inverse Problems, Vol. 14 R1-R54, 1988 [3] Y. Buehler, C. Pielmeier, R. Frauenfelder, C. Jaedicke, G. Bippus, A. Wiesmann and R. Caduff: Improved Alpine Avalanche Forecast Service AAF, Final Report, European Space Agency ESA, 2014 [4] R. Caduff, A. Wiesmann, Y. Buehler, and C. Pielmeier: Continuous monitoring of snowpack displacement at high spatial and temporal resolution with terrestrial radar interferometry, Geophysical Research Letters, vol. 42, no. 3, 2015. [5] R. Caduff, A. Wiesmann, Y. Bühler, C. Bieler, and P. Limpach, "Terrestrial radar interferometry for snow glide activity monitoring and its potential as precursor of wet snow," in Interpraevent, 2016, pp. 239-248.
Information processing occurs via critical avalanches in a model of the primary visual cortex
NASA Astrophysics Data System (ADS)
Bortolotto, G. S.; Girardi-Schappo, M.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-01-01
We study a new biologically motivated model for the Macaque monkey primary visual cortex which presents power-law avalanches after a visual stimulus. The signal propagates through all the layers of the model via avalanches that depend on network structure and synaptic parameter. We identify four different avalanche profiles as a function of the excitatory postsynaptic potential. The avalanches follow a size-duration scaling relation and present critical exponents that match experiments. The structure of the network gives rise to a regime of two characteristic spatial scales, one of which vanishes in the thermodynamic limit.
Ekstrom, Philip A.
1981-01-01
A photon detector includes a semiconductor device, such as a Schottky barrier diode, which has an avalanche breakdown characteristic. The diode is cooled to cryogenic temperatures to eliminate thermally generated charge carriers from the device. The diode is then biased to a voltage level exceeding the avalanche breakdown threshold level such that, upon receipt of a photon, avalanche breakdown occurs. This breakdown is detected by appropriate circuitry which thereafter reduces the diode bias potential to a level below the avalanche breakdown threshold level to terminate the avalanche condition. Subsequently, the bias potential is reapplied to the diode in preparation for detection of a subsequently received photon.
NASA Astrophysics Data System (ADS)
Giacona, Florie; Martin, Brice; David, Pierre-Marie
2010-05-01
To mention avalanche risks in the Vosges generally causes certain disbelief because of its modest height. Moreover, as far as natural risks are concerned, and especially the avalanche risk, medium-high mountains are not usually studied. The attention is more focused on the spectacular and destructive phenomena that occur in highest mountains such as the Alps or the Pyrenees. However, in January and February 2000, fifteen people were victims of avalanches and three of them died. These accidents have suddenly drawn attention to the fact that avalanche risk is underestimated. In opposition to the Alps and Pyrenees there is no study or systematic inventory of avalanches in the medium-high mountain ranges. Moreover, the many research and methodological articles dedicated to studies on avalanches in the high mountain ranges do not, unfortunately, raise any concerns about medium-high mountain ranges. So, we had to develop a new research method based on handwritten, printed, and oral sources as well as on observations. The results of this historical research exceeded all expectations. About 300 avalanche events have been reported since the end of the 18th century; they happened in about 90 avalanche paths. Spatial and temporal distributions of the avalanche events can be explained by climate, vulnerability and land use evolutions. The vulnerability has evolved since the 18th century: material vulnerability decreased whereas human vulnerability increased due to the expansion of winter sports. Finally we focus our study on the perception of the avalanche risk by the winter sports adepts in the Vosges mountains. Indeed, at the beginning of this research, we were directly confronted to a lack of knowledge, or even to an ignorance, of the avalanche risk. Several factors contribute to this situation among which the topography. Even though some places in the Vosges mountains look like the alpine topography, most of the summits are rounded. Furthermore, this mountain presents an annual and seasonal variability of snowfall and snow height. And the summits and slopes which present an avalanche risk can be easily reached in wintertime thanks to car parks close to the summits and the clearing of snow from the roads. A study is therefore being carried out in order to understand the mechanisms of perception and awareness of the avalanche risk. This is the first step towards the development of a new prevention method adapted to the recreational public in medium-high mountains.
Explosive-residue compounds resulting from snow avalanche control in the Wasatch Mountains of Utah
Naftz, David L.; Kanagy, Leslie K.; Susong, David D.; Wydoski, Duane S.; Kanagy, Christopher J.
2003-01-01
A snow avalanche is a powerful force of nature that can play a significant role in developing mountain landscapes (Perla and Martinelli, 1975). More importantly, loss of life can occur when people are caught in the path of snow avalanches (Grossman, 1999). Increasing winter recreation, including skiing, snowboarding, snowmobiling, snowshoeing, and climbing in mountainous areas, has increased the likelihood of people encountering snow avalanches (fig. 1). Explosives are used by most ski areas and State highway departments throughout the Western United States to control the release of snow avalanches, thus minimizing the loss of human life during winter recreation and highway travel (fig. 2).Common explosives used for snow avalanche control include trinitrotoluene (TNT), pentaerythritoltetranitrate (PETN), cyclotrimethylenetrinitramine (RDX), tetrytol, ammonium nitrate, and nitroglycerin (Perla and Martinelli, 1975). During and after snowfall or wind loading of potential avalanche slopes, ski patrollers and Utah Department of Transportation personnel deliver explosive charges onto predetermined targets to artificially release snow avalanches, thereby rendering the slope safer for winter activities. Explosives can be thrown by hand onto target zones or shot from cannons for more remote delivery of explosive charges. Hand-delivered charges typically contain about 2 pounds of TNT or its equivalent (Perla and Martinelli, 1975).Depending on the size of the ski area, acreage of potential avalanche terrain, and weather conditions, the annual quantity of explosives used during a season of snow avalanche control can be substantial. For example, the three ski areas of Alta, Snowbird, and Brighton, plus the Utah Department of Transportation, may use as many as 11,200 hand charges per year (Wasatch Powderbird Guides, unpub. data, 1999) for snow avalanche control in Big and Little Cottonwood Canyons (fig. 3). If each charge is assumed to weigh 2 pounds, this equates to about 22,400 pounds of explosive hand charges per year. In addition, 2,240 to 3,160 Avalauncher rounds and 626 to 958 military artillery rounds (explosive mass not specified) are used each year by the three ski areas and the Utah Department of Transportation for snow avalanche control in Big and Little Cottonwood Canyons (Wasatch Powderbird Guides, unpub. data, 1999). The other ski area in Big Cottonwood Canyon, Brighton, uses about 2,000 pounds of explosives per year for snow avalanche control (Michele Weidner, Cirrus Ecological Solutions consultant, written commun., 2001).
Hunt, D C; Tanioka, Kenkichi; Rowlands, J A
2007-12-01
The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers-veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comes with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.
Huggel, C.; Caplan-Auerbach, J.; Waythomas, C.F.; Wessels, R.L.
2007-01-01
Iliamna is an andesitic stratovolcano of the Aleutian arc with regular gas and steam emissions and mantled by several large glaciers. Iliamna Volcano exhibits an unusual combination of frequent and large ice-rock avalanches in the order of 1 ?? 106??m3 to 3 ?? 107??m3 with recent return periods of 2-4??years. We have reconstructed an avalanche event record for the past 45??years that indicates Iliamna avalanches occur at higher frequency at a given magnitude than other mass failures in volcanic and alpine environments. Iliamna Volcano is thus an ideal site to study such mass failures and its relation to volcanic activity. In this study, we present different methods that fit into a concept of (1) long-term monitoring, (2) early warning, and (3) event documentation and analysis of ice-rock avalanches on ice-capped active volcanoes. Long-term monitoring methods include seismic signal analysis, and space-and airborne observations. Landsat and ASTER satellite data was used to study the extent of hydrothermally altered rocks and surface thermal anomalies at the summit region of Iliamna. Subpixel heat source calculation for the summit regions where avalanches initiate yielded temperatures of 307 to 613??K assuming heat source areas of 1000 to 25??m2, respectively, indicating strong convective heat flux processes. Such heat flow causes ice melting conditions and is thus likely to reduce the strength at the base of the glacier. We furthermore demonstrate typical seismic records of Iliamna avalanches with rarely observed precursory signals up to two hours prior to failure, and show how such signals could be used for a multi-stage avalanche warning system in the future. For event analysis and documentation, space- and airborne observations and seismic records in combination with SRTM and ASTER derived terrain data allowed us to reconstruct avalanche dynamics and to identify remarkably similar failure and propagation mechanisms of Iliamna avalanches for the past 45??years. Simple avalanche flow modeling was able to reasonably replicate Iliamna avalanches and can thus be applied for hazard assessments. Hazards at Iliamna Volcano are low due to its remote location; however, we emphasize the transfer potential of the methods presented here to other ice-capped volcanoes with much higher hazards such as those in the Cascades or the Andes. ?? 2007 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.
2007-12-15
The flat-panel detector (FPD) is the state-of-the-art detector for digital radiography. The FPD can acquire images in real-time, has superior spatial resolution, and is free of the problems of x-ray image intensifiers--veiling glare, pin-cushion and magnetic distortion. However, FPDs suffer from poor signal to noise ratio performance at typical fluoroscopic exposure rates where the quantum noise is reduced to the point that it becomes comparable to the fixed electronic noise. It has been shown previously that avalanche multiplication gain in amorphous selenium (a-Se) can provide the necessary amplification to overcome the electronic noise of the FPD. Avalanche multiplication, however, comesmore » with its own intrinsic contribution to the noise in the form of gain fluctuation noise. In this article a cascaded systems analysis is used to present a modified metric related to the detective quantum efficiency. The modified metric is used to study a diagnostic x-ray imaging system in the presence of intrinsic avalanche multiplication noise independently from other noise sources, such as electronic noise. An indirect conversion imaging system is considered to make the study independent of other avalanche multiplication related noise sources, such as the fluctuations arising from the depth of x-ray absorption. In this case all the avalanche events are initiated at the surface of the avalanche layer, and there are no fluctuations in the depth of absorption. Experiments on an indirect conversion x-ray imaging system using avalanche multiplication in a layer of a-Se are also presented. The cascaded systems analysis shows that intrinsic noise of avalanche multiplication will not have any deleterious influence on detector performance at zero spatial frequency in x-ray imaging provided the product of conversion gain, coupling efficiency, and optical quantum efficiency are much greater than a factor of 2. The experimental results show that avalanche multiplication in a-Se behaves as an intrinsic noise free avalanche multiplication, in accordance with our theory. Provided good coupling efficiency and high optical quantum efficiency are maintained, avalanche multiplication in a-Se has the potential to increase the gain and make negligible contribution to the noise, thereby improving the performance of indirect FPDs in fluoroscopy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.
2008-07-15
Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.
Erosional origin of drumlins and megaridges
NASA Astrophysics Data System (ADS)
Eyles, Nick; Putkinen, Niko; Sookhan, Shane; Arbelaez-Moreno, Lina
2016-06-01
The erodent layer hypothesis (ELH) proposes that drumlinization leaves no substantial stratigraphic record because it is primarily an erosional process that cuts an unconformity across pre-existing bed materials. Drumlins most commonly have autochthonous cores of antecedent till(s), other stiff and coarse-grained sediment and rock or any combination thereof, and are also found closely juxtaposed with rock drumlins within the same flow sets ('mixed beds'). This is at odds with the suggested growth of drumlins by vertical accretion ('emergence') from deforming subglacial till ('soft beds'). ELH argues that drumlins 'grow down' by erosional carving of pre-existing stiff till, sediment and/or rock by a thin (< 1 m) layer of deforming subglacial debris which abrades its substrate. This process is well known to the science of tribology (the study of wearing surfaces) where remnant micro-drumlins, ridges and grooves comparable to drumlins and megaridges are cut by debris ('erodent layers') between surfaces in relative motion. In the subglacial setting the erodent layer comprises deforming diamict containing harder 'erodents' such as boulders, clast-rich zones or frozen rafts. Similar, till-like erodent layers (cataclasites) cut streamlined surfaces below gravity-driven mass flows such as rock avalanches, landslides and slumps, pyroclastic flows and debris flows; streamlined surfaces including drumlin-like 'ellipsoidal bumps' and ridges are also common on the surfaces of faults. Megadrumlins, drumlins and megaridges comprise an erosional continuum in many flow sets. This records the progressive dissection of large streamlined bedforms to form successively more elongate daughter drumlins and megaridges ('clones') as the bed is lowered to create a low-slip surface that allows fast ice flow and ice streaming. Clones are the 'missing links' in the continuum. ELH predicts preservation within drumlins of antecedent remnant tills and stratigraphies deposited earlier in the glacial cycle under sluggish or steady-state ice flows that were then streamlined by erosion under streaming ice flows. The erodent layer may be preserved as a relatively thin, loosely-consolidated surficial till that drapes the streamlined bedform (the 'upper till', 'cap till', 'till veneer', 'till mantle', 'retreat till', or 'englacial debris' of many previous reports). ELH suggests that there is a fundamental commonality of all forms of erosional wear and streamlining on sliding interfaces from the microscopic scale to the macroscopic scale of ice sheet beds.
NASA Astrophysics Data System (ADS)
Deubelbeiss, Y.; McArdell, B. W.; Graf, C.
2011-12-01
The dynamics of a debris flow can be significantly influenced by erosion and deposition processes during an event because volume changes have a strong influence on flow properties such as flow velocity, flow heights and runout distances. It is therefore worth exploring how to include these processes in numerical models, which are used for hazard assessment and mitigation measure planning. However, it is still under debate, what mechanism drives the erosion of material at the base of a debris flow. There are different processes attributed to erosion: it has been proposed that erosion correlates with the stresses due to granular interactions at the front, which in turn strongly depend on particle size or it may be related to basal shear forces. Because it is expected that larger flow heights result in larger stresses one can additionally hypothesize that there is a correlation between erosion rate and flow height. To test different erosion laws in a numerical model and its influence on the flow behavior we implement different relationships and compare simulation results with field data. Herefore, we use the numerical model, RAMMS (Christen et al., 2010), employing the Voellmy-fluid friction law. While it has already been shown that a correlation of erosion with velocity does not lead to a satisfying result (too high entrainment in the tail) a correlation with flow height combined with velocity (momentum) has been successfully applied to ice-avalanches. Currently, we are testing the momentum-driven and for comparison we reconsider the simple velocity-driven erosion rate. However, these laws do not consider processes on a smaller scale such as particle fluctuations resulting in energy production, which might play an important role. Therefore, we additionally consider an erosion model that has potential to draw new insights on the erosion process in debris flows. The model is based on an extended Voellmy model, which additionally employs an equation, which is a measure of the random kinetic energy (RKE, equivalent to granular temperature) produced by the random movement of particles in a debris flow (Buser and Bartelt, 2009). Advantageous is that friction is dependent on the production of RKE and is decreasing with decreasing RKE. The amount of energy produced in the system, might therefore be a useful indicator for the erosion rate. While the erosion model using the Voellmy approach might be successfully applicable to cases where erosion and bulking are the main processes, such as in Illgraben (CH), it might be less straight forward in mountain torrents where we additionally observe a lot of deposition along the flow path such as in Dorfbach (CH). The extended Voellmy model is indirectly accounting for this process as friction is a function of RKE, which allows material to deposit earlier. At both locations we have debris flow observation stations including innovative new measurement techniques indication parameters such as flow velocity, height and volumes at specific locations (Illgraben, Dorfbach) as well as erosion rate measurements (Illgraben). These highly valuable data allow us good model calibration as well as verification of the newly implemented erosion models.
IFKIS a basis for organizational measures in avalanche risk management
NASA Astrophysics Data System (ADS)
Bründl, M.; Etter, H.-J.; Klingler, Ch.; Steiniger, M.; Rhyner, J.; Ammann, W.
2003-04-01
The avalanche winter 1999 in Switzerland showed that the combination of protection measures like avalanche barriers, hazard zone mapping, artificial avalanche release and organisational measures (closure of roads, evacuation etc.) proved to perform well. However, education as well as information and communication between the involved organizations proved to be a weak link in the crisis management. In the first part of the project IFKIS we developed a modular education and training course program for security responsibles of settlements and roads. In the second part an information system was developed which improves on the one hand the information fluxes between the national center for avalanche forecasting, the Swiss Federal Institute for Snow and Avalanche Research SLF, and the local forecasters. On the other hand the communication between the avalanche security services in the communities can be enhanced. During the last two years an information system based on Internet technology has been developed for this purpose. This system allows the transmission of measured data and observations to a central database at SLF and visualization of the data for different users. It also provides the possibility to exchange information on organizational measures like closure of roads, artificial avalanche release etc. on a local and regional scale. This improves the information fluxes and the coordination of safety-measures because all users, although at different places, are on the same information level. Inconsistent safety-measures can be avoided and information and communication concerning avalanche safety becomes much more transparent for all persons involved in hazard management. The training program as well the concept for the information-system are important basics for an efficient avalanche risk management but also for other natural processes and catastrophes.
Natural avalanches and transportation: A case study from Glacier National Park, Montana, USA
Reardon, B.A.; Fagre, Daniel B.; Steiner, R.W.
2004-01-01
In January 2004, two natural avalanches (destructive class 3) derailed a freight train in John F. Stevens Canyon, on the southern boundary of Glacier National Park. The railroad tracks were closed for 29 hours due to cleanup and lingering avalanche hazard, backing up 112km of trains and shutting down Amtrak’s passenger service. The incident marked the fourth time in three winters that natural avalanches have disrupted transportation in the canyon, which is also the route of U.S. Highway 2. It was the latest in a 94-year history of accidents that includes three fatalities and the destruction of a major highway bridge. Despite that history and the presence of over 40 avalanche paths in the 16km canyon, mitigation is limited to nine railroad snow sheds and occasional highway closures. This case study examines natural avalanche cycles of the past 28 winters using data from field observations, a Natural Resources Conservation Service (NRCS) SNOTEL station, and data collected since 2001 at a high-elevation weather station. The avalanches occurred when storms with sustained snowfall buried a persistent near-surface faceted layer and/or were followed by rain-on-snow or dramatic warming (as much as 21oC in 30 minutes). Natural avalanche activity peaked when temperatures clustered near freezing (mean of -1.5oC at 1800m elev.). Avalanches initiated through rapid loading, rain falling on new snow, and/ or temperature-related changes in the mechanical properties of slabs. Lastly, the case study describes how recent incidents have prompted a unique partnership of land management agencies, private corporations and non-profit organizations to develop an avalanche mitigation program for the transportation corridor.
Statistical analyses support power law distributions found in neuronal avalanches.
Klaus, Andreas; Yu, Shan; Plenz, Dietmar
2011-01-01
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling behavior in which the maximum avalanche size was limited only by the spatial extent of sampling ("finite size" effect). This scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-Smirnov statistic and a maximum likelihood approach, we found the slope to be close to -1.5, which is in line with previous reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial layers of cortex.
Forecasting of wet snow avalanche activity: Proof of concept and operational implementation
NASA Astrophysics Data System (ADS)
Gobiet, Andreas; Jöbstl, Lisa; Rieder, Hannes; Bellaire, Sascha; Mitterer, Christoph
2017-04-01
State-of-the-art tools for the operational assessment of avalanche danger include field observations, recordings from automatic weather stations, meteorological analyses and forecasts, and recently also indices derived from snowpack models. In particular, an index for identifying the onset of wet-snow avalanche cycles (LWCindex), has been demonstrated to be useful. However, its value for operational avalanche forecasting is currently limited, since detailed, physically based snowpack models are usually driven by meteorological data from automatic weather stations only and have therefore no prognostic ability. Since avalanche risk management heavily relies on timely information and early warnings, many avalanche services in Europe nowadays start issuing forecasts for the following days, instead of the traditional assessment of the current avalanche danger. In this context, the prognostic operation of detailed snowpack models has recently been objective of extensive research. In this study a new, observationally constrained setup for forecasting the onset of wet-snow avalanche cycles with the detailed snow cover model SNOWPACK is presented and evaluated. Based on data from weather stations and different numerical weather prediction models, we demonstrate that forecasts of the LWCindex as indicator for wet-snow avalanche cycles can be useful for operational warning services, but is so far not reliable enough to be used as single warning tool without considering other factors. Therefore, further development currently focuses on the improvement of the forecasts by applying ensemble techniques and suitable post processing approaches to the output of numerical weather prediction models. In parallel, the prognostic meteo-snow model chain is operationally used by two regional avalanche warning services in Austria since winter 2016/2017 for the first time. Experiences from the first operational season and first results from current model developments will be reported.
Apparatus and method for recharging a string a avalanche transistors within a pulse generator
Fulkerson, E. Stephen
2000-01-01
An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.
A practitioner's tool for assessing glide crack activity
Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.
2010-01-01
Glide cracks can result in full-depth glide avalanche release. Avalanches from glide cracks are notoriously difficult to forecast, but are a reoccurring problem in a number of different avalanche forecasting programs across a range of snow climates. Despite this, there is no consensus for how to best manage, mitigate, or even observe glide cracks and the potential resultant avalanche activity. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity, so frequent measuring of glide crack movement provides an index of instability. Therefore, a comprehensive avalanche program with glide crack avalanche activity, should at the least, undertake some form of direct monitoring of glide crack movement. In this paper we present a simple, cheap and repeatable method to track glide crack activity using a series of stakes, reflectors and a laser rangefinder (LaserTech TruPulse360B) linked to a GPS (Trimble Geo XH). We tested the methodology in April 2010, on a glide crack above the Going to the Sun Road in Glacier National Park, Montana, USA. This study suggests a new method to better track the development and movement of glide cracks. It is hoped that by introducing a workable method to easily record glide crack movement, avalanche forecasters will improve their understanding of when, or if, avalanche activity will ensue. Our initial results suggest that these new observations, when combined with local micrometeorological data will result in improved process understanding and forecasting of these phenomena.
Mosbrucker, Adam
2014-01-01
The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the North Fork Toutle River basin, which drains the northern flank of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, built a sediment retention structure on the North Fork Toutle River in 1989 to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From September 16–20, 2009, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 214 square kilometers (83 square miles) of Mount St. Helens and the upper North Fork Toutle River basin from the sediment retention structure to the volcano's crater. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle, Coldwater, and Spirit Lakes. Final results averaged about five laser last-return points per square meter. As reported by Watershed Sciences, Inc., vertical accuracy is 10 centimeters (cm) at the 95-percent confidence interval on bare road surfaces; however, over natural terrain, USGS found vertical accuracy to be 10–50 cm. This USGS data series contains the bare-earth lidar data as 1- and 10-meter (m) resolution Esri grid files. Digital-elevation data can be downloaded (1m_DEM.zip and 10m_DEM.zip), as well as a 1-m resolution hillshade image with pyramids (1m_hillshade.zip). These geospatial data files require geographic information system (GIS) software for viewing.
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-10-15
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36 Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14 C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. 'Jigsaw-puzzle structure' of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits.
Avalanche risk in backcountry terrain based on usage frequency and accident data
NASA Astrophysics Data System (ADS)
Techel, F.; Zweifel, B.; Winkler, K.
2014-08-01
In Switzerland, the vast majority of avalanche accidents occurs during recreational activities. Risk analysis studies mostly rely on accident statistics without considering exposure (or the elements at risk), i.e. how many and where people are recreating. We compared the accident data (backcountry touring) with reports from two social media mountaineering networks - bergportal.ch and camptocamp.org. On these websites, users reported more than 15 000 backcountry tours during the five winters 2009/2010 to 2013/2014. We noted similar patterns in avalanche accident data and user data like demographics of recreationists, distribution of the day of the week (weekday vs. weekend) or weather conditions (fine vs. poor weather). However, we also found differences such as the avalanche danger conditions on days with activities and accidents, but also the geographic distribution. While backcountry activities are concentrated in proximity to the main population centres in the West and North of the Swiss Alps, a large proportion of the severe avalanche accidents occurred in the inner-alpine, more continental regions with frequently unfavorably snowpack structure. This suggests that even greater emphasis should be put on the type of avalanche problem in avalanche education and avalanche forecasting to increase the safety of backcountry recreationists.
Modeling the influence of snow cover temperature and water content on wet-snow avalanche runout
NASA Astrophysics Data System (ADS)
Valero, Cesar Vera; Wever, Nander; Christen, Marc; Bartelt, Perry
2018-03-01
Snow avalanche motion is strongly dependent on the temperature and water content of the snow cover. In this paper we use a snow cover model, driven by measured meteorological data, to set the initial and boundary conditions for wet-snow avalanche calculations. The snow cover model provides estimates of snow height, density, temperature and liquid water content. This information is used to prescribe fracture heights and erosion heights for an avalanche dynamics model. We compare simulated runout distances with observed avalanche deposition fields using a contingency table analysis. Our analysis of the simulations reveals a large variability in predicted runout for tracks with flat terraces and gradual slope transitions to the runout zone. Reliable estimates of avalanche mass (height and density) in the release and erosion zones are identified to be more important than an exact specification of temperature and water content. For wet-snow avalanches, this implies that the layers where meltwater accumulates in the release zone must be identified accurately as this defines the height of the fracture slab and therefore the release mass. Advanced thermomechanical models appear to be better suited to simulate wet-snow avalanche inundation areas than existing guideline procedures if and only if accurate snow cover information is available.
The Avalanche Catastrophe of El Teniente-chile: August 8 of 1944.
NASA Astrophysics Data System (ADS)
Vergara, J.; Baros, M.
The avalanche of El Teniente-Chile (~34S) August 8 of 1944, was the most serious avalanche accident in Chile of the last 100 years. On the night of August 8, 1944, a major avalanche impacted a The Sewell, a worked village of the Copper Mine of El Teniente, there were 102 fatalities, 8 building, one school and one bridged de- stroyed. Due to a storm over the central part of Chile where intense precipitation fall over the Andes mountains during nine days. Historical precipitation records near to Sewell shows that total rainfall during the storms was 299mm (La Rufina) and 349mm (Bullileo), and the day before of avalanche the 24 hours rain intensity was 93mm. The Weilbull statistical analysis of monthly snowfall (water equivalent) record in Sewell from 1912-2001 show that the total August 1944 snowfall (621mm) was the larger of the all historical records and the return period is close one events in 180 years, and the annual snowfall during 1944 was 1140mm and return periods was 3.8 years. KEYWRODS: Chile, Avalanches, Andes Mountains, Avalanche Disaster, Historical Snow Records.
Avalanches, plasticity, and ordering in colloidal crystals under compression.
McDermott, D; Reichhardt, C J Olson; Reichhardt, C
2016-06-01
Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.
A solid-state amorphous selenium avalanche technology for low photon flux imaging applications
Wronski, M. M.; Zhao, W.; Reznik, A.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.
2010-01-01
Purpose: The feasibility of a practical solid-state technology for low photon flux imaging applications was investigated. The technology is based on an amorphous selenium photoreceptor with a voltage-controlled avalanche multiplication gain. If this photoreceptor can provide sufficient internal gain, it will be useful for an extensive range of diagnostic imaging systems. Methods: The avalanche photoreceptor under investigation is referred to as HARP-DRL. This is a novel concept in which a high-gain avalanche rushing photoconductor (HARP) is integrated with a distributed resistance layer (DRL) and sandwiched between two electrodes. The avalanche gain and leakage current characteristics of this photoreceptor were measured. Results: HARP-DRL has been found to sustain very high electric field strengths without electrical breakdown. It has shown avalanche multiplication gains as high as 104 and a very low leakage current (≤20 pA∕mm2). Conclusions: This is the first experimental demonstration of a solid-state amorphous photoreceptor which provides sufficient internal avalanche gain for photon counting and photon starved imaging applications. PMID:20964217
First approximations in avalanche model validations using seismic information
NASA Astrophysics Data System (ADS)
Roig Lafon, Pere; Suriñach, Emma; Bartelt, Perry; Pérez-Guillén, Cristina; Tapia, Mar; Sovilla, Betty
2017-04-01
Avalanche dynamics modelling is an essential tool for snow hazard management. Scenario based numerical modelling provides quantitative arguments for decision-making. The software tool RAMMS (WSL Institute for Snow and Avalanche Research SLF) is one such tool, often used by government authorities and geotechnical offices. As avalanche models improve, the quality of the numerical results will depend increasingly on user experience on the specification of input (e.g. release and entrainment volumes, secondary releases, snow temperature and quality). New model developments must continue to be validated using real phenomena data, for improving performance and reliability. The avalanches group form University of Barcelona (RISKNAT - UB), has studied the seismic signals generated from avalanches since 1994. Presently, the group manages the seismic installation at SLF's Vallée de la Sionne experimental site (VDLS). At VDLS the recorded seismic signals can be correlated to other avalanche measurement techniques, including both advanced remote sensing methods (radars, videogrammetry) and obstacle based sensors (pressure, capacitance, optical sender-reflector barriers). This comparison between different measurement techniques allows the group to address the question if seismic analysis can be used alone, on more additional avalanche tracks, to gain insight and validate numerical avalanche dynamics models in different terrain conditions. In this study, we aim to add the seismic data as an external record of the phenomena, able to validate RAMMS models. The seismic sensors are considerable easy and cheaper to install than other physical measuring tools, and are able to record data from the phenomena in every atmospheric conditions (e.g. bad weather, low light, freezing make photography, and other kind of sensors not usable). With seismic signals, we record the temporal evolution of the inner and denser parts of the avalanche. We are able to recognize the approximate position of the flow in the slope, and make observations of the internal flow dynamics, especially flow regimes transitions, which depend on the slope-perpendicular energy fluxes induced by collisions at the basal boundary. The recorded data over several experimental seasons provide a catalogue of seismic data from different types and sizes of avalanches triggered at the VDLS experimental site. These avalanches are recorded also by the SLF instrumentation (FMCW radars, photography, photogrammetry, video, videogrammetry, pressure sensors). We select the best-quality avalanche data to model and establish comparisons. All this information allows us to calibrate parameters governing the internal energy fluxes, especially parameters governing the interaction of the avalanche with the incumbent snow cover. For the comparison between the seismic signal and the RAMMS models, we are focusing at the temporal evolution of the flow, trying to find the same arrival times of the front at the seismic sensor location in the avalanche path. We make direct quantitative comparisons between measurements and model outputs, using modelled flow height, normal stress, velocity, and pressure values, compared with the seismic signal, its envelope and its running spectrogram. In all cases, the first comparisons between the seismic signal and RAMMS outputs are very promising.
Practical operational implementation of Teton Pass avalanche monitoring infrasound system.
DOT National Transportation Integrated Search
2008-12-01
Highway snow avalanche forecasting programs typically rely on weather and field observations to make road closure and hazard : evaluations. Recently, infrasonic avalanche monitoring technology has been developed for practical use near Teton Pass, WY ...
NASA Technical Reports Server (NTRS)
Blonski, Slawomir
2007-01-01
This Candidate Solution is based on using active and passive microwave measurements acquired from NASA satellites to improve USDA (U.S. Department of Agriculture) Forest Service forecasting of avalanche danger. Regional Avalanche Centers prepare avalanche forecasts using ground measurements of snowpack and mountain weather conditions. In this Solution, range of the in situ observations is extended by adding remote sensing measurements of snow depth, snow water equivalent, and snowfall rate acquired by satellite missions that include Aqua, CloudSat, future GPM (Global Precipitation Measurement), and the proposed SCLP (Snow and Cold Land Processes). Measurements of snowpack conditions and time evolution are improved by combining the in situ and satellite observations with a snow model. Recurring snow observations from NASA satellites increase accuracy of avalanche forecasting, which helps the public and the managers of public facilities make better avalanche safety decisions.
Avalanche risk assessment in Russia
NASA Astrophysics Data System (ADS)
Komarov, Anton; Seliverstov, Yury; Sokratov, Sergey; Glazovskaya, Tatiana; Turchaniniva, Alla
2017-04-01
The avalanche prone area covers about 3 million square kilometers or 18% of total area of Russia and pose a significant problem in most mountain regions of the country. The constant growth of economic activity, especially in the North Caucasus region and therefore the increased avalanche hazard lead to the demand of the large-scale avalanche risk assessment methods development. Such methods are needed for the determination of appropriate avalanche protection measures as well as for economic assessments during all stages of spatial planning of the territory. The requirement of natural hazard risk assessments is determined by the Federal Law of Russian Federation. However, Russian Guidelines (SP 11-103-97; SP 47.13330.2012) are not clearly presented concerning avalanche risk assessment calculations. A great size of Russia territory, vast diversity of natural conditions and large variations in type and level of economic development of different regions cause significant variations in avalanche risk values. At the first stage of research the small scale avalanche risk assessment was performed in order to identify the most common patterns of risk situations and to calculate full social risk and individual risk. The full social avalanche risk for the territory of country was estimated at 91 victims. The area of territory with individual risk values lesser then 1×10(-6) covers more than 92 % of mountain areas of the country. Within these territories the safety of population can be achieved mainly by organizational activities. Approximately 7% of mountain areas have 1×10(-6) - 1×10(-4) individual risk values and require specific mitigation measures to protect people and infrastructure. Territories with individual risk values 1×10(-4) and above covers about 0,1 % of the territory and include the most severe and hazardous mountain areas. The whole specter of mitigation measures is required in order to minimize risk. The future development of such areas is not recommended. The case studies of specific territories are performed using large-scale risk assessment methods. Thus, we discuss these problems by presenting an avalanche risk assessment approach on example of the developing but poorly researched ski resort areas in the North Caucasus. The suggested method includes the formulas to calculate collective and individual avalanche risk. The results of risk analysis are shown in quantitative data that can be used to determine levels of avalanche risk (acceptable, admissible and unacceptable) and to suggest methods to decrease the individual risk to acceptable level or better. It makes possible to compare risk quantitative data obtained from different mountain regions, analyze it and evaluate the economic feasibility of protection measures. At present, we are developing methods of avalanche risk assessment in economic performance. It conceder costs of objects located in avalanche prone area, traffic density values and probability of financial loss.
Advanced Avalanche Safety Equipment of Backcountry Users: Current Trends and Perceptions.
Ng, Pearlly; Smith, William R; Wheeler, Albert; McIntosh, Scott E
2015-09-01
Backcountry travelers should carry a standard set of safety gear (transceiver, shovel, and probe) to improve rescue chances and reduce mortality risk. Many backcountry enthusiasts are using other advanced equipment such as an artificial air pocket (eg, the AvaLung) or an avalanche air bag. Our goal was to determine the numbers of backcountry users carrying advanced equipment and their perceptions of mortality and morbidity benefit while carrying this gear. A convenience sample of backcountry skiers, snowboarders, snowshoers, and snowmobilers was surveyed between February and April 2014. Participants of this study were backcountry mountain users recruited at trailheads in the Wasatch and Teton mountain ranges of Utah and Wyoming, respectively. Questions included prior avalanche education, equipment carried, and perceived safety benefit derived from advanced equipment. In all, 193 surveys were collected. Skiers and snowboarders were likely to have taken an avalanche safety course, whereas snowshoers and snowmobilers were less likely to have taken a course. Most backcountry users (149, 77.2%), predominantly skiers and snowboarders, carried standard safety equipment. The AvaLung was carried more often (47 users) than an avalanche air bag (10 users). The avalanche air bag had a more favorable perceived safety benefit. A majority of participants reported cost as the barrier to obtaining advanced equipment. Standard avalanche safety practices, including taking an avalanche safety course and carrying standard equipment, remain the most common safety practices among backcountry users in the Wasatch and Tetons. Snowshoers remain an ideal target for outreach to increase avalanche awareness and safety. Copyright © 2015 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Natural glide slab avalanches, Glacier National Park, USA: A unique hazard and forecasting challenge
Reardon, Blase; Fagre, Daniel B.; Dundas, Mark; Lundy, Chris
2006-01-01
In a museum of avalanche phenomena, glide cracks and glide avalanches might be housed in the “strange but true” section. These oddities are uncommon in most snow climates and tend to be isolated to specific terrain features such as bedrock slabs. Many glide cracks never result in avalanches, and when they do, the wide range of time between crack formation and slab failure makes them highly unpredictable. Despite their relative rarity, glide cracks and glide avalanches pose a regular threat and complex forecasting challenge during the annual spring opening of the Going-to-the-Sun Road in Glacier National Park, U.S.A. During the 2006 season, a series of unusual glide cracks delayed snow removal operations by over a week and provided a unique opportunity to record detailed observations of glide avalanches and characterize their occurrence and associated weather conditions. Field observations were from snowpits, crown profiles and where possible, measurements of slab thickness, bed surface slope angle, substrate and other physical characteristics. Weather data were recorded at one SNOTEL site and two automated stations located from 0.6-10 km of observed glide slab avalanches. Nearly half (43%) of the 35 glide slab avalanches recorded were Class D2-2.5, with 15% Class D3-D3.5. The time between glide crack opening and failure ranged from 2 days to over six weeks, and the avalanches occurred in cycles associated with loss of snow water equivalent and spikes in temperature and radiation. We conclude with suggest ions for further study.
NASA Astrophysics Data System (ADS)
Flores-Marquez, L.; Suriñach-Cornet, E., Sr.
2017-12-01
Seismic signals generated by snow avalanches and other mass movements are analyzed in their spectrogram representation. Spectrogram displays the evolution in time of the frequency content of the signals. The spectrogram of a seismic signal of a station to which a sliding mass, such as a snow avalanche, approaches, exhibits a triangular time / frequency signature. This increase in its higher frequency content over time is a consequence of the attenuation of the waves propagating in a media. Recognition of characteristic footprints in a spectrogram could help to identify and characterize diverse mass movement events such as landslides or snow avalanches. In order to recognize spectrogram features of seismic signals of Alpine snow avalanches, we propose an algorithm based on the Hough transform. The proposed algorithm is applied on an edge representation image of the seismic spectrogram obtained after fixing a threshold filter to the spectrogram, which enhances the most interesting frequencies of the seismogram that appear over time. This enables us to identify parameters (slopes) that correspond to the speeds associated with the type of snow avalanches, such as, powder, dense or transitional snow avalanches. The data analyzed in this work correspond to twenty different seismic signals generated by snow avalanches artificially released in the experimental site of Vallée de la Sionne (VDLS, SLF, Switzerland). The shape of the signal spectrograms are linked to the flow regimes previously identified. Our findings show that some ranges of speeds are inherent to the type of avalanche.
Robust snow avalanche detection using machine learning on infrasonic array data
NASA Astrophysics Data System (ADS)
Thüring, Thomas; Schoch, Marcel; van Herwijnen, Alec; Schweizer, Jürg
2014-05-01
Snow avalanches may threaten people and infrastructure in mountain areas. Automated detection of avalanche activity would be highly desirable, in particular during times of poor visibility, to improve hazard assessment, but also to monitor the effectiveness of avalanche control by explosives. In the past, a variety of remote sensing techniques and instruments for the automated detection of avalanche activity have been reported, which are based on radio waves (radar), seismic signals (geophone), optical signals (imaging sensor) or infrasonic signals (microphone). Optical imagery enables to assess avalanche activity with very high spatial resolution, however it is strongly weather dependent. Radar and geophone-based detection typically provide robust avalanche detection for all weather conditions, but are very limited in the size of the monitoring area. On the other hand, due to the long propagation distance of infrasound through air, the monitoring area of infrasonic sensors can cover a large territory using a single sensor (or an array). In addition, they are by far more cost effective than radars or optical imaging systems. Unfortunately, the reliability of infrasonic sensor systems has so far been rather low due to the strong variation of ambient noise (e.g. wind) causing a high false alarm rate. We analyzed the data collected by a low-cost infrasonic array system consisting of four sensors for the automated detection of avalanche activity at Lavin in the eastern Swiss Alps. A comparably large array aperture (~350m) allows highly accurate time delay estimations of signals which arrive at different times at the sensors, enabling precise source localization. An array of four sensors is sufficient for the time resolved source localization of signals in full 3D space, which is an excellent method to anticipate true avalanche activity. Robust avalanche detection is then achieved by using machine learning methods such as support vector machines. The system is initially trained by using characteristic data features from known avalanche and non-avalanche events. Data features are obtained from output signals of the source localization algorithm or from Fourier or time domain processing and support the learning phase of the system. A significantly improved detection rate as well as a reduction of the false alarm rate was achieved compared to previous approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Zhao, W.; Tanioka, K.
Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less
The geometric signature: Quantifying landslide-terrain types from digital elevation models
Pike, R.J.
1988-01-01
Topography of various types and scales can be fingerprinted by computer analysis of altitude matrices (digital elevation models, or DEMs). The critical analytic tool is the geometric signature, a set of measures that describes topographic form well enough to distinguish among geomorphically disparate landscapes. Different surficial processes create topography with diagnostic forms that are recognizable in the field. The geometric signature abstracts those forms from contour maps or their DEMs and expresses them numerically. This multivariate characterization enables once-in-tractable problems to be addressed. The measures that constitute a geometric signature express different but complementary attributes of topographic form. Most parameters used here are statistical estimates of central tendency and dispersion for five major categories of terrain geometry; altitude, altitude variance spectrum, slope between slope reversals, and slope and its curvature at fixed slope lengths. As an experimental application of geometric signatures, two mapped terrain types associated with different processes of shallow landsliding in Marin County, California, were distinguished consistently by a 17-variable description of topography from 21??21 DEMs (30-m grid spacing). The small matrix is a statistical window that can be used to scan large DEMs by computer, thus potentially automating the mapping of contrasting terrain types. The two types in Marin County host either (1) slow slides: earth flows and slump-earth flows, or (2) rapid flows: debris avalanches and debris flows. The signature approach should adapt to terrain taxonomy and mapping in other areas, where conditions differ from those in Central California. ?? 1988 International Association for Mathematical Geology.
Dirty Snowballs and Magic Carpets: an Ontology of Geophysical Disturbance
NASA Astrophysics Data System (ADS)
Grant, G. E.; Lancaster, S.; O'Connor, J.; Lewis, S.
2002-12-01
Geologists tend to think about landscape-transforming events as "processes" while ecologists tend to view them as "disturbances". In either case, understanding the dynamics of such events is key to interpreting their effects on landforms and ecosystems. Although volcanic eruptions, meteorological and dam break floods, fires, windstorms, and other high-energy events have different origins, internal driving mechanisms, frequencies, and durations, and operate in different types of landscape settings, they share common attributes. Perhaps most importantly, they all represent transformations of energy from one form to another. In some cases the energy of an event generally increases as it propagates through a landscape, primarily through the addition of mass and momentum; examples of these "dirty snowballs" include the initiation and runout phases of volcanic lahars, avalanches, and debris flows. Explosive forest fires can also be viewed as snowballs, in the sense that the heat they generate results in convection that increases their temperatures and rates of movement. In other cases, abstraction of both mass and momentum from a moving body or fluid causes the energy of an event to dissipate with distance, similar to the unwinding of a rug; examples of these "magic carpets" include dam-break floods from a variety of origins, and the depositional phases of lahars and debris flows. Both snowballs and carpets leave distinctive imprints or tracks on the landscape and ecosystems in the form of scour and depositional features, patterns of vegetation disturbance, and rates of subsequent geomorphic or ecosystem recovery. Understanding which processes will snowball and which will unravel is key to determining both their ecosystem impacts and potential risks to humans.
Avalanche multiplication in AlGaN-based heterostructures for the ultraviolet spectral range
NASA Astrophysics Data System (ADS)
Hahn, L.; Fuchs, F.; Kirste, L.; Driad, R.; Rutz, F.; Passow, T.; Köhler, K.; Rehm, R.; Ambacher, O.
2018-04-01
AlxGa1-xN based avalanche photodiodes grown on sapphire substrate with Al-contents of x = 0.65 and x = 0.60 have been examined under back- and frontside illumination with respect to their avalanche gain properties. The photodetectors suitable for the solar-blind ultraviolet spectral regime show avalanche gain for voltages in excess of 30 V reverse bias in the linear gain mode. Devices with a mesa diameter of 100 μm exhibit stable avalanche gain below the break through threshold voltage, exceeding a multiplication gain of 5500 at 84 V reverse bias. A dark current below 1 pA can be found for reverse voltages up to 60 V.
Ostermann, Marc; Sanders, Diethard; Ivy-Ochs, Susan; Alfimov, Vasily; Rockenschaub, Manfred; Römer, Alexander
2012-01-01
In the Obernberg valley, the Eastern Alps, landforms recently interpreted as moraines are re-interpreted as rock avalanche deposits. The catastrophic slope failure involved an initial rock volume of about 45 million m³, with a runout of 7.2 km over a total vertical distance of 1330 m (fahrböschung 10°). 36Cl surface-exposure dating of boulders of the avalanche mass indicates an event age of 8.6 ± 0.6 ka. A 14C age of 7785 ± 190 cal yr BP of a palaeosoil within an alluvial fan downlapping the rock avalanche is consistent with the event age. The distal 2 km of the rock-avalanche deposit is characterized by a highly regular array of transverse ridges that were previously interpreted as terminal moraines of Late-Glacial. ‘Jigsaw-puzzle structure’ of gravel to boulder-size clasts in the ridges and a matrix of cataclastic gouge indicate a rock avalanche origin. For a wide altitude range the avalanche deposit is preserved, and the event age of mass-wasting precludes both runout over glacial ice and subsequent glacial overprint. The regularly arrayed transverse ridges thus were formed during freezing of the rock avalanche deposits. PMID:24966447
Avalanche risk assessment - a multi-temporal approach, results from Galtür, Austria
NASA Astrophysics Data System (ADS)
Keiler, M.; Sailer, R.; Jörg, P.; Weber, C.; Fuchs, S.; Zischg, A.; Sauermoser, S.
2006-07-01
Snow avalanches pose a threat to settlements and infrastructure in alpine environments. Due to the catastrophic events in recent years, the public is more aware of this phenomenon. Alpine settlements have always been confronted with natural hazards, but changes in land use and in dealing with avalanche hazards lead to an altering perception of this threat. In this study, a multi-temporal risk assessment is presented for three avalanche tracks in the municipality of Galtür, Austria. Changes in avalanche risk as well as changes in the risk-influencing factors (process behaviour, values at risk (buildings) and vulnerability) between 1950 and 2000 are quantified. An additional focus is put on the interconnection between these factors and their influence on the resulting risk. The avalanche processes were calculated using different simulation models (SAMOS as well as ELBA+). For each avalanche track, different scenarios were calculated according to the development of mitigation measures. The focus of the study was on a multi-temporal risk assessment; consequently the used models could be replaced with other snow avalanche models providing the same functionalities. The monetary values of buildings were estimated using the volume of the buildings and average prices per cubic meter. The changing size of the buildings over time was inferred from construction plans. The vulnerability of the buildings is understood as a degree of loss to a given element within the area affected by natural hazards. A vulnerability function for different construction types of buildings that depends on avalanche pressure was used to assess the degree of loss. No general risk trend could be determined for the studied avalanche tracks. Due to the high complexity of the variations in risk, small changes of one of several influencing factors can cause considerable differences in the resulting risk. This multi-temporal approach leads to better understanding of the today's risk by identifying the main changes and the underlying processes. Furthermore, this knowledge can be implemented in strategies for sustainable development in Alpine settlements.
Are dragon-king neuronal avalanches dungeons for self-organized brain activity?
NASA Astrophysics Data System (ADS)
de Arcangelis, L.
2012-05-01
Recent experiments have detected a novel form of spontaneous neuronal activity both in vitro and in vivo: neuronal avalanches. The statistical properties of this activity are typical of critical phenomena, with power laws characterizing the distributions of avalanche size and duration. A critical behaviour for the spontaneous brain activity has important consequences on stimulated activity and learning. Very interestingly, these statistical properties can be altered in significant ways in epilepsy and by pharmacological manipulations. In particular, there can be an increase in the number of large events anticipated by the power law, referred to herein as dragon-king avalanches. This behaviour, as verified by numerical models, can originate from a number of different mechanisms. For instance, it is observed experimentally that the emergence of a critical behaviour depends on the subtle balance between excitatory and inhibitory mechanisms acting in the system. Perturbing this balance, by increasing either synaptic excitation or the incidence of depolarized neuronal up-states causes frequent dragon-king avalanches. Conversely, an unbalanced GABAergic inhibition or long periods of low activity in the network give rise to sub-critical behaviour. Moreover, the existence of power laws, common to other stochastic processes, like earthquakes or solar flares, suggests that correlations are relevant in these phenomena. The dragon-king avalanches may then also be the expression of pathological correlations leading to frequent avalanches encompassing all neurons. We will review the statistics of neuronal avalanches in experimental systems. We then present numerical simulations of a neuronal network model introducing within the self-organized criticality framework ingredients from the physiology of real neurons, as the refractory period, synaptic plasticity and inhibitory synapses. The avalanche critical behaviour and the role of dragon-king avalanches will be discussed in relation to different drives, neuronal states and microscopic mechanisms of charge storage and release in neuronal networks.
Extracting functionally feedforward networks from a population of spiking neurons
Vincent, Kathleen; Tauskela, Joseph S.; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABAA receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits. PMID:23091458
Extracting functionally feedforward networks from a population of spiking neurons.
Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe
2012-01-01
Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV/DNQX, consistent with fading feedforward activation. The observed alterations in FFCs provide experimental support for recent theoretical work linking power-law avalanches to the feedforward organization of functional connections in local neuronal circuits.
Conditions for Triggering Avalanches in Mn12-acetate.
NASA Astrophysics Data System (ADS)
Suzuki, Yoko; McHugh, S.; Jaafar, R.; Sarachik, M. P.; Myasoedov, Y.; Shtrikman, H.; Zeldov, E.; Bagai, R.; Chakov, N. E.; Christou, G.
2007-03-01
Recent measurements in Mn12-acetate have shown that magnetic avalanches (corresponding to fast magnetization reversal) propagate as a narrow front with a velocity that is roughly two orders of magnitude smaller than the speed of sound. This phenomenon is closely analogous to the propagation of a flame front through a flammable chemical substance (deflagration) [1]. The conditions for nucleation of avalanches triggered in response to a time-varying (swept) magnetic field were studied for different fields and temperatures. In these crystals, avalanches happened only at low temperatures and were found to occur stochastically at fields ranging from 1.0 T to 4.5 T. There is no apparent structure in the distribution of avalanches for fields below 3.5 T; at higher fields we find evidence that the probability is lower at ``nonresonant'' magnetic fields where tunneling across the anisotropy barrier is suppressed. This provides evidence that lowering the barrier by quantum mechanical tunneling facilitates the ignition of avalanches. Based on these and other measurements, we suggest that avalanches are triggered below 3.5 T by defects with lower energy barriers. [1] Y. Suzuki, et al., Phys. Rev. Lett. 95, 147201 (2005).
NASA Astrophysics Data System (ADS)
Leiva, J. C.; Casteller, A.; Martínez, H. H.; Norte, F. A.; Simonelli, S. C.
2010-03-01
Snow avalanches commonly threaten people and infrastructure in mountainous areas worldwide. Winter precipitation events in the Central Andes are caused by the interaction of the atmospheric general circulation and their steep orography. Almost every winter season snow storms and winds cause the blockage of routes and lead to the snowpack conditions that generate avalanche events. The amount of winter snow accumulation is highly variable and is one of the most important factors for assessing the impacts of climate change not only on the water availability, but also to plan future mitigation measures to reduce the avalanche hazard. The authors have conducted studies on snow avalanches that regularly affect the international route linking Mendoza (Argentina) with Santiago de Chile (Chile) but none of them was done at the Aconcagua Provincial Park The park is nearby this route, about 13 km kilometers east from the international border, which in this sector of the Andes coincides with the continental divide. On the night of 17 August 2009, seven people were caught by an avalanche that hit the Aconcagua Park rangers refuge (32° 48' 40'' S, 69° 56' 33'' W; 2950 masl).This paper describes the meteorological and snow precipitation conditions originating the event. On August 14 th. the synoptic surface and upper-air conditions from NCEP reanalysis were those associated with a severe Zonda wind occurrence in the region, that is: a 500 hPa level trough, a deep low-pressure surface system located over the Pacific Ocean close to the Chilean coast, approximately over 48 ° S and 80° W, and a jet stream at middle upper-air levels. The avalanche event occurred during a new and very heavy snowfall a while more than two days later of these extreme episodes. The topographical characteristics of the avalanche path, the snow storm intensity and the snow accumulation on the avalanche starting zone allowed the authors to simulate the avalanche flow. Snow storm intensity and snow accumulation data from Los Penitentes ski resort (about 10 km east of the Park entrance) were used as input data for the avalanche modeling. However, an additional snow mass was considered due to the fact that the starting zone is in a leeward slope. Vertical aerial photographs (1974), topographic profiles, a DEM generated from ASTER images and the snow accumulation data enabled the authors to simulate the avalanche flow using a bi-dimensional and a three-dimensional avalanche dynamics model. Our results indicate that the studied avalanche event was originated by two main factors. Firstly, prior to the studied event, the snowpack had gone through several cycles of high and low temperatures, thus producing a highly metamorphosed snowpack that facilitated the slide of the new snow. Secondly, the high intensity of the new snow precipitation did not allow for its good settlement. This study is the first step towards an avalanche hazard map of Aconcagua Park and will serve as a basis for advising the Park authorities in regards to the definition of the location of a new refuge and the necessary building structure requirements to be fulfilled.
Brantley, S.R.; Waitt, R.B.
1988-01-01
A devastating pyroclastic surge and resultant lahars at Mount St. Helens on 18 May 1980 produced several catastrophic flowages into tributaries on the northeast volcano flank. The tributaries channeled the flows to Smith Creek valley, which lies within the area devastated by the surge but was unaffected by the great debris avalanche on the north flank. Stratigraphy shows that the pyroclastic surge preceded the lahars; there is no notable "wet" character to the surge deposits. Therefore the lahars must have originated as snowmelt, not as ejected water-saturated debris that segregated from the pyroclastic surge as has been inferred for other flanks of the volcano. In stratigraphic order the Smith Creek valley-floor materials comprise (1) a complex valley-bottom facies of the pyroclastic surge and a related pyroclastic flow, (2) an unusual hummocky diamict caused by complex mixing of lahars with the dry pyroclastic debris, and (3) deposits of secondary pyroclastic flows. These units are capped by silt containing accretionary lapilli, which began falling from a rapidly expanding mushroom-shaped cloud 20 minutes after the eruption's onset. The Smith Creek valley-bottom pyroclastic facies consists of (a) a weakly graded basal bed of fines-poor granular sand, the deposit of a low-concentration lithic pyroclastic surge, and (b) a bed of very poorly sorted pebble to cobble gravel inversely graded near its base, the deposit of a high-concentration lithic pyroclastic flow. The surge apparently segregated while crossing the steep headwater tributaries of Smith Creek; large fragments that settled from the turbulent surge formed a dense pyroclastic flow along the valley floor that lagged behind the front of the overland surge. The unusual hummocky diamict as thick as 15 m contains large lithic clasts supported by a tough, brown muddy sand matrix like that of lahar deposits upvalley. This unit contains irregular friable lenses and pods meters in diameter, blocks incorporated from the underlying dry and hot pyroclastic material that had been deposited only moments earlier. The hummocky unit is the deposit of a high-viscosity debris flow which formed when lahars mingled with the pyroclastic materials on Smith Creek valley floor. Overlying the debris flow are voluminous pyroclastic deposits of pebbly sand cut by fines-poor gas-escape pipes and containing charred wood. The deposits are thickest in topographic lows along margins of the hummocky diamict. Emplaced several minutes after the hot surge had passed, this is the deposit of numerous secondary pyroclastic flows derived from surge material deposited unstably on steep valley sides. ?? 1988 Springer-Verlag.
Landslide database dominated by rainfall triggered events
NASA Astrophysics Data System (ADS)
Devoli, G.; Strauch, W.; Álvarez, A.
2009-04-01
A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide hazard assessment. Valuable information on landslide events has been obtained from a great variety of sources. On the basis of the data stored in the database, preliminary analyses performed at national scale aimed to characterize landslides in terms of spatial and temporal distribution, types of slope movements, triggering mechanisms, number of casualties and damage to infrastructure. A total of about 17000 events spatially distributed in mountainous and volcanic terrains have been collected in the database. The events are temporally distributed between 1826 and 2003, but a large number of the records (62% of the total number) occurred during the disastrous Hurricane Mitch in October 1998. The results showed that debris flows are the most common types of landslides recorded in the database (66% of the total amount), but other types, including rockfalls and slides, have also been identified. Rainfall, also associated with tropical cyclones, is the most frequent triggering mechanism of landslides in Nicaragua, but also seismic and volcanic activities are important triggers or, especially, the combination of one of them with rainfall. Rainfall has caused all types of failures, but debris flows and translational shallow slides are more frequent types. Earthquakes have most frequently triggered rockfalls and slides, while volcanic eruptions rockfalls and debris flows. Landslides triggered by rainfall were limited in time to the wet season that lasts from May to October and an increase in the number of events is observed during the months of September and October, which is in accord with the period of the rainy season in the Pacific and Northern and Central regions and when the country has the highest probability of being impacted by hurricanes. Both Atlantic and Pacific tropical cyclones have triggered landslides. At the medium scale, the influence of topographic and lithologic parameters on the occurrence of landslides was also analyzed and the physical characterization of landslides was done to better understand the landslide dynamics and run-out distances in both volcanic and non-volcanic areas. Data from fairly well documented events in Nicaragua were compared with other similar events in Central America and elsewhere and treated statistically to search for possible correlations and empirical relationships to predict run-out distances for different types of landslides, knowing the height of fall or the volume. The empirical relationships showed that debris flows and debris avalanches at volcanoes have the highest mobility and reach longer distances compared to other types of landslides. Because of their characteristics and downstream behaviour (long run-out distances and large volumes) both types of landslides have produced the highest number of victims in the country being the most dangerous to life and property.
Two-threshold model for scaling laws of noninteracting snow avalanches
Faillettaz, J.; Louchet, F.; Grasso, J.-R.
2004-01-01
A two-threshold model was proposed for scaling laws of noninteracting snow avalanches. It was found that the sizes of the largest avalanches just preceding the lattice system were power-law distributed. The proposed model reproduced the range of power-law exponents observe for land, rock or snow avalanches, by tuning the maximum value of the ratio of the two failure thresholds. A two-threshold 2D cellular automation was introduced to study the scaling for gravity-driven systems.
Influence of snow temperature on avalanche impact pressure
NASA Astrophysics Data System (ADS)
Sovilla, Betty; Koehler, Anselm; Steinkogler, Walter; Fischer, Jan-Thomas
2015-04-01
The properties of the snow entrained by an avalanche during its motion (density, temperature) significantly affect flow dynamics and can determine whether the flowing material forms granules or maintains its original fine-grained structure. In general, a cold and light snow cover typically fluidizes, while warmer and more cohesive snow may form a granular denser layer in a flowing avalanche. This structural difference has a fundamental influence not only in the mobility of the flow but also on the impact pressure of avalanches. Using measurements of impact pressure, velocity, density and snow temperature performed at the Swiss Vallée de la Sionne full-scale test site, we show that, impact pressure fundamentally changes with snow temperature. A transition threshold of about -2°C is determined, the same temperature at which snow granulation starts. On the one hand warm avalanches, characterized by temperatures larger than -2°C, move as a plug and exert impact pressures linearly proportional to the avalanche depth. For Froude numbers larger than 1, an additional square-velocity dependent contribution cannot be neglected. On the other hand cold avalanches, characterized by a temperature smaller than -2°C, move as dense sheared flows, or completely dilute powder clouds and exert impact pressures, which are mainly proportional to the square of the flow velocity. For these avalanches the impact pressures strongly depend on density variations within the flow. We suggest that the proposed temperature threshold can be used as a criterion to define the transition between the impact pressures exerted by warm and cold avalanches, thus offering a new way to elude the notorious difficulties in defining the differences between wet and dry flow, respectively.
NASA Astrophysics Data System (ADS)
Chang, Kuo-Jen; Taboada, Alfredo
2009-09-01
We present Contact Dynamics discrete element simulations of the earthquake-triggered Jiufengershan avalanche, which mobilized a 60 m thick, 1.5 km long sedimentary layer, dipping ˜22°SE toward a valley. The dynamic behavior of the avalanche is simulated under different assumptions about rock behavior, water table height, and boundary shear strength. Additionally, seismic shaking is introduced using strong motion records from nearby stations. We assume that seismic shaking generates shearing and frictional heating along the surface of rupture, which, in turn, may induce dynamic weakening and avalanche triggering; a simple "slip-weakening" criterion was adopted to simulate shear strength drop along the rupture surface. We investigate the mechanical processes occurring during triggering and propagation of an avalanche mobilizing shallowly dipping layers. Incipient deformation forms a pop-up structure at the toe of the dip slope. As the avalanche propagates, the pop-up deforms into an overturned fold, which overrides the surface of separation along a décollement. Simultaneously, uphill layers slide at high velocity (125 km/h) and are folded and disrupted as they reach the toe of the dip slope. The avalanche foot forms a wedge that is pushed forward as deformed rocks accrete at its rear. We simulated five cross sections across the Jiufengershan avalanche, which differ in the geometry of the surface of separation. Topographic and simulated surface profiles are similar. The friction coefficient at the surface of separation determined from back analysis is abnormally low (μSS = 0.2), possibly due to lubrication by liquefied soils. The granular deposits of simulated earthquake- and rain-triggered avalanches are similar.
Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; ...
2017-03-01
The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less
John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.
2008-01-01
Hydrothermal alteration at Mount Rainier waxed and waned over the 500,000-year episodic growth of the edifice. Hydrothermal minerals and their stable-isotope compositions in samples collected from outcrop and as clasts from Holocene debris-flow deposits identify three distinct hypogene argillic/advanced argillic hydrothermal environments: magmatic-hydrothermal, steam-heated, and magmatic steam (fumarolic), with minor superimposed supergene alteration. The 3.8??km3 Osceola Mudflow (5600??y BP) and coeval phreatomagmatic F tephra contain the highest temperature and most deeply formed hydrothermal minerals. Relatively deeply formed magmatic-hydrothermal alteration minerals and associations in clasts include quartz (residual silica), quartz-alunite, quartz-topaz, quartz-pyrophyllite, quartz-dickite/kaolinite, and quartz-illite (all with pyrite). Clasts of smectite-pyrite and steam-heated opal-alunite-kaolinite are also common in the Osceola Mudflow. In contrast, the Paradise lahar, formed by collapse of the summit or near-summit of the edifice at about the same time, contains only smectite-pyrite and near-surface steam-heated and fumarolic alteration minerals. Younger debris-flow deposits on the west side of the volcano (Round Pass and distal Electron Mudflows) contain only low-temperature smectite-pyrite assemblages, whereas the proximal Electron Mudflow and a < 100??y BP rock avalanche on Tahoma Glacier also contain magmatic-hydrothermal alteration minerals that are exposed in the avalanche headwall of Sunset Amphitheater, reflecting progressive incision into deeper near-conduit alteration products that formed at higher temperatures. The pre-Osceola Mudflow alteration geometry is inferred to have consisted of a narrow feeder zone of intense magmatic-hydrothermal alteration limited to near the conduit of the volcano, which graded outward to more widely distributed, but weak, smectite-pyrite alteration within 1??km of the edifice axis, developed chiefly in porous breccias. The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (??? 8??km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5??km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower
Relation of the runaway avalanche threshold to momentum space topology
NASA Astrophysics Data System (ADS)
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu
2018-02-01
The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.
Observation of the avalanche of runaway electrons in air in a strong electric field.
Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A
2012-08-24
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field
NASA Astrophysics Data System (ADS)
Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.
2012-08-01
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Design and characterization of single photon avalanche diodes arrays
NASA Astrophysics Data System (ADS)
Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.
2010-05-01
During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2
Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar
2015-01-01
Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001 PMID:26151674
Thermally Driven Inhibition of Superconducting Vortex Avalanches
NASA Astrophysics Data System (ADS)
Lara, Antonio; Aliev, Farkhad G.; Moshchalkov, Victor V.; Galperin, Yuri M.
2017-09-01
Complex systems close to their critical state can exhibit abrupt transitions—avalanches—between their metastable states. It is a challenging task to understand the mechanism of the avalanches and control their behavior. Here, we investigate microwave stimulation of avalanches in the so-called vortex matter of type-II superconductors—a system of interacting Abrikosov vortices close to the critical (Bean) state. Our main finding is that the avalanche incubation strongly depends on the excitation frequency, a completely unexpected behavior observed close to the so-called depinning frequencies. Namely, the triggered vortex avalanches in Pb superconducting films become effectively inhibited approaching the critical temperature or critical magnetic field when the microwave stimulus is close to the vortex depinning frequency. We suggest a simple model explaining the observed counterintuitive behaviors as a manifestation of the strongly nonlinear dependence of the driven vortex core size on the microwave excitation intensity. This paves the way to controlling avalanches in superconductor-based devices through their nonlinear response.
Low dose digital X-ray imaging with avalanche amorphous selenium
NASA Astrophysics Data System (ADS)
Scheuermann, James R.; Goldan, Amir H.; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei
2015-03-01
Active Matrix Flat Panel Imagers (AMFPI) based on an array of thin film transistors (TFT) have become the dominant technology for digital x-ray imaging. In low dose applications, the performance of both direct and indirect conversion detectors are limited by the electronic noise associated with the TFT array. New concepts of direct and indirect detectors have been proposed using avalanche amorphous selenium (a-Se), referred to as high gain avalanche rushing photoconductor (HARP). The indirect detector utilizes a planar layer of HARP to detect light from an x-ray scintillator and amplify the photogenerated charge. The direct detector utilizes separate interaction (non-avalanche) and amplification (avalanche) regions within the a-Se to achieve depth-independent signal gain. Both detectors require the development of large area, solid state HARP. We have previously reported the first avalanche gain in a-Se with deposition techniques scalable to large area detectors. The goal of the present work is to demonstrate the feasibility of large area HARP fabrication in an a-Se deposition facility established for commercial large area AMFPI. We also examine the effect of alternative pixel electrode materials on avalanche gain. The results show that avalanche gain > 50 is achievable in the HARP layers developed in large area coaters, which is sufficient to achieve x-ray quantum noise limited performance down to a single x-ray photon per pixel. Both chromium (Cr) and indium tin oxide (ITO) have been successfully tested as pixel electrodes.
XeCl Avalanche discharge laser employing Ar as a diluent
Sze, Robert C.
1981-01-01
A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: (0.2%-0.4% chlorine donor/2.5%-10% Xe/97.3%-89.6% Ar). The chlorine donor normally comprises HCl but can also comprise CCl.sub.4 BCl.sub.3. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.
Application of LANDSAT data to delimitation of avalanche hazards in Montane, Colorado
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator); Ives, J. D.; Summer, R.
1976-01-01
The author has identified the following significant results. Photointerpretation of individual avalanche paths on single band black and white LANDSAT images is greatly hindered by terrain shadows and the low spatial resolution of the LANDSAT system. Maps produced in this way are biased towards the larger avalanche paths that are under the most favorable illumination conditions during imaging; other large avalanche paths, under less favorable illumination, are often not detectable and the smaller paths, even those defined by sharp trimlines, are only rarely identifiable.
Relation of the runaway avalanche threshold to momentum space topology
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu
2018-01-05
Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less
Relation of the runaway avalanche threshold to momentum space topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu
Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less
Precursory seismicity associated with frequent, large ice avalanches on Iliamna Volcano, Alaska, USA
Caplan-Auerbach, Jacqueline; Huggel, C.
2007-01-01
Since 1994, at least six major (volume>106 m3) ice and rock avalanches have occurred on Iliamna volcano, Alaska, USA. Each of the avalanches was preceded by up to 2 hours of seismicity believed to represent the initial stages of failure. Each seismic sequence begins with a series of repeating earthquakes thought to represent slip on an ice-rock interface, or between layers of ice. This stage is followed by a prolonged period of continuous ground-shaking that reflects constant slip accommodated by deformation at the glacier base. Finally the glacier fails in a large avalanche. Some of the events appear to have entrained large amounts of rock, while others comprise mostly snow and ice. Several avalanches initiated from the same source region, suggesting that this part of the volcano is particularly susceptible to failure, possibly due to the presence of nearby fumaroles. Although thermal conditions at the time of failure are not well constrained, it is likely that geothermal energy causes melting at the glacier base, promoting slip and culminating in failure. The frequent nature and predictable failure sequence of Iliamna avalanches makes the volcano an excellent laboratory for the study of ice avalanches. The prolonged nature of the seismic signal suggests that warning may one day be given for similar events occurring in populated regions.
NASA Astrophysics Data System (ADS)
Smith, T. D.; Jacob, R. W.
2013-12-01
Authors Tracey Smith^1, Rob Jacob^1, Jeffrey Trop^1, Keith Williams^2 and Craig Kochel^1 Bucknell University, Geology and Environmental Geoscience Department, Lewisburg, PA UNAVCO, 6350 Nautilus Dr., Boulder, CO 80301 Icy debris fans have recently been described as deglaciation features on Earth and similar features have been observed on Mars, however, the subsurface characteristics remain unknown. We used ground penetrating radar (GPR) to non-invasively investigate the subsurface characteristics of icy debris fans near McCarthy, Alaska, USA. The three fans investigated in Alaska are the East, West, and Middle fans which are between the Nabesna ice cap and the McCarthy Glacier. Icy debris fans in general are a largely unexplored suite of paraglacial landforms and processes in alpine regions. Recent field studies focused on direct observations and depositional processes. The results showed that each fan's composition is primarily influenced by the type and frequency of mass wasting processes that supply the fan. Photographic studies show that the East fan receives far more ice and snow avalanches whereas the Middle and West fan receive fewer mass wasting events but more clastic debris is deposited on the Middle and West fan from rock falls and icy debris flows. GPR profiles and WARR surveys consisting of both, common mid-point (CMP), and common shot-point (CSP) surveys investigated the subsurface geometry of the fans and the McCarthy Glacier.All GPR surveys were collected in 2013 with 100MHz bi-static antennas. Four axial profiles and three cross-fan profiles were done on the West and Middle fans as well as the McCarthy Glacier in order to investigate the relationship between the three features. Terrestrial laser surveying of the surface and real-time kinematic GPS provided the surface elevation used to correct the GPR data for topographic changes. GPR profiles yielded reflectors that were continuous for 10+ m and hyperbolic reflections in the subsurface. The WARR surveys provided the GPR signal velocity through the subsurface material and allowed transformation of two-way traveltimes (TWTT) in GPR profiles to be converted to depth. In addition, the eight WARR surveys spaced on the fans and on the glacier provide information on variability of subsurface velocities. The profiles of the Middle and West fan have more energy returning to the surface and therefore many more reflections than profiles done on the McCarthy Glacier. Based on the WARR surveys, we interpret the lower energy return in the glacier to be caused by two reasons. 1) The increased attenuation due to wet ice versus drier ice and on the fan with GPR velocities >0.15m/ns. 2) Lack of interfaces in the glacier compared to those in the fans which are produced by the events depositing material to an ablated icy debris fan surface. The GPR profiles on the West and Middle fans show multiple point scatters at TWTT of less than 200ns. The Middle fan is distinguished from the West fan by its multiple point scatters at TWTT greater than 200ns, clearly showing the Middle fan with a greater thickness. The observations from the GPR profiles correlate with the photographic evidence for types of processes and the composition of their deposits on each fan respectively.
NASA Astrophysics Data System (ADS)
Capra, L.
2010-12-01
Climate changes have been considered to be a triggering mechanism for large magmatic eruptions. However they can also trigger volcanic collapses, phenomena that cause the destruction of the entire sector of a volcano, including its summit. During the past 30 ka, major volcanic collapses occurred just after main glacial peaks that ended with a rapid deglaciation. Glacial debuttressing, load discharge and fluid circulation coupled with the post-glacial increase of humidity and heavy rains can activate the failure of unstable edifices. Looking at the synchronicity of the maximum glaciations during the late Pleistocene and Holocene in the northern and southern hemispheres it is evident that several volcanic collapses are absent during a glacial climax, but start immediately after it during a period of rapid retreat. Several examples can be detected around the world and Mexico is not an exception. The 28 ka Nevado de Toluca volcanic collapse occurred during an intraglacial stage, under humid conditions as evidenced by paleoclimatic studies on lacustrine sediments of the area. The debris avalanche deposit associated to this event clearly shows evidence of a large amount of water into the mass previous to the failure that enhanced its mobility. It also contains peculiar, plastically deformed, m-sized fragment of lacustrine sediments eroded from glacial berms. The 17 ka BP collapse of the Colima Volcano corresponds to the initial stage of glacial retreat in Mexico after the Last Glacial Maximum (22-17.5ka). Also in this case the depositional sequence reflects high humidity conditions with voluminous debris flow containing a large amount logs left by pine trees. The occurrence of cohesive debris flows originating from the failure of a volcanic edifice can also reflect the climatic conditions, indicating important hydrothermal alteration and fluid circulation from ice-melting at an ice-capped volcano, as observed for example at the Pico de Orizaba volcano for the Tetelzingo lahar, which collapse occurred after the Terminal Glacial (15-11 ka). Furthermore, significant global warming can be responsible for the collapse of ice-capped unstable volcanoes, an unpredictable hazard that in few minutes can bury inhabited areas.
Landslide Mobility and Hazards: A Geophysical Overview of the Oso Disaster
NASA Astrophysics Data System (ADS)
Iverson, R. M.; George, D. L.; Allstadt, K.; Godt, J.; Reid, M. E.; Vallance, J. W.; Schilling, S. P.; Cannon, C.; Magirl, C. S.; Collins, B. D.; Baum, R. L.; Coe, J. A.; Schulz, W. H.; Bower, J. B.
2014-12-01
Some landslides move slowly or intermittently downslope, whereas others accelerate catastrophically and run out long distances across flat or gently sloping terrain. Seldom does landsliding of one type transition abruptly into the other, however, and seldom are the consequences more severe than at a site near Oso, Washington, where more than 40 fatalities resulted from a high-speed, long-runout landslide on 22 March 2014. Our interpretations of seismic data inversions and eyewitness accounts indicate that the Oso event began gradually, with remobilization of old landslide deposits that were unusually wet due to months of exceptional precipitation. For about 50 s, relatively slow downslope motion of these deposits withdrew support from a bluff above them, and then the bluff collapsed abruptly. This collapse radiated strong broadband seismic energy and rapidly loaded the old landslide material downslope. We infer that this rapid loading of previously dilated landslide debris caused contractive deformation, widespread liquefaction, and runaway acceleration. The resulting debris avalanche flow (DAF) had a volume of 8 ×106 m3and a fahrböschung (H/L ratio) of 0.106, making it exceptionally mobile for a landslide of its size. The leading edge of the Oso DAF may have gained mobility by entraining water as it displaced the adjacent Stillaguamish River and by liquefying wet floodplain sediments as it overran them, and it formed distal deposits that resembled those of many wood-freighted debris flows. The transition from relatively slow landslide motion (which had occurred intermittently for decades at the Oso site) to high-speed motion and long runout appears to have been very sensitive to contingencies. Our simulations of the Oso event using a new numerical model (D-Claw) show that small differences in water-saturated porosity (n) were sufficient to cause divergent landslide behaviors. In a case with n = 0.38, D-Claw predicts runaway liquefaction and high-speed runout much like that observed at Oso, and in a case with n = 0.36, it predicts much slower landsliding that ceases after only about 100 m of motion. This behavioral bifurcation has fundamental physical importance as well as large ramifications for assessment of landslide hazards.
Performance evaluation of the national early warning system for shallow landslides in Norway
NASA Astrophysics Data System (ADS)
Dahl, Mads-Peter; Piciullo, Luca; Devoli, Graziella; Colleuille, Hervé; Calvello, Michele
2017-04-01
As a consequence of the increased number of rainfall-and snowmelt-induced landslides (debris flows, debris slides, debris avalanches and slush flows) occurring in Norway, a national landslide early warning system (EWS) has been developed for monitoring and forecasting the hydro-meteorological conditions potentially necessary of triggering slope failures. The system, operational since 2013, is managed by the Norwegian Water Resources and Energy Directorate (NVE) and has been designed in cooperation with the Norwegian Public Road Administration (SVV), the Norwegian National Rail Administration (JBV) and the Norwegian Meteorological Institute (MET). Decision-making in the EWS is based upon hazard threshold levels, hydro-meteorological and real-time landslide observations as well as landslide inventory and susceptibility maps. Hazard threshold levels have been obtained through statistical analyses of historical landslides and modelled hydro-meteorological parameters. Daily hydro-meteorological conditions such as rainfall, snowmelt, runoff, soil saturation, groundwater level and frost depth have been derived from a distributed version of the hydrological HBV-model. Two different landslide susceptibility maps are used as supportive data in deciding daily warning levels. Daily alerts are issued throughout the country considering variable warning zones. Warnings are issued once per day for the following 3 days with an update possibility later during the day according to the information gathered by the monitoring variables. The performance of the EWS has been evaluated applying the EDuMaP method. In particular, the performance of warnings issued in Western Norway, in the period 2013-2014 has been evaluated using two different landslide datasets. The best performance is obtained for the smallest and more accurate dataset. Different performance results may be observed as a function of changing the landslide density criterion, Lden(k), (i.e., thresholds considered to differentiate among classes of landslide events) used as an input parameter within the EDuMaP method. To investigate this issue, a parametric analysis has been conducted; the results of the analysis show clear differences among computed performances when absolute or relative landslide density criteria are considered.
NASA Astrophysics Data System (ADS)
Brardinoni, F.
2006-12-01
Landslide magnitude-frequency (LMF) and yield-area relations are examined for evaluating landslide-driven sediment dynamics in the Tsitika and Eve Rivers (612 km{2}), British Columbia. Research methods couple field work and air photo interpretation (API) in a GIS environment. API covers a seventy year time window. Results show that the long history of glacial erosion and the more recent forest management affect contemporary landslide activity in many respects. First, the nature and distribution of Quaternary-derived surficial deposits confounds primary lithologic effects; therefore, topographies underlain by less resistant geology are not typically associated with higher rates of landsliding. Second, the stratifications of LMF by landslide and terrain attributes have allowed detecting for the first time characteristic landslide length scales dependent on (i) movement style (i.e., slide, avalanche, and flow); (ii) type of material mobilized (i.e., bedrock and debris); and (iii) land use (i.e., forest clearing). As a conclusion, landscape bio-morphometric controls override the theoretical self-organized criticality of LMF relations. Third, slope-area analysis of landslide initiation and deposition zones reveals that bedrock landslides dominate the landscape on mountain summits and ridges; these processes deliver material to colluvial channels, in which debris is temporarily stored until remobilization occurs via full-scale debris flows. In undisturbed forest, during the seventy years examined, colluvial activity across geomorphic process domains (seen as sediment reservoirs) has generated net volume accumulation in unchannelled valleys, sink colluvial, and fluvially-dominated channels; in contrast, planar slopes and gullies have been degrading. Logging operations have accentuated aggradation in gullies and in unchannelled topographies. Finally, the area-based scaling relation of landslide sediment yield appears to match the spatial organization of geomorphic process domains. In this context, the contemporary, specific fluvial sediment yield (suspended) of British Columbia exceeds the specific landslide yield for drainage areas comprised between 5 and 50 km{2}. Cumulative daily yield indicates that colluvial sediment redistribution across landscape scales is limited to relatively small drainage areas; specifically, 90% of the colluvial load is injected within contributing area of about 0.6 km{2}.
Coe, Jeffrey A.; Bessette-Kirton, Erin; Geertsema, Marten
2018-01-01
In the USA, climate change is expected to have an adverse impact on slope stability in Alaska. However, to date, there has been limited work done in Alaska to assess if changes in slope stability are occurring. To address this issue, we used 30-m Landsat imagery acquired from 1984 to 2016 to establish an inventory of 24 rock avalanches in a 5000-km2 area of Glacier Bay National Park and Preserve in southeast Alaska. A search of available earthquake catalogs revealed that none of the avalanches were triggered by earthquakes. Analyses of rock-avalanche magnitude, mobility, and frequency reveal a cluster of large (areas ranging from 5.5 to 22.2 km2), highly mobile (height/length < 0.3) rock avalanches that occurred from June 2012 through June 2016 (near the end of the 33-year period of record). These rock avalanches began about 2 years after the long-term trend in mean annual maximum air temperature may have exceeded 0 °C. Possibly more important, most of these rock avalanches occurred during a multiple-year period of record-breaking warm winter and spring air temperatures. These observations suggested to us that rock avalanches in the study area may be becoming larger because of rock-permafrost degradation. However, other factors, such as accumulating elastic strain, glacial thinning, and increased precipitation, may also play an important role in preconditioning slopes for failure during periods of warm temperatures.
Jacobson, Robert B.; Cron, Elizabeth D.; McGeehin, John P.
1989-01-01
Study of slope movements triggered by the storm of November 3–5, 1985, in the central Appalachian Mountains, U.S.A., has helped to define the meteorologic conditions leading to slope movements and the relative importance of land cover, bedrock, surficial geology, and geomorphology in slope movement location. This long-duration rainfall at moderate intensities triggered more than 1,000 slope movements in a 1,040-km2 study area. Most were shallow slips and slip-flows in thin colluvium and residuum on shale slopes. Locations of these failures were sensitive to land cover and slope aspect but were relatively insensitive to topographic setting. A few shallow slope movements were triggered by the same rainfall on interbedded limestone, shale, and sandstone. Several large debris slide-avalanches were triggered in sandstone regolith high on ridges in areas of the highest measured rainfall. Most of these sites were on slopes that dip 30 to 35° and lie parallel to bedding planes, presumably the sites of least stability.
Precipitation Data for the Mount St. Helens Area, Washington--1981-86
Uhrich, Mark A.
1990-01-01
This report is a compilation of precipitation data from U.S. Geological Survey telemetered 'Early Flood Warning' sites near Mount St. Helens, Washington, and from telemetered hydrologic data sites in the Toutle River and Muddy River basins for the years 1981-86. It also includes precipitation data for 1981-86 from non-telemetered recording rain gages established near the debris-avalanche blockages of Spirit Lake, Coldwater Lake, and Castle Lake. Daily values (midnight to midnight) are listed by station and calendar year for 32 sites. Hourly data, where available, are presented for the storm that generated the highest peak discharge in the North Fork Toutle River each water year. Instrumentation includes 25 tipping-bucket, and 7 weighing-bucket rain gages all without windshields. The seven sites with weighing-bucket gages were the only U.S. Geological Survey sites at which snowfall was measured. Additional snowfall measurements for the same time period in the Mount St. Helens area were collected by the National Weather Service, the U.s. Soil Conservation Service, and the U.S. Army Corps of Engineers and also are presented in this report.
Eruption of Shiveluch Volcano, Kamchatka, Russia
2001-07-21
On the night of June 4, 2001 ASTER captured this thermal image of the erupting Shiveluch volcano. Located on Russia's Kamchatka Peninsula, Shiveluch rises to an altitude of 8028'. The active lava dome complex is seen as a bright (hot) area on the summit of the volcano. To the southwest, a second hot area is either a debris avalanche or hot ash deposit. Trailing to the west is a 25 km ash plume, seen as a cold "cloud" streaming from the summit. At least 60 large eruptions have occurred during the last 10,000 years; the largest historical eruptions were in 1854 and 1964. Because Kamchatka is located along the major aircraft routes between North America/Europe and the Far East, this area is constantly monitored for potential ash hazards to aircraft. The lower image is the same as the upper, except it has been color coded: red is hot, light greens to dark green are progressively colder, and gray/black are the coldest areas. The image is located at 56.7 degrees north latitude, 161.3 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA02674
Weaver, C.S.; Norris, R.D.; Jonientz-Trisler, C.
1990-01-01
Modern monitoring of seismic activity at Cascade Range volcanoes began at Longmire on Mount Rainier in 1958. Since then, there has been an expansion of the regional seismic networks in Washington, northern Oregon and northern California. Now, the Cascade Range from Lassen Peak to Mount Shasta in the south and Newberry Volcano to Mount Baker in the north is being monitored for earthquakes as small as magnitude 2.0, and many of the stratovolcanoes are monitored for non-earthquake seismic activity. This monitoring has yielded three major observations. First, tectonic earthquakes are concentrated in two segments of the Cascade Range between Mount Rainier and Mount Hood and between Mount Shasta and Lassen Peak, whereas little seismicity occurs between Mount Hood and Mount Shasta. Second, the volcanic activity and associated phenomena at Mount St. Helens have produced intense and widely varied seismicity. And third, at the northern stratovolcanoes, signals generated by surficial events such as debris flows, icequakes, steam emissions, rockfalls and icefalls are seismically recorded. Such records have been used to alert authorities of dangerous events in progress. -Authors
Conceptual Development of a National Volcanic Hazard Model for New Zealand
NASA Astrophysics Data System (ADS)
Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom
2017-06-01
We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.
Bathymetric map and area/capacity table for Castle Lake, Washington
Mosbrucker, Adam R.; Spicer, Kurt R.
2017-11-14
The May 18, 1980, eruption of Mount St. Helens produced a 2.5-cubic-kilometer debris avalanche that dammed South Fork Castle Creek, causing Castle Lake to form behind a 20-meter-tall blockage. Risk of a catastrophic breach of the newly impounded lake led to outlet channel stabilization work, aggressive monitoring programs, mapping efforts, and blockage stability studies. Despite relatively large uncertainty, early mapping efforts adequately supported several lake breakout models, but have limited applicability to current lake monitoring and hazard assessment. Here, we present the results of a bathymetric survey conducted in August 2012 with the purpose of (1) verifying previous volume estimates, (2) computing an area/capacity table, and (3) producing a bathymetric map. Our survey found seasonal lake volume ranges between 21.0 and 22.6 million cubic meters with a fundamental vertical accuracy representing 0.88 million cubic meters. Lake surface area ranges between 1.13 and 1.16 square kilometers. Relationships developed by our results allow the computation of lake volume from near real-time lake elevation measurements or from remotely sensed imagery.
Terrain Classification of Norwegian Slab Avalanche Accidents
ERIC Educational Resources Information Center
Hallandvik, Linda; Aadland, Eivind; Vikene, Odd Lennart
2016-01-01
It is difficult to rely on snow conditions, weather, and human factors when making judgments about avalanche risk because these variables are dynamic and complex; terrain, however, is more easily observed and interpreted. Therefore, this study aimed to investigate (1) the type of terrain in which historical fatal snow avalanche accidents in Norway…
Snow supporting structures for milepost 151 Avalanche, Highway US 89/191, Jackson, Wyoming : plans.
DOT National Transportation Integrated Search
2009-04-01
The 151 Avalanche, near Jackson, Wyoming has, historically, avalanched to the road below 1.5 to 2 times a year. The road, US 89/191 is four lanes and carries an estimated 8,000 vehicles per day in the winter months. The starting zone of the 151 Avala...
NASA Astrophysics Data System (ADS)
Zhu, Zhaoxuan; Wiese, Kay Jörg
2017-12-01
In disordered elastic systems, driven by displacing a parabolic confining potential adiabatically slowly, all advance of the system is in bursts, termed avalanches. Avalanches have a finite extension in time, which is much smaller than the waiting time between them. Avalanches also have a finite extension ℓ in space, i.e., only a part of the interface of size ℓ moves during an avalanche. Here we study their spatial shape 〈S(x ) 〉 ℓ given ℓ , as well as its fluctuations encoded in the second cumulant 〈S2(x ) 〉 ℓ c. We establish scaling relations governing the behavior close to the boundary. We then give analytic results for the Brownian force model, in which the microscopic disorder for each degree of freedom is a random walk. Finally, we confirm these results with numerical simulations. To do this properly we elucidate the influence of discretization effects, which also confirms the assumptions entering into the scaling ansatz. This allows us to reach the scaling limit already for avalanches of moderate size. We find excellent agreement for the universal shape and its fluctuations, including all amplitudes.
NASA Astrophysics Data System (ADS)
Laitinen, Antti; Kumar, Manohar; Elo, Teemu; Liu, Ying; Abhilash, T. S.; Hakonen, Pertti J.
2018-06-01
We have investigated the cross-over from Zener tunneling of single charge carriers to avalanche type of bunched electron transport in a suspended graphene Corbino disk in the zeroth Landau level. At low bias, we find a tunneling current that follows the gyrotropic Zener tunneling behavior. At larger bias, we find an avalanche type of transport that sets in at a smaller current the larger the magnetic field is. The low-frequency noise indicates strong bunching of the electrons in the avalanches. On the basis of the measured low-frequency switching noise power, we deduce the characteristic switching rates of the avalanche sequence. The simultaneous microwave shot noise measurement also reveals intrinsic correlations within the avalanche pulses and indicate a decrease in correlations with increasing bias.
NASA Astrophysics Data System (ADS)
Woodbury, Daniel; Wahlstrand, Jared; Goers, Andy; Feder, Linus; Miao, Bo; Hine, George; Salehi, Fatholah; Milchberg, Howard
2016-10-01
We report on the use of single-shot supercontinuum spectral interferometry (SSSI) to make temporally and spatially resolved measurements of laser-induced avalanche breakdown in ambient air by a 200 ps pulse. By seeding the breakdown using an external 100 fs pulse, we demonstrate control over the timing and spatial characteristics of the avalanche. In addition, we calculate the collisional ionization rates at various laser intensities and demonstrate seeding of the avalanche breakdown both by multiphoton ionization and by photodetaching ions produced from a radioactive source. These observations provide proof-of-concept support for recent proposals to remotely measure radioactivity using laser-induced avalanche breakdown. This work supported by a DTRA, C-WMD Basic Research Program, and by the DOE NNSA Stewardship Science Graduate Fellowship, provided under Grant Number DE-NA0002135.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Potapov, A. S.; Samsonova, T. P.
p{sup +}–n{sub 0}–n{sup +} 4H-SiC diodes with homogeneous avalanche breakdown at 1860 V are fabricated. The pulse current–voltage characteristics are measured in the avalanche-breakdown mode up to a current density of 4000 A/cm{sup 2}. It is shown that the avalanche-breakdown voltage increases with increasing temperature. The following diode parameters are determined: the avalanche resistance (8.6 × 10{sup –2} Ω cm{sup 2}), the electron drift velocity in the n{sub 0} base at electric fields higher than 10{sup 6} V/cm (7.8 × 10{sup 6} cm/s), and the relative temperature coefficient of the breakdown voltage (2.1 × 10{sup –4} K{sup –1}).
Intermittency between avalanche regimes on grain piles
NASA Astrophysics Data System (ADS)
Arran, M. I.; Vriend, N. M.
2018-06-01
We experimentally investigate discrete avalanches of grains, driven by a low inflow rate, on an erodible pile in a channel. We observe intermittency between one regime, in which avalanches are quasiperiodic and system spanning, and another, in which they pass at irregular intervals and have a power-law size distribution. Observations are robust to changes of inflow rate and grain type and require no tuning of external parameters. We demonstrate that the state of the pile's surface determines whether avalanche fronts propagate to the end of the channel or stop partway down, and we introduce a toy model for the latter case that reproduces the observed power-law size distribution. We suggest direct applications to avalanches of pharmaceutical and geophysical grains, and the possibility of reconciling the "self-organized criticality" predicted by several authors with the hysteretic behavior described by others.
Time lapse photography as an approach to understanding glide avalanche activity
Hendrikx, Jordy; Peitzsch, Erich H.; Fagre, Daniel B.
2012-01-01
Avalanches resulting from glide cracks are notoriously difficult to forecast, but are a recurring problem for numerous avalanche forecasting programs. In some cases glide cracks are observed to open and then melt away in situ. In other cases, they open and then fail catastrophically as large, full-depth avalanches. Our understanding and management of these phenomena are currently limited. It is thought that an increase in the rate of snow gliding occurs prior to full-depth avalanche activity so frequent observation of glide crack movement can provide an index of instability. During spring 2011 in Glacier National Park, Montana, USA, we began an approach to track glide crack avalanche activity using a time-lapse camera focused on a southwest facing glide crack. This crack melted in-situ without failing as a glide avalanche, while other nearby glide cracks on north through southeast aspects failed. In spring 2012, a camera was aimed at a large and productive glide crack adjacent to the Going to the Sun Road. We captured three unique glide events in the field of view. Unfortunately, all of them either failed very quickly, or during periods of obscured view, so measurements of glide rate could not be obtained. However, we compared the hourly meteorological variables during the period of glide activity to the same variables prior to glide activity. The variables air temperature, relative humidity, air pressure, incoming and reflected long wave radiation, SWE, total precipitation, and snow depth were found to be statistically different for our cases examined. We propose that these are some of the potential precursors for glide avalanche activity, but do urge caution in their use, due to the simple approach and small data set size. It is hoped that by introducing a workable method to easily record glide crack movement, combined with ongoing analysis of the associated meteorological data, we will improve our understanding of when, or if, glide avalanche activity will ensue.
NASA Astrophysics Data System (ADS)
van Herwijnen, Alec; Failletaz, Jerome; Berhod, Nicole; Mitterer, Christoph
2013-04-01
Glide avalanches occur when the entire snowpack glides over the ground until an avalanche releases. These avalanches are difficult to forecast since the gliding process can take place over a few hours up to several weeks or months. The presence of liquid water at the interface between the snow cover and the ground surface is of primary importance as it reduces frictional support. Glide avalanches are often preceded by the opening of a tensile crack in the snow cover, called a glide crack. Past research has shown that glide crack opening accelerates prior to avalanche release. During the winter of 2012-2013, we monitored glide crack expansion using time-lapse photography in combination with a seismic sensor and two heat flux sensors on a slope with well documented glide avalanche activity in the Eastern Swiss Alps above Davos, Switzerland. To track changes in glide rates, the number of dark pixels in an area around the glide crack is counted in each image. Using this technique, we observed an increase in glide rates prior to avalanche release. Since the field site is located very close to the town of Davos, the seismic data was very noisy. Nevertheless, the accelerated snow gliding observed in the time-lapse images coincided with increased seismic activity. Overall, these results show that a combination of time-lapse photography with seismic monitoring could provide valuable insight into glide avalanche release. Recordings of the heat flux plates show that the energy input from the soil is fairly small and constant throughout the observed period. The results suggest that ground heat flux is a minor contributor to the water production at the snow-soil interface. Instead, the presence of water at the base of the snowpack is probably due to a strong hydraulic pressure gradient at the snow-soil interface.
A method to harness global crowd-sourced data to understand travel behavior in avalanche terrain.
NASA Astrophysics Data System (ADS)
Hendrikx, J.; Johnson, J.
2015-12-01
To date, most studies of the human dimensions of decision making in avalanche terrain has focused on two areas - post-accident analysis using accident reports/interviews and, the development of tools as decision forcing aids. We present an alternate method using crowd-sourced citizen science, for understanding decision-making in avalanche terrain. Our project combines real-time GPS tracking via a smartphone application, with internet based surveys of winter backcountry users as a method to describe and quantify travel practices in concert with group decision-making dynamics, and demographic data of participants during excursions. Effectively, we use the recorded GPS track taken within the landscape as an expression of the decision making processes and terrain usage by the group. Preliminary data analysis shows that individual experience levels, gender, avalanche hazard, and group composition all influence the ways in which people travel in avalanche terrain. Our results provide the first analysis of coupled real-time GPS tracking of the crowd while moving in avalanche terrain combined with psychographic and demographic correlates. This research will lead to an improved understanding of real-time decision making in avalanche terrain. In this paper we will specifically focus on the presentation of the methods used to solicit, and then harness the crowd to obtain data in a unique and innovative application of citizen science where the movements within the terrain are the desired output data (Figure 1). Figure 1: Example GPS tracks sourced from backcountry winter users in the Teton Pass area (Wyoming), from the 2014-15 winter season, where tracks in red represent those recorded as self-assessed experts (as per our survey), and where tracks in blue represent those recorded as self-assessed intermediates. All tracks shown were obtained under similar avalanche conditions. Statistical analysis of terrain metrics showed that the experts used steeper terrain than the intermediate users under similar avalanche conditions, demonstrating different terrain choice and use as a function of experience rather than hazard level.
NASA Astrophysics Data System (ADS)
Tichavsky, R.
2016-12-01
The High Tatras Mountains are permanently affected by the occurrence of hazardous geomorphic processes. Snow avalanches represent a common hazard that threatens the infrastructure and humans living and visiting the mountains. So far, the spatio-temporal reconstruction of snow avalanche histories was based only on existing archival records, orthophoto interpretation and lichenometric dating in the High Tatras Mountains. Dendrogeomorphic methods allow for the intra-seasonal dating of scars on tree stems and branches and have been broadly used for the dating of snow avalanche events all over the world. We extracted the increment cores and cross sections from 189 individuals of Pinus mugo var. mugo growing on four tali in the Great Cold Valley and dated all the past scars that could correspond with the winter to early spring occurrence of snow avalanches. The dating was supported by the visual analysis of three orthophoto images from 2004, 2009 and 2014. In total, nineteen event years of snow avalanches (10 certain events, and 9 probable events) were identified since 1959. Historical archives provided evidence only for nine event years since 1987, and three of them were confirmed dendrogeomorphically. Geomorphic effect of recent snow avalanches identified by the spatial distribution of scarred trees in individual years corresponds with the extent of events visible from the orthophotos. We can confirm higher frequency of snow avalanche events since 1980s (17 out of 19 events) and significant increase during the last ten years. The future expected climatic changes associated with the changes in temperature and precipitation regime could significantly influence on the frequency of snow avalanches. Therefore, our results can become the starting line for more extensive dendrogeomorphic survey in the High Tatras Mountains in order to create a catalogue of all natural hazards for the future prediction and modelling of these phenomena in context of environmental changes.
WE-E-18A-01: Large Area Avalanche Amorphous Selenium Sensors for Low Dose X-Ray Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, J; Goldan, A; Zhao, W
2014-06-15
Purpose: A large area indirect flat panel imager (FPI) with avalanche gain is being developed to achieve x-ray quantum noise limited low dose imaging. It uses a thin optical sensing layer of amorphous selenium (a-Se), known as High-Gain Avalanche Rushing Photoconductor (HARP), to detect optical photons generated from a high resolution x-ray scintillator. We will report initial results in the fabrication of a solid-state HARP structure suitable for a large area FPI. Our objective is to establish the blocking layer structures and defect suppression mechanisms that provide stable and uniform avalanche gain. Methods: Samples were fabricated as follows: (1) ITOmore » signal electrode. (2) Electron blocking layer. (3) A 15 micron layer of intrinsic a-Se. (4) Transparent hole blocking layer. (5) Multiple semitransparent bias electrodes to investigate avalanche gain uniformity over a large area. The sample was exposed to 50ps optical excitation pulses through the bias electrode. Transient time of flight (TOF) and integrated charge was measured. A charge transport simulation was developed to investigate the effects of varying blocking layer charge carrier mobility on defect suppression, avalanche gain and temporal performance. Results: Avalanche gain of ∼200 was achieved experimentally with our multi-layer HARP samples. Simulations using the experimental sensor structure produced the same magnitude of gain as a function of electric field. The simulation predicted that the high dark current at a point defect can be reduced by two orders of magnitude by blocking layer optimization which can prevent irreversible damage while normal operation remained unaffected. Conclusion: We presented the first solid state HARP structure directly scalable to a large area FPI. We have shown reproducible and uniform avalanche gain of 200. By reducing mobility of the blocking layers we can suppress defects and maintain stable avalanche. Future work will optimize the blocking layers to prevent lag and ghosting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Wei; Li Dan; Reznik, Alla
2005-09-15
An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less
Avalanche Statistics Identify Intrinsic Stellar Processes near Criticality in KIC 8462852
NASA Astrophysics Data System (ADS)
Sheikh, Mohammed A.; Weaver, Richard L.; Dahmen, Karin A.
2016-12-01
The star KIC8462852 (Tabby's star) has shown anomalous drops in light flux. We perform a statistical analysis of the more numerous smaller dimming events by using methods found useful for avalanches in ferromagnetism and plastic flow. Scaling exponents for avalanche statistics and temporal profiles of the flux during the dimming events are close to mean field predictions. Scaling collapses suggest that this star may be near a nonequilibrium critical point. The large events are interpreted as avalanches marked by modified dynamics, limited by the system size, and not within the scaling regime.
XeCl avalanche discharge laser employing Ar as a diluent
Sze, R.C.
1979-10-10
A XeCl avalanche discharge exciplex laser which uses a gaseous lasing starting mixture of: 0.2 to 0.4% chlorine donor/2.5% to 10% Xe/97.3% to 89.6% Ar) is provided. The chlorine donor normally comprises HCl but can also comprise CCl/sub 4/ BCl/sub 3/. Use of Ar as a diluent gas reduces operating pressures over other rare gas halide lasers to near atmospheric pressure, increases output lasing power of the XeCl avalanche discharge laser by 30% to exceed KrF avalanche discharge lasing outputs, and is less expensive to operate.
Relationship between geomorphology and lithotypes of lahar deposit from Chokai volcano, Japan
NASA Astrophysics Data System (ADS)
Minami, Y.; Ohba, T.; Hayashi, S.; Kataoka, K.
2013-12-01
Chokai volcano, located in the northern Honshu arc in Japan, is an andesitic stratovolcano that collapsed partly at ca. 2500 years ago. A post collapse lahar deposit (Shirayukigawa lahar deposit) is distributed in the northern foot of the volcanic edifice. The deposit consists of 16 units of debris flow, hyperconcentrated flow and streamflow deposits. The Shirayukigawa lahar deposit has a total thickness of 30 m and overlies the 2.5-ka Kisakata debris avalanche deposit. Shirayukigawa lahar deposit forms volcanic fan and volcanic apron. The volcanic fan is subdivided into four areas on the basis of slope angles and of geomorphological features: 1) steeply sloped area, 2) moderately sloped area, 3) gently sloped area and 4) horizontal area. From sedimentary facies and structures, each unit of the Shirayukigawa lahar deposit is classified into one of four lithotypes: clast-supported debris flow deposit (Cc), matrix-supported debris flow deposit (Cm1), hyperconcentrated flow deposit (Cm2) and streamflow deposit (Sl). Each type has the following lithological characteristics. The lithotypes are well correlated with the geomorphology of the volcanic fan. The steeply-sloped and the moderately-sloped areas are dominated by Cc, Cm1, and Cm2, and The horizontal area are dominated by Sl. Debris flow deposit (Cc) is massive, very poorly sorted, partly graded, and clast-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Preferred clast orientation are present. Debris flow deposit (Cm1) is massive, very poorly sorted, and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic clasts. Matrix is sandy to muddy. Some layers exhibit coarse-tail normal/inverse grading. Most clasts are oriented. Hyperconcentrated flow deposit (Cm2) is massive to diffusely laminated, very poorly sorted and matrix-supported with polymictic clasts dominated by subrounded to rounded volcanic rocks. Matrix is sandy. The clasts are randomly distributed in the sandy matrix except for some clast-concentrated lenticular layers. Clasts smaller than 1cm account for about 10 percent of the deposits. Maximum clast size is about 30 cm. Streamflow deposit (Sl) is weakly parallel/cross-laminated, sorted and partly graded. The deposit contains volcanic clasts smaller than 20cm, which clasts are preferentially oriented and account for about 5% of the deposit. Clasts of the deposits consist of altered andesite, fresh andesite, mudstone and sandstone. The sedimentary clasts were derived from the substrate. The proportion of altered andesite clasts decreases upwards through the units. Matrix components in the lower eight units (C-LHR) are different from those of the upper eight units (S-LHR). In C-LHR units, grayish blue clay is dominant in matrix, whereas in S-LHR units, brownish yellow volcanic sand is dominant in matrix. Hydrothermal clay minerals such as smectite, chlorite, pyrophyllite and kaoline group minerals are rich in C-LHR units, whereas they are poor in S-LHR units. The stratigraphic variation in matrix component reflects temporal variation in supplied materials from source region.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren't the Alps, you will find quite a few avalanches. Avalanches of dust, however, not snow. Martian dust can become so thick in this area that it eventually slides down the steep slopes, creating runaway avalanches of dust. No dedicated, Swiss-like avalanche rescue teams would be needed much on Mars, however. Unlike snow, the dust doesn't pile up and accumulate at the bottom. Instead, dust particles are so small that they get launched into the atmosphere where they remain suspended until . . . poof! They are blown away and distributed lightly elsewhere. For evidence of past avalanches, check out the dark streaks running down the bright, sunlit slopes (western side of the peaks about 1/3 of the way down the image). These avalanche scars are dark because the underlying surface is not as bright as the removed dust. Eventually, new dust will settle over these scars, and the streaks will brighten until they fade into the background. The neat thing is that we'll be able to see all of these changes happening over time. Our current two Mars orbiters (called Mars Global Surveyor and 2001 Mars Odyssey) are showing that avalanche action is happening right now, all of the time on Mars. For example, the camera on Mars Global Surveyor has already taken pictures of the Martian surface in some areas that showed no avalanches - the first time the picture was snapped, that is. The next time around, the camera took a picture of the same area, only voila! New streaks, meaning new avalanches! That's why it can be so exciting to look at the Martian landscape over time to see how it changes. The THEMIS camera on Odyssey will continue to map out the places where the avalanches occur and how often. This information will really help scientists understand how dust is works to shape the terrain and to influence the Martian climate as it constantly swings into the atmosphere, falls down to the ground, and rises back up again. Stay tuned to see if you too can pick out the changes over time!
An empirical method for estimating travel times for wet volcanic mass flows
Pierson, Thomas C.
1998-01-01
Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.
Contrasting sedimentary processes along a convergent margin: the Lesser Antilles arc system
NASA Astrophysics Data System (ADS)
Picard, Michel; Schneider, Jean-Luc; Boudon, Georges
2006-12-01
Sedimentation processes occurring in an active convergent setting are well illustrated in the Lesser Antilles island arc. The margin is related to westward subduction of the North and/or the South America plates beneath the Caribbean plate. From east to west, the arc can be subdivided into several tectono-sedimentary depositional domains: the accretionary prism, the fore-arc basin, the arc platform and inter-arc basin, and the Grenada back-arc basin. The Grenada back-arc basin, the fore-arc basin (Tobago Trough) and the accretionary prism on the east side of the volcanic arc constitute traps for particles derived from the arc platform and the South American continent. The arc is volcanically active, and provides large volumes of volcaniclastic sediments which accumulate mainly in the Grenada basin by volcaniclastic gravity flows (volcanic debris avalanches, debris flows, turbiditic flows) and minor amounts by fallout. By contrast, the eastern side of the margin is fed by ash fallout and minor volcaniclastic turbidites. In this area, the dominant component of the sediments is pelagic in origin, or derived from South America (siliciclastic turbidites). Insular shelves are the locations of carbonate sedimentation, such as large platforms which develop in the Limestone Caribbees in the northern part of the margin. Reworking of carbonate material by turbidity currents also delivers lesser amounts to eastern basins of the margin. This contrasting sedimentation on both sides of the arc platform along the margin is controlled by several interacting factors including basin morphology, volcanic productivity, wind and deep-sea current patterns, and sea-level changes. Basin morphology appears to be the most dominant factor. The western slopes of the arc platform are steeper than the eastern ones, thus favouring gravity flow processes.
Chávez, José Alexander; Landaverde, José; Landaverde, Reynaldo López; Tejnecký, Václav
2016-01-01
Field monitoring and laboratory results are presented for an unsaturated volcanic pyroclastic. The pyroclastic belongs to the latest plinian eruption of the Ilopango Caldera in the Metropolitan Area of San Salvador, and is constantly affected by intense erosion, collapse, slab failure, sand/silt/debris flowslide and debris avalanche during the rainy season or earthquakes. Being the flowslides more common but with smaller volume. During the research, preliminary results of rain threshold were obtained of flowslides, this was recorded with the TMS3 (a moisture sensor device using time domain transmission) installed in some slopes. TMS3 has been used before in biology, ecology and soil sciences, and for the first time was used for engineering geology in this research. This device uses electromagnetic waves to obtain moisture content of the soil and a calibration curve is necessary. With the behavior observed during this project is possible to conclude that not only climatic factors as rain quantity, temperature and evaporation are important into landslide susceptibility but also information of suction-moisture content, seepage, topography, weathering, ground deformation, vibrations, cracks, vegetation/roots and the presence of crust covering the surface are necessary to research in each site. Results of the field monitoring indicates that the presence of biological soil crusts a complex mosaic of soil, green algae, lichens, mosses, micro-fungi, cyanobacteria and other bacteria covering the slopes surface can protect somehow the steep slopes reducing the runoff process and mass wasting processes. The results obtained during the assessment will help explaining the mass wasting problems occurring in some pyroclastic soils and its possible use in mitigation works and early warning system.
Swift, C.H.; Kresch, D.L.
1983-01-01
The debris avalanche accompanying the May 18, 1980, eruption of Mount St. Helens, in southwestern Washington, buried the former outlet of Spirit Lake, located 5 miles north of the volcano, to a depth ranging to 500 feet. Since that time, Spirit Lake has had no natural outlet and its lake level and contents have increased significantly. Erosion at the crest of the debris dam on the surface of the blockage and recent studies of theblockage stratigraphy and soil properties showing that the effective crest elevation is lower than the surface crest have led to concern that the lake may someday breach through or spill over the top of the blockage. A study was made by the U.S. Geological Survey to determine the extent of inundation that might result downstream in the Toutle and Cowlitz Rivers if a hypothetical breach should occur and generate a mudflow flood of catastrophic proportions. A hypothetical breach of Spirit Lake produced a hypothetical mudflow hydrograph with a peak discharge of 2.65 million cu ft/s and a sediment concentration of 65 percent by volume at Camp Baker on the North Fork Toutle River. Elevations determined by the hydraulic routing of the mudflow were used to prepare inundation maps, indicating depths of inundation to be about 60 feet at Castle Rock and Lexington; 30-40 feet at Toutle, Toutle Lake at Silver Lake, Kelson, and Longview; and 15-20 feet at Toledo. Travel times for the peak elevation were estimated to be about 15 hours to Kid Valley on the North Fork Toutle River, 21 hours to Castle Rock, 22 hours to Toledo, and 23 hours to Kelso and Longview on the Cowlitz River. (USGS)
NASA Astrophysics Data System (ADS)
Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.; Koper, Keith D.; Hale, J. Mark; Aaron, Jordan; Larsen, Chris F.
2017-03-01
The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. Here we combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5-2 times greater volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10-50 s) seismic data. Intermediate- and shorter-period (1-50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2-1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes 104-105 m3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. Our results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.
Infrasonic monitoring of snow avalanches in the Alps
NASA Astrophysics Data System (ADS)
Marchetti, E.; Ulivieri, G.; Ripepe, M.; Chiambretti, I.; Segor, V.
2012-04-01
Risk assessment of snow avalanches is mostly related to weather conditions and snow cover. However a robust risk validation requires to identify all avalanches occurring, in order to compare predictions to real effects. For this purpose on December 2010 we installed a permanent 4-element, small aperture (100 m), infrasound array in the Alps, after a pilot experiment carried out in Gressonay during the 2009-2010 winter season. The array has been deployed in the Ayas Valley, at an elevation of 2000 m a.s.l., where natural avalanches are expected and controlled events are regularly performed. The array consists into 4 Optimic 2180 infrasonic microphones, with a sensitivity of 10-3 Pa in the 0.5-50 Hz frequency band and a 4 channel Guralp CMG-DM24 A/D converter, sampling at 100 Hz. Timing is achieved with a GPS receiver. Data are transmitted to the Department of Earth Sciences of the University of Firenze, where data is recorded and processed in real-time. A multi-channel semblance is carried out on the continuous data set as a function of slowness, back-azimuth and frequency of recorded infrasound in order to detect all avalanches occurring from the back-ground signal, strongly affected by microbarom and mountain induced gravity waves. This permanent installation in Italy will allow to verify the efficiency of the system in short-to-medium range (2-8 km) avalanche detection, and might represent an important validation to model avalanches activity during this winter season. Moreover, the real-time processing of infrasonic array data, might strongly contribute to avalanche risk assessments providing an up-to-description of ongoing events.
Energy mechanics of rock and snow avalanches and the role of fragmentation (invited)
NASA Astrophysics Data System (ADS)
Bartelt, Perry; Buser, Othmar; Glover, James
2014-05-01
The energy mechanics of rock and snow avalanches are traditionally described using a two-step transformation: potential energy is first converted into kinetic energy; kinetic energy is dissipated to heat by frictional processes. If the frictional processes are known, the energy fluxes of avalanches can be calculated completely. The break-up of the released mass, however, introduces several new energy fluxes into the avalanche problem. The first energy is associated with the fragmentation, which generates random particle motions. This is true kinetic energy. Inter-particle interactions (collisions, abrasion, fracture) cause the energy of the random particle motion to dissipate to heat. A constraint on the random motions is the basal boundary. It is at this interface that the dispersive pressure is created by vertical particle motions that are directed upwards into the flow. The integral of the upward particle motions can induce a change in avalanche flow volume and density, depending on the relationship between the weight of the flow and the dispersive pressure. Interestingly, normal pressures will only diverge from hydrostatic when there are changes in flow density. We are therefore confronted with the problem of calculating not only the vertical acceleration of the dispersive pressure, but also the change in vertical acceleration. In this contribution we discuss a method to calculate random particle motions, dispersive pressure and changes in avalanche flow density. These are dependent not only on the absolute mass, but also on the material properties of the disintegrating mass. This becomes particularly interesting when considering the motion of snow and rock avalanches as it allows the prediction of flow regime changes and therefore extreme avalanche run-out potential.
Development of solid-state avalanche amorphous selenium for medical imaging.
Scheuermann, James R; Goldan, Amir H; Tousignant, Olivier; Léveillé, Sébastien; Zhao, Wei
2015-03-01
Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layer (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.
Studies with cathode drift chambers for the GlueX experiment at Jefferson Lab
Pentchev, L.; Barbosa, F.; Berdnikov, V.; ...
2017-04-22
A drift chamber system consisting of 24 1 m-diameter chambers with both cathode and wire readout (total of 12,672 channels) is operational in Hall D at Jefferson Lab (Virginia). Two cathode strip planes and one wire plane in each chamber register the same avalanche allowing the study of avalanche development, charge induction process, and strip resolution. We demonstrate a method for reconstructing the two-dimensional distribution of the avalanche “center-of-gravity” position around the wire from an 55Fe source with resolutions down to 30 μm. We estimate the azimuthal extent of the avalanche around the wire as a function of the totalmore » charge for an Ar/CO 2 gas mixture. By means of cluster counting using a modified 3 cm-gap chamber, we observe significant space charge effects within the same track, resulting in an extent of the avalanche along the wire.« less
NASA Astrophysics Data System (ADS)
Baker, Jennifer
Although there has been substantial research on the avoidance of risk, much less has been completed on voluntary risk. This study examined backcountry snowmobilers' risk perceptions, avalanche related information seeking behaviours, and decision-making processes when dealing with avalanches and backcountry risk in Canada. To accomplish this, in-depth, semi-structured interviews were conducted with 17 participants who were involved in backcountry snowmobiling. Interviews were done both in person and by telephone. The results of this study show that, unlike previous research on snowmobilers, the participants of this study were well prepared and knowledgeable about backcountry risks. All 17 participants stated that they carried a shovel, probe, and transceiver with them on each backcountry trip, and 10 participants had taken an avalanche safety course. Group dynamics and positive peer pressure were influential in promoting safe backcountry behaviour. KEYWORDS: Backcountry snowmobiling, Avalanches, Voluntary Risk, Preparedness, Decision-Making.
Avalanche statistics from data with low time resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Avalanche statistics from data with low time resolution
LeBlanc, Michael; Nawano, Aya; Wright, Wendelin J.; ...
2016-11-22
Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distributionmore » of the underlying avalanches even when the resolution is so low that naive analysis methods give incorrect results. We test these methods on both downsampled simulation data from a simple model and downsampled bulk metallic glass compression data and find that the methods recover the correct critical exponents.« less
Mosbrucker, Adam
2015-01-01
The lateral blast, debris avalanche, and lahars of the May 18th, 1980, eruption of Mount St. Helens, Washington, dramatically altered the surrounding landscape. Lava domes were extruded during the subsequent eruptive periods of 1980–1986 and 2004–2008. More than three decades after the emplacement of the 1980 debris avalanche, high sediment production persists in the Toutle River basin, which drains the northern and western flanks of the volcano. Because this sediment increases the risk of flooding to downstream communities on the Toutle and lower Cowlitz Rivers, the U.S. Army Corps of Engineers (USACE), under the direction of Congress to maintain an authorized level of flood protection, continues to monitor and mitigate excess sediment in North and South Fork Toutle River basins to help reduce this risk and to prevent sediment from clogging the shipping channel of the Columbia River. From October 22–27, 2007, Watershed Sciences, Inc., under contract to USACE, collected high-precision airborne lidar (light detection and ranging) data that cover 273 square kilometers (105 square miles) of lower Cowlitz and Toutle River tributaries from the Columbia River at Kelso, Washington, to upper North Fork Toutle River (below the volcano's edifice), including lower South Fork Toutle River. These data provide a digital dataset of the ground surface, including beneath forest cover. Such remotely sensed data can be used to develop sediment budgets and models of sediment erosion, transport, and deposition. The U.S. Geological Survey (USGS) used these lidar data to develop digital elevation models (DEMs) of the study area. DEMs are fundamental to monitoring natural hazards and studying volcanic landforms, fluvial and glacial geomorphology, and surface geology. Watershed Sciences, Inc., provided files in the LASer (LAS) format containing laser returns that had been filtered, classified, and georeferenced. The USGS produced a hydro-flattened DEM from ground-classified points at Castle and Coldwater Lakes. Final results averaged about two laser last-return points per square meter. As reported by Watershed Sciences, Inc., vertical accuracy is 10 centimeters (cm) at the 95-percent confidence interval on bare road surfaces; however, over natural terrain, USGS found vertical accuracy to be 10–50 cm. This USGS data series contains the bare-earth lidar data as 1- and 10-meter (m) resolution Esri grid files. Digital-elevation data can be downloaded (1m_DEM.zip and 10m_DEM.zip), as well as a 1-m resolution hillshade image with pyramids (1m_hillshade.zip). These geospatial data files require geographic information system (GIS) software for viewing.
Video Observations Inside Channels of Erupting Geysers, Geyser Valley, Russia
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Nechaev, A.
2011-12-01
Geysers are a variety of hot springs characterized by violent ejections of water and steam separated by periods of repose. While ordinary boiling springs are numerous and occur in many places on Earth, geysers are very rare. In total, less than 1000 geysers are known worldwide, and most of them are located in three large geyser fields: Yellowstone (USA), Geyser Valley (Russia), and El Tatio (Chile). Several physical models were suggested to explain periodic eruptions of geysers, but realistic understanding of processes was hampered by the scarcity of field data on the internal plumbing of geyser systems. Here we present data based on video observations of interior conduit systems for geysers in Geyser Valley in Kamchatka, Russia. To investigate geyser plumbing systems we lowered a video camera (with thermal and water insulation) into the conduits of four erupting geysers. These included Velikan and Bolshoy, the largest geysers in the field, ejecting about 20 and 15 cub.m of water to heights of 25 and 15 m, respectively, with rather stable periods of approximately 5 h and 1 h. We also investigated Vanna and Kovarny, small geysers with irregular regimes, ejecting about ten liters of water to heights as much as 1.5 m, with periods of several minutes. The video footage reveals internal plumbing geometries and hydrodynamic processes that contradict the widely accepted "simple vertical conduit model", which regards geyser eruptions as caused by flashing of superheated water into steam. In contrast, our data fit the long-neglected "boiler model", in which steam accumulates in an underground cavity (boiler) and periodically erupts out through a water-filled, inverted siphon. We describe the physical rationale and conditions for the periodic discharge of steam from a boiler. Channels of the studied geysers are developed by ascending hot water in deposits of several voluminous prehistoric landslides (debris avalanches). The highly irregular contacts between adjacent debris avalanche blocks provided an environment that favored the formation of channel-conduit systems with the contorted configurations characteristic for the boiler model. The solitary geysers scattered all over the Earth can form by the occasional coincidence of several favorable factors and, perhaps, function according to the principles of anyone of the existing geyser models. But why in some (very few) locations are multiple geysers grouped together in relatively small areas? We argue that in these areas, besides the necessary hydrothermal conditions, there are specific shallow geological structures or deposits that favor the formation of multiple complex systems of underground conduits, channels and chambers, including systems having the boiler model geometry. A required combination of geological conditions favoring generation of contorted channels, and hydrothermal discharge, explains the rarity of large geyser fields on Earth.
Radiation and Temperature Hard Multi-Pixel Avalanche Photodiodes
NASA Technical Reports Server (NTRS)
Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)
2017-01-01
The structure and method of fabricating a radiation and temperature hard avalanche photodiode with integrated radiation and temperature hard readout circuit, comprising a substrate, an avalanche region, an absorption region, and a plurality of Ohmic contacts are presented. The present disclosure provides for tuning of spectral sensitivity and high device efficiency, resulting in photon counting capability with decreased crosstalk and reduced dark current.
Application of LANDSAT data to delimitation of avalanche hazards in Montane, Colorado
NASA Technical Reports Server (NTRS)
Knepper, D. H. (Principal Investigator); Summer, R.
1976-01-01
The author has identified the following significant results. With rare exceptions, avalanche areas cannot be identified on LANDSAT imagery. Avalanche hazard mapping on a regional scale is best conducted using LANDSAT imagery in conjunction with complementary data sources. Level of detail of such maps will be limited by the amount and completeness of the complementary information used.
High-Accuracy Measurements of the Centre of Gravity of Avalanches in Proportional Chambers
DOE R&D Accomplishments Database
Charpak, G.; Jeavons, A.; Sauli, F.; Stubbs, R.
1973-09-24
In a multiwire proportional chamber the avalanches occur close to the anode wires. The motion of the positive ions in the large electric fields at the vicinity of the wires induces fast-rising positive pulses on the surrounding electrodes. Different methods have been developed in order to determine the position of the centre of the avalanches. In the method we describe, the centre of gravity of the pulse distribution is measured directly. It seems to lead to an accuracy which is limited only by the stability of the spatial distribution of the avalanches generated by the process being measured.
Avalanche multiplication and impact ionization in amorphous selenium photoconductive target
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2014-03-01
The avalanche multiplication factor and the hole ionization coefficient in the amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) target depend on the electric field. The phenomenon of avalanche multiplication and impact ionization in the 0.4-µm-thick a-Se HARP target is investigated. The hot carrier energy in the 0.4-µm-thick a-Se HARP target increases linearly as the target voltage increases. The energy relaxation length of hot carriers in the a-Se photoconductor of the 0.4-µm-thick HARP target saturates as the electric field increases. The average energy Eav of a hot carrier and the energy relaxation length λE in the a-Se photoconductor of the 0.4-µm-thick HARP target at 1 × 108 V/m were 0.25 eV and 2.5 nm, respectively. In addition, the hole ionization coefficient β and the avalanche multiplication factor M are derived as a function of the electric field, the average energy of a hot carrier, and the impact ionization energy. The experimental hole ionization coefficient β and the avalanche multiplication factor M in the 0.4-µm-thick a-Se HARP target agree with the theoretical results.
Magnetically switched power supply system for lasers
NASA Technical Reports Server (NTRS)
Pacala, Thomas J. (Inventor)
1987-01-01
A laser power supply system is described in which separate pulses are utilized to avalanche ionize the gas within the laser and then produce a sustained discharge to cause the gas to emit light energy. A pulsed voltage source is used to charge a storage device such as a distributed capacitance. A transmission line or other suitable electrical conductor connects the storage device to the laser. A saturable inductor switch is coupled in the transmission line for containing the energy within the storage device until the voltage level across the storage device reaches a predetermined level, which level is less than that required to avalanche ionize the gas. An avalanche ionization pulse generating circuit is coupled to the laser for generating a high voltage pulse of sufficient amplitude to avalanche ionize the laser gas. Once the laser gas is avalanche ionized, the energy within the storage device is discharged through the saturable inductor switch into the laser to provide the sustained discharge. The avalanche ionization generating circuit may include a separate voltage source which is connected across the laser or may be in the form of a voltage multiplier circuit connected between the storage device and the laser.
NASA Astrophysics Data System (ADS)
Cooray, G. V.; Cooray, G. K.
2011-12-01
Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10.1029/2006GL027426. [3] Cooray, V. and G. Cooray (2010), IEEE Transactions on Electromagnetic Compatibility, 52, No. 4, 944 - 955. [4] Eack, K. B. (2004), Geophys. Res. Lett., Vol. 31, L20102, doi: 10.1029/2005GL023975.
The geomorphic impact of catastrophic glacier ice loss in mountain regions
NASA Astrophysics Data System (ADS)
Evans, S. G.
2006-12-01
Perhaps the most dramatic manifestation of global warming is catastrophic glacier ice loss in mountain regions. The geomorphic impact of this process was first outlined by Evans and Clague in 1994 and includes mountain slope instability, glacier avalanching, the formation and failure of moraine dammed lakes, and the formation and failure of ice dammed lakes. The present paper is an update of the 1994 publication and has three components. First, a global review of recent glacier-related geomorphic events is undertaken. Second, an analysis of two cases from the Coast Mountains of British Columbia - the 1975 Devastation Glacier landslide and the 1983 Nostetuko Lake outburst resulting from the failure of a moraine dam illustrates the interaction of glacier ice loss and related geomorphic events. At Devastation Glacier, approximately 13 M m3 of altered Quaternary volcanic rock and glacier ice was lost from the west flank of Pylon Peak in the Mount Meager volcanic complex. The events were initiated by a catastrophic rockslide, involving altered Quaternary pyroclastic rocks, which continued down Devastation Creek valley as a high velocity debris avalanche. The overall length of the slide path was 7 km and the vertical height of the path was 1220 m yielding a fahrboschung of 10°. Other large landslides occurred in Devastation Creek valley in 1931 and 1947. Stability analysis of the initial failure shows that the 1975 rockslide was the result of a complex history of glacial erosion, loading and unloading of the toe of the slide mass caused by the Little Ice Age advance and subsequent retreat of Devastation Glacier. The shearing resistance along the base of the rockslide mass was reduced prior to 1975 by substantial previous slope displacements related to glacial ice loss. Some of this displacement is likely to have occurred as subglacial slope deformation since ice fall and crevasse patterns suggest the presence of slide like shearing displacements below the base of adjacent glacier ice. In the Nostetuko case, the analysis of large-scale digital elevation models indicate that the outburst of 6.5 M m3 of water was initiated by a 1.5 M m3 glacier avalanche from Cumberland Glacier which initiated the breach. 1.6 M m3 of moraine was removed during the sudden breach and injected into the headwaters of the Nostetuko River. Thirdly, an attempt is made to quantify the increase in denudation and related sediment flux in mountain landscapes subject to catastrophic glacier-ice loss.
Integrated database for rapid mass movements in Norway
NASA Astrophysics Data System (ADS)
Jaedicke, C.; Lied, K.; Kronholm, K.
2009-03-01
Rapid gravitational slope mass movements include all kinds of short term relocation of geological material, snow or ice. Traditionally, information about such events is collected separately in different databases covering selected geographical regions and types of movement. In Norway the terrain is susceptible to all types of rapid gravitational slope mass movements ranging from single rocks hitting roads and houses to large snow avalanches and rock slides where entire mountainsides collapse into fjords creating flood waves and endangering large areas. In addition, quick clay slides occur in desalinated marine sediments in South Eastern and Mid Norway. For the authorities and inhabitants of endangered areas, the type of threat is of minor importance and mitigation measures have to consider several types of rapid mass movements simultaneously. An integrated national database for all types of rapid mass movements built around individual events has been established. Only three data entries are mandatory: time, location and type of movement. The remaining optional parameters enable recording of detailed information about the terrain, materials involved and damages caused. Pictures, movies and other documentation can be uploaded into the database. A web-based graphical user interface has been developed allowing new events to be entered, as well as editing and querying for all events. An integration of the database into a GIS system is currently under development. Datasets from various national sources like the road authorities and the Geological Survey of Norway were imported into the database. Today, the database contains 33 000 rapid mass movement events from the last five hundred years covering the entire country. A first analysis of the data shows that the most frequent type of recorded rapid mass movement is rock slides and snow avalanches followed by debris slides in third place. Most events are recorded in the steep fjord terrain of the Norwegian west coast, but major events are recorded all over the country. Snow avalanches account for most fatalities, while large rock slides causing flood waves and huge quick clay slides are the most damaging individual events in terms of damage to infrastructure and property and for causing multiple fatalities. The quality of the data is strongly influenced by the personal engagement of local observers and varying observation routines. This database is a unique source for statistical analysis including, risk analysis and the relation between rapid mass movements and climate. The database of rapid mass movement events will also facilitate validation of national hazard and risk maps.
Knöpfel, Thomas; Leech, Robert
2018-01-01
Local perturbations within complex dynamical systems can trigger cascade-like events that spread across significant portions of the system. Cascades of this type have been observed across a broad range of scales in the brain. Studies of these cascades, known as neuronal avalanches, usually report the statistics of large numbers of avalanches, without probing the characteristic patterns produced by the avalanches themselves. This is partly due to limitations in the extent or spatiotemporal resolution of commonly used neuroimaging techniques. In this study, we overcome these limitations by using optical voltage (genetically encoded voltage indicators) imaging. This allows us to record cortical activity in vivo across an entire cortical hemisphere, at both high spatial (~30um) and temporal (~20ms) resolution in mice that are either in an anesthetized or awake state. We then use artificial neural networks to identify the characteristic patterns created by neuronal avalanches in our data. The avalanches in the anesthetized cortex are most accurately classified by an artificial neural network architecture that simultaneously connects spatial and temporal information. This is in contrast with the awake cortex, in which avalanches are most accurately classified by an architecture that treats spatial and temporal information separately, due to the increased levels of spatiotemporal complexity. This is in keeping with reports of higher levels of spatiotemporal complexity in the awake brain coinciding with features of a dynamical system operating close to criticality. PMID:29795654
Neuronal avalanches and coherence potentials
NASA Astrophysics Data System (ADS)
Plenz, D.
2012-05-01
The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.
Strapazzon, Giacomo; Migliaccio, Daniel; Fontana, Diego; Stawinoga, Agnieszka Elzbieta; Milani, Mario; Brugger, Hermann
2018-03-01
To explore baseline knowledge about avalanche guidelines and the Avalanche Victim Resuscitation Checklist (AVReCh) in Italy and the knowledge acquisition from a standardized lecture. Standardized lecture material discussing AVReCh was presented during 8 mountain medicine courses from November 2014 to April 2016 in different regions of Italy. To determine the knowledge acquisition from the lecture, a pre- and postlecture survey was utilized. A total of 193 surveys were analyzed. More than 50% of the participants had never participated in lectures/courses on avalanche guidelines, and less than 50% of the participants knew about the AVReCh before the lecture. The correct temporal sequence of reportable information in the basic life support section of the AVReCh was selected by 40% of the participants before the lecture and by 75% after the lecture (P<0.001). Within subgroups analysis, most groups saw significant improvement in performance (P<0.05). The selection of the correct burial time increased from 36 to 84% (P<0.05). Health care providers and mountain rescue personnel are not widely aware of avalanche guidelines. The standardized lecture significantly improved knowledge of the principles of avalanche management related to core AVReCh elements. However, the effect that this knowledge acquisition has on avalanche victim survival or adherence to the AVReCh in the field is yet to be determined. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
2015-09-30
This image from NASA Mars Reconnaissance Orbiter spacecraft shows a channel system flowing to the southwest toward the huge Hellas impact basin. Click on the image for larger version The scarp at the edge of the North Polar layered deposits of Mars is the site of the most frequent frost avalanches seen by HiRISE. At this season, northern spring, frost avalanches are common and HiRISE monitors the scarp to learn more about the timing and frequency of the avalanches, and their relationship to the evolution of frost on the flat ground above and below the scarp. This picture managed to capture a small avalanche in progress, right in the color strip. See if you can spot it in the browse image, and then click on the cutout to see it at full resolution. The small white cloud in front of the brick red cliff is likely carbon dioxide frost dislodged from the layers above, caught in the act of cascading down the cliff. It is larger than it looks, more than 20 meters across, and (based on previous examples) it will likely kick up clouds of dust when it hits the ground. The avalanches tend to take place at a season when the North Polar region is warming, suggesting that the avalanches may be triggered by thermal expansion. The avalanches remind us, along with active sand dunes, dust devils, slope streaks and recurring slope lineae, that Mars is an active and dynamic planet. http://photojournal.jpl.nasa.gov/catalog/PIA19961
NASA Astrophysics Data System (ADS)
Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.
2014-09-01
Projecting changes in snow cover due to climate warming is important for many societal issues, including the adaptation of avalanche risk mitigation strategies. Efficient modelling of future snow cover requires high resolution to properly resolve the topography. Here, we introduce results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions including mechanical stability estimates for the mid and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided in comparison to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model relating avalanche activity to snow and meteorological conditions, so as to produce the first projection on annual/seasonal timescales of future natural avalanche activity based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of anticipation of changes. Whereas precipitation is expected to remain quite stationary, temperature increase interacting with topography will constrain the evolution of snow-related variables on all considered spatio-temporal scales and will, in particular, lead to a reduction of the dry snowpack and an increase of the wet snowpack. Overall, compared to the reference period, changes are strong for the end of the 21st century, but already significant for the mid century. Changes in winter are less important than in spring, but wet-snow conditions are projected to appear at high elevations earlier in the season. At the same altitude, the southern French Alps will not be significantly more affected than the northern French Alps, which means that the snowpack will be preserved for longer in the southern massifs which are higher on average. Regarding avalanche activity, a general decrease in mean (20-30%) and interannual variability is projected. These changes are relatively strong compared to changes in snow and meteorological variables. The decrease is amplified in spring and at low altitude. In contrast, an increase in avalanche activity is expected in winter at high altitude because of conditions favourable to wet-snow avalanches earlier in the season. Comparison with the outputs of the deterministic avalanche hazard model MEPRA (Modèle Expert d'aide à la Prévision du Risque d'Avalanche) shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity is clearly projected to decrease, the decreasing trend may be less strong and smooth than suggested by the statistical analysis based on changes in snowpack characteristics and their links to avalanches observations in the past. This important point for risk assessment pleads for further work focusing on shorter timescales. Finally, the small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.
Characterizing 2-D snow stratigraphy in forests based on high-resolution snow penetrometry
NASA Astrophysics Data System (ADS)
Teich, M.; Loewe, H.; Jenkins, M. J.; Schneebeli, M.
2016-12-01
Snow stratigraphy, the characteristic layering within a seasonal snowpack, has important implications for snow remote sensing, hydrology and avalanches. Forests modify snowpack properties through interception of falling snow by tree crowns, the reduction of near-surface wind speeds, and changes to the energy balance beneath and around trees leading to a highly variable stratigraphy in space and time. The lack of snowpack observations in forests limits our ability to understand the spatio-temporal evolution of snow stratigraphy as a function of forest structure and to observe snowpack response to changes in forest cover. We examined the snowpack in field campaigns using the SnowMicroPen (SMP) under tree canopies in an Engelmann spruce forest in the central Rocky Mountains in Utah, USA. Data were collected in plots beneath canopies of undisturbed, bark beetle-disturbed and salvage logged forest stands, and a non-forested meadow. In 2015 weekly-repeated SMP penetration measurements were taken along 10 m transects at 0.3 m intervals. In the winter of 2016 bi-weekly measurements were collected along 20 m transects every 0.5 m. Using a statistical model, we derived 2-D snow density profiles as a measure of stratigraphy. The small-scale patterns in snow density revealed a more heterogeneous stratigraphy in undisturbed dense stands and also beneath bark beetle-disturbed forest. In contrast, snow stratigraphy was more homogeneous in the harvested plot despite standing small diameter trees and woody debris with effective heights up to 95 cm. As expected, snow depth and layering in non-forested plots varied only slightly over the small spatial extent sampled. Observed patterns changed throughout the snow season dependent upon snow and meteorological conditions. The results contribute to the general understanding of forest-snowpack interactions at high spatial resolution, and can be used to validate snowpack and microwave models for avalanche formation processes and SWE retrieval in forests.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed-Energy Capability
2017-03-01
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed- Energy Capability Damian Urciuoli, Miguel Hinojosa, and Ronald Green US...were pulse tested in an inductive load circuit at peak powers of over 110 kW. Total pulsed- energy dissipation was kept nearly the same among the...voltages about which design provides the highest pulsed- energy capability. Keywords: Avalanche; Breakdown; Diode; Silicon Carbide Introduction
Skier triggering of backcountry avalanches with skilled route selection
NASA Astrophysics Data System (ADS)
Sinickas, Alexandra; Haegeli, Pascal; Jamieson, Bruce
2015-04-01
Jamieson (2009) provided numerical estimates for the baseline probabilities of triggering an avalanche by a backcountry skier making fresh tracks without skilled route selection as a function of the North American avalanche danger scale (i.e., hazard levels Low, Moderate, Considerable, High and Extreme). Using the results of an expert survey, he showed that triggering probabilities while skiing directly up, down or across a trigger zone without skilled route selection increase roughly by a factor of 10 with each step of the North American avalanche danger scale (i.e. hazard level). The objective of the present study is to examine the effect of skilled route selection on the relationship between triggering probability and hazard level. To assess the effect of skilled route selection on triggering probability by hazard level, we analysed avalanche hazard assessments as well as reports of skiing activity and triggering of avalanches from 11 Canadian helicopter and snowcat operations during two winters (2012-13 and 2013-14). These reports were submitted to the daily information exchange among Canadian avalanche safety operations, and reflect professional decision-making and route selection practices of guides leading groups of skiers. We selected all skier-controlled or accidentally triggered avalanches with a destructive size greater than size 1 according to the Canadian avalanche size classification, triggered by any member of a guided group (guide or guest). These operations forecast the avalanche hazard daily for each of three elevation bands: alpine, treeline and below treeline. In contrast to the 2009 study, an exposure was defined as a group skiing within any one of the three elevation bands, and consequently within a hazard rating, for the day (~4,300 ratings over two winters). For example, a group that skied below treeline (rated Moderate) and treeline (rated Considerable) in one day, would receive one count for exposure to Moderate hazard, and one count for exposure to Considerable hazard. While the absolute values for triggering probability cannot be compared to the 2009 study because of different definitions of exposure, our preliminary results suggest that with skilled route selection the triggering probability is similar all hazard levels, except for extreme for which there are few exposures. This means that the guiding teams of backcountry skiing operations effectively control the hazard from triggering avalanches with skilled route selection. Groups were exposed relatively evenly to Low hazard (1275 times or 29% of total exposure), Moderate hazard (1450 times or 33 %) and Considerable hazard (1215 times or 28 %). At higher levels, the exposure reduced to roughly 380 times (9 % of total exposure) to High hazard, and only 13 times (0.3 %) to Extreme hazard. We assess the sensitivity of the results to some of our key assumptions.
Two dimensional numerical analysis of snow avalanche interaction with structures
NASA Astrophysics Data System (ADS)
Bovet, Eloïse; Chiaia, Bernardino; Preziosi, Luigi
2010-05-01
The purpose of this work, within the Project "DynAval - Dynamique des avalanches: départ et interactions écoulement/obstacles" - European Territorial Cooperation objective Italy - France (Alps), is to analyse the snow avalanche and structure interaction, through a numerical analysis. The avalanche behaviour, considered as an incompressible fluid, is described by a two-dimensional, in the avalanche slope, Navier-Stokes equations to which an advection equation is coupled to take into account the shape variation. The model allows to describe the velocity and the pressure at every point, representing important features for the structural design. The simulations are carried using a FEM Multiphysics software. For a such problem different analysis can be carried. Firstly, changing the obstacle shape (circle, square, triangle) and its dimension in relation to the avalanche size, the drag coefficient Cd can be evaluated. The obtained results are then compared with the values indicated by the procedures, concerning the avalanches, available in the literature. This study is realized for different Froude numbers too. Secondarily the pressure acting on the different parts of the obstacle (up-wind, down-wind, lateral) is studied. The first investigation concerns the evaluation of the Cp coefficient and on its comparison with the wind effects. The second analysis allows to evaluates, by an integration process, the total load exerted by the avalanche on the obstacle. A practical example of a building design is presented, taking into account the results of the simulations. Thirdly the study is focused on the characterization of the two dead zones created up-wind and down-wind the obstacle. The dependence of the dead zone on the obstacle characteristics, such as dimension and shape, and on the avalanche features, such as density and velocity, is analysed. The results obtained are compared with the data available in the literature concerning snow or granular material interaction with obstacle. In addition the dead zone is studied using a two dimensional model in the avalanche section too. In this way, in fact, the jet length created in the impact, for instance with a dam, can be measured and compared with the laws proposed in the literature. Fourthly the evolution in time of the pressure during the impact is investigated, showing a peak in the first times steps of the interaction. The time and the intensity of this maximum value is related with the flow and the obstacle characteristics. In conclusion, the fan of the analysis carried recovers different and very important features that represent the starting point for reliable design of the structures in avalanche-risk zones. In addition it shows the capabilities and the deficiencies of the model proposed and, finally, it introduces some aspects that will should be furtherer experimentally studied and validated.
On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
NASA Astrophysics Data System (ADS)
Embréus, O.; Stahl, A.; Fülöp, T.
2018-02-01
Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.
Relation between self-organized criticality and grain aspect ratio in granular piles
NASA Astrophysics Data System (ADS)
Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.
2012-05-01
We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass
Chen, S. H.; Chan, K. C.; Wang, G.; ...
2016-02-25
The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less
NASA Astrophysics Data System (ADS)
Wang, XiaoLiang; Li, JiaChun
2017-12-01
A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.
Scaling, clustering and avalanches for steel beads in an external magnetic field
NASA Astrophysics Data System (ADS)
Marquinez, Alyse; Thvedt, Ingrid; Lehman, S. Y.; Jacobs, D. T.
2011-03-01
We investigated avalanches using uniform 3mm steel spheres (``beads'') dropped onto a conical bead pile within a uniform magnetic field. The bead pile is built by pouring beads onto a circular base where the bottom layer of beads had been glued randomly. Beads are then individually dropped from a fixed height after which the pile is massed. This process is repeated for thousands of bead drops. By measuring the number of avalanches of a given size that occurred during the experiment, the resulting avalanche size distribution was compared to a power law description as predicted by self-organized criticality. As the magnetic field intensity increased, the beads clustered to give a larger angle of repose and we measured the change in the avalanche size distribution. The moments of the distribution give a sensitive test of mean-field theory as the universality class for these bead piles. We acknowledge support from Research Corporation and NSF-REU grant DMR 0649112.
Measuring acoustic emissions in an avalanche slope
NASA Astrophysics Data System (ADS)
Reiweger, Ingrid; Schweizer, Jürg
2014-05-01
Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.
Electron avalanche structure determined by random walk theory
NASA Technical Reports Server (NTRS)
Englert, G. W.
1973-01-01
A self-consistent avalanche solution which accounts for collective long range Coulomb interactions as well as short range elastic and inelastic collisions between electrons and background atoms is made possible by a random walk technique. Results show that the electric field patterns in the early formation stages of avalanches in helium are close to those obtained from theory based on constant transport coefficients. Regions of maximum and minimum induced electrostatic potential phi are located on the axis of symmetry and within the volume covered by the electron swarm. As formation time continues, however, the region of minimum phi moves to slightly higher radii and the electric field between the extrema becomes somewhat erratic. In the intermediate formation periods the avalanche growth is slightly retarded by the high concentration of ions in the tail which oppose the external electric field. Eventually the formation of ions and electrons in the localized regions of high field strength more than offset this effect causing a very abrupt increase in avalanche growth.
NASA Astrophysics Data System (ADS)
Veitinger, Jochen; Purves, Ross Stuart; Sovilla, Betty
2016-10-01
Avalanche hazard assessment requires a very precise estimation of the release area, which still depends, to a large extent, on expert judgement of avalanche specialists. Therefore, a new algorithm for automated identification of potential avalanche release areas was developed. It overcomes some of the limitations of previous tools, which are currently not often applied in hazard mitigation practice. By introducing a multi-scale roughness parameter, fine-scale topography and its attenuation under snow influence is captured. This allows the assessment of snow influence on terrain morphology and, consequently, potential release area size and location. The integration of a wind shelter index enables the user to define release area scenarios as a function of the prevailing wind direction or single storm events. A case study illustrates the practical usefulness of this approach for the definition of release area scenarios under varying snow cover and wind conditions. A validation with historical data demonstrated an improved estimation of avalanche release areas. Our method outperforms a slope-based approach, in particular for more frequent avalanches; however, the application of the algorithm as a forecasting tool remains limited, as snowpack stability is not integrated. Future research activity should therefore focus on the coupling of the algorithm with snowpack conditions.
Friction and dynamics of rock avalanches travelling on glaciers
NASA Astrophysics Data System (ADS)
De Blasio, Fabio Vittorio
2014-05-01
Rock avalanches travelling on glaciers often exhibit effective friction coefficient lower than those on a rocky terrain. After briefly considering some data of rock avalanches on glaciers, the physics of sliding of solid objects on icy surfaces is reviewed, and a model is put forward for the mechanics of rock avalanche sliding on ice accounting for the formation of a natural lubricating layer. It is suggested that at the beginning of the flow of a rock avalanche, friction results from rocky blocks ploughing on ice. As the erosion continues, a gouge of ice particles results, which clogs the interstices between blocks and may partially melt as a consequence of the production of frictional heat. This conceptual model is numerically investigated for a slab travelling on ice. The results show an increase in mobility as a function of slab thickness, travelled length, and the gravity field, in agreement with case studies. The results are useful to interpret the peculiar features of rock avalanches travelling on icy surfaces such as digitations, out-runner blocks, and longitudinal furrows. The lubrication theory for landslides on ice proposed here may provide a framework for understanding landslides on Earth and for future modelling; in addition, it may help elucidate the presence of similar landslide deposits on the surface of Mars.
Climate warming enhances snow avalanche risk in the Western Himalayas
Ballesteros-Cánovas, J. A.; Trappmann, D.; Madrigal-González, J.; Eckert, N.; Stoffel, M.
2018-01-01
Ongoing climate warming has been demonstrated to impact the cryosphere in the Indian Himalayas, with substantial consequences for the risk of disasters, human well-being, and terrestrial ecosystems. Here, we present evidence that the warming observed in recent decades has been accompanied by increased snow avalanche frequency in the Western Indian Himalayas. Using dendrogeomorphic techniques, we reconstruct the longest time series (150 y) of the occurrence and runout distances of snow avalanches that is currently available for the Himalayas. We apply a generalized linear autoregressive moving average model to demonstrate linkages between climate warming and the observed increase in the incidence of snow avalanches. Warming air temperatures in winter and early spring have indeed favored the wetting of snow and the formation of wet snow avalanches, which are now able to reach down to subalpine slopes, where they have high potential to cause damage. These findings contradict the intuitive notion that warming results in less snow, and thus lower avalanche activity, and have major implications for the Western Himalayan region, an area where human pressure is constantly increasing. Specifically, increasing traffic on a steadily expanding road network is calling for an immediate design of risk mitigation strategies and disaster risk policies to enhance climate change adaption in the wider study region. PMID:29535224
Peitzsch, Erich H.; Hendrikx, Jordy; Fagre, Daniel B.; Reardon, Blase
2012-01-01
The results suggest that the role of air temperature and snowpack settlement appear to be the most important variables in wet slab and glide avalanche occurrence. When applied to the 2011 season, the results of the CART model are encouraging and they enhance our understanding of some of the required meteorological and snowpack conditions for wet slab and glide avalanche occurrence.
Theory of single-photon detectors employing smart strategies of detection
NASA Astrophysics Data System (ADS)
Silva, João Batista Rosa; Ramos, Rubens Viana
2005-11-01
Single-photon detectors have become more important with the advent of set-ups for optical communication using single-photon pulses, mainly quantum key distribution. The performance of quantum key distribution systems depends strongly on the performance of single-photon detectors. In this paper, aiming to overcome the afterpulsing that limits strongly the maximal transmission rate of quantum key distribution systems, three smart strategies for single-photon detection are discussed using analytical and numerical procedures. The three strategies are: hold-off time conditioned to avalanche presence, termed the Norwegian strategy, using one avalanche photodiode, using two raffled avalanche photodiodes and using two switched avalanche photodiodes. Finally we give examples using these strategies in a quantum key distribution set-up.
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David
2015-02-01
Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.
Avalanches and plastic flow in crystal plasticity: an overview
NASA Astrophysics Data System (ADS)
Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr
2018-01-01
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
UAV-based Natural Hazard Management in High-Alpine Terrain - Case Studies from Austria
NASA Astrophysics Data System (ADS)
Sotier, Bernadette; Adams, Marc; Lechner, Veronika
2015-04-01
Unmanned Aerial Vehicles (UAV) have become a standard tool for geodata collection, as they allow conducting on-demand mapping missions in a flexible, cost-effective manner at an unprecedented level of detail. Easy-to-use, high-performance image matching software make it possible to process the collected aerial images to orthophotos and 3D-terrain models. Such up-to-date geodata have proven to be an important asset in natural hazard management: Processes like debris flows, avalanches, landslides, fluvial erosion and rock-fall can be detected and quantified; damages can be documented and evaluated. In the Alps, these processes mostly originate in remote areas, which are difficult and hazardous to access, thus presenting a challenging task for RPAS data collection. In particular, the problems include finding suitable landing and piloting-places, dealing with bad or no GPS-signals and the installation of ground control points (GCP) for georeferencing. At the BFW, RPAS have been used since 2012 to aid natural hazard management of various processes, of which three case studies are presented below. The first case study deals with the results from an attempt to employ UAV-based multi-spectral remote sensing to monitor the state of natural hazard protection forests. Images in the visible and near-infrared (NIR) band were collected using modified low-cost cameras, combined with different optical filters. Several UAV-flights were performed in the 72 ha large study site in 2014, which lies in the Wattental, Tyrol (Austria) between 1700 and 2050 m a.s.l., where the main tree species are stone pine and mountain pine. The matched aerial images were analysed using different UAV-specific vitality indices, evaluating both single- and dual-camera UAV-missions. To calculate the mass balance of a debris flow in the Tyrolean Halltal (Austria), an RPAS flight was conducted in autumn 2012. The extreme alpine environment was challenging for both the mission and the evaluation of the aerial images: In the upper part of the steep channel there was no GPS-signal available, because of the high surrounding rock faces, the landing area consisted of coarse gravel. Therefore, only a manual flight with a high risk of damage was possible. With the calculated RPAS-based digital surface model, created from the 600 aerial images, a chronologically resolved back-calculation of the last big debris-flow event could be performed. In a third case study, aerial images from RPAS were used for a similar investigation in Virgen, Eastern Tyrol (Austria). A debris flow in the Firschnitzbach catchment caused severe damages to the village of Virgen in August 2012. An RPAS-flight was performed, in order to refine the estimated displaced debris mass for assessment purposes. The upper catchment of the Firschnitzbach is situated above the timberline and covers an area of 6.5 ha at a height difference of 1000 m. Therefore, three separate flights were necessary to achieve a sufficient image overlap. The central part of the Firschnitzbach consists of a steep and partly dense forested canyon / gorge, so there was no flight possible for this section up to now. The evaluation of the surface model from the images showed, that only half of the estimated debris mass came from the upper part of the catchment.
Geologic map of the Hogback Mountain quadrangle, Lewis and Clark and Meagher Counties, Montana
Reynolds, Mitchell W.
2003-01-01
The geologic map of the Hogback Mountain quadrangle, scale 1:24,000, was made as part of the Montana Investigations Project to provide new information on the stratigraphy, structure, and geologic history of an area in the geologically complex southern part of the Montana disturbed belt. In the Hogback Mountain area, rocks ranging in age from Middle Proterozoic through Cretaceous are strongly folded within and under thrust plates of equivalent rocks. Continental rocks of successive thrust plates have been telescoped eastward over a buttress of the stable continent. Erosional remnants of Oligocene andesitic basalt lie on highest surfaces eroded across the strongly deformed older rocks; younger erosion has dissected the terrain deeply, producing Late Tertiary and Quaternary deposits of alluvium, colluvium, and local landslide debris in the valleys and canyons. Different stratigraphic successions are exposed at different structural levels across the quadrangle. In the northeastern part of the quadrangle at the lowest structural level, rocks of the Upper Mississippian Big Snowy Group, including the Kibbey Formation and the undivided Otter and Heath Formations, the overlying Pennsylvanian Amsden and undivided Quadrant and Phosphoria Formations, the Ellis Group, and the Kootenai Formation, are folded and broken by thrust faults. The next higher structural level, the Avalanche Butte thrust plate, exposes strongly folded and, in places, attenuated strata of Cambrian (Flathead Sandstone, Wolsey Shale, Meagher Limestone, and undivided Pilgrim Formation and Park Shale), Devonian (Maywood Formation, Jefferson Formation, and most of the Three Forks Formation), and Mississippian (uppermost part of the Three Forks Formation and Lodgepole and Mission Canyon Limestones) ages. The overlying Hogback Mountain thrust plate contains strongly folded rocks ranging in age from the Middle Proterozoic Greyson Formation to the Upper and Lower Mississippian Mission Canyon Limestone and Cretaceous diorite sills. The highest structural level, the Moors Mountain thrust plate, contains the Middle Proterozoic Greyson and Newland Formations and discontinuous Upper Proterozoic diabase sills. Rocks are complexly folded and faulted across the quadrangle. At the lowest level in the northeastern part of the quadrangle, Upper Mississippian and younger strata are folded along northwest-trending axes and broken by thrust faults that at outcrop level displace the same rocks. The central core of the quadrangle is formed by the Avalanche Butte thrust plate, which contains recumbently folded and thrust faulted Paleozoic rocks. A succession of four tight recumbent folds within the plate have axial traces that trend northwest and north-northwest, and that are both arched and downfolded along east- and northeast-trending axes. Carbonate rocks of the Mission Canyon and Lodgepole Limestones in the upper part of the Avalanche Butte thrust plate exposed in the canyon of Trout Creek are folded and attenuated in stacked east-directed recumbent folds that developed as a succession of folded duplex thrust slices. The exposed remnant of the next higher structural level, the Hogback Mountain thrust plate, contains northeast- and east-trending folds that are inverted on the upper overturned limb of a younger northwest-trending recumbent fold. The Hogback Mountain thrust fault is itself folded and, in its northernmost exposures, is overturned to dip west beneath the overlying Moors Mountain thrust plate. During post-middle Tertiary deformation, the Hogback Mountain thrust fault moved as a normal fault, down on the east. The structurally highest Moors Mountain thrust plate rests on the Avalanche Butte thrust plate in the southwestern part of the quadrangle and across both the Avalanche Butte and Hogback Mountain thrust plates along the northwest edge of the quadrangle. In the central eastern part of the map area, the edge of a large klippen of the Moors Mounta
Dehghani, Nima; Hatsopoulos, Nicholas G.; Haga, Zach D.; Parker, Rebecca A.; Greger, Bradley; Halgren, Eric; Cash, Sydney S.; Destexhe, Alain
2012-01-01
Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep, and REM sleep, using high density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and premotor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double logarithmic representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using the more reliable cumulative distribution function (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey, and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man. PMID:22934053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheuermann, James R., E-mail: James.Scheuermann@stonybrook.edu; Goldan, Amir H.; Zhao, Wei
Purpose: Active matrix flat panel imagers (AMFPI) have limited performance in low dose applications due to the electronic noise of the thin film transistor (TFT) array. A uniform layer of avalanche amorphous selenium (a-Se) called high gain avalanche rushing photoconductor (HARP) allows for signal amplification prior to readout from the TFT array, largely eliminating the effects of the electronic noise. The authors report preliminary avalanche gain measurements from the first HARP structure developed for direct deposition onto a TFT array. Methods: The HARP structure is fabricated on a glass substrate in the form of p-i-n, i.e., the electron blocking layermore » (p) followed by an intrinsic (i) a-Se layer and finally the hole blocking layer (n). All deposition procedures are scalable to large area detectors. Integrated charge is measured from pulsed optical excitation incident on the top electrode (as would in an indirect AMFPI) under continuous high voltage bias. Avalanche gain measurements were obtained from samples fabricated simultaneously at different locations in the evaporator to evaluate performance uniformity across large area. Results: An avalanche gain of up to 80 was obtained, which showed field dependence consistent with previous measurements from n-i-p HARP structures established for vacuum tubes. Measurements from multiple samples demonstrate the spatial uniformity of performance using large area deposition methods. Finally, the results were highly reproducible during the time course of the entire study. Conclusions: We present promising avalanche gain measurement results from a novel HARP structure that can be deposited onto a TFT array. This is a crucial step toward the practical feasibility of AMFPI with avalanche gain, enabling quantum noise limited performance down to a single x-ray photon per pixel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Dan; Zhao Wei
2008-07-15
An indirect flat panel imager (FPI) with programmable avalanche gain and field emitter array (FEA) readout is being investigated for low-dose and high resolution x-ray imaging. It is made by optically coupling a structured x-ray scintillator, e.g., thallium (Tl) doped cesium iodide (CsI), to an amorphous selenium (a-Se) avalanche photoconductor called high-gain avalanche rushing amorphous photoconductor (HARP). The charge image created by the scintillator/HARP (SHARP) combination is read out by the electron beams emitted from the FEA. The proposed detector is called scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The programmable avalanche gain of HARP can improve themore » low dose performance of indirect FPI while the FEA can be made with pixel sizes down to 50 {mu}m. Because of the avalanche gain, a high resolution type of CsI (Tl), which has not been widely used in indirect FPI due to its lower light output, can be used to improve the high spatial frequency performance. The purpose of the present article is to investigate the factors affecting the spatial resolution of SAPHIRE. Since the resolution performance of the SHARP combination has been well studied, the focus of the present work is on the inherent resolution of the FEA readout method. The lateral spread of the electron beam emitted from a 50 {mu}mx50 {mu}m pixel FEA was investigated with two different electron-optical designs: mesh-electrode-only and electrostatic focusing. Our results showed that electrostatic focusing can limit the lateral spread of electron beams to within the pixel size of down to 50 {mu}m. Since electrostatic focusing is essentially independent of signal intensity, it will provide excellent spatial uniformity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Jeffrey R.; Pankow, Kristine L.; Ford, Sean R.
The 2013 Bingham Canyon Mine rock avalanches represent one of the largest cumulative landslide events in recorded U.S. history and provide a unique opportunity to test remote analysis techniques for landslide characterization. We combine aerial photogrammetry surveying, topographic reconstruction, numerical runout modeling, and analysis of broadband seismic and infrasound data to extract salient details of the dynamics and evolution of the multiphase landslide event. Our results reveal a cumulative intact rock source volume of 52 Mm 3, which mobilized in two main rock avalanche phases separated by 1.5 h. We estimate that the first rock avalanche had 1.5–2 times greatermore » volume than the second. Each failure initiated by sliding along a gently dipping (21°), highly persistent basal fault before transitioning to a rock avalanche and spilling into the inner pit. The trajectory and duration of the two rock avalanches were reconstructed using runout modeling and independent force history inversion of intermediate-period (10–50 s) seismic data. Intermediate- and shorter-period (1–50 s) seismic data were sensitive to intervals of mass redirection and constrained finer details of the individual slide dynamics. Back projecting short-period (0.2–1 s) seismic energy, we located the two rock avalanches within 2 and 4 km of the mine. Further analysis of infrasound and seismic data revealed that the cumulative event included an additional 11 smaller landslides (volumes ~10 4–10 5 m 3) and that a trailing signal following the second rock avalanche may result from an air-coupled Rayleigh wave. These results demonstrate new and refined techniques for detailed remote characterization of the dynamics and evolution of large landslides.« less
Parameters of an avalanche of runaway electrons in air under atmospheric pressure
NASA Astrophysics Data System (ADS)
Oreshkin, E. V.
2018-01-01
The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.
Single photon detection with self-quenching multiplication
NASA Technical Reports Server (NTRS)
Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)
2011-01-01
A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.
NASA Astrophysics Data System (ADS)
Pfeifer, Christian; Höller, Peter; Zeileis, Achim
2018-02-01
In this article we analyzed spatial and temporal patterns of fatal Austrian avalanche accidents caused by backcountry and off-piste skiers and snowboarders within the winter periods 1967/1968-2015/2016. The data were based on reports of the Austrian Board for Alpine Safety and reports of the information services of the federal states. Using the date and the location of the recorded avalanche accidents, we were able to carry out spatial and temporal analyses applying generalized additive models and Markov random-field models. As a result of the trend analysis we noticed an increasing trend of backcountry and off-piste avalanche fatalities within the winter periods 1967/1968-2015/2016 (although slightly decreasing in recent years), which is in contradiction to the widespread opinion in Austria that the number of fatalities is constant over time. Additionally, we compared Austrian results with results of Switzerland, France, Italy and the US based on data from the International Commission of Alpine Rescue (ICAR). As a result of the spatial analysis, we noticed two hot spots of avalanche fatalities (Arlberg-Silvretta
and Sölden
). Because of the increasing trend and the rather narrow
regional distribution of the fatalities, initiatives aimed at preventing avalanche accidents were highly recommended.
Hu, Long; Su, Jiancang; Ding, Zhenjie; Hao, Qingsong; Fan, Yajun; Liu, Chunliang
2016-08-01
An all solid-state high repetitive sub-nanosecond risetime pulse generator featuring low-energy-triggered bulk gallium arsenide (GaAs) avalanche semiconductor switches and a step-type transmission line is presented. The step-type transmission line with two stages is charged to a potential of 5.0 kV also biasing at the switches. The bulk GaAs avalanche semiconductor switch closes within sub-nanosecond range when illuminated with approximately 87 nJ of laser energy at 905 nm in a single pulse. An asymmetric dipolar pulse with peak-to-peak amplitude of 9.6 kV and risetime of 0.65 ns is produced on a resistive load of 50 Ω. A technique that allows for repetition-rate multiplication of pulse trains experimentally demonstrated that the parallel-connected bulk GaAs avalanche semiconductor switches are triggered in sequence. The highest repetition rate is decided by recovery time of the bulk GaAs avalanche semiconductor switch, and the operating result of 100 kHz of the generator is discussed.
Silicon avalanche photodiodes developed at the Institute of Electron Technology
NASA Astrophysics Data System (ADS)
Wegrzecka, Iwona; Wegrzecki, Maciej; Bar, Jan; Grynglas, Maria; Uszynski, Andrzej; Grodecki, Remigiusz; Grabiec, Piotr B.; Krzeminski, Sylwester; Budzynski, Tadeusz
2004-07-01
Silicon avalanche photodiodes (APDs) -- due to the effect of avalanche multiplication of carriers in their structure -- are most sensitive and fastest detectors of visible and near infrared radiation. Also the value of noise equivalent power NEP of these detectors is the smallest. In the paper, the design, technology and properties of the silicon avalanche photodiodes with a n+ - p - π - p+ epiplanar structure developed at the Institute of Electron Technology (ITE) are presented. The diameters of photosensitive area range from 0.3 mm to 5 mm. The ITE photodiodes are optimized for the detection of the 800 nm - 850 nm radiation, but the detailed research on spectral dependencies of the gain and noise parameters has revealed that the spectral operating range of the ITE photodiodes is considerable wider and achieves 550 - 1000 nm. These photodiodes can be used in detection of very weak and very fast optical signals. Presently in the world, the studies are carried out on applying the avalanche photodiodes in detection of X radiation and in the scintillation detection of nuclear radiation.
High performance waveguide-coupled Ge-on-Si linear mode avalanche photodiodes.
Martinez, Nicholas J D; Derose, Christopher T; Brock, Reinhard W; Starbuck, Andrew L; Pomerene, Andrew T; Lentine, Anthony L; Trotter, Douglas C; Davids, Paul S
2016-08-22
We present experimental results for a selective epitaxially grown Ge-on-Si separate absorption and charge multiplication (SACM) integrated waveguide coupled avalanche photodiode (APD) compatible with our silicon photonics platform. Epitaxially grown Ge-on-Si waveguide-coupled linear mode avalanche photodiodes with varying lateral multiplication regions and different charge implant dimensions are fabricated and their illuminated device characteristics and high-speed performance is measured. We report a record gain-bandwidth product of 432 GHz for our highest performing waveguide-coupled avalanche photodiode operating at 1510nm. Bit error rate measurements show operation with BER< 10-12, in the range from -18.3 dBm to -12 dBm received optical power into a 50 Ω load and open eye diagrams with 13 Gbps pseudo-random data at 1550 nm.
Chaos and Correlated Avalanches in Excitatory Neural Networks with Synaptic Plasticity
NASA Astrophysics Data System (ADS)
Pittorino, Fabrizio; Ibáñez-Berganza, Miguel; di Volo, Matteo; Vezzani, Alessandro; Burioni, Raffaella
2017-03-01
A collective chaotic phase with power law scaling of activity events is observed in a disordered mean field network of purely excitatory leaky integrate-and-fire neurons with short-term synaptic plasticity. The dynamical phase diagram exhibits two transitions from quasisynchronous and asynchronous regimes to the nontrivial, collective, bursty regime with avalanches. In the homogeneous case without disorder, the system synchronizes and the bursty behavior is reflected into a period doubling transition to chaos for a two dimensional discrete map. Numerical simulations show that the bursty chaotic phase with avalanches exhibits a spontaneous emergence of persistent time correlations and enhanced Kolmogorov complexity. Our analysis reveals a mechanism for the generation of irregular avalanches that emerges from the combination of disorder and deterministic underlying chaotic dynamics.
NASA Astrophysics Data System (ADS)
Wichmann, Volker
2017-09-01
The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.
Granular Material Flows with Interstitial Fluid Effects
NASA Technical Reports Server (NTRS)
Hunt, Melany L.; Brennen, Christopher E.
2004-01-01
The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.
DEM Modeling of a Flexible Barrier Impacted by a Dry Granular Flow
NASA Astrophysics Data System (ADS)
Albaba, Adel; Lambert, Stéphane; Kneib, François; Chareyre, Bruno; Nicot, François
2017-11-01
Flexible barriers are widely used as protection structures against natural hazards in mountainous regions, in particular for containing granular materials such as debris flows, snow avalanches and rock slides. This article presents a discrete element method-based model developed in the aim of investigating the response of flexible barriers in such contexts. It allows for accounting for the peculiar mechanical and geometrical characteristics of both the granular flow and the barrier in a same framework, and with limited assumptions. The model, developed with YADE software, is described in detail, as well as its calibration. In particular, cables are modeled as continuous bodies. Besides, it naturally considers the sliding of rings along supporting cables. The model is then applied for a generic flexible barrier to demonstrate its capacities in accounting for the behavior of different components. A detailed analysis of the forces in the different components showed that energy dissipators (ED) had limited influence on total force applied to the barrier and retaining capacity, but greatly influenced the load transmission within the barrier and the force in anchors. A sensitivity analysis showed that the barrier's response significantly changes according to the choice of ED activation force and incoming flow conditions.
Bed Erosion Process in Geophysical Viscoplastic Fluid
NASA Astrophysics Data System (ADS)
Luu, L. H.; Philippe, P.; Chambon, G.; Vigneaux, P.; Marly, A.
2017-12-01
The bulk behavior of materials involved in geophysical fluid dynamics such as snow avalanches or debris flows has often been modeled as viscoplastic fluid that starts to flow once its stress state overcomes a critical yield value. This experimental and numerical study proposes to interpret the process of erosion in terms of solid-fluid transition for these complex materials. The experimental setup consists in a closed rectangular channel with a cavity in its base. By means of high-resolution optical velocimetry (PIV), we properly examine the typical velocity profiles of a model elasto-viscoplastic flow (Carbopol) at the vicinity of the solid-fluid interface, separating a yielded flowing layer above from an unyielded dead zone below. In parallel, numerical simulations in this expansion-contraction geometry with Augmented Lagrangian and Finite-Differences methods intend to discuss the possibility to describe the specific flow related to the existence of a dead zone, with a simple Bingham rheology. First results of this comparative analysis show a good numerical ability to capture the main scalings and flow features, such as the non-monotonous evolution of the shear stress in the boundary layer between the central plug zone and the dead zone at the bottom of the cavity.
NASA Astrophysics Data System (ADS)
Rounce, D.; McKinney, D. C.
2015-12-01
The last half century has witnessed considerable glacier melt that has led to the formation of large glacial lakes. These glacial lakes typically form behind terminal moraines comprising loose boulders, debris, and soil, which are susceptible to fail and cause a glacial lake outburst flood (GLOF). These lakes also act as a heat sink that accelerates glacier melt and in many cases is accompanied by rapid areal expansion. As these glacial lakes continue to grow, their hazard also increases due to the increase in potential flood volume and the lakes' proximity to triggering events such as avalanches and landslides. Despite the large threat these lakes may pose to downstream communities, there are few detailed studies that combine satellite imagery with hydraulic models to present a holistic understanding of the GLOF hazard. The aim of this work is to assess the GLOF hazard of glacial lakes in Nepal using a holistic approach based on a combination of satellite imagery and hydraulic models. Imja Lake will be the primary focus of the modeling efforts, but the methods will be developed in a manner that is transferable to other potentially dangerous glacial lakes in Nepal.
NASA Astrophysics Data System (ADS)
Castebrunet, H.; Eckert, N.; Giraud, G.; Durand, Y.; Morin, S.
2014-01-01
Projecting changes in snow cover due to climate warming is important for many societal issues, including adaptation of avalanche risk mitigation strategies. Efficient modeling of future snow cover requires high resolution to properly resolve the topography. Here, we detail results obtained through statistical downscaling techniques allowing simulations of future snowpack conditions for the mid- and late 21st century in the French Alps under three climate change scenarios. Refined statistical descriptions of snowpack characteristics are provided with regards to a 1960-1990 reference period, including latitudinal, altitudinal and seasonal gradients. These results are then used to feed a statistical model of avalanche activity-snow conditions-meteorological conditions relationships, so as to produce the first prognoses at annual/seasonal time scales of future natural avalanche activity eventually based on past observations. The resulting statistical indicators are fundamental for the mountain economy in terms of changes anticipation. At all considered spatio-temporal scales, whereas precipitations are expected to remain quite stationary, temperature increase interacting with topography will control snow-related variables, for instance the rate of decrease of total and dry snow depths, and the successive increase/decrease of the wet snow pack. Overall, with regards to the reference period, changes are strong for the end of the 21st century, but already significant for the mid-century. Changes in winter are somewhat less important than in spring, but wet snow conditions will appear at high elevations earlier in the season. For a given altitude, the Southern French Alps will not be significantly more affected than the Northern French Alps, so that the snowpack characteristics will be preserved more lately in the southern massifs of higher mean altitude. Regarding avalanche activity, a general -20-30% decrease and interannual variability is forecasted, relatively strong compared to snow and meteorological parameters changes. This decrease is amplified in spring and at low altitude. In contrast, an increase of avalanche activity is expected in winter at high altitude because of earlier wet snow avalanches triggers, at least as long as a minimal snow cover will be present. Comparison with the outputs of the deterministic avalanche hazard model MEPRA shows generally consistent results but suggests that, even if the frequency of winters with high avalanche activity will clearly decrease, the decreasing trend may be less strong and smooth than suggested by the changes in snowpack characteristics. This important point for risk assessment pleads for further work focusing on shorter time scales. Finally, small differences between different climate change scenarios show the robustness of the predicted avalanche activity changes.