Sample records for debris discs continuous

  1. In vitro wear assessment of the Charité Artificial Disc according to ASTM recommendations.

    PubMed

    Serhan, Hassan A; Dooris, Andrew P; Parsons, Matthew L; Ares, Paul J; Gabriel, Stefan M

    2006-08-01

    Biomechanical laboratory research. To evaluate the potential for Ultra High Molecular Weight Polyethylene (UHMWPE) wear debris from the Charité Artificial Disc. Cases of osteolysis from artificial discs are extremely rare, but hip and knee studies demonstrate the osteolytic potential and clinical concern of UHMWPE wear debris. Standards for testing artificial discs continue to evolve, and there are few detailed reports of artificial disc wear characterizations. Implant assemblies were tested to 10 million cycles of +/- 7.5 degrees flexion-extension or +/- 7.5 degrees left/right lateral bending, both with +/- 2 degrees axial rotation and 900 N to 1,850 N cyclic compression. Cores were weighed, measured, and photographed. Soak and loaded soak controls were used. Wear debris was analyzed via scanning electron microscopy and particle counters. The average total wear of the implants was 0.11 and 0.13 mg per million cycles, before and after accounting for serum absorption, respectively. Total height loss was approximately 0.2 mm. Wear debris ranged from submicron to > 10 microm in size. Under these test conditions, the Charité Artificial Disc produced minimal wear debris. Debris size and morphology tended to be similar to other CoCr-UHMWPE joints. More testing is necessary to evaluate the implants under a spectrum of loading conditions.

  2. An unbiased study of debris discs around A-type stars with Herschel

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Greaves, J. S.; Matthews, B. C.; Kennedy, G.; Phillips, N.; Booth, M.; Duchêne, G.; Horner, J.; Rodriguez, D. R.; Sibthorpe, B.; Wyatt, M. C.

    2014-12-01

    The Herschel DEBRIS (Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre) survey brings us a unique perspective on the study of debris discs around main-sequence A-type stars. Bias-free by design, the survey offers a remarkable data set with which to investigate the cold disc properties. The statistical analysis of the 100 and 160 μm data for 86 main-sequence A stars yields a lower than previously found debris disc rate. Considering better than 3σ excess sources, we find a detection rate ≥24 ± 5 per cent at 100 μm which is similar to the debris disc rate around main-sequence F/G/K-spectral type stars. While the 100 and 160 μm excesses slowly decline with time, debris discs with large excesses are found around some of the oldest A stars in our sample, evidence that the debris phenomenon can survive throughout the length of the main sequence (˜1 Gyr). Debris discs are predominantly detected around the youngest and hottest stars in our sample. Stellar properties such as metallicity are found to have no effect on the debris disc incidence. Debris discs are found around A stars in single systems and multiple systems at similar rates. While tight and wide binaries (<1 and >100 au, respectively) host debris discs with a similar frequency and global properties, no intermediate separation debris systems were detected in our sample.

  3. Debris Discs: Modeling/theory review

    NASA Astrophysics Data System (ADS)

    Thébault, P.

    2012-03-01

    An impressive amount of photometric, spectroscopic and imaging observations of circumstellar debris discs has been accumulated over the past 3 decades, revealing that they come in all shapes and flavours, from young post-planet-formation systems like Beta-Pic to much older ones like Vega. What we see in these systems are small grains, which are probably only the tip of the iceberg of a vast population of larger (undetectable) collisionally-eroding bodies, leftover from the planet-formation process. Understanding the spatial structure, physical properties, origin and evolution of this dust is of crucial importance, as it is our only window into what is going on in these systems. Dust can be used as a tracer of the distribution of their collisional progenitors and of possible hidden massive pertubers, but can also allow to derive valuable information about the disc's total mass, size distribution or chemical composition. I will review the state of the art in numerical models of debris disc, and present some important issues that are explored by current modelling efforts: planet-disc interactions, link between cold (i.e. Herschel-observed) and hot discs, effect of binarity, transient versus continuous processes, etc. I will finally present some possible perspectives for the development of future models.

  4. Impact of planet-planet scattering on the formation and survival of debris discs

    NASA Astrophysics Data System (ADS)

    Marzari, F.

    2014-10-01

    Planet-planet scattering is a major dynamical mechanism able to significantly alter the architecture of a planetary system. In addition to that, it may also affect the formation and retention of a debris disc by the system. A violent chaotic evolution of the planets can easily clear leftover planetesimal belts preventing the ignition of a substantial collisional cascade that can give origin to a debris disc. On the other end, a mild evolution with limited steps in eccentricity and semimajor axis can trigger the formation of a debris disc by stirring an initially quiet planetesimal belt. The variety of possible effects that planet-planet scattering can have on the formation of debris discs is analysed and the statistical probability of the different outcomes is evaluated. This leads to the prediction that systems which underwent an episode of chaotic evolution might have a lower probability of harbouring a debris disc.

  5. Metallicity of solar-type stars with debris discs and planets⋆

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Eiroa, C.; Villaver, E.; Montesinos, B.; Mora, A.

    2012-05-01

    Context. Around 16% of the solar-like stars in our neighbourhood show IR-excesses due to dusty debris discs and a fraction of them are known to host planets. Determining whether these stars follow any special trend in their properties is important to understand debris disc and planet formation. Aims: We aim to determine in a homogeneous way the metallicity of a sample of stars with known debris discs and planets. We attempt to identify trends related to debris discs and planets around solar-type stars. Methods: Our analysis includes the calculation of the fundamental stellar parameters Teff, log g, microturbulent velocity, and metallicity by applying the iron ionisation equilibrium conditions to several isolated Fe i and Fe ii lines. High-resolution échelle spectra (R ~ 57 000) from 2, 3 m class telescopes are used. Our derived metallicities are compared with other results in the literature, which finally allows us to extend the stellar samples in a consistent way. Results: The metallicity distributions of the different stellar samples suggest that there is a transition toward higher metallicities from stars with neither debris discs nor planets to stars hosting giant planets. Stars with debris discs and stars with neither debris nor planets follow a similar metallicity distribution, although the distribution of the first ones might be shifted towards higher metallicities. Stars with debris discs and planets have the same metallicity behaviour as stars hosting planets, irrespective of whether the planets are low-mass or gas giants. In the case of debris discs and giant planets, the planets are usually cool, - semimajor axis larger than 0.1 AU (20 out of 22 planets), even ≈65% have semimajor axis larger than 0.5 AU. The data also suggest that stars with debris discs and cool giant planets tend to have a low dust luminosity, and are among the less luminous debris discs known. We also find evidence of an anticorrelation between the luminosity of the dust and the planet eccentricity. Conclusions: Our data show that the presence of planets, not the debris disc, correlates with the stellar metallicity. The results confirm that core-accretion models represent suitable scenarios for debris disc and planet formation. These conclusions are based on a number of stars with discs and planets considerably larger than in previous works, in particular stars hosting low-mass planets and debris discs. Dynamical instabilities produced by eccentric giant planets could explain the suggested dust luminosity trends observed for stars with debris discs and planets. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica); observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias; and data obtained from the ESO Science Archive Facility.Full Tables 1 and 5 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/541/A40

  6. Debris disc constraints on planetesimal formation

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.; Ide, Aljoscha; Löhne, Torsten; Johansen, Anders; Blum, Jürgen

    2018-02-01

    Two basic routes for planetesimal formation have been proposed over the last decades. One is a classical `slow-growth' scenario. Another one is particle concentration models, in which small pebbles are concentrated locally and then collapse gravitationally to form planetesimals. Both types of models make certain predictions for the size spectrum and internal structure of newly born planetesimals. We use these predictions as input to simulate collisional evolution of debris discs left after the gas dispersal. The debris disc emission as a function of a system's age computed in these simulations is compared with several Spitzer and Herschel debris disc surveys around A-type stars. We confirm that the observed brightness evolution for the majority of discs can be reproduced by classical models. Further, we find that it is equally consistent with the size distribution of planetesimals predicted by particle concentration models - provided the objects are loosely bound `pebble piles' as these models also predict. Regardless of the assumed planetesimal formation mechanism, explaining the brightest debris discs in the samples uncovers a `disc mass problem'. To reproduce such discs by collisional simulations, a total mass of planetesimals of up to ˜1000 Earth masses is required, which exceeds the total mass of solids available in the protoplanetary progenitors of debris discs. This may indicate that stirring was delayed in some of the bright discs, that giant impacts occurred recently in some of them, that some systems may be younger than previously thought or that non-collisional processes contribute significantly to the dust production.

  7. A submillimeter background galaxy projected on the debris disk of HD95086 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Zapata, Luis A.; Ho, Paul T. P.; Rodríguez, Luis F.

    2018-06-01

    We present sensitive observations carried out with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the dusty debris disc HD 95086. These observations were made in bands 6 (223 GHz) and 7 (338 GHz) with an angular resolution of about 1 arcsec, which allowed us to resolve well the debris disc with a deconvolved size of 7.0 × 6.0 arcsec2 and with an inner depression of about 2 arcsec. We do not detect emission from the star itself and the possible inner dusty belt. We also do not detect CO (J = 2-1) and (J = 3-2) emission, excluding the possibility of an evolved gaseous primordial disc as noted in previous studies of HD95086. We estimated a lower limit for the gas mass of ≤0.01 M⊕ for the debris disc of HD95086. From the mm. emission, we computed a dust mass for the debris disc HD95086 of 0.5 ± 0.2 M⊕, resulting in a dust-to-gas ratio of ≥50. Finally, we confirm the detection of a strong submillimeter source to the north-west of the disc (ALMA-SMM1) revealed by recent ALMA observations. This new source might be interpreted as a planet in formation on the periphery of the debris disc HD 95086 or as a strong impact between dwarf planets. However, given the absence of the proper motions of ALMA-SMM1 similar to those reported in the debris disc (estimated from these new ALMA observations) and for the optical star, this is more likely to be a submillimeter background galaxy.

  8. First results of the SONS survey: submillimetre detections of debris discs

    NASA Astrophysics Data System (ADS)

    Panić, O.; Holland, W. S.; Wyatt, M. C.; Kennedy, G. M.; Matthews, B. C.; Lestrade, J. F.; Sibthorpe, B.; Greaves, J. S.; Marshall, J. P.; Phillips, N. M.; Tottle, J.

    2013-10-01

    New detections of debris discs at submillimetre wavelengths present highly valuable complementary information to prior observations of these sources at shorter wavelengths. Characterization of discs through spectral energy distribution modelling including the submillimetre fluxes is essential for our basic understanding of disc mass and temperature, and presents a starting point for further studies using millimetre interferometric observations. In the framework of the ongoing SCUBA-2 Observations of Nearby Stars, the instrument SCUBA-2 on the James Clerk Maxwell Telescope was used to provide measurements of 450 and 850 μm fluxes towards a large sample of nearby main-sequence stars with debris discs detected previously at shorter wavelengths. We present the first results from the ongoing survey, concerning 850 μm detections and 450 μm upper limits towards 10 stars, the majority of which are detected at submillimetre wavelengths for the first time. One, or possibly two, of these new detections is likely a background source. We fit the spectral energy distributions of the star+disc systems with a blackbody emission approach and derive characteristic disc temperatures. We use these temperatures to convert the observed fluxes to disc masses. We obtain a range of disc masses from 0.001 to 0.1 M⊕, values similar to the prior dust mass measurements towards debris discs. There is no evidence for evolution in dust mass with age on the main sequence, and indeed the upper envelope remains relatively flat at ≈0.5 M⊕ at all ages. The inferred disc masses are lower than those from disc detections around pre-main-sequence stars, which may indicate a depletion of solid mass. This may also be due to a change in disc opacity, though limited sensitivity means that it is not yet known what fraction of pre-main-sequence stars have discs with dust masses similar to debris disc levels. New, high-sensitivity detections are a path towards investigating the trends in dust mass evolution.

  9. Alignment in star-debris disc systems seen by Herschel

    NASA Astrophysics Data System (ADS)

    Greaves, J. S.; Kennedy, G. M.; Thureau, N.; Eiroa, C.; Marshall, J. P.; Maldonado, J.; Matthews, B. C.; Olofsson, G.; Barlow, M. J.; Moro-Martín, A.; Sibthorpe, B.; Absil, O.; Ardila, D. R.; Booth, M.; Broekhoven-Fiene, H.; Brown, D. J. A.; Cameron, A. Collier; del Burgo, C.; Di Francesco, J.; Eislöffel, J.; Duchêne, G.; Ertel, S.; Holland, W. S.; Horner, J.; Kalas, P.; Kavelaars, J. J.; Lestrade, J.-F.; Vican, L.; Wilner, D. J.; Wolf, S.; Wyatt, M. C.

    2014-02-01

    Many nearby main-sequence stars have been searched for debris using the far-infrared Herschel satellite, within the DEBRIS, DUNES and Guaranteed-Time Key Projects. We discuss here 11 stars of spectral types A-M where the stellar inclination is known and can be compared to that of the spatially resolved dust belts. The discs are found to be well aligned with the stellar equators, as in the case of the Sun's Kuiper belt, and unlike many close-in planets seen in transit surveys. The ensemble of stars here can be fitted with a star-disc tilt of ≲ 10°. These results suggest that proposed mechanisms for tilting the star or disc in fact operate rarely. A few systems also host imaged planets, whose orbits at tens of au are aligned with the debris discs, contrary to what might be expected in models where external perturbers induce tilts.

  10. Atomic gas in debris discs

    NASA Astrophysics Data System (ADS)

    Hales, Antonio S.; Barlow, M. J.; Crawford, I. A.; Casassus, S.

    2017-04-01

    We have conducted a search for optical circumstellar absorption lines in the spectra of 16 debris disc host stars. None of the stars in our sample showed signs of emission line activity in either Hα, Ca II or Na I, confirming their more evolved nature. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines (when Na I D data were available). We analyse the characteristics of these spectral features to determine whether they are of circumstellar or interstellar origins. The strongest evidence for circumstellar gas is seen in the spectrum of HD 110058, which is known to host a debris disc observed close to edge-on. This is consistent with a recent ALMA detection of molecular gas in this debris disc, which shows many similarities to the β Pictoris system.

  11. A Herschel resolved far-infrared dust ring around HD 207129

    NASA Astrophysics Data System (ADS)

    Marshall, J. P.; Löhne, T.; Montesinos, B.; Krivov, A. V.; Eiroa, C.; Absil, O.; Bryden, G.; Maldonado, J.; Mora, A.; Sanz-Forcada, J.; Ardila, D.; Augereau, J.-Ch.; Bayo, A.; Del Burgo, C.; Danchi, W.; Ertel, S.; Fedele, D.; Fridlund, M.; Lebreton, J.; González-García, B. M.; Liseau, R.; Meeus, G.; Müller, S.; Pilbratt, G. L.; Roberge, A.; Stapelfeldt, K.; Thébault, P.; White, G. J.; Wolf, S.

    2011-05-01

    Context. Dusty debris discs around main sequence stars are thought to be the result of continuous collisional grinding of planetesimals in the system. The majority of these systems are unresolved and analysis of the dust properties is limited by the lack of information regarding the dust location. Aims: The Herschel DUNES key program is observing 133 nearby, Sun-like stars (<20 pc, FGK spectral type) in a volume limited survey to constrain the absolute incidence of cold dust around these stars by detection of far infrared excess emission at flux levels comparable to the Edgeworth-Kuiper belt (EKB). Methods: We have observed the Sun-like star HD 207129 with Herschel PACS and SPIRE. In all three PACS bands we resolve a ring-like structure consistent with scattered light observations. Using α Boötis as a reference point spread function (PSF), we deconvolved the images, clearly resolving the inner gap in the disc at both 70 and 100 μm. Results: We have resolved the dust-producing planetesimal belt of a debris disc at 100 μm for the first time. We measure the radial profile and fractional luminosity of the disc, and compare the values to those of discs around stars of similar age and/or spectral type, placing this disc in context of other resolved discs observed by Herschel/DUNES. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  12. Massive collisions in debris disks: possible application to the beta Pic disc

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.

    2014-09-01

    The new LIDT-DD code has been used to study massive collisions in debris discs. This new hybrid model is a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013). It models the full complexity of debris discs' physics such as high velocity collisions, radiation-pressure affected orbits, wide range of grains' dynamical behaviour, etc. LIDT-DD can be used on many possible applications. Our first test case concerns the violent breakup of a massive planetesimal such as the ones happening during the late stages of planetary formation or with the biggest bodies in debris belts. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We find that the breakup of a Ceres-sized body creates an asymmetric dust disc that is homogenized, by the coupled action of collisions and dynamics. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance. As for the asymmetric structures, we derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments, showing that they should be clearly visible and resolved from a 10 pc distance. We explain the observational signature of such impacts and give scaling laws to extrapolate our results to different configurations. These first results confirm that our code can be used to study the massive collision scenario to explain some asymmetries in the Beta-Pic disc.

  13. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs

    NASA Astrophysics Data System (ADS)

    Mann, Ingrid

    2017-05-01

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size. This article is part of the themed issue 'Cometary science after Rosetta'.

  14. Prize of the best thesis 2015: Study of debris discs through state-of-the-art numerical modelling

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.

    2015-12-01

    This proceeding summarises the thesis entitled ``Study of debris discs with a new generation numerical model'' by Quentin Kral, for which he obtained the prize of the best thesis in 2015. The thesis brought major contributions to the field of debris disc modelling. The main achievement is to have created, almost ex-nihilo, the first truly self-consistent numerical model able to simultaneously follow the coupled collisional and dynamical evolutions of debris discs. Such a code has been thought as being the ``Holy Grail'' of disc modellers for the past decade, and while several codes with partial dynamics/collisions coupling have been presented, the code developed in this thesis, called ``LIDT-DD'' is the first to achieve a full coupling. The LIDT-DD model, which is the first of a new-generation of fully self-consistent debris disc models is able to handle both planetesimals and dust and create new fragments after each collision. The main idea of LIDT-DD development was to merge into one code two approaches that were so far used separately in disc modelling, that is, an N-body algorithm to investigate the dynamics, and a statistical scheme to explore the collisional evolution. This complex scheme is not straightforward to develop as there are major difficulties to overcome: 1) collisions in debris discs are highly destructive and produce clouds of small fragments after each single impact, 2) the smallest (and most numerous) of these fragments have a strongly size-dependent dynamics because of the radiation pressure, and 3) the dust usually observed in discs is precisely these smallest grains. These extreme constraints had so far prevented all previous attempts at developing self-consistent disc models to succeed. The thesis contains many examples of the use of LIDT-DD that are not yet published but the case of the collision between two asteroid-like bodies is studied in detail. In particular, LIDT-DD is able to predict the different stages that should be observed after such massive collisions that happen mainly in the latest stages of planetary formation. Some giant impact signatures and observability predictions for VLT/SPHERE and JWST/MIRI are given. JWST should be able to detect many of such impacts and would enable to see on-going planetary formation in dozens of planetary systems.

  15. The co-existence of hot and cold gas in debris discs

    NASA Astrophysics Data System (ADS)

    Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.

    2018-06-01

    Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest that the non-detection of hot gas absorptions in some face-on systems is due to the disc inclination and likely not to the absence of the hot-gas component. This gas is likely released in physical processes related in some way to the evaporation of exocomets, evaporation of dust grains, or grain-grain collisions close to the central star. The reduced spectra are only available at the CDS (ascii files) and at the FEROS archive (FITS files) via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A3

  16. A highly dynamical debris disc in an evolved planetary system

    NASA Astrophysics Data System (ADS)

    Manser, Christopher

    2017-08-01

    Our HST/COS survey for the photospheric pollution by planetary debris undisputably demonstrates that at least 25% of white dwarfs host an evolved planetary system. The debris discs holding the material that accretes onto the white dwarf are produced by the tidal disruption of asteroids, and are observed in nearly 40 systems by infrared excess emission from micron-sized dust. In a small number of cases, we have also detected double-peaked Ca II 860 nm emission lines from a metal-rich gaseous disc in addition to photospheric pollution and circumstellar dust. Our ground-based monitoring of the brightest of these systems, SDSS J1228+1040, over the last eleven years shows a dramatic morphological change in the emission line profiles on the time-scale of years. The evolution of the line profiles is consistent with the precession of an eccentric disc on a period of 25 years, indicating a recent dynamical interaction within the underlying dust disc. This could either be related to the initial circularisation of the disc, or a secondary impact onto an existing disc. We expect that the accretion rate onto the white dwarf varies on the same timescale as the Ca II emission lines, and there is the tantalising possibility to detect changes in the bulk abundances, if the impact of a planetesimal with a different bulk abundance stirred up the disc. We request a small amount of COS time to monitor the debris abundances over the next three HST Cycles to test this hypothesis, and bolster our understanding of the late evolution of planetary systems.

  17. DUst around NEarby Stars. The Survey Observational Results

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Montesinos, B.; Absil, O.; Augereau, J. Ch.; Bayo, A.; Bryden, G.; Danchi, W.; delBurgo, C.; hide

    2013-01-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts.Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems.Methods. We used Herschel PACS to observe a sample of nearby FGK stars. Data at 100 and 160 micron were obtained, complemented in some cases with observations at 70 micron, and at 250, 350 and 500 micron using SPIRE. The observing strategy was to integrate as deep as possible at 100 micron to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of approx. 12.1% +/- 5% before Herschel to approx 20.2 % +/- % 2. A significant fraction (approx. 52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 micron range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age.

  18. Comets as a possible source of nanodust in the Solar System cloud and in planetary debris discs.

    PubMed

    Mann, Ingrid

    2017-07-13

    Comets, comet-like objects and their fragments are the most plausible source for the dust in both the inner heliosphere and planetary debris discs around other stars. The smallest size of dust particles in debris discs is not known and recent observational results suggest that the size distribution of the dust extends down to sizes of a few nanometres or a few tens of nanometres. In the Solar System, electric field measurements from spacecraft observe events that are explained with high-velocity impacts of nanometre-sized dust. In some planetary debris discs an observed mid- to near-infrared emission supposedly results from hot dust located in the vicinity of the star. And the observed emission is characteristic of dust of sizes a few tens of nanometres. Rosetta observations, on the other hand, provide little information on the presence of nanodust near comet 67P/Churyumov-Gerasimenko. This article describes why this is not in contradiction to the observations of nanodust in the heliosphere and in planetary debris discs. The direct ejection of nanodust from the nucleus of the comet would not contribute significantly to the observed nanodust fluxes. We discuss a scenario that nanodust forms in the interplanetary dust cloud through the high-velocity collision process in the interplanetary medium for which the production rates are highest near the Sun. Likewise, fragmentation by collisions occurs near the star in planetary debris discs. The collisional fragmentation process in the inner Solar System occurs at similar velocities to those of the collisional evolution in the interstellar medium. A question for future studies is whether there is a common magic size of the smallest collision fragments and what determines this size.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  19. Herschel Discovery of a New class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J. -Ch.; Bayo, A.; hide

    2012-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 micron for all three stars. HD 210277 also shows a small excess at 100 micron. while the 100 micron fluxes of a Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 micron images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approximately 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approximately < 22 K, while the fractional luminosity of the cold dust is L(dust)/ L(star) approximates 10(exp -6), close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  20. Herschel Discovery of a New Class of Cold, Faint Debris Discs

    NASA Technical Reports Server (NTRS)

    Eiroal, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arevalo, M.; Augereau, J.-Ch.; Bayo, A.; hide

    2011-01-01

    We present Herschel PACS 100 and 160 micron observations of the solar-type stars alpha Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel Open Time Key Programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 m for all three stars. HD 210277 also shows a small excess at 100 micron, while the 100 micron fluxes of alpha Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. alpha Men and HD 88230 are spatially resolved in the PACS 160 m images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from approx 115 to <= 250 AU. The estimated black body temperatures from the 100 and 160 micron fluxes are approx < 22 K, while the fractional luminosity of the cold dust is L(sub dust) / L(*) approx 10 (exp 6) close to the luminosity of the Solar-System's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars and cannot easily be explained by invoking "classical" debris disc models.

  1. HD 172555: Detection of 63 micrometers [OI] Emission in a Debris Disc

    NASA Technical Reports Server (NTRS)

    Riviere-Marichalar, P.; Barrado, D.; Augereau, J. -C.; Thi, W. F.; Roberge, A.; Eiroa, C.; Montesinos, B.; Meeus, G.; Howard, C.; Sandell, G.; hide

    2012-01-01

    Context. HD 172555 is a young A7 star belonging to the Beta Pictoris Moving Group that harbours a debris disc. The Spitzer IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas. Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc. Methods. As part of the GASPS Open Time Key Programme, we obtained Herschel-PACS photometric and spectroscopic observations of the source. We analysed PACS observations of HD 172555 and modelled the Spectral Energy Distribution (SED) with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation. Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 micrometers in the HD 172555 circumstellar disc.We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 m). We derive a large dust particle mass of (4.8 plus-minus 0.6)x10(exp -4) Mass compared to Earth and an atomic oxygen mass of 2.5x10(exp -2)R(exp 2) Mass compared to Earth, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phase.

  2. Incidence of Debris Discs Around FGK Stars in the Solar Neighbourhood

    NASA Technical Reports Server (NTRS)

    Montesinos, B.; Eiroa, C.; Krivov, A. V.; Marshall, J. P.; Pilbratt, G. L.; Liseau, R.; Mora, A.; Maldonado, J.; Wolf, S.; Ertel, S.; hide

    2016-01-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their counterparts in the solar system are the asteroid and Edgeworth-Kuiper belts. Aims. The aim of this paper is to provide robust numbers for the incidence of debris discs around FGK stars in the solar neighborhood. Methods. The full sample of 177 FGK stars with d approx. less than 20 pc proposed for the DUst around NEarby Stars (DUNES) survey is presented. Herschel/PACS observations at 100 and 160 micrometers were obtained, and were complemented in some cases with data at 70 micrometers and at 250, 350, and 500 micrometer SPIRE photometry. The 123 objects observed by the DUNES collaboration were presented in a previous paper. The remaining 54 stars, shared with the Disc Emission via a Bias-free Reconnaissance in IR and Sub-mm (DEBRIS) consortium and observed by them, and the combined full sample are studied in this paper. The incidence of debris discs per spectral type is analyzed and put into context together with other parameters of the sample, like metallicity, rotation and activity, and age. Results. The subsample of 105 stars with d approx. less than 15 pc containing 23 F, 33 G, and 49 K stars is complete for F stars, almost complete for G stars, and contains a substantial number of K stars from which we draw solid conclusions on objects of this spectral type. The incidence rates of debris discs per spectral type are 0.26(+0.21/-0.14) (6 objects with excesses out of 23 F stars), 0.21(+0.17/-0.11) (7 out of 33 G stars), and 0.20(+0.14/-0.09) (10 out of 49 K stars); the fraction for all three spectral types together is 0.22(+0.08/-0.07) (23 out of 105 stars).The uncertainties correspond to a 95 confidence level. The medians of the upper limits of L(sub dust)/L(sub *) for each spectral type are 7.8 x 10(exp -7) (F), 1.4 x 10(exp -6) (G), and 2.2 x 10(exp -6) (K); the lowest values are around 4.0 x 10(exp -7). The incidence of debris discs is similar for active (young) and inactive (old) stars. The fractional luminosity tends to drop with increasing age, as expected from collisional erosion of the debris belts.

  3. Gas and dust in the beta Pictoris moving group as seen by the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Riviere-Marichalar, P.; Barrado, D.; Montesinos, B.; Duchêne, G.; Bouy, H.; Pinte, C.; Menard, F.; Donaldson, J.; Eiroa, C.; Krivov, A. V.; Kamp, I.; Mendigutía, I.; Dent, W. R. F.; Lillo-Box, J.

    2014-05-01

    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and then can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel-PACS observations of young stellar associations. Aims: This work aims at studying the properties of discs in the beta Pictoris moving group (BPMG) through far-IR PACS observations of dust and gas. Methods: We obtained Herschel-PACS far-IR photometric observations at 70, 100, and 160 μm of 19 BPMG members, together with spectroscopic observations for four of them. These observations were centred at 63.18 μm and 157 μm, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results: We have detected far-IR excess emission towards nine BPMG members, including the first detection of an IR excess towards HD 29391.The star HD 172555, shows [OI] emission, while HD 181296 shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55-264 K, with low dust masses (<6.6 × 10-5 M⊕ to 0.2 M⊕) and radii from blackbody models in the range 3 to ~82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Origin and evolution of two-component debris discs and an application to the q1 Eridani system

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Krivov, Alexander V.; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-09-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an `asteroid belt' closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-temperature debris disc around a nearby solar-type star q1 Eridani. This implies a Solar system-like architecture of the system, with an outer massive `Kuiper belt', an inner `asteroid belt', and a few Neptune- to Jupiter-mass planets in between.

  5. Herschel discovery of a new class of cold, faint debris discs

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Krivov, A. V.; Montesinos, B.; Absil, O.; Ardila, D.; Arévalo, M.; Augereau, J.-Ch.; Bayo, A.; Danchi, W.; Del Burgo, C.; Ertel, S.; Fridlund, M.; González-García, B. M.; Heras, A. M.; Lebreton, J.; Liseau, R.; Maldonado, J.; Meeus, G.; Montes, D.; Pilbratt, G. L.; Roberge, A.; Sanz-Forcada, J.; Stapelfeldt, K.; Thébault, P.; White, G. J.; Wolf, S.

    2011-12-01

    We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby Stars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both α Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ~115 to ≤ 250 AU. The estimated black body temperatures from the 100 and 160 μm fluxes are ≲22 K, and the fractional luminosity of the cold dust is Ldust/L ⋆ ~ 10-6, close to the luminosity of the solar-system's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking "classical" debris disc models. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  6. Transient events in bright debris discs: Collisional avalanches revisited

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.

    2018-01-01

    Context. A collisional avalanche is set off by the breakup of a large planetesimal, releasing vast amounts of small unbound grains that enter a debris disc located further away from the star, triggering there a collisional chain reaction that could potentially create detectable transient structures. Aims: We investigate this mechanism, using for the first time a fully self-consistent code coupling dynamical and collisional evolutions. We also quantify for the first time the photometric evolution of the system and investigate whether or not avalanches could explain the short-term luminosity variations recently observed in some extremely bright debris discs. Methods: We use the state-of-the-art LIDT-DD code. We consider an avalanche-favoring A6V star, and two set-ups: a "cold disc" case, with a dust release at 10 au and an outer disc extending from 50 to 120 au, and a "warm disc" case with the release at 1 au and a 5-12 au outer disc. We explore, in addition, two key parameters: the density (parameterized by its optical depth τ) of the main outer disc and the amount of dust released by the initial breakup. Results: We find that avalanches could leave detectable structures on resolved images, for both "cold" and "warm" disc cases, in discs with τ of a few 10-3, provided that large dust masses (≳1020-5 × 1022 g) are initially released. The integrated photometric excess due to an avalanche is relatively limited, less than 10% for these released dust masses, peaking in the λ 10-20 μm domain and becoming insignificant beyond 40-50 μm. Contrary to earlier studies, we do not obtain stronger avalanches when increasing τ to higher values. Likewise, we do not observe a significant luminosity deficit, as compared to the pre-avalanche level, after the passage of the avalanche. These two results concur to make avalanches an unlikely explanation for the sharp luminosity drops observed in some extremely bright debris discs. The ideal configuration for observing an avalanche would be a two-belt structure, with an inner belt (at 1 or 10 au for the "warm" and "cold" disc cases, respectively) of fractional luminosity f ≳ 10-4 where breakups of massive planetesimals occur, and a more massive outer belt, with τ of a few 10-3, into which the avalanche chain reaction develops and propagates.

  7. The dynamical structure of the HR8799 inner debris disk

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.

    2014-11-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.

  8. Stellar photospheric abundances as a probe of discs and planets

    NASA Astrophysics Data System (ADS)

    Jermyn, Adam S.; Kama, Mihkel

    2018-06-01

    Protoplanetary discs, debris discs, and disrupted or evaporating planets can all feed accretion on to stars. The photospheric abundances of such stars may then reveal the composition of the accreted material. This is especially likely in B to mid-F type stars, which have radiative envelopes and hence less bulk-photosphere mixing. We present a theoretical framework (CAM), considering diffusion, rotation, and other stellar mixing mechanisms to describe how the accreted material interacts with the bulk of the star. This allows the abundance pattern of the circumstellar material to be calculated from measured stellar abundances and parameters (vrot, Teff). We discuss the λ Boötis phenomenon and the application of CAM on stars hosting protoplanetary discs (HD 100546, HD 163296), debris discs (HD 141569, HD 21997), and evaporating planets (HD 195689/KELT-9).

  9. Predictions for the secondary CO, C and O gas content of debris discs from the destruction of volatile-rich planetesimals

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Matrà, Luca; Wyatt, Mark C.; Kennedy, Grant M.

    2017-07-01

    This paper uses observations of dusty debris discs, including a growing number of gas detections in these systems, to test our understanding of the origin and evolution of this gaseous component. It is assumed that all debris discs with icy planetesimals create second generation CO, C and O gas at some level, and the aim of this paper is to predict that level and assess its observability. We present a new semi-analytical equivalent of the numerical model of Kral et al. allowing application to large numbers of systems. That model assumes CO is produced from volatile-rich solid bodies at a rate that can be predicted from the debris discs fractional luminosity. CO photodissociates rapidly into C and O that then evolve by viscous spreading. This model provides a good qualitative explanation of all current observations, with a few exceptional systems that likely have primordial gas. The radial location of the debris and stellar luminosity explain some non-detections, e.g. close-in debris (like HD 172555) is too warm to retain CO, while high stellar luminosities (like η Tel) result in short CO lifetimes. We list the most promising targets for gas detections, predicting >15 CO detections and >30 C I detections with ALMA, and tens of C II and O I detections with future far-IR missions. We find that CO, C I, C II and O I gas should be modelled in non-LTE for most stars, and that CO, C I and O I lines will be optically thick for the most gas-rich systems. Finally, we find that radiation pressure, which can blow out C I around early-type stars, can be suppressed by self-shielding.

  10. Self-Stirring of Debris Discs by Planetesimals Formed by Pebble Concentration

    NASA Astrophysics Data System (ADS)

    Krivov, Alexander V.; Booth, Mark

    2018-06-01

    When a protoplanetary disc looses gas, it leaves behind planets and one or more planetesimal belts. The belts get dynamically excited, either by planets ("planet stirring") or by embedded big planetesimals ("self-stirring"). Collisions between planetesimals become destructive and start to produce dust, creating an observable debris disc. Following Kenyon & Bromley (2008), it is often assumed that self-stirring starts to operate as soon as the first ˜1000 km-sized embedded "Plutos" have formed. However, state-of-the-art pebble concentration models robustly predict planetesimals between a few km and ˜200 km in size to form in protoplanetary discs rapidly, before then slowly growing into Pluto-sized bodies. We show that the timescale, on which these planetesimals excite the disc sufficiently for fragmentation, is shorter than the formation timescale of Plutos. Using an analytic model based on the Ida & Makino (1993) theory, we find the excitation timescale to be T_excite ≈ 100 x_m^{-1} M_\\star ^{-3/2} a^3 Myr, where xm is the total mass of a protoplanetary disc progenitor in the units of the Minimum-Mass Solar Nebula, a its radius in the units of 100 AU, and M⋆ is the stellar mass in solar masses. These results are applied to a set of 23 debris discs that have been well resolved with ALMA or SMA. We find that the majority of these discs are consistent with being self-stirred. However, three large discs around young early-type stars do require planets as stirrers. These are 49 Cet, HD 95086, and HR 8799, of which the latter two are already known to have planets.

  11. Planet signatures and Size Segregation in Debris Discs

    NASA Astrophysics Data System (ADS)

    Thébault, Philippe

    2014-01-01

    The response of a debris disc to a planetary perturber is the result of the complex interplay between gravitational effects, grain collisions and stellar radiation pressure (Stark & Kuchner (2009). We investigate to what extent this response can depart from the pure gravitational case when including grain collisional production and radiation pressure. We use the DyCoSS code (Thébault (2012), designed to study the coupled effect of collisions and dynamics for systems at steady state with one perturbing body. We focus on two outcomes: the 2D surface density profile of the disc+planet system, and the way the Particle Size Distribution (PSD) is spatially segregated within the disc. We consider two set-ups: 1) a narrow ring with an exterior ``shepherding'' planet, and 2) an extended disc in which a planet is embedded. For each case, the planet mass and orbit are explored as free parameters, and an unperturbed ``no-planet'' case is also considered. Another parameter is the disc's collisional activity, as parameterized by its optical depth τ.

  12. Signatures of massive collisions in debris discs. A self-consistent numerical model

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.

    2015-01-01

    Context. Violent stochastic collisional events have been invoked as a possible explanation for some debris discs displaying pronounced azimuthal asymmetries or having a luminosity excess exceeding that expected for systems at collisional steady-state. So far, no thorough modelling of the consequences of such stochastic events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of the released dust. Aims: We perform the first fully self-consistent modelling of the aftermath of massive breakups in debris discs. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude, and spatial structure of the signature left by such a violent event, as well as its observational detectability. Methods: We use the recently developed LIDT-DD code, which handles the coupled collisional and dynamical evolution of debris discs. The main focus is placed on the complex interplay between destructive collisions, Keplerian dynamics, and radiation pressure forces. We use the GRaTer package to estimate the system's luminosity at different wavelengths. Results: The breakup of a Ceres-sized body at 6 AU creates an asymmetric dust disc that is homogenized by the coupled action of collisions and dynamics on a timescale of a few 105 years. After a transient period where it is very steep, the particle size distribution in the system relaxes to a collisional steady-state law after ~104 years. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance, over a period of ~106 years that exceeds the duration of the asymmetric phase of the disc (a few 105 years). As for the asymmetric structures, we derive synthetic images for the VLT/SPHERE and JWST/MIRI instruments, showing that they should be clearly visible and resolved from a 10 pc distance. Images at 1.6 μm (marginally), 11.4, and 15.5 μm show the inner disc structures, while 23 μm images display the outer disc asymmetries.

  13. SONS: The JCMT legacy survey of debris discs in the submillimetre

    NASA Astrophysics Data System (ADS)

    Holland, Wayne S.; Matthews, Brenda C.; Kennedy, Grant M.; Greaves, Jane S.; Wyatt, Mark C.; Booth, Mark; Bastien, Pierre; Bryden, Geoff; Butner, Harold; Chen, Christine H.; Chrysostomou, Antonio; Davies, Claire L.; Dent, William R. F.; Di Francesco, James; Duchêne, Gaspard; Gibb, Andy G.; Friberg, Per; Ivison, Rob J.; Jenness, Tim; Kavelaars, JJ; Lawler, Samantha; Lestrade, Jean-François; Marshall, Jonathan P.; Moro-Martin, Amaya; Panić, Olja; Phillips, Neil; Serjeant, Stephen; Schieven, Gerald H.; Sibthorpe, Bruce; Vican, Laura; Ward-Thompson, Derek; van der Werf, Paul; White, Glenn J.; Wilner, David; Zuckerman, Ben

    2017-09-01

    Debris discs are evidence of the ongoing destructive collisions between planetesimals, and their presence around stars also suggests that planets exist in these systems. In this paper, we present submillimetre images of the thermal emission from debris discs that formed the SCUBA-2 Observations of Nearby Stars (SONS) survey, one of seven legacy surveys undertaken on the James Clerk Maxwell Telescope between 2012 and 2015. The overall results of the survey are presented in the form of 850 μm (and 450 μm, where possible) images and fluxes for the observed fields. Excess thermal emission, over that expected from the stellar photosphere, is detected around 49 stars out of the 100 observed fields. The discs are characterized in terms of their flux density, size (radial distribution of the dust) and derived dust properties from their spectral energy distributions. The results show discs over a range of sizes, typically 1-10 times the diameter of the Edgeworth-Kuiper Belt in our Solar system. The mass of a disc, for particles up to a few millimetres in size, is uniquely obtainable with submillimetre observations and this quantity is presented as a function of the host stars' age, showing a tentative decline in mass with age. Having doubled the number of imaged discs at submillimetre wavelengths from ground-based, single-dish telescope observations, one of the key legacy products from the SONS survey is to provide a comprehensive target list to observe at high angular resolution using submillimetre/millimetre interferometers (e.g. Atacama Large Millimeter Array, Smithsonian Millimeter Array).

  14. Searching for signatures of planet formation in stars with circumstellar debris discs

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Eiroa, C.; Villaver, E.; Montesinos, B.; Mora, A.

    2015-07-01

    Context. Tentative correlations between the presence of dusty circumstellar debris discs and low-mass planets have recently been presented. In parallel, detailed chemical abundance studies have reported different trends between samples of planet and non-planet hosts. Whether these chemical differences are indeed related to the presence of planets is still strongly debated. Aims: We aim to test whether solar-type stars with debris discs show any chemical peculiarity that could be related to the planet formation process. Methods: We determine in a homogeneous way the metallicity, [Fe/H], and abundances of individual elements of a sample of 251 stars including stars with known debris discs, stars harbouring simultaneously debris discs and planets, stars hosting exclusively planets, and a comparison sample of stars without known discs or planets. High-resolution échelle spectra (R ~ 57 000) from 2-3 m class telescopes are used. Our methodology includes the calculation of the fundamental stellar parameters (Teff, log g, microturbulent velocity, and metallicity) by applying the iron ionisation and equilibrium conditions to several isolated Fe i and Fe ii lines, as well as individual abundances of C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, and Zn. Results: No significant differences have been found in metallicity, individual abundances or abundance-condensation temperature trends between stars with debris discs and stars with neither debris nor planets. Stars with debris discs and planets have the same metallicity behaviour as stars hosting planets, and they also show a similar ⟨[ X/Fe ] ⟩ - TC trend. Different behaviour in the ⟨[ X/Fe ] ⟩ - TC trends is found between the samples of stars without planets and the samples of planet hosts. In particular, when considering only refractory elements, negative slopes are shown in cool giant planet hosts, whilst positive ones are shown in stars hosting low-mass planets. The statistical significance of the derived slopes is low, however, probably because of the wide range of stellar parameters of our samples. Stars hosting exclusively close-in giant planets behave in a different way, showing higher metallicities and positive ⟨[ X/Fe ] ⟩ - TC slope. A search for correlations between the ⟨[ X/Fe ] ⟩ - TC slopes and the stellar properties reveals a moderate but significant correlation with the stellar radius and a weak correlation with the stellar age, which remain even if Galactic chemical evolution effects are considered. No correlation between the ⟨[ X/Fe ] ⟩ - TC slopes and the disc/planet properties are found. Conclusions: The fact that stars with debris discs and stars with low-mass planets do not show either metal enhancement or a different ⟨[ X/Fe ] ⟩ - TC trend might indicate a correlation between the presence of debris discs and the presence of low-mass planets. We extend results from previous works based mainly on solar analogues with reported differences in the ⟨[ X/Fe ] ⟩ - TC trends between planet hosts and non-hosts to a wider range of parameters. However, these differences tend to be present only when the star hosts a cool distant planet and not in stars hosting exclusively low-mass planets. The interpretation of these differences as a signature of planetary formation should be considered with caution since moderate correlations between the TC-slopes with the stellar radius and the stellar age are found, suggesting that an evolutionary effect might be at work. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC); observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica); observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias; observations made at the Mercator Telescope, operated on the island of La Palma by the Flemish Community; and data obtained from the ESO Science Archive Facility.Full Tables 2 and 3, Table 11, and Appendices are available in electronic form at http://www.aanda.org .

  15. Dancing with the stars: formation of the Fomalhaut triple system and its effect on the debris discs

    NASA Astrophysics Data System (ADS)

    Shannon, Andrew; Clarke, Cathie; Wyatt, Mark

    2014-07-01

    Fomalhaut is a triple system, with all components widely separated (˜105 au). Such widely separated binaries are thought to form during cluster dissolution, but that process is unlikely to form such a triple system. We explore an alternative scenario, where A and C form as a tighter binary from a single molecular cloud core (with semimajor axis ˜104 au), and B is captured during cluster dispersal. We use N-body simulations augmented with the Galactic tidal forces to show that such a system naturally evolves into a Fomalhaut-like system in about half of cases, on a time-scale compatible with the age of Fomalhaut. From initial non-interacting orbits, Galactic tides drive cycles in B's eccentricity that lead to a close encounter with C. After several close encounters, typically lasting tens of millions of years, one of the stars is ejected. The Fomalhaut-like case with both components at large separations is almost invariably a precursor to the ejection of one component, most commonly Fomalhaut C. By including circumstellar debris in a subset of the simulations, we also show that such an evolution usually does not disrupt the coherently eccentric debris disc around Fomalhaut A, and in some cases can even produce such a disc. We also find that the final eccentricity of the disc around A and the disc around C are correlated, which may indicate that the dynamics of the three stars stirred C's disc, explaining its unusual brightness.

  16. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  17. LIDT-DD: A new hybrid model to understand debris discs observations - The case of massive collisions.

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.

    2014-12-01

    LIDT-DD is a new hybrid model coupling the collisional and dynamical evolution in debris discs in a self-consistent way. It has been developed in a way that allows to treat a large number of different astrophysical cases where collisions and dynamics have an important role. This interplay was often totally neglected in previous studies whereas, even for the simplest configurations, the real physics of debris discs imposes strong constraints and interactions between dynamics and collisions. After presenting the LIDT-DD model, we will describe the evolution of violent stochastic collisional events with this model. These massive impacts have been invoked as a possible explanation for some debris discs displaying pronounced azimuthal asymmetries or having a luminosity excess exceeding that expected for systems at collisional steady-state. So far, no thorough modelling of the consequences of such stochastic events has been carried out, mainly because of the extreme numerical challenge of coupling the dynamical and collisional evolution of the released dust. We follow the collisional and dynamical evolution of dust released after the breakup of a Ceres-sized body at 6 AU from its central star. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We use the GRaTer package to estimate the system's luminosity at different wavelengths and derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments.

  18. LIDT-DD: A new self-consistent debris disc model that includes radiation pressure and couples dynamical and collisional evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thébault, P.; Charnoz, S.

    2013-10-01

    Context. In most current debris disc models, the dynamical and the collisional evolutions are studied separately with N-body and statistical codes, respectively, because of stringent computational constraints. In particular, incorporating collisional effects (especially destructive collisions) into an N-body scheme has proven a very arduous task because of the exponential increase of particles it would imply. Aims: We present here LIDT-DD, the first code able to mix both approaches in a fully self-consistent way. Our aim is for it to be generic enough to be applied to any astrophysical case where we expect dynamics and collisions to be deeply interlocked with one another: planets in discs, violent massive breakups, destabilized planetesimal belts, bright exozodiacal discs, etc. Methods: The code takes its basic architecture from the LIDT3D algorithm for protoplanetary discs, but has been strongly modified and updated to handle the very constraining specificities of debris disc physics: high-velocity fragmenting collisions, radiation-pressure affected orbits, absence of gas that never relaxes initial conditions, etc. It has a 3D Lagrangian-Eulerian structure, where grains of a given size at a given location in a disc are grouped into super-particles or tracers whose orbits are evolved with an N-body code and whose mutual collisions are individually tracked and treated using a particle-in-a-box prescription designed to handle fragmenting impacts. To cope with the wide range of possible dynamics for same-sized particles at any given location in the disc, and in order not to lose important dynamical information, tracers are sorted and regrouped into dynamical families depending on their orbits. A complex reassignment routine that searches for redundant tracers in each family and reassignes them where they are needed, prevents the number of tracers from diverging. Results: The LIDT-DD code has been successfully tested on simplified cases for which robust results have been obtained in past studies: we retrieve the classical features of particle size distributions in unperturbed discs and the outer radial density profiles in ~r-1.5 outside narrow collisionally active rings as well as the depletion of small grains in dynamically cold discs. The potential of the new code is illustrated with the test case of the violent breakup of a massive planetesimal within a debris disc. Preliminary results show that we are able for the first time to quantify the timescale over which the signature of such massive break-ups can be detected. In addition to studying such violent transient events, the main potential future applications of the code are planet and disc interactions, and more generally, any configurations where dynamics and collisions are expected to be intricately connected.

  19. DUst around NEarby Stars. The survey observational results

    NASA Astrophysics Data System (ADS)

    Eiroa, C.; Marshall, J. P.; Mora, A.; Montesinos, B.; Absil, O.; Augereau, J. Ch.; Bayo, A.; Bryden, G.; Danchi, W.; del Burgo, C.; Ertel, S.; Fridlund, M.; Heras, A. M.; Krivov, A. V.; Launhardt, R.; Liseau, R.; Löhne, T.; Maldonado, J.; Pilbratt, G. L.; Roberge, A.; Rodmann, J.; Sanz-Forcada, J.; Solano, E.; Stapelfeldt, K.; Thébault, P.; Wolf, S.; Ardila, D.; Arévalo, M.; Beichmann, C.; Faramaz, V.; González-García, B. M.; Gutiérrez, R.; Lebreton, J.; Martínez-Arnáiz, R.; Meeus, G.; Montes, D.; Olofsson, G.; Su, K. Y. L.; White, G. J.; Barrado, D.; Fukagawa, M.; Grün, E.; Kamp, I.; Lorente, R.; Morbidelli, A.; Müller, S.; Mutschke, H.; Nakagawa, T.; Ribas, I.; Walker, H.

    2013-07-01

    Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims: The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods: We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results: Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.orgTables 14 and 15 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A11Full Tables 2-5, 10 and 12 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A11

  20. A Herschel resolved debris disc around HD 105211

    NASA Astrophysics Data System (ADS)

    Hengst, S.; Marshall, J. P.; Horner, J.; Marsden, S. C.

    2017-07-01

    Debris discs are the dusty aftermath of planet formation processes around main-sequence stars. Analysis of these discs is often hampered by the absence of any meaningful constraint on the location and spatial extent of the disc around its host star. Multi-wavelength, resolved imaging ameliorates the degeneracies inherent in the modelling process, making such data indispensable in the interpretation of these systems. The Herschel Space Observatory observed HD 105211 (η Cru, HIP 59072) with its Photodetector Array Camera and Spectrometer (PACS) instrument in three far-infrared wavebands (70, 100 and 160 μm). Here we combine these data with ancillary photometry spanning optical to far-infrared wavelengths in order to determine the extent of the circumstellar disc. The spectral energy distribution and multi-wavelength resolved emission of the disc are simultaneously modelled using a radiative transfer and imaging codes. Analysis of the Herschel/PACS images reveals the presence of extended structure in all three PACS images. From a radiative transfer model we derive a disc extent of 87.0 ± 2.5 au, with an inclination of 70.7 ± 2.2° to the line of sight and a position angle of 30.1 ± 0.5°. Deconvolution of the Herschel images reveals a potential asymmetry but this remains uncertain as a combined radiative transfer and image analysis replicates both the structure and the emission of the disc using a single axisymmetric annulus.

  1. Does warm debris dust stem from asteroid belts?

    NASA Astrophysics Data System (ADS)

    Geiler, Fabian; Krivov, Alexander V.

    2017-06-01

    Many debris discs reveal a two-component structure, with a cold outer and a warm inner component. While the former are likely massive analogues of the Kuiper belt, the origin of the latter is still a matter of debate. In this work, we investigate whether the warm dust may be a signature of asteroid belt analogues. In the scenario tested here, the current two-belt architecture stems from an originally extended protoplanetary disc, in which planets have opened a gap separating it into the outer and inner discs which, after the gas dispersal, experience a steady-state collisional decay. This idea is explored with an analytic collisional evolution model for a sample of 225 debris discs from a Spitzer/IRS catalogue that are likely to possess a two-component structure. We find that the vast majority of systems (220 out of 225, or 98 per cent) are compatible with this scenario. For their progenitors, original protoplanetary discs, we find an average surface density slope of -0.93 ± 0.06 and an average initial mass of (3.3^{+0.4}_{-0.3})× 10^{-3} solar masses, both of which are in agreement with the values inferred from submillimetre surveys. However, dust production by short-period comets and - more rarely - inward transport from the outer belts may be viable, and not mutually excluding, alternatives to the asteroid belt scenario. The remaining five discs (2 per cent of the sample: HIP 11486, HIP 23497, HIP 57971, HIP 85790, HIP 89770) harbour inner components that appear inconsistent with dust production in an 'asteroid belt.' Warm dust in these systems must either be replenished from cometary sources or represent an aftermath of a recent rare event, such as a major collision or planetary system instability.

  2. Resolving the cold debris disc around a planet-hosting star . PACS photometric imaging observations of q1 Eridani (HD 10647, HR 506)

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Eiroa, C.; Fedele, D.; Augereau, J.-C.; Olofsson, G.; González, B.; Maldonado, J.; Montesinos, B.; Mora, A.; Absil, O.; Ardila, D.; Barrado, D.; Bayo, A.; Beichman, C. A.; Bryden, G.; Danchi, W. C.; Del Burgo, C.; Ertel, S.; Fridlund, C. W. M.; Heras, A. M.; Krivov, A. V.; Launhardt, R.; Lebreton, J.; Löhne, T.; Marshall, J. P.; Meeus, G.; Müller, S.; Pilbratt, G. L.; Roberge, A.; Rodmann, J.; Solano, E.; Stapelfeldt, K. R.; Thébault, Ph.; White, G. J.; Wolf, S.

    2010-07-01

    Context. About two dozen exo-solar debris systems have been spatially resolved. These debris discs commonly display a variety of structural features such as clumps, rings, belts, excentric distributions and spiral patterns. In most cases, these features are believed to be formed, shaped and maintained by the dynamical influence of planets orbiting the host stars. In very few cases has the presence of the dynamically important planet(s) been inferred from direct observation. Aims: The solar-type star q1 Eri is known to be surrounded by debris, extended on scales of ⪉30”. The star is also known to host at least one planet, albeit on an orbit far too small to make it responsible for structures at distances of tens to hundreds of AU. The aim of the present investigation is twofold: to determine the optical and material properties of the debris and to infer the spatial distribution of the dust, which may hint at the presence of additional planets. Methods: The Photodetector Array Camera and Spectrometer (PACS) aboard the Herschel Space Observatory allows imaging observations in the far infrared at unprecedented resolution, i.e. at better than 6” to 12” over the wavelength range of 60 μm to 210 μm. Together with the results from ground-based observations, these spatially resolved data can be modelled to determine the nature of the debris and its evolution more reliably than what would be possible from unresolved data alone. Results: For the first time has the q1 Eri disc been resolved at far infrared wavelengths. The PACS observations at 70 μm, 100 μm and 160 μm reveal an oval image showing a disc-like structure in all bands, the size of which increases with wavelength. Assuming a circular shape yields the inclination of its equatorial plane with respect to that of the sky, i > 53°. The results of image de-convolution indicate that i likely is larger than 63°, where 90° corresponds to an edge-on disc. Conclusions: The observed emission is thermal and optically thin. The resolved data are consistent with debris at temperatures below 30 K at radii larger than 120 AU. From image de-convolution, we find that q1 Eri is surrounded by an about 40 AU wide ring at the radial distance of ~85 AU. This is the first real Edgeworth-Kuiper Belt analogue ever observed. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  3. Exoplanet recycling in massive white-dwarf debris discs

    NASA Astrophysics Data System (ADS)

    van Lieshout, R.; Kral, Q.; Charnoz, S.; Wyatt, M. C.; Shannon, A.

    2018-05-01

    Several tens of white dwarfs are known to host circumstellar discs of dusty debris, thought to arise from the tidal disruption of rocky bodies originating in the star's remnant planetary system. This paper investigates the evolution of such discs if they are very massive, as may be the case if their progenitor was a terrestrial planet, moon, or dwarf planet. Assuming the discs are physically thin and flat, like Saturn's rings, their evolution is governed by Poynting-Robertson drag or viscous spreading, where the disc's effective viscosity is due to self-gravity wakes. For discs with masses ≳ 1026 g, located in the outer parts of the tidal disruption zone, viscous spreading dominates the evolution, and mass is transported both in- and outwards. When outwards-spreading material flows beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of moonlets at the outer edge of Saturn's rings. The newly formed bodies migrate outwards by exchanging angular momentum with the disc and coalesce into larger objects through mutual collisions. Eventually, the disc's Roche-limit overflow recycles tens of percent of the original disc mass; most ends up in a single large body near 2:1 mean-motion resonance with the disc's outer edge. Hence, the recycling of a tidally disrupted super-Earth, for example, could yield an Earth-mass planet on a ˜10-h orbit, located in the habitable zone for 2-to-10-Gyr-old white dwarfs. The recycling process also creates a population of smaller bodies just outside the Roche limit, which may explain the minor planets recently postulated to orbit WD 1145+017.

  4. Gravimetric wear analysis and particulate characterization of bilateral facet-augmentation system--PercuDyn™.

    PubMed

    Bhattacharya, Sanghita; Nayak, Aniruddh; Goel, Vijay K; Warren, Chris; Schlaegle, Steve; Ferrara, Lisa

    2010-01-01

    Dynamic stabilization systems are emerging as an alternative to fusion instrumentation. However, cyclic loading and micro-motion at various interfaces may produce wear debris leading to adverse tissue reactions such as osteolysis. Ten million cycles of wear test was performed for PercuDyn™ in axial rotation and the wear profile and the wear rate was mapped. A validation study was undertaken to assess the efficiency of wear debris collection which accounted for experimental errors. The mean wear debris measured at the end of 10 million cycles was 4.01 mg, based on the worst-case recovery rate of 68.2%. Approximately 40% of the particulates were less than 5 μm; 92% less than 10 μm. About 43% of particulates were spherical in shape, 27% particulates were ellipsoidal and the remaining particles were of irregular shapes. The PercuDyn™ exhibited an average polymeric wear rate of 0.4 mg/million cycles; substantially less than the literature derived studies for other motion preservation devices like the Bryan disc and Charité disc. Wear debris size and shape were also similar to these devices.

  5. 77 FR 16917 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... turbofan engines. This AD requires replacement of the high-pressure (HP) turbine spanner retaining nut... stage 2 high-pressure turbine (HPT) disc spanner retaining nuts did not receive the proper heat... HPT disc failure, possibly leading to release of high energy debris, resulting in damage to the...

  6. Analysis of the Herschel DEBRIS Sun-like star sample

    NASA Astrophysics Data System (ADS)

    Sibthorpe, B.; Kennedy, G. M.; Wyatt, M. C.; Lestrade, J.-F.; Greaves, J. S.; Matthews, B. C.; Duchêne, G.

    2018-04-01

    This paper presents a study of circumstellar debris around Sun-like stars using data from the Herschel DEBRIS Key Programme. DEBRIS is an unbiased survey comprising the nearest ˜90 stars of each spectral type A-M. Analysis of the 275 F-K stars shows that excess emission from a debris disc was detected around 47 stars, giving a detection rate of 17.1^{+2.6}_{-2.3} per cent, with lower rates for later spectral types. For each target a blackbody spectrum was fitted to the dust emission to determine its fractional luminosity and temperature. The derived underlying distribution of fractional luminosity versus blackbody radius in the population showed that most detected discs are concentrated at f ˜ 10-5 and at temperatures corresponding to blackbody radii 7-40 au, which scales to ˜40 au for realistic dust properties (similar to the current Kuiper belt). Two outlying populations are also evident; five stars have exceptionally bright emission ( f > 5 × 10-5), and one has unusually hot dust <4 au. The excess emission distributions at all wavelengths were fitted with a steady-state evolution model, showing that these are compatible with all stars being born with a narrow belt that then undergoes collisional grinding. However, the model cannot explain the hot dust systems - likely originating in transient events - and bright emission systems - arising potentially from atypically massive discs or recent stirring. The emission from the present-day Kuiper belt is predicted to be close to the median of the population, suggesting that half of stars have either depleted their Kuiper belts (similar to the Solar system) or had a lower planetesimal formation efficiency.

  7. Tiny Particles, So Far Away

    NASA Image and Video Library

    2005-01-10

    NASA's Spitzer Space Telescope recently captured these images of the star Vega, located 25 light years away in the constellation Lyra. Spitzer was able to detect the heat radiation from the cloud of dust around the star and found that the debris disc is much larger than previously thought. This side by side comparison, taken by Spitzer's multiband imaging photometer, shows the warm infrared glows from dust particles orbiting the star at wavelengths of 24 microns (figure 2 in blue) and 70 microns (figure 3 in red). Both images show a very large, circular and smooth debris disc. The disc radius extends to at least 815 astronomical units. (One astronomical unit is the distance from Earth to the Sun, which is 150-million kilometers or 93-million miles). Scientists compared the surface brightness of the disc in the infrared wavelengths to determine the temperature distribution of the disc and then infer the corresponding particle size in the disc. Most of the particles in the disc are only a few microns in size, or 100 times smaller than a grain of Earth sand. These fine dust particles originate from collisions of embryonic planets near the star at a radius of approximately 90 astronomical units, and are then blown away by Vega's intense radiation. The mass and short lifetime of these small particles indicate that the disc detected by Spitzer is the aftermath of a large and relatively recent collision, involving bodies perhaps as big as the planet Pluto. The images are 3 arcminutes on each side. North is oriented upward and east is to the left. http://photojournal.jpl.nasa.gov/catalog/PIA07218

  8. ALMA observations of the multiplanet system 61 Vir: what lies outside super-Earth systems?

    NASA Astrophysics Data System (ADS)

    Marino, S.; Wyatt, M. C.; Kennedy, G. M.; Holland, W.; Matrà, L.; Shannon, A.; Ivison, R. J.

    2017-08-01

    A decade of surveys has hinted at a possible higher occurrence rate of debris discs in systems hosting low-mass planets. This could be due to common favourable forming conditions for rocky planets close in and planetesimals at large radii. In this paper, we present the first resolved millimetre study of the debris disc in the 4.6 Gyr old multiplanet system 61 Vir, combining Atacama Large Millimeter/submillimeter Array and James Clerk Maxwell Telescope data at 0.86 mm. We fit the data using a parametric disc model, finding that the disc of planetesimals extends from 30 au to at least 150 au, with a surface density distribution of millimetre-sized grains with a power-law slope of 0.1^{+1.1}_{-0.8}. We also present a numerical collisional model that can predict the evolution of the surface density of millimetre grains for a given primordial disc, finding that it does not necessarily have the same radial profile as the total mass surface density (as previous studies suggested for the optical depth), with the former being flatter. Finally, we find that if the planetesimal disc was stirred at 150 au by an additional unseen planet, that planet should be more massive than 10 M⊕ and lie between 10 and 20 au. Lower planet masses and semimajor axes down to 4 au are possible for eccentricities ≫0.1.

  9. Assessment of epidural versus intradiscal biocompatibility of PEEK implant debris: an in vivo rabbit model.

    PubMed

    Hallab, Nadim J; Bao, Qi-Bin; Brown, Tim

    2013-12-01

    To understand the relative histopathological effects of PEEK particulate debris when applied within the epidural versus the intervertebral disc space. We hypothesized that due to the avascular nature of the intervertebral disc acting as a barrier to immune cells, the intradiscal response would be less than the epidural response. The inflammatory effects of clinically relevant doses (3 mg/5-kg rabbit) and sizes (1.15 µm diameter) of PEEK implant debris were assed when placed dry on epidural and intradiscal tissues in an in vivo rabbit model. The size of the particulate was based on wear particulate analysis of wear debris generated from simulator wear testing of PEEK spinal disc arthroplasty devices. Local and systemic gross histology was evaluated at the 3- and 6-month time points. Quantitative immunohistochemistry of local tissues was used to quantify the common inflammatory mediators TNF-α, IL-1β, and IL-6. Both treatments did not alter the normal appearance of the dura mater and vascular structures; however, limited epidural fibrosis was observed. Epidural challenge of PEEK particles resulted in a significant (30 %) increase (p < 0.007) in TNF-α and IL-1β at both 3 and 6 months compared to that of controls, and IL-6 at 6 months (p < 0.0001). Intradiscal challenge of PEEK particles resulted in a significant increase in IL-1β, IL-6 and TNF-α at 6-months post-challenge (p ≤ 0.03). However, overall there were only moderate increases in the relative amount of these cytokines when compared with surgical controls (10-20 %). In contrast, epidural challenge resulted in a 50-100 % increase. The results of this study are similar to past investigations of PEEK, whose results have not been shown to elicit an aggressive immune response. The degree to which these results will translate to the clinical environment remains to be established, but the pattern of subtle elevations in inflammatory cytokines indicated both a mild persistence of responses to PEEK debris, and that intradiscal implant debris will likely result in less inflammation than epidural implant debris.

  10. Spectral energy distribution simulations of a possible ring structure around the young, red brown dwarf G 196-3 B

    NASA Astrophysics Data System (ADS)

    Zakhozhay, Olga V.; Zapatero Osorio, María Rosa; Béjar, Víctor J. S.; Boehler, Yann

    2017-01-01

    The origin of the very red optical and infrared colours of intermediate-age (˜10-500 Myr) L-type dwarfs remains unknown. It has been suggested that low-gravity atmospheres containing large amounts of dust may account for the observed reddish nature. We explored an alternative scenario by simulating debris disc around G 196-3 B, which is an L3 young brown dwarf with a mass of ˜15 MJup and an age in the interval 20-300 Myr. The best-fit solution to G 196-3 B's photometric spectral energy distribution from optical wavelengths through 24 μm corresponds to the combination of an unreddened L3 atmosphere (Teff ≈ 1870 K) and a warm (≈1280 K), narrow (≈0.07-0.11 R⊙) debris disc located at very close distances (≈0.12-0.20 R⊙) from the central brown dwarf. This putative, optically thick, dusty belt, whose presence is compatible with the relatively young system age, would have a mass ≥7 × 10-10 M⊕ comprised of submicron/micron characteristic dusty particles with temperatures close to the sublimation threshold of silicates. Considering the derived global properties of the belt and the disc-to-brown dwarf mass ratio, the dusty ring around G 196-3 B may resemble the rings of Neptune and Jupiter, except for its high temperature and thick vertical height (≈6 × 103 km). Our inferred debris disc model is able to reproduce G 196-3 B's spectral energy distribution to a satisfactory level of achievement.

  11. An ultra scale-down approach to study the interaction of fermentation, homogenization, and centrifugation for antibody fragment recovery from rec E. coli.

    PubMed

    Li, Qiang; Mannall, Gareth J; Ali, Shaukat; Hoare, Mike

    2013-08-01

    Escherichia coli is frequently used as a microbial host to express recombinant proteins but it lacks the ability to secrete proteins into medium. One option for protein release is to use high-pressure homogenization followed by a centrifugation step to remove cell debris. While this does not give selective release of proteins in the periplasmic space, it does provide a robust process. An ultra scale-down (USD) approach based on focused acoustics is described to study rec E. coli cell disruption by high-pressure homogenization for recovery of an antibody fragment (Fab') and the impact of fermentation harvest time. This approach is followed by microwell-based USD centrifugation to study the removal of the resultant cell debris. Successful verification of this USD approach is achieved using pilot scale high-pressure homogenization and pilot scale, continuous flow, disc stack centrifugation comparing performance parameters such as the fraction of Fab' release, cell debris size distribution and the carryover of cell debris fine particles in the supernatant. The integration of fermentation and primary recovery stages is examined using USD monitoring of different phases of cell growth. Increasing susceptibility of the cells to disruption is observed with time following induction. For a given recovery process this results in a higher fraction of product release and a greater proportion of fine cell debris particles that are difficult to remove by centrifugation. Such observations are confirmed at pilot scale. Copyright © 2013 Wiley Periodicals, Inc.

  12. Detecting a rotation in the ɛ Eridani debris disc

    NASA Astrophysics Data System (ADS)

    Poulton, C. J.; Greaves, J. S.; Collier Cameron, A.

    2006-10-01

    The evidence for a rotation of the ɛ Eridani debris disc is examined. Data at 850-μm wavelength were previously obtained using the Submillimetre Common User Bolometer Array (SCUBA) over periods of 1997-1998 and 2000-2002. By χ2 fitting after shift and rotation operations, images from these two epochs were compared to recover proper motion and orbital motion of the disc. The same procedures were then performed on simulated images to estimate the accuracy of the results. Minima in the χ2 plots indicate a motion of the disc of approximately 0.6 arcsec per year in the direction of the star's proper motion. This underestimates the true value of 1 arcsec per year, implying that some of the structure in the disc region is not associated with ɛ Eridani, originating instead from background galaxies. From the χ2 fitting for orbital motion, a counterclockwise rotation rate of per year is deduced. Comparisons with simulated data in which the disc is not rotating show that noise and background galaxies result in approximately Gaussian fluctuations with a standard deviation of per year. Thus, counterclockwise rotation of disc features is supported at approximately a 2σ level, after a 4-yr time difference. This rate is faster than the Keplerian rate of per year for features at ~65 au from the star, suggesting their motion is tracking a planet inside the dust ring. Future observations with SCUBA-2 can rule out no rotation of the ɛ Eridani dust clumps with ~4σ confidence. Assuming a rate of about per year, the rotation of the features after a 10-yr period could be shown to be >=1° per year at the 3σ level.

  13. Exoplanet recycling in massive white-dwarf debris discs

    NASA Astrophysics Data System (ADS)

    Van Lieshout, Rik

    2017-06-01

    When a star evolves into a white dwarf, the planetary system it hosts can become unstable. Planets in such systems may then be scattered onto star-grazing orbits, leading to their tidal disruption as they pass within the white dwarf’s Roche limit. We study the massive, compact debris discs that may arrise from this process using a combination of analytical estimates and numerical modelling. The discs are gravitationally unstable, resulting in an enhanced effective viscosity due to angular momentum transport associated with self-gravity wakes. For disc masses greater than ~1026 g (corresponding to progenitor objects comparable to the Galilean moons), viscous spreading dominates over Poynting-Robertson drag in the outer parts of the disc. In such massive discs, mass is transported both in- and outwards. When the outward-flowing material spreads beyond the Roche limit, it coagulates into new (minor) planets in a process analogous to the ongoing formation of Saturn’s innermost moonlets. This process recycles a substantial fraction of the original disc mass (tens of percents), with the bulk of the mass locked in a single large body orbitting in a 2:1 mean-motion resonance with the Roche limit. As such, the recycling of a tidally disrupted super-Earth could yield an Earth-mass planet on a 10--20 hr orbit. For white dwarfs with a temperature below 6000-7000 K (corresponding to a cooling age of >1--2 Gyr), this orbit is located in the white dwarf’s habitable zone. The recycling process also creates a string of smaller bodies just outside the Roche limit. These may account for the collection of minor planets postulated to orbit white dwarf WD 1145+017.

  14. Outer edges of debris discs. How sharp is sharp?

    NASA Astrophysics Data System (ADS)

    Thébault, P.; Wu, Y.

    2008-04-01

    Context: Rings or annulus-like features have been observed in most imaged debris discs. Outside the main ring, while some systems (e.g., β Pictoris and AU Mic) exhibit smooth surface brightness profiles (SB) that fall off roughly as ~r-3.5, others (e.g. HR 4796A and HD 139664) display large drops in luminosity at the ring's outer edge and steeper radial luminosity profiles. Aims: We seek to understand this diversity of outer edge profiles under the “natural” collisional evolution of the system, without invoking external agents such as planets or gas. Methods: We use a multi-annulus statistical code to follow the evolution of a collisional population, ranging in size from dust grains to planetesimals and initially confined within a belt (the “birth ring”). The crucial effect of radiation pressure on the dynamics and spatial distribution of the smallest grains is taken into account. We explore the dependence of the resulting disc surface brightness profile on various parameters. Results: The disc typically evolves toward a “standard” steady state, where the radial surface brightness profile smoothly decreases with radius as r-3.5 outside the birth ring. This confirms and extends the semi-analytical study of Strubbe & Chiang (2006, ApJ, 648, 652) and provides a firm basis for interpreting observed discs. Deviations from this typical profile, in the form of a sharp outer edge and a steeper fall-off, occur for two “extreme” cases: 1) when the birth ring is so massive that it becomes radially optically thick for the smallest grains. However, the required disc mass is probably too high here to be realistic; 2) when the dynamical excitation of the dust-producing planetesimals is so low (< e> and < i> ≤ 0.01) that the smallest grains, which otherwise dominate the optical depth of the system, are preferentially depleted. This low-excitation case, although possibly not generic, cannot be ruled out by observations for most systems, . Conclusions: Our “standard” profile provides a satisfactory explanation for a large group of debris discs that show smooth outer edges and SB ∝ r-3.5. Systems with sharper outer edges, barring other confining agents, could still be explained by “natural” collisional evolution if their dynamical excitation is very low. We show that such a dynamically-cold case provides a satisfactory fit to the specific HR4796A ring.

  15. Grain size segregation in debris discs

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED-fitting models of observed discs.

  16. Evaluation of the biological response of wear debris.

    PubMed

    Chang, Bong-Soon; Brown, Phillip Rand; Sieber, Ann; Valdevit, Antonio; Tateno, Kei; Kostuik, John Philip

    2004-01-01

    An animal study was conducted to evaluate the biological response to titanium particles from an artificial intervertebral disc in terms of serology and histologic changes. To determine the biological response to wear debris in the retroperitoneal and epidural space. Few wear studies exist about mechanical artificial discs. Twenty-three New Zealand white rabbits were used for two approaches of the lumbar spine. In a retroperitoneal group (10 rabbits), lateral flank approach at the L2-L3 area was used. In an epidural group (13 rabbits), a dorsal laminotomy of L2 was performed. The wear debris was obtained from mechanical test cycling of the implantable intervertebral disc. At 4 and 12 weeks postoperatively, five or six animals from each group were killed. The tissues, including deposition site, regional lymph nodes and major organs, were evaluated with hematoxylin and eosin staining. At death all rabbits were found to be healthy. Blood results from the predeath samples were found to be consistent with the preoperative blood work values. Scar tissue was minimal with good healing. All organs were found to be normal in appearance. On histopathology sections, adverse reactions such as fibrosis, granuloma formation or necrosis were not found in any tissues. Free particles were found sparingly in all tissue sections with minimal cellular response. No remarkable difference was found according to groups or time intervals. Smaller particles were found to be engulfed in macrophages without adverse biological consequences. Titanium particles traveled from the sites of deposition but elicited no to minimal biological response.

  17. Co-formation of the disc and the stellar halo

    NASA Astrophysics Data System (ADS)

    Belokurov, V.; Erkal, D.; Evans, N. W.; Koposov, S. E.; Deason, A. J.

    2018-07-01

    Using a large sample of main sequence stars with 7D measurements supplied by Gaia and SDSS, we study the kinematic properties of the local (within ˜10 kpc from the Sun) stellar halo. We demonstrate that the halo's velocity ellipsoid evolves strongly with metallicity. At the low-[Fe/H] end, the orbital anisotropy (the amount of motion in the radial direction compared with the tangential one) is mildly radial, with 0.2 <β< 0.4. For stars with [Fe/H] > -1.7, however, we measure extreme values of β˜ 0.9. Across the metallicity range considered, namely-3 < [Fe/H] < -1, the stellar halo's spin is minimal, at the level of 20< \\bar{v}_{θ }(kms^{-1}) < 30. Using a suite of cosmological zoom-in simulations of halo formation, we deduce that the observed acute anisotropy is inconsistent with the continuous accretion of dwarf satellites. Instead, we argue, the stellar debris in the inner halo was deposited in a major accretion event by a satellite with Mvir > 1010M⊙ around the epoch of the Galactic disc formation, between 8 and 11 Gyr ago. The radical halo anisotropy is the result of the dramatic radialization of the massive progenitor's orbit, amplified by the action of the growing disc.

  18. Severe impingement of lumbar disc replacements increases the functional biological activity of polyethylene wear debris.

    PubMed

    Baxter, Ryan M; Macdonald, Daniel W; Kurtz, Steven M; Steinbeck, Marla J

    2013-06-05

    Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.

  19. Severe Impingement of Lumbar Disc Replacements Increases the Functional Biological Activity of Polyethylene Wear Debris

    PubMed Central

    Baxter, Ryan M.; MacDonald, Daniel W.; Kurtz, Steven M.; Steinbeck, Marla J.

    2013-01-01

    Background: Wear, oxidation, and particularly rim impingement damage of ultra-high molecular weight polyethylene total disc replacement components have been observed following surgical revision. However, neither in vitro testing nor retrieval-based evidence has shown the effect(s) of impingement on the characteristics of polyethylene wear debris. Thus, we sought to determine (1) differences in polyethylene particle size, shape, number, or biological activity that correspond to mild or severe rim impingement and (2) in an analysis of all total disc replacements, regardless of impingement classification, whether there are correlations between the extent of regional damage and the characteristics of polyethylene wear debris. Methods: The extent of dome and rim damage was characterized for eleven retrieved polyethylene cores obtained at revision surgery after an average duration of implantation of 9.7 years (range, 4.6 to 16.1 years). Polyethylene wear debris was isolated from periprosthetic tissues with use of nitric acid and was imaged with use of environmental scanning electron microscopy. Subsequently, particle size, shape, number, biological activity, and chronic inflammation scores were determined. Results: Grouping of particles by size ranges that represented high biological relevance (<0.1 to 1-μm particles), intermediate biological relevance (1 to 10-μm particles), and low biological relevance (>10-μm particles) revealed an increased volume fraction of particles in the <0.1 to 1-μm and 1 to 10-μm size ranges in the mild-impingement cohort as compared with the severe-impingement cohort. The increased volume fractions resulted in a higher specific biological activity per unit particle volume in the mild-impingement cohort than in the severe-impingement cohort. However, functional biological activity, which is normalized by particle volume (mm3/g of tissue), was significantly higher in the severe-impingement cohort. This increase was due to a larger volume of particles in all three size ranges. In both cohorts, the functional biological activity correlated with the chronic inflammatory response, and the extent of rim penetration positively correlated with increasing particle size, number, and functional biological activity. Conclusions: The results of this study suggest that severe rim impingement increases the production of biologically relevant particles from motion-preserving lumbar total disc replacement components. Level of Evidence: Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:23780545

  20. Hot exozodiacal dust resolved around Vega with IOTA/IONIC

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; Augereau, J.-C.; di Folco, E.; Berger, J.-P.; Coudé du Foresto, V.; Kervella, P.; Le Bouquin, J.-B.; Lebreton, J.; Millan-Gabet, R.; Monnier, J. D.; Olofsson, J.; Traub, W.

    2011-10-01

    Context. Although debris discs have been detected around a significant number of main-sequence stars, only a few of them are known to harbour hot dust in their inner part where terrestrial planets may have formed. Thanks to infrared interferometric observations, it is possible to obtain a direct measurement of these regions, which are of prime importance for preparing future exo-Earth characterisation missions. Aims: We resolve the exozodiacal dust disc around Vega with the help of infrared stellar interferometry and estimate the integrated H-band flux originating from the first few AUs of the debris disc. Methods: Precise H-band interferometric measurements were obtained on Vega with the 3-telescope IOTA/IONIC interferometer (Mount Hopkins, Arizona). Thorough modelling of both interferometric data (squared visibility and closure phase) and spectral energy distribution was performed to constrain the nature of the near-infrared excess emission. Results: Resolved circumstellar emission within ~6 AU from Vega is identified at the 3-σ level. The most straightforward scenario consists in a compact dust disc producing a thermal emission that is largely dominated by small grains located between 0.1 and 0.3 AU from Vega and accounting for 1.23 ± 0.45% of the near-infrared stellar flux for our best-fit model. This flux ratio is shown to vary slightly with the geometry of the model used to fit our interferometric data (variations within ± 0.19%). Conclusions: The presence of hot exozodiacal dust in the vicinity of Vega, initially revealed by K-band CHARA/FLUOR observations, is confirmed by our H-band IOTA/IONIC measurements. Whereas the origin of the dust is still uncertain, its presence and the possible connection with the outer disc suggest that the Vega system is currently undergoing major dynamical perturbations.

  1. Post-main-sequence debris from rotation-induced YORP break-up of small bodies

    NASA Astrophysics Data System (ADS)

    Veras, Dimitri; Jacobson, Seth A.; Gänsicke, Boris T.

    2014-12-01

    Although discs of dust and gas have been observed orbiting white dwarfs, the origin of this circumstellar matter is uncertain. We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to this debris. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  2. Deposition of steeply infalling debris around white dwarf stars

    NASA Astrophysics Data System (ADS)

    Brown, John C.; Veras, Dimitri; Gänsicke, Boris T.

    2017-06-01

    High-metallicity pollution is common in white dwarf (WD) stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to WD systems. We find that the evolution of cm-to-km size (a0) infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any WD, and apply the algorithm to four limiting combinations of hot versus cool (young/old) WDs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (I) Total sublimation above the photosphere befalls all small infallers across the entire WD temperature (TWD) range, the threshold size rising with TWD and 100× larger for rock than snow. (II) All very large objects fragment tidally regardless of TWD: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103-3 × 104 cm across all WD cooling ages. (III) A considerable range of a0 avoids fragmentation and total sublimation, yielding impacts or grazes with cold WDs. This range rapidly narrows with increasing TWD, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  3. Origin of the Local Group satellite planes

    NASA Astrophysics Data System (ADS)

    Banik, Indranil; O'Ryan, David; Zhao, Hongsheng

    2018-07-01

    We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics, which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle discs, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disc is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disc. Thus, the MW thick disc may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.

  4. Limits on the location of planetesimal formation in self-gravitating protostellar discs

    NASA Astrophysics Data System (ADS)

    Clarke, C. J.; Lodato, G.

    2009-09-01

    In this Letter, we show that if planetesimals form in spiral features in self-gravitating discs, as previously suggested by the idealized simulations of Rice et al., then in realistic protostellar discs, this process will be restricted to the outer regions of the disc (i.e. at radii in excess of several tens of au). This restriction relates to the requirement that dust has to be concentrated in spiral features on a time-scale that is less than the (roughly dynamical) lifetime of such features, and that such rapid accumulation requires spiral features whose fractional amplitude is not much less than unity. This in turn requires that the cooling time-scale of the gas is relatively short, which restricts the process to the outer disc. We point out that the efficient conversion of a large fraction of the primordial dust in the disc into planetesimals could rescue this material from the well-known problem of rapid inward migration at an approximate metre-size scale and that in principle the collisional evolution of these objects could help to resupply small dust to the protostellar disc. We also point out the possible implications of this scenario for the location of planetesimal belts inferred in debris discs around main sequence stars, but stress that further dynamical studies are required in order to establish whether the disc retains a memory of the initial site of planetesimal creation.

  5. VizieR Online Data Catalog: 6 cold-gas-bearing debris-disc stars spectra (Rebollido+, 2018)

    NASA Astrophysics Data System (ADS)

    Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absi, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, T.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moor, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.

    2018-02-01

    Spectra obtained with Mercator (La Palma, Spain), NOT (La Palma, Spain) and Tigre (La Luz, Mexico) echelle spectrographs. Observation dates range from September 2015 to July 2016. They were reduced using instrument pipelines. Barycentric correction has been applied to all spectra. (2 data files).

  6. On the Origin of Banded Structure in Dusty Protoplanetary Discs: HL Tau and TW Hya

    NASA Astrophysics Data System (ADS)

    Boley, Aaron C.

    2017-10-01

    We present simulations of planet-planetesimal interactions that can reproduce major and minor banded structure in the HL Tau and TW Hya discs provided that small grains trace the dynamically cold planetesimal population. The consequences of the model and its limitations will be discussed. In particular, the model requires that planetesimals form throughout the disc at early times, that planetesimal-planetesimal collisions are predominately among the cold population, and that pebble accretion leads to mass redistribution of the small grains onto planetesimals before the grains can undergo significant radial drift. The meteortic record may suggest that a similar process occurred in the Solar System. The model implies that grain size distributions inferred from submm/mm studies may reflect early debris processes rather than grain growth.

  7. Kuiper belt analogues in nearby M-type planet-host systems

    NASA Astrophysics Data System (ADS)

    Kennedy, G. M.; Bryden, G.; Ardila, D.; Eiroa, C.; Lestrade, J.-F.; Marshall, J. P.; Matthews, B. C.; Moro-Martin, A.; Wyatt, M. C.

    2018-06-01

    We present the results of a Herschel survey of 21 late-type stars that host planets discovered by the radial velocity technique. The aims were to discover new discs in these systems and to search for any correlation between planet presence and disc properties. In addition to the known disc around GJ 581, we report the discovery of two new discs, in the GJ 433 and GJ 649 systems. Our sample therefore yields a disc detection rate of 14 per cent, higher than the detection rate of 1.2 per cent among our control sample of DEBRIS M-type stars with 98 per cent confidence. Further analysis however shows that the disc sensitivity in the control sample is about a factor of two lower in fractional luminosity than for our survey, lowering the significance of any correlation between planet presence and disc brightness below 98 per cent. In terms of their specific architectures, the disc around GJ 433 lies at a radius somewhere between 1 and 30 au. The disc around GJ 649 lies somewhere between 6 and 30 au, but is marginally resolved and appears more consistent with an edge-on inclination. In both cases the discs probably lie well beyond where the known planets reside (0.06-1.1 au), but the lack of radial velocity sensitivity at larger separations allows for unseen Saturn-mass planets to orbit out to ˜5 au, and more massive planets beyond 5 au. The layout of these M-type systems appears similar to Sun-like star + disc systems with low-mass planets.

  8. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M⊕ planets?

    NASA Astrophysics Data System (ADS)

    Marino, S.; Wyatt, M. C.; Panić, O.; Matrà, L.; Kennedy, G. M.; Bonsor, A.; Kral, Q.; Dent, W. R. F.; Duchene, G.; Wilner, D.; Lisse, C. M.; Lestrade, J.-F.; Matthews, B.

    2017-03-01

    While most of the known debris discs present cold dust at tens of astronomical unit (au), a few young systems exhibit hot dust analogous to the Zodiacal dust. η Corvi is particularly interesting as it is old and it has both, with its hot dust significantly exceeding the maximum luminosity of an in situ collisional cascade. Previous work suggested that this system could be undergoing an event similar to the Late Heavy Bombardment (LHB) soon after or during a dynamical instability. Here, we present ALMA observations of η Corvi with a resolution of 1.2 arcsec (∼22 au) to study its outer belt. The continuum emission is consistent with an axisymmetric belt, with a mean radius of 152 au and radial full width at half-maximum of 46 au, which is too narrow compared to models of inward scattering of an LHB-like scenario. Instead, the hot dust could be explained as material passed inwards in a rather stable planetary configuration. We also report a 4σ detection of CO at ∼20 au. CO could be released in situ from icy planetesimals being passed in when crossing the H2O or CO2 ice lines. Finally, we place constraints on hidden planets in the disc. If a planet is sculpting the disc's inner edge, this should be orbiting at 75-100 au, with a mass of 3-30 M⊕ and an eccentricity <0.08. Such a planet would be able to clear its chaotic zone on a time-scale shorter than the age of the system and scatter material inwards from the outer belt to the inner regions, thus feeding the hot dust.

  9. The Gas Content Of Protoplanetary Herbig Ae/be Discs As Seen With Herschel

    NASA Astrophysics Data System (ADS)

    Meeus, Gwendolyn; Herschel OTKP, GASPS; Dent, B.

    2011-09-01

    The mechanisms determining planet formation are not (yet) well-understood. Primordial protoplanetary discs consist 99% out of gas, and only 1% out of dust. With time, those discs are believed to evolve from a flaring geometry into a flat geometry, as the initially small dust grains grow to larger sizes and settle towards the mid-plane. In the mean time, the gas will disperse, until so little is left that giant planets no longer can form. As an important piece of the puzzle of planet formation, it is important to understand the influence of the gas heating/cooling processes on the young disc structure, its chemical composition and finally how fast gas gets dispersed. In this talk, we study the protoplanetary discs around Herbig Ae/Be stars, young objects of intermediate mass, in the context of its gas content. We present Herschel PACS spectroscopic observations for a sample that was obtained within the GASPS (Gas in Protoplanetary Systems) Open Time Key Project, concentrating on the detection and characterisation of emission lines of the [OI], [CII], and CO, tracing the disc between 5 and 500 AU. We look for correlations between the observed line fluxes and stellar properties such as effective temperature, Halpha emission, accretion rates and UV flux, as well as the disc properties: degree of flaring, presence and strength of PAH emission and disc mass. We will present a few cases to show how simultaneous modeling (using the thermo-chemical disc code ProDiMo) of the atomic fine structure lines and both molecular lines can constrain the disc gas mass, once the disc structure is derived. Finally, we compare our gas line observations with those of young debris disc stars, for which the HAEBE stars are thought to be progenitors.

  10. Material Science in Cervical Total Disc Replacement.

    PubMed

    Pham, Martin H; Mehta, Vivek A; Tuchman, Alexander; Hsieh, Patrick C

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation.

  11. Material Science in Cervical Total Disc Replacement

    PubMed Central

    Pham, Martin H.; Mehta, Vivek A.; Tuchman, Alexander; Hsieh, Patrick C.

    2015-01-01

    Current cervical total disc replacement (TDR) designs incorporate a variety of different biomaterials including polyethylene, stainless steel, titanium (Ti), and cobalt-chrome (CoCr). These materials are most important in their utilization as bearing surfaces which allow for articular motion at the disc space. Long-term biological effects of implanted materials include wear debris, host inflammatory immune reactions, and osteolysis resulting in implant failure. We review here the most common materials used in cervical TDR prosthetic devices, examine their bearing surfaces, describe the construction of the seven current cervical TDR devices that are approved for use in the United States, and discuss known adverse biological effects associated with long-term implantation of these materials. It is important to appreciate and understand the variety of biomaterials available in the design and construction of these prosthetics and the considerations which guide their implementation. PMID:26523281

  12. Observations of Herbig Ae/Be Stars with Herschel/PACS: The Atomic and Molecular Contents of Their Protoplanetary Discs

    NASA Technical Reports Server (NTRS)

    Meeus, G.; Montesinos, B.; Mendigutia, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaidi, C.; hide

    2012-01-01

    We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [OI], [CII], CO, CH+, H20, and OH. We have a [OI]63 micro/ detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [OI] 145 micron line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [CII] 157 micron, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux. accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [OI] 63 micron, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [OI]63 micron and [OI] 145 micron, CO J = IS-17 and [OI] 6300 A, and between the continuum flux at 63 micron and at 1.3 mm, while we find weak correlations between the line flux. of [OI] 63 micron and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 pm, the stellar effective temperature, and the Br-gamma luminosity. Finally, we use a combination of the [OI] 63 micron and C(12)O J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142.

  13. Kuiper belt structure around nearby super-Earth host stars

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Matrà, Luca; Marmier, Maxime; Greaves, Jane S.; Wyatt, Mark C.; Bryden, Geoffrey; Holland, Wayne; Lovis, Christophe; Matthews, Brenda C.; Pepe, Francesco; Sibthorpe, Bruce; Udry, Stéphane

    2015-05-01

    We present new observations of the Kuiper belt analogues around HD 38858 and HD 20794, hosts of super-Earth mass planets within 1 au. As two of the four nearby G-type stars (with HD 69830 and 61 Vir) that form the basis of a possible correlation between low-mass planets and debris disc brightness, these systems are of particular interest. The disc around HD 38858 is well resolved with Herschel and we constrain the disc geometry and radial structure. We also present a probable James Clerk Maxwell Telescope sub-mm continuum detection of the disc and a CO J = 2-1 upper limit. The disc around HD 20794 is much fainter and appears marginally resolved with Herschel, and is constrained to be less extended than the discs around 61 Vir and HD 38858. We also set limits on the radial location of hot dust recently detected around HD 20794 with near-IR interferometry. We present High Accuracy Radial velocity Planet Searcher upper limits on unseen planets in these four systems, ruling out additional super-Earths within a few au, and Saturn-mass planets within 10 au. We consider the disc structure in the three systems with Kuiper belt analogues (HD 69830 has only a warm dust detection), concluding that 61 Vir and HD 38858 have greater radial disc extent than HD 20794. We speculate that the greater width is related to the greater minimum planet masses (10-20 M⊕ versus 3-5 M⊕), arising from an eccentric planetesimal population analogous to the Solar system's scattered disc. We discuss alternative scenarios and possible means to distinguish among them.

  14. Molecules in Protoplanetary HAEBE discs as seen with Herschel.

    NASA Astrophysics Data System (ADS)

    Meeus, G.

    2011-05-01

    The discovery of planets around other stars has revealed that planet formation is ubiquitous. However, the mechanisms determining planet formation are not (yet) well-understood. Primordial protoplanetary discs consist 99% out of gas, and only 1% out of dust. With time, those discs are believed to evolve from a flaring geometry into a flat geometry, as the initially small dust grains grow to larger sizes and settle towards the mid-plane. In the mean time, the gas will disperse, until so little is left that giant planets no longer can form. It is thus important to understand the chemical composition of the disc and the influence of the gas heating/cooling processes on the disc structure, and finally how gas gets dispersed as a pieces of the puzzle of planet formation. In this contribution, we study the protoplanetary discs around Herbig Ae/Be stars, young objects of intermediate mass, in the context of gas chemistry. We present Herschel PACS spectroscopic observations for a sample that was obtained within the GASPS (Gas in Protoplanetary Systems) Open Time Key Project, concentrating on the detection and characterisation of emission lines of the molecules H20, CO and CH+ (besides [OI] and [CII]), tracing the disc between 5 and 500 AU. We look for correlations between the observed line fluxes and stellar properties such as effective temperature, Halpha emission, accretion rates and UV flux, as well as the disc properties: degree of flaring, presence and strength of PAH emission and disc mass. We will present a few cases to show how simultaneous modeling (using the thermo-chemical disc code ProDiMo) of the atomic fine structure lines and both Space Telescope and ground-based molecular lines can constrain the disc gas mass, once the disc structure is derived (here with the radiative transfer code MCFost). Finally, we compare our gas line observations with those of young debris disc stars, for which the HAEBE stars are thought to be progenitors.

  15. How Dusty Is Alpha Centauri? Excess or Non-excess over the Infrared Photospheres of Main-sequence Stars

    NASA Technical Reports Server (NTRS)

    Wiegert, J.; Liseau, R.; Thebault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; hide

    2014-01-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims. We aim to determine the level of emission from debris around the stars in the Cen system. This requires knowledge of their photospheres.Having already detected the temperature minimum, Tmin, of CenA at far-infrared wavelengths, we here attempt to do the same for the moreactive companion Cen B. Using the Cen stars as templates, we study the possible eects that Tmin may have on the detectability of unresolveddust discs around other stars. Methods.We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in thefar infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunctionwith radiative transfer calculations, were used to estimate the amount of debris around these stars. Results. For solar-type stars more distant than Cen, a fractional dust luminosity fd LdustLstar 2 107 could account for SEDs that do not exhibit the Tmin eect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared,slight excesses at the 2:5 level are observed at 24 m for both CenA and B, which, if interpreted as due to zodiacal-type dust emission, wouldcorrespond to fd (13) 105, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dustgrains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the Cen stars, viz.4106 M$ of 4 to 1000 msize grains, distributed according to n(a) a3:5. Similarly, for filled-in Tmin emission, corresponding Edgeworth-Kuiper belts could account for103 M$ of dust. Conclusions. Our far-infrared observations lead to estimates of upper limits to the amount of circumstellar dust around the stars CenA and B.Light scattered andor thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to searchfor biomarkers in the atmospheres of Earth-like planets. The far-infrared spectral energy distribution of Cen B is marginally consistent with thepresence of a minimum temperature region in the upper atmosphere of the star. We also show that an Cen A-like temperature minimum mayresult in an erroneous apprehension about the presence of dust around other, more distant stars.

  16. Wear behaviors of pure aluminum and extruded aluminum alloy (AA2024-T4) under variable vertical loads and linear speeds

    NASA Astrophysics Data System (ADS)

    Jung, Jeki; Oak, Jeong-Jung; Kim, Yong-Hwan; Cho, Yi Je; Park, Yong Ho

    2017-11-01

    The aim of this study was to investigate the transition of wear behavior for pure aluminum and extruded aluminum alloy 2024-T4 (AA2024-T4). The wear test was carried using a ball-on-disc wear testing machine at various vertical loads and linear speeds. The transition of wear behaviors was analyzed based on the microstructure, wear tracks, wear cross-section, and wear debris. The critical wear rates for each material are occurred at lower linear speed for each vertical load. The transition of wear behavior was observed in which abrasion wears with the generation of an oxide layer, fracture of oxide layer, adhesion wear, severe adhesion wear, and the generation of seizure occurred in sequence. In case of the pure aluminum, the change of wear debris occurred in the order of blocky, flake, and needle-like debris. Cutting chip, flake-like, and coarse flake-like debris was occurred in sequence for the extruded AA2024-T4. The transition in the wear behavior of extruded AA2024-T4 occurred slower than in pure aluminum.

  17. Changes in orientation and shape of protoplanetary discs moving through an ambient medium

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pelupessy, F. I.; Pols, O. R.; Portegies Zwart, S.

    2017-08-01

    Misalignments between the orbital planes of planets and the equatorial planes of their host stars have been observed in our solar system, in transiting exoplanets, and for the orbital planes of debris discs. We present a mechanism that causes such a spin-orbit misalignment for a protoplanetary disc due to its movement through an ambient medium. Our physical explanation of the mechanism is based on the theoretical solutions to the Stark problem. We test this idea by performing self-consistent hydrodynamical simulations and simplified gravitational N-body simulations. The N-body model reduces the mechanism to the relevant physical processes. The hydrodynamical simulations show the mechanism in its full extent, including gas-dynamical and viscous processes in the disc which are not included in the theoretical framework. We find that a protoplanetary disc embedded in a flow changes its orientation as its angular momentum vector tends to align parallel to the relative velocity vector. Due to the force exerted by the flow, orbits in the disc become eccentric, which produces a net torque and consequentially changes the orbital inclination. The tilting of the disc causes it to contract. Apart from becoming lopsided, the gaseous disc also forms a spiral arm even if the inclination does not change substantially. The process is most effective at high velocities and observational signatures are therefore mostly expected in massive star-forming regions and around winds or supernova ejecta. Our N-body model indicates that the interaction with supernova ejecta is a viable explanation for the observed spin-orbit misalignment in our solar system.

  18. Observations of Herbig Ae/Be stars with Herschel/PACS. The atomic and molecular contents of their protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Meeus, G.; Montesinos, B.; Mendigutía, I.; Kamp, I.; Thi, W. F.; Eiroa, C.; Grady, C. A.; Mathews, G.; Sandell, G.; Martin-Zaïdi, C.; Brittain, S.; Dent, W. R. F.; Howard, C.; Ménard, F.; Pinte, C.; Roberge, A.; Vandenbussche, B.; Williams, J. P.

    2012-08-01

    We observed a sample of 20 representative Herbig Ae/Be stars and 5 A-type debris discs with PACS onboard Herschel, as part of the GAS in Protoplanetary Systems (GASPS) project. The observations were done in spectroscopic mode, and cover the far-infrared lines of [O i], [C ii], CO, CH+, H2O, and OH. We have a [O i] 63 μm detection rate of 100% for the Herbig Ae/Be and 0% for the debris discs. The [O i] 145 μm line is only detected in 25% and CO J = 18-17 in 45% (and fewer cases for higher J transitions) of the Herbig Ae/Be stars, while for [C ii] 157 μm, we often find spatially variable background contamination. We show the first detection of water in a Herbig Ae disc, HD 163296, which has a settled disc. Hydroxyl is detected as well in this disc. First seen in HD 100546, CH+ emission is now detected for the second time in a Herbig Ae star, HD 97048. We report fluxes for each line and use the observations as line diagnostics of the gas properties. Furthermore, we look for correlations between the strength of the emission lines and either the stellar or disc parameters, such as stellar luminosity, ultraviolet and X-ray flux, accretion rate, polycyclic aromatic hydrocarbon (PAH) band strength, and flaring. We find that the stellar ultraviolet flux is the dominant excitation mechanism of [O i] 63 μm, with the highest line fluxes being found in objects with a large amount of flaring and among the largest PAH strengths. Neither the amount of accretion nor the X-ray luminosity has an influence on the line strength. We find correlations between the line flux of [O i] 63 μm and [O i] 145 μm, CO J = 18-17 and [O i] 6300 Å, and between the continuum flux at 63 μm and at 1.3 mm, while we find weak correlations between the line flux of [O i] 63 μm and the PAH luminosity, the line flux of CO J = 3-2, the continuum flux at 63 μm, the stellar effective temperature, and the Brγ luminosity. Finally, we use a combination of the[O i] 63 μm and 12CO J = 2-1 line fluxes to obtain order of magnitude estimates of the disc gas masses, in agreement with the values that we find from detailed modelling of two Herbig Ae/Be stars, HD 163296 and HD 169142. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Yen, Hsien-Chin William

    A continuous slag processing system includes a rotating parallel disc pump, coupled to a motor and a brake. The rotating parallel disc pump includes opposing discs coupled to a shaft, an outlet configured to continuously receive a fluid at a first pressure, and an inlet configured to continuously discharge the fluid at a second pressure less than the first pressure. The rotating parallel disc pump is configurable in a reverse-acting pump mode and a letdown turbine mode. The motor is configured to drive the opposing discs about the shaft and against a flow of the fluid to control a differencemore » between the first pressure and the second pressure in the reverse-acting pump mode. The brake is configured to resist rotation of the opposing discs about the shaft to control the difference between the first pressure and the second pressure in the letdown turbine mode.« less

  20. Exocometary gas in the HD 181327 debris ring

    NASA Astrophysics Data System (ADS)

    Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.

    2016-08-01

    An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.

  1. Collisions and drag in debris discs with eccentric parent belts

    NASA Astrophysics Data System (ADS)

    Löhne, T.; Krivov, A. V.; Kirchschlager, F.; Sende, J. A.; Wolf, S.

    2017-08-01

    Context. High-resolution images of circumstellar debris discs reveal off-centred rings that indicate past or ongoing perturbation, possibly caused by secular gravitational interaction with unseen stellar or substellar companions. The purely dynamical aspects of this departure from radial symmetry are well understood. However, the observed dust is subject to additional forces and effects, most notably collisions and drag. Aims: To complement the studies of dynamics, we therefore aim to understand how the addition of collisional evolution and drag forces creates new asymmetries and strengthens or overrides existing ones. Methods: We augmented our existing numerical code Analysis of Collisional Evolution (ACE) by an azimuthal dimension, the longitude of periapse. A set of fiducial discs with global eccentricities ranging from 0 to 0.4 was evolved over gigayear timescales. Size distribution and spatial variation of dust were analysed and interpreted. We discuss the basic impact of belt eccentricity on spectral energy distributions and images. Results: We find features imposed on characteristic timescales. First, radiation pressure defines size cut-offs that differ between periapse and apoapse, resulting in an asymmetric halo. The differences in size distribution make the observable asymmetry of the halo depend on wavelength. Second, collisional equilibrium prefers smaller grains on the apastron side of the parent belt, reducing the effect of pericentre glow and the overall asymmetry. Third, Poynting-Robertson drag fills the region interior to an eccentric belt such that the apastron side is more tenuous. Interpretation and prediction of the appearance in scattered light is problematic when spatial and size distribution are coupled.

  2. Deposition of steeply infalling debris - pebbles, boulders, snowballs, asteroids, comets - around stars

    NASA Astrophysics Data System (ADS)

    Brown, J. C.; Veras, D.; Gänsicke, B. T.

    2017-09-01

    When Comet Lovejoy plunged into the Sun, and survived, questions arose about the physics of infall of small bodies. [1,2] has already described this infall in detail. However, a more general analysis for any type of star has been missing. [3] generalized previous studies, with specific applications to white dwarfs. High-metallicity pollution is common in white dwarf stars hosting remnant planetary systems. However, they rarely have detectable debris accretion discs, possibly because much of the influx is fast steeply infalling debris in star-grazing orbits, producing a more tenuous signature than a slowly accreting disc. Processes governing such deposition between the Roche radius and photosphere have so far received little attention and we model them here analytically by extending recent work on sun-grazing comets to white dwarf systems. We find that the evolution of cm-to-km size infallers most strongly depends on two combinations of parameters, which effectively measure sublimation rate and binding strength. We then provide an algorithm to determine the fate of infallers for any white dwarf, and apply the algorithm to four limiting combinations of hot versus cool (young/old) white dwarfs with snowy (weak, volatile) versus rocky (strong, refractory) infallers. We find: (i) Total sublimation above the photosphere befalls all small infallers across the entire white dwarf temperature range, the threshold size rising with it and 100× larger for rock than snow. (ii) All very large objects fragment tidally regardless of temperature: for rock, a0 ≽ 105 cm; for snow, a0 ≽ 103 - 3 × 104 cm across all white dwarf cooling ages. (iii) A considerable range of infaller sizes avoids fragmentation and total sublimation, yielding impacts or grazes with cold white dwarfs. This range rapidly narrows with increasing temperature, especially for snowy bodies. Finally, we briefly discuss how the various forms of deposited debris may finally reach the photosphere surface itself.

  3. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2013-01-01

    Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.

  4. Planetary migration in protoplanetary discs and outer Solar System architecture.

    NASA Astrophysics Data System (ADS)

    Crida, A.; Morbidelli, A.; Tsiganis, K.

    2007-08-01

    Planets form around stars in gaseous protoplanetary discs. Due to tidal effects, they perturb the gas distribution, which in turn affects their motion. If the planet is massive enough (see for instance Crida et al. 2006 for a criterion), it repels the gas efficiently and opens a gap around its orbit ; then, locked into its gap, the planet follows the disc viscous evolution, which generally consists in accretion onto the central star. This process is called type II migration and leads to the orbital decay of the planet on a timescale shorter than the disc lifetime. After a review of these processes, we will focus on the Solar System giant planets. Strong constraints suggest that they did not migrate significantly. Masset and Snellgrove (2001) have shown that the evolution of 2 giants planets in mean motion resonance in a common gap differs from the evolution of a single planet. For what concerns Jupiter and Saturn, we found that in some conditions on the disc parameter, they can avoid significant migration (Morbidelli and Crida 2007). Adding Uranus and Neptune to the system, six stable fully resonant configurations for the four giants in the gas disc appear. Of course, none of them correspond to the present configuration. However, after the gas disc phase, the system was surrounded by a planetesimal disk. Interactions with this debris disk make the planets slowly evolve, until an instability in reached. This destabilises the planetesimal disc and triggers the Late Heavy Bombardment, while the planets reach their actual position, like in the model by Tsiganis et al (2005) and Gomes et al (2005). Our simulations show a very satisfying case, opening the possibility for a dynamically consistent scenario of the outer Solar System evolution, starting from the gas phase.

  5. Prospective study on serum metal levels in patients with metal-on-metal lumbar disc arthroplasty.

    PubMed

    Gornet, Matthew F; Burkus, J K; Harper, M L; Chan, F W; Skipor, A K; Jacobs, J J

    2013-04-01

    Metal-on-metal total disc replacement is a recent alternative treatment for degenerative disc disease. Wear and corrosion of these implants can lead to local and systemic transport of metal debris. This prospective longitudinal study examined the serum chromium and cobalt levels in 24 patients with cobalt-chromium alloy metal-on-metal lumbar disc replacements. Serum was assayed for chromium (Cr) and cobalt (Co) using high-resolution inductively-coupled plasma-mass spectrometry. Detection limits were 0.015 ng/mL for Cr and 0.04 ng/mL for Co. Median serum Co levels at pre-op, 3, 6, 12, 24, and 36-months post-op were 0.10, 1.03, 0.96, 0.98, 0.67, and 0.52 ng/mL, respectively. Median serum Cr levels were 0.06, 0.49, 0.65, 0.43, 0.52, and 0.50 ng/mL, respectively. In general, these results indicated that serum Co and Cr levels are elevated at all postoperative time points and are of the same order of magnitude as those observed in well-functioning metal-on-metal surface replacements of the hip and in metal-on-metal total hip replacements at similar postoperative time points.

  6. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  7. POLARIZATION MEASUREMENTS OF HOT DUST STARS AND THE LOCAL INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, J. P.; Cotton, D. V.; Bott, K.

    2016-07-10

    Debris discs are typically revealed through the presence of excess emission at infrared wavelengths. Most discs exhibit excess at mid- and far-infrared wavelengths, analogous to the solar system’s Asteroid and Edgeworth-Kuiper belts. Recently, stars with strong (∼1%) excess at near-infrared wavelengths were identified through interferometric measurements. Using the HIgh Precision Polarimetric Instrument, we examined a sub-sample of these hot dust stars (and appropriate controls) at parts-per-million sensitivity in SDSS g ′ (green) and r ′ (red) filters for evidence of scattered light. No detection of strongly polarized emission from the hot dust stars is seen. We, therefore, rule out scatteredmore » light from a normal debris disk as the origin of this emission. A wavelength-dependent contribution from multiple dust components for hot dust stars is inferred from the dispersion (the difference in polarization angle in red and green) of southern stars. Contributions of 17 ppm (green) and 30 ppm (red) are calculated, with strict 3- σ upper limits of 76 and 68 ppm, respectively. This suggests weak hot dust excesses consistent with thermal emission, although we cannot rule out contrived scenarios, e.g., dust in a spherical shell or face-on discs. We also report on the nature of the local interstellar medium (ISM), obtained as a byproduct of the control measurements. Highlights include the first measurements of the polarimetric color of the local ISM and the discovery of a southern sky region with a polarization per distance thrice the previous maximum. The data suggest that λ {sub max}, the wavelength of maximum polarization, is bluer than typical.« less

  8. Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris

    NASA Astrophysics Data System (ADS)

    Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.

    2016-09-01

    The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.

  9. Effects of episodic sediment supply on bedload transport rate in mountain rivers. Detecting debris flow activity using continuous monitoring

    NASA Astrophysics Data System (ADS)

    Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro

    2018-04-01

    Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.

  10. X-ray photoevaporation's limited success in the formation of planetesimals by the streaming instability

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara; Jennings, Jeff; Rosotti, Giovanni; Birnstiel, Tilman

    2017-12-01

    The streaming instability is often invoked as solution to the fragmentation and drift barriers in planetesimal formation, catalysing the aggregation of dust on kyr time-scales to grow km-sized cores. However, there remains a lack of consensus on the physical mechanism(s) responsible for initiating it. One potential avenue is disc photoevaporation, wherein the preferential removal of relatively dust-free gas increases the disc metallicity. Late in the disc lifetime, photoevaporation dominates viscous accretion, creating a gradient in the depleted gas surface density near the location of the gap. This induces a local pressure maximum that collects drifting dust particles, which may then become susceptible to the streaming instability. Using a one-dimensional viscous evolution model of a disc subject to internal X-ray photoevaporation, we explore the efficacy of this process to build planetesimals. Over a range of parameters, we find that the amount of dust mass converted into planetesimals is often <1 M⊕ and at most a few M⊕ spread across tens of au. We conclude that photoevaporation may at best be relevant for the formation of debris discs, rather than a common mechanism for the formation of planetary cores. Our results are in contrast to a recent, similar investigation that considered an far-ultra-violet (FUV)-driven photoevaporation model and reported the formation of tens of M⊕ at large (>100 au) disc radii. The discrepancies are primarily a consequence of the different photoevaporation profiles assumed. Until observations more tightly constrain photoevaporation models, the relevance of this process to the formation of planets remains uncertain.

  11. Cervical spine disc prosthesis: radiographic, biomechanical and morphological post mortal findings 12 weeks after implantation. A retrieval example.

    PubMed

    Pitzen, Tobias; Kettler, Annette; Drumm, Joerg; Nabhan, Abdullah; Steudel, Wolf Ingo; Claes, Lutz; Wilke, Hans Joachim

    2007-07-01

    There is a gap between in vitro and clinical studies concerning performance of spinal disc prosthesis. Retrieval studies may help to bridge this gap by providing more detailed information about motion characteristics, wear properties and osseous integration. Here, we report on the radiographic, mechanical, histological properties of a cervical spine segment treated with a cervical spine disc prosthesis (Prodisc C, Synthes Spine, Paoli, USA) for 3 months. A 48-year-old male received the device due to symptomatic degenerative disc disease within C5-C6. The patient recovered completely from his symptoms. Twelve weeks later, he died from a subarachnoid hemorrhage. During routine autopsy, C3-T1 was removed with all attached muscles and ligaments and subjected to plain X-rays and computed tomography, three dimensional flexibility tests, shear test as well as histological and electronic microscopic investigations. We detected radiolucencies mainly at the cranial interface between bone and implant. The flexibility of the segment under pure bending moments of +/-2.5 Nm applied in flexion/extension, axial rotation and lateral bending was preserved, with, however, reduced lateral bending and enlarged neutral zone compared to the adjacent segments C4-C5, and C6-C7. Stepwise increase of loading in flexion/extension up to +/-9.5 Nm did not result in segmental destruction. A postero-anterior force of 146 N was necessary to detach the lower half of the prosthesis from the vertebra. At the polyethylene (PE) core, signs of wear were observed compared to an unused core using electronic microscopy. Metal and PE debris without signs of severe inflammatory reaction was found within the surrounding soft tissue shell of the segment. A thin layer of soft connective tissue covered the major part of the implant endplate. Despite the limits of such a case report, the results show: that such implants are able to preserve at least a certain degree of segmental flexibility, that direct bone implant contact is probably rare, and that debris may be found after 12 weeks.

  12. Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017

    NASA Astrophysics Data System (ADS)

    Zhou, G.; Kedziora-Chudczer, L.; Bailey, J.; Marshall, J. P.; Bayliss, D. D. R.; Stockdale, C.; Nelson, P.; Tan, T. G.; Rodriguez, J. E.; Tinney, C. G.; Dragomir, D.; Colon, K.; Shporer, A.; Bento, J.; Sefako, R.; Horne, K.; Cochran, W.

    2016-12-01

    We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between ˜20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5-1.2 μm. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2σ lower limit of 0.8 μm on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10^{+5}_{-3} μm.

  13. Wear characteristics of an unconstrained lumbar total disc replacement under a range of in vitro test conditions

    PubMed Central

    Fisher, John; Hall, Richard M.

    2015-01-01

    Abstract The effect of kinematics, loading and centre of rotation on the wear of an unconstrained total disc replacement have been investigated using the ISO 18192‐1 standard test as a baseline. Mean volumetric wear rate and surface morphological effects were reported. Changing the phasing of the flexions to create a low (but finite) amount of crossing path motion at the bearing surfaces resulted in a significant fall in wear volume. However, the rate of wear was still much larger than previously reported values under zero cross shear conditions. Reducing the load did not result in a significant change in wear rate. Moving the centre of rotation of the disc inferiorly did significantly increase wear rate. A phenomenon of debris re‐attachment on the UHMWPE surface was observed and hypothesised to be due to a relatively harsh tribological operating regime in which lubricant replenishment and particle migration out of the bearing contact zone were limited. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 46–52, 2017. PMID:26411540

  14. Elliptical Accretion and Low Luminosity from High Accretion Rate Stellar Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Piran, Tsvi; Krolik, Julian

    2017-05-01

    Models for tidal disruption events (TDEs) in which a supermassive black hole disrupts a star commonly assume that the highly eccentric streams of bound stellar debris promptly form a circular accretion disc at the pericentre scale. However, the bolometric peak luminosity of most TDE candidates, ˜ 1044 erg s- 1, implies that we observe only ˜1 per cent of the energy expected from radiatively efficient accretion. Even the energy that must be lost to circularize the returning tidal flow is larger than the observed energy. Recently, Piran et al. suggested that the observed optical TDE emission is powered by shocks at the apocentre between freshly infalling material and earlier arriving matter. This model explains the small radiated energy, the low temperature and the large radius implied by the observations as well as the t-5/3 light curve. However the question of the system's low bolometric efficiency remains unanswered. We suggest that the high orbital energy and low angular momentum of the flow make it possible for magnetic stresses to reduce the matter's already small angular momentum to the point at which it can fall ballistically into the supermassive black hole before circularization. As a result, the efficiency is only ˜1-10 per cent of a standard accretion disc's efficiency. Thus, the intrinsically high eccentricity of the tidal debris naturally explains why most TDE candidates are fainter than expected.

  15. Debris Flux Comparisons From The Goldstone Radar, Haystack Radar, and Hax Radar Prior, During, and After the Last Solar Maximum

    NASA Technical Reports Server (NTRS)

    Stokely, C. L.; Stansbery, E. G.; Goldstein, R. M.

    2006-01-01

    The continual monitoring of low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 through 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors, and are detailed in this paper.

  16. Gas dynamics in tidal dwarf galaxies: Disc formation at z = 0

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; Duc, Pierre-Alain; Brinks, Elias; Bournaud, Frédéric; McGaugh, Stacy S.; Lisenfeld, Ute; Weilbacher, Peter M.; Boquien, Médéric; Revaz, Yves; Braine, Jonathan; Koribalski, Bärbel S.; Belles, Pierre-Emmanuel

    2015-12-01

    Tidal dwarf galaxies (TDGs) are recycled objects that form within the collisional debris of interacting and merging galaxies. They are expected to be devoid of non-baryonic dark matter, since they can only form from dissipative material ejected from the discs of the progenitor galaxies. We investigate the gas dynamics in a sample of six bona fide TDGs around three interacting and post-interacting systems: NGC 4694, NGC 5291, and NGC 7252 ("Atoms for Peace"). For NGC 4694 and NGC 5291, we analyse existing H I data from the Very Large Array (VLA), while for NGC 7252 we present new H I observations from the Jansky VLA, together with long-slit and integral-field optical spectroscopy. For all six TDGs, the H I emission can be described by rotating disc models. These H I discs, however, have undergone less than a full rotation since the time of the interaction/merger event, raising the question of whether they are in dynamical equilibrium. Assuming that these discs are in equilibrium, the inferred dynamical masses are consistent with the observed baryonic masses, implying that TDGs are devoid of dark matter. This puts constraints on putative "dark discs" (either baryonic or non-baryonic) in the progenitor galaxies. Moreover, TDGs seem to systematically deviate from the baryonic Tully-Fisher relation. These results provide a challenging test for alternative theories like MOND. Based on observations made with ESO telescopes at Paranal Observatory under programmes 65.O-0563, 67.B-0049, and 083.B-0647.Appendices are available in electronic form at http://www.aanda.orgThe reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A113

  17. Gas and dust in the TW Hydrae association as seen by the Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Riviere-Marichalar, P.; Pinte, C.; Barrado, D.; Thi, W. F.; Eiroa, C.; Kamp, I.; Montesinos, B.; Donaldson, J.; Augereau, J. C.; Huélamo, N.; Roberge, A.; Ardila, D.; Sandell, G.; Williams, J. P.; Dent, W. R. F.; Menard, F.; Lillo-Box, J.; Duchêne, G.

    2013-07-01

    Context. Circumstellar discs are the places where planets form, therefore knowledge of their evolution is crucial for our understanding of planet formation. The Herschel Space Observatory is providing valuable data for studying disc systems, thanks to its sensitivity and wavelength coverage. This paper is one of several devoted to analysing and modelling Herschel-PACS observations of various young stellar associations from the GASPS open time key programme. Aims: The aim of this paper is to elucidate the gas and dust properties of circumstellar discs in the ~10 Myr TW Hya association (TWA) using new far-infrared (IR) imaging and spectroscopy from Herschel-PACS. Methods: We obtained far-IR photometric data at 70, 100, and 160 μm of 14 TWA members; spectroscopic observations centred on the [OI] line at 63.18 μm were also obtained for 9 of the 14. The new photometry for each star was incorporated into its full spectral energy distribution. Results: We detected excess IR emission that is characteristic of circumstellar discs from five TWA members, and computed upper limits for another nine. Two TWA members (TWA 01 and TWA 04B) also show [OI] emission at 63.18 μm. Discs in the TWA association display a variety of properties, with a wide range of dust masses and inner radii, based on modified blackbody modelling. Both transitional and debris discs are found in the sample. Models for sources with a detected IR excess give dust masses in the range from ~0.15 M⊕ to ~63 M⊕. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  18. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  19. Herschel-PACS observation of gas lines from the disc around HD141569A

    NASA Astrophysics Data System (ADS)

    Thi, Wing-Fai; Pinte, Christophe; Pantin, Eric; Augereau, Jean-Charles; Meeus, Gwendolyn; Ménard, Francois; Martin-Zaidi, Claire; Woitke, Peter; Riviere-Marichalar, Pablo; Kamp, Inga; Carmona, Andres; Sandell, Goran; Eiroa, Carlos; Dent, William; Montesinos, Benjamin; Aresu, Giambattista; Meijerink, Rowin; Spaans, Marco; White, Glenn; Ardila, David; Lebreton, Jeremy; Mendigutia, Ignacio; Brittain, Sean

    2013-07-01

    At the distance of ˜ 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disc, probably in transition between a massive primordial disc and a debris disc. We observed the fine-structure lines of O I at 63 and 145 μm , and the C II line at 157 μm with the PACS instrument on board the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with Spitzer spectroscopic and photometric continuum data, ground-based VLT-VISIR image at 8.6 microns, and 12CO J=3-2 observations. We simultaneously modelled the continuum emission and the line fluxes with the Monte-Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disc gas and dust properties. We modelled the [O I] lines at 63 μm and at 145 μm, and the [C II] line at 157 μm. The models show that the oxygen lines are emitted from the inner disc around HD141569A, whereas the [C II] line emission is more extended. The CO submillimeter flux is emitted from the outer disc. Simultaneous modelling of the photometric and line data using a realistic disc structure suggests a dust mass derived from grains having a radius less than 1 mm of ˜ 2.1 × 10-7M⊙ and a total solid mass of 4.9 × 10-6 M⊙ . We constrained the PAH mass to be between 2 × 10-11 and 1.4 × 10-10 M⊙ depending on the size of the PAH. The associated PAH abundance is lower than those found in the interstellar medium by two to three orders of magnitude. The gas mass is a few 10-4M⊙. We constrained simultaneously the silicate dust grain, PAH, and gas mass in an evolved Herbig Ae disc. The uncertainty on the gas mass is large (around a factor 5) because the different gas tracers give estimates that do not agree with each other.

  20. 26 CFR 1.995-1 - Taxation of DISC income to shareholders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Taxation of DISC income to shareholders. 1.995...) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales Corporations § 1.995-1 Taxation of DISC... to taxation on the earnings and profits of the DISC in accordance with the provisions of chapter 1 of...

  1. Evaluation of tartar control dentifrices in in vitro models of dentin sensitivity.

    PubMed

    Mason, S; Levan, A; Crawford, R; Fisher, S; Gaffar, A

    1991-01-01

    The effects of anticalculus dentifrices were compared with other commercially available dentifrices in in vitro models of dentin sensitivity. Changes in the hydraulic conductance of dentin discs were measured with and without a smear layer before and after treatment and also after a post-treatment acid etch. The capacity of dentifrices to occlude open dentinal tubules in vitro was also assessed by scanning electron microscopy (SEM). There was good correlation (R = 0.98) between our test and values reported in the literature. Tartar control dentifrices gave reductions in fluid flow rates through the dentin discs comparable to those obtained with Promise, Sensodyne, Thermodent and Denquel. Additionally, tartar control dentifrices did not remove microcrystalline debris (smear layers) from the surfaces of dentin in vitro. These results were confirmed by SEM. Thus, according to the hydrodynamic theory of dentin sensitivity, these in vitro results suggest that pyrophosphate-containing dentifrices should reduce dentinal sensitivity.

  2. VizieR Online Data Catalog: Bright white dwarfs IRAC photometry (Barber+, 2016)

    NASA Astrophysics Data System (ADS)

    Barber, S. D.; Belardi, C.; Kilic, M.; Gianninas, A.

    2017-07-01

    Mid-infrared photometry, like the 3.4 and 4.6um photometry available from WISE, is necessary to detect emission from a debris disc orbiting a WD. WISE, however, has poor spatial resolution (6 arcsec beam size) and is known to have a 75 per cent false positive rate for detecting dusty discs around WDs fainter than 14.5(15) mag in W1(W2) (Barber et al. (2014ApJ...786...77B). To mitigate this high rate of spurious detections, we compile higher spatial resolution archival data from the InfraRed Array Camera (IRAC) on the Spitzer Space Telescope. We query the Spitzer Heritage Archive for any observations within 10 arcsec of the 1265 WDs from Gianninas et al. (2011, Cat. J/ApJ/743/138) and find 907 Astronomical Observing Requests (AORs) for 381 WDs. (1 data file).

  3. Merger of a white dwarf-neutron star binary to 1029 carat diamonds: origin of the pulsar planets

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Metzger, Brian D.

    2017-03-01

    We show that the merger and tidal disruption of a carbon/oxygen (C/O) white dwarf (WD) by a neutron star (NS) binary companion provides a natural formation scenario for the PSR B1257+12 planetary system. Starting with initial conditions for the debris disc produced of the disrupted WD, we model its long-term viscous evolution, including for the first time the effects of mass and angular momentum loss during the early radiatively inefficient accretion flow (RIAF) phase and accounting for the unusual C/O composition on the disc opacity. For plausible values of the disc viscosity α ∼ 10-3-10-2 and the RIAF mass-loss efficiency, we find that the disc mass remaining near the planet formation radius at the time of solid condensation is sufficient to explain the pulsar planets. Rapid rocky planet formation via gravitational instability of the solid carbon dominated disc is facilitated by the suppression of vertical shear instabilities due to the high solid-to-gas ratio. Additional evidence supporting a WD-NS merger scenario includes (1) the low observed occurrence rate of pulsar planets (≲1 per cent of NS birth), comparable to the expected WD-NS merger rate; (2) accretion by the NS during the RIAF phase is sufficient to spin PSR B1257+12 up to its observed 6 ms period; (3) similar models of 'low angular momentum' discs, such as those produced from supernova fallback, find insufficient mass reaching the planet formation radius. The unusually high space velocity of PSR B1257+12 of ≳326 km s-1 suggests a possible connection to the calcium-rich transients, dim supernovae which occur in the outskirts of their host galaxies and were proposed to result from mergers of WD-NS binaries receiving supernova kicks. The C/O disc composition implied by our model likely results in carbon-rich planets with diamond interiors.

  4. WISE J080822.18-644357.3 - a 45 Myr-old accreting M dwarf hosting a primordial disc

    NASA Astrophysics Data System (ADS)

    Murphy, Simon J.; Mamajek, Eric E.; Bell, Cameron P. M.

    2018-05-01

    WISE J080822.18-644357.3 (WISE J0808-6443) was recently identified as a new M dwarf debris disc system and a candidate member of the 45 Myr-old Carina association. Given that the strength of its infrared excess (LIR/L⋆ ≃ 0.1) appears to be more consistent with a young protoplanetary disc, we present the first optical spectra of the star and reassess its evolutionary and membership status. We find WISE J0808-6443 to be a Li-rich M5 star with strong H α emission (-125 < EW < -65 Å over 4 epochs) whose strength and broad width are consistent with accretion at a low level (˜10-10 M⊙ yr-1) from its disc. The spectral energy distribution of the star is consistent with a primordial disc and is well-fitted using a two-temperature blackbody model with Tinner ≃ 1100 K and Touter ≃ 240 K. AllWISE multi-epoch photometry shows the system exhibits significant variability in the 3.4 and 4.6 μm bands. We calculate an improved proper motion based on archival astrometry, and combined with a new radial velocity, the kinematics of the star are consistent with membership in Carina at a kinematic distance of 90 ± 9 pc. The spectroscopic and photometric data are consistent with WISE J0808-6443 being a ˜0.1 M⊙ Classical T-Tauri star and one of the oldest known accreting M-type stars. These results provide further evidence that the upper limit on the lifetimes of gas-rich discs - and hence the time-scales to form and evolve protoplanetary systems - around the lowest mass stars may be longer than previously recognized, or some mechanism may be responsible for regenerating short-lived discs at later stages of pre-main sequence evolution.

  5. How dusty is α Centauri?. Excess or non-excess over the infrared photospheres of main-sequence stars

    NASA Astrophysics Data System (ADS)

    Wiegert, J.; Liseau, R.; Thébault, P.; Olofsson, G.; Mora, A.; Bryden, G.; Marshall, J. P.; Eiroa, C.; Montesinos, B.; Ardila, D.; Augereau, J. C.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Ertel, S.; Fridlund, M. C. W.; Hajigholi, M.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; White, G. J.; Wolf, S.

    2014-03-01

    Context. Debris discs around main-sequence stars indicate the presence of larger rocky bodies. The components of the nearby, solar-type binary α Centauri have metallicities that are higher than solar, which is thought to promote giant planet formation. Aims: We aim to determine the level of emission from debris around the stars in the α Cen system. This requires knowledge of their photospheres. Having already detected the temperature minimum, Tmin, of α Cen A at far-infrared wavelengths, we here attempt to do the same for the more active companion α Cen B. Using the α Cen stars as templates, we study the possible effects that Tmin may have on the detectability of unresolved dust discs around other stars. Methods: We used Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry to determine the stellar spectral energy distributions in the far infrared and submillimetre. In addition, we used APEX-SHeFI observations for spectral line mapping to study the complex background around α Cen seen in the photometric images. Models of stellar atmospheres and of particulate discs, based on particle simulations and in conjunction with radiative transfer calculations, were used to estimate the amount of debris around these stars. Results: For solar-type stars more distant than α Cen, a fractional dust luminosity fd ≡ Ldust/Lstar 2 × 10-7 could account for SEDs that do not exhibit the Tmin effect. This is comparable to estimates of fd for the Edgeworth-Kuiper belt of the solar system. In contrast to the far infrared, slight excesses at the 2.5σ level are observed at 24 μm for both α Cen A and B, which, if interpreted as due to zodiacal-type dust emission, would correspond to fd (1-3) × 10-5, i.e. some 102 times that of the local zodiacal cloud. Assuming simple power-law size distributions of the dust grains, dynamical disc modelling leads to rough mass estimates of the putative Zodi belts around the α Cen stars, viz. ≲4 × 10-6 M≤ftmoon of 4 to 1000 μm size grains, distributed according to n(a) ∝ a-3.5. Similarly, for filled-in Tmin emission, corresponding Edgeworth-Kuiper belts could account for {˜ 10-3 M≤ftmoon} of dust. Conclusions: Our far-infrared observations lead to estimates of upper limits to the amount of circumstellar dust around the stars α Cen A and B. Light scattered and/or thermally emitted by exo-Zodi discs will have profound implications for future spectroscopic missions designed to search for biomarkers in the atmospheres of Earth-like planets. The far-infrared spectral energy distribution of α Cen B is marginally consistent with the presence of a minimum temperature region in the upper atmosphere of the star. We also show that an α Cen A-like temperature minimum may result in an erroneous apprehension about the presence of dust around other, more distant stars. Based on observations with Herschel which is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.And also based on observations with APEX, which is a 12 m diameter submillimetre telescope at 5100 m altitude on Llano Chajnantor in Chile. The telescope is operated by Onsala Space Observatory, Max-Planck-Institut für Radioastronomie (MPIfR), and European Southern Observatory (ESO).

  6. Rotation-induced YORP break-up of small bodies to produce post-main-sequence debris

    NASA Astrophysics Data System (ADS)

    Veras, D.; Jacobson, S. A.; Gänsicke, B. T.

    2017-09-01

    We hypothesize that the in situ break-up of small bodies such as asteroids spun to fission during the giant branch phases of stellar evolution provides an important contribution to the debris orbiting and ultimately polluting white dwarfs. The YORP (Yarkovsky-O'Keefe-Radviesvki-Paddock) effect, which arises from radiation pressure, accelerates the spin rate of asymmetric asteroids, which can eventually shear themselves apart. This pressure is maintained and enhanced around dying stars because the outward push of an asteroid due to stellar mass loss is insignificant compared to the resulting stellar luminosity increase. Consequently, giant star radiation will destroy nearly all bodies with radii in the range 100 m-10 km that survive their parent star's main-sequence lifetime within a distance of about 7 au; smaller bodies are spun apart to their strongest, competent components. This estimate is conservative and would increase for highly asymmetric shapes or incorporation of the inward drag due to giant star stellar wind. The resulting debris field, which could extend to thousands of au, may be perturbed by remnant planetary systems to reproduce the observed dusty and gaseous discs which accompany polluted white dwarfs.

  7. Simulating Dynamic Equilibria: A Class Experiment

    NASA Astrophysics Data System (ADS)

    Harrison, John A.; Buckley, Paul D.

    2000-08-01

    A first-order reversible reaction is simulated on an overhead projector using small coins or discs. A simulation is carried out in which initially there are 24 discs representing reactant A and none representing reactant B. At the end of each minute half of the reactant A discs get converted to reactant B, and one quarter of the reactant B discs get converted to reactant A discs. Equilibrium is established with 8 A discs and 16 B discs, and no further net change is observed as the simulation continues. Another simulation beginning with 48 A discs and 0 B discs leads at equilibrium to 16 A discs and 32 B discs. These results illustrate how dynamic equilibria are established and allow the introduction of the concept of an equilibrium constant. Le Châtelier's principle is illustrated by further simulations.

  8. Resolving the planetesimal belt of HR 8799 with ALMA

    NASA Astrophysics Data System (ADS)

    Booth, Mark; Jordán, Andrés; Casassus, Simon; Hales, Antonio S.; Dent, William R. F.; Faramaz, Virginie; Matrà, Luca; Barkats, Denis; Brahm, Rafael; Cuadra, Jorge

    2016-07-01

    The star HR 8799 hosts one of the largest known debris discs and at least four giant planets. Previous observations have found evidence for a warm belt within the orbits of the planets, a cold planetesimal belt beyond their orbits and a halo of small grains. With the infrared data, it is hard to distinguish the planetesimal belt emission from that of the grains in the halo. With this in mind, the system has been observed with ALMA in band 6 (1.34 mm) using a compact array format. These observations allow the inner edge of the planetesimal belt to be resolved for the first time. A radial distribution of dust grains is fitted to the data using an MCMC method. The disc is best fitted by a broad ring between 145^{+12}_{-12} au and 429^{+37}_{-32} au at an inclination of 40^{+5}_{-6}° and a position angle of 51^{+8}_{-8}°. A disc edge at ˜145 au is too far out to be explained simply by interactions with planet b, requiring either a more complicated dynamical history or an extra planet beyond the orbit of planet b.

  9. Revolution evolution: tracing angular momentum during star and planetary system formation

    NASA Astrophysics Data System (ADS)

    Davies, Claire Louise

    2015-04-01

    Stars form via the gravitational collapse of molecular clouds during which time the protostellar object contracts by over seven orders of magnitude. If all the angular momentum present in the natal cloud was conserved during collapse, stars would approach rotational velocities rapid enough to tear themselves apart within just a few Myr. In contrast to this, observations of pre-main sequence rotation rates are relatively slow (∼ 1 - 15 days) indicating that significant quantities of angular momentum must be removed from the star. I use observations of fully convective pre-main sequence stars in two well-studied, nearby regions of star formation (namely the Orion Nebula Cluster and Taurus-Auriga) to determine the removal rate of stellar angular momentum. I find the accretion disc-hosting stars to be rotating at a slower rate and contain less specific angular momentum than the disc-less stars. I interpret this as indicating a period of accretion disc-regulated angular momentum evolution followed by near-constant rotational evolution following disc dispersal. Furthermore, assuming that the age spread inferred from the Hertzsprung-Russell diagram constructed for the star forming region is real, I find that the removal rate of angular momentum during the accretion-disc hosting phase to be more rapid than that expected from simple disc-locking theory whereby contraction occurs at a fixed rotation period. This indicates a more efficient process of angular momentum removal must operate, most likely in the form of an accretion-driven stellar wind or outflow emanating from the star-disc interaction. The initial circumstellar envelope that surrounds a protostellar object during the earliest stages of star formation is rotationally flattened into a disc as the star contracts. An effective viscosity, present within the disc, enables the disc to evolve: mass accretes inwards through the disc and onto the star while momentum migrates outwards, forcing the outer regions of the disc to expand. I used spatially resolved submillimetre detections of the dust and gas components of protoplanetary discs, gathered from the literature, to measure the radial extent of discs around low-mass pre-main sequence stars of ∼ 1-10 Myr and probe their viscous evolution. I find no clear observational evidence for the radial expansion of the dust component. However, I find tentative evidence for the expansion ofthe gas component. This suggests that the evolution of the gas and dust components of protoplanetary discs are likely governed by different astrophysical processes. Observations of jets and outflows emanating from protostars and pre-main sequence stars highlight that it may also be possible to remove angular momentum from the circumstellar material. Using the sample of spatially resolved protoplanetary discs, I find no evidence for angular momentum removal during disc evolution. I also use the spatially resolved debris discs from the Submillimetre Common-User Bolometer Array-2 Observations of Nearby Stars survey to constrain the amount of angular momentum retained within planetary systems. This sample is compared to the protoplanetary disc angular momenta and to the angular momentum contained within pre-stellar cores. I find that significant quantities of angular momentum must be removed during disc formation and disc dispersal. This likely occurs via magnetic braking during the formation of the disc, via the launching of a disc or photo-evaporative wind, and/or via ejection of planetary material following dynamical interactions.

  10. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  11. DISC (Defense Industrial Supply Center) TQM (Total Quality Management) Operations Plan

    DTIC Science & Technology

    1989-07-01

    This document represents the continuance of the Defense Industrial Supply Center implementation of Total Quality Management which began in 1986. It...outlines how DISC intends to emphasize process improvement through the integration of all TQM initiates. Quality management at DISC prescribes defining

  12. Inner mean-motion resonances with eccentric planets: a possible origin for exozodiacal dust clouds

    NASA Astrophysics Data System (ADS)

    Faramaz, V.; Ertel, S.; Booth, M.; Cuadra, J.; Simmonds, C.

    2017-02-01

    High levels of dust have been detected in the immediate vicinity of many stars, both young and old. A promising scenario to explain the presence of this short-lived dust is that these analogues to the zodiacal cloud (or exozodis) are refilled in situ through cometary activity and sublimation. As the reservoir of comets is not expected to be replenished, the presence of these exozodis in old systems has yet to be adequately explained. It was recently suggested that mean-motion resonances with exterior planets on moderately eccentric (ep ≳ 0.1) orbits could scatter planetesimals on to cometary orbits with delays of the order of several 100 Myr. Theoretically, this mechanism is also expected to sustain continuous production of active comets once it has started, potentially over Gyr time-scales. We aim here to investigate the ability of this mechanism to generate scattering on to cometary orbits compatible with the production of an exozodi on long time-scales. We combine analytical predictions and complementary numerical N-body simulations to study its characteristics. We show, using order of magnitude estimates, that via this mechanism, low-mass discs comparable to the Kuiper belt could sustain comet scattering at rates compatible with the presence of the exozodis which are detected around Solar-type stars, and on Gyr time-scales. We also find that the levels of dust detected around Vega could be sustained via our proposed mechanism if an eccentric Jupiter-like planet were present exterior to the system's cold debris disc.

  13. 7 CFR 701.53 - Debris removal and water for livestock.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Debris removal and water for livestock. 701.53 Section 701.53 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... RELATED PROGRAMS PREVIOUSLY ADMINISTERED UNDER THIS PART § 701.53 Debris removal and water for livestock...

  14. 7 CFR 701.153 - Debris removal and water for livestock.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Debris removal and water for livestock. 701.153 Section 701.153 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY... Conservation Program § 701.153 Debris removal and water for livestock. Subject to the other eligibility...

  15. Ultrastructure of cuticle deposited inPlodia interpunctella wing discs after variousβ-ecdysone treatments in vitro.

    PubMed

    Dutkowski, A B; Oberlander, H; Leach, C E

    1977-06-01

    Wing discs of the Indian meal moth may be cultured for extended periods in vitro. The discs produced a tanned cuticle after continuous incubation with β-ecdysone in medium conditioned with fat body or after a 24-h pulse incubation with β-ecdysone in plain medium. We investigated the ultrastructure of the cuticle deposited by such discs. We found that the treatment that produced the most complete cuticle in vitro was the 24-h pulse of hormone. We observed that cuticle formation in vitro was not "all-or-none." Depending on culture conditions, discs produced cuticulin only, complete epicuticle, epicuticle plus diffuse endocuticle, epicuticle plus lamellate endocuticle, or even multiple layers of cuticle. The ultrastructural evidence suggests that continuous incubation with β-ecdysone in plain medium does not always inhibit cuticle formationper se, but does prevent tanning of the partially formed cuticle.

  16. 26 CFR 1.996-7 - Carryover of DISC tax attributes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES Domestic International Sales Corporations § 1.996-7 Carryover of DISC tax... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Carryover of DISC tax attributes. 1.996-7... in nontaxable transactions shall be subject to rules generally applicable to other corporate tax...

  17. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    NASA Astrophysics Data System (ADS)

    Robson, Ian; Holland, Wayne S.; Friberg, Per

    2017-09-01

    The James Clerk Maxwell Telescope (JCMT) has been the world's most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of `SCUBA' galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years.

  18. Vega's hot dust from icy planetesimals scattered inwards by an outward-migrating planetary system

    NASA Astrophysics Data System (ADS)

    Raymond, Sean N.; Bonsor, Amy

    2014-07-01

    Vega has been shown to host multiple dust populations, including both hot exozodiacal dust at sub-au radii and a cold debris disc extending beyond 100 au. We use dynamical simulations to show how Vega's hot dust can be created by long-range gravitational scattering of planetesimals from its cold outer regions. Planetesimals are scattered progressively inwards by a system of 5-7 planets from 30 to 60 au to very close-in. In successful simulations, the outermost planets are typically Neptune mass. The back-reaction of planetesimal scattering causes these planets to migrate outwards and continually interact with fresh planetesimals, replenishing the source of scattered bodies. The most favourable cases for producing Vega's exozodi have negative radial mass gradients, with sub-Saturn- to Jupiter-mass inner planets at 5-10 au and outer planets of 2.5 - 20 M⊕ . The mechanism fails if a Jupiter-sized planet exists beyond ˜15 au because the planet preferentially ejects planetesimals before they can reach the inner system. Direct-imaging planet searches can therefore directly test this mechanism.

  19. Celebrating 30 years of science from the James Clerk Maxwell Telescope

    PubMed Central

    Robson, Ian; Friberg, Per

    2017-01-01

    The James Clerk Maxwell Telescope (JCMT) has been the world’s most successful single-dish telescope at submillimetre wavelengths since it began operations in 1987. From the pioneering days of single-element photometers and mixers, through to the state-of-the-art imaging and spectroscopic cameras, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of ‘SCUBA’ galaxies, which are responsible for a large fraction of the far-infrared background, the JCMT has pushed the sensitivity limits arguably more than any other facility in this most difficult of wavebands in which to observe. Closer to home, the first images of huge discs of cool debris around nearby stars gave us clues to the evolution of planetary systems, further evidence of the importance of studying astrophysics in the submillimetre region. Now approaching the 30th anniversary of the first observations, the telescope continues to carry out unique and innovative science. In this review article, we look back on some of the major scientific highlights from the past 30 years. PMID:28989775

  20. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    PubMed

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  1. The nuclear activity and central structure of the elliptical galaxy NGC 5322

    NASA Astrophysics Data System (ADS)

    Dullo, Bililign T.; Knapen, Johan H.; Williams, David R. A.; Beswick, Robert J.; Bendo, George; Baldi, Ranieri D.; Argo, Megan; McHardy, Ian M.; Muxlow, Tom; Westcott, J.

    2018-04-01

    We have analysed a new high-resolution e-MERLIN 1.5 GHz radio continuum map together with HST and SDSS imaging of NGC 5322, an elliptical galaxy hosting radio jets, aiming to understand the galaxy's central structure and its connection to the nuclear activity. We decomposed the composite HST + SDSS surface brightness profile of the galaxy into an inner stellar disc, a spheroid, and an outer stellar halo. Past works showed that this embedded disc counter-rotates rapidly with respect to the spheroid. The HST images reveal an edge-on nuclear dust disc across the centre, aligned along the major-axis of the galaxy and nearly perpendicular to the radio jets. After careful masking of this dust disc, we find a central stellar mass deficit Mdef in the spheroid, scoured by SMBH binaries with final mass MBH such that Mdef/MBH ˜ 1.3-3.4. We propose a three-phase formation scenario for NGC 5322, where a few (2-7) `dry' major mergers involving SMBHs built the spheroid with a depleted core. The cannibalism of a gas-rich satellite subsequently creates the faint counter-rotating disc and funnels gaseous material directly on to the AGN, powering the radio core with a brightness temperature of TB, core ˜ 4.5 × 107 K and the low-power radio jets (Pjets ˜ 7.04 × 1020 W Hz-1), which extend ˜1.6 kpc. The outer halo can later grow via minor mergers and the accretion of tidal debris. The low-luminosity AGN/jet-driven feedback may have quenched the late-time nuclear star formation promptly, which could otherwise have replenished the depleted core.

  2. Magnetically advected winds

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Kazanas, D.; Fukumura, K.

    2017-11-01

    Observations of X-ray absorption lines in magnetically driven disc winds around black hole binaries and active galactic nuclei yield a universal radial density profile ρ ∝ r-1.2 in the wind. This is in disagreement with the standard Blandford and Payne profile ρBP ∝ r-1.5 expected when the magnetic field is neither advected nor diffusing through the accretion disc. In order to account for this discrepancy, we establish a new paradigm for magnetically driven astrophysical winds according to which the large-scale ordered magnetic field that threads the disc is continuously generated by the Cosmic Battery around the inner edge of the disc and continuously diffuses outward. We obtain self-similar solutions of such magnetically advected winds (MAW) and discuss their observational ramifications.

  3. 26 CFR 1.996-4 - Subsequent effect of previous disposition of DISC stock.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Subsequent effect of previous disposition of DISC stock. 1.996-4 Section 1.996-4 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales Corporations § 1.996...

  4. Activities on space debris in U.S.

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  5. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  6. Linking long-term planetary N-body simulations with periodic orbits: application to white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Antoniadou, Kyriaki I.; Veras, Dimitri

    2016-12-01

    Mounting discoveries of debris discs orbiting newly formed stars and white dwarfs (WDs) showcase the importance of modelling the long-term evolution of small bodies in exosystems. WD debris discs are, in particular, thought to form from very long-term (0.1-5.0 Gyr) instability between planets and asteroids. However, the time-consuming nature of N-body integrators which accurately simulate motion over Gyrs necessitates a judicious choice of initial conditions. The analytical tools known as periodic orbits can circumvent the guesswork. Here, we begin a comprehensive analysis directly linking periodic orbits with N-body integration outcomes with an extensive exploration of the planar circular restricted three-body problem (CRTBP) with an outer planet and inner asteroid near or inside of the 2:1 mean motion resonance. We run nearly 1000 focused simulations for the entire age of the Universe (14 Gyr) with initial conditions mapped to the phase space locations surrounding the unstable and stable periodic orbits for that commensurability. In none of our simulations did the planar CRTBP architecture yield a long-time-scale (≳0.25 per cent of the age of the Universe) asteroid-star collision. The pericentre distance of asteroids which survived beyond this time-scale (≈35 Myr) varied by at most about 60 per cent. These results help affirm that collisions occur too quickly to explain WD pollution in the planar CRTBP 2:1 regime, and highlight the need for further periodic orbit studies with the eccentric and inclined TBP architectures and other significant orbital period commensurabilities.

  7. Debris Removal: An Opportunity for Cooperative Research?

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.

  8. Disc Activities in Physical Education: A Comprehensive Approach

    ERIC Educational Resources Information Center

    Cramer, Stanley J.

    2017-01-01

    Nearly everyone who throws a disc associates the activity with fun. Over the years, multiple disc games and activities have been invented, combining fun and learning. These are games that many individuals are likely to continue playing long after they have left school and are worthy of being included in a contemporary physical education program.…

  9. 26 CFR 1.995-4 - Gain on disposition of stock in a DISC.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TAX (CONTINUED) INCOME TAXES Domestic International Sales Corporations § 1.995-4 Gain on disposition... is a DISC and to which is carried over the accumulated DISC income and other tax attributes of the...)(2) (as in effect prior to amendment by the Tax Equity and Fiscal Responsibility Act of 1982) or if...

  10. 75 FR 773 - TSCA Section 5 Premanufacture and Significant New Use Notification Electronic Reporting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... via CDX, optical disc (CD or DVD), and paper. Regardless of the method of submission, EPA will require... support documents (including NOCs), though optical discs may continue to be used. Two years after the effective date of this final rule, optical discs will no longer be accepted, and all submitters must submit...

  11. Highlights of Recent Research Activities at the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Liou, J - C.

    2017-01-01

    The NASA Orbital Debris Program Office (ODPO) was established at the NASA Johnson Space Center in 1979. The ODPO has initiated and led major orbital debris research activities over the past 38 years, including developing the first set of the NASA orbital debris mitigation requirements in 1995 and supporting the establishment of the U.S. Government Orbital Debris Mitigation Standard Practices in 2001. This paper is an overview of the recent ODPO research activities, ranging from ground-based and in-situ measurements, to laboratory tests, and to engineering and long-term orbital debris environment modeling. These activities highlight the ODPO's commitment to continuously improve the orbital debris environment definition to better protect current and future space missions from the low Earth orbit to the geosynchronous Earth orbit regions.

  12. 26 CFR 1.996-8 - Effect of carryback of capital loss or net operating loss to prior DISC taxable year.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Effect of carryback of capital loss or net operating loss to prior DISC taxable year. 1.996-8 Section 1.996-8 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Domestic International Sales...

  13. Accretion disc wind variability in the states of the microquasar GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.

    2012-03-01

    Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.

  14. Active Debris Removal Using Modified Launch Vehicle Upper Stages

    NASA Astrophysics Data System (ADS)

    Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea

    2013-09-01

    During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  15. Patterned CoCrMo and Al2 O3 surfaces for reduced free wear debris in artificial joint arthroplasty.

    PubMed

    Tarabolsi, Mohamad; Klassen, Thomas; Mantwill, Frank; Gärtner, Frank; Siegel, Frank; Schulz, Arndt-Peter

    2013-12-01

    Surface wear of corresponding tribological pairings is still a major problem in the application of artificial joint surgery. This study aims at developing wear reduced surfaces to utilize them in total joint arthroplasty. Using a pico-second laser, samples of medical CoCrMo metal alloy and Al2 O3 ceramic were patterned by laser material removal. The subsequent tribological investigations employed a ring-on-disc method. The results showed that those samples with modified surfaces show less mass or volume loss than those with a regular, smooth surface. Using calf serum as lubricating medium, the volume loss of the structured CoCrMo samples was eight times lower than that of regular samples. By structuring Al2 O3 surfaces, the wear volume could be reduced by 4.5 times. The results demonstrate that defined surface channels or pits enable the local sedimentation of wear debris. Thus, the amount of free debris could be reduced. Fewer abrasives in the lubricated so-called three-body-wear between the contact surfaces should result in less surface damage. Apart from direct influences on the wear behavior, less amounts of free debris of artificial joints should also be beneficial for avoiding undesired reactions with the surrounding soft tissues. The results from this study are very promising. Future investigations should involve the use of simulators meeting the natural conditions in the joint and in vivo studies with living organisms. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  16. ALMA and VLA observations of the HD 141569 system

    NASA Astrophysics Data System (ADS)

    White, Jacob Aaron; Boley, A. C.; MacGregor, M. A.; Hughes, A. M.; Wilner, D. J.

    2018-03-01

    We present VLA 9 mm (33 GHz) and archival ALMA 2.9 mm (103 GHz) observations of the HD 141569 system. The VLA observations achieve a resolution of 0.25 arcsec (˜28 au) and a sensitivity of 4.7 μJy beam- 1. We find (1) a 52 ± 5 μJy point source at the location of HD 141569A that shows potential variability, (2) the detected flux is contained within the SED-inferred central clearing of the disc meaning the spectral index of the dust disc is steeper than previously inferred, and (3) the M dwarf companions are also detected and variable. Previous lower resolution VLA observations (semester 14A) found a higher flux density, interpreted as solely dust emission. When combined with ALMA observations, the VLA 14A observations suggested the spectral index, and grain size distribution of HD 141569's disc was shallow and an outlier among debris systems. Using archival ALMA observations of HD 141569 at 0.87 and 2.9 mm, we find a dust spectral index of αmm = 1.81 ± 0.20. The VLA 16A flux corresponds to a brightness temperature of ˜5 × 106 K, suggesting strong non-disc emission is affecting the inferred grain properties. The VLA 16A flux density of the M2V companion HD 141569B is 149 ± 9 μJy, corresponding to a brightness temperature of ˜2 × 108 K and suggesting significant stellar variability when compared to the VLA14A observations, which are smaller by a factor of ˜6.

  17. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  18. Once in a blue moon: detection of `bluing' during debris transits in the white dwarf WD 1145+017

    NASA Astrophysics Data System (ADS)

    Hallakoun, N.; Xu, S.; Maoz, D.; Marsh, T. R.; Ivanov, V. D.; Dhillon, V. S.; Bours, M. C. P.; Parsons, S. G.; Kerry, P.; Sharma, S.; Su, K.; Rengaswamy, S.; Pravec, P.; Kušnirák, P.; Kučáková, H.; Armstrong, J. D.; Arnold, C.; Gerard, N.; Vanzi, L.

    2017-08-01

    The first transiting planetesimal orbiting a white dwarf was recently detected in K2 data of WD 1145+017 and has been followed up intensively. The multiple, long and variable transits suggest the transiting objects are dust clouds, probably produced by a disintegrating asteroid. In addition, the system contains circumstellar gas, evident by broad absorption lines, mostly in the u΄ band, and a dust disc, indicated by an infrared excess. Here we present the first detection of a change in colour of WD 1145+017 during transits, using simultaneous multiband fast-photometry ULTRACAM measurements over the u΄g΄r΄I΄ bands. The observations reveal what appears to be 'bluing' during transits; transits are deeper in the redder bands, with a u΄ - r΄ colour difference of up to ˜-0.05 mag. We explore various possible explanations for the bluing, including limb darkening or peculiar dust properties. 'Spectral' photometry obtained by integrating over bandpasses in the spectroscopic data in and out of transit, compared to the photometric data, shows that the observed colour difference is most likely the result of reduced circumstellar absorption in the spectrum during transits. This indicates that the transiting objects and the gas share the same line of sight and that the gas covers the white dwarf only partially, as would be expected if the gas, the transiting debris and the dust emitting the infrared excess are part of the same general disc structure (although possibly at different radii). In addition, we present the results of a week-long monitoring campaign of the system using a global network of telescopes.

  19. DA white dwarfs in Sloan Digital Sky Survey Data Release 7 and a search for infrared excess emission

    NASA Astrophysics Data System (ADS)

    Girven, J.; Gänsicke, B. T.; Steeghs, D.; Koester, D.

    2011-10-01

    We present a method which uses colour-colour cuts on the Sloan Digital Sky Survey (SDSS) photometry to select white dwarfs with hydrogen-rich (DA) atmospheres without the recourse to spectroscopy. This method results in a sample of DA white dwarfs that is 95 per cent complete at an efficiency of returning a true DA white dwarf of 62 per cent. The approach was applied to SDSS Data Release 7 for objects with and without SDSS spectroscopy. This led to 4636 spectroscopicially confirmed DA white dwarfs with g≤ 19; a ˜70 per cent increase compared to Eisenstein et al.'s 2006 sample. Including the photometric-only objects, we estimate a factor of 3 increase in DA white dwarfs. We find that the SDSS spectroscopic follow-up is 44 per cent complete for DA white dwarfs with Teff≳ 8000 K. We further cross-correlated the SDSS sample with Data Release 8 of the UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey (UKIDSS) Large Area Survey. The spectral energy distributions (SED) of both subsets, with and without SDSS spectroscopy, were fitted with white dwarf models to determine the fraction of DA white dwarfs with low-mass stellar companions or dusty debris discs via the detection of excess near-infrared emission. From the spectroscopic sample we find that 2.0 per cent of white dwarfs have an excess consistent with a brown dwarf type companion, with a firm lower limit of 0.8 per cent. From the white dwarfs with photometry only, we find that 1.8 per cent are candidates for having brown dwarf companions. Similarly, both samples show that ˜1 per cent of white dwarfs are candidates for having a dusty debris disc.

  20. ICE AND DEBRIS IN THE FRETTED TERRAIN, MARS.

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1984-01-01

    Viking moderate- and high-resolution images along the northern highland margin were studied monoscopically and stereoscopically to contribute to an understanding of the development of fretted terrain. Results support the hypothesis that the fretting process involved flow facilitated by interstitial ice. The process apparently continued for a long period of time, and debris-apron formation shaped the fretted terrain in the past as well as the present. Interstitial ice in debris aprons is most likely derived from ground ice obtained by sapping or scarp collapse. Debris aprons could have been removed by sublimation if they consisted mostly of ice, or by deflation if they consisted mostly of debris. To remove the debris, wind erosion was either very intense early in martian history, or was intermittent, perhaps owing to climatic cycles.

  1. Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions

    USGS Publications Warehouse

    Iverson, Richard M.

    1997-01-01

    Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.

  2. Biobjective planning of an active debris removal mission

    NASA Astrophysics Data System (ADS)

    Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel

    2013-03-01

    The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.

  3. Space Shuttle Propulsion Systems Plume Modeling and Simulation for the Lift-Off Computational Fluid Dynamics Model

    NASA Technical Reports Server (NTRS)

    Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.

    2007-01-01

    This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.

  4. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    PubMed

    Kuo, Fan-Jun; Huang, Hsiang-Wen

    2014-06-15

    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Deployment of an inductance-based quasi-digital sensor to detect metallic wear debris in lubricant oil of rotating machinery

    NASA Astrophysics Data System (ADS)

    Sanga, Ramesh; Srinivasan, V. S.; Sivaramakrishna, M.; Prabhakara Rao, G.

    2018-07-01

    In rotating machinery due to continuous rotational induced wear and tear, metallic debris will be produced and mixes with the in-service lubricant oil over the course of time. This debris gives the sign of potential machine failure due to the aging of critical parts like gears and bearings. The size and type of wear debris has a direct relationship with the degree of wear in the machine and gives information about the healthiness of equipment. This article presents an inductive quasi-digital sensor to detect the metallic debris, its type; size in the lubrication oil of rotating machinery. A microcontroller based low cost, low power, high resolution and high precise instrument with alarm indication and LCD is developed to detect ferrous debris of sizes from 30 µm and non-ferrous debris of 50 µm. It is thoroughly tested and calibrated with ferrous, non-ferrous debris of different sizes in the air environment. Finally, an experiment is conducted to check the performance of the instrument by circulating lubricant oil containing ferrous, non-ferrous debris through the sensor.

  6. Regularity Results for a Class of Functionals with Non-Standard Growth

    NASA Astrophysics Data System (ADS)

    Acerbi, Emilio; Mingione, Giuseppe

    We consider the integral functional under non-standard growth assumptions that we call p(x) type: namely, we assume that a relevant model case being the functional Under sharp assumptions on the continuous function p(x)>1 we prove regularity of minimizers. Energies exhibiting this growth appear in several models from mathematical physics.

  7. Active Space Debris Removal using European Modified Launch Vehicle Upper Stages Equipped with Electrodynamic Tethers

    NASA Astrophysics Data System (ADS)

    Nasseri, Ali S.; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea; Becker, Cristoph

    2013-08-01

    During the past few years, several research programs have assessed the current state and future evolution of the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. This cascade effect can be even more significant when intact objects as dismissed rocket bodies are involved in the collision. The majority of the studies until now have highlighted the urgency for active debris removal in the next years. An Active Debris Removal System (ADRS) is a system capable of approaching the debris object through a close-range rendezvous, establishing physical connection, stabilizing its attitude and finally de-orbiting the debris object using a type of propulsion system in a controlled manoeuvre. In its previous work, this group showed that a modified Fregat (Soyuz FG's 4th stage) or Breeze-M upper stage (Proton-M) launched from Plesetsk (Russian Federation) and equipped with an electro-dynamic tether (EDT) system can be used, after an opportune inclination's change, to de-orbit a Kosmos-3M second stage rocket body while also delivering an acceptable payload to orbit. In this paper, we continue our work on the aforementioned concept, presented at the 2012 Beijing Space Sustainability Conference, by comparing its performance to ADR missions using only chemical propulsion from the upper stage for the far approach and the de-orbiting phase. We will also update the EDT model used in our previous work and highlight some of the methods for creating physical contact with the object. Moreover, we will assess this concept also with European launch vehicles (Vega and Soyuz 2-1A) to remove space debris from space. In addition, the paper will cover some economic aspects, like the cost for the launches' operator in term of payload mass' loss at the launch. The entire debris removal mission from launch to de-orbiting of the target debris object will be analysed using Analytical Graphic Inc.'s Systems Tool Kit (STK).

  8. Study on biocompatibility, tribological property and wear debris characterization of ultra-low-wear polyethylene as artificial joint materials.

    PubMed

    Bian, Yan-Yan; Zhou, Lei; Zhou, Gang; Jin, Zhong-Min; Xin, Shi-Xuan; Hua, Zi-Kai; Weng, Xi-Sheng

    2018-06-01

    Ultra-low-wear polyethylene (ULWPE) is a new type polyethylene made by experts who are from China petrochemical research institute, which is easy to process and implant. Preliminary test showed it was more resistant to wear than that of Ultra-high-molecular weight polyethylene (UHMWPE). The purpose of the research is to study biocompatibility, bio-tribological properties and debris characterization of ULWPE. Cytotoxicity test, hemolysis test, acute/chronic toxicity and muscular implantation test were conducted according to national standard GB/T-16886/ISO-10993 for evaluation requirements of medical surgical implants. We obtained that this novel material had good biocompatibility and biological safety. The wear performance of ULWPE and UHMWPE was evaluated in a pin-on-disc (POD) wear tester within two million cycles and a knee wear simulator within six million cycles. We found that the ULWPE was higher abrasion resistance than the UHMWPE, the wear rate of ULWPE by POD test and knee wear simulator was 0.4 mg/10 6 cycles and (16.9 ± 1.8)mg/10 6 cycles respectively, while that of UHMWPE was 1.8 mg/10 6 cycles and (24.6 ± 2.4)mg/10 6 cycles. The morphology of wear debris is also an important factor to evaluate artificial joint materials, this study showed that the ULWPE wear debris gotten from the simulator had various different shapes, including spherical, block, tear, etc. The morphology of worn surface and wear debris analysis showed that wear mechanisms of ULWPE were adhesion wear, abrasive wear and fatigue wear and other wear forms, which were consistent with that of UHMWPE. Thus we conclude that ULWPE is expected to be a lifetime implantation of artificial joint. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A comparison of the relative efficacies of four hand and rotary instrumentation techniques during endodontic retreatment.

    PubMed

    Imura, N; Kato, A S; Hata, G I; Uemura, M; Toda, T; Weine, F

    2000-07-01

    The purpose of this study was to quantify the amount of remaining gutta-percha/scaler on the walls of root canals when two engine-driven instruments (Quantec and ProFile) and two hand instruments (K-file and Hedström file) were used to remove these materials. The amount of apically extruded debris and the time required for treatment were also recorded. One hundred extracted mandibular premolars were prepared using a modified step-back, flare technique and obturated with the lateral condensation technique. After repreparation with the test instruments, the specimens were cut transversally at the cervical, middle and apical thirds with steel discs and the three sections were split longitudinally. The amount of residual debris on the canal walls in each section was examined using a stereomicroscope. In all groups the cervical and middle thirds showed no debris. In the apical third, obturating material was observed in some specimens. No statistically significant difference was found between the two groups for incidence of debris, although the Hedström group showed a greater number of samples with remaining gutta-percha/sealer. When analysing dirty specimens only, there was a statistically significant difference between the four groups (P < 0.01) with the Hedström group having significantly less length of canal wall with remaining obturation material than the Quantec group. There was no significant difference amongst the groups for weight of extruded debris. However, there was a significant difference amongst the groups for mean treatment time with the Hedström file group requiring significantly less time than the Quantec group (P < 0.001); no significant differences were found between the other groups. Six instruments fractured in the Quantec group, four in the ProFile group, two in the Hedström group and two in the K-type group. The results showed that overall, all instruments may leave filling material inside the root canal. During retreatment there is a risk of instrument breakage, especially rotary instruments.

  10. Parametric modeling of the intervertebral disc space in 3D: application to CT images of the lumbar spine.

    PubMed

    Korez, Robert; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-10-01

    Gradual degeneration of intervertebral discs of the lumbar spine is one of the most common causes of low back pain. Although conservative treatment for low back pain may provide relief to most individuals, surgical intervention may be required for individuals with significant continuing symptoms, which is usually performed by replacing the degenerated intervertebral disc with an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study, we propose a method for parametric modeling of the intervertebral disc space in three dimensions (3D) and show its application to computed tomography (CT) images of the lumbar spine. The initial 3D model of the intervertebral disc space is generated according to the superquadric approach and therefore represented by a truncated elliptical cone, which is initialized by parameters obtained from 3D models of adjacent vertebral bodies. In an optimization procedure, the 3D model of the intervertebral disc space is incrementally deformed by adding parameters that provide a more detailed morphometric description of the observed shape, and aligned to the observed intervertebral disc space in the 3D image. By applying the proposed method to CT images of 20 lumbar spines, the shape and pose of each of the 100 intervertebral disc spaces were represented by a 3D parametric model. The resulting mean (±standard deviation) accuracy of modeling was 1.06±0.98mm in terms of radial Euclidean distance against manually defined ground truth points, with the corresponding success rate of 93% (i.e. 93 out of 100 intervertebral disc spaces were modeled successfully). As the resulting 3D models provide a description of the shape of intervertebral disc spaces in a complete parametric form, morphometric analysis was straightforwardly enabled and allowed the computation of the corresponding heights, widths and volumes, as well as of other geometric features that in detail describe the shape of intervertebral disc spaces. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Intermediate mass black holes in AGN discs - I. Production and growth

    NASA Astrophysics Data System (ADS)

    McKernan, B.; Ford, K. E. S.; Lyra, W.; Perets, H. B.

    2012-09-01

    Here we propose a mechanism for efficiently growing intermediate mass black holes (IMBH) in discs around supermassive black holes. Stellar mass objects can efficiently agglomerate when facilitated by the gas disc. Stars, compact objects and binaries can migrate, accrete and merge within discs around supermassive black holes. While dynamical heating by cusp stars excites the velocity dispersion of nuclear cluster objects (NCOs) in the disc, gas in the disc damps NCO orbits. If gas damping dominates, NCOs remain in the disc with circularized orbits and large collision cross-sections. IMBH seeds can grow extremely rapidly by collisions with disc NCOs at low relative velocities, allowing for super-Eddington growth rates. Once an IMBH seed has cleared out its feeding zone of disc NCOs, growth of IMBH seeds can become dominated by gas accretion from the active galactic nucleus (AGN) disc. However, the IMBH can migrate in the disc and expand its feeding zone, permitting a super-Eddington accretion rate to continue. Growth of IMBH seeds via NCO collisions is enhanced by a pile-up of migrators. We highlight the remarkable parallel between the growth of IMBH in AGN discs with models of giant planet growth in protoplanetary discs. If an IMBH becomes massive enough it can open a gap in the AGN disc. IMBH migration in AGN discs may stall, allowing them to survive the end of the AGN phase and remain in galactic nuclei. Our proposed mechanisms should be more efficient at growing IMBH in AGN discs than the standard model of IMBH growth in stellar clusters. Dynamical heating of disc NCOs by cusp stars is transferred to the gas in an AGN disc helping to maintain the outer disc against gravitational instability. Model predictions, observational constraints and implications are discussed in a companion paper (Paper II).

  12. Current Status of Programs and Research within the NASA Orbital Debris Program Office

    NASA Technical Reports Server (NTRS)

    Bacon, Jack

    2016-01-01

    The NASA Orbital Debris Program Office (ODPO) is the world's longest-standing orbital debris research organization. It supports all aspects of international and US national policy-making related to the orbital environment and to spacecraft life cycle requirements. Representing more than just NASA projects, it is the United States' center of expertise in the field. The office continues to advance research in all aspects of orbital debris, including its measurement, modeling, and risk assessment for both orbital and ground safety concerns. This presentation will highlight current activities and recent progress in all aspects of the ODPO's mission.

  13. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  14. Ultrafast outflows in Super-Eddington Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Kara, Erin

    2017-08-01

    The disruption of a star from the strong tidal forces of a supermassive black hole can cause the stellar debris to fall back towards the black hole at super Eddington rates. Efficient circularization of the debris can lead to the formation of an accretion disc with luminosities close to or potentially exceeding Eddington limit. Most super-Eddington accretion flow models (including recent magnetohydrodynamic simulations) predict large scale height, optically thick equatorial winds at relativistic velocities. In this talk, we will present observational results from two of the most well-observed X-ray emitting Tidal Disruption Events, Swift J1644+57 and ASASSN-14li. Both of these objects show evidence for massive outflows at tens of percent of the speed of light. The outflow in Swift J1644+57 was detected via blue shifted emission and reverberation of the iron K alpha line, and ASASSN-14li shows a potential P Cygni profile of the OVIII line. We will discuss the constraints that these observations put on the geometry of the super-Eddington accretion flows in tidal disruption events.

  15. Monitoring and analysis of frozen debris lobes, phase IB.

    DOT National Transportation Integrated Search

    2015-09-01

    Frozen debris lobes (FDLs) are slow-moving landslides in permafrost, many of which are present within the Dalton Highway corridor in the Brooks Range of Alaska. During this phase of the research, we continued our investigations of FDL-A (the closest ...

  16. Nulling interferometry: impact of exozodiacal clouds on the performance of future life-finding space missions

    NASA Astrophysics Data System (ADS)

    Defrère, D.; Absil, O.; den Hartog, R.; Hanot, C.; Stark, C.

    2010-01-01

    Context. Earth-sized planets around nearby stars are being detected for the first time by ground-based radial velocity and space-based transit surveys. This milestone is opening the path toward the definition of instruments able to directly detect the light from these planets, with the identification of bio-signatures as one of the main objectives. In that respect, both the European Space Agency (ESA) and the National Aeronautics and Space Administration (NASA) have identified nulling interferometry as one of the most promising techniques. The ability to study distant planets will however depend on the amount of exozodiacal dust in the habitable zone of the target stars. Aims: We assess the impact of exozodiacal clouds on the performance of an infrared nulling interferometer in the Emma X-array configuration. The first part of the study is dedicated to the effect of the disc brightness on the number of targets that can be surveyed and studied by spectroscopy during the mission lifetime. In the second part, we address the impact of asymmetric structures in the discs such as clumps and offset which can potentially mimic the planetary signal. Methods: We use the DarwinSIM software which was designed and validated to study the performance of space-based nulling interferometers. The software has been adapted to handle images of exozodiacal discs and to compute the corresponding demodulated signal. Results: For the nominal mission architecture with 2-m aperture telescopes, centrally symmetric exozodiacal dust discs about 100 times denser than the solar zodiacal cloud can be tolerated in order to survey at least 150 targets during the mission lifetime. Considering modeled resonant structures created by an Earth-like planet orbiting at 1 AU around a Sun-like star, we show that this tolerable dust density goes down to about 15 times the solar zodiacal density for face-on systems and decreases with the disc inclination. Conclusions: Whereas the disc brightness only affects the integration time, the presence of clumps or offset is more problematic and can hamper the planet detection. Based on the worst-case scenario for debris disc structures, the upper limit on the tolerable exozodiacal dust density is approximately 15 times the density of the solar zodiacal cloud. This gives the typical sensitivity that we will need to reach on exozodiacal discs in order to prepare the scientific programme of future Earth-like planet characterisation missions. FNRS Postdoctoral Researcher

  17. Analyticity in Time and Smoothing Effect of Solutions to Nonlinear Schrödinger Equations

    NASA Astrophysics Data System (ADS)

    Hayashi, Nakao; Kato, Keiichi

    In this paper we consider analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations where . We prove that if φ satisfies then there exists a unique solution of (1) and positive constants T, C0, C1 such that is analytic in time and space variables for and and has an analytic continuation on and In the case the condition (2) can be relaxed as follows: where m= 0 if n= 1, p= 1, m= 1 if n= 2, and m= 1 if n= 3, p= 1.

  18. Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solanum nigrum L.) leaf discs and correlation with biochemical measures of toxicity.

    PubMed

    Abbas, H K; Paul, R N; Riley, R T; Tanaka, T; Shier, W T

    1998-12-01

    Ultrastructural effects of AAL-toxin TA from Alternaria alternata on black nightshade (Solanum, nigrum L.) leaf discs and correlation with biochemical measures of toxicity. In black nightshade (Solanum nigrum L.) leaf discs floating in solutions of AAL-toxin TA (0.01-200 microM) under continuous light at 25 degrees C, electrolyte leakage, chlorophyll loss, autolysis, and photobleaching were observed within 24 h. Electrolyte leakage, measured by the conductivity increase in the culture medium, began after 12 h with 200 microM AAL-toxin T(A), but was observed after 24 h with 0.01 to 50 microM AAL-toxin T(A), when it ranged from 25%) to 63% of total releasable electrolytes, respectively. After 48 h incubation, leakage ranged from 39% to 79% of total for 0.01 to 200 microM AAL-toxin T(A), respectively, while chlorophyll loss ranged from 5% to 32% of total, respectively. Ultrastructural examination of black night-shade leaf discs floating in 10 microM AAL-toxin TA under continuous light at 25 degrees C revealed cytological damage beginning at 30 h, consistent with the time electrolyte leakage and chlorophyll reduction were observed. After 30 h incubation chloroplast starch grains were enlarged in control leaf discs, but not in AAL-toxin T(A)-treated discs, and the thylakoids of treated tissue contained structural abnormalities. After 36-48 h incubation with 10 microM AAL-toxin T(A), all tissues were destroyed with only cell walls, starch grains, and thylakoid fragments remaining. Toxicity was light-dependent, because leaf discs incubated with AAL-toxin T(A) in darkness for up to 72 h showed little phytotoxic damage. Within 6 h of exposure to > or =0.5 microM toxin, phytosphingosine and sphinganine in black nightshade leaf discs increased markedly, and continued to increase up to 24 h exposure. Thus, phy siological and ultrastructural changes occurred in parallel with disruption of sphingolipid synthesis, consistent with the hypothesis that AAL-toxin T(A) causes phytotoxicity by interrupting sphingolipid biosynthesis, thereby damaging cellular membranes.

  19. The influence of supraglacial debris cover variability on de-icing processes - examples from Svalbard

    NASA Astrophysics Data System (ADS)

    Lukas, Sven; Benn, Douglas I.; Boston, Clare M.; Hawkins, Jack; Lehane, Niall E.; Lovell, Harold; Rooke, Michael

    2014-05-01

    Extensive supraglacial debris covers are widespread near the margins of many cold-based and polythermal surging and non-surging glaciers in Svalbard. Despite their importance for current glacier dynamics and a detailed understanding of how they will affect the de-icing of ice-marginal areas, little work has been carried out to shed light on the sedimentary processes operating in these debris covers. We here present data from five different forelands in Svalbard. In all five cases, surfaces within the debris cover can be regarded as stable where debris cover thickness exceeds that of the active layer; vegetation development and absence of buried ice exposures at the surface support this conclusion, although test pits and geophysical investigations have revealed the presence of buried ice at greater depths (> 1-3 m). These findings imply that even seemingly stable surfaces at present will be subject to change by de-icing in the future. Factors and processes that contribute towards a switch from temporarily stable to unstable conditions have been identified as: 1. The proximity to englacial or supraglacial meltwater channels. These channels enlarge due to thermo-erosion, which can lead to the eventual collapse of tunnel roofs and the sudden generation of linear instabilities in the system. Along such channels, ablation is enhanced compared to adjacent debris-covered ice, and continued thermo-erosion continuously exposes new areas of buried ice at the surface. This works in conjunction with 2. Debris flows that occur on all sloping ground and transfer material from stable to less stable (sloping) locations within the debris cover and eventually into supraglacial channels, from where material is then removed from the system. Several generations of debris flows have been identified in all five debris covers, strongly suggesting that these processes are episodic and that the loci of these processes switch. This in turn indicates that transfer of material by debris flows downslope can lead to localised thickening of the debris cover, thereby resulting in the creation of new temporarily-stable areas in downslope locations. 3. The renewed and continued re-distribution of material causes de-icing to proceed in a stepwise fashion. While de-icing is ongoing, this results in the formation of debris cones or even larger ridges and mounds that have been termed "moraine-mound complexes" by previous workers (e.g. Graham et al., 2007). These are temporary landforms that will not survive de-icing over longer timescales, and projection of continued reworking into the future shows that perhaps an undulating spread of material will remain (cf. Lukas, 2007). The formation of supraglacial lakes during overall melting can lead to the formation of thick sequences of sorted sediments that in turn insulate the underlying ice after lake drainage. The presence of such sorted sediments in current ridge-top locations in some of the debris covers gives further weight to the interpretation of a mode of stepwise de-icing; crumbling and erosion by snowmelt and wind attests the shortlived nature of such deposits in topographic highs. Our findings strongly support an interpretation of a de-icing mode that takes place in a stepwise fashion that leads to several generations of sediment transfer within the debris covers and repeated relief inversion. References Graham, D.J., Bennett, M.R., Glasser, N.F., Hambrey, M.J., Huddart, D., Midgley, N.G., 2007. 'A test of the englacial thrusting hypothesis of ''hummocky''moraine formation: case studies from the northwest Highlands, Scotland': Comments. Boreas 36, 103-107. Lukas, S., 2007. Englacial thrusting and (hummocky) moraine formation: a reply to comments by Graham et al. (2007). Boreas 36, 108-113.

  20. Continuous lumbar hemilaminectomy for intervertebral disc disease in an Amur tiger (Panthera tigris altaica).

    PubMed

    Flegel, Thomas; Böttcher, Peter; Alef, Michaele; Kiefer, Ingmar; Ludewig, Eberhard; Thielebein, Jens; Grevel, Vera

    2008-09-01

    A 13-yr-old Amur tiger (Panthera tigris altaica) was presented for an acute onset of paraplegia. Spinal imaging that included plain radiographs, myelography, and computed tomography performed under general anesthesia revealed lateralized spinal cord compression at the intervertebral disc space L4-5 caused by intervertebral disc extrusion. This extrusion was accompanied by an extensive epidural hemorrhage from L3 to L6. Therefore, a continuous hemilaminectomy from L3 to L6 was performed, resulting in complete decompression of the spinal cord. The tiger was ambulatory again 10 days after the surgery. This case suggests that the potential benefit of complete spinal cord decompression may outweigh the risk of causing clinically significant spinal instability after extensive decompression.

  1. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis

    1986-01-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  2. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis

    1986-07-01

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  3. Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris

    DOEpatents

    Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.

    The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.

  4. Distribution and abundance of anthropogenic marine debris along the shelf and slope of the US West Coast.

    PubMed

    Keller, Aimee A; Fruh, Erica L; Johnson, Melanie M; Simon, Victor; McGourty, Catherine

    2010-05-01

    As marine debris levels continue to grow worldwide, defining sources, composition, and distribution of debris, as well as potential effects, becomes increasingly important. We investigated composition and abundance of man-made, benthic marine debris at 1347 randomly selected stations along the US West Coast during Groundfish Bottom Trawl Surveys in 2007 and 2008. Anthropogenic debris was observed in 469 tows at depths of 55-1280 m. Plastic and metallic debris occurred in the greatest number of hauls followed by fabric and glass. Mean density was 67.1 items km(-2) throughout the study area but was significantly higher south of 36 degrees 00'N latitude. Mean density significantly increased with depth, ranging from 30 items km(-2) in shallow (55-183 m) water to 128 items km(-2) in the deepest depth stratum (550-1280 m). Debris densities observed along the US West Coast were comparable to those seen elsewhere and provide a valuable backdrop for future comparisons. (c) 2010 Elsevier Ltd. All rights reserved.

  5. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    NASA Astrophysics Data System (ADS)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  6. Recognizing the importance of tropical forests in limiting rainfall-induced debris flows

    EPA Science Inventory

    Worldwide concern for continuing loss of montane forest cover in the tropics usually focuses on adverse ecological consequences. Less recognized, but equally important to inhabitants of these affected regions, is an increasing susceptibility to rainfall-induced debris flows and t...

  7. Man-made space debris - Does it restrict free access to space

    NASA Technical Reports Server (NTRS)

    Wolfe, M.; Chobotov, V.; Kessler, D.; Reynolds, R.

    1981-01-01

    Consideration is given to the hazards posed by existing and future man-made space debris to spacecraft operations. The components of the hazard are identified as those fragments resulting from spacecraft explosions and spent stages which can be tracked, those fragments which are too small to be tracked at their present distances, and future debris, which, if present trends in spacecraft design and operation continue, may lead to an unacceptably high probability of collision with operational spacecraft within a decade. It is argued that a coordinated effort must be undertaken by all space users to evaluate means of space debris control in order to allow for the future unrestricted use of near-earth space. A plan for immediate action to forestall the space debris problem by activities in the areas of education, debris monitoring and collection technology, space vehicle design, space operational procedures and practices and space policies and treaties is proposed.

  8. Determining Distributed Ablation over Dirty Ice Areas of Debris-covered Glaciers Using a UAV-SfM Approach

    NASA Astrophysics Data System (ADS)

    Woodget, A.; Fyffe, C. L.; Kirkbride, M. P.; Deline, P.; Westoby, M.; Brock, B. W.

    2017-12-01

    Dirty ice areas (where debris cover is discontinuous) are often found on debris-covered glaciers above the limit of continuous debris and are important because they are areas of high melt and have been recognized as the locus of the identified upglacier increase in debris cover. The modelling of glacial ablation in areas of dirty ice is in its infancy and is currently restricted to theoretical studies. Glacial ablation is traditionally determined at point locations using stakes drilled into the ice. However, in areas of dirty ice, ablation is highly spatially variable, since debris a few centimetres thick is near the threshold between enhancing and reducing ablation. As a result, it is very difficult to ascertain if point ablation measurements are representative of ablation of the area surrounding the stake - making these measurements unsuitable for the validation of models of dirty ice ablation. This paper aims to quantify distributed ablation and its relationship to essential dirty ice characteristics with a view to informing the construction of dirty ice melt models. A novel approach to determine distributed ablation is presented which uses repeat aerial imagery acquired from a UAV (Unmanned Aerial Vehicle), processed using SfM (Structure from Motion) techniques, on an area of dirty ice on Miage Glacier, Italian Alps. A spatially continuous ablation map is presented, along with a correlation to the local debris characteristics. Furthermore, methods are developed which link ground truth data on the percentage debris cover, albedo and clast depth to the UAV imagery, allowing these characteristics to be determined for the entire study area, and used as model inputs. For example, debris thickness is determined through a field relationship with clast size, which is then correlated with image texture and point cloud roughness metrics derived from the UAV imagery. Finally, we evaluate the potential of our novel approach to lead to improved modelling of dirty ice ablation.

  9. Evaluation of apical extrusion of debris and irrigant using two new reciprocating and one continuous rotation single file systems.

    PubMed

    Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya

    2014-05-01

    Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems.

  10. Does impaction of titanium-coated interbody fusion cages into the disc space cause wear debris or delamination?

    PubMed

    Kienle, Annette; Graf, Nicolas; Wilke, Hans-Joachim

    2016-02-01

    A large number of interbody fusion cages are made of polyetheretherketone (PEEK). To improve bone on-growth, some are coated with a thin layer of titanium. This coating may fail when subjected to shear loading. The purpose of this testing was to investigate whether impaction of titanium-coated PEEK cages into the disc space can result in wear or delamination of the coating, and whether titanium cages with subtractive surface etching (no coating) are less susceptible to such failure. A biomechanical study was carried out to simulate the impaction process in clinical practice and to evaluate if wear or delamination may result from impaction. Two groups of posterior lumbar interbody fusion cages with a similar geometry were tested: n=6 titanium-coated PEEK and n=6 surface-etched titanium cages. The cages were impacted into the space in between two vertebral body substitutes (polyurethane foam blocks). The two vertebral body substitutes were fixed in a device, through which a standardized axial preload of 390 N was applied. The anterior tip of the cage was positioned at the posterior border of the space between the two vertebral body substitutes. The cages were then inserted using a drop weight with a mass representative of a surgical hammer. The drop weight impacted the insertion instrument at a maximum speed of about 2.6 m/s, which is in the range of the impaction speed in vivo. This was repeated until the cages were fully inserted. The wear particles were captured and analyzed according to the pertinent standards. The surface-etched titanium cages did not show any signs of wear debris or surface damage. In contrast, the titanium-coated PEEK cages resulted in detached wear particles of different sizes (1-191 µm). Over 50% of these particles had a size <10 µm. In median, on 26% of the implants' teeth, the coating was abraded. Full delamination was not observed. In contrast to the surface-etched implants, the titanium-coated PEEK implants lost some coating material. This was visible to the naked eye. More than half of all particles were of a size range that allows phagocytosis. This study shows that titanium-coated implants are susceptible to impaction-related wear debris. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620 Antimicrobial...

  12. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620 Antimicrobial...

  13. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620 Antimicrobial...

  14. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620 Antimicrobial...

  15. 21 CFR 866.1620 - Antimicrobial susceptibility test disc.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Antimicrobial susceptibility test disc. 866.1620 Section 866.1620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Diagnostic Devices § 866.1620 Antimicrobial...

  16. Biomarkers of Spontaneous Recovery from Traumatic Spinal Cord Injury

    DTIC Science & Technology

    2017-10-01

    this was continued challenges with recruitment and retention, which we hope will be mitigated by our inclusion of additional sites of excellence from...Disc. Disability and pain from degenerated intervertebral discs (IVD) affects >40% of U.S adults, costs >$100 billion annually and the etiology is

  17. 21 CFR 872.3970 - Interarticular disc prosthesis (interpositional implant).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Interarticular disc prosthesis (interpositional implant). 872.3970 Section 872.3970 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3970 Interarticular...

  18. Oil Analysis.

    DTIC Science & Technology

    1982-08-23

    LUBRICATION, FAILURE PROGRESSION WNITORING OIL-ANALYSIS, FAILURE ANALYSIS, TRIBOLOGY WEAR DEBRIS ANALYSIS, WEAR REGIMS DIAGNOSTICS, BENCH TESTING, FERROGRApHy ...Spectrometric Oil Analysis . ............... 400 G. Analytical Ferrography ............................. 411 3 NAEC-92-153 TABLE OF CONTENTS (Continued...of ferrography entry deposit mnicrographs of these sequences, which can be directly related to sample debris concentration levels. These micrographs

  19. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.

    2017-06-01

    Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore indicates that detectability of Illgraben debris flows of this size is unaffected by changing environmental and anthropogenic seismic noise and that false detections can be greatly reduced with simple processing steps.

  20. ALMA observations of the narrow HR 4796A debris ring

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Marino, Sebastian; Matrà, Luca; Panić, Olja; Wilner, David; Wyatt, Mark C.; Yelverton, Ben

    2018-04-01

    The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system's Edgeworth-Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3-2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring's eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored.

  1. Debris-flow generation from recently burned watersheds

    USGS Publications Warehouse

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  2. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    USGS Publications Warehouse

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  3. Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products. Analyses from the study indicate that the majority of those objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 10 inclination bands. To remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development. An end-to-end debris removal operation includes, in general terms, launches orbit rendezvous, precision tracking, stabilization (of the tumbling motion), capture, and deorbit of the targets. An ADR system deigned to remove a single object is not very cost-effective. Therefore, the repeatability of the removal system is almost a requirement. Some of the technologies involved in the ADR process do exist, but the difficulty is to make them more cost effective. Other technologies, such as ways to stabilize a massive tumbling upper stage and the capture mechanisms, are new and will require major innovative research and development efforts. This paper summarizes an updated assessment of the environment, including what needs to be done to control the population growth, and outlines the major engineering and technology challenges to carry out active debris removal to preserve the environment.

  4. Neutron Star Astronomy in the era of the European Extremely Large Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mignani, Roberto P.

    About 25 isolated neutron stars (INSs) are now detected in the optical domain, mainly thanks to the HST and to VLT-class telescopes. The European Extremely Large Telescope(E-ELT) will yield {approx}100 new identifications, many of which from the follow-up of SKA, IXO, and Fermi observations. Moreover, the E-ELT will allow to carry out, on a much larger sample, INS observations which still challenge VLT-class telescopes, enabling studies on the structure and composition of the NS interior, of its atmosphere and magnetosphere, as well as to search for debris discs. In this contribution, I outline future perspectives for NS optical astronomy withmore » the E-ELT.« less

  5. NASA GES DISC DAAC Satellite Data for GIS

    NASA Technical Reports Server (NTRS)

    Nickless, Darryl; Leptoukh, Gregory; Morahan, Michael; Pollack, Nathan; Savtchenko, Andrey; Teng, William

    2005-01-01

    NASA's Goddard Earth Science (GES) Data and Information Services Center (DISC) Distributed Active Archive Center (DAAC) makes available a large and continually growing collection of spatially continuous global satellite observations of environmental parameters. These products include those from the MODIS (Moderate Resolution Imaging Spectroradiometer) on both Terra and Aqua platforms, and the Tropical Rainfall Measuring Mission (TRMM). These data products are well suited for use within Geographic Information Systems (GIS), as both backdrops to cartographic products as well as spatial analysis. However, data format, file size, and other issues have limited their widespread use by traditional GIS users. To address these data usability issues, the GES DISC DAAC recently updated tools and improved documentation of conversion procedures. In addition, the GES DISC DAAC has also been working with a major GIS software vendor to incorporate the ability to read the native Hierarchial Data Format (HDF), the format in which most of the NASA data is stored. The result is the enabling of GIS users to realize the benefit of GES DISC DAAC data without a substantial expenditure in resources to incorporate these data into their GIS. Several documents regarding the potential uses of GES DISC DAAC satellite data in GIS have recently been created. These show the combinations of concurrent data from different satellite products with traditional GIS vector products for given geographic areas. These map products include satellite imagery of Hurricane Isabel and the California wildfires, and can be viewed at http://daac.gsfc.nasa.gov/MODIS/GIS/.

  6. Geomorphology and dynamics of supraglacial debris covers in the Western Alps

    NASA Astrophysics Data System (ADS)

    Deline, P.; Gardent, M.; Kirkbride, M. P.; Le Roy, M.; Martin, B.

    2012-04-01

    In the alpine regions of France and NW Italy, many glaciers of a variety of sizes are at least partly debris-covered, but these have received less scientific research than clean glaciers. During the present period of glacier shrinkage - the area of glacier cover in France has reduced by 26% over the last 40 years -, growing debris cover needs to be understood as an influence on continuing retreat, with consequences for natural hazards, water resources and tourism. We present the results of a combined ongoing study of an inventory of debris-covered glaciers in France with site-specific studies of c. 12 glaciers of contrasting types, in order to understand spatial and temporal changes in supraglacial debris cover. Our specific aims are: 1. To understand the geomorphology of debris-covers and their formation, investigating the types of debris cover in relation to formative processes including extraglacial supply and development during transport. 2. To document the changing extents of supraglacial debris covers, using historical documents and aerial photographs. 3. To interpret areal changes in terms of glaciological and topographical controls on different glacier and debris cover types (catchment morphology, glacier structure, mass balance history, and rock wall collapse magnitude and frequency). 4. To understand the effect of debris cover on glacier dynamics and geomorphological evolution, related to insulation-related modifications to AAR, long profiles, and length changes on both short and long timescales. This includes investigation of the characteristics of debris-covered glacier depositional systems resulting from their modified dynamics.

  7. Evaluation of Apical Extrusion of Debris and Irrigant Using Two New Reciprocating and One Continuous Rotation Single File Systems

    PubMed Central

    Nayak, Gurudutt; Singh, Inderpreet; Shetty, Shashit; Dahiya, Surya

    2014-01-01

    Objective: Apical extrusion of debris and irrigants during cleaning and shaping of the root canal is one of the main causes of periapical inflammation and postoperative flare-ups. The purpose of this study was to quantitatively measure the amount of debris and irrigants extruded apically in single rooted canals using two reciprocating and one rotary single file nickel-titanium instrumentation systems. Materials and Methods: Sixty human mandibular premolars, randomly assigned to three groups (n = 20) were instrumented using two reciprocating (Reciproc and Wave One) and one rotary (One Shape) single-file nickel-titanium systems. Bidistilled water was used as irrigant with traditional needle irrigation delivery system. Eppendorf tubes were used as test apparatus for collection of debris and irrigant. The volume of extruded irrigant was collected and quantified via 0.1-mL increment measure supplied on the disposable plastic insulin syringe. The liquid inside the tubes was dried and the mean weight of debris was assessed using an electronic microbalance. The data were statistically analysed using Kruskal-Wallis nonparametric test and Mann Whitney U test with Bonferroni adjustment. P-values less than 0.05 were considered significant. Results: The Reciproc file system produced significantly more debris compared with OneShape file system (P<0.05), but no statistically significant difference was obtained between the two reciprocating instruments (P>0.05). Extrusion of irrigant was statistically insignificant irrespective of the instrument or instrumentation technique used (P >0.05). Conclusions: Although all systems caused apical extrusion of debris and irrigant, continuous rotary instrumentation was associated with less extrusion as compared with the use of reciprocating file systems. PMID:25628665

  8. Anterior herniation of lumbar disc induces persistent visceral pain: discogenic visceral pain: discogenic visceral pain.

    PubMed

    Tang, Yuan-Zhang; Shannon, Moore-Langston; Lai, Guang-Hui; Li, Xuan-Ying; Li, Na; Ni, Jia-Xiang

    2013-01-01

    Visceral pain is a common cause for seeking medical attention. Afferent fibers innervating viscera project to the central nervous system via sympathetic nerves. The lumbar sympathetic nerve trunk lies in front of the lumbar spine. Thus, it is possible for patients to suffer visceral pain originating from sympathetic nerve irritation induced by anterior herniation of the lumbar disc. This study aimed to evaluate lumbar discogenic visceral pain and its treatment. Twelve consecutive patients with a median age of 56.4 years were enrolled for investigation between June 2012 and December 2012. These patients suffered from long-term abdominal pain unresponsive to current treatment options. Apart from obvious anterior herniation of the lumbar discs and high signal intensity anterior to the herniated disc on magnetic resonance imaging, no significant pathology was noted on gastroscopy, vascular ultrasound, or abdominal computed tomography (CT). To prove that their visceral pain originated from the anteriorly protruding disc, we evaluated whether pain was relieved by sympathetic block at the level of the anteriorly protruding disc. If the block was effective, CT-guided continuous lumbar sympathetic nerve block was finally performed. All patients were positive for pain relief by sympathetic block. Furthermore, the average Visual Analog Scale of visceral pain significantly improved after treatment in all patients (P < 0.05). Up to 11/12 patients had satisfactory pain relief at 1 week after discharge, 8/12 at 4 weeks, 7/12 at 8 weeks, 6/12 at 12 weeks, and 5/12 at 24 weeks. It is important to consider the possibility of discogenic visceral pain secondary to anterior herniation of the lumbar disc when forming a differential diagnosis for seemingly idiopathic abdominal pain. Continuous lumbar sympathetic nerve block is an effective and safe therapy for patients with discogenic visceral pain.

  9. Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. II. Quantity and quality of light required

    NASA Technical Reports Server (NTRS)

    Van Volkenburgh, E.; Cleland, R. E.; Watanabe, M.

    1990-01-01

    The quantity and quality of light required for light-stimulated cell expansion in leaves of Phaseolus vulgaris L. have been determined. Seedlings were grown in dim red light (RL; 4 micromoles photons m-2 s-1) until cell division in the primary leaves was completed, then excised discs were incubated in 10 mM sucrose plus 10 mM KCl in a variety of light treatments. The growth response of discs exposed to continuous white light (WL) for 16 h was saturated at 100 micromoles m-2 s-1, and did not show reciprocity. Extensive, but not continuous, illumination was needed for maximal growth. The wavelength dependence of disc expansion was determined from fluence-response curves obtained from 380 to 730 nm provided by the Okazaki Large Spectrograph. Blue (BL; 460 nm) and red light (RL; 660 nm) were most effective in promoting leaf cell growth, both in photosynthetically active and inhibited leaf discs. Far-red light (FR; 730 nm) reduced the effectiveness of RL, but not BL, indicating that phytochrome and a separate blue-light receptor mediate expansion of leaf cells.

  10. Characterizing Longitude-Dependent Orbital Debris Congestion in the Geosynchronous Orbit Regime

    NASA Astrophysics Data System (ADS)

    Anderson, Paul V.

    The geosynchronous orbit (GEO) is a unique commodity of the satellite industry that is becoming increasingly contaminated with orbital debris, but is heavily populated with high-value assets from the civil, commercial, and defense sectors. The GEO arena is home to hundreds of communications, data transmission, and intelligence satellites collectively insured for an estimated 18.3 billion USD. As the lack of natural cleansing mechanisms at the GEO altitude renders the lifetimes of GEO debris essentially infinite, conjunction and risk assessment must be performed to safeguard operational assets from debris collisions. In this thesis, longitude-dependent debris congestion is characterized by predicting the number of near-miss events per day for every longitude slot at GEO, using custom debris propagation tools and a torus intersection metric. Near-miss events with the present-day debris population are assigned risk levels based on GEO-relative position and speed, and this risk information is used to prioritize the population for debris removal target selection. Long-term projections of debris growth under nominal launch traffic, mitigation practices, and fragmentation events are also discussed, and latitudinal synchronization of the GEO debris population is explained via node variations arising from luni-solar gravity. In addition to characterizing localized debris congestion in the GEO ring, this thesis further investigates the conjunction risk to operational satellites or debris removal systems applying low-thrust propulsion to raise orbit altitude at end-of-life to a super-synchronous disposal orbit. Conjunction risks as a function of thrust level, miss distance, longitude, and semi-major axis are evaluated, and a guidance method for evading conjuncting debris with continuous thrust by means of a thrust heading change via single-shooting is developed.

  11. Four-way coupling of a three-dimensional debris flow solver to a Lagrangian Particle Simulation: method and first results

    NASA Astrophysics Data System (ADS)

    von Boetticher, Albrecht; Rickenmann, Dieter; McArdell, Brian; Kirchner, James W.

    2017-04-01

    Debris flows are dense flowing mixtures of water, clay, silt, sand and coarser particles. They are a common natural hazard in mountain regions and frequently cause severe damage. Modeling debris flows to design protection measures is still challenging due to the complex interactions within the inhomogeneous material mixture, and the sensitivity of the flow process to the channel geometry. The open-source, OpenFOAM-based finite-volume debris flow model debrisInterMixing (von Boetticher et al, 2016) defines rheology parameters based on the material properties of the debris flow mixture to reduce the number of free model parameters. As a simplification in this first model version, gravel was treated as a Coulomb-viscoplastic fluid, neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. Here we present an extension of that solver, accounting for the particle-to-particle and particle-to-boundary contacts with a Lagrangian Particle Simulation composed of spherical grains and a user-defined grain size distribution. The grain collisions of the Lagrangian particles add granular flow behavior to the finite-volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell, and among all individual particles contained in that cell, allowing the user to choose from a number of different drag models. The momentum exchange is implemented in the momentum equation and in the pressure equation (ensuring continuity) of the so-called PISO-loop, resulting in a stable 4-way coupling (particle-to-particle, particle-to-boundary, particle-to-fluid and fluid-to-particle) that represents the granular and viscous flow behavior of debris flow material. We will present simulations that illustrate the relative benefits and drawbacks of explicitly representing grain collisions, compared to the original debrisInterMixing solver.

  12. Open System Tribology and Influence of Weather Condition.

    PubMed

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-08-30

    The tribology of an open system at temperatures ranging between 3 °C and -35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to -15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to -25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear.

  13. Open System Tribology and Influence of Weather Condition

    PubMed Central

    Lyu, Yezhe; Bergseth, Ellen; Olofsson, Ulf

    2016-01-01

    The tribology of an open system at temperatures ranging between 3 °C and −35 °C, with and without snow, was investigated using a pin-on-disc tribometer mounted in a temperature-controlled environmental chamber. The relationship between the microstructure and ductility of the materials and the tribology at the contacting surfaces was investigated. The study shows that during continuous sliding, pressure causes snow particles to melt into a liquid-like layer, encouraging the generation of oxide flakes on the contact path. The friction coefficient and wear rate are dramatically reduced through an oxidative friction and wear mechanism. In the absence of snow, the tribological process is controlled by the low temperature brittleness of steel in the temperature range from 3 °C to −15 °C. At these temperatures, cracks are prone to form and extend on the worn surfaces, resulting in the spalling of bulk scraps, which are crushed into debris that increases the friction coefficient and wear rate due to strong abrasion. When the temperature falls to −25 °C, an ice layer condenses on the metal surfaces and relaxes the tribological process in the same way as the added snow particles, which significantly decreases the friction and wear. PMID:27573973

  14. JSC Orbital Debris Website Description

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.

  15. VLTI/GRAVITY observations of the young star βPictoris

    NASA Astrophysics Data System (ADS)

    Defrère, D.

    2017-12-01

    The nearby young star β Pictoris is surrounded by the archetypal debris disc, which provides a unique window on the formation and early evolution of terrestrial planets. While the outer disc has been extensively studied since its discovery in 1984, very little is currently known about the inner planetary system (<4AU). Recently, accurate squared visibilities obtained with VLTI/PIONIER revealed the presence of resolved circumstellar emission with an integrated brightness amounting to approximately 1.4% of the stellar brightness in H band. However, it is not clear whether this excess emission originates from thermal emission, reflected light from hot dust grains located in the innermost regions of the planetary system, or is simply due to forward scattering by dust grains located further away (but still within the PIONIER field-of-view, i.e., close to the line of sight). In this paper, we present medium-resolution K-band observations of βPic obtained with VLTI/GRAVITY during science verification. The goals of these observations are to better constrain the temperature of the grains (and hence their location and chemical composition) and to showcase the high-precision capabilities of GRAVITY at detecting faint, close-in circumstellar emission.

  16. Tribological investigation of oriented HDPE.

    PubMed

    Hoseini, Mohammed; Lausmaa, Jukka; Boldizar, Antal

    2002-09-15

    The possibility to control the wear properties of high-density polyethylene (HDPE) material at an early processing stage is explored. Wear measurements of cold roll-drawn HDPE with two different draw ratios were carried out for three sliding planes, each in two directions. The dependence of the wear properties on the degree and direction of orientation was investigated. The experiments were performed in a pin-on-disc machine in a dry environment. The tribo-couple consisted of HDPE plates versus a standardised diamond coated steel disc. The results show that the wear resistance of cold roll-drawn HDPE differ widely, by a factor up to 6, depending on the sliding direction relative to the drawing direction. The material has a significantly better wear resistance when the sliding direction was perpendicular to the processing direction. The best wear resistance was in the end plane and it was improved by a factor up to 3.6 when the draw ratio was increased from 2 to 4. These results indicate that molecular orientation by polymer processing is a promising method to improve the wear properties and decrease the wear debris production of HDPE. Copyright 2002 Wiley Periodicals, Inc.

  17. Debris-free soft x-ray source with gas-puff target

    NASA Astrophysics Data System (ADS)

    Ni, Qiliang; Chen, Bo; Gong, Yan; Cao, Jianlin; Lin, Jingquan; Lee, Hongyan

    2001-12-01

    We have been developing a debris-free laser plasma light source with a gas-puff target system whose nozzle is driven by a piezoelectric crystal membrane. The gas-puff target system can utilize gases such as CO2, O2 or some gas mixture according to different experiments. Therefore, in comparison with soft X-ray source using a metal target, after continuously several-hour laser interaction with gas from the gas-puff target system, no evidences show that the light source can produce debris. The debris-free soft X-ray source is prepared for soft X-ray projection lithography research at State Key Laboratory of Applied Optics. Strong emission from CO2, O2 and Kr plasma is observed.

  18. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave

    1990-01-01

    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.

  19. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  20. Are periprosthetic tissue reactions observed after revision of total disc replacement comparable to the reactions observed after total hip or knee revision surgery?

    PubMed Central

    Punt, Ilona M.; Austen, Shennah; Cleutjens, Jack P.M.; Kurtz, Steven M.; ten Broeke, René H.M.; van Rhijn, Lodewijk W.; Willems, Paul C.; van Ooij, André

    2011-01-01

    Study design Comparative study. Objective To compare periprosthetic tissue reactions observed after total disc replacement (TDR), total hip arthroplasty (THA) and total knee arthroplasty (TKA) revision surgery. Summary of background data Prosthetic wear debris leading to particle disease, followed by osteolysis, is often observed after THA and TKA. Although the presence of polyethylene (PE) particles and periprosthetic inflammation after TDR has been proven recently, osteolysis is rarely observed. The clinical relevance of PE wear debris in the spine remains poorly understood. Methods Number, size and shape of PE particles, as well as quantity and type of inflammatory cells in periprosthetic tissue retrieved during Charité TDR (n=22), THA (n=10) and TKA (n=4) revision surgery were compared. Tissue samples were stained with hematoxylin/eosin and examined by using light microscopy with bright field and polarized light. Results After THA, large numbers of PE particles <6 µm were observed, which were mainly phagocytosed by macrophages. The TKA group had a broad size range with many larger PE particles and more giant cells. In TDR, the size range was similar to that observed in TKA. However, the smallest particles were the most prevalent with 75% of the particles being <6 µm, as seen in revision THA. In TDR, both macrophages and giant cells were present with a higher number of macrophages. Conclusions Both small and large PE particles are present after TDR revision surgery compatible with both THA and TKA wear patterns. The similarities between periprosthetic tissue reactions in the different groups may give more insight in the clinical relevance of PE particles and inflammatory cells in the lumbar spine. The current findings may help to improve TDR design as applied from technologies previously developed in THA and TKA with the goal of a longer survival of TDR. PMID:21336235

  1. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.

  2. Plastic debris and policy: Using current scientific understanding to invoke positive change.

    PubMed

    Rochman, Chelsea M; Cook, Anna-Marie; Koelmans, Albert A

    2016-07-01

    Captain Charles Moore introduced the world to the "Great Pacific Garbage Patch" in the mid-1990s, and images of plastic debris in the oceans began to sweep the media. Since then, there has been increasing interest from scientists, the public, and policy makers regarding plastic debris in the environment. Today, there remains no doubt that plastic debris contaminates aquatic (marine and freshwater) habitats and animals globally. The growing scientific evidence demonstrates widespread contamination from plastic debris, and researchers are beginning to understand the sources, fate, and effects of the material. As new scientific understanding breeds new questions, scientists are working to fill data gaps regarding the fate and effects of plastic debris and the mechanisms that drive these processes. In parallel, policy makers are working to mitigate this contamination. The authors focus on what is known about plastic debris that is relevant to policy by reviewing some of the weight of evidence regarding contamination, fate, and effects of the material. Moreover, they highlight some examples of how science has already been used to inform policy change and mitigation and discuss opportunities for future linkages between science and policy to continue the relationship and contribute to effective solutions for plastic debris. Environ Toxicol Chem 2016;35:1617-1626. © 2016 SETAC. © 2016 SETAC.

  3. Oceanographer tracks marine debris from the Japan tsunami and other incidents

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-09-01

    In the wake of the 11 March 2011 Tohoku earthquake and resulting tsunami that struck Japan, much of the debris that washed out to sea continues to float slowly on ocean currents across the Pacific Ocean. The leading edge of a dispersed field of debris that has not already sunk or biodegraded was estimated by a computer model to be about halfway across the Pacific, north of Midway Island, as of 31 July, 142 days after the tsunami. According to Curtis Ebbesmeyer, a consulting oceanographer who has been involved with tracking various kinds of ocean flotsam for decades, the debris field, which encompasses an area about the size of California, could begin to reach the U.S. West Coast by March 2012. The National Oceanic and Atmospheric Administration's (NOAA) Satellite and Information Service was able to track the debris field until mid-April, when the debris became too dispersed to be detected in satellite imagery. Ebbesmeyer, formerly an oceanographer with Mobil and Standard Oil, told Eos that he does not have any recent physical evidence of the debris field because it is now widely dispersed and still far away from any landfall. Ebbesmeyer said, though, that his confidence level for the debris field's estimated size and location is “very high.”

  4. The formation of rings and gaps in magnetically coupled disc-wind systems: ambipolar diffusion and reconnection

    NASA Astrophysics Data System (ADS)

    Suriano, Scott S.; Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2018-06-01

    Radial substructures in circumstellar discs are now routinely observed by Atacama Large Millimeter/submillimeter Array. There is also growing evidence that disc winds drive accretion in such discs. We show through 2D (axisymmetric) simulations that rings and gaps develop naturally in magnetically coupled disc-wind systems on the scale of tens of au, where ambipolar diffusion (AD) is the dominant non-ideal magnetohydrodynamic effect. In simulations where the magnetic field and matter are moderately coupled, the disc remains relatively laminar with the radial electric current steepened by AD into a thin layer near the mid-plane. The toroidal magnetic field sharply reverses polarity in this layer, generating a large magnetic torque that drives fast accretion, which drags the poloidal field into a highly pinched radial configuration. The reconnection of this pinched field creates magnetic loops where the net poloidal magnetic flux (and thus the accretion rate) is reduced, yielding dense rings. Neighbouring regions with stronger poloidal magnetic fields accrete faster, forming gaps. In better magnetically coupled simulations, the so-called avalanche accretion streams develop continuously near the disc surface, rendering the disc-wind system more chaotic. Nevertheless, prominent rings and gaps are still produced, at least in part, by reconnection, which again enables the segregation of the poloidal field and the disc material similar to the more diffusive discs. However, the reconnection is now driven by the non-linear growth of magnetorotational instability channel flows. The formation of rings and gaps in rapidly accreting yet laminar discs has interesting implications for dust settling and trapping, grain growth, and planet formation.

  5. A RCT comparing 7-year clinical outcomes of one level symptomatic cervical disc disease (SCDD) following ProDisc-C total disc arthroplasty (TDA) versus anterior cervical discectomy and fusion (ACDF).

    PubMed

    Loumeau, Thomas P; Darden, Bruce V; Kesman, Thomas J; Odum, Susan M; Van Doren, Bryce A; Laxer, Eric B; Murrey, Daniel B

    2016-07-01

    The objective of this trial was to compare the safety and efficacy of TDA using the ProDisc-C implant to ACDF in patients with single-level SCDD between C3 and C7. We report on the single-site results from a larger multicenter trial of 13 sites using an approved US Food and Drug Administration protocol (prospective, randomized controlled non-inferiority design). Patients were randomized one-to-one to either the ProDisc-C device or ACDF. All enrollees were evaluated pre- and post-operatively at regular intervals through month 84. Visual Analog Scale (VAS) for neck and arm pain/intensity, Neck Disability Index (NDI), Short-Form 36 (SF-36), and satisfaction were assessed. Twenty-two patients were randomized to each arm of the study. Nineteen additional patients received the ProDisc-C via continued access. NDI improved with the ProDisc-C more than with ACDF. Total range of motion was maintained with the ProDisc-C, but diminished with ACDF. Neck and arm pain improved more in the ProDisc-C than ACDF group. Patient satisfaction remained higher in the ProDisc-C group at 7 years. SF-36 scores were higher in the TDA group than ACDF group at 7 years; the difference was not clinically significant. Six additional operations (two at the same level; four at an adjacent level) were performed in the ACDF, but none in the ProDisc-C group. The ProDisc-C implant appears to be safe and effective for the treatment of SCDD. Patients with the implant retained motion at the involved segment and had a lower reoperation rate than those with an ACDF.

  6. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Vavrin, Andrew; Manis, Alyssa

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO-to- GEO Environment Debris) model, are used to make predictions about how space activities will affect the manner in which the debris environment evolves over time. Part of this process predicts how spacecraft and rocket bodies will be launched and remain in the future environment. This has usually been accomplished by repeating past launch history to simulate future launches. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding CubeSats to the environment. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major CubeSat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of postmission disposal.

  7. Application of high-speed photography to chip refining

    NASA Astrophysics Data System (ADS)

    Stationwala, Mustafa I.; Miller, Charles E.; Atack, Douglas; Karnis, A.

    1991-04-01

    Several high speed photographic methods have been employed to elucidate the mechanistic aspects of producing mechanical pulp in a disc refiner. Material flow patterns of pulp in a refmer were previously recorded by means of a HYCAM camera and continuous lighting system which provided cine pictures at up to 10,000 pps. In the present work an IMACON camera was used to obtain several series of high resolution, high speed photographs, each photograph containing an eight-frame sequence obtained at a framing rate of 100,000 pps. These high-resolution photographs made it possible to identify the nature of the fibrous material trapped on the bars of the stationary disc. Tangential movement of fibre floes, during the passage of bars on the rotating disc over bars on the stationary disc, was also observed on the stator bars. In addition, using a cinestroboscopic technique a large number of high resolution pictures were taken at three different positions of the rotating disc relative to the stationary disc. These pictures were computer analyzed, statistically, to determine the fractional coverage of the bars of the stationary disc with pulp. Information obtained from these studies provides new insights into the mechanism of the refining process.

  8. Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia.

    PubMed

    Kim, Ju Young; Liu, Cindy Y; Zhang, Fengyu; Duan, Xin; Wen, Zhexing; Song, Juan; Feighery, Emer; Lu, Bai; Rujescu, Dan; St Clair, David; Christian, Kimberly; Callicott, Joseph H; Weinberger, Daniel R; Song, Hongjun; Ming, Guo-li

    2012-03-02

    How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Voltage control of magnetic single domains in Ni discs on ferroelectric BaTiO3

    NASA Astrophysics Data System (ADS)

    Ghidini, M.; Zhu, B.; Mansell, R.; Pellicelli, R.; Lesaine, A.; Moya, X.; Crossley, S.; Nair, B.; Maccherozzi, F.; Barnes, C. H. W.; Cowburn, R. P.; Dhesi, S. S.; Mathur, N. D.

    2018-06-01

    For 1 µm-diameter Ni discs on a BaTiO3 substrate, the local magnetization direction is determined by ferroelectric domain orientation as a consequence of growth strain, such that single-domain discs lie on single ferroelectric domains. On applying a voltage across the substrate, ferroelectric domain switching yields non-volatile magnetization rotations of 90°, while piezoelectric effects that are small and continuous yield non-volatile magnetization reversals that are non-deterministic. This demonstration of magnetization reversal without ferroelectric domain switching implies reduced fatigue, and therefore represents a step towards applications.

  10. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.

  11. Dynamic analysis and numerical experiments for balancing of the continuous single-disc and single-span rotor-bearing system

    NASA Astrophysics Data System (ADS)

    Wang, Aiming; Cheng, Xiaohan; Meng, Guoying; Xia, Yun; Wo, Lei; Wang, Ziyi

    2017-03-01

    Identification of rotor unbalance is critical for normal operation of rotating machinery. The single-disc and single-span rotor, as the most fundamental rotor-bearing system, has attracted research attention over a long time. In this paper, the continuous single-disc and single-span rotor is modeled as a homogeneous and elastic Euler-Bernoulli beam, and the forces applied by bearings and disc on the shaft are considered as point forces. A fourth-order non-homogeneous partial differential equation set with homogeneous boundary condition is solved for analytical solution, which expresses the unbalance response as a function of position, rotor unbalance and the stiffness and damping coefficients of bearings. Based on this analytical method, a novel Measurement Point Vector Method (MPVM) is proposed to identify rotor unbalance while operating. Only a measured unbalance response registered for four selected cross-sections of the rotor-shaft under steady-state operating conditions is needed when using the method. Numerical simulation shows that the detection error of the proposed method is very small when measurement error is negligible. The proposed method provides an efficient way for rotor balancing without test runs and external excitations.

  12. Influence of topography on debris flow development in Ichino-sawa subwatershed of Ohya-kuzure landslide, Japan

    NASA Astrophysics Data System (ADS)

    Tsunetaka, H.; Hotta, N.; Imaizumi, F.; Hayakawa, Y. S.

    2015-12-01

    Large sediment movements, such as deep-seated landslides, produce unstable sediment over the long term. Most of the unstable sediment in a mountain torrent is discharged via the development of debris flows through entrainment. Consequently, after a large sediment movement, debris flows have long-term effects on the watershed regime. However, the development of debris flows in mountain torrents is poorly understood, since the topography is more complicated than downstream. We compared temporal changes in topography to examine how topography affects the development of flows. The study site was the Ichino-sawa subwatershed in the Ohya-kuzure landslide, Japan. Unstable sediment has been produced continuously since the landslide occurred in 1707. Several topographic surveys using a terrestrial laser scanner (TLS) and aerial shoots by an unmanned aerial vehicle (UAV) were performed between November 2011 (TLS) or November 2014 (UAV) and August 2015. High-resolution digital elevation models were created from the TLS and UAV results to detect temporal topographic changes. Debris flow occurrences and rainfall were also monitored using interval cameras and rain gauges. Downstream, the deposit depth decreased after the debris flows. Upstream, more complex changes were detected due to surges in the debris flows, which not only induced entrainment, but were also deposited in the valley floor. Furthermore, sediment was supplied from the stream bank during the debris flows. Consequently, several debris flows of different magnitudes were observed, although the rainfall conditions did not differ significantly. The results imply that the magnitude of the debris flows was affected by successive sediment movement resulting from the changing of the topographic conditions.

  13. Final design of a space debris removal system

    NASA Technical Reports Server (NTRS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-01-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  14. Final design of a space debris removal system

    NASA Astrophysics Data System (ADS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-12-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  15. Impact of the 2008 Wenchuan earthquake in China on subsequent long-term debris flow activities in the epicentral area

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Zhang, L. M.

    2017-01-01

    The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and recession.

  16. ERBE S7 NAT

    Atmospheric Science Data Center

    2016-06-15

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  17. ERBE S8 NAT

    Atmospheric Science Data Center

    2016-06-15

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  18. Disabled infectious single cycle herpes simplex virus (DISC-HSV) is a candidate vector system for gene delivery/expression of GM-CSF in human prostate cancer therapy.

    PubMed

    Parkinson, Richard J; Mian, Shahid; Bishop, Michael C; Gray, Trevor; Li, Geng; McArdle, Stephanie E B; Ali, Selman; Rees, Robert C

    2003-06-15

    DISC-HSV is a replication incompetent herpes simplex virus that is a highly efficient vector for the transduction of genes in vivo and in vitro. We examine the ability of DISC-HSV to infect human prostate cancer cell-lines and xenograft tumor models, and induce expression of reporter and therapeutic cytokine genes. Infection was confirmed by cellular staining for the beta-galactosidase reporter gene product, and by EM. Human GM-CSF production following DISC-hGMCSF infection was measured using ELISA. The metabolic activity of infected cells was determined by NADP/NADPH assay. Cell death was estimated by cell-cycle analysis using flow cytometry with propidium iodide staining. Infection of DU145, PC3 and LNCaP cells with DISC-HSV was dose dependent. Cells infected with DISC-hGM-CSF released significant levels of hGM-CSF for 3 days. NADP/NADPH assay suggested that infected cells continued to be metabolically active for 3 days post-infection, which was consistent with flow cytometry findings that cell death did not occur within 7 days of infection. Tumor xenografts injected with DISC-HSV expressed beta-galactosidase, and intracellular viral particles were demonstrated using EM. We have previously reported the rejection of established tumors following intra-tumoral injection of DISC-GMCSF. This study demonstrates the ability of DISC-HSV to infect prostate cancer and express GMCSF at significant levels. We suggest that prostate cancer is a potential target for therapy using DISC-HSV containing GM-CSF. Copyright 2003 Wiley-Liss, Inc.

  19. A deorbiter CubeSat for active orbital debris removal

    NASA Astrophysics Data System (ADS)

    Hakima, Houman; Bazzocchi, Michael C. F.; Emami, M. Reza

    2018-05-01

    This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat's propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471 km (i.e., 100 km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.

  20. Triggering conditions and mobility of debris flows associated to complex earthflows

    NASA Astrophysics Data System (ADS)

    Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.

    2005-03-01

    Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging between 2000 to 5000 m 3. Slope failures induced by 25-year return period rainfall can trigger large debris flow events (30,000 to 50,000 m 3) that can reach the alluvial fan and cause damage.

  1. ERBE S10 MFOV SF NAT

    Atmospheric Science Data Center

    2016-06-09

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  2. ERBE S10 WFOV NF NAT

    Atmospheric Science Data Center

    2016-06-09

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  3. ERBE S10 MFOV NF NAT

    Atmospheric Science Data Center

    2016-06-09

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  4. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.

  5. The self-adjusting file (SAF). Part 3: removal of debris and smear layer-A scanning electron microscope study.

    PubMed

    Metzger, Zvi; Teperovich, Ehud; Cohen, Raphaela; Zary, Raviv; Paqué, Frank; Hülsmann, Michael

    2010-04-01

    The aim of this study was to evaluate the cleaning ability of the Self-Adjusting File (SAF) system in terms of removal of debris and smear layer. Root canal preparations were performed in 20 root canals using an SAF operated with a continuous irrigation device. The glide path was initially established using a size 20 K-file followed by the SAF file that was operated in the root canal via a vibrating motion for a total of 4 minutes. Sodium hypochlorite (3%) and EDTA (17%) were used as continuous irrigants and were alternated every minute during this initial 4-minute period. This was followed by a 30-second rinse using EDTA applied through a nonactivated SAF and a final flush with sodium hypochlorite. The roots were split longitudinally and subjected to scanning electron microscopy (SEM). The presence of debris and a smear layer in the coronal, middle, and apical thirds of the canal were evaluated through the analysis of the SEM images using five-score evaluation systems based on reference photographs. The SAF operation with continuous irrigation, using alternating irrigants, resulted in root canal walls that were free of debris in all thirds of the canal in all (100%) of the samples. In addition, smear layer-free surfaces were observed in 100% and 80% of the coronal and middle thirds of the canal, respectively. In the apical third of the canal, smear layer-free surfaces were found in 65% of the root canals. The operation of the SAF system with continuous irrigation coupled with alternating sodium hypochlorite and EDTA treatment resulted in a clean and mostly smear layer-free dentinal surface in all parts of the root canal. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2014-01-01

    LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.

  7. Project ORION: Orbital Debris Removal Using Ground-Based Sensors and Lasers

    NASA Technical Reports Server (NTRS)

    Campbell, J. W.

    1996-01-01

    About 100,000 pieces of 1 to 10-cm debris in low-Earth orbit are too small to track reliably but large enough to cripple or destroy spacecraft. The ORION team studied the feasibility of removing the debris with ground-based laser impulses. Photoablation experiments were surveyed and applied to likely debris materials. Laser intensities needed for debris orbit modification call for pulses on the order of lOkJ or continuous wave lasers on the order of 1 MW. Adaptive optics are necessary to correct for atmospheric turbulence. Wavelength and pulse duration windows were found that limit beam degradation due to nonlinear atmospheric processes. Debris can be detected and located to within about 10 microrads with existing radar and passive optical technology. Fine targeting would be accomplished with laser illumination, which might also be used for detection. Bistatic detection with communications satellites may also be possible. We recommend that existing technology be used to demonstrate the concept at a loss of about $20 million. We calculate that an installation to clear altitudes up to 800 km of 1 to 10-cm debris over 2 years of operation would cost about $80 million. Clearing altitudes up to 1,500 km would take about 3 years and cost about $160 million.

  8. Effects of mesh bag enclosure and termites on fine woody debris decomposition in a subtropical forest

    Treesearch

    Allison M. Stoklosa; Michael D. Ulyshen; Zhaofei Fan; Morgan Varner; Sebastian Seibold; Jorg Muller

    2016-01-01

    The role of insects in terrestrial decomposition remains poorly resolved, particularly for infrequently studied substrates like small diameter woody debris.  Uncertainty about how mesh bags used to exclude arthropods may affect decomposition rates continues to impede progress in this area.  We sought to (1) measure how insects affect the decomposition of small diameter...

  9. Conceptualizing an economically, legally, and politically viable active debris removal option

    NASA Astrophysics Data System (ADS)

    Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.

    2014-11-01

    It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.

  10. CD, DVD, and Blu-Ray Disc Diffraction with a Laser Ray Box

    ERIC Educational Resources Information Center

    DeWeerd, Alan J.

    2016-01-01

    A compact disc (CD) can be used as a diffraction grating, even though its track consists of a series of pits, not a continuous groove. Previous authors described how to measure the track spacing on a CD using an incident laser beam normal to the surface or one at an oblique angle. In both cases, the diffraction pattern was projected on a screen…

  11. ERBE S10N WFV SF NAT

    Atmospheric Science Data Center

    2016-06-14

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  12. ERBE S10N WFV NF NAT

    Atmospheric Science Data Center

    2016-06-13

    ... detectors continuously view the earth disc (plus a small ring of space). The measurements are continuous over the entire globe for ... Page SCAR-B G8 FIRE Order Data: ASDC Order Tool:  Order Data ...

  13. A deployable mechanism concept for the collection of small-to-medium-size space debris

    NASA Astrophysics Data System (ADS)

    St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément

    2018-03-01

    Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.

  14. Enhancement of KTP/532 laser disc decompression and arthroscopic microdiscectomy with a vital dye

    NASA Astrophysics Data System (ADS)

    Yeung, Anthony T.

    1993-07-01

    Currently, the clinical indications and results of arthroscopic microdiscectomy and laser disc decompression come close to, but do not exceed, the results of classic discectomy or microdiscectomy for the whole spectrum of surgical disc herniations. However, as minimally invasive techniques continue to evolve, results can be expected to equal or be potentially superior to conventional surgery. This exhibit demonstrates how the use of a vital dye can enhance standard arthroscopic microdiscectomy techniques and, when used in conjunction with KTP/532 laser disc decompression, allows for better arthroscopic visualization, documentation, and extraction of nucleus pulposus, ultimately expanding the current limiting criteria for minimally invasive techniques. When proper patient selection is combined with good clinical indications, the surgical results are rather dramatic, often achieving immediate relief of sciatica in the operating room.

  15. Effect of systemic nitric oxide synthase inhibition on optic disc oxygen partial pressure in normoxia and in hypercapnia.

    PubMed

    Petropoulos, Ioannis K; Pournaras, Jean-Antoine C; Stangos, Alexandros N; Pournaras, Constantin J

    2009-01-01

    To investigate the effect of systemic nitric oxide synthase (NOS) inhibition on optic disc oxygen partial pressure (PO(2)) in normoxia and hypercapnia. Intervascular optic disc PO(2) was measured in 12 anesthetized minipigs by using oxygen-sensitive microelectrodes placed <50 microm from the optic disc. PO(2) was measured continuously during 10 minutes under normoxia, hyperoxia (100% O(2)), carbogen breathing (95% O(2), 5% CO(2)), and hypercapnia (increased inhaled CO(2)). Measurements were repeated after intravenous injection of N(omega)-nitro-L-arginine methyl ester (L-NAME) 100 mg/kg. Intravenous L-arginine 100 mg/kg was subsequently given to three animals. Before L-NAME injection, an increase was observed in optic disc PO(2) during hypercapnia (DeltaPO(2) = 3.2 +/- 1.7 mm Hg; 18%; P = 0.001) and carbogen breathing (DeltaPO(2) = 12.8 +/- 5.1 mm Hg; 69%; P < 0.001). Optic disc PO(2) in normoxia remained stable for 30 minutes after L-NAME injection (4% decrease from baseline; P > 0.1), despite a 21% increase of mean arterial pressure. Optic disc PO(2) increase under hypercapnia was blunted after L-NAME injection (DeltaPO(2) = 0.6 +/- 1.1 mm Hg; 3%; P > 0.1), and this effect was reversible by L-arginine. Moreover, L-NAME reduced the response to carbogen by 29% (DeltaPO(2) = 9.1 +/- 4.4 mm Hg; 49%; P = 0.01 versus before L-NAME). The response to hyperoxia was not affected. Whereas systemic NOS inhibition did not affect optic disc PO(2) in normoxia, a blunting effect was noted on the CO(2)-induced optic disc PO(2) increase. Nitric oxide appears to mediate the hypercapnic optic disc PO(2) increase.

  16. On the Radio Detectability of Circumplanetary Discs

    NASA Astrophysics Data System (ADS)

    Zhu, Zhaohuan; Andrews, Sean M.; Isella, Andrea

    2018-06-01

    Discs around young planets, so-called circumplanetary discs (CPDs), are essential for planet growth, satellite formation, and planet detection. We study the millimetre and centimetre emission from accreting CPDs by using the simple α disc model. We find that it is easier to detect CPDs at shorter radio wavelengths (e.g. λ ≲ 1 mm). For example, if the system is 140 pc away from us, deep observations (e.g. 5 hours) at ALMA Band 7 (0.87 mm) are sensitive to as small as 0.03 lunar mass of dust in CPDs. If the CPD is around a Jupiter mass planet 20 AU away from the host star and has a viscosity parameter α ≲ 0.001, ALMA can detect this disc when it accretes faster than 10-10M⊙/yr. ALMA can also detect the "minimum mass sub-nebulae" disc if such a disc exists around a young planet in YSOs. However, to distinguish the embedded compact CPD from the circumstellar disc material, we should observe circumstellar discs with large gaps/cavities using the highest resolution possible. We also calculate the CPD fluxes at VLA bands, and discuss the possibility of detecting radio emission from jets/winds launched in CPDs. Finally we argue that, if the radial drift of dust particles is considered, the drifting timescale for millimetre dust in CPDs can be extremely short. It only takes 102-103 years for CPDs to lose millimetre dust. Thus, for CPDs to be detectable at radio wavelengths, mm-sized dust in CPDs needs to be replenished continuously, or the disc has a significant fraction of micron-sized dust or a high gas surface density so that the particle drifting timescale is long, or the radial drift is prevented by other means (e.g. pressure traps).

  17. Landscape aridity, fire severity and rainfall intensity as controls on debris flow frequency after the 2009 Black Saturday Wildfires in Victoria

    NASA Astrophysics Data System (ADS)

    Nyman, Petter; Sherwin, Christopher; Sheridan, Gary; Lane, Patrick

    2015-04-01

    This study uses aerial imagery and field surveys to develop a statistical model for determining debris flow susceptibility in a landscape with variable terrain, soil and vegetation properties. A measure of landscape scale debris flow response was obtained by recording all debris flow affected drainage lines in the first year after fire in a ~258 000 ha forested area that was burned by the 2009 Black Saturday Wildfire in Victoria. A total of 12 500 points along the drainage network were sampled from catchments ranging in size from 0.0001 km2to 75 km2. Local slope and the attributes of the drainage areas (including the spatially averaged peak intensity) were extracted for each sample point. A logistic regression was used to model how debris flow susceptibility varies with the normalised burn ratio (dNBR, from Landsat imagery), rainfall intensity (from rainfall radar), slope (from DEM) and aridity (from long-term radiation, temperature and rainfall data).The model of debris flow susceptibility produced a good fit with the observed debris flow response of drainage networks within the burned area and was reliable in distinguishing between drainage lines which produced debris flows and those which didn't. The performance of the models was tested through multiple iterations of fitting and testing using unseen data. The local channel slope captured the effect of scale on debris flow susceptibility with debris flow probability approaching zero as the channel slope decreased with increasing drainage area. Aridity emerged as an important predictor of debris flow susceptibility, with increased likelihood of debris flows in drier parts of the landscape, thus reinforcing previous research in the region showing that post-fire surface runoff from wet Eucalypt forests is insufficient for initiating debris flows. Fire severity, measured as dNBR, was also a very important predictor. The inclusion of local channel slope as a predictor of debris flow susceptibility proved to be an effective approach for implicitly incorporating scale and relief as parameters. When combined with models of debris flow magnitude the results from this study can be used obtain continuous probability-magnitude relations of sediment flux from debris flows for drainage networks across entire burned areas.

  18. Autogenic dynamics of debris-flow fans

    NASA Astrophysics Data System (ADS)

    van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten

    2015-04-01

    Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.

  19. Seasonal trends in abundance and composition of marine debris in selected public beaches in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Mobilik, Julyus-Melvin; Ling, Teck-Yee; Husain, Mohd-Lokman Bin; Hassan, Ruhana

    2015-09-01

    The abundance and composition of marine debris were investigated at Saujana (in the state of Negeri Sembilan) and Batu Rakit (in the state of Terengganu) beaches during surveys conducted in December 2012 (northeast monsoon), May 2013 (intermediate monsoon) and July 2013 (southwest monsoon). A total of 4,682 items of debris weighing 231.4 kg were collected and sorted. Batu Rakit received substantially greater quantities of debris (815±717 items/km or 40.4±13.0 kg/km) compared to Saujana (745±444 items/km or 36.7±18.0 kg/km). Total debris item was more abundant during the southwest monsoon (SWM) (1,122±737 items/km) compared to the northeast monsoon (NEM) (825±593 items/ km) and the intermediate monsoon (IM) (394±4 items/km) seasons. Plastic category (88%) was the most numerous items collected and object items contributed 44.18% includes packaging, plastic fragments, cups, plastic shopping bags, plastic food wrapper, clear plastic bottles from the total debris items collected. Object items associated with common source (47%) were the highest debris accumulated, followed by terrestrial (30%) and marine (23%) sources. The high percentage of common and terrestrial sources during SWM season requires immediate action by marine environment stakeholders to develop and introduce strategies to reduce if not totally eliminates the marine debris in the marine environment. Awareness should be continued and focused on beach users and vessels' crew to alert them on the alarming accumulation rate of marine debris and its pathways into the marine environment.

  20. Numerical simulation of failure behavior of granular debris flows based on flume model tests.

    PubMed

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na

    2013-01-01

    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  1. Persistent Asymmetric Optic Disc Swelling After Long-Duration Space Flight: Implications for Pathogenesis.

    PubMed

    Mader, Thomas H; Gibson, C Robert; Otto, Christian A; Sargsyan, Ashot E; Miller, Neil R; Subramanian, Prem S; Hart, Stephen F; Lipsky, William; Patel, Nimesh B; Lee, Andrew G

    2017-06-01

    Several ophthalmic findings including optic disc swelling, globe flattening and choroidal folds have been observed in astronauts following long-duration space flight. The authors now report asymmetric choroidal expansion, disc swelling and optic disc morphologic changes in a 45-year-old astronaut which occurred during long-duration space flight and persisted following his space mission. Case study of ocular findings in an astronaut documented during and after a long-duration space flight of approximately 6 months. Before, during and after his spaceflight, he underwent complete eye examination, including fundus photography, ultrasound, and optical coherence tomography. We documented asymmetric choroidal expansion inflight that largely resolved by 30 days postflight, asymmetric disc swelling observed inflight that persisted for over 180 days postflight, asymmetric optic disc morphologic changes documented inflight by OCT that persisted for 630 days postflight and asymmetric globe flattening that began inflight and continued 660 days postflight. Lumbar puncture opening pressures obtained at 7 and 365 days post-mission were 22 and 16 cm H20 respectively. The persistent asymmetric findings noted above, coupled with the lumbar puncture opening pressures, suggest that prolonged microgravity exposure may have produced asymmetric pressure changes within the perioptic subarachnoid space.

  2. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    NASA Astrophysics Data System (ADS)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  3. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect.

    PubMed

    Carenzo, M; Pellicciotti, F; Mabillard, J; Reid, T; Brock, B W

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the Østrem curve. Its large number of parameters might be a limitation, but we show that the model is transferable in time and space to a second glacier with little loss of performance. We thus suggest that the new DETI model can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris-covered glacier response to climate in comparison with models that simply recalibrate empirical parameters to prescribe a constant across glacier reduction in melt.

  4. Wear behaviour and morphology of stir cast aluminium/SiC nanocomposites

    NASA Astrophysics Data System (ADS)

    Tanwir Alam, Md; Arif, Sajjad; Husain Ansari, Akhter

    2018-04-01

    Wear and friction play a vital role in the service life of components. Aluminium matrix nanocomposites possess tremendous potential for a number of applications in addition to their present uses. It is valuable to the field of newer materials for better performance in tribological applications. In this work, dry sliding wear, friction coefficient and morphology of aluminium alloy (A356) reinforced with silicon carbide nanoparticles (SiCn) were investigated. A356/SiCn nanocomposites (AMNCs) containing 1–5 weight percentage of SiCn were prepared through two-step stir casting process via mechanical ball milling. The wear test was conducted on pin-on-disc test apparatus. Regression analysis was performed to develop mathematical functions to fit the experimental data points. Morphological studies of Al and SiCn as-received, wear debris and worn surfaces were further analysed by SEM along with EDS. The occurrence of oxide layers was observed on worn surfaces. Iron trace was identified by wear debris. It was found that the wear loss and friction coefficient were strongly influenced by mechanical milling and SiCn content. The results exhibited that the friction coefficient reduces with the addition of SiCn as well as with the increase in load. However, wear resistance increases as the reinforcement content increases because of the embedding and wettability effects.

  5. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  6. Evaluation of the potential for debris and hyperconcentrated flows in Capulin Canyon as a result of the 1996 Dome fire, Bandelier National Monument, New Mexico

    USGS Publications Warehouse

    Cannon, Susan H.

    1997-01-01

    The Dome fire of April 1996 burned 6684 ha in Bandelier National Monument and the adjacent Sante Fe National Forest. The potential for significant debris- and hyperconcentrated-flow activity in Capulin Canyon is evaluated through 1) a systematic consideration of geologic and geomorphic factors that characterize the condition of the hillslope materials and channels following the fire, 2) examination of sedimentologic evidence for past debris-flow activity in the canyon, and 3) evaluation of the response of the watershed through the 1996 summer monsoon season. The lack of accumulations of dry-ravel material on the hillslopes or in channels, the absence of a continuous hydrophobic layer, the relatively intact condition of the riparian vegetation and of the fibrous root mat on the hillslopes, and the lack of evidence of widespread past debris- and hyperconcentrated-flow activity, even with evidence of past fires, indicate a low potential for debris-flow activity in Capulin Canyon. In addition, thunderstorms during the summer monsoon of 1996 resulted in abundant surface overland flow on the hillslopes which transported low-density pumice, charcoal, ash and some mineral soil downslope as small-scale and non-erosive debris flows. In some places cobble- and boulder-sized material was moved short distances. A moderate potential for debris- and hyperconcentrated-flow activity is identified for the two major tributary canyons to Capulin Canyon based on evidence of both summer of 1996 and possible historic significant debris-flow activity.

  7. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  8. The origin of interstellar asteroidal objects like 1I/2017 U1 'Oumuamua

    NASA Astrophysics Data System (ADS)

    Zwart, S. Portegies; Torres, S.; Pelupessy, I.; Bédorf, J.; Cai, Maxwell X.

    2018-05-01

    We study the origin of the interstellar object 1I/2017 U1 'Oumuamua by juxtaposing estimates based on the observations with simulations. We speculate that objects like 'Oumuamua are formed in the debris disc as left over from the star and planet formation process, and subsequently liberated. The liberation process is mediated either by interaction with other stars in the parental star-cluster, by resonant interactions within the planetesimal disc or by the relatively sudden mass loss when the host star becomes a compact object. Integrating 'Oumuamua backward in time in the Galactic potential together with stars from the Gaia-TGAS catalogue we find that about 1.3 Myr ago 'Oumuamua passed the nearby star HIP 17288 within a mean distance of 1.3 pc. By comparing nearby observed L-dwarfs with simulations of the Galaxy we conclude that the kinematics of 'Oumuamua is consistent with relatively young objects of 1.1-1.7 Gyr. We just met 'Oumuamua by chance, and with a derived mean Galactic density of ˜3 × 105 similarly sized objects within 100 au from the Sun or ˜1014 per cubic parsec we expect about 2 to 12 such visitors per year within 1 au from the Sun.

  9. NASA's Orbital Debris Conjuction Assessment and Collision Avoidance Strategy

    NASA Technical Reports Server (NTRS)

    Gavin, Richard T.

    2010-01-01

    NASA has successfully used debris avoidance maneuvers to protect our spacecraft for more than 20 . years. This process which started out using parametric data and maneuver boxes has seen considerable evolution and now allows us to continue nominal operations for all but the most threatening objects. This has greatly reduced the interruptions to the critical mission objectives being pursued by NASA s Space Station, Space Shuttle, and robotic satellites.

  10. Improving Global Precipitation Product Access at the GES DISC

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Vollmer, B.; Savtchenko, A.; Ostrenga, D.; DeShong, B.; Fang, F.; Albayrak, R,; Sherman, E.; Greene, M.; Li, A.; hide

    2018-01-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) has been actively and continually engaged in improving the access to and use of Global Precipitation Measurement (GPM), Tropical Precipitation Measuring Mission (TRMM), and other precipitation data, including the following new services and Ongoing development activities: Updates on GPM products and data services, New features in Giovanni, Ongoing development activities; and Precipitation product and service outreach activities.

  11. Kinematic Effects of Nickel-Titanium Instruments with Reciprocating or Continuous Rotation Motion: A Systematic Review of In Vitro Studies.

    PubMed

    Ahn, So-Yeon; Kim, Hyeon-Cheol; Kim, Euiseong

    2016-07-01

    This review aimed to compare the kinematic effect of nickel-titanium instruments with reciprocating and continuous rotation motion for cyclic fatigue resistance, shaping ability, apical debris extrusion, and dentinal defects or cracks. Articles were selected for inclusion in this review if they fulfilled all of the following criteria: described in vitro studies performed on either extracted human teeth or an artificial canal model, assessed both reciprocating and rotary instruments, compared reciprocating files and rotary files for the kinematics of files, and evaluated reciprocating and rotary files regarding the aim of this study. The electronic search was undertaken in MEDLINE, Cochrane database, and manual searches, including journals, reference lists, and other reviews. Twelve studies were chosen for cyclic fatigue, 19 studies for shaping ability, 14 studies for apical debris extrusion, and 13 studies for dentinal defects or cracks. Most of the studies showed that reciprocating motion had a higher resistance to cyclic fatigue. Nine studies from the shaping studies reported less canal transportation by using the reciprocating motion than the continuous rotation. The reciprocating instruments tended to extrude more dentin debris than the continuous rotating instruments, but many of the studies showed conflicting results. In addition, 2 studies from the defects or cracks studies claimed the reciprocating motion produced more dentinal defects than the continuous rotating motion. Instruments with reciprocating motion seemed to have better resistance to cyclic fatigue with less canal transportation tendency than the instruments with continuous rotating motion. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Modelling the inner debris disc of HR 8799

    NASA Astrophysics Data System (ADS)

    Contro, B.; Horner, J.; Wittenmyer, R. A.; Marshall, J. P.; Hinse, T. C.

    2016-11-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km s-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km s-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.

  13. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.

  14. Dentine Tubule Occlusion by Novel Bioactive Glass-Based Toothpastes

    PubMed Central

    Hill, Robert G.; Chen, Xiaojing

    2018-01-01

    There are numerous over-the-counter (OTC) and professionally applied (in-office) products and techniques currently available for the treatment of dentine hypersensitivity (DH), but more recently, the use of bioactive glasses in toothpaste formulations have been advocated as a possible solution to managing DH. Aim. The aim of the present study, therefore, was to compare several bioactive glass formulations to investigate their effectiveness in an established in vitro model. Materials and Methods. A 45S5 glass was synthesized in the laboratory together with several other glass formulations: (1) a mixed glass (fluoride and chloride), (2) BioMinF, (3) a chloride glass, and (4) an amorphous chloride glass. The glass powders were formulated into five different toothpaste formulations. Dentine discs were sectioned from extracted human teeth and prepared for the investigation by removing the cutting debris (smear layer) following sectioning using a 6% citric acid solution for 2 minutes. Each disc was halved to provide test and control halves for comparison following the brushing of the five toothpaste formulations onto the test halves for each toothpaste group. Following the toothpaste application, the test discs were immersed in either artificial saliva or exposed to an acid challenge. Results. The dentine samples were analyzed using scanning electron microscopy (SEM), and observation of the SEM images indicated that there was good surface coverage following artificial saliva immersion. Furthermore, although the acid challenge removed the hydroxyapatite layer on the dentine surface for most of the samples, except for the amorphous chloride glass, there was evidence of tubular occlusion in the dentine tubules. Conclusions. The conclusions from the study would suggest that the inclusion of bioactive glass into a toothpaste formulation may be an effective approach to treat DH. PMID:29849637

  15. BAG3-related myopathy, polyneuropathy and cardiomyopathy with long QT syndrome.

    PubMed

    Kostera-Pruszczyk, Anna; Suszek, Małgorzata; Płoski, Rafał; Franaszczyk, Maria; Potulska-Chromik, Anna; Pruszczyk, Piotr; Sadurska, Elżbieta; Karolczak, Justyna; Kamińska, Anna M; Rędowicz, Maria Jolanta

    2015-12-01

    BAG3 belongs to BAG family of molecular chaperone regulators interacting with HSP70 and anti-apoptotic protein Bcl-2. It is ubiquitously expressed with strong expression in skeletal and cardiac muscle, and is involved in a panoply of cellular processes. Mutations in BAG3 and aberrations in its expression cause fulminant myopathies, presenting with progressive limb and axial muscle weakness, and respiratory insufficiency and neuropathy. Herein, we report a sporadic case of a 15-years old girl with symptoms of myopathy, demyelinating polyneuropathy and asymptomatic long QT syndrome. Genetic testing demonstrated heterozygous mutation Pro209Leu (c.626C > T) in exon 3 of BAG3 gene causing severe myopathy and neuropathy, often associated with restrictive cardiomyopathy. We did not find a mutation in any known LQT syndrome genes. Analysis of muscle biopsy revealed profound disintegration of Z-discs with extensive accumulation of granular debris and large inclusions within fibers. We demonstrated profound alterations in BAG3 distribution as the protein localized to long filamentous structures present across the fibers that were positively stained not only for α-actinin but also for desmin and filamin indicating that those disintegrated Z-disc regions contained also other sarcomeric proteins. The mutation caused a decrease in the content of BAG3 and HSP70, and also of α-actinin desmin, filamin and fast myosin heavy chain, confirming its severe effect on the muscle fiber morphology and thus function. We provide further evidence that BAG3 is associated with Z-disc maintenance, and the Pro209Leu mutation may occur worldwide. We also provide a summary of cases associated with this mutation reported so far.

  16. The friction coefficient evolution of a MoS2/WC multi-layer coating system during sliding wear

    NASA Astrophysics Data System (ADS)

    Chan, T. Y.; Hu, Y.; Gharbi, Mohammad M.; Politis, D. J.; Wang, L.

    2016-08-01

    This paper discusses the evolution of friction coefficient for the multi-layered Molybdenum Disulphide (MoS2) and WC coated substrate during sliding against Aluminium AA 6082 material. A soft MoS2 coating was prepared over a hard WC coated G3500 cast iron tool substrate and underwent friction test using a pin-on-disc tribometer. The lifetime of the coating was reduced with increasing load while the Aluminium debris accumulated on the WC hard coating surfaces, accelerated the breakdown of the coatings. The lifetime of the coating was represented by the friction coefficient and the sliding distance before MoS2 coating breakdown and was found to be affected by the load applied and the wear mechanism.

  17. Attitude control analysis of tethered de-orbiting

    NASA Astrophysics Data System (ADS)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  18. Space debris detection in optical image sequences.

    PubMed

    Xi, Jiangbo; Wen, Desheng; Ersoy, Okan K; Yi, Hongwei; Yao, Dalei; Song, Zongxi; Xi, Shaobo

    2016-10-01

    We present a high-accuracy, low false-alarm rate, and low computational-cost methodology for removing stars and noise and detecting space debris with low signal-to-noise ratio (SNR) in optical image sequences. First, time-index filtering and bright star intensity enhancement are implemented to remove stars and noise effectively. Then, a multistage quasi-hypothesis-testing method is proposed to detect the pieces of space debris with continuous and discontinuous trajectories. For this purpose, a time-index image is defined and generated. Experimental results show that the proposed method can detect space debris effectively without any false alarms. When the SNR is higher than or equal to 1.5, the detection probability can reach 100%, and when the SNR is as low as 1.3, 1.2, and 1, it can still achieve 99%, 97%, and 85% detection probabilities, respectively. Additionally, two large sets of image sequences are tested to show that the proposed method performs stably and effectively.

  19. Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Pringle, P.T.

    1995-01-01

    Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the middle segments of flow waves that begin and end as flood surges. Proximally, through the bulking of poorly sorted volcaniclastic debris on the flanks of the volcano, flow waves expand rapidly in volume by transforming from water surges through hyperconcentrated stream flow (20 to 60 percent sediment by volume) to debris flow. Distally, the transformations occur more slowly in reverse order - from debris flow, to hyperconcentrated flow, and finally to normal streamflow with less than 20 percent sediment by volume. During runout of the largest noncohesive flows, hyperconcentrated flow has continued for as much as 40 to 70 kilometers. Lahars (volcanic debris flows and their deposits) have occurred frequently at Mount Rainier over the past several thousand years, and generally they have not clustered within discrete eruptive periods as at Mount St. Helens. An exception is a period of large noncohesive flows during and after construction of the modern summit cone. Deposits from lahar-runout flows, the hyperconcentrated distal phases of lahars, document the frequency and extent of noncohesive lahars. These deposits also record the following transformations of debris flows: (1) the direct, progressive dilution of debris flow to hyperconcentrated flow, (2) deposition of successively finer grained lobes of debris until only the hyperconcentrated tail of the flow remains to continue downstream, and (3) dewatering of coarse debris flow deposits to yield fine-grained debris flow or hyperconcentrated flow. Three planning or design case histories represent different lengths of postglacial time. Case I is representative of large, infrequent (500 to 1,000 years on average) cohesive debris flows. These flows need to be considered in long-term planning in valleys around the volcano. Case II generalizes the noncohesive debris flows of intermediate size and recurrence (100 to 500 years). This case is appropriate for consideration in some structural design. Case III flows are

  20. On a class of unsteady three-dimensional Navier Stokes solutions relevant to rotating disc flows: Threshold amplitudes and finite time singularities

    NASA Technical Reports Server (NTRS)

    Hall, Philip; Balakumar, P.

    1990-01-01

    A class of exact steady and unsteady solutions of the Navier Stokes equations in cylindrical polar coordinates is given. The flows correspond to the motion induced by an infinite disc rotating with constant angular velocity about the z-axis in a fluid occupying a semi-infinite region which, at large distances from the disc, has velocity field proportional to (x,-y,O) with respect to a Cartesian coordinate system. It is shown that when the rate of rotation is large, Karman's exact solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit of zero rotation rate a particular form of Howarth's exact solution for three-dimensional stagnation point flow is obtained. The unsteady form of the partial differential system describing this class of flow may be generalized to time-periodic equilibrium flows. In addition the unsteady equations are shown to describe a strongly nonlinear instability of Karman's rotating disc flow. It is shown that sufficiently large perturbations lead to a finite time breakdown of that flow whilst smaller disturbances decay to zero. If the stagnation point flow at infinity is sufficiently strong, the steady basic states become linearly unstable. In fact there is then a continuous spectrum of unstable eigenvalues of the stability equations but, if the initial value problem is considered, it is found that, at large values of time, the continuous spectrum leads to a velocity field growing exponentially in time with an amplitude decaying algebraically in time.

  1. The Perils of Paul: Near Disasters in Airborne Radiochemical Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meade, Roger Allen

    Beginning with the Trinity test in July 1945, Laboratory radiochemists have collected debris from nuclear tests by various means. At Trinity, two United States Army Sherman tanks were used. Beginning with Operation Crossroads and continuing throughout atmospheric testing, aircraft were used to fly in and around mushroom clouds to collect debris. Paul Guthals, the LASL project leader for sampling operations, flew on many of the B-57 sampling missions. Two such missions, one flown over the Nevada Test and one in the skies near Johnston Atoll, again proved the dangers involved in collecting airborne test debris. The events of these twomore » missions are briefly recounted.« less

  2. Collision frequency of artificial satellites - The creation of a debris belt

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.; Cour-Palais, B. G.

    1978-01-01

    The probability of satellite collisions increases with the number of satellites. In the present paper, possible time scales for the growth of a debris belt from collision fragments are determined, and possible consequences of continued unrestrained launch activities are examined. Use is made of techniques formerly developed for studying the evolution (growth) of the asteroid belt. A model describing the flux from the known earth-orbiting satellites is developed, and the results from this model are extrapolated in time to predict the collision frequency between satellites. Hypervelocity impact phenomena are then examined to predict the debris flux resulting from collisions. The results are applied to design requirements for three types of future space missions.

  3. Coupling continuous damage and debris fragmentation for energy absorption prediction by cfrp structures during crushing

    NASA Astrophysics Data System (ADS)

    Espinosa, Christine; Lachaud, Frédéric; Limido, Jérome; Lacome, Jean-Luc; Bisson, Antoine; Charlotte, Miguel

    2015-05-01

    Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller-Lubliner-Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation.

  4. Predicting spatial distribution of postfire debris flows and potential consequences for native trout in headwater streams

    USGS Publications Warehouse

    Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.

    2015-01-01

    Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.

  5. Major safety and operational concerns for fuel debris criticality control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonoike, K.; Sono, H.; Umeda, M.

    2013-07-01

    It can be seen from the criticality control viewpoint that the requirement divides the decommissioning work into two parts. One is the present condition where it is requested to prevent criticality and to monitor subcritical condition while the debris is untouched. The other is future work where the subcritical condition shall be ensured even if the debris condition is changed intentionally by raising water level, debris retrieval, etc. Repair of damages on the containment vessel (CV) walls is one of the most important objectives at present in the site. On completion of this task, it will become possible to raisemore » water levels in the CVs and to shield the extremely high radiation emitted from the debris but there is a dilemma: raising the water level in the CVs implies to bring the debris closer to criticality because of the role of water for slowing down neutrons. This may be solved if the coolant water will start circulating in closed loops, and if a sufficient concentration of soluble neutron poison (borated water for instance) will be introduced in the loop. It should be still noted that this solution has a risk of worsening corrosion of the CV walls. Design of the retrieval operation of debris should be proposed as early as possible, which must include a neutron poison concentration required to ensure that the debris chunk is subcritical. In parallel, the development of the measurement system to monitor subcritical condition of the debris chunk should be conducted in case the borated water cannot be used continuously. The system would be based on a neutron counter with a high sensitivity and an appropriate shield for gamma-rays, and the adequate statistical signal processing.« less

  6. Development and maintenance of a telescoping debris flow fan in response to human-induced fan surface channelization, Chalk Creek Valley Natural Debris Flow Laboratory, Colorado, USA

    NASA Astrophysics Data System (ADS)

    Wasklewicz, T.; Scheinert, C.

    2016-01-01

    Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.

  7. The Predicted Growth of the Low Earth Orbit Space Debris Environment: An Assessment of Future Risk for Spacecraft

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2007-01-01

    Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.

  8. Determination of the intervertebral disc space from CT images of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Korez, Robert; Å tern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2014-03-01

    Degenerative changes of the intervertebral disc are among the most common causes of low back pain, where for individuals with significant symptoms surgery may be needed. One of the interventions is the total disc replacement surgery, where the degenerated disc is replaced by an artificial implant. For designing implants with good bone contact and continuous force distribution, the morphology of the intervertebral disc space and vertebral body endplates is of considerable importance. In this study we propose a method for the determination of the intervertebral disc space from three-dimensional (3D) computed tomography (CT) images of the lumbar spine. The first step of the proposed method is the construction of a model of vertebral bodies in the lumbar spine. For this purpose, a chain of five elliptical cylinders is initialized in the 3D image and then deformed to resemble vertebral bodies by introducing 25 shape parameters. The parameters are obtained by aligning the chain to the vertebral bodies in the CT image according to image intensity and appearance information. The determination of the intervertebral disc space is finally achieved by finding the planes that fit the endplates of the obtained parametric 3D models, and placing points in the space between the planes of adjacent vertebrae that enable surface reconstruction of the intervertebral disc space. The morphometric analysis of images from 20 subjects yielded 11:3 +/- 2:6, 12:1 +/- 2:4, 12:8 +/- 2:0 and 12:9 +/- 2:7 cm3 in terms of L1-L2, L2-L3, L3-L4 and L4-L5 intervertebral disc space volume, respectively.

  9. Geothermal disruption of ice at Mount Spurr Volcano, 2004 - 2006: An unusual manifestation of volcanic unrest in Alaska

    USGS Publications Warehouse

    Coombs, Michelle L.; Neal, Christina A.; Wessels, Rick L.; McGimsey, Robert G.

    2006-01-01

    Mount Spurr, a 3,374-m-high stratovolcano in the Cook Inlet region of Alaska, showed signs of volcanic unrest beginning in 2004 and lasting through 2006. These signs included increases in heat flow, seismicity, and gas flux, which we interpret as the results of a magmatic intrusion in mid-2004. In response, debris-laden meltwater beneath the glacier in Mount Spurr's geothermally active summit basin accumulated as the overlying snow and ice melted. As heat output increased, the icecap subsided into a growing cavity over a meltwater lake, similar to that observed during subglacial volcanic activity in Iceland. An ice plug collapsed into the lake sometime between June 20 and July 8, 2004, forming an ice cauldron that continued to grow in diameter during 2004 and 2005. A freefall of ice and snow into the lake likely caused a mixture of water and debris to be displaced rapidly upward and outward along preexisting englacial and, possibly, subglacial pathways leading away and downslope from the summit basin. Where these pathways intersected crevasses or other weak points in the sloping icefield, the mixture debouched onto the surface, producing dark, fluid debris flows. In summer 2004, the occurrence of two sets of debris flows separated in time by as long as a week suggests two pulses of summit ice collapse, each producing a surge of water and debris from the lake. A single debris flow was also emplaced on May 2, 2005. This event, which was captured by a Web camera, occurred simultaneously with a lake-level drop of ~15 m. To the east of the ice cauldron, a spillway that fed the debris flows has apparently maintained a relatively constant lake level for months at a time. Aerial photographs show that the spillway is in the direction of a breach in the summit crater. Melting of snow and ice at the summit has continued through 2006, with a total meltwater volume of ~5.4 million m3 as of March 2006.

  10. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    PubMed Central

    Lin, Naiming; Liu, Qiang; Zou, Jiaojuan; Guo, Junwen; Li, Dali; Yuan, Shuo; Ma, Yong; Wang, Zhenxia; Wang, Zhihua; Tang, Bin

    2016-01-01

    Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316), surface-textured 316 (ST-316), and duplex-treated 316 (DT-316) in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication. PMID:28773996

  11. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in the effectiveness of debris removal and a corresponding increase in the confidence that these combined measures will lead to the stabilisation of the LEO debris population.

  12. A Sensitivity Study on the Effectiveness of Active Debris Removal in LEO

    NASA Technical Reports Server (NTRS)

    Liou, J. C.; Johnson, Nicholas L.

    2007-01-01

    The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.

  13. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    NASA Astrophysics Data System (ADS)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  14. Exploration of the aftermath of a large collision in an extreme debris disk

    NASA Astrophysics Data System (ADS)

    Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian

    2018-05-01

    Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.

  15. The Effect of a Potentially Low Solar Cycle #24 on Orbital Lifetimes of Fengyun 1-C Debris

    NASA Technical Reports Server (NTRS)

    Whitlock, David; Johnson, Nicholas; Matney, Mark; Krisko, Paula

    2008-01-01

    The magnitude of Solar Cycle #24 will have a non-trivial impact on the lifetimes of debris pieces that resulted from the intentional hypervelocity impact of the Fengyun 1-C satellite in January 2007. Recent solar flux measurements indicate Solar Cycle #24 has begun in the last few months, and will continue until approximately 2019. While there have been differing opinions on whether the intensity of this solar cycle will be higher or lower than usual, the Space Weather Prediction Center within the National Oceanic Atmospheric Administration (NOAA/SWPC) has recently forecast unusually low solar activity, which would result in longer orbital lifetimes. Using models for both the breakup of Fengyun 1-C and the propagation of the resultant debris cloud, the Orbital Debris Program Office at NASA Johnson Space Center conducted a study to better understand the impact of the solar cycle on lifetimes for pieces as small as 1 mm. Using a modified collision breakup model and PROP3D propagation software, the orbits of nearly 2 million objects 1 mm and larger were propagated for up to 200 years. By comparing a normal solar cycle with that of the NOAA/SWPC forecast low cycle, the effect of the solar flux on the lifetimes of the debris pieces is evaluated. The modeling of the low solar cycle shows an additional debris count of 12% for pieces larger than 10 cm by 2019 when compared to the resultant debris count using a normal cycle. The difference becomes more exaggerated (over 15%) for debris count in the smaller size regimes. However, in 50 years, the models predict the differences in debris count from differing models of Solar Cycle #24 to be less than 10% for all size regimes, with less variance in the smaller sizes. Understanding the longevity of the debris cloud will affect collision probabilities for both operational spacecraft and large derelict objects over the next century and beyond.

  16. Incorporating moisture content in modeling the surface energy balance of debris-covered Changri Nup Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Giese, Alexandra; Boone, Aaron; Morin, Samuel; Lejeune, Yves; Wagnon, Patrick; Dumont, Marie; Hawley, Robert

    2016-04-01

    Glaciers whose ablation zones are covered in supraglacial debris comprise a significant portion of glaciers in High Mountain Asia and two-thirds in the South Central Himalaya. Such glaciers evade traditional proxies for mass balance because they are difficult to delineate remotely and because they lose volume via thinning rather than via retreat. Additionally, their surface energy balance is significantly more complicated than their clean counterparts' due to a conductive heat flux from the debris-air interface to the ice-debris boundary, where melt occurs. This flux is a function of the debris' thickness; thermal, radiative, and physical properties; and moisture content. To date, few surface energy balance models have accounted for debris moisture content and phase changes despite the fact that they are well-known to affect fluxes of mass, latent heat, and conduction. In this study, we introduce a new model, ISBA-DEB, which is capable of solving not only the heat equation but also moisture transport and retention in the debris. The model is based upon Meteo-France's Interactions between Soil, Biosphere, and Atmosphere (ISBA) soil and vegetation model, significantly adapted for debris and coupled with the snowpack model Crocus within the SURFEX platform. We drive the model with continuous ERA-Interim reanalysis data, adapted to the local topography (i.e. considering local elevation and shadowing) and downscaled and de-biased using 5 years of in-situ meteorological data at Changri Nup glacier [(27.859N, 86.847E)] in the Khumbu Himal. The 1-D model output is then evaluated through comparison with measured temperature in and ablation under a 10-cm thick debris layer on Changri Nup. We have found that introducing a non-equilibrium model for water flow, rather than using the mixed-form Richard's equation alone, promotes greater consistency with moisture observations. This explicit incorporation of moisture processes improves simulation of the snow-debris-ice column's temperature gradient - and, thus, energy fluxes - through time.

  17. Current and Future Impact Risks from Small Debris to Operational Satellites

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Kessler, Don

    2011-01-01

    The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.

  18. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  19. Stress distribution in the temporo-mandibular joint discs during jaw closing: a high-resolution three-dimensional finite-element model analysis.

    PubMed

    Savoldelli, Charles; Bouchard, Pierre-Olivier; Loudad, Raounak; Baque, Patrick; Tillier, Yannick

    2012-07-01

    This study aims at analysing the stresses distribution in the temporomandibular joint (TMJ) using a complete high-resolution finite element model (FE Model). This model is used here to analyse the stresses distribution in the discs during a closing jaw cycle. In the end, this model enables the prediction of the stress evolution in the TMJ disc submitted to various loadings induced by mandibular trauma, surgery or parafunction. The geometric data for the model were obtained from MRI and CT scans images of a healthy male patient. Surface and volume meshes were successively obtained using a 3D image segmentation software (AMIRA(®)). Bone components of skull and mandible, both of joint discs, temporomandibular capsules and ligaments and dental arches were meshed as separate bodies. The volume meshes were transferred to the FE analysis software (FORGE(®)). Material properties were assigned for each region. Boundary conditions for closing jaw simulations were represented by different load directions of jaws muscles. The von Mises stresses distribution in both joint discs during closing conditions was analyzed. The pattern of von Mises stresses in the TMJ discs is non-symmetric and changed continuously during jaw movement. Maximal stress is reached on the surface disc in areas in contact with others bodies. The three-dimension finite element model of masticatory system will make it possible to simulate different conditions that appear to be important in the cascade of events leading to joint damage.

  20. An overview of revised NASA safety standard 1740.14

    NASA Technical Reports Server (NTRS)

    Reynolds, Robert; Eichler, Peter; Johnson, Nicholas

    1997-01-01

    Following a broad review of the debris control guidelines outside of NASA and according to additional feedback on the guidelines from within NASA, revisions were made to the NASA safety standard 1740.14. The NASA policy to limit the generation of orbital debris on NASA missions, stated in the NASA management instruction 1700.8 and implemented in the form of the NASA safety standard (NSS) 1740.14 is described together with the revisions implemented. The overall direction of the guidelines is the same, but the details of many of the guidelines were changed, including: changes for tether programs and for the control of operational debris. The NASA will continue to review the guidelines as new measurements and improved models of the environment are obtained.

  1. Downhole vacuum cleans up tough fishing, milling jobs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaLande, P.; Flanders, B.

    1996-02-01

    A unique tool developed to effect reverse circulation downhole is being used successfully in problem milling and fishing operations where conventional techniques fail to recover junk in the hole. Jointly developed by several major operators in conjunction with Baker Oil Tools, the patented Reverse Circulating Tool (RCT) acts as a downhole vacuum cleaner, catching and retaining debris circulated from the wellbore while allowing fishing, milling and washover operations to continue uninterrupted. As described in several case histories overviewed, the unique vacuuming action efficiently cleans up junk and debris in even the most difficult fishing and milling applications. Downhole operations proceedmore » normally, but without threat of damage from milled debris. Developers hold both mechanical and method patents on the RCT.« less

  2. Is the Sky Really Falling? An Overview of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hull, Scott M.

    2015-01-01

    Orbital debris has been a prominent topic for a while, even before the movie Gravity came out. An anti-satellite test and a collision with an operational satellite both produced large highly-publicized debris clouds within recent years. While large objects like abandoned satellites and rocket bodies may be the most recognizable and identifiable concerns, a majority of the daily threat comes from the much more numerous smaller particles. In fact, small particle penetration continues to rank among the leading risks for manned space missions to the International Space Station and beyond. How much 'stuff' is up there, where did it come from, what harm can it do, and what is being done about it? These questions and more will be discussed.

  3. Effects of CubeSat Deployments in Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Matney, M. J.; Vavrin, A. B.; Manis, A. P.

    2017-01-01

    Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.

  4. Size distribution of stranded small plastic debris on the coast of Guangdong, South China.

    PubMed

    Fok, Lincoln; Cheung, Pui Kwan; Tang, Guangda; Li, Wai Chin

    2017-01-01

    Beach environments are known to be conducive to fragmentation of plastic debris, and highly fragmented plastic particles can interact with smaller organisms. Even through stranded plastic debris may not interact directly with marine organisms, backwash processes may transport this debris back to coastal waters, where it may affect a wide range of marine life at different trophic levels. This study analysed the size distribution of stranded plastic debris (<10 mm) collected from eight coastal beaches in Guangdong Province, China. Polystyrene (PS) foams and fragments smaller than 7 mm were increasingly abundant in the smaller size classes, whereas resin pellets remained in their production sizes (∼3 mm). Microplastics (<5 mm) accounted for over 98% of the total plastic debris by abundance and 71% by weight, indicating that the plastic debris on these coastal beaches was highly fragmented and the majority of the plastic masses belonged to the microplastic size range. The observed size distributions of PS foams and fragments are believed to result from continued fragmentation. Previous studies found that the residence time of beached debris was less than one year on average, and no sign of plastic accumulation with depth in beach sediment was observed. Therefore, coastal beaches may represent a reservoir of highly fragmented and degraded microplastics that may be mobilised and returned to the sea during storm events. Further research on the dynamics and longevity of microplastics on beaches will help reveal the mass balance of microplastics on the shoreline and determine whether shorelines are sinks or sources of microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric

    2009-06-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  6. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, E.; Lear, D.; Ryan, S.

    2009-01-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  7. The extreme mobility of debris avalanches: A new model of transport mechanism

    NASA Astrophysics Data System (ADS)

    Perinotto, Hélène; Schneider, Jean-Luc; Bachèlery, Patrick; Le Bourdonnec, François-Xavier; Famin, Vincent; Michon, Laurent

    2015-12-01

    Large rockslide-debris avalanches, resulting from flank collapses that shape volcanoes and mountains on Earth and other object of the solar system, are rapid and dangerous gravity-driven granular flows that travel abnormal distances. During the last 50 years, numerous physical models have been put forward to explain their extreme mobility. The principal models are based on fluidization, lubrication, or dynamic disintegration. However, these processes remain poorly constrained. To identify precisely the transport mechanisms during debris avalanches, we examined morphometric (fractal dimension and circularity), grain size, and exoscopic characteristics of the various types of particles (clasts and matrix) from volcanic debris avalanche deposits of La Réunion Island (Indian Ocean). From these data we demonstrate for the first time that syn-transport dynamic disintegration continuously operates with the increasing runout distance from the source down to a grinding limit of 500 µm. Below this limit, the particle size reduction exclusively results from their attrition by frictional interactions. Consequently, the exceptional mobility of debris avalanches may be explained by the combined effect of elastic energy release during the dynamic disintegration of the larger clasts and frictional reduction within the matrix due to interactions between the finer particles.

  8. Making Debris Avoidance Decisions for ESMO's EOS Mission Set

    NASA Technical Reports Server (NTRS)

    Mantziaras, Dimitrios

    2016-01-01

    The presentation will cover the aspects of making debris risk decisions from the NASA Mission Director's perspective, specifically for NASA Earth Science Mission Operations (ESMO) Earth Observing System (EOS) mission set. ESMO has been involved in analyzing potential debris risk conjunctions with secondary objects since the inception of this discipline. Through the cumulated years of experience and continued exposure to various debris scenarios, ESMO's understanding of the problem and process to deal with this issue has evolved. The presentation will describe the evolution of the ESMO process, specifically as it relates to the maneuver execution and spacecraft risk management decision process. It will briefly cover the original Drag Make-Up Maneuver, several day, methodical manually intensive, ramp up waive off approach, to the present day more automated, pre-canned onboard command, tools based approach. The presentation will also cover the key information needed to make debris decisions and challenges in doing so while still trying to meet science goals, constellation constraints and manage resources. A slide or two at the end of the presentation, will be devoted to discussing what further improvements could be helpful to improve decision making and future process improvement plans challenges.

  9. Proceedings of the Space Surveillance Workshop (12th) Held in Lexington, Massachusetts on 5-7 April 1994. Volume 2

    DTIC Science & Technology

    1994-04-07

    detector mated to wide- angle optics to continuously view a large conical volume of space in the vicinity of the orbiting spacecraft . When a debris... large uncertainties. This lack of reliable data for debris particles in the millimeter/centimeter size range presents a problem to spacecraft designers...by smaller particles (<I mm) can be negated by the use of meteor bumpers covering the critical parts of a spacecraft , without incurring too large a

  10. Sources of orbital debris and the projected environment for future spacecraft

    NASA Technical Reports Server (NTRS)

    Kessler, D. J.

    1980-01-01

    The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.

  11. Impact of high-risk conjunctions on Active Debris Removal target selection

    NASA Astrophysics Data System (ADS)

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-10-01

    Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.

  12. Spinning Disc Technology – Residence Time Distribution and Efficiency in Textile Wastewater Treatment Application

    NASA Astrophysics Data System (ADS)

    Iacob Tudose, E. T.; Zaharia, C.

    2018-06-01

    The spinning disc (SD) technology has received increased attention in the last years due to its enhanced fluid flow features resulting in improved property transfers. The actual study focuses on characterization of the flow within a spinning disc system based on experimental data used to establish the residence time distribution (RTD) and its dependence on the feeding liquid flowrate and the disc rotational speed. To obtain these data, an inert tracer (sodium chloride) was injected as a pulse input in the liquid stream entering the disc and the salt concentration of the liquid leaving the disc was continuously recorded. The obtained data indicate that an increase in the liquid flowrate from 10 L/h to 30 L/h determines a narrower RTD function. Also, at rotational speed of 200 rpm, the residence time distribution is broader than that for 500 rpm and 800 rpm. The RTD data suggest that depending on the needed flow characteristics, one can choose a certain flowrate and rotational speed domain for its application. Also, the SD technology was used to process textile wastewater treated with bentonite (as both coagulation and discoloration agent) in order to investigate whether the quality indicators such as the total suspended solid content, turbidity and discoloration, can be improved. The experimental results are promising since the discoloration and the removals of suspended solids attained values of over 40%, and respectively, 50 %, depending on the effluent flowrate (10 l/h and 30 L/h), and the disc rotational speed (200 rpm, 550 rpm and 850 rpm) without any other addition of chemicals, or initiation of other simultaneous treatment processes (e.g., advanced oxidative, or reductive, or biochemical processes). This recommends spinning disc technology as a suitable and promising tool to improve different wastewater characteristics.

  13. A more realistic disc herniation model incorporating compression, flexion and facet-constrained shear: a mechanical and microstructural analysis. Part II: high rate or 'surprise' loading.

    PubMed

    Shan, Zhi; Wade, Kelly R; Schollum, Meredith L; Robertson, Peter A; Thambyah, Ashvin; Broom, Neil D

    2017-10-01

    Part I of this study explored mechanisms of disc failure in a complex posture incorporating physiological amounts of flexion and shear at a loading rate considerably lower than likely to occur in a typical in vivo manual handling situation. Given the strain-rate-dependent mechanical properties of the heavily hydrated disc, loading rate will likely influence the mechanisms of disc failure. Part II investigates the mechanisms of failure in healthy discs subjected to surprise-rate compression while held in the same complex posture. 37 motion segments from 13 healthy mature ovine lumbar spines were compressed in a complex posture intended to simulate the situation arising when bending and twisting while lifting a heavy object at a displacement rate of 400 mm/min. Seven of the 37 samples reached the predetermined displacement prior to a reduction in load and were classified as early stage failures, providing insight to initial areas of disc disruption. Both groups of damaged discs were then analysed microstructurally using light microscopy. The average failure load under high rate complex loading was 6.96 kN (STD 1.48 kN), significantly lower statistically than for low rate complex loading [8.42 kN (STD 1.22 kN)]. Also, unlike simple flexion or low rate complex loading, direct radial ruptures and non-continuous mid-wall tearing in the posterior and posterolateral regions were commonly accompanied by disruption extending to the lateral and anterior disc. This study has again shown that multiple modes of damage are common when compressing a segment in a complex posture, and the load bearing ability, already less than in a neutral or flexed posture, is further compromised with high rate complex loading.

  14. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  15. Blue phase-change recording at high data densities and data rates

    NASA Astrophysics Data System (ADS)

    Dekker, Martijn K.; Pfeffer, Nicola; Kuijper, Maarten; Ubbens, Igolt P.; Coene, Wim M. J.; Meinders, E. R.; Borg, Herman J.

    2000-09-01

    For the DVR system with the use of a blue laser diode (wavelength 405 nm) we developed (12 cm) discs with a total capacity of 22.4 GB. The land/groove track pitch is 0.30 micrometers and the channel bit length is 87 nm. The DVR system uses a d equals 1 code. These phase change discs can be recorded at continuous angular velocity at a maximum of 50 Mbps user data rate (including all format and ECC overhead) and meet the system specifications. Fast growth determined phase change materials (FGM) are used for the active layer. In order to apply these FGM discs at small track pitch special attention has been paid to the issue of thermal cross-write. Finally routes towards higher capacities such as advanced bit detection schemes and the use of a smaller track pitch are considered. These show the feasibility in the near future of at least 26.0 GB on a disc for the DVR system with a blue laser diode.

  16. Unstable low-mass planetary systems as drivers of white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Mustill, Alexander J.; Villaver, Eva; Veras, Dimitri; Gänsicke, Boris T.; Bonsor, Amy

    2018-05-01

    At least 25 {per cent} of white dwarfs show atmospheric pollution by metals, sometimes accompanied by detectable circumstellar dust/gas discs or (in the case of WD 1145+017) transiting disintegrating asteroids. Delivery of planetesimals to the white dwarf by orbiting planets is a leading candidate to explain these phenomena. Here, we study systems of planets and planetesimals undergoing planet-planet scattering triggered by the star's post-main-sequence mass loss, and test whether this can maintain high rates of delivery over the several Gyr that they are observed. We find that low-mass planets (Earth to Neptune mass) are efficient deliverers of material and can maintain the delivery for Gyr. Unstable low-mass planetary systems reproduce the observed delayed onset of significant accretion, as well as the slow decay in accretion rates at late times. Higher-mass planets are less efficient, and the delivery only lasts a relatively brief time before the planetesimal populations are cleared. The orbital inclinations of bodies as they cross the white dwarf's Roche limit are roughly isotropic, implying that significant collisional interactions of asteroids, debris streams and discs can be expected. If planet-planet scattering is indeed responsible for the pollution of white dwarfs, many such objects, and their main-sequence progenitors, can be expected to host (currently undetectable) super-Earth planets on orbits of several au and beyond.

  17. ESA Technologies for Space Debris Remediation

    NASA Astrophysics Data System (ADS)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  18. The small observed scale of AGN-driven outflows, and inside-out disc quenching

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; King, Andrew

    2016-11-01

    Observations of massive outflows with detectable central active galactic nuclei (AGN) typically find them within radii ≲10 kpc. We show that this apparent size restriction is a natural result of AGN driving if this process injects total energy only of the order of the gas binding energy to the outflow, and the AGN varies over time (`flickers') as suggested in recent work. After the end of all AGN activity, the outflow continues to expand to larger radii, powered by the thermal expansion of the remnant-shocked AGN wind. We suggest that on average, outflows should be detected further from the nucleus in more massive galaxies. In massive gas-rich galaxies, these could be several tens of kpc in radius. We also consider the effect that pressure of such outflows has on a galaxy disc. In moderately gas-rich discs, with gas-to-baryon fraction <0.2, the outflow may induce star formation significant enough to be distinguished from quiescent by an apparently different normalization of the Kennicutt-Schmidt law. The star formation enhancement is probably stronger in the outskirts of galaxy discs, so coasting outflows might be detected by their effects upon the disc even after the driving AGN has shut off. We compare our results to the recent inference of inside-out quenching of star formation in galaxy discs.

  19. AMORE: Applied Momentum for Orbital Refuse Elimination

    NASA Astrophysics Data System (ADS)

    Wolfson, M.

    2014-09-01

    The need for active orbital debris remediation has increasingly gained acceptance throughout the space community throughout the last decade as the threat to our assets has also increased. While there have been a wide variety of conceptual solutions proposed, a debris removal system has yet to be put in place. The challenges that stand in the way of action are formidable and range from technical to political to economic. The AMORE concept is a nascent technique that has the potential to address these challenges and bring active debris remediation into reality. It uses an on-orbit low energy neutral particle beam (~10 keV, TBD) to impart momentum onto medium (5mm 10 cm) debris objects in Low Earth Orbit (LEO), thereby reducing their kinetic energy and expediting their reentry. The advantage of this technique over other proposed concepts is that it does not require delta-V intensive rendezvous, has an effective range that allows daily access to hundreds of debris objects, and does not create policy concerns over violation of international treaties. In essence, AMORE would be a medium-sized high power satellite with one or more particle beams fed by a large propellant tank, and an on-board tracking sensor that provides beam control. The particle beam would be similar to existing Xenon Hall Effect thrusters being used today, with the addition of a beam lens that would focus and aim the beam. The primary technical challenge of this concept is the focusing, pointing, and closed loop control of the beam that is necessary to maintain effective momentum transfer at ranges up to 100 km. This effective range is critical in order to maximize daily access to debris objects. Even in the densely populated 800 km debris band, it can be expected that a single AMORE system would be within 100 km of a debris object less than an hour a day. Space is big, and range is critical for timely, cost effective debris removal. Initial analysis indicates that a single AMORE vehicle operating in the 800 km regime could lower the perigee of 100 pieces of 1 kg debris to a 25 year reentry orbit annually. The actual performance of a system would be highly dependent on the debris regime. An operational AMORE system would likely involve several vehicles operating autonomously for continuous mitigation of existing and future debris.

  20. A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.

    NASA Astrophysics Data System (ADS)

    Arana-Morales, A.; Baum, R. L.; Godt, J.

    2014-12-01

    Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.

  1. A Novel, Minimally-Invasive Approach to Repair Degenerative Disk Disease in an Ovine Model Using Injectable Polymethyl-Methacrylate and Bovine Collagen (PMMA/BC)

    PubMed Central

    Feldman, Erica; Narayan, Anisha; Taylor, William

    2016-01-01

    Background : The natural, inflammatory repair processes of an injured intervertebral degenerative disc can propagate further injury and destruction. While there are many different treatment modalities of the pain related to degenerative disc disease, none are actually reparative in nature. Treatment strategies to repair a degenerative disc without inducing a destructive inflammatory milieu have been elusive.  Purpose: The purpose of this experiment is to discover the feasibility of reconstructing an injured intervertebral disc using an injected, inert polymer as the foundation for endogenous collagen growth. Study Design: In this ovine model of six subjects in total, we introduce a modality where a large inert polymer, polymethyl methacrylate (PMMA), in conjunction bovine collagen (BC) is injected into the intervertebral disc. Following six months of observation, histologic specimens were evaluated macroscopically and microscopically for evidence of a benefit of the injectable PMMA/BC. Methods: We obtained six merino sheep for this study. Concentric injuries were made to four of their lumbar intervertebral discs. Two of those levels were treated with a percutaneous injection of 0.3 cc of PMMA/BC. The remaining lumbar levels were left untreated and were our controls. After six months, all subjects were sacrificed. Their four levels were extracted and were examined macroscopically and microscopically. Results: All subjects tolerated the lumbar injury and percutaneous injection of PMMA/BC well. After the six month interval, all subjects have demonstrated an intact architecture of their lumbar disc height at the macroscopic and microscopic level. Microscopically, there was no evidence of external migration of the PMMA/BC microspheres, nor was there any evidence of an inflammatory response by its presence. Notably, the PMMA/BC microspheres were well-incorporated into the concentric disc tears and had undergone endogenous collagen formation in its environment. Treatment levels were revealing for maintenance of disc height without evidence of an ongoing degeneration. The controlled levels were revealing for continued disc degeneration with loss of disc height and evolving injury at the level of the concentric tear. Conclusions: This ovine model demonstrates a novel and promising technique for prevention and arrest of lumbar intervertebral disc degeneration. PMID:27630802

  2. 40 CFR 268.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...

  3. 40 CFR 268.3 - Dilution prohibited as a substitute for treatment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...

  4. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  5. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  6. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  7. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  8. 40 CFR 268.39 - Waste specific prohibitions-spent aluminum potliners; reactive; and carbamate wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.39 Waste specific prohibitions—spent aluminum potliners; reactive; and carbamate...-U411 are prohibited from land disposal. In addition, soil and debris contaminated with these wastes are...

  9. Relationship of Basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration.

    PubMed

    Sarks, Shirley; Cherepanoff, Svetlana; Killingsworth, Murray; Sarks, John

    2007-03-01

    To correlate basal laminar deposit (BLamD) and membranous debris, including basal linear deposit (BLinD), with the evolution of early age-related macular degeneration (AMD). A clinicopathologic collection of 132 eyes with a continuous layer of BLamD was reviewed. The thickness and type of BLamD and the sites of membranous debris deposition were correlated with the clinical progression of the disease. Two types of BLamD, termed early and late, were identified based on light microscopic appearance by using the picro-Mallory stain. The progressive accumulation of late type BLamD correlated well with increasing BLamD thickness, advancing RPE degeneration, poorer vision, increasing age, and clinically evident pigment changes. Membranous debris initially accumulated diffusely as BLinD, most eyes with BLinD and early BLamD remaining funduscopically normal. However, membranous debris also formed focal collections as basal mounds internal to the RPE basement membrane and as soft drusen external to the basement membrane. Eyes in which membranous debris remained confined to basal mounds belonged to older patients with poorer vision, whereas patients with soft drusen were younger and had better vision. The presence of BLinD and early BLamD define threshold AMD, which manifests clinically as a normal fundus. Although late BLamD correlates most closely with clinical pigment abnormalities, it is the quantity and sites of membranous debris accumulation that appear to determine whether the disease develops pigment changes only or follows the alternative pathway of soft drusen formation with its attendant greater risk of choroidal neovascularization (CNV).

  10. Networks at Their Limits: Software, Similarity, and Continuity in Vietnam

    ERIC Educational Resources Information Center

    Nguyen, Lilly Uyen

    2013-01-01

    This dissertation explores the social worlds of pirated software discs and free/open source software in Vietnam to describe the practices of copying, evangelizing, and translation. This dissertation also reveals the cultural logics of similarity and continuity that sustain these social worlds. Taken together, this dissertation argues that the…

  11. Operation of a real-time warning system for debris flows in the San Francisco bay area, California

    USGS Publications Warehouse

    Wilson, Raymond C.; Mark, Robert K.; Barbato, Gary; ,

    1993-01-01

    The United States Geological Survey (USGS) and the National Weather Service (NWS) have developed an operational warning system for debris flows during severe rainstorms in the San Francisco Bay region. The NWS makes quantitative forecasts of precipitation from storm systems approaching the Bay area and coordinates a regional network of radio-telemetered rain gages. The USGS has formulated thresholds for the intensity and duration of rainfall required to initiate debris flows. The first successful public warnings were issued during a severe storm sequence in February 1986. Continued operation of the warning system since 1986 has provided valuable working experience in rainfall forecasting and monitoring, refined rainfall thresholds, and streamlined procedures for issuing public warnings. Advisory statements issued since 1986 are summarized.

  12. Cosmic clocks: a tight radius-velocity relationship for H I-selected galaxies

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt R.; Obreschkow, Danail; Wong, O. Ivy; Zheng, Zheng; Audcent-Ross, Fiona M.; Hanish, D. J.

    2018-05-01

    H I-selected galaxies obey a linear relationship between their maximum detected radius Rmax and rotational velocity. This result covers measurements in the optical, ultraviolet, and H I emission in galaxies spanning a factor of 30 in size and velocity, from small dwarf irregulars to the largest spirals. Hence, galaxies behave as clocks, rotating once a Gyr at the very outskirts of their discs. Observations of a large optically selected sample are consistent, implying this relationship is generic to disc galaxies in the low redshift Universe. A linear radius-velocity relationship is expected from simple models of galaxy formation and evolution. The total mass within Rmax has collapsed by a factor of 37 compared to the present mean density of the Universe. Adopting standard assumptions, we find a mean halo spin parameter λ in the range 0.020-0.035. The dispersion in λ, 0.16 dex, is smaller than expected from simulations. This may be due to the biases in our selection of disc galaxies rather than all haloes. The estimated mass densities of stars and atomic gas at Rmax are similar (˜0.5 M⊙ pc-2), indicating outer discs are highly evolved. The gas consumption and stellar population build time-scales are hundreds of Gyr, hence star formation is not driving the current evolution of outer discs. The estimated ratio between Rmax and disc scalelength is consistent with long-standing predictions from monolithic collapse models. Hence, it remains unclear whether disc extent results from continual accretion, a rapid initial collapse, secular evolution, or a combination thereof.

  13. Effectiveness and cost-effectiveness of rehabilitation after lumbar disc surgery (REALISE): design of a randomised controlled trial

    PubMed Central

    2013-01-01

    Background Patients who undergo lumbar disc surgery for herniated discs, are advocated two different postoperative management strategies: a watchful waiting policy, or referral for rehabilitation immediately after discharge from the hospital. A direct comparison of the effectiveness and cost-effectiveness of these two strategies is lacking. Methods/Design A randomised controlled trial will be conducted with an economic evaluation alongside to assess the (cost-) effectiveness of rehabilitation after lumbar disc surgery. Two hundred patients aged 18–70 years with a clear indication for lumbar disc surgery of a single level herniated disc will be recruited and randomly assigned to either a watchful waiting policy for first six weeks or exercise therapy starting immediately after discharge from the hospital. Exercise therapy will focus on resumption of activities of daily living and return to work. Therapists will tailor the intervention to the individual patient’s needs. All patients will be followed up by the neurosurgeon six weeks postoperatively. Main outcome measures are: functional status, pain intensity and global perceived recovery. Questionnaires will be completed preoperatively and at 3, 6, 9, 12 and 26 weeks after surgery. Data will be analysed according to the intention-to-treat principle, using a linear mixed model for continuous outcomes and a generalised mixed model for dichotomous outcomes. The economic evaluation will be performed from a societal perspective. Discussion The results of this trial may lead to a more consistent postoperative strategy for patients who will undergo lumbar disc surgery. Trial registration Netherlands Trial Register: NTR3156 PMID:23560810

  14. A Comparison of the SOCIT and DebriSat Experiments

    NASA Technical Reports Server (NTRS)

    Ausay, Erick; Blake, Brandon; Boyle, Colleen; Cornejo, Alex; Horn, Alexa; Palma, Kirsten; Pistella, Frank; Sato, Taishi; Todd, Naromi; Zimmerman, Jeffrey; hide

    2017-01-01

    This paper explores the differences between, and shares the lessons learned from, two hypervelocity impact experiments critical to the update of orbital debris environment models. The procedures and processes of the fourth Satellite Orbital Debris Characterization Impact Test (SOCIT) were analyzed and related to the ongoing DebriSat experiment. SOCIT was the first hypervelocity impact test designed specifically for satellites in Low Earth Orbit (LEO). It targeted a 1960's U.S. Navy satellite, from which data was obtained to update pre-existing NASA and DOD breakup models. DebriSat is a comprehensive update to these satellite breakup models- necessary since the material composition and design of satellites have evolved from the time of SOCIT. Specifically, DebriSat utilized carbon fiber, a composite not commonly used in satellites during the construction of the US Navy Transit satellite used in SOCIT. Although DebriSat is an ongoing activity, multiple points of difference are drawn between the two projects. Significantly, the hypervelocity tests were conducted with two distinct satellite models and test configurations, including projectile and chamber layout. While both hypervelocity tests utilized soft catch systems to minimize fragment damage to its post-impact shape, SOCIT only covered 65% of the projected area surrounding the satellite, whereas, DebriSat was completely surrounded cross-range and downrange by the foam panels to more completely collect fragments. Furthermore, utilizing lessons learned from SOCIT, DebriSat's post-impact processing varies in methodology (i.e., fragment collection, measurement, and characterization). For example, fragment sizes were manually determined during the SOCIT experiment, while DebriSat utilizes automated imaging systems for measuring fragments, maximizing repeatability while minimizing the potential for human error. In addition to exploring these variations in methodologies and processes, this paper also presents the challenges DebriSat has encountered thus far and how they were addressed. Accomplishing DebriSat's goal of collecting 90% of the debris, which constitutes well over 100,000 fragments, required addressing many challenges stemming from the very large number of fragments. One of these challenges arose in identifying the foam-embedded fragments. DebriSat addressed this by X-raying all of the panels once the loose debris were removed, and applying a detection algorithm developed in-house to automate the embedded fragment identification process. It is easy to see how the amount of data being compiled would be outstanding. Creating an efficient way to catalog each fragment, as well as archiving the data for reproducibility also posed a great challenge for DebriSat. Barcodes to label each fragment were introduced with the foresight that once the characterization process began, the datasheet for each fragment would have to be accessed again quickly and efficiently. The DebriSat experiment has benefited significantly by leveraging lessons learned from the SOCIT experiment along with the technological advancements that have occurred during the time between the experiments. The two experiments represent two ages of satellite technology and, together, demonstrate the continuous efforts to improve the experimental techniques for fragmentation debris characterization.

  15. Composite uranium carbide targets at TRIUMF: Development and characterization with SEM, XRD, XRF and L-edge densitometry

    NASA Astrophysics Data System (ADS)

    Kunz, Peter; Bricault, Pierre; Dombsky, Marik; Erdmann, Nicole; Hanemaayer, Vicky; Wong, John; Lützenkirchen, Klaus

    2013-09-01

    The production of radioactive ion beams (RIB) from spallation targets by irradiation with a continuous 500 MeV proton beam, has been routine at TRIUMF for several years. Based on the experience with composite refractory carbide targets a procedure for the fabrication of UC2/C targets was developed. It includes the preparation of UC2 by carbothermal reduction of UO2, the slip-casting of fine-grained UC2/C slurry on graphite foil under inert gas atmosphere and the cutting of composite target discs which are stacked up to a lamellar structure. The thermal properties of such an arrangement are adequate to withstand the high power deposition of an intense, continuous proton beam and also beneficial for the fast release of short-lived radioactive isotopes. Molecular structure, particle size and the impact of sintering of the target discs were investigated via XRD and SEM. Thickness and mass distribution were measured with position-sensitive LIII-edge densitometry. The results confirm that the properties of the UC2/C target material are well suited for RIB production at TRIUMF while there is still room for improvement with regard to uniformity of mass distribution in target disc thickness.

  16. An interstellar origin for Jupiter's retrograde co-orbital asteroid

    NASA Astrophysics Data System (ADS)

    Namouni, F.; Morais, M. H. M.

    2018-06-01

    Asteroid (514107) 2015 BZ509 was discovered recently in Jupiter's co-orbital region with a retrograde motion around the Sun. The known chaotic dynamics of the outer Solar system have so far precluded the identification of its origin. Here, we perform a high-resolution statistical search for stable orbits and show that asteroid (514107) 2015 BZ509 has been in its current orbital state since the formation of the Solar system. This result indicates that (514107) 2015 BZ509 was captured from the interstellar medium 4.5 billion years in the past as planet formation models cannot produce such a primordial large-inclination orbit with the planets on nearly coplanar orbits interacting with a coplanar debris disc that must produce the low-inclination small-body reservoirs of the Solar system such as the asteroid and Kuiper belts. This result also implies that more extrasolar asteroids are currently present in the Solar system on nearly polar orbits.

  17. Project 1640 observations of the white dwarf HD 114174 B

    NASA Astrophysics Data System (ADS)

    Bacchus, E.; Parry, I. R.; Oppenheimer, R.; Aguilar, J.; Beichman, C.; Brenner, D.; Burruss, R.; Cady, E.; Luszcz-Cook, S.; Crepp, J.; Dekany, R.; Gianninas, A.; Hillenbrand, L.; Kilic, M.; King, D.; Lockhart, T. G.; Matthews, C. T.; Nilsson, R.; Pueyo, L.; Rice, E. L.; Roberts, L. C.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Veicht, A.; Zhai, C.; Zimmerman, N. T.

    2017-08-01

    We present the first near infrared spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS) photometry measurements, allows us to place further constraints on this companion. We suggest two possible scenarios; either this object is an old, low-mass, cool H atmosphere white dwarf with Teff ˜ 3800 K or a high-mass white dwarf with Teff > 6000 K, potentially with an associated cool (Teff ˜ 700 K) brown dwarf or debris disc resulting in an infrared excess in the L΄ band. We also provide an additional astrometry point for 2014 June 12 and use the modelled companion mass combined with the radial velocity and direct imaging data to place constraints on the orbital parameters for this companion.

  18. Faraday's first dynamo: A retrospective

    NASA Astrophysics Data System (ADS)

    Smith, Glenn S.

    2013-12-01

    In the early 1830s, Michael Faraday performed his seminal experimental research on electromagnetic induction, in which he created the first electric dynamo—a machine for continuously converting rotational mechanical energy into electrical energy. His machine was a conducting disc, rotating between the poles of a permanent magnet, with the voltage/current obtained from brushes contacting the disc. In his first dynamo, the magnetic field was asymmetric with respect to the axis of the disc. This is to be contrasted with some of his later symmetric designs, which are the ones almost invariably discussed in textbooks on electromagnetism. In this paper, a theoretical analysis is developed for Faraday's first dynamo. From this analysis, the eddy currents in the disc and the open-circuit voltage for arbitrary positioning of the brushes are determined. The approximate analysis is verified by comparing theoretical results with measurements made on an experimental recreation of the dynamo. Quantitative results from the analysis are used to elucidate Faraday's qualitative observations, from which he learned so much about electromagnetic induction. For the asymmetric design, the eddy currents in the disc dissipate energy that makes the dynamo inefficient, prohibiting its use as a practical generator of electric power. Faraday's experiments with his first dynamo provided valuable insight into electromagnetic induction, and this insight was quickly used by others to design practical generators.

  19. Long Term Ex Vivo Culture and Live Imaging of Drosophila Larval Imaginal Discs.

    PubMed

    Tsao, Chia-Kang; Ku, Hui-Yu; Lee, Yuan-Ming; Huang, Yu-Fen; Sun, Yi Henry

    Continuous imaging of live tissues provides clear temporal sequence of biological events. The Drosophila imaginal discs have been popular experimental subjects for the study of a wide variety of biological phenomena, but long term culture that allows normal development has not been satisfactory. Here we report a culture method that can sustain normal development for 18 hours and allows live imaging. The method is validated in multiple discs and for cell proliferation, differentiation and migration. However, it does not support disc growth and cannot support cell proliferation for more than 7 to 12 hr. We monitored the cellular behavior of retinal basal glia in the developing eye disc and found that distinct glia type has distinct properties of proliferation and migration. The live imaging provided direct proof that wrapping glia differentiated from existing glia after migrating to the anterior front, and unexpectedly found that they undergo endoreplication before wrapping axons, and their nuclei migrate up and down along the axons. UV-induced specific labeling of a single carpet glia also showed that the two carpet glia membrane do not overlap and suggests a tiling or repulsion mechanism between the two cells. These findings demonstrated the usefulness of an ex vivo culture method and live imaging.

  20. TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.

    PubMed

    Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V

    2017-08-01

    Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.

  1. Ferrofluid lubrication of circular squeeze film bearings controlled by variable magnetic field with rotations of the discs, porosity and slip velocity

    NASA Astrophysics Data System (ADS)

    Shah, Rajesh C.; Shah, Rajiv B.

    2017-12-01

    Based on the Shliomis ferrofluid flow model (SFFM) and continuity equation for the film as well as porous region, modified Reynolds equation for lubrication of circular squeeze film bearings is derived by considering the effects of oblique radially variable magnetic field (VMF), slip velocity at the film-porous interface and rotations of both the discs. The squeeze film bearings are made up of circular porous upper disc of different shapes (exponential, secant, mirror image of secant and parallel) and circular impermeable flat lower disc. The validity of Darcy's Law is assumed in the porous region. The SFFM is important because it includes the effects of rotations of the carrier liquid as well as magnetic particles. The VMF is used because of its advantage of generating maximum field at the required active contact area of the bearing design system. Also, the effect of porosity is included because of its advantageous property of self-lubrication. Using Reynolds equation, general form of pressure equation is derived and expression for dimensionless load-carrying capacity is obtained. Using this expression, results for different bearing design systems (due to different shapes of the upper disc) are computed and compared for variation of different parameters.

  2. Anatomy of the Spine

    MedlinePlus

    ... is called the conus medullaris. There is a thread that continues from the conus called the filum ... bodies, the facet joint created by their articular processes, the intervertebral disc between them and the associated ...

  3. Harnessing Adaptive Optics for Space Debris Collision Mitigation

    NASA Astrophysics Data System (ADS)

    Zovaro, A.; Bennet, F.; Copeland, M.; Rigaut, F.; d'Orgeville, C.; Grosse, D.

    2016-09-01

    Human kind's continued use of space depends upon minimising the build-up of debris in low Earth-orbit (LEO). Preventing collisions between satellites and debris is essential given that a single collision can generate thousands of new debris objects. However, in-orbit manoeuvring of satellites is extremely expensive and shortens their operational life. Adjusting the orbits of debris objects instead of satellites would shift the responsibility of collision avoidance away from satellite operators altogether, thereby offering a superior solution. The Research School of Astronomy and Astrophysics at the Australian National University, partnered with Electro Optic Systems (EOS) Space Systems, Lockheed Martin Corporation and the Space Environment Research Centre (SERC) Limited, are developing the Adaptive Optics Tracking and Pushing (AOTP) system. AOTP will be used to perturb the orbits of debris objects using photon pressure from a 10 kW IR laser beam launched from the 1.8 m telescope at Mount. Stromlo Observatory, Australia. Initial simulations predict that AOTP will be able to displace debris objects 10 cm in size by up to 100 m with several overhead passes. An operational demonstrator is planned for 2019. Turbulence will distort the laser beam as it propagates through the atmosphere, resulting in a lower photon flux on the target and reduced pointing accuracy. To mitigate these effects, adaptive optics (AO) will be used to apply wavefront correction to the beam prior to launch. A unique challenge in designing the AO system arises from the high slew rate needed to track objects in LEO, which in turn requires laser guide star AO for satisfactory wavefront correction. The optical design and results from simulations of estimated performance of AOTP will be presented. In particular, design considerations associated with the high-power laser will be detailed.

  4. Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico

    USGS Publications Warehouse

    Cannon, S.H.; Reneau, Steven L.

    2000-01-01

    Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.

  5. Deciphering Debris Disk Structure with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    MacGregor, Meredith Ann

    2018-01-01

    More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.

  6. Lineated Valley Fills and Lobate Debris Aprons in Coloe Fossae: Evolutionary characteristics and time-stratigraphic relationships.

    NASA Astrophysics Data System (ADS)

    Schreiner, Björn; van Gasselt, Stephan; Neukum, Gerhard; HRSC Co-Investigator Team

    2010-05-01

    Mid-latitude regions of Mars, especially the crustal dichotomy boundary between highlands and northern lowlands are characterized by lineated valley fills (LVF) and lobate debris aprons (LDA). These features reveal evidence of ice-rich deposits. LDAs are assumed to consist of a mixture of ice and rock/debris consistent with models of apron formation such as rock glacier ice assisted creep of talus, ice-rich landslides, or debris-covered glaciers. Deposition of ice at these latitudes is consistent with athmospheric circulation models and predictions of spin axis and orbital variations for the past history of Mars. In this study we measured crater size frequency distributions of LVS and LDA including unrelaxed glacier-like convex bodies in the Coloe Fossae region (35°N, 55°E) and determined late amazonian crater retention ages of 30-50 Ma and 80-100 Ma which gives evidence of repeated deposition of mantling material from surrounding head walls with continuous resurfacing between active periods. We use new HRSC data for topography and imaging in conjunction with high resolution CTX imaging data.

  7. A miniature fiber optic pressure sensor for intradiscal pressure measurements of rodents

    NASA Astrophysics Data System (ADS)

    Nesson, Silas; Yu, Miao; Hsieh, Adam H.

    2007-04-01

    Lower back pain continues to be a leading cause of disability in people of all ages, and has been associated with degenerative disc disease. It is well accepted that mechanical stress, among other factors, can play a role in the development of disc degeneration. Pressures generated in the intervertebral disc have been measured both in vivo and in vitro for humans and animals. However, thus far it has been difficult to measure pressure experimentally in rodent discs due to their small size. With the prevalent use of rodent tail disc models in mechanobiology, it is important to characterize the intradiscal pressures generated with externally applied stresses. In this paper, a miniature fiber optic Fabry-Perot interferometric pressure sensor with an outer diameter of 360 μm was developed to measure intradiscal pressures in rat caudal discs. A low coherence interferometer based optical system was used, which includes a broadband light source, a high-speed spectrometer, and a Fabry-Perot sensor. The sensor employs a capillary tube, a flexible, polymer diaphragm coated with titanium as a partial mirror, and a fiber tip as another mirror. The pressure induced deformation of the diaphragm results in a cavity length change of the Fabry-Perot interferometer which can be calculated from the wavelength shift of interference fringes. The sensor exhibited good linearity with small applied pressures. Our validation experiments show that owing to the small size, inserting the sensor does not disrupt the annulus fibrosus and will not alter intradiscal pressures generated. Measurements also demonstrate the feasibility of using this sensor to quantify external load intradiscal pressure relationships in small animal discs.

  8. Unified User Interface to Support Effective and Intuitive Data Discovery, Dissemination, and Analysis at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Hegde, M.; Bryant, K.; Johnson, J. E.; Ritrivi, A.; Shen, S.; Volmer, B.; Pham, L. B.

    2015-01-01

    Goddard Earth Sciences Data and Information Services Center (GES DISC) has been providing access to scientific data sets since 1990s. Beginning as one of the first Earth Observing System Data and Information System (EOSDIS) archive centers, GES DISC has evolved to offer a wide range of science-enabling services. With a growing understanding of needs and goals of its science users, GES DISC continues to improve and expand on its broad set of data discovery and access tools, sub-setting services, and visualization tools. Nonetheless, the multitude of the available tools, a partial overlap of functionality, and independent and uncoupled interfaces employed by these tools often leave the end users confused as of what tools or services are the most appropriate for a task at hand. As a result, some the services remain underutilized or largely unknown to the users, significantly reducing the availability of the data and leading to a great loss of scientific productivity. In order to improve the accessibility of GES DISC tools and services, we have designed and implemented UUI, the Unified User Interface. UUI seeks to provide a simple, unified, and intuitive one-stop shop experience for the key services available at GES DISC, including sub-setting (Simple Subset Wizard), granule file search (Mirador), plotting (Giovanni), and other services. In this poster, we will discuss the main lessons, obstacles, and insights encountered while designing the UUI experience. We will also present the architecture and technology behind UUI, including NodeJS, Angular, and Mongo DB, as well as speculate on the future of the tool at GES DISC as well as in a broader context of the Space Science Informatics.

  9. Rms-flux relation and fast optical variability simulations of the nova-like system MV Lyr

    NASA Astrophysics Data System (ADS)

    Dobrotka, A.; Mineshige, S.; Ness, J.-U.

    2015-03-01

    The stochastic variability (flickering) of the nova-like system (subclass of cataclysmic variable) MV Lyr yields a complicated power density spectrum with four break frequencies. Scaringi et al. analysed high-cadence Kepler data of MV Lyr, taken almost continuously over 600 d, giving the unique opportunity to study multicomponent Power Density Spectra (PDS) over a wide frequency range. We modelled this variability with our statistical model based on disc angular momentum transport via discrete turbulent bodies with an exponential distribution of the dimension scale. Two different models were used, a full disc (developed from the white dwarf to the outer radius of ˜1010 cm) and a radially thin disc (a ring at a distance of ˜1010 cm from the white dwarf) that imitates an outer disc rim. We succeed in explaining the two lowest observed break frequencies assuming typical values for a disc radius of 0.5 and 0.9 times the primary Roche lobe and an α parameter of 0.1-0.4. The highest observed break frequency was also modelled, but with a rather small accretion disc with a radius of 0.3 times the primary Roche lobe and a high α value of 0.9 consistent with previous findings by Scaringi. Furthermore, the simulated light curves exhibit the typical linear rms-flux proportionality linear relation and the typical log-normal flux distribution. As the turbulent process is generating fluctuations in mass accretion that propagate through the disc, this confirms the general knowledge that the typical rms-flux relation is mainly generated by these fluctuations. In general, a higher rms is generated by a larger amount of superposed flares which is compatible with a higher mass accretion rate expressed by a larger flux.

  10. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation.

    PubMed

    Wang, Feng; Gao, Zeng-Xin; Cai, Feng; Sinkemani, Arjun; Xie, Zhi-Yang; Shi, Rui; Wei, Ji-Nan; Wu, Xiao-Tao

    2017-08-22

    Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration.

  11. Formation, function, and exhaustion of notochordal cytoplasmic vacuoles within intervertebral disc: current understanding and speculation

    PubMed Central

    Sinkemani, Arjun; Xie, Zhi-Yang; Shi, Rui; Wei, Ji-Nan; Wu, Xiao-Tao

    2017-01-01

    Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc. For full vacuolation, a vacuolating specification from dorsal organizer cells, synchronized convergent extension, well-structured notochord sheath, and sufficient post-Golgi trafficking in notochord cells are required. Postnatally, age-related and species-specific exhaustion of vacuolated nucleus pulposus cells could be potentiated by Fas- and Fas ligand-induced apoptosis, intolerance to mechanical stress and nutrient deficiency, vacuole-mediated proliferation check, and gradual de-vacuolation within the avascular and compression-loaded intervertebral disc. These results suggest that the notochord vacuoles are active and versatile organelles for both embryonic notochord and postnatal nucleus pulposus, and may provide novel information on intervertebral disc degeneration to guide cell-based regeneration. PMID:28915712

  12. Digital Image Speckle Correlation for the Quantification of the Cosmetic Treatment with Botulinum Toxin Type A (BTX-A)

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Divya; Conkling, Nicole; Rafailovich, Miriam; Dagum, Alexander

    2012-02-01

    The skin on the face is directly attached to the underlying muscles. Here, we successfully introduce a non-invasive, non-contact technique, Digital Image Speckle Correlation (DISC), to measure the precise magnitude and duration of facial muscle paralysis inflicted by BTX-A. Subjective evaluation by clinicians and patients fail to objectively quantify the direct effect and duration of BTX-A on the facial musculature. By using DISC, we can (a) Directly measure deformation field of the facial skin and determine the locus of facial muscular tension(b)Quantify and monitor muscular paralysis and subsequent re-innervation following injection; (c) Continuously correlate the appearance of wrinkles and muscular tension. Two sequential photographs of slight facial motion (frowning, raising eyebrows) are taken. DISC processes the images to produce a vector map of muscular displacement from which spatially resolved information is obtained regarding facial tension. DISC can track the ability of different muscle groups to contract and can be used to predict the site of injection, quantify muscle paralysis and the rate of recovery following BOTOX injection.

  13. Operational Impact of Improved Space Tracking on Collision Avoidance in the Future LEO Space Debris Environment

    NASA Astrophysics Data System (ADS)

    Sibert, D.; Borgeson, D.; Peterson, G.; Jenkin, A.; Sorge, M.

    2010-09-01

    Even if global space policy successfully curtails on orbit explosions and ASAT demonstrations, studies indicate that the number of debris objects in Low Earth Orbit (LEO) will continue to grow solely from debris on debris collisions and debris generated from new launches. This study examines the threat posed by this growing space debris population over the next 30 years and how improvements in our space tracking capabilities can reduce the number of Collision Avoidance (COLA) maneuvers required keep the risk of operational satellite loss within tolerable limits. Particular focus is given to satellites operated by the Department of Defense (DoD) and Intelligence Community (IC) in Low Earth Orbit (LEO). The following debris field and space tracking performance parameters were varied parametrically in the experiment to study the impact on the number of collision avoidance maneuvers required: - Debris Field Density (by year 2009, 2019, 2029, and 2039) - Quality of Track Update (starting 1 sigma error ellipsoid) - Future Propagator Accuracy (error ellipsoid growth rates - Special Perturbations in 3 axes) - Track Update Rate for Debris (stochastic) - Track Update Rate for Payloads (stochastic) Baseline values matching present day tracking performance for quality of track update, propagator accuracy, and track update rate were derived by analyzing updates to the unclassified Satellite Catalog (SatCat). Track update rates varied significantly for active payloads and debris and as such we used different models for the track update rates for military payloads and debris. The analysis was conducted using the System Effectiveness Analysis Simulation (SEAS) an agent based model developed by the United States Air Force Space Command’s Space and Missile Systems Center to evaluate the military utility of space systems. The future debris field was modeled by The Aerospace Corporation using a tool chain which models the growth of the 10cm+ debris field using high fidelity propagation, collision, and breakup models. Our analysis uses Two Line Element (TLE) sets and surface area data generated by this model sampled at the years 2019, 2029, and 2039. Data for the 2009 debris field is taken from the unclassified SatCat. By using Monte Carlo simulation techniques and varying the epoch of the military constellation relative to the debris field we were able to remove the bias of initial conditions. Additional analysis was conducted looking at the military utility impact of temporarily losing the use of Intelligence Surveillance and Reconnaissance (ISR) assets due to COLA maneuvers during a large classified scenario with stressful satellite tasking. This paper and presentation will focus only on unclassified results quantifying the potential reduction in the risk assumed by satellite flyers, and the potential reduction in Delta-V usage that is possible if we are able to improve our tracking performance in any of these three areas and reduce the positional uncertainty of space objects at the time of closest approach.

  14. Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes

    NASA Astrophysics Data System (ADS)

    Bradley, Luke R.

    The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of densities of the tested specimens.Two types of FE model were developed using a commercially available program. The first type was designed to analyse the model composite materials for comparison with mechanical test data for the purpose of validation of the FE model. Elastic moduli predicted by this type of FE model showed good agreement with the experimentally measured elastic moduli of the model composite materials. This result suggested that the use of layered FE models, which rely upon an isostrain assumption between the layers, can be useful in predicting the elastic properties of different lay-ups of the disc brake material.The second type of FE model analysed disc brake segments, using the experimentally measured bulk mechanical properties of the disc brake material. This FE model approximated the material as a continuum with in-plane isotropy but with different properties in the through-thickness direction. In order to validate this modelling approach, the results of the FE analysis were compared with mechanical tests on disc brake segments, which were loaded by their drive tenons in a manner intended to simulate in-service loading. The FE model showed good agreement with in-plane strains measured on the disc tenon face close to the swept area of the disc, but predicted significantly higher strains than those experimentally measured on the tenon fillet curve. This discrepancy was attributed to the existence of a steep strain gradient on the fillet curve.

  15. Loopy, Floppy and Fragmented: Debris Characteristics Matter

    NASA Astrophysics Data System (ADS)

    Parrish, J.; Burgess, H. K.

    2016-02-01

    Marine debris is a world-wide problem threatening the health and safety of marine organisms, ecosystems, and humans. Recent and ongoing research shows that risk of harm is not associated with identity, but rather with a set of specific character states, where the character state space intersection is defined by the organism of interest. For example, intersections of material, color, rigidity and size predict the likelihood of an object being ingested: plastic, clear-white, floppy objects <100cm pose higher risks to sea turtles whereas yellow-red, rigid objects <10cm pose higher risks to albatrosses. A character state space approach allows prioritization of prevention and removal of marine debris informed by risk assessments for species of interest by comparing species ranges with spatio-temporal hotspots of all debris with characteristics known to be associated with increased risk of harm, regardless of identity. With this in mind, the Coastal Observation and Seabird Survey Team (COASST) developed and tested a 20 character data collection approach to quantifying the diversity and abundance of marine debris found on beaches. Development resulted in meta-analysis of the literature and expert opinion eliciting harmful character state space. Testing included data collection on inter-rater reliability and accuracy, where the latter included 75 participants quantifying marine debris characteristics on monthly surveys of 30 beaches along the Washington and Oregon coastlines over the past year. Pilot work indicates that characters must be simply and operationally defined, states must be listed, and examples must be provided for color states. Complex characters (e.g., windage, shape) are not replicable across multiple data collectors. Although data collection takes longer than other marine debris surveys for a given amount of debris and area surveyed, volunteer rapidity and accuracy improved within 3-5 surveys. Initial feedback indicated that volunteers were willing to continue collecting data as long as they valued the approach.

  16. Instability of the Present LEO Satellite Populations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Johnson, Nicholas L.

    2006-01-01

    Several studies conducted during 1991-2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay. A new study has been conducted in the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, using higher fidelity models to evaluate the current debris environment. The study assumed no satellites were launched after December 2005. A total of 150 Monte Carlo runs were carried out and analyzed. Each Monte Carlo run simulated the current debris environment and projected it 200 years into the future. The results indicate that the LEO debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Detailed analysis shows that this growth is primarily driven by high collision activities around 900 to 1000 km altitude - the region which has a very high concentration of debris at present. In reality, the satellite population growth in LEO will undoubtedly be worse than this study indicates, since spacecraft and their orbital stages will continue to be launched into space. Postmission disposal of vehicles (e.g., limiting postmission orbital lifetimes to less than 25 years) will help, but will be insufficient to constrain the Earth satellite population. To preserve better the near-Earth environment for future space activities, it might be necessary to remove existing large and massive objects from regions where high collision activities are expected.

  17. Products of a Subglacial Flood Basalt Eruption

    NASA Astrophysics Data System (ADS)

    Gorny, C. F.; White, J. D. L.; Gudmundsson, M. T.

    2015-12-01

    The Snæbýlisheiði unit, SE Iceland, is a ca. 26 km³ elongate, flat-topped ridge of volcaniclastic debris coupled with and intruded by coherent basalt stretching over 34 km from the eruption site perpendicular to the rift fissure source. It formed from a single subglacial flood basalt eruption during a recent glaciation, and its elongation reflects glacial control on dispersal via the hydraulic potential gradient at the glacier's base, which drove towards the glacier terminus the meltwater+debris formed during the eruption by quenching and fragmentation. High magma discharge and outgassing drove segregation of magma into down-flow propagating intrusions. Edifice growth was mediated by the extent of ice melting, extent and efficiency of meltwater+debris drainage, and hydraulic gradients locally favoring meltwater accumulation. Eruption style reflected magma flux, edifice stability, and accessibility of water to the vent area via flooding or infiltration. Deposits reflect these competing factors in their chaotic internal organization and stratigraphy, limited lithofacies continuity, and diverse particle populations from multiple source vents. Linear growth of the ridge down-gradient from the eruption site was driven primarily by propagation and continuous fragmentation of shoaling intrusions that formed an interconnected intrusive complex with extensive peperites. Advance was along gently meandering and locally bifurcating sub-ice conduits within hyaloclastite with sheet-lobe levees and lobate fingered intrusions. Irregular dikes, apophyses, horns, and tendrils extended from the main body and generated voluminous lapilli tuff and contorticlasts while providing additional heat to the system. Prolonged transport and deposition of debris produced complexly bedded volcaniclastic deposits derived from and intruded by the basalt sheet. The bedding and depositional features of volcaniclastic debris and relationship to their adjacent intrusions suggest transport and deposition through a complex network of migrating and converging tunnels evolving with time under multiple flow regimes and sudden outbursts floods, rather than from a single jökulhlaup or within a single tunnel.

  18. Gas in the protoplanetary disc of HD 169142: Herschel's view

    NASA Astrophysics Data System (ADS)

    Meeus, G.; Pinte, C.; Woitke, P.; Montesinos, B.; Mendigutía, I.; Riviere-Marichalar, P.; Eiroa, C.; Mathews, G. S.; Vandenbussche, B.; Howard, C. D.; Roberge, A.; Sandell, G.; Duchêne, G.; Ménard, F.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Augereau, J. C.; Thi, W. F.; Tilling, I.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Barrado, D.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Riaz, B.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Williams, J. P.; Wright, G.

    2010-07-01

    In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 μm, [CII] 157.7 μm, CO 72.8 and 90.2 μm, and o-H2O 78.7 and 179.5 μm. We only detect the [OI] 63.2 μm line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and 12/13CO data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDiMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 ± 2.0 × 10-3 M⊙ is still present in this disc, in agreement with earlier CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  19. The bending stress distribution in bilayered and graded zirconia-based dental ceramics

    PubMed Central

    Fabris, Douglas; Souza, Júlio C.M.; Silva, Filipe S.; Fredel, Márcio; Mesquita-Guimarães, Joana; Zhang, Yu; Henriques, Bruno

    2016-01-01

    The purpose of this study was to evaluate the biaxial flexural stresses in classic bilayered and in graded zirconia-feldspathic porcelain composites. A finite element method and an analytical model were used to simulate the piston-on-ring test and to predict the biaxial stress distributions across the thickness of the bilayer and graded zirconia-feldspathic porcelain discs. An axisymmetric model and a flexure formula of Hsueh et al. were used in the FEM and analytical analysis, respectively. Four porcelain thicknesses were tested in the bilayered discs. In graded discs, continuous and stepwise transitions from the bottom zirconia layer to the top porcelain layer were studied. The resulting stresses across the thickness, measured along the central axis of the disc, for the bilayered and graded discs were compared. In bilayered discs, the maximum tensile stress decreased while the stress mismatch (at the interface) increased with the porcelain layer thickness. The optimized balance between both variables is achieved for a porcelain thickness ratio in the range of 0.30–0.35. In graded discs, the highest tensile stresses were registered for porcelain rich interlayers (p=0.25) whereas the zirconia rich ones (p=8) yield the lowest tensile stresses. In addition, the maximum stresses in a graded structure can be tailored by altering compositional gradients. A decrease in maximum stresses with increasing values of p (a scaling exponent in the power law function) was observed. Our findings showed a good agreement between the analytical and simulated models, particularly in the tensile region of the disc. Graded zirconia-feldspathic porcelain composites exhibited a more favourable stress distribution relative to conventional bilayered systems. This fact can significantly impact the clinical performance of zirconia-feldspathic porcelain prostheses, namely reducing the fracture incidence of zirconia and the chipping and delamination of porcelain. PMID:28104926

  20. Landslides

    NASA Image and Video Library

    2003-04-02

    The slumping of materials in the walls of this impact crater imaged by NASA Mars Odyssey spacecraft illustrates the continued erosion of the Martian surface. Small fans of debris as well as larger landslides are observed throughout the image.

  1. Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado

    NASA Astrophysics Data System (ADS)

    Mejía-Navarro, Mario; Wohl, Ellen E.; Oaks, Sherry D.

    1994-08-01

    Glenwood Springs, Colorado, lies at the junction of the Roaring Fork and Colorado Rivers, surrounded by the steep peaks of the Colorado Rocky Mountains. Large parts of the region have had intensive sheet erosion, debris flows, and hyperconcentrated floods triggered by landslides and slumps. The latter come from unstable slopes in the many tributary channels on the mountainsides, causing concentration of debris in channels and a large accumulation of sediment in colluvial wedges and debris fans that line the river valleys. Many of the landslide and debris-flow deposits exist in a state resembling suspended animation, ready to be destabilized by intense precipitation and/or seismic activity. During this century urban development in the Roaring Fork River valley has increased rapidly. The city of Glenwood Springs continues to expand over unstable debris fans without any construction of hazard mitigation structures. Since 1900, Glenwood Springs has had at least 21 damaging debris flows and floods; on July 24, 1977 a heavy thunderstorm spread a debris flow over more than 80 ha of the city. This paper presents a method that uses Geographic Information Systems (GIS) to assess geological hazards, vulnerability, and risk in the Glenwood Springs area. The hazards evaluated include subsidence, rockfall, debris flows, and floods, and in this paper we focus on debris flows and subsidence. Information on topography, hydrology, precipitation, geomorphic processes, bedrock and surficial geology, structural geology, soils, vegetation, and land use, was processed for hazard assessment using a series of algorithms. ARC/INFO and GRASS GIS softwares were used to produce maps and tables in a format accessible to urban planners. After geological hazards were defined for the study area, we estimated the vulnerability ( Ve) of various elements for an event of intensity i. Risk is assessed as a function of hazard and vulnerability. We categorized the study area in 14 classes for planning procedures; 7 classes defined as areas suitable for human settlement, and 7 classes defined as unsuitable for building, and most effectively reserved for parks and forests.

  2. Field experiments to assess the effect of lithology and grain size on the ablation of debris covered glaciers

    NASA Astrophysics Data System (ADS)

    Juen, M.; Mayer, C.; Lambrecht, A.; Wirbel, A.; Kueppers, U.

    2012-04-01

    Currently many glaciers all over the world show negative mass balances. Because of the retreating ice masses, there is an increase of deglaciated slopes. In combination with increased melting of permafrost these areas can become unstable and account for an additional supply of weathered bedrock and sediments onto the glacier surface. Furthermore increasing ablation rates advance the melting out and accumulation of englacial till on the glacier surface. The experiment was performed during summer season 2010 at the middle tongue of Vernagtferner, a temperate glacier in the Oetztal Alps, Austria. The experimental setup was designed in a way to monitor the parameters which are most crucial for controlling sub-debris ice melt with regards to lithology, grain size and moisture content. Ten test plots were established with different debris grain sizes and debris thicknesses consisting of sieved natural material. The local metamorphic mica schist and volcanic debris were used for the experiment. Ablation was measured at stakes. Bare ice melt was observed continuously with a sonic ranger. Three automatic weather stations were installed to record meteorological data. To obtain information concerning the internal temperature distribution of the debris cover, thermistors were installed at various depths. For each individual plot thermal conductivity and thermal diffusivity have been estimated. The observations during the season revealed a clear dependence of the sub-debris ice melt on the layer thickness and the grain size. For the fine sand fraction the moisture content plays an important role, as these test fields were always water saturated. Highly porous volcanic material protects the ice much more effectively from melting than similar layer thicknesses of the local mica schist. Also the albedo plays an important role, where melt rates under dark debris are about 1.75 times higher than underneath brighter material. The analysis of thermal diffusivities indicates that lower values can be found in proximity to the debris/ice interface. Based on our experiences it can be concluded that test sites need intensive care in order to obtain representative data.

  3. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis

    PubMed Central

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis-jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis. This makes the two compounds potential candidates to be integrated in pest management strategies. PMID:26726263

  4. Continuous exposure to the deterrents cis-jasmone and methyl jasmonate does not alter the behavioural responses of Frankliniella occidentalis.

    PubMed

    Egger, Barbara; Spangl, Bernhard; Koschier, Elisabeth Helene

    2016-01-01

    Behavioural responses of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), a generalist, cell sap-feeding insect species with piercing-sucking mouthparts, after continuous exposure to two deterrent secondary plant compounds are investigated. We compared in choice assays on bean leaf discs, the settling, feeding, and oviposition preferences of F. occidentalis females that had no experience with the two fatty acid derivatives methyl jasmonate and cis -jasmone before testing (naïve thrips) vs. females that had been exposed to the deterrent compounds before testing (experienced thrips). The thrips were exposed to the deterrents at low or high concentrations for varied time periods and subsequently tested on bean leaf discs treated with the respective deterrent at either a low or a high concentration. Frankliniella occidentalis females avoided settling on the deterrent-treated bean leaf discs for an observation period of 6 h, independent of their previous experience. Our results demonstrate that feeding and oviposition deterrence of the jasmonates to the thrips were not altered by continuous exposure of the thrips to the jasmonates. Habituation was not induced, neither by exposure to the low concentration of the deterrents nor by exposure to the high concentration. These results indicate that the risk of habituation to two volatile deterrent compounds after repeated exposure is not evident in F. occidentalis . This makes the two compounds potential candidates to be integrated in pest management strategies.

  5. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  6. Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA

    NASA Astrophysics Data System (ADS)

    Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.

    2012-12-01

    Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length relates to the poorly understood bulking process where feedback mechanisms working to progressively increase sediment concentrations likely operate. The apparent length dependence revealed in this study requires a shift in thought about the conditions leading to debris flow generation in catchments dominated by unconsolidated and transportable material.

  7. A Simple Model for the Orbital Debris Environment in GEO

    NASA Astrophysics Data System (ADS)

    Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.

    The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic Impressionistic Low Earth (SIMPLE) Model of the Space Debris Scenario'', Conference Abstract COSPAR 02-A-01772, 2002. Ananthasayanam, M. R., Anilkumar, A. K., Subba Rao, P. V., and V. Adimurthy, ``Characterization of Eccentricity and Ballistic Coefficients of Space Debris in Altitude and Perigee Bins'', IAC-03-IAA5.p.04, Presented at the IAF Conference, Bremen, October 2003 and also to be published in the Proceedings of IAF Conference, Science and Technology Series, 2003.

  8. A New Look at the GEO and Near-GEO Regimes: Operations, Disposals, and Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas

    2011-01-01

    Since 1963 more than 900 spacecraft and more than 200 launch vehicle upper stages have been inserted into the vicinity of the geosynchronous regime. Equally important, more than 300 spacecraft have been maneuvered into disposal orbits at mission termination to alleviate unnecessary congestion in the finite GEO region. However, the number of GEO satellites continues to grow, and evidence exists of a substantial small debris population. In addition, the operational modes of an increasing number of GEO spacecraft differ from those of their predecessors of several decades ago, including more frequent utilization of inclined and eccentric geosynchronous orbits. Consequently, the nature of the GEO regime and its immediate surroundings is evolving from well-known classical characteristics. This paper takes a fresh look at the GEO satellite population and the near- and far-term environmental implications of the region, including the effects of national and international debris mitigation measures.

  9. Conjunction Assessment Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.

    2015-01-01

    Since 1957, humankind's reliance on the space domain for military, humanitarian, and commercial applications has continued to increase. 1960 first successful use of a meteorological satellite,1963 first use of a geosynchronous communications satellite, 1985 Block I of GPS fielded, 1998 first module of ISS, 2001 first satellite radio broadcast over North America. What you take into space, stays in space: launch vehicle, rocket-bodies, mission-related debris. Debris can also be generated on-orbit: fuel/battery explosions, collisions. Only naturally-occurring retarding effect is orbital decay due to atmospheric drag: some remediation measures available, active debris removal not yet viable option. Because of our reliance on space and the fact that space really isn't limitless, the Big Sky theory is no longer an acceptable risk posture. There have been eight (8) on-orbit collisions reported to date, half of which occurred in the last 10 years.

  10. Preliminary Assessment of New Orbital Debris Shielding for Unmanned Satellites

    NASA Astrophysics Data System (ADS)

    Wilkinson, J.; Stokes, H.; Walker, R.

    The numerous rocket launches and spacecraft deployments carried out since the dawn of the space age have generated a large orbiting population of man-made debris. Without the adoption of mitigation measures, it is likely that this population will continue to increase in the future. The ever-growing collision threat posed to operating spacecraft from these debris objects is therefore fast becoming a driver in the design of new spacecraft missions. DERA, under contract from the European Space Agency (ESA), is developing new techniques to provide mass- and cost-effective solutions to this spacecraft protection problem. Direct shielding methods such as enhancing a spacecraft's thermal blankets with strong materials and adapting the honeycomb panel structure are being investigated, as are indirect shielding methods such as reconfiguration of critical or susceptible units. This paper reports the latest results of the direct shielding research.

  11. How multiagency partnerships can successfully address large-scale pollution problems: a Hawaii case study.

    PubMed

    Donohue, Mary J

    2003-06-01

    Oceanic circulation patterns deposit significant amounts of marine pollution, including derelict fishing gear from North Pacific Ocean fisheries, in the Hawaiian Archipelago [Mar. Pollut. Bull. 42(12) (2001) 1301]. Management responsibility for these islands and their associated natural resources is shared by several government authorities. Non-governmental organizations (NGOs) and private industry also have interests in the archipelago. Since the marine debris problem in this region is too large for any single agency to manage, a multiagency marine debris working group (group) was established in 1998 to improve marine debris mitigation in Hawaii. To date, 16 federal, state, and local agencies, working with industry and NGOs, have removed 195 tons of derelict fishing gear from the Northwestern Hawaiian Islands. This review details the evolution of the partnership, notes its challenges and rewards, and advocates its continued use as an effective resource management tool.

  12. Numerical modelling of flow and heat transfer in the rotating disc cavities of a turboprop engine.

    PubMed

    Faragher, J; Ooi, A

    2001-05-01

    A numerical analysis of the flow and heat transfer in the cavity between two co-rotating discs with axial inlet and radial outflow of fluid, a configuration common in gas turbine engines, is described. The results are compared with the experimental data of Northrop and Owen. The effectiveness of the k-epsilon turbulence model with the two-layer zonal model for near-wall treatment of Chen and Patel is tested for this type of flow. Using three-dimensional models it is shown that modelling discrete holes at the outlet as opposed to a continuous slot, which is the approximation inherent in the two-dimensional axisymmetric model, has little effect on the predicted Nusselt number distribution along the disc surface. Results of a conjugate heat transfer analysis of a spacer in the turbine section of a turboprop engine are then presented.

  13. Inhibition of chitin biosynthesis in cultured imaginal discs: Effects of alpha-amanitin, actinomycin-D, cycloheximide, and puromycin.

    PubMed

    Oberlander, Herbert; Ferkovich, Stephen; Leach, Eddie; Van Essen, Frank

    1980-02-01

    Wing imaginal discs isolated from last instar larvae of the Indian meal moth,Plodia interpunctella, produced chitin when incubated in vitro with ≧2×10 -7 M 20-hydroxyecdysone. Chitin biosynthesis was initiated 8 h after the conclusion of a 24-h treatment with hormone. Simulataneous incubation of wing discs with 20-hydroxyecdysone and either inhibitors of RNA synthesis (alpha-amanitin, actinomycin-D) or inhibitors of protein systhesis (cycloheximide, puromycin) prevented chitin biosynthesis. We conclude from our results that RNA and protein synthesis must continue undiminished during the hormone-contact period, and that synthesis of protein, but not of new RNA is required during the posthormone culture period. Our findings are consistent with the hypothesis that ecdysteroids stimulate insect metamorphosis by promoting the synthesis of new RNA and protein during a hormone-dependent phase followed by hormone-independent protein synthesis.

  14. Retrograde Accretion Discs in High-Mass Be/X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2017-01-01

    We have compiled a comprehensive library of all X-ray observations of Magellanic pulsars carried out by XMM-Newton, Chandra and RXTE in the period 1997-2014. In this work, we use the data from 53 high-mass Be/X-ray binaries in the Small Magellanic Cloud to demonstrate that the distribution of spin-period derivatives versus spin periods of spinning-down pulsars is not at all different from that of the accreting spinning-up pulsars. The inescapable conclusion is that the up and down samples were drawn from the same continuous parent population; therefore, Be/X-ray pulsars that are spinning down over periods spanning 18 yr are, in fact, accreting from retrograde discs. The presence of prograde and retrograde discs in roughly equal numbers supports a new evolutionary scenario for Be/X-ray pulsars in their spin period-period derivative diagram.

  15. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions

    USGS Publications Warehouse

    Clark, D.H.; Clark, M.M.; Gillespie, A.R.

    1994-01-01

    Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.

  16. [Discussion on diagenesis of Xilingang pluton-constrained by X-ray Fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy].

    PubMed

    Tang, Yu-Kun; Chen, Guo-Neng; Zhang, Ke; Huang, Hai-Hua

    2013-05-01

    The results on Xilingang pluton, mainly consisting of red beds, granites containing numerous debris of red beds and granites, obtained by X-ray fluorescence spectroscopy, plasma mass spectrometry and Raman spectroscopy show: (1) Xilingang pluton from red beds, granites containing numerous debris of red beds to granites has obvious characteristics of decreasing silicon and alkali content, and rising ignition loss, dark mineral content and oxidation index; (2) Chondrite-normalized REE distribution curves and primitive mantle-normalized spider diagram for trace elements of redbed, granites containing numerous debris of red beds and granites have a good consistency, the distribution characteristics of elements are similar to Nanling transformation-type granite; (3) The value of Raman spectrogram characteristic peak of quartz crystal in Xilingang granite decreased from the center of quartz crystal, and FWHM is steady. According to the above, the authors believe that Xilingang granite formed was related to in-situ melting of red beds and underlying strata and magma consolidation. Volatile components were discharged continuously, and oxidation index decreased gradually in the melting process. In the process of diagenesis, the top of pluton tend to be an ongoing silicon and alkali increase, while TFeO and MgO continue to migrate to bottom, and crystallization environment is a relatively closed and steady system.

  17. What controls the survival of ice cliffs on debris-covered glaciers? An investigation into the aspect-dependent evolution of supraglacial cliffs in the Nepalese Himalaya

    NASA Astrophysics Data System (ADS)

    Pellicciotti, F.; Buri, P.

    2017-12-01

    Supraglacial ice cliffs exist on debris-covered glaciers worldwide, but despite increasing evidence of their important role in the surface melt of debris-covered glaciers, their role and importance at the glacier scale is still little understood. Acting as windows of energy transfer through the debris, they can contribute to very large glacier mass losses. Their abundance and life cycle might thus explain the anomalous behavior of much higher than expected mass losses of the debris-covered glaciers of High Mountain Asia, a controversial finding of recent research in a region where glaciers are highly relevant as water sources for millions of people downstream. Cliffs' evolution in time and distribution in space will determine their total contribution to the mass balance of glaciers, but while spatial distribution has been recently inferred from remote sensing studies, their temporal evolution is largely unknown. Here, we make use of recent advancements in our ability to model these complex features and use a novel 3D numerical model of cliff backwasting and very high resolution topographic data to show that supraglacial ice cliffs existence is controlled by aspect. Because of lack of observed south-facing cliffs, we rotate north-facing cliff systems observed in high detail over the debris-covered Lirung glacier, in the Nepalese Himalaya, towards southerly aspects and use the model coupled to the very high resolution topography to simulate the continuous evolution of selected cliffs over one melt season. Cliffs facing south (in the Northern Hemisphere) do not survive the duration of an ablation season and disappear within few weeks to few months due to very strong solar radiation receipts. Our model shows a progressive, continuous flattening of southerly facing cliffs, which is a result of their vertical gradient of incoming solar radiation. We also show that there is a clear range of aspects (northwest to northeast) that allows cliff survival because of energy and radiative fluxes, while cliffs in the range east to southeast will decline and be reburied within one melt season. We suggest that aspect is the first-order-control of cliff persistence, and that south-facing cliffs do not contribute to the assumed high glacier mass losses.

  18. Exoplanet Caught on the Move

    NASA Astrophysics Data System (ADS)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would lie close to or beyond the orbit of the furthest planet, Neptune. The formation processes of these distant planets are likely to be quite different from those in our Solar System and in Beta Pictoris. "The recent direct images of exoplanets - many made by the VLT - illustrate the diversity of planetary systems," says Lagrange. "Among those, Beta Pictoris b is the most promising case of a planet that could have formed in the same way as the giant planets in our Solar System." Notes [1] Debris discs are composed of dust resulting from collisions among larger bodies such as planetary embryos or asteroids. They are larger versions of the zodiacal dust band in our Solar System. The disc around Beta Pictoris was the first to be imaged and is now known to extend up to about 1000 times the distance between the Earth and the Sun. [2] NACO is an adaptive optics instrument attached to ESO's Very Large Telescope, located in Chile. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere and obtain very sharp images. More information This research was presented in a paper to appear this week in Science Express ("A Giant Planet Imaged in the disk of the Young Star Beta Pictoris," by A.-M. Lagrange et al.). The team is composed of A.-M. Lagrange, M. Bonnefoy, G. Chauvin, D. Ehrenreich, and D. Mouillet (Laboratoire d'Astrophysique de l'Observatoire de Grenoble, Université Joseph Fourier, CNRS, France), D. Apai (Space Telescope Science Institute, Baltimore, USA), A. Boccaletti, D. Gratadour, D. Rouan, and S. Lacour (LESIA, Observatoire de Paris-Meudon, France), and M. Kasper (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. ERBE S10 WFOV SF NAT

    Atmospheric Science Data Center

    2016-06-13

    ... warming caused by greenhouse gases. Absorption of Solar Radiation by Clouds The results of the study demonstrate the present ... spacecraft, as described below. WFOV Instruments: these two fixed detectors continuously view the earth disc (plus a small ring of ...

  20. Transition from film to digital fundus photography in the Longitudinal Studies of the Ocular Complications of AIDS (LSOCA)

    PubMed Central

    Gangaputra, Sapna; Pak, Jeong Won; Peng, Qian; Hubbard, Larry D.; Thayer, Dennis; Krason, Zbigniew; Joyce, Jeff; Danis, Ronald P.

    2014-01-01

    Purpose To describe the transition to digital imaging and assess any impact on ocular disease classification. Methods Film and digital images, acquired by certified photographers, were evaluated independently according to standard procedures for the following: image quality, presence of cytomegalovirus (CMV) retinitis lesions, their extent, and proximity from disc and macula. Inter-grader agreement within the digital medium was also assessed. Results Among the fifteen eyes with CMV retinitis, the mean difference between film and digital images for linear distance of lesion edge to disc was 0.02 disc diameters (DD), for distance to center of macula was −0.04 DD and area covered by CMV retinitis was 0.95 disc area (DA). There was no statistically significant difference in distance and area measurements between media. Inter grader agreement in measurements of digital images was excellent for distance and area estimated. Conclusion Our results suggest that digital grading of CMV retinitis in LSOCA is comparable to that from film with respect to disease classification, measurements, and reproducibility. These findings provide support for continuity of grading data, despite the necessary transition in imaging media. PMID:21857393

  1. Energizing the last phase of common-envelope removal

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2017-11-01

    We propose a scenario where a companion that is about to exit a common-envelope evolution (CEE) with a giant star accretes mass from the remaining envelope outside its deep orbit and launches jets that facilitate the removal of the remaining envelope. The jets that the accretion disc launches collide with the envelope and form hot bubbles that energize the envelope. Due to gravitational interaction with the envelope, which might reside in a circumbinary disc, the companion migrates farther in, but the inner boundary of the circumbinary disc continues to feed the accretion disc. While near the equatorial plane mass leaves the system at a very low velocity, along the polar directions velocities are very high. When the primary is an asymptotic giant branch star, this type of flow forms a bipolar nebula with very narrow waists. We compare this envelope-removal process with four other last-phase common-envelope-removal processes. We also note that the accreted gas from the envelope outside the orbit in the last phase of the CEE might carry with it angular momentum that is anti-aligned to the orbital angular momentum. We discuss the implications to the possibly anti-aligned spins of the merging black hole event GW170104.

  2. Spinning disc atomisation process: Modelling and computations

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sisoev, Grigory; Shikhmurzaev, Yulii

    2016-11-01

    The atomisation of liquids using a spinning disc (SDA), where the centrifugal force is used to generate a continuous flow, with the liquid eventually disintegrating into drops which, on solidification, become particles, is a key element in many technologies. Examples of such technologies range from powder manufacturing in metallurgy to various biomedical applications. In order to be able to control the SDA process, it is necessary to understand it as a whole, from the feeding of the liquid and the wave pattern developing on the disc to the disintegration of the liquid film into filaments and these into drops. The SDA process has been the subject of a number of experimental studies and some elements of it, notably the film on a spinning disc and the dynamics of the jets streaming out from it, have been investigated theoretically. However, to date there have been no studies of the process as a whole, including, most importantly, the transition zone where the film that has already developed a certain wave pattern disintegrates into jets that spiral out. The present work reports some results of an ongoing project aimed at producing a definitive map of regimes occurring in the SDA process and their outcome.

  3. Evaluation of continuity detail for precast prestressed girders : tech summary.

    DOT National Transportation Integrated Search

    2011-08-01

    Building multi-simple span bridges using precast prestressed concrete girders is an easy construction. However, the existence of : expansion joints often leads to a host of problems in their vicinity due to drainage leaks. Furthermore, debris accumul...

  4. Need for a network of observatories for space debris dynamical and physical characterization

    NASA Astrophysics Data System (ADS)

    Piergentili, Fabrizio; Santoni, Fabio; Castronuovo, Marco; Portelli, Claudio; Cardona, Tommaso; Arena, Lorenzo; Sciré, Gioacchino; Seitzer, Patrick

    2016-01-01

    Space debris represents a major concern for space missions since the risk of impact with uncontrolled objects has increased dramatically in recent years. Passive and active mitigation countermeasures are currently under consideration but, at the base of any of such corrective actions is the space debris continuous monitoring through ground based surveillance systems.At the present, many space agencies have the capability to get optical measurements of space orbiting objects mainly relaying on single observatories. The recent research in the field of space debris, demonstrated how it is possible to increase the effectiveness of optical measurements exploitation by using joint observations of the same target from different sites.The University of Rome "La Sapienza", in collaboration with Italian Space Agency (ASI), is developing a scientific network of observatories dedicated to Space Debris deployed in Italy (S5Scope at Rome and SPADE at Matera) and in Kenya at the Broglio Space Center in Malindi (EQUO). ASI founded a program dedicated to space debris, in order to spread the Italian capability to deal with different aspects of this issue. In this framework, the University of Rome is in charge of coordinating the observatories network both in the operation scheduling and in the data analysis. This work describes the features of the observatories dedicated to space debris observation, highlighting their capabilities and detailing their instrumentation. Moreover, the main features of the scheduler under development, devoted to harmonizing the operations of the network, will be shown. This is a new system, which will autonomously coordinate the observations, aiming to optimize results in terms of number of followed targets, amount of time dedicated to survey, accuracy of orbit determination and feasibility of attitude determination through photometric data.Thus, the authors will describe the techniques developed and applied (i) to implement the multi-site orbit determination and (ii) to solve the attitude motion of uncontrolled orbiting objects by exploiting photometric quasi-simultaneous measurements.

  5. Seismological Aspects of the August 7th Zhouqu Debris Flows

    NASA Astrophysics Data System (ADS)

    Dan, Y.; Huang, X.

    2016-12-01

    Broadband seismic records have been proven to be a sufficient tool in extracting movement characteristics of debris flows in the last decades. The catastrophic Sanyanyu and Luojiayu debris flows, which were induced by a heavy rainfall, occurred at approximately the midnight of August 7th, 2010 (Beijing time, UTC+8) and claimed 1,765 lives. Broadband seismic signals recorded by the Zhouqu seismic station positioned only 150 meters away from the exit are acquired and analyzed in this study. Seismic signals reveal that the Sanyanyu debris flow started developing after a major rock collapse at approximately 23:23:50. The formation time of the Sanyanyu debris flow to separate its development stage and maturity stage was determined at 23:33:15 using spectrograms and amplitude variation patterns of seismic signals. Seismic signals, before and after the formation time, have distinctively different frequency characteristics. The frequency content of seismic signals generated by the maturity stage is more regular than that generated by the development stage. The maturity stage was further divided into five sub stages according to its amplitude variation patterns, including three increase sub stages and two stable sub stages alternately distributed. These five sub stages belong to two processes of the Sanyanyu debris flow which generate seismic signals with different frequency contents. The main frequency band of the first four sub stages continuously varies from approximately 2 - 8.5 Hz at start to approximately 3 - 9.5 Hz in the end. For the last sub stage, the upper boundary of the main frequency increases in a near linear way and reaches approximately 13 - 16 Hz in the end. Two sub stages are recognized from the satellite image of the Sanyanyu flow path, and the mean movement velocities of the Sanyanyu debris flow during these two sub stages are estimated to be 9.2 m/s and 9.7 m/s respectively.

  6. Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: Occurrence, bulking and transformation

    USGS Publications Warehouse

    Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.

    2005-01-01

    A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.

  7. A Case Study on Hydrodynamic Modeling and Design Improvement Evaluation to Manage Debris and Sediment Interference at a Water Intake Structure

    NASA Astrophysics Data System (ADS)

    Crissman, B. J.; Cunderlik, J. M.; Wong, R. P. L.; Pinero, A.

    2017-12-01

    Waterford 3 nuclear plant, located in Killona, Louisiana, provides approximately 10% of the state's electricity need. Located along the south bank of the Mississippi River, two miles upstream of the Bonnet Carre Spillway, the plant's single pass through cooling system continuously draws up to 1,000,000 gpm water from the river. On behalf of Entergy Louisiana, the project team evaluated options to improve the aging water intake structure with chronic debris and sediment entrainment issues. The highly complex and dynamic environment in the river coupled with regulatory constraints limited available improvement options: varying river stages allow debris to overflow the intake structure, but the maximum new wall height is restricted to minimize aesthetic intrusion and alteration to levee tie-back; bow waves push debris into the downstream intake wall, but the wall needs to maintain an opening to flush debris out from the intake structure; the river delivers significant sediment load, but any proposed intake structure cannot significantly alter existing bathymetry; EPA Clean Water Act Section 316(b) limited maximum velocity at the intake structure to 0.5 fps for entrainment prevention. To expedite alternative evaluation while providing sufficient data to inform management decision, instead of developing physical models, the project team developed a two-tier approach utilizing the TELEMAC hydrodynamic program to prepare screening analysis in 2D modeling and final evaluation in 3D modeling. The model was built upon the USACE ERDC ADH model, calibrated with river gauge data and peer reviewed by ERDC. TELEMAC, developed by EDF, provides novel features for modeling improvement options, including the recommended design concept, which is a hydraulically optimized intake geometry configured to maintain uniform intake flow while streamlining river flowline for debris and sediment deflection. The design includes submerged inlets with upstream and downstream walls to block floating debris and bed load movement, large intake screens to reduce velocity, and a log-boom debris deflection system that floats with the river level. This project demonstrated a time and cost efficient approach to develop reliable solutions and hydrodynamic data describing design alternatives performance.

  8. Flank collapse at Mount Wrangell, Alaska, recorded by volcanic mass-flow deposits in the Copper River lowland

    USGS Publications Warehouse

    Waythomas, C.F.; Wallace, K.L.

    2002-01-01

    An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.

  9. Effects of catastrophic floods and debris flows on the sediment retention structure, North Fork Toutle River, Washington

    USGS Publications Warehouse

    Denlinger, Roger P.

    2012-01-01

    The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.

  10. Spatial Precipitation Frequency of an Extreme Event: the July 2006 Mesoscale Convective Complexes and Debris Flows in Southeastern Arizona

    NASA Astrophysics Data System (ADS)

    Griffiths, P. G.; Webb, W. H.; Magirl, C. S.; Pytlak, E.

    2008-12-01

    An extreme, multi-day rainfall event over southeastern Arizona during 27-31 July 2006 culminated in an historically unprecedented spate of 435 slope failures and associated debris flows in the Santa Catalina Mountains north of Tucson. Previous to this occurrence, only twenty small debris flows had been observed in this region over the past 100 years. Although intense orographic precipitation is routinely delivered by single- cell thunderstorms to the Santa Catalinas during the North American monsoon, in this case repeated nocturnal mesoscale convective systems were induced over southeastern Arizona by an upper-level low- pressure system centered over the Four Corners region for five continuous days, generating five-day rainfall totals up to 360 mm. Calibrating weather radar data with point rainfall data collected at 31 rain gages, mean-area storms totals for the southern Santa Catalina Mountains were calculated for 754 radar grid cells at a resolution of approximately 1 km2 to provide a detailed picture of the spatial and temporal distribution of rainfall during the event. Precipitation intensity for the 31 July storms was typical for monsoonal precipitation in this region, with peak 15-minute rainfall averaging 17 mm/hr for a recurrence interval (RI) < 1 yr. However, RI > 50 yrs for four-day rainfall totals overall, RI > 100 yrs where slope failures occurred, and RI > 1000 yrs for individual grid cells in the heart of the slope failure zone. A comparison of rainfall at locations where debris-flows did and did not occur suggests an intensity (I)-duration (D) threshold for debris flow occurrence for the Santa Catalina Mountains of I = 14.82D-0.39(I in mm/hr). This threshold falls slightly higher than the 1000-year rainfall predicted for this area. The relatively large exponent reflects the high frequency of short-duration, high-intensity rainfall and the relative rarity of the long-duration rainfall that triggered these debris flows. Analysis of the rainfall/runoff ratio in the drainage basin at the heart of the debris flows confirms that sediments were nearly saturated before debris flows were initiated on July 31.

  11. CD Recorders.

    ERIC Educational Resources Information Center

    Falk, Howard

    1998-01-01

    Discussion of CD (compact disc) recorders describes recording applications, including storing large graphic files, creating audio CDs, and storing material downloaded from the Internet; backing up files; lifespan; CD recording formats; continuous recording; recording software; recorder media; vulnerability of CDs; basic computer requirements; and…

  12. ERBE S10N WFOV SF Edition 2

    Atmospheric Science Data Center

    2016-06-09

    ... warming caused by greenhouse gases. Absorption of Solar Radiation by Clouds The results of the study demonstrate the present ... spacecraft, as described below. WFOV Instruments: these two fixed detectors continuously view the earth disc (plus a small ring of ...

  13. ERBE S10N WFOV NF Edition 3

    Atmospheric Science Data Center

    2016-06-09

    ... warming caused by greenhouse gases. Absorption of Solar Radiation by Clouds The results of the study demonstrate the present ... spacecraft, as described below. WFOV Instruments: these two fixed detectors continuously view the earth disc (plus a small ring of ...

  14. ERBE S10N WFOV NF Edition 2

    Atmospheric Science Data Center

    2016-06-08

    ... warming caused by greenhouse gases. Absorption of Solar Radiation by Clouds The results of the study demonstrate the present ... spacecraft, as described below. WFOV Instruments: these two fixed detectors continuously view the earth disc (plus a small ring of ...

  15. ERBE S10N WFOV SF Edition 3

    Atmospheric Science Data Center

    2016-06-09

    ... warming caused by greenhouse gases. Absorption of Solar Radiation by Clouds The results of the study demonstrate the present ... spacecraft, as described below. WFOV Instruments: these two fixed detectors continuously view the earth disc (plus a small ring of ...

  16. Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2015-01-01

    Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.

  17. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access, subset, Giovanni, documents).

  18. Bacteria at glacier surfaces: microbial community structures in debris covered glaciers and cryoconites in the Italian Alps

    NASA Astrophysics Data System (ADS)

    Azzoni, Roberto; Franzetti, Andrea; Ambrosini, Roberto; D'Agata, Carlo; Senese, Antonella; Minora, Umberto; Tagliaferri, Ilario; Diolaiuti, Guglielmina

    2014-05-01

    Supraglacial debris has an important role in the glacier energy budget and has strong influence on the glacial ecosystem. Sediment derives generally from rock inputs from nesting rockwalls and are abundant and continuous at the surface of debris-covered glaciers (i.e. DCGs; glaciers where the ablation area is mainly covered by rock debris) and sparse and fine on debris-free glaciers (DFGs). Recently, evidence for significant tongue darkening on retreating debris-free glaciers has been drawing increasing attention. Fine particles, the cryoconite, are locally abundant and may form cryoconite holes that are water-filled depressions on the surface of DFGs that form when a thin layer of cryoconite is heated by the sun and melts the underlying ice. There is increasing evidence that cryoconite holes also host highly diverse microbial communities and can significantly contribute to global carbon cycle. However, there is almost no study on microbial communities of the debris cover of DCGs and there is a lack of data from the temporal evolution of the microbial communities in the cryoconites. To fill these gaps in our knowledge we characterized the supraglacial debris of two Italian DCGs and we investigated the temporal evolution of microbial communities on cryoconite holes in DFG. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from samples collected distances from the terminus of two DCGs (Miage and Belvedere Glaciers - Western Italian Alps). Heterotrophic taxa dominated bacterial communities, whose structure changed during downwards debris transport. Organic carbon of these recently exposed substrates therefore is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We used ARISA fingerprinting and quantitative PCR to describe the structure and the evolution of the microbial communities and to estimate the number of the total bacteria and the copy of Rubisco genes found on cryoconite holes collected on a wide Italian DFG (Forni Glacier - Central Alps). The structure of the microbial communities in cryoconite holes seem to be determined mainly by a turnover process. This work was carried out under the umbrella of the SHARE Stelvio Project which has been funded by the Lombardy Region government and managed by FLA (Lombardy Foundation for the Enviroment) and EvK2-CNR Committee.

  19. Cost-effective and robust mitigation of space debris in low earth orbit

    NASA Astrophysics Data System (ADS)

    Walker, R.; Martin, C.

    It is predicted that the space debris population in low Earth orbit (LEO) will continue to grow and in an exponential manner in the long-term due to an increasing rate of collisions between large objects, unless internationally-accepted space debris mitigation measures are adopted soon. Such measures are aimed at avoiding the future generation of space debris objects and primarily need to be effective in preventing significant long-term growth in the debris population, even in the potential scenario of an increase in future space activity. It is also important that mitigation measures can limit future debris population levels, and therefore the underlying collision risk to space missions, to the lowest extent possible. However, for their wide acceptance, the cost of implementation associated with mitigation measures needs to be minimised as far as possible. Generally, a lower collision risk will cost more to achieve and vice versa, so it is necessary to strike a balance between cost and risk in order to find a cost-effective set of mitigation measures. In this paper, clear criteria are established in order to assess the cost-effectiveness of space debris mitigation measures. A full cost-risk-benefit trade-off analysis of numerous mitigation scenarios is presented. These scenarios consider explosion prevention and post-mission disposal of space systems, including de-orbiting to limited lifetime orbits and re-orbiting above the LEO region. The ESA DELTA model is used to provide long-term debris environment projections for these scenarios as input to the benefit and risk parts of the trade-off analysis. Manoeuvre requirements for the different post-mission disposal scenarios were also calculated in order to define the cost-related element. A 25-year post-mission lifetime de-orbit policy, combined with explosion prevention and mission-related object limitation, was found to be the most cost-effective solution to the space debris problem in LEO. This package would also remain effective after a significant increase in future launch traffic. It was found that the re-orbiting of space systems above the LEO region would not lead to significant collision activity there over the next century. However, above-LEO disposal should be used sparingly because the disposal region could become unstable after a limited number of explosions or collisions due to a lack of air drag to remove the resulting fragments.

  20. Outpatient and Inpatient Single-Level Cervical Total Disc Replacement: A Comparison of 30-day Outcomes.

    PubMed

    Segal, Dale N; Wilson, Jacob M; Staley, Christopher; Yoon, Tim S

    2018-06-11

    Retrospective cohort study. To compare 30-day postoperative outcomes between patients undergoing outpatient and inpatient single-level cervical total disc replacement surgery. Cervical total disc replacement (TDR) is a motion sparing treatment for cervical radiculopathy and myelopathy. It is an alternative to anterior cervical discectomy and fusion (ACDF) with a similar complication rate. Like ACDF, it may be performed in the inpatient or outpatient setting. Efforts to reduce healthcare costs are driving spine surgery to be performed in the outpatient setting. As cervical total disc replacement surgery continues to gain popularity, the safety of treating patients on an outpatient basis needs to be validated. The National Surgical Quality Improvement Program (NSQIP) database was queried for patients who underwent single-level cervical disc replacement surgery between 2006-2015. Complication data including 30-day complications, reoperation rate, readmission rate, and length of stay data was compared between the inpatient and outpatient cohort using univariate analysis. There were 531 (34.2%) patients treated as outpatients and 1,022 (65.8%) were treated on an inpatient basis. The two groups had similar baseline characteristics. The overall 30-day complication rate was 1.4% for inpatients and 0.6% for outpatients. Reoperation rate was 0.6% for inpatient and 0.4% for outpatients. Readmission rate was 0.9% and 0.8% for inpatient and outpatient, respectively. There were no statistical differences identified in rates of readmission, reoperation, or complication between the inpatient and outpatient cohorts. There was no difference between 30-day complications, readmission and reoperation rates between inpatients and outpatients who underwent a single-level cervical total disc replacement. Furthermore, the overall 30-day complication rates were low. This study supports that single-level cervical TDR can be performed safely in an outpatient setting. 3.

  1. A Numerical Approach to Estimate the Ballistic Coefficient of Space Debris from TLE Orbital Data

    NASA Technical Reports Server (NTRS)

    Narkeliunas, Jonas

    2016-01-01

    Low Earth Orbit (LEO) is full of space debris, which consist of spent rocket stages, old satellites and fragments from explosions and collisions. As of 2009, more than 21,000 orbital debris larger than 10 cm are known to exist], and while it is hard to track anything smaller than that, the estimated population of particles between 1 and 10 cm in diameter is approximately 500,000, whereas small as 1 cm exceeds 100 million. These objects orbit Earth with huge kinetic energies speeds usually exceed 7 kms. The shape of their orbit varies from almost circular to highly elliptical and covers all LEO, a region in space between 160 and 2,000 km above sea level. Unfortunately, LEO is also the place where most of our active satellites are situated, as well as, International Space Station (ISS) and Hubble Space Telescope, whose orbits are around 400 and 550 km above sea level, respectively.This poses a real threat as debris can collide with satellites and deal substantial damage or even destroy them.Collisions between two or more debris create clouds of smaller debris, which are harder to track and increase overall object density and collision probability. At some point, the debris density couldthen reach a critical value, which would start a chain reaction and the number of space debris would grow exponentially. This phenomenon was first described by Kessler in 1978 and he concluded that it would lead to creation of debris belt, which would vastly complicate satellite operations in LEO. The debris density is already relatively high, as seen from several necessary debris avoidance maneuvers done by Shuttle, before it was discontinued, and ISS. But not all satellites have a propulsion system to avoid collision, hence different methods need to be applied. One of the proposed collision avoidance concepts is called LightForce and it suggests using photon pressure to induce small orbital corrections to deflect debris from colliding. This method is very efficient as seen from theoretical simulations, even few continuous mode 10 kW ground-based lasers, focused by 1.5 m telescopes with adaptive optics, were enough to prevent significant amount of the debris collisions. Simulations were done by propagating all space objects in LEO by 1 year into the future and checking whether the probability of collision was high. For those space objects different ground-based lasers were used to divert them, afterwards collision probabilities were reevaluated. However, the actual accuracy of the LightForce software, which has been developed at NASA AmesResearch Center, depends on the veracity of the input parameters, one of which is the objects ballistic coefficient. It is a measure of bodys ability to overcome air resistance, which has a significant impact on the debris in LEO, and thus it is responsible for the shape of the trajectory of the debris. Having the exact values of the ballistic coefficient would make significantly better collision predictions, unfortunately, we do not know what are the values for most of the objects.In this research, we were working with part of LightForce code, which estimates the ballistic coefficient from ephemerides. Previously used method gave highly inaccurate values, when compared to known objects, and it needed to be changed. The goal of this work was to try out a different method of estimating the ballistic coefficient and to check whether or not it gives noticeable improvements.

  2. Comparative Effectiveness of New Mechanical Irrigant Agitating Devices for Debris Removal from the Canal and Isthmus of Mesial Roots of Mandibular Molars.

    PubMed

    Duque, Jussaro Alves; Duarte, Marco Antonio Hungaro; Canali, Lyz Cristina Furquim; Zancan, Rafaela Fernandes; Vivan, Rodrigo Ricci; Bernardes, Ricardo Affonso; Bramante, Clovis Monteiro

    2017-02-01

    The aim of this study was to compare the effectiveness of Easy Clean (Easy Dental Equipment, Belo Horizonte, MG, Brazil) in continuous and reciprocating motion, passive ultrasonic irrigation (PUI), Endoactivator systems (Dentsply Maillefer, Ballaigues, Switzerland), and conventional irrigation for debris removal from root canals and isthmus. Fifty mesial roots of mandibular molars were embedded in epoxy resin using a metal muffle; afterward, the blocks containing the roots were sectioned at 2, 4, and 6 mm from the apex. After instrumentation, the roots were divided into 5 groups (n = 10) for application of the final irrigation protocol using Easy Clean in continuous rotation, Easy Clean in reciprocating motion, PUI, Endoactivator, and conventional irrigation. Scanning electron microscopic images were taken after instrumentation and after the first, second, and third activation of irrigating solution to evaluate the area of remaining debris with image J software (National Institutes of Health, Bethesda, MD). The protocol of 3 irrigating solution activations for 20 seconds provided better cleaning of the canal and isthmus. On conclusion of all procedures, analysis of the canals showed a statistical difference only at 2 mm; the Easy Clean in continuous rotation was more efficient than conventional irrigation (P < .05). On conclusion of all steps, the largest difference was observed in the isthmus in which the Easy Clean in continuous rotation was more effective than conventional irrigation at the 3 levels analyzed and the Endoactivator at 4 mm (P < .05). The PUI promoted greater cleaning than conventional irrigation at 6 mm (P < .05). There was no statistical difference between Easy Clean in continuous rotation, Easy Clean in reciprocating motion, and PUI (P > .05). Irrigating solution activation methods provided better cleaning of the canal and isthmus, especially the Easy Clean used in continuous rotation. The protocol of 3 irrigating solution activations for 20 seconds favored better cleaning. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Element fracture technique for hypervelocity impact simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui

    2015-05-01

    Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.

  4. Energy release from a stream of infalling prominence debris on 2011 September 7-8

    NASA Astrophysics Data System (ADS)

    Inglis, A. R.; Gilbert, H. R.; Ofman, L.

    2017-12-01

    In recent years high-resolution and high-cadence EUV imaging has revealed a new phenomenon, impacting prominence debris, where prominence material from failed or partial eruptions can impact the lower atmosphere and release energy. We present a clear example of this phenomenon occurring on 2011 September 7-8. The initial eruption of prominence material was associated with an X1.8-class flare from AR11283, occurring at 22:30 UT on 2011 September 7, resulting in a semi-continuous stream of this material returning to the solar surface between 00:20 - 00:40 UT on 2011 September 8. A substantial area remote from the original active region experienced brightening in multiple EUV channels observed by SDO/AIA. Using the differential emission measure, we estimated the energetic properties of this event. We found that the radiated energy of the impacted plasma was of order 10^27 ergs, while the upper limit on the thermal energy peaked at 10^28 ergs. Based on these estimates we were able to determine the mass content of the debris to be in the range 2x10^14 < m < 2x10^15 g. Given typical promimence masses, the likely debris mass is towards the lower end of this range. This clear example of a prominence debris event shows that significant energy release takes place during these events, and that such impacts may be used as a novel diagnostic tool for investigating prominence material properties.

  5. Where can a Trappist-1 planetary system be produced?

    NASA Astrophysics Data System (ADS)

    Haworth, Thomas J.; Facchini, Stefano; Clarke, Cathie J.; Mohanty, Subhanjoy

    2018-04-01

    We study the evolution of protoplanetary discs that would have been precursors of a Trappist-1-like system under the action of accretion and external photoevaporation in different radiation environments. Dust grains swiftly grow above the critical size below which they are entrained in the photoevaporative wind, so although gas is continually depleted, dust is resilient to photoevaporation after only a short time. This means that the ratio of the mass in solids (dust plus planetary) to the mass in gas rises steadily over time. Dust is still stripped early on, and the initial disc mass required to produce the observed 4 M⊕ of Trappist-1 planets is high. For example, assuming a Fatuzzo & Adams distribution of UV fields, typical initial disc masses have to be >30 per cent the stellar (which are still Toomre Q stable) for the majority of similar mass M dwarfs to be viable hosts of the Trappist-1 planets. Even in the case of the lowest UV environments observed, there is a strong loss of dust due to photoevaporation at early times from the weakly bound outer regions of the disc. This minimum level of dust loss is a factor of 2 higher than that which would be lost by accretion on to the star during 10 Myr of evolution. Consequently, even in these least irradiated environments, discs that are viable Trappist-1 precursors need to be initially massive (>10 per cent of the stellar mass).

  6. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  7. Shaping HR8799's outer dust belt with an unseen planet

    NASA Astrophysics Data System (ADS)

    Read, M. J.; Wyatt, M. C.; Marino, S.; Kennedy, G. M.

    2018-04-01

    HR8799 is a benchmark system for direct imaging studies. It hosts two debris belts, which lie internally and externally to four giant planets. This paper considers how the four known planets and a possible fifth planet interact with the external population of debris through N-body simulations. We find that when only the known planets are included, the inner edge of the outer belt predicted by our simulations is much closer to the outermost planet than recent ALMA observations suggest. We subsequently include a fifth planet in our simulations with a range of masses and semimajor axes, which is external to the outermost known planet. We find that a fifth planet with a mass and semimajor axis of 0.1 MJ and 138 au predicts an outer belt that agrees well with ALMA observations, whilst remaining stable for the lifetime of HR8799 and lying below current direct imaging detection thresholds. We also consider whether inward scattering of material from the outer belt can input a significant amount of mass into the inner belt. We find that for the current age of HR8799, only ˜1 per cent of the mass-loss rate of the inner disc can be replenished by inward scattering. However, we find that the higher rate of inward scattering during the first ˜10 Myr of HR8799 would be expected to cause warm dust emission at a level similar to that currently observed, which may provide an explanation for such bright emission in other systems at ˜10 Myr ages.

  8. What and whence 1I/`Oumuamua: a contact binary from the debris of a young planetary system?

    NASA Astrophysics Data System (ADS)

    Gaidos, E.

    2018-07-01

    The first confirmed interstellar interloper in our Solar system, 1I/`Oumuamua, is likely to be a minor body ejected from another star, but its brief flyby and faintness made it difficult to study. Two remarkable properties are its large (up to 2.5 mag) rotational variability and its motion relative to the Sun before encounter. The former suggests an extremely elongated shape (aspect ratio ≥ 10) and the latter an origin from the protoplanetary disc of a young star in a nearby association. Against expectations, it is also not comet-like. 1I/`Oumuamua's variability can also be explained if it is a contact binary composed of near-equilibrium ellipsoidal components and heterogeneous surfaces, i.e. brighter, dust-mantled inner-facing hemispheres and darker, dust-free outer-facing poles. Such shapes are a plausible outcome of radiation, tides, and collisions in systems where planets are clearing planetesimal discs. The probability that 1I/`Oumuamua has the same motion as a young (≲100 Myr) stellar association by coincidence is <1 per cent. If it is young, its detection versus more numerous, older counterparts could be explained as a selection effect due to darkening of surfaces by Galactic cosmic rays and loss of dust. 1I/`Oumuamua's apparent lack of ices can be explained if ejected rocky planetesimals are characteristically smaller and thus far more numerous than their icy counterparts: the Solar system may currently host several such objects captured by the combined gravity of Jupiter and the Sun.

  9. Pressure Relief Devices

    NASA Astrophysics Data System (ADS)

    Manha, William D.

    2010-09-01

    Pressure relief devices are used in pressure systems and on pressure vessels to prevent catastrophic rupture or explosion from excessive pressure. Pressure systems and pressure vessels have manufacturers maximum rated operating pressures or maximum design pressures(MDP) for which there are relatively high safety factors and minimum risk of rupture or explosion. Pressure systems and pressure vessels that have a potential to exceed the MDP by being connected to another higher pressure source, a compressor, or heat to water(boiler) are required to have over-pressure protecting devices. Such devices can be relief valves and/or burst discs to safely relieve potentially excessive pressure and prevent unacceptable ruptures and explosions which result in fail-safe pressure systems and pressure vessels. Common aerospace relief valve and burst disc requirements and standards will be presented. This will include the NASA PSRP Interpretation Letter TA-88-074 Fault Tolerance of Systems Using Specially Certified Burst Disks that dictates burst disc requirements for payloads on Shuttle. Two recent undesirable manned space payloads pressure relief devices and practices will be discussed, as well as why these practices should not be continued. One example for discussion is the use of three burst discs that have been placed in series to comply with safety requirements of three controls to prevent a catastrophic hazard of the over-pressurization and rupture of pressure system and/or vessels. The cavities between the burst discs are evacuated and are the reference pressures for activating the two upstream burst discs. If the upstream burst disc leaks into the reference cavity, the reference pressure increases and it can increase the burst disc activating pressure and potentially result in the burst disc assembly being ineffective for over pressure protection. The three burst discs-in-series assembly was found acceptable because the burst discs are designed for minimum risk(DFMR) of leakage into the reference cavity. Since the burst discs are DFMR, a single burst disc would suffice, without adding the two leak-into-reference cavity failure modes. A single DFMR burst disc is preferable. An Alpha Magnetic Spectrometer - 02 burst disc assembly, with three-in-series burst discs test failure, necessitated the deletion of one of the burst discs, will be presented. Payload relief valves require periodic retests were extended significantly beyond the normal one year retest period because of the reduced ISS down mass capability which followed the Columbia accident. The acceptability of the extended retest period was determined by analysis, materials stability, benign environment, relatively inert fluid exposure, etc.(The policy letter, NC4-02-205 Guidelines for Certification and Verification of Pressure System Control Hardware, that permitted this action will be provided even though this application is not recommended for extending relief valve annual retest requirements.) The first crack pressure of a relief valve after an extended inactive period can be higher than the set crack pressure. Extrapolation of the extended inactive period and increased crack pressure could result in ineffective over pressure protection. Thus, relief valves with a ring or lever for activation are recommended so the relief valve can periodically be verified to open, functionality verified and the extended relief valve retest period should be discouraged. Stainless Steel cylindrical poppet-in-cylindrical housing check valves should never be used in a fluid with ions for an extended period of time, because the poppet is vulnerable to seizing or not functioning as a relief valve, even though the specifications, crack pressure, reseat pressure, maximum flow, and reseat leak look very much like the specifications for a relief valve. The technical reasons for this avoidance of using check valves as a relief valve will be discussed. The presentation will be summarized and recommendations made.

  10. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.

    1989-01-01

    This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.

  11. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System.

    PubMed

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). There were no significant differences in remaining debris (P > .05) between the two groups. The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied.

  12. How far is it? Distance measurements and their consequences

    NASA Astrophysics Data System (ADS)

    Krełowski, Jacek

    2017-08-01

    Methods of measuring distances to objects in our Milky Way are briefly discussed. They generally base on three principles: of using a standard rod, of standard candle and of column density of interstellar matter. Weak and strong points of these methods are presented. The presence of gray extinction towards some objects is suggested which makes the most universal method of standard candle (spectroscopic parallax) very uncertain. Hard to say whether gray extinc-tion appears only in the form of circumstellar debris discs or is present also in the general interstellar medium. The application of the method of measuring column densities of interstellar gases suggests that the rotation curve of our Milky Way system is rather Keplerian than flat which creates doubts as to whether any Dark Matter halo is present around our Galaxy. It is emphasized that the most universal method, i.e. that of standard candle, used to estimate distances to cosmological objects, may suffer serious errors because of improper subtraction of extinction effects.

  13. CFD study of leakage flows in shroud cavities of a compressor impeller

    NASA Astrophysics Data System (ADS)

    Soldatova, K.

    2017-08-01

    The flow character in a gap between shroud disc of an impeller and a stator surface (shroud cavity) influences disc friction loss, labyrinth seal loss (parasitic losses) and thrust force. Flow calculations inside the shroud cavity of a model of centrifugal compressor stage and its labyrinth seal in a range of flow rates and axial width and radial gap are presented. The results are presented in terms of non-dimensional coefficients of flow, disc friction and seal leakage losses coefficients and pressure coefficient. The distributions meridional and tangential flow velocities correspond to the continuity and equilibrium equations - flow radial circulation exists in wide cavity and is absent in narrow cavities. The radial pressure distributions as measured and calculated are not fully comparable. The possible reason is that CFD-calculated leakage coefficient is less than calculated by A.Stodola formula. The influence of a cavity width on the losses and the thrust force requires a balanced design.

  14. Simulator Sickness in the AH-1S (Cobra) Flight Simulator

    DTIC Science & Technology

    1989-09-01

    ADJUSTABLE ARMAMENT BOMB LUG (upper rack use only) AFT ATTACHING POINT SWAY GRACE PAD HANS DEBRIS DIRECTOR ~~ CAPTIVE LOCKINGPI FORWARDHARNESS...Qualification training) Training Stage : Qualification Continuation Refresher AAPART (Check Ride) Mission All rights reserved Essex Corporation 1040 Woodcock Road

  15. Formation of lobate debris aprons on Mars: Assessment of regional ice sheet collapse and debris-cover armoring

    NASA Astrophysics Data System (ADS)

    Fastook, James L.; Head, James W.; Marchant, David R.

    2014-01-01

    Lobate debris aprons (LDA) are lobate-shaped aprons surrounding scarps and isolated massifs that are concentrated in the vicinity of the northern Dichotomy Boundary on Mars. LDAs have been interpreted as (1) ice-cemented talus aprons undergoing viscous flow, (2) local debris-covered alpine-like glaciers, or (3) remnants of the collapse of a regional retreating ice sheet. We investigate the plausibility that LDAs are remnants of a more extensive regional ice sheet by modeling this process. We find that as a regional ice sheet collapses, the surface drops below cliff and massif bedrock margins, exposing bedrock and regolith, and initiating debris deposition on the surface of a cold-based glacier. Reduced sublimation due to debris-cover armoring of the proto-LDA surface produces a surface slope and consequent ice flow that carries the armoring debris away from the rock outcrops. As collapse and ice retreat continue the debris train eventually reaches the substrate surface at the front of the glacier, leaving the entire LDA armored by debris cover. Using a simplified ice flow model we are able to characterize the temperature and sublimation rate that would be necessary to produce LDAs with a wide range of specified lateral extents and thicknesses. We then apply this method to a database of documented LDA parameters (height, lateral extent) from the Dichotomy Boundary region, and assess the implications for predicted climate conditions during their formation and the range of formation times implied by the model. We find that for the population examined here, typical temperatures are in the range of -85 to -40 °C and typical sublimation rates lie in the range of 6-14 mm/a. Lobate debris apron formation times (from the point of bedrock exposure to complete debris cover) cluster near 400-500 ka. These results show that LDA length and thickness characteristics are consistent with climate conditions and a formation scenario typical of the collapse of a regional retreating ice sheet and exposure of bedrock cliffs. This scenario helps resolve many of the unusual characteristics of lobate debris aprons (LDA) and lineated valley fill (LVF). For example, the distribution of LVF is very consistent with extensive flow of glacial ice from plateau icefields, and the acquisition of a debris cover in the waning stages of retreat of the regional cover as the bedrock scarps are exposed. The typical concentric development of LDA around massifs is much more consistent with ice sheet retreat than insolation-related local accumulation and flow. We thus conclude that the retreating ice-sheet model is robust and should be investigated and tested in more detail. In addition, these results clearly show that the lobate debris aprons in the vicinity of the Dichotomy Boundary could not have attained temperatures near or above the ice melting point and retained their current shape, a finding that supports subzero temperatures for the last several hundred million years, the age of the LDA surfaces. A further implication is that the LDA ice has been preserved for at least several hundred million years, and could potentially contain the record of the climate of Mars, preserved since that time below a sublimation lag deposit.

  16. Landfill leachate treatment using a rotating biological contactor and an upward-flow anaerobic sludge bed reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo, E.; Vergara, M.; Moreno, Y.

    2007-07-01

    This paper describes the feasibility of an aerobic system (rotating biological contactor, RBC) and a biological anaerobic system (upward-flow anaerobic sludge bed reactor) at small scale for the treatment of a landfill leachate. In the first phase of the aerobic system study, a cyclic-batch RBC system was used to select perforated acetate discs among three different acetate disc configurations. These discs were chosen on the basis of high COD removal (65%) and biological stability. In the second phase, the RBC system (using four stages) was operated continuously at different hydraulic retention times (HRT), at different rotational speeds, and with varyingmore » organic concentrations of the influent leachate (2500-9000 mg L{sup -1}). Forty percent of the total surface area of each perforated disc was submerged in the leachate. A COD removal of about 52% was obtained at an HRT of 24 h and a rotational speed of 6 rpm. For the anaerobic system, the reactor was evaluated with a volumetric organic load of 3273 g-COD m{sup -3} day{sup -1} at an HRT of 54, 44, 39, 24 and 17 h. At these conditions, the system reached COD removal efficiencies of 62%, 61%, 59%, 44% and 24%, respectively.« less

  17. Optic nerve involvement in a borderline lepromatous leprosy patient on multidrug therapy.

    PubMed

    Prabha, Neel; Mahajan, Vikram K; Sharma, Surinder K; Sharma, Vikas; Chauhan, Pushpinder S; Mehta, Karaninder S; Abhinav, C; Khatri, Gaytri; Chander, Bal; Tuli, Rajiv

    2013-12-01

    Amidst the plethora of ocular complications of leprosy, involvement of the posterior segment or optic nerve is extremely rare. The mechanism of optic neuritis in leprosy is poorly understood. A 47 year-old man presented with a single lesion suggestive of mid-borderline (BB) leprosy over left periorbital region; the histology showed borderline lepromatous (BL) leprosy with a BI of 3+. After initial improvement with WHO MDT-MB and prednisolone (40 mg/d) he developed sudden and painless diminished vision in the left eye, about 3 weeks later. His visual acuity was 6/9 in the left and 6/6 in the right eye, and there was left optic disc edema, hyperemia and blurred disc margins. Treatment with prednisolone (60 mg/d) along with WHO MDT-MB continued. A month later he returned with painless diminished vision in the other eye as well. Visual acuity was 6/6 in the right and 6/12 in the left eye, and there was right optic disc edema and left optic disc atrophy. CT of the head and MRI of the brain were normal. Inflammatory edema of the orbital connective tissue or other surrounding structures, or direct infiltration of vasa nervosa with resultant vascular occlusion leading to optic nerve ischemia, seems the most plausible explanation of optic nerve involvement in this case.

  18. Release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc (Medtronic Sofamor Danek).

    PubMed

    Zeh, Alexander; Planert, Michael; Siegert, Gabriele; Lattke, Peter; Held, Andreas; Hein, Werner

    2007-02-01

    Cross-sectional study of 10 patients to measure the serum levels of cobalt and chromium after TDA. To investigate the release of cobalt and chromium ions into the serum following implantation of the metal-on-metal Maverick-type artificial lumbar disc. In total hip endoprosthetics and consequently for TDA (total disc arthroplasty), metal-on-metal combinations are used with the aim of reducing wear debris. In metal-on-metal TDA the release of metal ions has until now been secondary to the main discussion. We investigated the serum cobalt and chromium concentration following implantation of 15 Maverick TDAs (monosegmental L5-S1, n = 5; bisegmental L4-L5 and L5-S1, n = 5; average age, 36.5 years). Five healthy subjects (no metal implants) acted as a control group. The measurements of the metals were carried out using the HITACHI Z-8200 AAS polarized Zeeman atomic absorption spectrometer after an average of 14.8 months. The concentrations of cobalt and chromium ions in the serum amounted on average to 4.75 microg/L (SD, 2.71) for cobalt and 1.10 microg/L (SD, 1.24) for chromium. Compared with control group, both the chromium and cobalt levels in the serum showed significant increases (Mann-Whitney U test, P = 0.0120). At follow-up,the Oswestry Disability Score was on average significantly decreased by 24.4 points (L5-S1) (t test, P < 0.05) and by 26.8 points (L4-S1) (t test, P < 0.05). The improved clinical situation is also represented by a significant decrease of the Visual Analog Pain Scale of 42.2 points after the follow-up (t test, P < 0.05). Significant systemic release of Cr/Co was proven in the serum compared with the control group. The concentrations of Cr/Co measured in the serum are similar in terms of their level to the values measured in THA metal-on-metal combinations or exceed these values given in the literature. Long-term implication of this metal exposure is unknown and should be studied further.

  19. 14 CFR 139.305 - Paved areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Paved areas. 139.305 Section 139.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... paragraph (b) of this section, mud, dirt, sand, loose aggregate, debris, foreign objects, rubber deposits...

  20. 14 CFR 139.305 - Paved areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Paved areas. 139.305 Section 139.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... paragraph (b) of this section, mud, dirt, sand, loose aggregate, debris, foreign objects, rubber deposits...

  1. 32 CFR 935.40 - Criminal offenses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Criminal offenses. 935.40 Section 935.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR... thereto, without permission of the assigned occupant; (i) Discard or place any paper, debris, refuse...

  2. 32 CFR 935.40 - Criminal offenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Criminal offenses. 935.40 Section 935.40 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE TERRITORIAL AND INSULAR... thereto, without permission of the assigned occupant; (i) Discard or place any paper, debris, refuse...

  3. 14 CFR 139.305 - Paved areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Paved areas. 139.305 Section 139.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... paragraph (b) of this section, mud, dirt, sand, loose aggregate, debris, foreign objects, rubber deposits...

  4. 14 CFR 139.305 - Paved areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Paved areas. 139.305 Section 139.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... paragraph (b) of this section, mud, dirt, sand, loose aggregate, debris, foreign objects, rubber deposits...

  5. 14 CFR 139.305 - Paved areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Paved areas. 139.305 Section 139.305 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... paragraph (b) of this section, mud, dirt, sand, loose aggregate, debris, foreign objects, rubber deposits...

  6. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  7. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  8. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  9. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  10. 49 CFR 570.63 - Wheel assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Wheel assemblies. 570.63 Section 570.63 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... 10,000 Pounds § 570.63 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc or spider shall...

  11. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  12. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  13. 49 CFR 570.10 - Wheel assemblies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Wheel assemblies. 570.10 Section 570.10 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Pounds or Less § 570.10 Wheel assemblies. (a) Wheel integrity. A tire rim, wheel disc, or spider shall...

  14. The high-resolution time-of-flight spectrometer TOFTOF

    NASA Astrophysics Data System (ADS)

    Unruh, Tobias; Neuhaus, Jürgen; Petry, Winfried

    2007-10-01

    The TOFTOF spectrometer is a multi-disc chopper time-of-flight spectrometer for cold neutrons at the research neutron source Heinz Maier-Leibnitz (FRM II). After five reactor cycles of routine operation the characteristics of the instrument are reported in this article. The spectrometer features an excellent signal to background ratio due to its remote position in the neutron guide hall, an elaborated shielding concept and an s-shaped curved primary neutron guide which acts i.a. as a neutron velocity filter. The spectrometer is fed with neutrons from the undermoderated cold neutron source of the FRM II leading to a total neutron flux of ˜1010n/cm2/s in the continuous white beam at the sample position distributed over a continuous and particularly broad wavelength spectrum. A high energy resolution is achieved by the use of high speed chopper discs made of carbon-fiber-reinforced plastic. In the combination of intensity, resolution and signal to background ratio the spectrometer offers new scientific prospects in the fields of inelastic and quasielastic neutron scattering.

  15. "Plastic Pollution: Myths, Facts, and How You Can Help": Presenting a popular but poorly understood topic to broad and diverse audiences

    NASA Astrophysics Data System (ADS)

    Brandon, J. A.

    2016-02-01

    For my thesis research, I study marine debris, specifically in the North Pacific Subtropical Gyre, colloquially known as the Great Pacific Garbage Patch. Marine debris in general, and the Great Pacific Garbage Patch in particular, are marine pollution issues that have captured considerable public and media attention. Especially in the late 2000s, there were significantly more popular media articles about marine debris and the Great Pacific Garbage Patch than scientific journal articles. Due to this popular attention and lag in scientific publication, there are a lot of exaggerated facts and prevalent myths about marine debris in the public consciousness today. As a graduate student at the Scripps Institution of Oceanography, UCSD, I have been given many opportunities to speak to diverse audiences about marine debris. These groups vary in their base knowledge of the issue, from very knowledgeable, to unknowledgeable, to knowledgeable but misinformed about the issue. Over my three years in graduate school, building off a base presentation from a previous graduate student and techniques learned from the education department at Birch Aquarium, I have developed ways to correct some misinformation while not making the audience feel insulted. I correct misinformation while building up a correct base knowledge. This knowledge can be very depressing, as many modern scientific problems can be, but I end the presentation with ways in which the audience can feel empowered and can continue to educate themselves. Hopefully they leave with both knowledge and applicable lessons that they can implement into their lives.

  16. Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat

    NASA Astrophysics Data System (ADS)

    Jackson, C. R.

    2002-12-01

    Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships, specifically the role of woody debris in habitat formation, documented for larger streams do not apply to headwater streams. Relatively small wood (diameters between 10 and 40 cm), inorganic material, and organic debris (diameters less than 10 cm) were major step-forming agents while big woody debris pieces (> 40 cm dia.) created less than 10% of steps. Streams in virgin and managed stands did not differ in relative importance of very large woody debris. Due to low fluvial power, pool habitat was rare. These streams featured mostly step-riffle morphology, not step-pool, indicating insufficient flow for pool-scour. Stream power and unit stream power were dominant channel shaping factors.

  17. Processes driving rapid morphological changes observed on the Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Quincey, Duncan; Rowan, Ann; Gibson, Morgan; Irvine-Fynn, Tristram; King, Owen; Watson, Scott

    2016-04-01

    The response of many Himalayan glaciers to climatic change is complicated by the presence of a supraglacial debris cover, which leads to a suite of processes controlling mass loss that are not commonly found where glaciers are debris-free. Here, we present a range of field, surface topographic and ice-dynamical observations acquired from Khumbu Glacier in Nepal, to describe and quantify these processes in fine spatial and temporal resolution. Like many other debris-covered glaciers in the Himalaya, the debris-covered tongue of the Khumbu Glacier is heavily in recession. For at least two decades, the lower ablation area has been stagnant as surface lowering in the mid-ablation zone has led to ever decreasing driving stresses. Contemporary velocity data derived from TerraSAR-X imagery confirms that the active-inactive ice boundary can now be found 5 km from the glacier terminus and that the maximum velocity, immediately below the icefall, is around 70 m per year. These data show that in this upper part of the ablation zone, the glacier velocity has not changed during the last 20 years, suggesting that at least above the icefall the glacier remains healthy. Across the stagnant debris-covered tongue there have been marked surface morphological changes. Mapping from 2004 shows relatively few surface ponds, a homogeneous debris-covered surface, and a small area towards the terminus supporting soil formation and low vegetation. Mapping from field observations in 2014 shows an abundance of surface meltwater, a more heterogeneous surface texture associated with many exposed ice cliffs, and a long (3 km) zone of stable terrain where soils are developing and, in places, low scrub can be found. Most dramatically, a string of surface ponds occupying the true-left lowermost 2 km of ice have expanded and coalesced, suggesting the glacier has crossed a threshold leading towards large glacial lake development. Two fine-resolution DEMs derived from Structure-from-Motion in spring 2014 and autumn 2015 elucidate the processes driving mass loss across the debris-covered area. Recession is greatest around surface meltwater ponds and in the upper part of the ablation area where debris cover is thinnest. Comparison with an historic DEM from 1984 shows the evolution of the glacier surface topography, which has become increasingly irregular because of the development of surface ponds and associated ice cliffs. These observations suggest a continuous cycle of relief inversion drives surface lowering across large areas of the debris-covered surface, and we propose a conceptual model to illustrate this cycle that is applicable to all receding debris-covered glaciers in the region.

  18. Evaluation of dual flow thrust vectored nozzles with exhaust stream impingement. MS Thesis Final Technical Report, Oct. 1990 - Jul. 1991

    NASA Technical Reports Server (NTRS)

    Carpenter, Thomas W.

    1991-01-01

    The main objective of this project was to predict the expansion wave/oblique shock wave structure in an under-expanded jet expanding from a convergent nozzle. The shock structure was predicted by combining the calculated curvature of the free pressure boundary with principles and governing equations relating to oblique shock wave and expansion wave interaction. The procedure was then continued until the shock pattern repeated itself. A mathematical model was then formulated and written in FORTRAN to calculate the oblique shock/expansion wave structure within the jet. In order to study shock waves in expanding jets, Schlieren photography, a form of flow visualization, was employed. Thirty-six Schlieren photographs of jets from both a straight and 15 degree nozzle were taken. An iterative procedure was developed to calculate the shock structure within the jet and predict the non-dimensional values of Prandtl primary wavelength (w/rn), distance to Mach Disc (Ld) and Mach Disc radius (rd). These values were then compared to measurements taken from Schlieren photographs and experimental results. The results agreed closely to measurements from Schlieren photographs and previously obtained data. This method provides excellent results for pressure ratios below that at which a Mach Disc first forms. Calculated values of non-dimensional distance to the Mach Disc (Ld) agreed closely to values measured from Schlieren photographs and published data. The calculated values of non-dimensional Mach Disc radius (rd), however, deviated from published data by as much as 25 percent at certain pressure ratios.

  19. Approach to Managing MeaSURES Data at the GSFC Earth Science Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.

    2009-01-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.

  20. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus, the B-R color is a true measure of the surface of the debris piece facing the telescopes for that observation. Any change in color reflects a real change in the debris surface. We will compare our observations with models and laboratory measurements of selected surfaces.

  1. Modelling the response of a Himalayan watershed to climate change: new insights from linking high resolution in-situ data and remote sensing with an advanced simulation model

    NASA Astrophysics Data System (ADS)

    Ragettli, S.; Pellicciotti, F.; Immerzeel, W.

    2014-12-01

    In high-elevation watersheds of the Himalayan region the correct representation of the internal states and process dynamics in glacio-hydrological models can often not be verified due to missing in-situ measurements. The aim of this study is to provide a fundamental understanding of the hydrology of a Himalayan watershed through the systematic integration of in-situ data in a glacio-hydrological model. We use ground data from the upper Langtang valley in Nepal combined with high resolution satellite data to understand specific processes and test the application of new model components specifically developed. We apply a new model for ablation under debris that takes into account the varying effect of debris thickness on melt rates. A novel approach is tested to reconstruct spatial fields of debris thickness through combination of energy balance modelling, UAV-derived geodetic mass balance and statistical techniques. The systematic integration of in-situ data for model calibration enables the application of a state-of-the art model with many parameters to model glacier evolution and catchment runoff in spite of the lack of continuous long-term historical records. It allows drawing conclusions on the importance of processes that have been suggested as being relevant but never quantified before. The simulations show that 8.7% of total water inputs originate from sub-debris ice melt. 4.5% originate from melted avalanched snow. These components can be locally much more important, since the spatial variability of processes within the valley is high. The model is then used to simulate the response of the catchment to climate change. We show that climate warming leads to an increase in future icemelt and a peak in glacier runoff by mid-century. The increase in total icemelt is due to higher melt rates and large areas that are currently located above the equilibrium line altitude additionally that will contribute to melt. Catchment runoff will not reach below current levels throughout the 21st century due to precipitation increases. Debris covered glacier area will disappear at a slower pace than non-debris covered area. Still, due to the relative climate insensitivity of melt rates below thick debris, the contribution of sub-debris icemelt to runoff will not exceed 10% at all times.

  2. Apical debris extrusion associated with oval shaped canals: a comparative study of WaveOne vs Self-Adjusting File.

    PubMed

    Farmakis, Eleftherios Terry R; Sotiropoulos, G G; Abràmovitz, I; Solomonov, M

    2016-11-01

    The aim was to evaluate ex vivo apical debris extrusion associated with WaveOne and Self-Adjusting File instruments when used in oval canals. Twenty-four extracted human mandibular premolars with oval-shaped canals were assigned in two equal groups. Following coronal cavity preparation, a glide path was created. Group A was subjected to canal preparation using a WaveOne primary file, which was used along with syringe and needle irrigation and 10 mL of 2.4 % NaOCl solution, followed by flushing with 10 mL of 17 % EDTA solution, activation with EndoActivator for 1 min and final flushing with 10 mL of 2.4 % NaOCl solution, and activation for 30 s. Group B, the SAF system was used with continuous simultaneous irrigation, provided by the system's pump. The irrigant was supplied at 5 mL/min, alternating every minute between 2.4 % NaOCl solution and 17 % EDTA solution, over a total of 4 min followed by final flushing with 10 mL of 2.4 % NaOCl solution. Extruded apical debris from each root canal was collected into a preweighed glass vial and dried. The mean weight of the debris from each group was assessed and analyzed statistically. Both systems resulted in apical debris extrusion. The WaveOne system was associated with a statistically significant greater mean mass of apically extruded debris (2.18 ± 0.44 mg) than the SAF system (0.49 ± 0.33 mg, permutation-based Wilcoxon test, p < 0.001). Both WaveOne and the SAF systems were associated with apical debris extrusion. The amount of debris extruded by the WaveOne system was 4.4 times greater than that extruded by the SAF system. The results of the present ex vivo comparative study cannot be directly applied to the clinical situation. Difference between both groups remains completely unclear; maybe the amount of extrusion is harmless in both groups or similarly deleterious for the periradicular tissues in both groups or may be dose-related to the amount of the extruded material.

  3. Material Behavior of Window 7 Carrier Panel Tiles and Thermal Pane Fragments Recovered from the Space Shuttle Columbia

    NASA Astrophysics Data System (ADS)

    Arellano, Brenda R.

    Since the end of the space shuttle program, a new generation spacecraft has been developed to transport humans back into space. NASA's Orion will carry a crew beyond low-earth orbit and the exploration of Mars may be possible in the future. Space safety becomes significant with human spaceflight and the risks are high. However, aerospace materials may provide opportunities to prevent future disasters. When the space shuttle Columbia disintegrated during re-entry in 2001, thousands of debris were collected for analysis. In contrast, when the Challenger space shuttle broke apart in 1986, all shuttle debris were buried. These tragic disasters are reminders of the importance of proper material selection and the concern of their performance in service. This research focused on investigating the effects of the debris recovered from the Columbia space shuttle after re-entry and break-up. Many of the components encountered unforeseen extreme temperatures, vibrations, and high stresses. The Columbia debris contained unique characteristics that have yet to be examined and the components for this study are the thermal protection system (TPS) carrier panel tiles and the thermal pane glass from the starboard orbiter Window 7. The alterations endured by the debris was studied through forensic materials characterization to investigate material interactions, material degradation, and thermal consequences. These materials played an essential role in the operation of the orbiter as they protected the underlying structural materials of the shuttle and underwent extreme temperatures. The methods and procedures for analyzing the debris included non-destructive and destructive evaluations. Non-destructive evaluations involved visual inspection, photographic documentation, 3D modeling, and surface elemental composition. The destructive analysis consisted of sectioning, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results obtained revealed metallic and oxide formations, flow trajectory, and the presence of other space shuttle materials. Determining the conditions of the debris after break-up is valuable because new developments for future manned spacecraft will require TPS. These materials must be continued to be studied aggressively to provide risk assessment for future missions. The findings of this investigation will identify the alterations on the debris and determine if these TPS materials are reliable for future spacecraft.

  4. Convergence of the Rogers-Ramanujan continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buslaev, V I

    2003-06-30

    Set q=exp(2{pi}i{tau}), where {tau} is an irrational number, and let R{sub q} be the radius of holomorphy of the Rogers-Ramanujan function G{sub q}(z)=1+{sigma}{sub n=1}{sup {infinity}}z{sup n}(q{sup n{sup 2}})/((1-q)...(1-q{sup n})). As is known, R{sub q}{<=}1 and for each {alpha} element of [0,1] there exists q=q({alpha}) such that R{sub q({alpha})}={alpha}. It is proved here that the function H{sub q}(z)=G{sub q}(z)/G{sub q}(qz) is meromorphic not only in the disc =(|z|

  5. Limiting Future Collision Risk to Spacecraft: An Assessment of NASA's Meteoroid and Orbital Debris Programs

    NASA Technical Reports Server (NTRS)

    2011-01-01

    Over the past 50 years, various NASA communities have contributed significantly to maturing NASA s meteoroid and orbital debris (MMOD)1 programs to their current state. As a result of these community efforts, and to NASA s credit, NASA s MMOD programs and models are now widely used and respected by the providers and users of both government and commercial satellites, nationally as well as internationally. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite s structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. The space shuttle, as it orbited Earth, and whether docked to the ISS or not, was optimally oriented to protect its fragile thermal protection and thermal radiation systems from MMOD damage. In addition, astronauts inspected its thermal protection system for MMOD damage before the shuttle reentered Earth s atmosphere; Orion, NASA s capsule to carry astronauts to low Earth orbit, includes designs to mitigate the threat of MMOD damage and provide increased safety to the crew. When a handful of reasonable assumptions are used in NASA s MMOD models, scenarios are uncovered that conclude that the current orbital debris environment has already reached a "tipping point." That is, the amount of debris - in terms of the population of large debris objects, as well as overall mass of debris in orbit - currently in orbit has reached a threshold where it will continually collide with itself, further increasing the population of orbital debris. This increase will lead to corresponding increases in spacecraft failures, which will only create more feedback into the system, increasing the debris population growth rate. The increase thus far has been most rapid in low Earth orbit (LEO), with geosynchronous Earth orbits (GEOs) potentially suffering the same fate, but over a much longer time period. The exact timing and pace of this exponential growth are uncertain, but the serious implications of such a scenario require careful attention because of the strategic importance of U.S. space operations. The Office of Science and Technology Policy and the Office of Management and Budget contracted with the National Research Council for a study to perform three tasks: review NASA s MMOD programs and efforts, recommend in which of those NASA should increase or decrease its effort or change focus, and determine whether NASA should pursue work in any new MMOD areas. The official letter requesting the study and the full statement of task for the Committee for the Assessment of NASA s Orbital Debris Programs are in Appendixes A and B, respectively.

  6. Lumbar discography. Position statement from the North American Spine Society Diagnostic and Therapeutic Committee.

    PubMed

    Guyer, R D; Ohnmeiss, D D

    1995-09-15

    A comprehensive review of the literature dealing with lumbar discography was conducted. The purpose of the review was to generate a position statement addressing criticisms of lumbar discography, identify indications for its use, and describe a technique for its performance. Lumbar discography remains a controversial diagnostic procedure. There are concerns about its safety and clinical value, although others support its use in specific applications. Articles dealing with lumbar discography were reviewed and summarized in this report. Most of the recent literature supports the use of discography in select patients. Although not to be taken lightly, many of the serious and high complication rates were reported before 1970 and have decreased since because of improvement in injection technique, imaging, and contrast materials. Most of the current literature supports the use of discography in select situations. Particular applications include patients with persistent pain in whom disc abnormality is suspect, but noninvasive tests have not provided sufficient diagnostic information or the images need to be correlated with clinical symptoms. Another application is assessment of discs in patients in whom fusion is being considered. Discography's role in such cases is to determine if discs within the proposed fusion segment are symptomatic and if the adjacent discs are normal. Discography appears to be helpful in patients who have previously undergone surgery but continue to experience significant pain. In such cases, it can be used to differentiate between postoperative scar and recurrent disc herniation and to investigate the condition of a disc within, or adjacent to, a fused spinal segment to better delineate the source of symptoms. When minimally invasive discectomy is being considered, discography can be used to confirm a contained disc herniation, which is generally an indication for such surgical procedures. Lumbar discography should be performed by those well experienced with the procedure and in sterile conditions with a double needle technique and fluoroscopic imaging for proper needle placement. Information assessed and recorded should include the volume of contrast injected, pain response with particular emphasis on its location and similarity to clinical symptoms, and the pattern of dye distribution. Frequently, discography is followed by axial computed tomography scanning to obtain more information about the condition of the disc.

  7. Pay Me Now or Pay Me More Later: Start the Development of Active Orbital Debris Removal Now

    NASA Astrophysics Data System (ADS)

    McKnight, D.

    2010-09-01

    The objective of this paper is to examine when the aerospace community should proceed to develop and deploy active debris removal solutions. A two-prong approach is taken to examine both (1) operational hazard thresholds and (2) economic triggers. Research in the paper reinforces work by previous investigators that show accurately determining a hazard metric, and an appropriate threshold for that metric that triggers an imperative to implement active debris removal options, is difficult to formulate. A new operational hazard threshold defined by the doubling of the “lethal” debris environment coupled with the threshold that would affect insurance premiums is disclosed for the first time. The doubling of the lethal hazard at 850km and the annual probability of collision in the 650-1000km region may both occur as early as 2035. A simple static (i.e. no temporal dimension) economic threshold is derived that provides the clearest indicator that active debris removal solutions development and deployment should start immediately. This straightforward observation is based on the fact that it will always be at least an order of magnitude less expensive, quicker to execute, and operationally beneficial to remove mass from orbit as one large (several thousand kilograms) object rather than as the result of tens of thousands of fragments that would be produced from a catastrophic collision. Additionally, the ratio of lethal fragments to trackable objects is only ~1,000x yet there is a need for the collection efficiency to be ~10,000x so “sweeping” of lethal fragments is not viable. The practicality of the large object removal is tempered by the observation that one may have to remove ~10-50x derelict objects to prevent a single collision. This fact forces the imperative that removal needs to start now due to the delays that will be necessary not only to perfect/deploy approaches to debris removal and establish supporting policies/regulations but also because of the time it takes for the actions to reap benefits. Additionally, if the growth of the lethal hazard grows faster than anticipated it may be necessary to replace some satellites, execute large object removal, and perform medium debris (i.e. lethal fragments) sweeping operations. The sooner the community starts to remove large derelict objects, the more likely satellite damage will be minimized and the less likely that medium debris sweeping will have to be implemented. While the research is focused on starting debris removal, the ensemble of observations reinforces the need to continue to push for as close to 100% compliance to debris mitigation guidelines as possible. This analysis is unique in its pragmatic application of advanced probability concepts, merging of space hazard assessments with space insurance thresholds, and the use of general risk management concepts on the orbital debris hazard control process. It is hoped that this paper provides an impetus for spacefaring organizations to start to actively pursue development and deployment of debris removal solutions and policies.

  8. Characterizing DebriSat Fragments: So Many Fragments, So Much Data, and So Little Time

    NASA Technical Reports Server (NTRS)

    Shiotani, B.; Rivero, M.; Carrasquilla, M.; Allen, S.; Fitz-Coy, N.; Liou, J.-C.; Huynh, T.; Sorge, M.; Cowardin, H.; Opiela, J.; hide

    2017-01-01

    To improve prediction accuracy, the DebriSat project was conceived by NASA and DoD to update existing standard break-up models. Updating standard break-up models require detailed fragment characteristics such as physical size, material properties, bulk density, and ballistic coefficient. For the DebriSat project, a representative modern LEO spacecraft was developed and subjected to a laboratory hypervelocity impact test and all generated fragments with at least one dimension greater than 2 mm are collected, characterized and archived. Since the beginning of the characterization phase of the DebriSat project, over 130,000 fragments have been collected and approximately 250,000 fragments are expected to be collected in total, a three-fold increase over the 85,000 fragments predicted by the current break-up model. The challenge throughout the project has been to ensure the integrity and accuracy of the characteristics of each fragment. To this end, the post hypervelocity-impact test activities, which include fragment collection, extraction, and characterization, have been designed to minimize handling of the fragments. The procedures for fragment collection, extraction, and characterization were painstakingly designed and implemented to maintain the post-impact state of the fragments, thus ensuring the integrity and accuracy of the characterization data. Each process is designed to expedite the accumulation of data, however, the need for speed is restrained by the need to protect the fragments. Methods to expedite the process such as parallel processing have been explored and implemented while continuing to maintain the highest integrity and value of the data. To minimize fragment handling, automated systems have been developed and implemented. Errors due to human inputs are also minimized by the use of these automated systems. This paper discusses the processes and challenges involved in the collection, extraction, and characterization of the fragments as well as the time required to complete the processes. The objective is to provide the orbital debris community an understanding of the scale of the effort required to generate and archive high quality data and metadata for each debris fragment 2 mm or larger generated by the DebriSat project.

  9. Modelling the near-Earth space environment using LDEF data

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is overpredicted by Kessler and underpredicted by Cour-Palais. This divergence may be a result of beta-meteoroid fluxes, elliptical orbits or a combination of the two. The results of this study illustrate the definite need for more intensive study of the near-Earth space environment, particularly the small particle regime, as it is the most degrading to spacecraft in LEO.

  10. Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.

    2017-12-01

    Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent climate change. This difference in phase of response will be carefully evaluated by integrating the modeling and observational components of this work. In addition, we will use this integrated framework to assess the expected impacts of differing glacier response on glacier-related resources in the Himalayas over the coming century.

  11. On the Absolutely Continuous Spectrum of Stark Operators

    NASA Astrophysics Data System (ADS)

    Perelman, Galina

    The stability of the absolutely continuous spectrum of the one-dimensional Stark operator under perturbations of the potential is discussed. The focus is on proving this stability under minimal assumptions on smoothness of the perturbation. A general criterion is presented together with some applications. These include the case of periodic perturbations where we show that any perturbation vL1()∩H-1/2() preserves the a.c. spectrum.

  12. 14 CFR 139.307 - Unpaved areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...

  13. 14 CFR 139.307 - Unpaved areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...

  14. 14 CFR 139.307 - Unpaved areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...

  15. 14 CFR 139.307 - Unpaved areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...

  16. 14 CFR 139.307 - Unpaved areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Unpaved areas. 139.307 Section 139.307 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS... causing damage to an aircraft. (5) Debris and foreign objects must be promptly removed from the surface...

  17. 75 FR 8414 - California Disaster # CA-00150

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... Administrative declaration of a disaster for the State of California dated 02/16/2010. Incident: Severe Winter Storms, Heavy Snow, Flooding, Debris Flows and Mudslides. Incident Period: 01/17/2010 and continuing... injury is 12039 0. The States which received an EIDL Declaration are California. (Catalog of Federal...

  18. Reliability of gadolinium-enhanced magnetic resonance imaging findings and their correlation with clinical outcome in patients with sciatica.

    PubMed

    el Barzouhi, Abdelilah; Vleggeert-Lankamp, Carmen L A M; Lycklama à Nijeholt, Geert J; Van der Kallen, Bas F; van den Hout, Wilbert B; Koes, Bart W; Peul, Wilco C

    2014-11-01

    Gadolinium-enhanced magnetic resonance imaging (Gd-MRI) is often performed in the evaluation of patients with persistent sciatica after lumbar disc surgery. However, correlation between enhancement and clinical findings is debated, and limited data are available regarding the reliability of enhancement findings. To evaluate the reliability of Gd-MRI findings and their correlation with clinical findings in patients with sciatica. Prospective observational evaluation of patients who were enrolled in a randomized trial with 1-year follow-up. Patients with 6- to 12-week sciatica, who participated in a multicentre randomized clinical trial comparing an early surgery strategy with prolonged conservative care with surgery if needed. In total 204 patients underwent Gd-MRI at baseline and after 1 year. Patients were assessed by means of the Roland Disability Questionnaire (RDQ) for sciatica, visual analog scale (VAS) for leg pain, and patient-reported perceived recovery at 1 year. Kappa coefficients were used to assess interobserver reliability. In total, 204 patients underwent Gd-MRI at baseline and after 1 year. Magnetic resonance imaging findings were correlated to the outcome measures using the Mann-Whitney U test for continuous data and Fisher exact tests for categorical data. Poor-to-moderate agreement was observed regarding Gd enhancement of the herniated disc and compressed nerve root (kappa<0.41), which was in contrast with excellent interobserver agreement of the disc level of the herniated disc and compressed nerve root (kappa>0.95). Of the 59 patients with an enhancing herniated disc at 1 year, 86% reported recovery compared with 100% of the 12 patients with nonenhancing herniated discs (p=.34). Of the 12 patients with enhancement of the most affected nerve root at 1 year, 83% reported recovery compared with 85% of the 192 patients with no enhancement (p=.69). Patients with and without enhancing herniated discs or nerve roots at 1 year reported comparable outcomes on RDQ and VAS-leg pain. Reliability of Gd-MRI findings was poor-to-moderate and no correlation was observed between enhancement and clinical findings at 1-year follow-up. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Debris thickness patterns on debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2018-06-01

    Many debris-covered glaciers have broadly similar debris thickness patterns: surface debris thickens and tends to transition from convex- to concave-up-down glacier. We explain this pattern using theory (analytical and numerical models) paired with empirical observations. Down glacier debris thickening results from the conveyor-belt-like nature of the glacier surface in the ablation zone (debris can typically only be added but not removed) and from the inevitable decline in ice surface velocity toward the terminus. Down-glacier thickening of debris leads to the reduction of sub-debris melt and debris emergence toward the terminus. Convex-up debris thickness patterns occur near the up-glacier end of debris covers where debris emergence dominates (ablation controlled). Concave-up debris thickness patterns occur toward glacier termini where declining surface velocities dominate (velocity controlled). A convex-concave debris thickness profile inevitably results from the transition between ablation-control and velocity-control down-glacier. Debris thickness patterns deviating from this longitudinal shape are most likely caused by changes in hillslope debris supply through time. By establishing this expected debris thickness pattern, the effects of climate change on debris cover can be better identified.

  20. Sediment trapping efficiency of adjustable check dam in laboratory and field experiment

    NASA Astrophysics Data System (ADS)

    Wang, Chiang; Chen, Su-Chin; Lu, Sheng-Jui

    2014-05-01

    Check dam has been constructed at mountain area to block debris flow, but has been filled after several events and lose its function of trapping. For the reason, the main facilities of our research is the adjustable steel slit check dam, which with the advantages of fast building, easy to remove or adjust it function. When we can remove transverse beams to drain sediments off and keep the channel continuity. We constructed adjustable steel slit check dam on the Landow torrent, Huisun Experiment Forest station as the prototype to compare with model in laboratory. In laboratory experiments, the Froude number similarity was used to design the dam model. The main comparisons focused on types of sediment trapping and removing, sediment discharge, and trapping rate of slit check dam. In different types of removing transverse beam showed different kind of sediment removal and differences on rate of sediment removing, removing rate, and particle size distribution. The sediment discharge in check dam with beams is about 40%~80% of check dam without beams. Furthermore, the spacing of beams is considerable factor to the sediment discharge. In field experiment, this research uses time-lapse photography to record the adjustable steel slit check dam on the Landow torrent. The typhoon Soulik made rainfall amounts of 600 mm in eight hours and induced debris flow in Landow torrent. Image data of time-lapse photography demonstrated that after several sediment transport event the adjustable steel slit check dam was buried by debris flow. The result of lab and field experiments: (1)Adjustable check dam could trap boulders and stop woody debris flow and flush out fine sediment to supply the need of downstream river. (2)The efficiency of sediment trapping in adjustable check dam with transverse beams was significantly improved. (3)The check dam without transverse beams can remove the sediment and keep the ecosystem continuity.

  1. Preliminary Characterization Results from the DebriSat Project

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Shiotani, B.; Kleespies, J.; Toledo-Burdett, R.; Moraguez, M.; Carrasquila, M.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.

    2016-01-01

    The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from two separate hypervelocity impact tests used to simulate on-orbit collisions. To protect the fragments resulting from the impact tests, "soft-catch" arenas made of polyurethane foam panels were utilized. After each impact test, the test chamber was cleaned and debris resulting from the catastrophic demise of the test article were collected and shipped to the University of Florida for post-impact processing. The post-impact processing activities include collecting, characterizing, and cataloging of the fragments. Since the impact tests, a team of students has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the 20 months since the impact tests has been on the collection of 2 millimeters- and larger fragments resulting from impact test on the 56 kilogram-representative LEO (Low Earth Orbit) satellite referred to as DebriSat. To date we have recovered in excess of 115,000 fragments, 30,000 more than the prediction of 85,000 fragments from the existing model. We continue to collect fragments but have transitioned to the characterization phase of the post-impact activities. Since the start of the characterization phase, the focus has been to utilize automation to (i) expedite fragment characterization process and (ii) minimize human-in-the- loop. We have developed and implemented such automated processes; e.g., we have automated the data entry process to reduce operator errors during transcription of the measurement data. However, at all steps of the process, there is human oversight to ensure the integrity of the data. Additionally, we have developed and implemented repeatability and reproducibility tests to ensure that the instrumentation used in the characterization process is accurate and properly calibrated. In this paper, the implemented processes are described and preliminary results presented. Additionally, lessons learned from the implemented automations and their impacts on the integrity of the results are discussed.

  2. Modeling an exogenic origin for the equatorial ridge on Iapetus

    NASA Astrophysics Data System (ADS)

    Stickle, Angela M.; Roberts, James H.

    2018-06-01

    Iapetus has a ridge along the equator that extends continuously for more than 110° in longitude. Parts of the ridge rise as much as 20 km above the surrounding terrains. Most models for the formation of this enigmatic ridge are endogenic, generally requiring the formation of a fast-spinning Iapetus with an oblate shape due to the rotation speed. Many of these require specific scenarios and have constraining parameters in order to generate a ridge comparable to what is seen today. An exogenic formation mechanism has also been proposed, that the ridge represents the remains of an early ring system around Iapetus that collapsed onto the surface. Thus far, none of the models have conclusively identified the origin of the ridge. In this study, an exogenic origin for the ridge is assumed, which is derived from a collapsing disk of debris around Iapetus, without invoking any specific model for the generation of the debris disk. Here, we evaluate whether it is possible to generate a ridge of the size and shape as observed by simulating the impact of the collapsing debris using the CTH hydrocode. Pi-scaling calculations suggest that extremely oblique impact angles (1°-10°) are needed to add to ridge topography. These extreme impact angles severely reduce the cratering efficiency compared to a vertical impact, adding material rather than eroding it during crater formation. Furthermore, material is likely to be excavated at low angles, enhancing downrange accumulation. Multiple impacts from debris pieces will heighten this effect. Because infalling debris is predicted to impact at extremely low angles, both of these effects might have contributed to ridge formation on Iapetus. The extreme grazing angles of the impacts modeled here decouple much of the projectile energy from the target, and impact heating of the surface is not significant. These models suggest that a collapsing disk of debris should have been able to build topography to create a ridge around Iapetus.

  3. Terminal zone glacial sediment transfer at a temperate overdeepened glacier system

    NASA Astrophysics Data System (ADS)

    Swift, D. A.; Cook, S. J.; Graham, D. J.; Midgley, N. G.; Fallick, A. E.; Storrar, R.; Toubes Rodrigo, M.; Evans, D. J. A.

    2018-01-01

    Continuity of sediment transfer through glacial systems is essential to maintain subglacial bedrock erosion, yet transfer at temperate glaciers with overdeepened beds, where subglacial fluvial sediment transport should be greatly limited by adverse slopes, remains poorly understood. Complex multiple transfer processes in temperate overdeepened systems has been indicated by the presence of large frontal moraine systems, supraglacial debris of mixed transport origin, thick basal ice sequences, and englacial thrusts and eskers. At Svínafellsjökull, thrusts comprising decimetre-thick debris-rich bands of stratified facies ice of basal origin, with a coarser size distribution and higher clast content than that observed in basal ice layers, contribute substantially to the transfer of subglacial material in the terminal zone. Entrainment and transfer of material occurs by simple shear along the upper surface of bands and by strain-induced deformation of stratified and firnified glacier ice below. Thrust material includes rounded and well-rounded clasts that are also striated, indicating that fluvial bedload is deposited as subglacial channels approach the overdeepening and then entrained along thrusts. Substantial transfer also occurs within basal ice, with facies type and debris content dependent on the hydrological connectedness of the adverse slope. A process model of transfer at glaciers with terminal overdeepenings is proposed, in which the geometry of the overdeepening influences spatial patterns of ice deformation, hydrology, and basal ice formation. We conclude that the significance of thrusting in maintaining sediment transfer continuity has likely been overlooked by glacier sediment budgets and glacial landscape evolution studies.

  4. The Continuous Monitoring of Flash Flood Velocity Field based on an Automated LSPIV System

    NASA Astrophysics Data System (ADS)

    Li, W.; Ran, Q.; Liao, Q.

    2014-12-01

    Large-scale particle image velocimetry (LSPIV) is a non-intrusive tool for flow velocity field measurement and has more advantages against traditional techniques, with its applications on river, lake and ocean, especially under extreme conditions. An automated LSPIV system is presented in this study, which can be easily set up and executed for continuous monitoring of flash flood. The experiment site is Longchi village, Sichuan Province, where 8.0 magnitude earthquake occurred in 2008 and debris flow happens every year since then. The interest of area is about 30m*40m of the channel which has been heavily destroyed by debris flow. Series of videos obtained during the flood season indicates that flood outbreaks after rainstorm just for several hours. Measurement is complete without being influenced by this extreme weather condition and results are more reliable and accurate due to high soil concentration. Compared with direct measurement by impellor flow meter, we validated that LSPIV works well at mountain stream, with index of 6.7% (Average Relative Error) and 95% (Nash-Sutcliffe Coefficient). On Jun 26, the maximum flood surface velocity reached 4.26 m/s, and the discharge based on velocity-area method was also decided. Overall, this system is safe, non-contact and can be adjusted according to our requirement flexibly. We can get valuable data of flood which is scarce before, which will make a great contribution to the analysis of flood and debris flow mechanism.

  5. Results of animal experiments using an undulation pump total artificial heart: analysis of 10 day and 19 day survival.

    PubMed

    Mochizuki, S; Abe, Y; Chinzei, T; Isoyama, T; Ono, T; Saito, I; Guba, P; Karita, T; Sun, Y P; Kouno, A; Suzuki, T; Baba, K; Mabuchi, K; Imachi, K

    2000-01-01

    An undulation pump is a special rotary blood pump in which rotation of a brushless DC motor is transformed to an undulating motion by a disc in the pump housing attached by means of a special link mechanism. In the blood pump, a closed line between the disc and housing moves from the inlet to the outlet by this undulating disc motion, which sucks and pushes the blood from the inlet to the outlet. Because the same phenomena occurs at both sides of the disc, a continuous flow is obtained when the motor rotational speed is constant. The pump flow pattern can be easily changed from continuous flow to pulsatile flow by controlling the motor drive current pattern. A seal membrane made of segmented polyurethane protects the blood from invading the link mechanism as well as the motor. UPTAH is fabricated with two undulation pumps and two brushless DC motors. Its size is 75 mm in diameter and 80 mm long, and it has one of the great advantage of no compliance chamber required in the system. UPTAHs were implanted under cardiopulmonary bypass (CPB) into the chest cavities of 16 goats, each weighing between 41 and 72 kg. No anticoagulant and antiplatelet agent was used after the surgery. The left atrial pressure was automatically controlled to prevent its elevation and sucking of the atrial wall into the atrial cuff. The following results were obtained: (1) UPTAHs fit well into all the goats; (2) the longest survival was 19.8 days, the cause of death was bleeding from the aortic anastomosis; (3) No thrombus was observed in the blood pump despite no anticoagulant use. Hemolysis depended upon the length of CPB during surgery. When CPB time was within 2 hours, hemolysis level returned to baseline within a few days of the surgery. UPTAH is a promising implantable TAH, because of its small size and easy controllability.

  6. 9 CFR 93.106 - Quarantine requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Birds § 93.106 Quarantine requirements. (a) Birds... withstand continued cleaning and disinfection. All walls of the sun room must be at least 8 feet high. (1... high, impermeable to water, and able to prevent the escape of water, manure, and debris. (2) The sun...

  7. The 22 March 2014 Oso landslide, Washington, USA

    NASA Astrophysics Data System (ADS)

    Wartman, Joseph; Montgomery, David R.; Anderson, Scott A.; Keaton, Jeffrey R.; Benoît, Jean; dela Chapelle, John; Gilbert, Robert

    2016-01-01

    The Oso, Washington, USA, landslide occurred on the morning of Saturday, 22 March 2014 and claimed the lives of 43 people. The landslide began within an 200-m-high hillslope comprised of unconsolidated glacial and previous landslide/colluvial deposits; it continued as a debris avalanche/debris flow that rapidly inundated a neighborhood of 35 single-family residences. An intense three-week rainfall that immediately preceded the event most likely played a role in triggering the landslide; and other factors that likely contributed to destabilization of the landslide mass include alteration of the local groundwater recharge and hydrogeological regime from previous landsliding, weakening and alteration of the landslide mass caused by previous landsliding, and changes in stress distribution resulting from removal and deposition of material from earlier landsliding. Field reconnaissance following the event revealed six distinctive zones and several subzones that are characterized on the basis of geomorphic expression, styles of deformation, geologic materials, and the types, size, and orientation of vegetation. Seismic recording of the landslide indicate that the event was marked by several vibration-generating episodes of mass movement. We hypothesize that the landslide occurred in two stages, with the first being a sequential remobilization of existing slide masses from the most recent (2006) landslide and from an ancient slide that triggered a devastating debris avalanche/debris flow. The second stage involved headward extension into previously unfailed material that occurred in response to unloading and redirection of stresses.

  8. Striatal astrocytes engulf dopaminergic debris in Parkinson's disease: A study in an animal model

    PubMed Central

    Morales, Ingrid; Sanchez, Alberto; Rodriguez-Sabate, Clara

    2017-01-01

    The role of astrocytes in Parkinson’s disease is still not well understood. This work studied the astrocytic response to the dopaminergic denervation. Rats were injected in the lateral ventricles with 6-hydroxydopamine (25μg), inducing a dopaminergic denervation of the striatum not accompanied by non-selective tissue damage. The dopaminergic debris were found within spheroids (free-spheroids) which retained some proteins of dopaminergic neurons (e.g., tyrosine hydroxylase, the dopamine transporter protein, and APP) but not others (e.g., α-synuclein). Free-spheroids showed the initial (LC3-autophagosomes) but not the late (Lamp1/Lamp2-lysosomes) components of autophagy (incomplete autophagy), preparing their autophagosomes for an external phagocytosis (accumulation of phosphatidylserine). Free-spheroids were penetrated by astrocyte processes (fenestrated-spheroids) which made them immunoreactive for GFAP and S100β, and which had some elements needed to continue the debris degradation (Lamp1/Lamp2). Finally, proteins normally found in neurons (TH, DAT and α-synuclein) were observed within astrocytes 2–5 days after the dopaminergic degeneration, suggesting that the intracellular contents of degenerated cells had been transferred to astrocytes. Taken together, present data suggest phagocytosis as a physiological role of striatal astrocytes, a role which could be critical for cleaning striatal debris during the initial stages of Parkinson’s disease. PMID:29028815

  9. College Libraries and Resource Sharing: Testing a Compact Disc Union Catalog.

    ERIC Educational Resources Information Center

    Townley, Charles T.

    1992-01-01

    Presents results of an evaluation of C.D. Cat, a CD-ROM union catalog developed by the Associated College Libraries of Central Pennsylvania consortium. Outcomes are reported in the areas of bibliographic quality, user evaluation, public relations strategies, bibliographic instruction, and guidelines for continuing operations. Recommendations are…

  10. Shuttle Debris Impact Tool Assessment Using the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    DeLoach, R.; Rayos, E. M.; Campbell, C. H.; Rickman, S. L.

    2006-01-01

    Computational tools have been developed to estimate thermal and mechanical reentry loads experienced by the Space Shuttle Orbiter as the result of cavities in the Thermal Protection System (TPS). Such cavities can be caused by impact from ice or insulating foam debris shed from the External Tank (ET) on liftoff. The reentry loads depend on cavity geometry and certain Shuttle state variables, among other factors. Certain simplifying assumptions have been made in the tool development about the cavity geometry variables. For example, the cavities are all modeled as shoeboxes , with rectangular cross-sections and planar walls. So an actual cavity is typically approximated with an idealized cavity described in terms of its length, width, and depth, as well as its entry angle, exit angle, and side angles (assumed to be the same for both sides). As part of a comprehensive assessment of the uncertainty in reentry loads estimated by the debris impact assessment tools, an effort has been initiated to quantify the component of the uncertainty that is due to imperfect geometry specifications for the debris impact cavities. The approach is to compute predicted loads for a set of geometry factor combinations sufficient to develop polynomial approximations to the complex, nonparametric underlying computational models. Such polynomial models are continuous and feature estimable, continuous derivatives, conditions that facilitate the propagation of independent variable errors. As an additional benefit, once the polynomial models have been developed, they require fewer computational resources to execute than the underlying finite element and computational fluid dynamics codes, and can generate reentry loads estimates in significantly less time. This provides a practical screening capability, in which a large number of debris impact cavities can be quickly classified either as harmless, or subject to additional analysis with the more comprehensive underlying computational tools. The polynomial models also provide useful insights into the sensitivity of reentry loads to various cavity geometry variables, and reveal complex interactions among those variables that indicate how the sensitivity of one variable depends on the level of one or more other variables. For example, the effect of cavity length on certain reentry loads depends on the depth of the cavity. Such interactions are clearly displayed in the polynomial response models.

  11. Online Visualization and Value Added Services of MERRA-2 Data at GES DISC

    NASA Technical Reports Server (NTRS)

    Shen, Suhung; Ostrenga, Dana M.; Vollmer, Bruce E.; Hegde, Mahabaleshwa S.; Wei, Jennifer C.; Bosilovich, Michael G.

    2017-01-01

    NASA climate reanalysis datasets from MERRA-2, distributed at the Goddard Earth Sciences Data and Information Services Center (GES DISC), have been used in broad research areas, such as climate variations, extreme weather, agriculture, renewable energy, and air quality, etc. The datasets contain numerous variables for atmosphere, land, and ocean, grouped into 95 products. The total archived volume is approximately 337 TB ( approximately 562K files) at the end of October 2017. Due to the large number of products and files, and large data volumes, it may be a challenge for a user to find and download the data of interest. The support team at GES DISC, working closely with the MERRA-2 science team, has created and is continuing to work on value added data services to best meet the needs of a broad user community. This presentation, using aerosol over Asia Monsoon as an example, provides an overview of the MERRA-2 data services at GES DISC, including: How to find the data? How many data access methods are provided? What are the best data access methods for me? How do download the subsetted (parameter, spatial, temporal) data and save in preferred spatial resolution and data format? How to visualize and explore the data online? In addition, we introduce a future online analytic tool designed for supporting application research, focusing on long-term hourly time-series data access and analysis.

  12. Choice of surgical approach for ossification of the posterior longitudinal ligament in combination with cervical disc hernia.

    PubMed

    Yang, Hai-song; Chen, De-yu; Lu, Xu-hua; Yang, Li-li; Yan, Wang-jun; Yuan, Wen; Chen, Yu

    2010-03-01

    Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL.

  13. Oblique hypervelocity impact response of dual-sheet structures

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1989-01-01

    The results of a continuing investigation of the phenomena associated with the oblique hypervelocity impact of spherical projectiles onto multi-sheet aluminum structures are given. A series of equations that quantitatively describes these phenomena is obtained through a regression of experimental data. These equations characterize observed ricochet and penetration damage phenomena in a multi-sheet structure as functions of geometric parameters of the structure and the diameter, obliquity, and velocity of the impacting projectile. Crater damage observed on the ricochet witness plates is used to determine the sizes and speeds of the ricochet debris particles that caused the damage. It is observed that the diameter of the most damaging ricochet debris particle can be as large as 40 percent of the original particle diameter and can travel at speeds between 24 percent and 36 percent of the original projectile impact velocity. The equations necessary for the design of shielding panels that will protect external systems from such ricochet debris damage are also developed. The dimensions of these shielding panels are shown to be strongly dependent on their inclination and on their circumferential distribution around the spacecraft.

  14. Cleaning Effectiveness of a Reciprocating Single-file and a Conventional Rotary Instrumentation System

    PubMed Central

    de Carvalho, Fredson Marcio Acris; Gonçalves, Leonardo Cantanhede de Oliveira; Marques, André Augusto Franco; Alves, Vanessa; Bueno, Carlos Eduardo da Silveira; De Martin, Alexandre Sigrist

    2016-01-01

    Objective: To compare cleaning effectiveness by histological analysis of a reciprocating single-file system with ProTaper rotary instruments during the preparation of curved root canals in extracted teeth. Methods: A total of 40 root canals with curvatures ranging between 20 - 40 degrees were divided into two groups of 20 canals. Canals were prepared to the following apical sizes: Reciproc size 25 (n=20); ProTaper: F2 (n=20). The normal distribution of data was tested by the Kolmogorov-Smirnov test and the values obtained for the test (Mann-Whitney U test, P < .05) were statistically analyzed using the GraphPad InStat for the Mac OS software (GraphPad Software, La Jolla, CA, USA). Results: There were no significant differences in remaining debris (P > .05) between the two groups. Conclusion: The application of reciprocating motion during instrumentation did not result in increased debris when compared with continuous rotation motion, even in the apical part of curved canals. Both instruments resulted in debris in the canal lumen, irrespective of the movement kinematics applied. PMID:28217185

  15. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content.

    PubMed

    Showalter, Brent L; Beckstein, Jesse C; Martin, John T; Beattie, Elizabeth E; Espinoza Orías, Alejandro A; Schaer, Thomas P; Vresilovic, Edward J; Elliott, Dawn M

    2012-07-01

    Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these with the human disc. To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar discs, and cow, rat, and mouse caudal discs. Collagen content was measured and normalized by dry weight for the same discs except the rat and the mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human discs. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Disc torsion mechanics are comparable with human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented are useful for selecting and interpreting results for animal disc models. Structural organization of the fiber angle may explain the differences that were noted between species after geometric normalization.

  16. Tidal disruption of a white dwarf by a black hole: the diversity of nucleosynthesis, explosion energy, and the fate of debris streams

    NASA Astrophysics Data System (ADS)

    Kawana, Kojiro; Tanikawa, Ataru; Yoshida, Naoki

    2018-07-01

    We run a suite of hydrodynamic simulations of tidal disruption events (TDEs) of a white dwarf (WD) by a black hole (BH) with a wide range of WD/BH masses and orbital parameters. We implement nuclear reactions to study nucleosynthesis and its dynamical effect through release of nuclear energy. The released nuclear energy effectively increases the fraction of unbound ejecta. This effect is weaker for a heavy WD with 1.2 M⊙, because the specific orbital energy distribution of the debris is predominantly determined by the tidal force, rather than by the explosive reactions. The elemental yield of a TDE depends critically on the initial composition of a WD, while the BH mass and the orbital parameters also affect the total amount of synthesized elements. Tanikawa et al. (2017) find that simulations of WD-BH TDEs with low resolution suffer from spurious heating and inaccurate nuclear reaction results. In order to examine the validity of our calculations, we compare the amounts of the synthesized elements with the upper limits of them derived in a way where we can avoid uncertainties due to low resolution. The results are largely consistent, and thus support our findings. We find particular TDEs where early self-intersection of a WD occurs during the first pericentre passage, promoting formation of an accretion disc. We expect that relativistic jets and/or winds would form in these cases because accretion rates would be super-Eddington. The WD-BH TDEs result in a variety of events depending on the WD/BH mass and pericentre radius of the orbit.

  17. On the impact origin of Phobos and Deimos

    NASA Astrophysics Data System (ADS)

    Genda, Hidenori; Hyodo, Ryuki; Chanorz, Sebastian; Rosenblatt, Pascal

    2017-10-01

    Phobos and Deimos, the two small satellites of Mars, are thought either to be captured asteroids or to have accreted in an impact-induced debris disk. Recently, we succeeded in making them in a framework of the giant impact scenario [1]. In our canonical simulation, large moons form from the material in the dense inner disk and then migrate outwards due to gravitational interactions with the remnant disk. As the large inner moons migrate outward, their orbital resonances sweep up and gather materials distributed within a thin outer disk, facilitating accretion of two small satellites whose sizes are similar to Phobos and Deimos. The large inner moons fall back to Mars after about 5 million years due to tidal pull of Mars, and the two small outer satellites evolve into current Phobos- and Deimos-like orbits.In addition, we recently perform high-resolution SPH giant impact simulations using sophisticated equation of states (M-ANEOS). We investigate the thermodynamic and physical aspects of the impact-induced disk [2], such as degrees of melting and vaporization of materials, mixing ratio of Mars and impactor’s materials, and expected particle sizes that form Phobos and Deimos. Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.[1] Rosenblatt, P., Charnoz, S., Dunseath, K.M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Genda, H., Toupin, S., 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience 9, 581-583.[2] Hyodo, R., Genda, H., Charnoz, S., Rosenblatt, P., 2017, On the impact origin of Phobos and Deimos I: Thermodynamic and physical aspects. ApJ accepted (arXiv:1707.06282).

  18. Rotational and X-ray luminosity evolution of high-B radio pulsars

    NASA Astrophysics Data System (ADS)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  19. Local models of astrophysical discs

    NASA Astrophysics Data System (ADS)

    Latter, Henrik N.; Papaloizou, John

    2017-12-01

    Local models of gaseous accretion discs have been successfully employed for decades to describe an assortment of small-scale phenomena, from instabilities and turbulence, to dust dynamics and planet formation. For the most part, they have been derived in a physically motivated but essentially ad hoc fashion, with some of the mathematical assumptions never made explicit nor checked for consistency. This approach is susceptible to error, and it is easy to derive local models that support spurious instabilities or fail to conserve key quantities. In this paper we present rigorous derivations, based on an asympototic ordering, and formulate a hierarchy of local models (incompressible, Boussinesq and compressible), making clear which is best suited for a particular flow or phenomenon, while spelling out explicitly the assumptions and approximations of each. We also discuss the merits of the anelastic approximation, emphasizing that anelastic systems struggle to conserve energy unless strong restrictions are imposed on the flow. The problems encountered by the anelastic approximation are exacerbated by the disc's differential rotation, but also attend non-rotating systems such as stellar interiors. We conclude with a defence of local models and their continued utility in astrophysical research.

  20. The profiles of Fe K α line from the inhomogeneous accretion flow

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Di; Ma, Ren-Yi; Li, Ya-Ping; Zhang, Hui; Fang, Tao-Tao

    2018-05-01

    The clumpy disc, or inhomogeneous accretion flow, has been proposed to explain the properties of accreting black hole systems. However, the observational evidence remains to be explored. In this work, we calculate the profiles of Fe K α lines emitted from the inhomogeneous accretion flow through the ray-tracing technique, in order to find possible observable signals of the clumps. Compared with the skewed double-peaked profile of the continuous standard accretion disc, the lines show a multipeak structure when the emissivity index is not very steep. The peaks and wings are affected by the position and size of the cold clumps. When the clump is small and is located in the innermost region, due to the significant gravitational redshift, the blue wing can overlap with the red wing of the outer cold disc/clump, forming a fake peak or greatly enhancing the red peak. Given high enough resolution, it is easier to constrain the clumps around the supermassive black holes than the clumps in stellar mass black holes due to the thermal Doppler effect.

  1. Diffraction effects in mechanically chopped laser pulses

    NASA Astrophysics Data System (ADS)

    Gambhir, Samridhi; Singh, Mandip

    2018-06-01

    A mechanical beam chopper consists of a rotating disc of regularly spaced wide slits which allow light to pass through them. A continuous light beam, after passing through the rotating disc, is switched-on and switched-off periodically, and a series of optical pulses are produced. The intensity of each pulse is expected to rise and fall smoothly with time. However, a careful study has revealed that the edges of mechanically chopped laser light pulses consist of periodic intensity undulations which can be detected with a photo detector. In this paper, it is shown that the intensity undulations in mechanically chopped laser pulses are produced by diffraction of light from the rotating disc, and a detailed explanation is given of the intensity undulations in mechanically chopped laser pulses. An experiment presented in this paper provides an efficient method to capture a one dimensional diffraction profile of light from a straight sharp-edge in the time domain. In addition, the experiment accurately measures wavelengths of three different laser beams from the undulations in mechanically chopped laser light pulses.

  2. Hierarchical phase space structure of dark matter haloes: Tidal debris, caustics, and dark matter annihilation

    NASA Astrophysics Data System (ADS)

    Afshordi, Niayesh; Mohayaee, Roya; Bertschinger, Edmund

    2009-04-01

    Most of the mass content of dark matter haloes is expected to be in the form of tidal debris. The density of debris is not constant, but rather can grow due to formation of caustics at the apocenters and pericenters of the orbit, or decay as a result of phase mixing. In the phase space, the debris assemble in a hierarchy that is truncated by the primordial temperature of dark matter. Understanding this phase structure can be of significant importance for the interpretation of many astrophysical observations and, in particular, dark matter detection experiments. With this purpose in mind, we develop a general theoretical framework to describe the hierarchical structure of the phase space of cold dark matter haloes. We do not make any assumption of spherical symmetry and/or smooth and continuous accretion. Instead, working with correlation functions in the action-angle space, we can fully account for the hierarchical structure (predicting a two-point correlation function ∝ΔJ-1.6 in the action space), as well as the primordial discreteness of the phase space. As an application, we estimate the boost to the dark matter annihilation signal due to the structure of the phase space within virial radius: the boost due to the hierarchical tidal debris is of order unity, whereas the primordial discreteness of the phase structure can boost the total annihilation signal by up to an order of magnitude. The latter is dominated by the regions beyond 20% of the virial radius, and is largest for the recently formed haloes with the least degree of phase mixing. Nevertheless, as we argue in a companion paper, the boost due to small gravitationally-bound substructure can dominate this effect at low redshifts.

  3. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    NASA Astrophysics Data System (ADS)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be extended to include other polymers. Polymerization as well as polymer processing in a microgravity environment may affect the length and orientation of the molecular chains, the degree of crosslinking, and distribution of amorphous to crystalline portions of the material, thus changing the ultimate properties of the polymer. Small polymer samples would be produced from the resin for testing and analysis. This research would include the effect of micro-g processing by compression molded vs. ram extruded samples for analysis. Morphological alterations in the material could be monitored using Transmission Electron Microscopy and associated properties such as toughness, density and crystallinity could be determined and compared to terra produced materials using conventional mechanical testing, density gradient columns and calorimetry techniques. If alterations are evident, fatigue testing can be performed on small specimens in order to determine the material's resistance to crack initiation and propagation. number of orthopaedic implant recipients and could be extended for use in robotics and other beneficial applications. Although polymers exhibit the greatest biocompatibility, problems with debris particle generation continue to reduce the effectiveness of UHMWPE as a biomedical material. Further polymer research in a microgravity environment may prove to produce the desired alterations in the materials' morphology and associated properties, therefore providing millions of people with superior orthopaedic implant components and lessen the occurrences of repeat surgery.

  4. Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-chyi; Johnson, N. L.

    2006-01-01

    A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16).

  5. [Research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration].

    PubMed

    Liang, Hang; Deng, Xiangyu; Shao, Zengwu

    2017-10-01

    To summarize the research progress of intervertebral disc endogenous stem cells for intervertebral disc regeneration and deduce the therapeutic potential of endogenous repair for intervertebral disc degeneration. The original articles about intervertebral disc endogenous stem cells for intervertebral disc regeneration were extensively reviewed; the reparative potential in vivo and the extraction and identification in vitro of intervertebral disc endogenous stem cells were analyzed; the prospect of endogenous stem cells for intervertebral disc regeneration was predicted. Stem cell niche present in the intervertebral discs, from which stem cells migrate to injured tissues and contribute to tissues regeneration under certain specific microenvironment. Moreover, the migration of stem cells is regulated by chemokines system. Tissue specific progenitor cells have been identified and successfully extracted and isolated. The findings provide the basis for biological therapy of intervertebral disc endogenous stem cells. Intervertebral disc endogenous stem cells play a crucial role in intervertebral disc regeneration. Therapeutic strategy of intervertebral disc endogenous stem cells is proven to be a promising biological approach for intervertebral disc regeneration.

  6. Comparison of Animal Discs Used in Disc Research to Human Lumbar Disc: Torsion Mechanics and Collagen Content

    PubMed Central

    Showalter, Brent L.; Beckstein, Jesse C.; Martin, John T.; Beattie, Elizabeth E.; Orías, Alejandro A. Espinoza; Schaer, Thomas P.; Vresilovic, Edward J.; Elliott, Dawn M.

    2012-01-01

    Study Design Experimental measurement and normalization of in vitro disc torsion mechanics and collagen content for several animal species used in intervertebral disc research and comparing these to the human disc. Objective To aid in the selection of appropriate animal models for disc research by measuring torsional mechanical properties and collagen content. Summary of Background Data There is lack of data and variability in testing protocols for comparing animal and human disc torsion mechanics and collagen content. Methods Intervertebral disc torsion mechanics were measured and normalized by disc height and polar moment of inertia for 11 disc types in 8 mammalian species: the calf, pig, baboon, goat, sheep, rabbit, rat, and mouse lumbar, and cow, rat, and mouse caudal. Collagen content was measured and normalized by dry weight for the same discs except the rat and mouse. Collagen fiber stretch in torsion was calculated using an analytical model. Results Measured torsion parameters varied by several orders of magnitude across the different species. After geometric normalization, only the sheep and pig discs were statistically different from human. Fiber stretch was found to be highly dependent on the assumed initial fiber angle. The collagen content of the discs was similar, especially in the outer annulus where only the calf and goat discs were statistically different from human. Disc collagen content did not correlate with torsion mechanics. Conclusion Disc torsion mechanics are comparable to human lumbar discs in 9 of 11 disc types after normalization by geometry. The normalized torsion mechanics and collagen content of the multiple animal discs presented is useful for selecting and interpreting results for animal models of the disc. Structural composition of the disc, such as initial fiber angle, may explain the differences that were noted between species after geometric normalization. PMID:22333953

  7. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  8. Sudden oak death effects on the dynamics of dead wood

    Treesearch

    Richard C. Cobb; Jo& atilde; o Filipe A.N.; Margaret R. Metz; Ross K. Meentemeyer; David M. Rizzo

    2013-01-01

    Sudden oak death has impacted forests notable for high-fire risk and contiguous host communities in California and Oregon coastal forest ecosystems. The disease continues to emerge in stands and landscapes with a large biomass of tanoak (Notholithocarpus densiflorus (Hook.&Arn.) Manos, Cannon & S.H.Oh), and we show that woody debris also...

  9. The design of the new LHC connection cryostats

    NASA Astrophysics Data System (ADS)

    Vande Craen, A.; Barlow, G.; Eymin, C.; Moretti, M.; Parma, V.; Ramos, D.

    2017-12-01

    In the frame of the High Luminosity upgrade of the LHC, improved collimation schemes are needed to cope with the superconducting magnet quench limitations due to the increasing beam intensities and particle debris produced in the collision points. Two new TCLD collimators have to be installed on either side of the ALICE experiment to intercept heavy-ion particle debris. Beam optics solutions were found to place these collimators in the continuous cryostat of the machine, in the locations where connection cryostats, bridging a gap of about 13 m between adjacent magnets, are already present. It is therefore planned to replace these connection cryostats with two new shorter ones separated by a bypass cryostat allowing the collimators to be placed close to the beam pipes. The connection cryostats, of a new design when compared to the existing ones, will still have to ensure the continuity of the technical systems of the machine cryostat (i.e. beam lines, cryogenic and electrical circuits, insulation vacuum). This paper describes the functionalities and the design solutions implemented, as well as the plans for their construction.

  10. Modeling of rotating disc contactor (RDC) column

    NASA Astrophysics Data System (ADS)

    Ismail, Wan Nurul Aiffah; Zakaria, Siti Aisyah; Noor, Nor Fashihah Mohd; Sulong, Ibrahim; Arshad, Khairil Anuar

    2014-12-01

    Liquid-liquid extraction is one of the most important separation processes. Different kinds of liquid-liquid extractor such as Rotating Disc Contactor (RDC) Column being used in industries. The study of liquid-liquid extraction in an RDC column has become a very important subject to be discussed not just among chemical engineers but mathematician as well. In this research, the modeling of small diameter RDC column using the chemical system involving cumene/isobutryric asid/water are analyzed by the method of Artificial Neural Network (ANN). In the previous research, we begin the process of analyzed the data using methods of design of the experiments (DOE) to identify which factor and their interaction factor are significant and to determine the percentage of contribution of the variance for each factor. From the result obtained, we continue the research by discussed the development and validation of an artificial neural network model in estimating the concentration of continuous and concentration of dispersed outlet for an RDC column. It is expected that an efficient and reliable model will be formed to predict RDC column performance as an alternative to speed up the simulation process.

  11. Effects of intraoral aging of arch-wires on frictional forces: An ex vivo study.

    PubMed

    Kumar, Avinash; Khanam, Arifa; Ghafoor, Hajra

    2016-01-01

    Archwires act as gears to move teeth with light, continuous forces. However, the intraoral use of orthodontic archwires is liable to surface deposits which alter the mechanical properties of archwires, causing an increase in the friction coefficient. To evaluate the surface changes of the stainless steel archwires after 6 weeks of intraoral use and its influence on frictional resistance during sliding mechanics. As-received rectangular 0.019" × 0.025" stainless steel orthodontic archwires (control) were compared with the archwires retrieved after the final phase of leveling and alignment stage of orthodontic treatment collected after 6 weeks of intraoral exposure (test samples) from 10 patients undergoing treatment. The control and test samples were used to evaluate surface debris using Scanning Electron Microscopy, surface roughness was assessed using Atomic Force Microscope and frictional forces were measured using Instron Universal Testing Machine in the buccal inter-bracket region that slides through the molar tube for space closure. Unpaired t -test and Pearson correlation tests were used for statistical analysis ( P < 0.05 level of significance). Significant increase was observed in the level of debris ( P = 0.0001), surface roughness ( P = 0.0001), and friction resistance ( P = 0.001) of orthodontic archwires after their intraoral exposure. Significant positive correlations ( P < 0.05) were also observed between these three variables. Stainless steel test archwires showed a significant increase in the degree of debris and surface roughness, increasing the frictional forces between the archwire-bracket interfaces which would considerably reduce the normal orthodontic forces. Thus, continuing the same archwire after levelling and alignment for space closure is not recommended.

  12. Characterizing GEO Titan IIIC Transtage Fragmentations Using Ground-Based and Telescopic Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, H.

    2017-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah

    During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures.more » For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.« less

  14. Electromagnetic versus Lense-Thirring alignment of black hole accretion discs

    NASA Astrophysics Data System (ADS)

    Polko, Peter; McKinney, Jonathan C.

    2017-01-01

    Accretion discs and black holes (BHs) have angular momenta that are generally misaligned, which can lead to warped discs and bends in any jets produced. We examine whether a disc that is misaligned at large radii can be aligned more efficiently by the torque of a Blandford-Znajek (BZ) jet than by Lense-Thirring (LT) precession. To obtain a strong result, we will assume that these torques maximally align the disc, rather than cause precession, or disc tearing. We consider several disc states that include radiatively inefficient thick discs, radiatively efficient thin discs, and super-Eddington accretion discs. The magnetic field strength of the BZ jet is chosen as either from standard equipartition arguments or from magnetically arrested disc (MAD) simulations. We show that standard thin accretion discs can reach spin-disc alignment out to large radii long before LT would play a role, due to the slow infall time that gives even a weak BZ jet time to align the disc. We show that geometrically thick radiatively inefficient discs and super-Eddington discs in the MAD state reach spin-disc alignment near the BH when density profiles are shallow as in magnetohydrodynamical simulations, while the BZ jet aligns discs with steep density profiles (as in advection-dominated accretion flows) out to larger radii. Our results imply that the BZ jet torque should affect the cosmological evolution of BH spin magnitude and direction, spin measurements in active galactic nuclei and X-ray binaries, and the interpretations for Event Horizon Telescope observations of discs or jets in strong-field gravity regimes.

  15. Effect of mechanical vibrations on the wear behavior of AZ91 Mg alloy

    NASA Astrophysics Data System (ADS)

    Chaturvedi, V.; Pandel, U.; Sharma, A.

    2018-02-01

    AZ91 Mg alloy is the most promising alloy used for structural applications. The vibration induced methods are effective and economic viable in term of mechanical properties. Sliding wear tests were performed on AZ91 Mg alloy using a pin-on- disc configuration. Wear rates were measured at 5 N and 10N at a sliding velocity of 1m/s for varied frequency within the range of 5- 25Hz and a constant amplitude of 2mm. Microstructures of worn surfaces and wear debris were characterized by field emission scanning electron microscopy (FESEM). It is observed that wear resistance of vibrated AZ91 alloy at 15Hz frequency ad 2mm amplitude was superior than cast AZ91 Mg alloy. Finer grain size and equiaxed grain shape both are important parameters for better wear resistance in vibrated AZ91 Mg alloys. FESEM analysis revealed that wear is considerably affected due to frictional heat generated by the relative motion between AZ91 Mg alloy and EN31 steel surface. No single mechanism was responsible for material loss.

  16. Trends in Marine Debris along the U.S. Pacific Coast and Hawai’i 1998-2007

    USGS Publications Warehouse

    Ribic, Christine; Seba B. Sheavly,; Rugg, David J.; Erdmann, Eric S.

    2012-01-01

    We assessed amounts, composition, and trends of marine debris for the U.S. Pacific Coast and Hawai’i using National Marine Debris Monitoring Program data. Hawai’i had the highest debris loads; the North Pacific Coast region had the lowest debris loads. The Southern California Bight region had the highest land-based debris loads. Debris loads decreased over time for all source categories in all regions except for land-based and general-source loads in the North Pacific Coast region, which were unchanged. General-source debris comprised 30–40% of the items in all regions. Larger local populations were associated with higher land-based debris loads across regions; the effect declined at higher population levels. Upwelling affected deposition of ocean-based and general-source debris loads but not land-based loads along the Pacific Coast. LNSO decreased debris loads for both land-based and ocean-based debris but not general-source debris in Hawai’i, a more complex climate-ocean effect than had previously been found.

  17. Kinematic Evaluation of Association between Disc Bulge Migration, Lumbar Segmental Mobility, and Disc Degeneration in the Lumbar Spine Using Positional Magnetic Resonance Imaging

    PubMed Central

    Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.

    2011-01-01

    Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937

  18. Tidal disruption and the appearance of periodic comet Shoemaker-Levy 9

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.; Chodas, P. W.; Yeomans, D. K.

    1994-01-01

    A unified model is formulated to interpret quantitatively the observed characteristics of the nuclear train, the two dust trails, and the tail region of P/Shoemaker-Levy 9 in terms of a collisionally modified rotation velocity distribution of the comet's debris. Since there is no evidence for the comet's out-gassing, the model does not assume activity. The discruption of the parent comet was due primarily to tidal stesses during its extremely close approach to Juptier in July 1992. The original nucleus is found to have been most probably approximately 5 km in radius or, equivalently, approximately 10(exp 17) g in mass. The dynamical separation of the debris occurred apparently approximately 2.2 hr after the perijove passage, even though the actual fragmentation of the original mass is likely to have begun before closest approach. Physical breakp was accompanied by ubiquitous low-velocity collisions among the particulates, resulting in a rearrangement of the initial rotaional velocities into a rapidly 'thermalized' distribution, characterized by a long tail of relatively high velocities for the debris that populates the dust trails far from the nuclear train. Compelling evidence is presented for secondary fragmentation events, indicative of the comet's continuing disintegration. Secondary fragmentation may be caused by rotational bursting of the massive fragments that had been cracked but unbroken during the tidal disruption. Impact conditions and possible interactions of the comet's debris with the jovian system during the encounter in July 1994 are described.

  19. NASA Research Center Contributions to Space Shuttle Return to Flight (SSRTF)

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Barnes, Robert S.; Belvin, Harry L.; Allmen, John; Otero, Angel

    2005-01-01

    Contributions provided by the NASA Research Centers to key Space Shuttle return-to-flight milestones, with an emphasis on debris and Thermal Protection System (TPS) damage characterization, are described herein. Several CAIB recommendations and Space Shuttle Program directives deal with the mitigation of external tank foam insulation as a debris source, including material characterization as well as potential design changes, and an understanding of Orbiter TPS material characteristics, damage scenarios, and repair options. Ames, Glenn, and Langley Research Centers have performed analytic studies, conducted experimental testing, and developed new technologies, analysis tools, and hardware to contribute to each of these recommendations. For the External Tank (ET), these include studies of spray-on foam insulation (SOFI), investigations of potential design changes, and applications of advanced non-destructive evaluation (NDE) technologies to understand ET TPS shedding during liftoff and ascent. The end-to-end debris assessment included transport analysis to determine the probabilities of impact for various debris sources. For the Orbiter, methods were developed, and validated through experimental testing, to determine thresholds for potential damage of Orbiter TPS components. Analysis tools were developed and validated for on-orbit TPS damage assessments, especially in the area of aerothermal environments. Advanced NDE technologies were also applied to the Orbiter TPS components, including sensor technologies to detect wing leading edge impacts during liftoff and ascent. Work is continuing to develop certified TPS repair options and to develop improved methodologies for reinforced carbon-carbon (RCC) damage progression to assist in on-orbit repair decision philosophy.

  20. KSC-06pd1274

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - An X-band radar is installed on the U.S. Naval Ship Hayes at Port Canaveral in Florida to support the July 1 launch of Space Shuttle Discovery on mission STS-121. There are two Continuous Pulse Doppler X-band radars located on ships for the STS-121 launch. The other one is mounted on a booster recovery ship downrange of the launch site. The two radars provide velocity and differential Shuttle/debris motion information. Combined with the C-band radar located at the Haulover Canal near the launch site, they provide high definition images of any debris that might fall from the external tank/shuttle. The X-band data (screen captures) will be sent from the ships via satellite link to the National Center for Atmospheric Research site. Photo credit: NASA/Jim Grossmann

  1. KSC-06pd1273

    NASA Image and Video Library

    2006-06-28

    KENNEDY SPACE CENTER, FLA. - An X-band radar is transferred onto the U.S. Naval Ship Hayes at Port Canaveral in Florida to support the July 1 launch of Space Shuttle Discovery on mission STS-121. There are two Continuous Pulse Doppler X-band radars located on ships for the STS-121 launch. The other one is mounted on a booster recovery ship downrange of the launch site. The two radars provide velocity and differential Shuttle/debris motion information. Combined with the C-band radar located at the Haulover Canal near the launch site, they provide high definition images of any debris that might fall from the external tank/shuttle. The X-band data (screen captures) will be sent from the ships via satellite link to the National Center for Atmospheric Research site. Photo credit: NASA/Jim Grossmann

  2. Effects of desensitizing toothpastes on the permeability of dentin after different brushing times: An in vitro study.

    PubMed

    Yang, Meng; Lin, Hong; Jiang, Ruodan; Zheng, Gang

    2016-12-01

    To investigate the effects of three commercially available desensitizing toothpastes on dentin permeability, and compare the efficacy of each product for reducing dentin permeability in the short term according to the frequency and duration of usage. 100 dentin discs with no caries were prepared from freshly extracted human third molar teeth. The dentin discs were brushed with three desensitizing toothpastes or with a non-desensitizing toothpaste and distilled water, which served as control. The 100 dentin slices were randomly divided into two groups (n= 50): one group underwent continuous brushing (brushed for 3 minutes continuously), and the other group underwent discontinuous brushing (brushed three times, each time for 1 minute). Then, the two groups were divided into five subgroups (n = 10) for the five brushing applications. Dentin permeability was measured with a hydraulic permeability system before and after brushing. All desensitizing toothpastes reduced dentin permeability significantly after treatment. Sensodyne Repair and Protect (calcium sodium phosphosilicate) and discontinuous brushing reduced dentin permeability significantly compared with continuous brushing. Dentin permeability values showed no significant difference between the three toothpastes after 3 minutes of continuous brushing. When comparing the three toothpastes under discontinuous brushing conditions after 3 minutes, Sensodyne Repair and Protect (calcium sodium phosphosilicate) reduced dentin permeability significantly. Sensodyne Repair and Protect (calcium sodium phosphosilicate) and discontinuous brushing reduced dentin permeability significantly compared with continuous brushing. Moreover, brushing with Sensodyne Repair and Protect (calcium sodium phosphosilicate) resulted in the lowest dentin permeability compared with those of the other two toothpastes. These results indicated that Sensodyne Repair and Protect may relieve dentin hypersensitivity.

  3. Imaginal Disc Abnormalities in Lethal Mutants of Drosophila

    PubMed Central

    Shearn, Allen; Rice, Thomas; Garen, Alan; Gehring, Walter

    1971-01-01

    Late lethal mutants of Drosophila melanogaster, dying after the larval stage of development, were isolated. The homozygous mutant larvae were examined for abnormal imaginal disc morphology, and the discs were injected into normal larval hosts to test their capacities to differentiate into adult structures. In about half of the mutants analyzed, disc abnormalities were found. Included among the abnormalities were missing discs, small discs incapable of differentiating, morphologically normal discs with limited capacities for differentiation, and discs with homeotic transformations. In some mutants all discs were affected, and in others only certain discs. The most extreme abnormal phenotype is a class of “discless” mutants. The viability of these mutant larvae indicates that the discs are essential only for the development of an adult and not of a larva. The late lethals are therefore a major source of mutants for studying the genetic control of disc formation. Images PMID:5002822

  4. Phase plate technology for laser marking of magnetic discs

    DOEpatents

    Neuman, Bill; Honig, John; Hackel, Lloyd; Dane, C. Brent; Dixit, Shamasundar

    1998-01-01

    An advanced design for a phase plate enables the distribution of spots in arbitrarily shaped patterns with very high uniformity and with a continuously or near-continuously varying phase pattern. A continuous phase pattern eliminates large phase jumps typically expected in a grating that provides arbitrary shapes. Large phase jumps increase scattered light outside of the desired pattern, reduce efficiency and can make the grating difficult to manufacture. When manufacturing capabilities preclude producing a fully continuous grating, the present design can be easily adapted to minimize manufacturing errors and maintain high efficiencies. This continuous grating is significantly more efficient than previously described Dammann gratings, offers much more flexibility in generating spot patterns and is easier to manufacture and replicate than a multi-level phase grating.

  5. Choice of surgical approach for ossification of the posterior longitudinal ligament in combination with cervical disc hernia

    PubMed Central

    Yang, Hai-song; Lu, Xu-hua; Yang, Li–li; Yan, Wang-jun; Yuan, Wen; Chen, Yu

    2009-01-01

    Ossification of the posterior longitudinal ligament (OPLL) is a common spinal disorder that presents with or without cervical myelopathy. Furthermore, there is evidence suggesting that OPLL often coexists with cervical disc hernia (CDH), and that the latter is the more important compression factor. To raise the awareness of CDH in OPLL for spinal surgeons, we performed a retrospective study on 142 patients with radiologically proven OPLL who had received surgery between January 2004 and January 2008 in our hospital. Plain radiograph, three-dimensional computed tomography construction (3D CT), and magnetic resonance imaging (MRI) of the cervical spine were all performed. Twenty-six patients with obvious CDH (15 of segmental-type, nine of mixed-type, two of continuous-type) were selected via clinical and radiographic features, and intraoperative findings. By MRI, the most commonly involved level was C5/6, followed by C3/4, C4/5, and C6/7. The areas of greatest spinal cord compression were at the disc levels because of herniated cervical discs. Eight patients were decompressed via anterior cervical discectomy and fusion (ACDF), 13 patients via anterior cervical corpectomy and fusion (ACCF), and five patients via ACDF combined with posterior laminectomy and fusion. The outcomes were all favorable. In conclusion, surgeons should consider the potential for CDH when performing spinal cord decompression and deciding the surgical approach in patients presenting with OPLL. PMID:20012451

  6. Effects on the orbital debris environment due to solar activity

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.; Anz-Meador, Phillip D.

    1990-01-01

    The rate that earth-orbiting debris is removed from the environment is dependent on a number of factors which include orbital altitude and solar activity. It is generally believed that at lower altitudes and especially during periods of high solar activity, debris generated in the past will be eliminated from the environment. While some debris is eliminated, most is replaced by old debris from higher altitudes or new debris from recent launches. Some low altitude debris, which would reenter if the debris were in circular orbits, does not reenter because the debris is in higher-energy elliptical orbits.

  7. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  8. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  9. Erythrocyte deformability and aggregation responses to intermittent and continuous artificial gravity exposure

    NASA Astrophysics Data System (ADS)

    Marijke, Grau; Vera, Abeln; Tobias, Vogt; Wilhelm, Bloch; Stefan, Schneider

    2017-02-01

    Artificial gravity protocols are used to improve g-tolerance of aviators and discussed as countermeasure during prolonged space flight. Little is known about the impact of artificial gravity on the red blood cells (RBC). The purpose of the study was to test how artificial gravity affects RBC deformability and aggregation, which are important determinants of microcirculation. Nine male subjects were exposed to two hypergravity protocols using a short arm human centrifuge: a continuous (CONT) protocol with constant +2 Gz for 30 min and an intermittent (INTER) protocol with repeated intervals of +2 Gz and rest. Blood was sampled pre and post interventions to measure basal blood parameters, RBC nitrite, RBC deformability, aggregation, and to determine the shear rate balancing aggregation and disaggregation (γ at dIsc min). To test for orthostasis effects, five male subjects were asked to stay for 46 min, corresponding to the length of the centrifuge protocols, with blood sampling pre and post intervention. Artificial gravity programs did not affect basal blood parameters or RBC nitrite levels; a marker for RBC deformability influencing nitric oxide. The INTER program did not affect any of the tested parameters. The CONT program did not remarkably affect RBC deformability or γ at dIsc min but significantly aggravated aggregation. Orthostasis effects were thus excluded. The results indicate that continuous artificial gravity, especially with higher g-forces applied, may negatively affect the RBC system and that for a prolonged space flight intermittent but not continuous artificial gravity might represent an appropriate countermeasure.

  10. The effect of parental factors in children with large cup-to-disc ratios.

    PubMed

    Park, Hae-Young Lopilly; Ha, Min Ji; Shin, Sun Young

    2017-01-01

    To investigate large cup-to-disc ratios (CDR) in children and to determine the relationship between parental CDR and clinical characteristics associated with glaucoma. Two hundred thirty six children aged 6 to 12 years with CDR ≥ 0.6 were enrolled in this study. Subjects were classified into two groups based on parental CDR: disc suspect children with disc suspect (CDR ≥0.6) parents and disc suspect children without disc suspect parents. Ocular variables were compared between the two groups. Of the 236 disc suspect children, 100 (42.4%) had at least one disc suspect parent. Intraocular pressure (IOP) was higher in disc suspect children with disc suspect parents (16.52±2.66 mmHg) than in disc suspect children without disc suspect parents (14.38±2.30 mmHg, p = 0.023). In the group with disc suspect parents, vertical CDR significantly correlated with IOP (R = -0.325, p = 0.001), average retinal nerve fiber layer (RNFL) thickness (R = -0.319, p = 0.001), rim area (R = -0.740, p = 0.001), and cup volume (R = 0.499, p = 0.001). However, spherical equivalent (R = 0.333, p = 0.001), AL (R = -0.223, p = 0.009), and disc area (R = 0.325, p = 0.001) significantly correlated with vertical CDR in disc suspect children without disc suspect parents, in contrast to those with disc suspect parents. Larger vertical CDR was associated with the presence of disc suspect parents (p = 0.001), larger disc area (p = 0.001), thinner rim area (p = 0.001), larger average CDR (p = 0.001), and larger cup volume (p = 0.021). Family history of large CDR was a significant factor associated with large vertical CDR in children. In children with disc suspect parents, there were significant correlations between IOP and average RNFL thickness and vertical CDR.

  11. Space-based detection of space debris by photometric and polarimetric characteristics

    NASA Astrophysics Data System (ADS)

    Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue

    2017-10-01

    The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.

  12. Effects of disc warping on the inclination evolution of star-disc-binary systems

    NASA Astrophysics Data System (ADS)

    Zanazzi, J. J.; Lai, Dong

    2018-07-01

    Several recent studies have suggested that circumstellar discs in young stellar binaries may be driven into misalignement with their host stars due to the secular gravitational interactions between the star, disc, and the binary companion. The disc in such systems is twisted/warped due to the gravitational torques from the oblate central star and the external companion. We calculate the disc warp profile, taking into account the bending wave propagation and viscosity in the disc. We show that for typical protostellar disc parameters, the disc warp is small, thereby justifying the `flat-disc' approximation adopted in previous theoretical studies. However, the viscous dissipation associated with the small disc warp/twist tends to drive the disc towards alignment with the binary or the central star. We calculate the relevant time-scales for the alignment. We find that the alignment is effective for sufficiently cold discs with strong external torques, especially for systems with rapidly rotating stars, but is ineffective for the majority of the star-disc-binary systems. Viscous warp-driven alignment may be necessary to account for the observed spin-orbit alignment in multiplanet systems if these systems are accompanied by an inclined binary companion.

  13. Gas turbine sealing apparatus

    DOEpatents

    Wiebe, David J; Wessell, Brian J; Ebert, Todd; Beeck, Alexander; Liang, George; Marussich, Walter H

    2013-02-19

    A gas turbine includes forward and aft rows of rotatable blades, a row of stationary vanes between the forward and aft rows of rotatable blades, an annular intermediate disc, and a seal housing apparatus. The forward and aft rows of rotatable blades are coupled to respective first and second portions of a disc/rotor assembly. The annular intermediate disc is coupled to the disc/rotor assembly so as to be rotatable with the disc/rotor assembly during operation of the gas turbine. The annular intermediate disc includes a forward side coupled to the first portion of the disc/rotor assembly and an aft side coupled to the second portion of the disc/rotor assembly. The seal housing apparatus is coupled to the annular intermediate disc so as to be rotatable with the annular intermediate disc and the disc/rotor assembly during operation of the gas turbine.

  14. [Sciatica. From stretch rack to microdiscectomy].

    PubMed

    Gruber, P; Böni, T

    2015-12-01

    In ancient times as well as in the Middle Ages treatment options for discogenic nerve compression syndrome were limited and usually not very specific because of low anatomical and pathophysiological knowledge. The stretch rack (scamnum Hippocratis) was particularly prominent but was widely used as a therapeutic device for very different spinal disorders. Since the beginning of the nineteenth century anatomical knowledge increased and the advances in the fields of asepsis, anesthesia and surgery resulted in an increase in surgical interventions on the spine. In 1908 the first successful lumbar discectomy was initiated and performed by the German neurologist Heinrich O. Oppenheim (1858-1919) and the surgeon Fedor Krause (1857-1937); however, neither recognized the true pathological condition of discogenic nerve compression syndrome. With the landmark report in the New England Journal of Medicine in 1934, the two American surgeons William Jason Mixter (1880-1958) and Joseph Seaton Barr (1901-1963) finally clarified the pathomechanism of lumbar disc herniation and furthermore, propagated discectomy as the standard therapy. Since then interventions on intervertebral discs rapidly increased and the treatment options for lumbar disc surgery quickly evolved. The surgical procedures changed over time and were continuously being refined. In the late 1960s the surgical microscope was introduced for spinal surgery by the work of the famous neurosurgeon Mahmut Gazi Yasargil and his colleague Wolfhard Caspar and so-called microdiscectomy was introduced. Besides open discectomy other interventional techniques were developed to overcome the side effects of surgical procedures. In 1964 the American orthopedic surgeon Lyman Smith (1912-1991) introduced chemonucleolysis, a minimally invasive technique consisting only of a cannula and the proteolytic enzyme chymopapain, which is injected into the disc compartment to dissolve the displaced disc material. In 1975 the Japanese orthopedic surgeon Sadahisa Hijikata described percutaneous discectomy for the first time, which was a further minimally invasive surgical technique. Further variants of minimally invasive surgical procedures, such as percutaneous laser discectomy in 1986 and percutaneous endoscopic microdiscectomy in 1997, were also introduced; however, open discectomy, especially microdiscectomy remains the therapeutic gold standard for lumbar disc herniation.

  15. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications.

  16. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications.In this presentation, we will present GPM data products and services with examples.

  17. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. In this presentation, we will present GPM data products and services with examples.

  18. Andic soil features and debris flows in Italy. New perspective towards prediction

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Solange; Calcaterra, Domenico; Iamarino, Michela; Langella, Giuliano; Orefice, Nadia; Vingiani, Simona; Terribile, Fabio

    2016-04-01

    Debris flows are dangerous hazards causing fatalities and damage. Previous works have demonstrated that the materials involved by debris flows in Campania (southern Italy) are soils classified as Andosols. These soils have peculiar chemical and physical properties which make them fertile but also vulnerable to landslide. In Italy, andic soil properties are found both in volcanic and non-volcanic mountain ecosystems (VME and NVME). Here, we focused on the assessment of the main chemical and physical properties of the soils in the detachment areas of eight debris flows occurred in NVME of Italy in the last 70 years. Such landslides were selected by consulting the official Italian geodatabase (IFFI Project). Andic properties (by means of ammonium oxalate extractable Fe, Si and Al forms for the calculation of Alo+1/2Feo) were also evaluated and a comparison with soils of VME was performed to assess possible common features. Landslide source areas were characterised by slope gradient ranging from 25° to 50° and lithological heterogeneity of the bedrock. The soils showed similar, i.e. all were very deep, had a moderately thick topsoil with a high organic carbon (OC) content decreasing regularly with depth. The cation exchange capacity trend was generally consistent with the OC and the pH varied from extremely to slightly acid, but increased with depth. Furthermore, the soils had high water retention values both at saturation (0.63 to 0.78 cm3 cm-3) and in the dryer part of the water retention curve, and displayed a prevalent loamy texture. Such properties denote the chemical and physical fertility of the investigated ecosystems. The values of Alo+1/2Feoindicated that the soils had vitric or andic features and can be classified as Andosols. The comparison between NVME soils and those of VME showed similar depth, thickness of soil horizons, and family texture, whereas soil pH, degree of development of andic properties and allophane content were higher for VME soils. Such results are consistent with the different soil environments; indeed, in VME a continuous soil enrichment of weatherable volcanic glass affects both soil pH and formation of short range order clay minerals. In conclusion, the direct relationship between debris flows and Andosols, previously found in the Campania VME, is confirmed in some NVME. These findings highlight the similarity of the materials involved by debris flows both in VME and NVME and suggest the existence of a pedological control on debris flow initiation. Furthermore, these results encourage a further extension of soil studies to other European mountain ecosystems. The evidence that andic soils may play a crucial role in debris flows initiation in Italy enables to develop a new strategy for debris flows forecasting. For the case of Sarno 1998 landslides, we provide an example of innovative approach exploring the results obtained by combining the spatial distribution of these andic soils with "on the fly" simulation modelling of the soil water balance, using real time weather forecasting data. The obtained results enable to develop promising Geospatial Decision Support Systems to improve our ability to predict debris flows on soil-covered slopes.

  19. Manipulator having thermally conductive rotary joint for transferring heat from a test specimen

    DOEpatents

    Haney, S.J.; Stulen, R.H.; Toly, N.F.

    1983-05-03

    A manipulator for rotatably moving a test specimen in an ultra-high vacuum chamber includes a translational unit movable in three mutually perpendicular directions. A manipulator frame is rigidly secured to the translational unit for rotatably supporting a rotary shaft. A first copper disc is rigidly secured to an end of the rotary shaft for rotary movement within the vacuum chamber. A second copper disc is supported upon the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. The second disc receives a cryogenic cold head and does not rotate with the first disc. A sapphire plate is interposed between the first and second discs to prevent galling of the copper material while maintaining high thermal conductivity between the first and second discs. A spring is disposed on the shaft to urge the second disc toward the first disc and compressingly engage the interposed sapphire plate. A specimen mount is secured to the first disc for rotation within the vacuum chamber. The specimen maintains high thermal conductivity with the second disc receiving the cryogenic transfer line.

  20. 5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. AERATOR VIEW FROM DOWNSTREAM. FLUSH VALVE AT RIGHT OPENS TO CLEAR THE SYSTEM ABOVE THE SILT AND DEBRIS AND TO STOP THE FLOW OF WATER INTO THE SYSTEM DOWN LINE. BOX FLUME CONTINUES DOWN LINE TO SEDIMENTATION CHAMBER. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

Top