Characterizing Dusty Debris Disks with the Gemini Planet Imager
NASA Astrophysics Data System (ADS)
Chen, Christine; Arriaga, Pauline; Bruzzone, Sebastian; Choquet, Elodie; Debes, John H.; Donaldson, Jessica; Draper, Zachary; Duchene, Gaspard; Esposito, Thomas; Fitzgerald, Michael P.; Golimowski, David A.; Hines, Dean C.; Hinkley, Sasha; Hughes, A. Meredith; Kalas, Paul; Kolokolova, Ludmilla; Lawler, Samantha; Matthews, Brenda C.; Mazoyer, Johan; Metchev, Stanimir A.; Millar-Blanchaer, Max; Moro-Martin, Amaya; Nesvold, Erika; Padgett, Deborah; Patience, Jenny; Perrin, Marshall D.; Pueyo, Laurent; Rantakyro, Fredrik; Rodigas, Timothy; Schneider, Glenn; Soummer, Remi; Song, Inseok; Stark, Chris; Weinberger, Alycia J.; Wilner, David J.
2017-01-01
We have been awarded 87 hours of Gemini Observatory time to obtain multi-wavelength observations of HST resolved debris disks using the Gemini Planet Imager. We have executed ~51 hours of telescope time during the 2015B-2016B semesters observing 12 nearby, young debris disks. We have been using the GPI Spec and Pol modes to better constrain the properties of the circumstellar dust, specifically, measuring the near-infrared total intensity and polarization fraction colors, and searching for solid-state spectral features of nearby beta Pic-like disks. We expect that our observations will allow us to break the degeneracy among the particle properties such as composition, size, porosity, and shape. We present some early results from our observations.
A Study on the Characteristics of the Structure of Vega's Debris Disk
NASA Astrophysics Data System (ADS)
Lu, Tao; Ji, Jiang-hui
2013-10-01
The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.
A Study on the Characteristics of the Structure of Vega's Debris Disk
NASA Astrophysics Data System (ADS)
Lu, T.; Ji, J. H.
2013-03-01
Clumpy structure in the Vega's debris disk has been previously reported at millimeter wavelengths and attributed to the concentrations of dust grains trapped in resonances with a potential planet. However, current imaging at multi-wavelengths with higher sensitivity is against the former observed structure. The disk is now revealed to have a smooth structure. A planet orbiting Vega could not be neglected,but the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize modified MERCURY codes to numerically simulate Vega system, consisting of debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80~AU and 120~AU, respectively. The radius of dust grains distributes in the range from 10 μm to 100 μm, in nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e=0.6), the planetary semi-major axis cannot be larger than 60~AU, otherwise, the structure of debris disk will congregate due to the existence of the postulated planet. The 2:1 mean motion resonances may play a significant role in sculpting the debris disk.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
The Inner 25 au Debris Distribution in the ϵ Eri System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kate Y. L.; Rieke, George H.; Ballering, Nicholas P.
Debris disk morphology is wavelength dependent due to the wide range of particle sizes and size-dependent dynamics influenced by various forces. Resolved images of nearby debris disks reveal complex disk structures that are difficult to distinguish from their spectral energy distributions. Therefore, multi-wavelength resolved images of nearby debris systems provide an essential foundation to understand the intricate interplay between collisional, gravitational, and radiative forces that govern debris disk structures. We present the Stratospheric Observatory for Infrared Astronomy (SOFIA) 35 μ m resolved disk image of ϵ Eri, the closest debris disk around a star similar to the early Sun. Combiningmore » with the Spitzer resolved image at 24 μ m and 15–38 μ m excess spectrum, we examine two proposed origins of the inner debris in ϵ Eri: (1) in situ planetesimal belt(s) and (2) dragged-in grains from the cold outer belt. We find that the presence of in situ dust-producing planetesmial belt(s) is the most likely source of the excess emission in the inner 25 au region. Although a small amount of dragged-in grains from the cold belt could contribute to the excess emission in the inner region, the resolution of the SOFIA data is high enough to rule out the possibility that the entire inner warm excess results from dragged-in grains, but not enough to distinguish one broad inner disk from two narrow belts.« less
Millimeter Studies of Nearby Debris Disks
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2017-03-01
At least 20% of nearby main sequence stars are known to be surrounded by disks of dusty material resulting from the collisional erosion of planetesimals, similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies, like planets, in the system through collisions and gravitational perturbations. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since the large grains that dominate emission at these long wavelengths reliably trace the underlying planetesimal distribution. In this thesis, I have used state-of-the-art observations at millimeter wavelengths to address three related questions concerning debris disks and planetary system evolution: 1) How are wide-separation, substellar companions formed? 2) What is the physical nature of the collisional process in debris disks? And, 3) Can the structure and morphology of debris disks provide probes of planet formation and subsequent dynamical evolution? Using ALMA observations of GQ Lup, a pre-main sequence system with a wide-separation, substellar companion, I have placed constraints on the mass of a circumplanetary disk around the companion, informing formation scenarios for this and other similar systems (Chapter 2). I obtained observations of a sample of fifteen debris disks with both the VLA and ATCA at centimeter wavelengths, and robustly determined the millimeter spectral index of each disk and thus the slope of the grain size distribution, providing the first observational test of collision models of debris disks (Chapter 3). By applying an MCMC modeling framework to resolved millimeter observations with ALMA and SMA, I have placed the first constraints on the position, width, surface density gradient, and any asymmetric structure of the AU Mic, HD 15115, Epsilon Eridani, Tau Ceti, and Fomalhaut debris disks (Chapters 4–8). These observations of individual systems hint at trends in disk structure and dynamics, which can be explored further with a comparative study of a sample of the eight brightest debris disks around Sun-like stars within 20 pc (Chapter 9). This body of work has yielded the first resolved images of notable debris disks at millimeter wavelengths, and complements other ground- and space-based observations by providing constraints on these systems with uniquely high angular resolution and wavelength coverage. Together these results provide a foundation to investigate the dynamical evolution of planetary systems through multi-wavelength observations of debris disks.
Millimeter Studies of Nearby Debris Disks
NASA Astrophysics Data System (ADS)
MacGregor, Meredith A.
2017-01-01
At least 20% of nearby main sequence stars are known to be surrounded by disks of dusty material resulting from the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. Since the dust-producing planetesimals are expected to persist in stable regions like belts and resonances, the locations, morphologies, and physical properties of dust in these ‘debris disks’ provide probes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since the large grains that dominate emission at these long wavelengths do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The newly upgraded capabilities of millimeter interferometers like ALMA are providing us with the opportunity to image these disks with unprecedented sensitivity and resolution. In this dissertation talk, I will present my ongoing work, which uses observations of the angularly resolved brightness distribution and the spectral dependence of the flux density to constrain both the structure and grain size distribution of a sample of nearby debris disks. I will present constraints on the position, width, surface density gradient, and any asymmetric structure of several debris disks (including Epsilon Eridani, Tau Ceti, and Fomalhaut) determined from ALMA and SMA observations. In addition, I will present the results of a survey using the VLA and ATCA to measure the long wavelength spectral index and thus the grain size distribution of fifteen debris disks. Together these results provide a foundation to investigate the dynamical evolution of planetary systems through multi-wavelength observations of debris disks.
HD 100453: An evolutionary link between protoplanetary disks and debris disks
NASA Astrophysics Data System (ADS)
Collins, Karen
2008-12-01
Herbig Ae stars are young stars usually surrounded by gas and dust in the form of a disk and are thought to evolve into planetary systems similar to our own. We present a multi-wavelength examination of the disk and environment of the Herbig Ae star HD 100453A, focusing on the determination of accretion rate, system age, and disk evolution. We show that the accretion rate is characterized by Chandra X-ray imagery that is inconsistent with strongly accreting early F stars, that the disk lacks the conspicuous Fe II emission and continuum seen in FUV spectra of actively accreting Herbig Ae stars, and that FUSE, HST, and FEROS data suggest an accretion rate below ˜ 2.5×10 -10 [Special characters omitted.] M⊙ yr -1 . We confirm that HD 100453B is a common proper motion companion to HD 100453A, with spectral type M4.0V - M4.5V, and derive an age of 14 ± 4 Myr. We examine the Meeus et al. (2001) hypothesis that Meeus Group I sources, which have a mid-IR bump which can be fitted by a black body component, evolve to Meeus Group II sources, which have no such mid-IR bump. By considering stellar age and accretion rate evidence, we find the hypothesis to be invalid. Furthermore, we find that the disk characteristics of HD 100453A do not fit the traditional definition of a protoplanetary disk, a transitional disk, or a debris disk, and they may suggest a new class of disks linking gas-rich protoplanetary disks and gas-poor debris disks.
Potential multi-component structure of the debris disk around HIP 17439 revealed by Herschel/DUNES
NASA Astrophysics Data System (ADS)
Ertel, S.; Marshall, J. P.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Eiroa, C.; Mora, A.; del Burgo, C.; Montesinos, B.; Bryden, G.; Danchi, W.; Kirchschlager, F.; Liseau, R.; Maldonado, J.; Pilbratt, G. L.; Schüppler, Ch.; Thébault, Ph.; White, G. J.; Wolf, S.
2014-01-01
Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims: Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods: We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results: A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions: The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
The AU Microscopii Debris Disk: Multiwavelength Imaging and Modeling
NASA Astrophysics Data System (ADS)
Fitzgerald, Michael P.; Kalas, Paul G.; Duchêne, Gaspard; Pinte, Christophe; Graham, James R.
2007-11-01
Debris disks around main-sequence stars are produced by the destruction of unseen parent bodies. AU Microscopii (GJ 803) is a compelling object to study in the context of disk evolution across different spectral types, as it is an M dwarf whose nearly edge-on disk may be directly compared to that of its A5 V sibling β Pic. We resolve the disk from 8-60 AU in the near-IR JHK' bands at high resolution with the Keck II Telescope and adaptive optics, and develop a data reduction technique for the removal of the stellar point-spread function. We measure a blue color across the near-IR bands, and confirm the presence of substructure in the inner disk. Some of the structural features exhibit wavelength-dependent positions. Recent measurements of the scattered-light polarization indicate the presence of porous grains. The scattering properties of these porous grains have a strong effect on the inferred structure of the disk relative to the majority of previously modeled grain types. Complementing prior work, we use a Monte Carlo radiative transfer code to compare a relatively simple model of the distribution of porous grains to a broad data set, simultaneously fitting midplane surface brightness profiles and the spectral energy distribution. Our model confirms that the large-scale architecture of the disk is consistent with detailed models of steady state grain dynamics. A belt of parent bodies from 35-40 AU produces dust that is then swept outward by stellar wind and radiation. We infer the presence of very small grains in the region exterior to the belt, down to sizes of ~0.05 μm. These sizes are consistent with stellar mass-loss rates M˙*<<102 M˙solar
Super-Keplerian Motions in the AU Mic Circumstellar Debris System
NASA Astrophysics Data System (ADS)
Wisniewski, John
2017-08-01
We found enigmatic, few-au-scale features in spatially resolved near-IR scattered light observations of the AU Mic debris disk system obtained with VLT/SPHERE in 2014. We recovered these structures in re-analysis of HST/STIS imagery from 2010/2011, and discovered that they are moving away from the star at super-Keplerian speeds, possibly escaping the system. To-date, these are the only moving features seen in resolved imagery of debris disks. To help diagnose the origin of this phenomenon and in concert with multi-wavelength diagnostics being pursued with other facilities, we propose to use 12 orbits of HST/STIS to re-image the AU Mic scattered light disk from 0.2 (2 au) to 13 (130 au) 8 years after the previous epoch of HST/STIS imagery. HST/STIS provides the only means to trace the motion of structures that have already moved outside the FOV of ground-based extreme-AO imagers, the best means to accurately diagnose the morphological and kinematic evolution of these moving features, and the best means to trace the evolution of small grains in the system. Our optical STIS coronagraphy observations are critically needed to establish the locations and shapes of the blobs, establish their optical fluxes at high photometric fidelity, and therefore enable (IR - optical) colors of disk features to be measured in JWST's cycle-1, using NIRCAM's and MIRI's coronagraphs. These data will constrain the grain size distribution, hence mass, of the moving features and by extension the magnitude of the force that is expelling the features, enabling us to test whether mechanisms like the stellar wind or coronal-mass ejections are responsible for the newly observed phenomenon.
Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M. J.
2013-01-01
Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.
Reading the Signatures of Extrasolar Planets in Debris Disks
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2009-01-01
An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.
Modeling and Observations of Debris Disks
NASA Astrophysics Data System (ADS)
Moro-Martín, Amaya
2009-08-01
Debris disks are disks of dust observed around mature main sequence stars (generally A to K2 type). They are evidence that these stars harbor a reservoir of dust-producing plantesimals on spatial scales that are similar to those found for the small-body population of our solar system. Debris disks present a wide range of sizes and structural features (inner cavities, warps, offsets, rings, clumps) and there is growing evidence that, in some cases, they might be the result of the dynamical perturbations of a massive planet. Our solar system also harbors a debris disk and some of its properties resemble those of extra-solar debris disks. The study of these disks can shed light on the diversity of planetary systems and can help us place our solar system into context. This contribution is an introduction to the debris disk phenomenon, including a summary of debris disks main properties (§1-based mostly on results from extensive surveys carried out with Spitzer), and a discussion of what they can teach us about the diversity of planetary systems (§2).
Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material
NASA Technical Reports Server (NTRS)
Ng, Daniel
1998-01-01
A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.
A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk
NASA Astrophysics Data System (ADS)
Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha
2017-02-01
We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}⊙ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca II triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}⊙ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.
Creating Compositionally-Driven Debris Disk Dust Models
NASA Astrophysics Data System (ADS)
Zimmerman, Mara; Jang-Condell, Hannah; Schneider, Glenn; Chen, Christine; Stark, Chris
2018-06-01
Debris disks play a key role in exoplanet research; planetary formation and composition can be inferred from the nature of the circumstellar disk. In order to characterize the properties of the circumstellar dust, we create models of debris disks in order to find the composition. We apply Mie theory to calculate the dust absorption and emission within debris disks. We have data on nine targets from Spitzer and Hubble Space Telescope. The Spitzer data includes mid-IR spectroscopy and photometry. We have spatially-resolved optical and near-IR images of the disks from HST. Our goal is to compare this data to the model. By using a model that fits for photometric and mid-IR datasimultaneously, we gain a deeper understanding of the structure and composition of the debris disk systems.
NASA Technical Reports Server (NTRS)
Grady, Carol A.
2011-01-01
Despite more than a decade of coronagraphic imaging of debris disk candidate stars, only 16 have been imaged in scattered light. Since imaged disks provide our best insight into processes which sculpt disks, and can provide signposts of the presence of giant planets at distances which would elude radial velocity and transit surveys, we need to understand under what conditions we detect the disks in scattered light, how these disks differ from the majority of debris disks, and how to increase the yield of disks which are imaged with 0.1" angular resolution. In this talk, I will review what we have learned from a shallow HSTINICMOS NIR survey of debris disks, and present first results from our on-going HST /STIS optical imaging of bright scattered-light disks.
Formation of Sharp Eccentric Rings in Debris Disks with Gas but Without Planets
NASA Technical Reports Server (NTRS)
Lyra, W.; Kuchner, M.
2013-01-01
'Debris disks' around young stars (analogues of the Kuiper Belt in our Solar System) show a variety of non-trivial structures attributed to planetary perturbations and used to constrain the properties of those planets. However, these analyses have largely ignored the fact that some debris disks are found to contain small quantities of gas, a component that all such disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio of about unity, at which the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report linear and nonlinear modelling that shows that dust-gas interactions can produce some of the key patterns attributed to planets. We find a robust clumping instability that organizes the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The conclusion that such disks might contain planets is not necessarily required to explain these systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
A search for debris disks in the Herschel-ATLAS
NASA Astrophysics Data System (ADS)
Thompson, M. A.; Smith, D. J. B.; Stevens, J. A.; Jarvis, M. J.; Vidal Perez, E.; Marshall, J.; Dunne, L.; Eales, S.; White, G. J.; Leeuw, L.; Sibthorpe, B.; Baes, M.; González-Solares, E.; Scott, D.; Vieiria, J.; Amblard, A.; Auld, R.; Bonfield, D. G.; Burgarella, D.; Buttiglione, S.; Cava, A.; Clements, D. L.; Cooray, A.; Dariush, A.; de Zotti, G.; Dye, S.; Eales, S.; Frayer, D.; Fritz, J.; Gonzalez-Nuevo, J.; Herranz, D.; Ibar, E.; Ivison, R. J.; Lagache, G.; Lopez-Caniego, M.; Maddox, S.; Negrello, M.; Pascale, E.; Pohlen, M.; Rigby, E.; Rodighiero, G.; Samui, S.; Serjeant, S.; Temi, P.; Valtchanov, I.; Verma, A.
2010-07-01
Aims: We aim to demonstrate that the Herschel-ATLAS (H-ATLAS) is suitable for a blind and unbiased survey for debris disks by identifying candidate debris disks associated with main sequence stars in the initial science demonstration field of the survey. We show that H-ATLAS reveals a population of far-infrared/sub-mm sources that are associated with stars or star-like objects on the SDSS main-sequence locus. We validate our approach by comparing the properties of the most likely candidate disks to those of the known population. Methods: We use a photometric selection technique to identify main sequence stars in the SDSS DR7 catalogue and a Bayesian Likelihood Ratio method to identify H-ATLAS catalogue sources associated with these main sequence stars. Following this photometric selection we apply distance cuts to identify the most likely candidate debris disks and rule out the presence of contaminating galaxies using UKIDSS LAS K-band images. Results: We identify 78 H-ATLAS sources associated with SDSS point sources on the main-sequence locus, of which two are the most likely debris disk candidates: H-ATLAS J090315.8 and H-ATLAS J090240.2. We show that they are plausible candidates by comparing their properties to the known population of debris disks. Our initial results indicate that bright debris disks are rare, with only 2 candidates identified in a search sample of 851 stars. We also show that H-ATLAS can derive useful upper limits for debris disks associated with Hipparcos stars in the field and outline the future prospects for our debris disk search programme. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective
NASA Technical Reports Server (NTRS)
Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton
2016-01-01
We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.
Inventoring Gas in Debris Disks: UV Spectroscopy of Eta Tel
NASA Astrophysics Data System (ADS)
Roberge, Aki
2015-10-01
Debris disks stand between gas-rich protoplanetary disks and mature planetary systems, shedding light on the late stages of planet formation. Their dust component has been extensively studied, yet has provided little information about disk chemical composition. More information can be provided by their gas content, but astonishingly little is known about it. Only two debris disks have measurements of their gas composition, which is shockingly carbon-rich (Beta Pictoris and 49 Ceti). Basic questions remain unanswered. What are the typical gas-to-dust ratios in debris disks? What is the chemical composition of debris gas and its parent material? The answers to these questions have profound implications for terrestrial planet assembly and the origins of planetary atmospheres.Most detections of debris gas to date were achieved with line of sight UV/optical absorption spectroscopy of edge-on disks, using the central star as the background source. This technique is far more sensitive to small amounts of gas than emission line studies. The UV bandpass is particularly important, since strong transitions of numerous atomic and molecular species lie there. We propose extending our intriguing studies of debris gas with STIS UV spectroscopy of a highly promising debris disk system, Eta Tel. This disk is edge-on and contains circumstellar atomic gas (CII). We will measure column densities of the most important gas species, find the relative elemental gas abundances, and determine the gas mass using a powerful gas disk modeling code. We will also divide our observations into two visits, to search for signs of star-grazing exocomets, which are seen in both Beta Pic and 49 Cet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Gáspár, András, E-mail: ballerin@email.arizona.edu
Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by themore » presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.« less
Enhancing the Scientific Return from HST Imaging of Debris Disks
NASA Astrophysics Data System (ADS)
Weinberger, Alycia
2016-10-01
We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.
HST/WFC3 Imaging and Multi-Wavelength Characterization of Edge-On Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Gould, Carolina; Williams, Hayley; Duchene, Gaspard
2017-10-01
In recent years, the imaging detail in resolved protoplanetary disks has vastly improved and created a critical mass of objects to survey and compare properties, leading us to better understandings of system formation. In particular, disks with an edge-on inclination offer an important perspective, not only for the imaging convenience since the disk blocks stellar light, but scientifically an edge-on disk provides an otherwise impossible opportunity to observe vertical dust structure of a protoplanetary system. In this contribution, we compare seven HST-imaged edge-on protoplanetary disks in the Taurus, Chamaeleon and Ophiuchus star-forming regions, making note the variation in morphology (settled vs flared), dust properties revealed by multiwavelength color mapping, brightness variability over years timescales, and the presence in some systems of a blue-colored atmosphere far above the disk midplane. By using a uniform approach for their analysis, together these seven edge-on protoplanetary disk systems can give insights on evolutionary processes and inform future projects that explore this critical stage of planet formation.
The properties of the gas around beta Pictoris
NASA Astrophysics Data System (ADS)
Roberge, A.
2014-09-01
Debris disks are often described as gas-free. Compared to protoplanetary disks, they do in general have low gas abundances, as evidenced by the very few detections of sub-mm CO emission from bona fide debris disks to date. However, some debris disks do contain low levels of detectable gas, typically seen in absorption against the stellar spectrum at UV and optical wavelengths. Of all debris disks, the gas in the Beta Pic disk is the best characterized and understood. Here, I describe those characteristics and explain our current understanding of the nature of the gas. Like the dust, the gas is secondary material coming from planetesimal destruction, and provides opportunities for sensitive probes of the bulk composition of young planetary bodies. The gas can also be a sensitive tracer of disk asymmetries and dynamical interactions, as shown by new ALMA observations of CO emission from Beta Pic (see attached infographic and YouTube video explaining the discovery). Very likely, every debris disk contains its due portion of gas, but how much that is, we do not yet know. We are poised to answer this question with the advent of ALMA. With its unprecedented sensitivity and spatial resolution, ALMA may usher in a golden age for general studies of debris gas.
Gas in Protoplanetary and Debris Disks: Insights from UV Spectroscopy
NASA Technical Reports Server (NTRS)
Roberge, Aki
2008-01-01
Over the last two decades, observations of protoplanetary and debris disks have played an important role in the new field of extrasolar planetary studies. Many are familiar with the extensive work on the cold circumstellar dust present in these disks done using infrared and sub-millimeter photometry and spectroscopy. However. UV spectroscopy has made some unique contributions by probing the elusive but vital gas component in protoplanetary and debris disks. In this talk, I will outline our picture of the evolution of protoplanetary disks and discuss the importance of the gas component. New insights obtained from UV spectroscopy will be highlighted, as well as some new puzzles. Finally, I will touch on upcoming studies of gas in protoplanetary and debris disks, some at UV wavelengths, some at far-IR and sub-mm wavelengths.
NASA Astrophysics Data System (ADS)
Nguyen, T.; Pankratius, V.; Eckman, L.; Seager, S.
2018-04-01
Debris disks around stars other than the Sun have received significant attention in studies of exoplanets, specifically exoplanetary system formation. Since debris disks are major sources of infrared emissions, infrared survey data such as the Wide-Field Infrared Survey (WISE) catalog potentially harbors numerous debris disk candidates. However, it is currently challenging to perform disk candidate searches for over 747 million sources in the WISE catalog due to the high probability of false positives caused by interstellar matter, galaxies, and other background artifacts. Crowdsourcing techniques have thus started to harness citizen scientists for debris disk identification since humans can be easily trained to distinguish between desired artifacts and irrelevant noises. With a limited number of citizen scientists, however, increasing data volumes from large surveys will inevitably lead to analysis bottlenecks. To overcome this scalability problem and push the current limits of automated debris disk candidate identification, we present a novel approach that uses citizen science results as a seed to train machine learning based classification. In this paper, we detail a case study with a computer-aided discovery pipeline demonstrating such feasibility based on WISE catalog data and NASA's Disk Detective project. Our approach of debris disk candidates classification was shown to be robust under a wide range of image quality and features. Our hybrid approach of citizen science with algorithmic scalability can facilitate big data processing for future detections as envisioned in future missions such as the Transiting Exoplanet Survey Satellite (TESS) and the Wide-Field Infrared Survey Telescope (WFIRST).
Searching for Faint Traces of CO(2-1) and HCN(4-3) Gas In Debris Disks
NASA Astrophysics Data System (ADS)
Stafford Lambros, Zachary; Hughes, A. Meredith
2018-01-01
The surprising presence of molecular gas in the debris disks around main sequence stars provides an opportunity to study the dissipation of primordial gas and, potentially, the composition of gas in other solar systems. Molecular gas is not expected to survive beyond the pre-main sequence phase, and it is not yet clear whether the gas is a remnant of the primordial protoplanetary material or whether the gas, like the dust, is second-generation material produced by collisional or photodesorption from planetesimals, exocomets, or the icy mantles of dust grains. Here we present two related efforts to characterize the prevalence and properties of gas in debris disks. First, we place the lowest limits to date on the CO emission from an M star debris disk, using 0.3" resolution observations of CO(2-1) emission from the AU Mic system with the Atacama Large Millimeter/submillimeter Array (ALMA). We place a 3-sigma upper limit on the integrated flux of 0.39 Jy km/s, corresponding to a maximum CO mass of 5e10-6 (Earth Masses) if the gas is in LTE. We also present the results of an ALMA search for HCN(4-3) emission from the prototypical gas-rich debris disk around 49 Ceti at a spatial resolution of 0.3". Despite hosting one of the brightest CO-rich debris disks yet discovered, our observations of 49 Ceti also yield a low upper limit of 0.057 Jy km/s in the HCN line, leaving CO as the only molecule clearly detected in emission from a debris disk. We employ several methods of detecting faint line emission from debris disks, including a model based on Keplerian kinematics as well as a spectral shifting method previously used to detect faint CO emission from the Fomalhaut debris disk, and compare our results.
Multiwavelength Imaging Of YSOs With Disk In South Pillars Of Eta Carina
NASA Astrophysics Data System (ADS)
Reyes, J. A.; Porras, B. A.
2013-04-01
We present multiwavelength imaginery and spectral energy distributions (SEDs) of 15 Young Stellar Objects (YSOs) with disk components lying on the South Pillars region close to Eta Carina (η Car). The SEDs include IR fluxes from 2MASS, IRAC, MSX, AKARI, and MIPS-24 μm, and 1.1 mm flux from AzTEC camera at the ASTE antenna. Millimeter fluxes help to constrain the number of fitted models, which provide the list of physical parameters for the star, the disk and the envelope. We then compare the parameters of the YSOs and their spatial location within the star forming region.
Exploration of the aftermath of a large collision in an extreme debris disk
NASA Astrophysics Data System (ADS)
Moor, Attila; Abraham, Peter; Cataldi, Gianni; Kospal, Agnes; Pal, Andras; Vida, Krisztian
2018-05-01
Warm debris disks with extremely high fractional luminosities are exceptional, rare systems. Not explainable by steady-state evolutionary models, these extreme debris disks are believed to stem from a recent large collision of planetary embryos in the terrestrial zone. Our team recently discovered a new extreme debris disk around TYC 4209-1322-1, whose WISE W1/W2 band photometry showed a significant brightening probably related to a giant collision in the inner disk. In Cycle 13 we monitor the system by Spitzer, revealing a fading trend with an e-folding time of 1500 days with hints for a quasi-periodic modulation and a possible second smaller amplitude collision event. Here we propose to continue the monitoring campaign until the end of Cycle 14 to explore the evolution of the current long fading trend and of the second collision, and characterize the hinted modulation. Thanks to a better sampled Spitzer light curve and the unique opportunity that NASA's TESS satellite will obtain high-precision optical photometry in the same period, a new dimension will be opened in Cycle 14 in the study of one of the most spectacular extreme debris disk, scrutinizing for the first time the possible influence of stellar activity on a debris disk.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.;
2017-01-01
We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.
We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2012-05-01
We present models for the formation of terrestrial planets, and the collisional evolution of debris disks, in planetary systems that contain multiple marginally unstable gas giants. We previously showed that in such systems, the dynamics of the giant planets introduces a correlation between the presence of terrestrial planets and cold dust, i.e., debris disks, which is particularly pronounced at λ ~ 70 μm. Here we present new simulations that show that this connection is qualitatively robust to a range of parameters: the mass distribution of the giant planets, the width and mass distribution of the outer planetesimal disk, and the presence of gas in the disk when the giant planets become unstable. We discuss how variations in these parameters affect the evolution. We find that systems with equal-mass giant planets undergo the most violent instabilities, and that these destroy both terrestrial planets and the outer planetesimal disks that produce debris disks. In contrast, systems with low-mass giant planets efficiently produce both terrestrial planets and debris disks. A large fraction of systems with low-mass (M ≲ 30 M⊕) outermost giant planets have final planetary separations that, scaled to the planets' masses, are as large or larger than the Saturn-Uranus and Uranus-Neptune separations in the solar system. We find that the gaps between these planets are not only dynamically stable to test particles, but are frequently populated by planetesimals. The possibility of planetesimal belts between outer giant planets should be taken into account when interpreting debris disk SEDs. In addition, the presence of ~ Earth-mass "seeds" in outer planetesimal disks causes the disks to radially spread to colder temperatures, and leads to a slow depletion of the outer planetesimal disk from the inside out. We argue that this may explain the very low frequency of >1 Gyr-old solar-type stars with observed 24 μm excesses. Our simulations do not sample the full range of plausible initial conditions for planetary systems. However, among the configurations explored, the best candidates for hosting terrestrial planets at ~1 AU are stars older than 0.1-1 Gyr with bright debris disks at 70 μm but with no currently-known giant planets. These systems combine evidence for the presence of ample rocky building blocks, with giant planet properties that are least likely to undergo destructive dynamical evolution. Thus, we predict two correlations that should be detected by upcoming surveys: an anti-correlation between debris disks and eccentric giant planets and a positive correlation between debris disks and terrestrial planets. Three movies associated to Figs. 1, 3, and 7 are available in electronic form at http://www.aanda.org
A Multi-Wavelength View of Planet Forming Regions: Unleashing the Full Power of ALMA
NASA Astrophysics Data System (ADS)
Tazzari, Marco
2017-11-01
Observations at sub-mm/mm wavelengths allow us to probe the solids in the interior of protoplanetary disks, where the bulk of the dust is located and planet formation is expected to occur. However, the actual size of dust grains is still largely unknown due to the limited angular resolution and sensitivity of past observations. The upgraded VLA and, especially, the ALMA observatories provide now powerful tools to resolve grain growth in disks, making the time ripe for developing a multi-wavelength analysis of sub-mm/mm observations of disks. In my contribution I will present a novel analysis method for multi-wavelength ALMA/VLA observations which, based on the self-consistent modelling of the sub-mm/mm disk continuum emission, allows us to constrain simultaneously the size distribution of dust grains and the disk's physical structure (Tazzari et al. 2016, A&A 588 A53). I will also present the recent analysis of spatially resolved ALMA Band 7 observations of a large sample of disks in the Lupus star forming region, from which we obtained a tentative evidence of a disk size-disk mass correlation (Tazzari et al. 2017, arXiv:1707.01499). Finally, I will introduce galario, a GPU Accelerated Library for the Analysis of Radio Interferometry Observations. Fitting the observed visibilities in the uv-plane is computationally demanding: with galario we solve this problem for the current as well as for the full-science ALMA capabilities by leveraging on the computing power of GPUs, providing the computational breakthrough needed to fully exploit the new wealth of information delivered by ALMA.
Measuring the structure and composition of circumstellar debris disks
NASA Astrophysics Data System (ADS)
Ballering, Nicholas Paul
In this dissertation, I measure the structure and composition of circumstellar debris disks to probe the underlying planetary systems. In Chapter 1, I provide an introduction to the field of debris disks. I highlight our current observational and theoretical understanding of the field, rather than providing a detailed history. This is intended to give the reader context and motivation for the subsequent chapters. I also describe important developments in debris disk science that are not the focus of this dissertation, but are nevertheless vital for a complete overview. In Chapter 2, I describe my analysis of a large sample of cold (<130 K) debris disks seen in Spitzer/IRS data. Previous work had suggested a common temperature for these disk components, regardless of spectral type. I find that there is trend with spectral type and argue that the locations of cold disks are not set by snow lines, but more likely by the formation/evolution of planets. This work was published in Ballering et al. (2013). In Chapter 3, I turn my focus to the warm (˜190 K) debris components identified in Chapter 2--specifically those exhibiting silicate emission features. I show that these features arise from exozodiacal dust in the habitable zones around these stars. This was published in Ballering et al. (2014). In Chapter 4, I examine the remainder of the warm disks to investigate what mechanism sets their location. I find that for many systems, the locations trace the water snow line in the primordial protoplanetary disk, rather than the current snow line. This favors the interpretation that warm debris components arise from asteroid belts in these systems. This study will be published soon. In Chapter 5, I analyze images of the debris disk around beta Pictoris at five different wavelengths, including in thermal emission and scattered light. I find that matching the disk brightness at all wavelengths constrains the composition of the dust, with a mixture of astronomical silicates and organic refractory material fitting the data well. This was published in Ballering et al. (2016). In Chapter 6, I conclude with a summary of this dissertation and prospects for future progress in these areas.
Debris Disks as Tracers of Nearby Planetary Systems
NASA Technical Reports Server (NTRS)
Stapelfeldt, Karl
2012-01-01
Many main-sequence stars possess tenuous circumstellar dust clouds believed to trace extrasolar analogs of the Sun's asteroid and Kuiper Belts. While most of these "debris disks" are known only from far-infrared photometry, dozens are now spatially resolved. In this talk, I'll review the observed structural properties of debris disks as revealed by imaging with the Hubble, Spitzer, and Herschel Space Telescopes. I will show how modeling of the far-infrared spectral energy distributions of resolved disks can be used to constrain their dust particle sizes and albedos. I will review cases of disks whose substructures suggest planetary perturbations, including a newly-discovered eccentric ring system. I'll conclude with thoughts on the potential of upcoming and proposed facilities to resolve similar structures around a greatly expanded sample of nearby debris systems.
Faint warm debris disks around nearby bright stars explored by AKARI and IRSF
NASA Astrophysics Data System (ADS)
Ishihara, Daisuke; Takeuchi, Nami; Kobayashi, Hiroshi; Nagayama, Takahiro; Kaneda, Hidehiro; Inutsuka, Shu-ichiro; Fujiwara, Hideaki; Onaka, Takashi
2017-05-01
Context. Debris disks are important observational clues for understanding planetary-system formation process. In particular, faint warm debris disks may be related to late planet formation near 1 au. A systematic search of faint warm debris disks is necessary to reveal terrestrial planet formation. Aims: Faint warm debris disks show excess emission that peaks at mid-IR wavelengths. Thus we explore debris disks using the AKARI mid-IR all-sky point source catalog (PSC), a product of the second generation unbiased IR all-sky survey. Methods: We investigate IR excess emission for 678 isolated main-sequence stars for which there are 18 μm detections in the AKARI mid-IR all-sky catalog by comparing their fluxes with the predicted fluxes of the photospheres based on optical to near-IR fluxes and model spectra. The near-IR fluxes are first taken from the 2MASS PSC. However, 286 stars with Ks < 4.5 in our sample have large flux errors in the 2MASS photometry due to saturation. Thus we have measured accurate J, H, and Ks band fluxes, applying neutral density (ND) filters for Simultaneous InfraRed Imager for Unbiased Survey (SIRIUS) on IRSF, the φ1.4 m near-IR telescope in South Africa, and improved the flux accuracy from 14% to 1.8% on average. Results: We identified 53 debris-disk candidates including eight new detections from our sample of 678 main-sequence stars. The detection rate of debris disks for this work is 8%, which is comparable with those in previous works by Spitzer and Herschel. Conclusions: The importance of this study is the detection of faint warm debris disks around nearby field stars. At least nine objects have a large amount of dust for their ages, which cannot be explained by the conventional steady-state collisional cascade model. The full version of Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A72
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.
2013-09-20
Cold debris disks trace the limits of planet formation or migration in the outer regions of planetary systems, and thus have the potential to answer many of the outstanding questions in wide-orbit planet formation and evolution. We characterized the infrared excess spectral energy distributions of 174 cold debris disks around 546 main-sequence stars observed by both the Spitzer Infrared Spectrograph and the Multiband Imaging Photometer for Spitzer. We found a trend between the temperature of the inner edges of cold debris disks and the stellar type of the stars they orbit. This argues against the importance of strictly temperature-dependent processesmore » (e.g., non-water ice lines) in setting the dimensions of cold debris disks. Also, we found no evidence that delayed stirring causes the trend. The trend may result from outward planet migration that traces the extent of the primordial protoplanetary disk, or it may result from planet formation that halts at an orbital radius limited by the efficiency of core accretion.« less
NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moór, A.; Kóspál, Á.; Ábrahám, P.
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data formore » one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moór, A.; Ábrahám, P.; Kóspál, Á.
Debris disks are considered to be gas-poor, but recent observations revealed molecular or atomic gas in several 10–40 Myr old systems. We used the APEX and IRAM 30 m radio telescopes to search for CO gas in 20 bright debris disks. In one case, around the 16 Myr old A-type star HD 131835, we discovered a new gas-bearing debris disk, where the CO 3–2 transition was successfully detected. No other individual system exhibited a measurable CO signal. Our Herschel Space Observatory far-infrared images of HD 131835 marginally resolved the disk at both 70 and 100 μm, with a characteristic radiusmore » of ∼170 AU. While in stellar properties HD 131835 resembles β Pic, its dust disk properties are similar to those of the most massive young debris disks. With the detection of gas in HD 131835 the number of known debris disks with CO content has increased to four, all of them encircling young (≤40 Myr) A-type stars. Based on statistics within 125 pc, we suggest that the presence of a detectable amount of gas in the most massive debris disks around young A-type stars is a common phenomenon. Our current data cannot conclude on the origin of gas in HD 131835. If the gas is secondary, arising from the disruption of planetesimals, then HD 131835 is a comparably young, and in terms of its disk, more massive analog of the β Pic system. However, it is also possible that this system, similar to HD 21997, possesses a hybrid disk, where the gas material is predominantly primordial, while the dust grains are mostly derived from planetesimals.« less
Further Constraints on the Presence of a Debris Disk in the Multiplanet System Gliese 876
2008-06-01
planets and satellites : general – stars: individual (Gl 876) 1. INTRODUCTION The M4 dwarf star Gl 876 harbors one of the nearest mul- tiplanet...Space Telescope search for dust disks around 123 late-type dwarfs. However, the nearby M dwarf AU Mic shows a well- resolved debris disk, whose radius is...et al. (2006). If the Gl 876 system were to contain a debris disk, the extent of which exceeds just ∼5 AU (which is our resolving power at 4.69 pc
Molecular Gas in Young Debris Disks
NASA Technical Reports Server (NTRS)
Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.
2011-01-01
Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.
We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less
Giant Exoplanet and Debris Disk (Artist's Concept)
2017-10-11
This artist's rendering shows a giant exoplanet causing small bodies to collide in a disk of dust. A study in The Astronomical Journal finds that giant exoplanets with long-period orbits are more likely to be found around young stars that have a disk of dust and debris than those without disks. The study focused on planets more than five times the mass of Jupiter. The astronomers are conducting the largest survey to date of stars with dusty debris disks, and finding the best evidence yet that giant planets are responsible for keeping that material in check. https://photojournal.jpl.nasa.gov/catalog/PIA22082
A Herschel-Detected Correlation between Planets and Debris Disks
NASA Astrophysics Data System (ADS)
Bryden, Geoffrey; Krist, J. E.; Stapelfeldt, K. R.; Kennedy, G.; Wyatt, M.; Beichman, C. A.; Eiroa, C.; Marshall, J.; Maldonado, J.; Montesinos, B.; Moro-Martin, A.; Matthews, B. C.; Fischer, D.; Ardila, D. R.; Kospal, A.; Rieke, G.; Su, K. Y.
2013-01-01
The Fomalhaut, beta Pic, and HR 8799 systems each have directly imaged planets and prominent debris disks, suggesting a direct link between the two phenomena. Unbiased surveys with Spitzer, however, failed to find a statistically significant correlation. We present results from SKARPS (the Search for Kuiper belts Around Radial-velocity Planet Stars) a Herschel far-IR survey for debris disks around solar-type stars known to have orbiting planets. The identified disks are generally cold and distant 50 K/100 AU), i.e. well separated from the radial-velocity-discovered planets. Nevertheless, we find a strong correlation between the inner planets and outer disks, with disks around planet-bearing stars tending to be much brighter than those not known to have planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Christine H.; Mittal, Tushar; Kuchner, Marc
During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-describedmore » using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.« less
SMACK: A New Algorithm for Modeling Collisions and Dynamics of Planetesimals in Debris Disks
NASA Technical Reports Server (NTRS)
Nesvold, Erika Rose; Kuchner, Marc J.; Rein, Hanno; Pan, Margaret
2013-01-01
We present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. We show that SMACK is stable to numerical viscosity and numerical heating over 10(exp 7) yr, and that it can reproduce analytic models of disk evolution. We use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit. Differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring.
Deciphering Debris Disk Structure with the Submillimeter Array
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann
2018-01-01
More than 20% of nearby main sequence stars are surrounded by dusty disks continually replenished via the collisional erosion of planetesimals, larger bodies similar to asteroids and comets in our own Solar System. The material in these ‘debris disks’ is directly linked to the larger bodies such as planets in the system. As a result, the locations, morphologies, and physical properties of dust in these disks provide important probes of the processes of planet formation and subsequent dynamical evolution. Observations at millimeter wavelengths are especially critical to our understanding of these systems, since they are dominated by larger grains that do not travel far from their origin and therefore reliably trace the underlying planetesimal distribution. The Submillimeter Array (SMA) plays a key role in advancing our understanding of debris disks by providing sensitivity at the short baselines required to determine the structure of wide-field disks, such as the HR 8799 debris disk. Many of these wide-field disks are among the closest systems to us, and will serve as cornerstone templates for the interpretation of more distant, less accessible systems.
NASA Astrophysics Data System (ADS)
Moro-Martín, A.; Marshall, J. P.; Kennedy, G.; Sibthorpe, B.; Matthews, B. C.; Eiroa, C.; Wyatt, M. C.; Lestrade, J.-F.; Maldonado, J.; Rodriguez, D.; Greaves, J. S.; Montesinos, B.; Mora, A.; Booth, M.; Duchêne, G.; Wilner, D.; Horner, J.
2015-03-01
The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems and may help “predict” the presence of planets around stars with certain disk characteristics. In preliminary analyses of subsamples of the Herschel DEBRIS and DUNES surveys, Wyatt et al. and Marshall et al. identified a tentative correlation between debris and the presence of low-mass planets. Here we use the cleanest possible sample out of these Herschel surveys to assess the presence of such a correlation, discarding stars without known ages, with ages \\lt 1 Gyr, and with binary companions \\lt 100 AU to rule out possible correlations due to effects other than planet presence. In our resulting subsample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets. There is no evidence either that the characteristic dust temperature of the debris disks around planet-bearing stars is any different from that in debris disks without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet systems. Diverse dynamical histories may account for the lack of correlations. The data show a correlation between the presence of high-mass planets and stellar metallicity, but no correlation between the presence of low-mass planets or debris and stellar metallicity. Comparing the observed cumulative distribution of fractional luminosity to those expected from a Gaussian distribution in logarithmic scale, we find that a distribution centered on the solar system’s value fits the data well, while one centered at 10 times this value can be rejected. This is of interest in the context of future terrestrial planet detection and characterization because it indicates that there are good prospects for finding a large number of debris disk systems (i.e., with evidence of harboring planetesimals, the building blocks of planets) with exozodiacal emission low enough to be appropriate targets for an ATLAST-type mission to search for biosignatures.
The Last Gasp of Gas Giant Planet Formation: A Spitzer Study of the 5 Myr Old Cluster NGC 2362
NASA Astrophysics Data System (ADS)
Currie, Thayne; Lada, Charles J.; Plavchan, Peter; Robitaille, Thomas P.; Irwin, Jonathan; Kenyon, Scott J.
2009-06-01
Expanding upon the Infrared Array Camera (IRAC) survey from Dahm & Hillenbrand, we describe Spitzer IRAC and Multiband Imaging Photometer for Spitzer observations of the populous, 5 Myr old open cluster NGC 2362. We analyze the mid-IR colors of cluster members and compared their spectral energy distributions (SEDs) to star+circumstellar disk models to constrain the disk morphologies and evolutionary states. Early/intermediate-type confirmed/candidate cluster members either have photospheric mid-IR emission or weak, optically thin IR excess emission at λ >= 24 μm consistent with debris disks. Few late-type, solar/subsolar-mass stars have primordial disks. The disk population around late-type stars is dominated by disks with inner holes (canonical "transition disks") and "homologously depleted" disks. Both types of disks represent an intermediate stage between primordial disks and debris disks. Thus, in agreement with previous results, we find that multiple paths for the primordial-to-debris disk transition exist. Because these "evolved primordial disks" greatly outnumber primordial disks, our results undermine standard arguments in favor of a lsim105 yr timescale for the transition based on data from Taurus-Auriga. Because the typical transition timescale is far longer than 105 yr, these data also appear to rule out standard ultraviolet photoevaporation scenarios as the primary mechanism to explain the transition. Combining our data with other Spitzer surveys, we investigate the evolution of debris disks around high/intermediate-mass stars and investigate timescales for giant planet formation. Consistent with Currie et al., the luminosity of 24 μm emission in debris disks due to planet formation peaks at ≈10-20 Myr. If the gas and dust in disks evolve on similar timescales, the formation timescale for gas giant planets surrounding early-type, high/intermediate-mass (gsim1.4 M sun) stars is likely 1-5 Myr. Most solar/subsolar-mass stars detected by Spitzer have SEDs that indicate their disks may be actively leaving the primordial disk phase. Thus, gas giant planet formation may also occur by ~5 Myr around solar/subsolar-mass stars as well.
Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs
NASA Astrophysics Data System (ADS)
Miranda, Ryan; Rafikov, Roman R.
2018-04-01
Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.
NASA Technical Reports Server (NTRS)
Schneider, Glenn; Grady, Carol A.; Hines, Dean C.; Stark, Christopher C.; Debes, John; Carson, Joe; Kuchner, Marc J.; Perrin, Marshall; Weinberger, Alycia; Wisniewski, John P.;
2014-01-01
Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using HST/STIS broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of ten circumstellar debris systems, and one "mature" protoplanetrary disk all with HST pedigree, using PSF-subtracted multi-roll coronagraphy. These observations probe stellocentric distances greater than or equal to 5 AU for the nearest systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper belt regions within our own Solar System. They also disclose diffuse very low-surface brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD92945 (F (sub disk) /F (sub star) = 5x10 (sup -5) confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like sub-structures and significant asymmetries and complex morphologies include: HD181327 for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper belt; HD61005 suggested to be interacting with the local ISM; HD15115 and HD32297, discussed also in the context of putative environmental interactions. These disks, and HD15745, suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk we find out-of-plane surface brightness asymmetries at greater than or equal to 5 AU that may implicate the existence of one or more planetary perturbers. Time resolved images of the MP Mus proto-planetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Glenn; Hinz, Phillip M.; Grady, Carol A.
Spatially resolved scattered-light images of circumstellar debris in exoplanetary systems constrain the physical properties and orbits of the dust particles in these systems. They also inform on co-orbiting (but unseen) planets, the systemic architectures, and forces perturbing the starlight-scattering circumstellar material. Using Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph (STIS) broadband optical coronagraphy, we have completed the observational phase of a program to study the spatial distribution of dust in a sample of 10 circumstellar debris systems and 1 'mature' protoplanetrary disk, all with HST pedigree, using point-spread-function-subtracted multi-roll coronagraphy. These observations probe stellocentric distances ≥5 AU for the nearestmore » systems, and simultaneously resolve disk substructures well beyond corresponding to the giant planet and Kuiper Belt regions within our own solar system. They also disclose diffuse very low-surface-brightness dust at larger stellocentric distances. Herein we present new results inclusive of fainter disks such as HD 92945 (F {sub disk}/F {sub star} = 5 × 10{sup –5}), confirming, and better revealing, the existence of a narrow inner debris ring within a larger diffuse dust disk. Other disks with ring-like substructures and significant asymmetries and complex morphologies include HD 181327, for which we posit a spray of ejecta from a recent massive collision in an exo-Kuiper Belt; HD 61005, suggested to be interacting with the local interstellar medium; and HD 15115 and HD 32297, also discussed in the context of putative environmental interactions. These disks and HD 15745 suggest that debris system evolution cannot be treated in isolation. For AU Mic's edge-on disk, we find out-of-plane surface brightness asymmetries at ≥5 AU that may implicate the existence of one or more planetary perturbers. Time-resolved images of the MP Mus protoplanetary disk provide spatially resolved temporal variability in the disk illumination. These and other new images from our HST/STIS GO/12228 program enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own solar system.« less
Apocenter Glow in Eccentric Debris Disks: Implications for Fomalhaut and Epsilon Eridani
NASA Technical Reports Server (NTRS)
Pan, Margaret; Nesvold, Erika R.; Kuchner, Marc J.
2016-01-01
Debris disks often take the form of eccentric rings with azimuthal asymmetries in surface brightness. Such disks are often described as showing pericenter glow, an enhancement of the disk brightness in regions nearest the central star. At long wavelengths, however, the disk apocenters should appear brighter than their pericenters: in the long-wavelength limit, we find that the apocenter pericenter flux ratio scales as 1 + e for disk eccentricity e. We produce new models of this apocenter glow to explore its causes and wavelength dependence and study its potential as a probe of dust grain properties. Based on our models, we argue that several far-infrared and (sub)millimeter images of the Fomalhaut and Epsilon Eridani debris rings obtained with Herschel, JCMT, SHARC II, ALMA, and ATCA should be reinterpreted as suggestions or examples of apocenter glow. This reinterpretation yields new constraints on the disks dust grain properties and size distributions.
Direct imaging of an asymmetric debris disk in the HD 106906 planetary system
Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.; ...
2015-11-13
Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
A New Offset Debris Ring around a Nearby Star Observed with the HST/STIS
NASA Technical Reports Server (NTRS)
Krist, John; Stapelfeldt, Karl; Bryden, Geoffrey
2011-01-01
We are conducting an HST/STIS coronagraphic imaging study of nearby stars that have Spitzer-measured infrared excesses indicating that they are surrounded by debris disks. Around one of the stars we have imaged a debris ring with a sharp inner edge and extending from about 165 AU to 250 AU. The ring center is offset from the star by -8 AU with a visually estimated intrinsic ellipticity of e-0.1 , suggestive of gravitational perturbation of the disk by a planet, like the Fomalhaut disk. Assuming a neutral disk color, the mean surface brightness of V=22.3 mag/square arcsec makes this the second faintest disk yet imaged in scattered light, second to HD 207129.
NASA Astrophysics Data System (ADS)
Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes
2018-01-01
Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.
Searching for Dust around Hyper Metal Poor Stars
NASA Astrophysics Data System (ADS)
Venn, Kim A.; Puzia, Thomas H.; Divell, Mike; Côté, Stephanie; Lambert, David L.; Starkenburg, Else
2014-08-01
We examine the mid-infrared fluxes and spectral energy distributions for stars with iron abundances [Fe/H] <-5, and other metal-poor stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excesses. These non-detections rule out many types of circumstellar disks, e.g., a warm debris disk (T <= 290 K), or debris disks with inner radii <=1 AU, such as those associated with the chemically peculiar post-asymptotic giant branch spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g., a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 μm is detected at the 2σ level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Kasdin, Jeremy; Krist, John; Macintosh, Bruce;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is a major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagrap, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope experiment based on the Zodiac II design that would undertake compelling studies of a sample of debris disks.
Coronagraphic Imaging of Debris Disks from a High Altitude Balloon Platform
NASA Technical Reports Server (NTRS)
Unwin, Stephen; Traub, Wesley; Bryden, Geoffrey; Brugarolas, Paul; Chen, Pin; Guyon, Olivier; Hillenbrand, Lynne; Krist, John; Macintosh, Bruce; Mawet, Dimitri;
2012-01-01
Debris disks around nearby stars are tracers of the planet formation process, and they are a key element of our understanding of the formation and evolution of extrasolar planetary systems. With multi-color images of a significant number of disks, we can probe important questions: can we learn about planetary system evolution; what materials are the disks made of; and can they reveal the presence of planets? Most disks are known to exist only through their infrared flux excesses as measured by the Spitzer Space Telescope, and through images measaured by Herschel. The brightest, most extended disks have been imaged with HST, and a few, such as Fomalhaut, can be observed using ground-based telescopes. But the number of good images is still very small, and there are none of disks with densities as low as the disk associated with the asteroid belt and Edgeworth-Kuiper belt in our own Solar System. Direct imaging of disks is major observational challenge, demanding high angular resolution and extremely high dynamic range close to the parent star. The ultimate experiment requires a space-based platform, but demonstrating much of the needed technology, mitigating the technical risks of a space-based coronagraph, and performing valuable measurements of circumstellar debris disks, can be done from a high-altitude balloon platform. In this paper we present a balloon-borne telescope concept based on the Zodiac II design that could undertake compelling studies of a sample of debris disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquet, Élodie; Perrin, Marshall D.; Chen, Christine H.
We present the first images of four debris disks observed in scattered light around the young (4–250 Myr old) M dwarfs TWA 7 and TWA 25, the K6 star HD 35650, and the G2 star HD 377. We obtained these images by reprocessing archival Hubble Space Telescope NICMOS coronagraph data with modern post-processing techniques as part of the Archival Legacy Investigation of Circumstellar Environments program. All four disks appear faint and compact compared with other debris disks resolved in scattered light. The disks around TWA 25, HD 35650, and HD 377 appear very inclined, while TWA 7's disk is viewed nearly face-on. The surface brightness of HD 35650's diskmore » is strongly asymmetric. These new detections raise the number of disks resolved in scattered light around M and late-K stars from one (the AU Mic system) to four. This new sample of resolved disks enables comparative studies of heretofore scarce debris disks around low-mass stars relative to solar-type stars.« less
The protoplanetary disk of FT Tauri: multiwavelength data analysis and modeling
NASA Astrophysics Data System (ADS)
Garufi, A.; Podio, L.; Kamp, I.; Ménard, F.; Brittain, S.; Eiroa, C.; Montesinos, B.; Alonso-Martínez, M.; Thi, W. F.; Woitke, P.
2014-07-01
Context. Investigating the evolution of protoplanetary disks is crucial for our understanding of star and planet formation. There have been several theoretical and observational studies in past decades to advance this knowledge. The launch of satellites operating at infrared wavelengths, such as the Spitzer Space Telescope and the Herschel Space Observatory, has provided important tools for investigating the properties of circumstellar disks. Aims: FT Tauri is a young star in the Taurus star forming region that was included in a number of spectroscopic and photometric surveys. We investigate the properties of the star, the circumstellar disk, and the accretion/ejection processes and propose a consistent gas and dust model also as a reference for future observational studies. Methods: We performed a multiwavelength data analysis to derive the basic stellar and disk properties, as well as mass accretion/outflow rate from TNG/DOLoRes, WHT/LIRIS, NOT/NOTCam, Keck/NIRSpec, and Herschel/PACS spectra. From the literature, we compiled a complete spectral energy distribution. We then performed detailed disk modeling using the MCFOST and ProDiMo codes. Multiwavelength spectroscopic and photometric measurements were compared with the reddened predictions of the codes in order to constrain the disk properties. Results: We have determined the stellar mass (~ 0.3 M⊙), luminosity (~ 0.35 L⊙), and age (~ 1.6 Myr), as well as the visual extinction of the system (1.8 mag). We estimate the mass accretion rate (~ 3 × 10-8 M⊙/yr) to be within the range of accreting objects in Taurus. The evolutionary state and the geometric properties of the disk are also constrained. The radial extent (0.05 to 200 AU), flaring angle (power law with exponent =1.15), and mass (0.02 M⊙) of the circumstellar disk are typical of a young primordial disk. This object can serve as a benchmark for primordial disks with significant mass accretion rate, high gas content, and typical size. Based on Herschel data. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Tables 3, 4 and Appendix A are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvold, Erika R.; Naoz, Smadar; Vican, Laura
The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined tomore » the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N -body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.« less
The Dynamical Structure of HR 8799's Inner Debris Disk
NASA Astrophysics Data System (ADS)
Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.
2015-06-01
The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.
The Dynamical Structure of HR 8799's Inner Debris Disk.
Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P
2015-06-01
The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.
Probing the debris disks of nearby stars with Fermi-LAT
NASA Astrophysics Data System (ADS)
Riley, Alexander; Strigari, Louis; Porter, Troy; Blandford, Roger
2018-01-01
Many nearby stars are known to host circumstellar debris disks, similar to our Sun's asteroid and Kuiper belts, that are believed to be the birthplace of extrasolar planets. The bodies in these objects passively emit gamma radiation resulting from interactions with cosmic rays, as previously observed from measurements of the gamma ray albedo of the Moon. We apply a point source analysis to four nearby debris disks using the past nine years of data taken by Fermi-LAT, and report on the updated prospects for detecting gamma-ray emission from these sources.
Modeling of debris disks in Single and Binary stars
NASA Astrophysics Data System (ADS)
García, L.; Gómez, M.
2016-10-01
Infrared space observatories such as Spitzer and Herschel have allowed the detection of likely analogs to the Kuiper Belt in single as well as binary systems. The aim of this work is to characterize debris disks in single and binary stars and to identify features shared by the disks in both types of systems, as well as possible differences. We compiled a sample of 25 single and 14 binary stars (ages > 100 Myr) with flux measurements at λ >100 μm and evidence of infrared excesses attributed to the presence of debris disks. Then, we constructed and modeled the observed spectral energy distributions (SEDs), and compared the parameters of the disks of both samples. Both types of disks are relatively free of dust in the inner region (< 3-5 AU) and extend beyond 100 AU. No significant differences in the mass and dust size distributions of both samples are found.
Gas in Debris Disks and the Volatiles of Terrestrial Planet Formation
NASA Technical Reports Server (NTRS)
Kuchner, Marc
2010-01-01
Debris disks are a kind of protoplanetary disk that likely corresponds to the epoch of terrestrial planet and outer planet formation. Previously pictured to be gas-free, some debris disks are now revealing gas components, sometimes with strikingly non-solar abundance patterns. Understanding the nature and distribution of this gas may eventually help us understand the origin of volatiles on the Earth, the carbon depletion of the asteroids, and even the origin of life. I'll describe what we know about these systems observationally, some of the leading hypotheses about the sources and sinks of the gas, and how these new astronomical discoveries may bear on solar-system science.
NASA Technical Reports Server (NTRS)
Faramaz, V.; Beust, H.; Thebault, P.; Augereau, J.-C.; Bonsor, A.; delBurgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.;
2014-01-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around Zeta2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims. We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around Zeta2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods. Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the Zeta2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results. We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For Zeta2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around Zeta2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions. We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of Zeta2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep greater than approx. 0.3).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genda, H.; Kobayashi, H.; Kokubo, E., E-mail: genda@elsi.jp
In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation, called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that ∼0.4 times the Earth’s mass is ejected in total throughout the giant impact stage. Ejected materials are ground down bymore » collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage (∼100 Myr) and is sometimes ∼10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar-system-like terrestrial planets is approximately 10%.« less
NASA Technical Reports Server (NTRS)
Currie, Thayne; Lisse, Carey M.; Sicillia-Aguilar, Aurora; Rieke, George H.; Su, Kate Y. L.
2011-01-01
We describe Spitzer IRS spectroscopic observations of the approx. 10 Myr-old star, EF Chao Compositional modeling of the spectra from 5 micron to 35 micron confirms that it is surrounded by a luminous debris disk with L(sub D)/L(sub *) approx. 10(exp -3), containing dust with temperatures between 225 K and 430 K characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr-old luminous, warm debris disks (e.g. HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely-powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to pyroxene ratio of approx. 2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system.
Modeling the HD 32297 Debris Disk With Far-Infrared Herschel Data
NASA Technical Reports Server (NTRS)
Donaldson, J.K.; Lebreton, J.; Roberge, A.; Augereau, J.-C.; Krivov, A. V.
2013-01-01
HD 32297 is a young A-star (approx. 30 Myr) 112 pc away with a bright edge-on debris disk that has been resolved in scattered light. We observed the HD 32297 debris disk in the far-infrared and sub-millimeter with the Herschel Space Observatory PACS and SPIRE instruments, populating the spectral energy distribution (SED) from 63 to 500 micron..We aimed to determine the composition of dust grains in the HD 32297 disk through SED modeling, using geometrical constraints from the resolved imaging to break the degeneracies inherent in SED modeling. We found the best fitting SED model has two components: an outer ring centered around 110 AU, seen in the scattered light images, and an inner disk near the habitable zone of the star. The outer disk appears to be composed of grains>2 micron consisting of silicates, carbonaceous material, and water ice with an abundance ratio of 1:2:3 respectively and 90% porosity. These grains appear consistent with cometary grains, implying the underlying planetesimal population is dominated by comet-like bodies. We also discuss the 3.7 sigma detection of [C ii] emission at 158 micron with the Herschel PACS instrument, making HD 32297 one of only a handful of debris disks with circumstellar gas detected
The Evolution of a Planet-Forming Disk Artist Concept Animation
2004-12-09
This frame from an animation shows the evolution of a planet-forming disk around a star. Initially, the young disk is bright and thick with dust, providing raw materials for building planets. In the first 10 million years or so, gaps appear within the disk as newborn planets coalesce out of the dust, clearing out a path. In time, this planetary "debris disk" thins out as gravitational interactions with numerous planets slowly sweep away the dust. Steady pressure from the starlight and solar winds also blows out the dust. After a few billion years, only a thin ring remains in the outermost reaches of the system, a faint echo of the once-brilliant disk. Our own solar system has a similar debris disk -- a ring of comets called the Kuiper Belt. Leftover dust in the inner portion of the solar system is known as "zodiacal dust." Bright, young disks can be imaged directly by visible-light telescopes, such as NASA's Hubble Space Telescope. Older, fainter debris disks can be detected only by infrared telescopes like NASA's Spitzer Space Telescope, which sense the disks' dim heat. http://photojournal.jpl.nasa.gov/catalog/PIA07099
Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks
NASA Astrophysics Data System (ADS)
Ardila, David R.; Merin, Bruno; Ribas, Alvaro; Bouy, Herve; Bryden, Geoffrey; Stapelfeldt, Karl R.; Padgett, Deborah
2015-01-01
Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in beta Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around eta Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission.
The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems
NASA Technical Reports Server (NTRS)
Janson, Markus; Brandt, Timothy; Moro-Martin, Amaya; Usuda, Tomonori; Thalmann, Christian; Carson, Joseph C.; Goto, Miwa; Currie, Thayne; McElwain, M. W.; Itoh, Yoichi;
2013-01-01
Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that interactions with planets could be a common cause of such disk structures. As part of the SEEDS high-contrast imaging survey, we are surveying a population of debris disk-hosting stars with gaps and cavities implied by their spectral energy distributions, in order to attempt to spatially resolve the disk as well as to detect any planets that may be responsible for the disk structure. Here we report on intermediate results from this survey. Five debris disks have been spatially resolved, and a number of faint point sources have been discovered, most of which have been tested for common proper motion, which in each case has excluded physical companionship with the target stars. From the detection limits of the 50 targets that have been observed, we find that beta Pic b-like planets (approximately 10M(sub jup) planets around G-A-type stars) near the gap edges are less frequent than 15-30%, implying that if giant planets are the dominant cause of these wide (27 AU on average) gaps, they are generally less massive than beta Pic b.
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.
2014-01-01
We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Joshua J.; Simon, Joshua D.; Bolatto, Alberto D.
2013-07-10
We use mid-infrared Spitzer spectroscopy and far-infrared Herschel photometry for a sample of 20 main sequence O9-B2 stars in the Small Magellanic Cloud (SMC) with strong 24 {mu}m excesses to investigate the origin of the mid-IR emission. Either debris disks around the stars or illuminated patches of dense interstellar medium (ISM) can cause such mid-IR emission. In a companion paper, Paper I, we use optical spectroscopy to show that it is unlikely for any of these sources to be classical Be stars or Herbig Ae/Be stars. We focus our analysis on debris disks and cirrus hot spots. The local, prototypemore » objects for these models are the debris disk around Vega and the heated dust cloud surrounding the stars in the Pleiades, also known as a cirrus hot spot. These two cases predict different dust masses, radii, origins, and structures, but the cleanest classification tools are lost by the poor physical resolution at the distance of the SMC. We also consider transition disks, which would have observable properties similar to debris disks. We begin classification by measuring angular extent in the highest resolution mid-IR images available. We find 3 out of 20 stars to be significantly extended, establishing them as cirrus hot spots. We then fit the IR spectral energy distributions to determine dust temperatures and masses. Analysis yields minimum grain sizes, thermal equilibrium distances, and the resultant dust mass estimates. We find the dust masses in the SMC stars to be larger than for any known debris disks. The difference in inferred properties is driven by the SMC stars being hotter and more luminous than known debris disk hosts and not in any directly observed dust properties, so this evidence against the debris disk hypothesis is circumstantial. Finally, we created a local comparison sample of bright mid-IR OB stars in the Milky Way (MW) by cross-matching the Wide-field Infrared Survey Explorer (WISE) and Hipparcos catalogs. We find that of the thousands of nearby ({<=}1 kpc) hot stars in the MW that show a mid-IR excess, only a small fraction (few percent) match the high mid-IR luminosities of the SMC stars. All such local stars in the appropriate luminosity range that can be unambiguously classified are young stars with optical emission lines or are spatially resolved by WISE with sizes too large to be plausible debris disk candidates. We conclude that the very strong mid-IR flux excesses are most likely explained as cirrus hot spots, although we cannot rigorously rule out that a small fraction of the sample is made up of debris disks or transition disks. We present suggestive evidence that bow-shock heating around runaway stars may be a contributing mechanism to the interstellar emission. These sources, interpreted as cirrus hot spots, offer a new localized probe of diffuse interstellar dust in a low metallicity environment.« less
RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia
2016-02-10
The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole inmore » the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.« less
Disk Detective: Discovery of New Circumstellar Disk Candidates Through Citizen Science
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; Garcia, Luciano; Jung, Dawoon; Lintott, Chris;
2016-01-01
The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASAs Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and proto planetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137,and HD 218546) and a new detection of 22 micron excess around the previously known debris disk host star HD 22128.
Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science
NASA Astrophysics Data System (ADS)
Kuchner, Marc J.; Silverberg, Steven M.; Bans, Alissa S.; Bhattacharjee, Shambo; Kenyon, Scott J.; Debes, John H.; Currie, Thayne; García, Luciano; Jung, Dawoon; Lintott, Chris; McElwain, Michael; Padgett, Deborah L.; Rebull, Luisa M.; Wisniewski, John P.; Nesvold, Erika; Schawinski, Kevin; Thaller, Michelle L.; Grady, Carol A.; Biggs, Joseph; Bosch, Milton; Černohous, Tadeáš; Durantini Luca, Hugo A.; Hyogo, Michiharu; Wah, Lily Lau Wan; Piipuu, Art; Piñeiro, Fernanda; Disk Detective Collaboration
2016-10-01
The Disk Detective citizen science project aims to find new stars with 22 μm excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer (WISE) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μm excess around the previously known debris disk host star HD 22128.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennihy, E.; Clemens, J. C.; Dunlap, B. H.
We present a simple method for identifying candidate white dwarf systems with dusty exoplanetary debris based on a single temperature blackbody model fit to the infrared excess. We apply this technique to a sample of Southern Hemisphere white dwarfs from the recently completed Edinburgh–Cape Blue Object Survey and identify four new promising dusty debris disk candidates. We demonstrate the efficacy of our selection method by recovering three of the four Spitzer confirmed dusty debris disk systems in our sample. Further investigation using archival high-resolution imaging shows that Spitzer data of the unrecovered fourth object is likely contaminated by a line-of-sightmore » object that either led to a misclassification as a dusty disk in the literature or is confounding our method. Finally, in our diagnostic plot, we show that dusty white dwarfs, which also host gaseous debris, lie along a boundary of our dusty debris disk region, providing clues to the origin and evolution of these especially interesting systems.« less
Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk
NASA Technical Reports Server (NTRS)
Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.;
2014-01-01
Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.
The Blue Needle: A Highly Asymmetric Debris Disk Surrounding HD 15115
NASA Astrophysics Data System (ADS)
Kalas, P.; Graham, J. R.; Fitzgerald, M.
2007-06-01
Using the ACS coronagraph aboard the Hubble Space Telescope in the optical, and Keck adaptive optics in the near- infrared, we discovered an edge-on dust disk surrounding the F2V star HD 15115. HD 15115 is the most asymmetric debris disk imaged to date, with an eastward pointing midplane detected to ~315 AU radius, and a westward pointing midplane detected to >550 AU radius. The blue optical to near-infrared scattered light color relative to the star may indicate dust scattering properties similar to the AU Mic debris disk. The existence of a large debris disk surrounding HD 15115 is consistent with its proposed membership in the Beta Pic moving group, and the extreme asymmetry presents significant theoretical challenges. We hypothesize that the extreme asymmetries may be caused by dynamical perturbations from HIP 12545, another Beta Pic Moving Group member east of HD 15115, that shares a common proper motion vector, heliocentric distance, Galactic space velocity, and age. HD 15115 is a prime candidate for exoplanet detection via radial velocity and transit techniques.
The Faintest WISE Debris Disks: Enhanced Methods for Detection and Verification
NASA Astrophysics Data System (ADS)
Patel, Rahul I.; Metchev, Stanimir A.; Heinze, Aren; Trollo, Joseph
2017-02-01
In an earlier study, we reported nearly 100 previously unknown dusty debris disks around Hipparcos main-sequence stars within 75 pc by selecting stars with excesses in individual WISE colors. Here, we further scrutinize the Hipparcos 75 pc sample to (1) gain sensitivity to previously undetected, fainter mid-IR excesses and (2) remove spurious excesses contaminated by previously unidentified blended sources. We improve on our previous method by adopting a more accurate measure of the confidence threshold for excess detection and by adding an optimally weighted color average that incorporates all shorter-wavelength WISE photometry, rather than using only individual WISE colors. The latter is equivalent to spectral energy distribution fitting, but only over WISE bandpasses. In addition, we leverage the higher-resolution WISE images available through the unWISE.me image service to identify contaminated WISE excesses based on photocenter offsets among the W3- and W4-band images. Altogether, we identify 19 previously unreported candidate debris disks. Combined with the results from our earlier study, we have found a total of 107 new debris disks around 75 pc Hipparcos main-sequence stars using precisely calibrated WISE photometry. This expands the 75 pc debris disk sample by 22% around Hipparcos main-sequence stars and by 20% overall (including non-main-sequence and non-Hipparcos stars).
An Incipient Debris Disk in the Chamaeleon I Cloud
NASA Astrophysics Data System (ADS)
Espaillat, C. C.; Ribas, Á.; McClure, M. K.; Hernández, J.; Owen, J. E.; Avish, N.; Calvet, N.; Franco-Hernández, R.
2017-07-01
The point at which a protoplanetary disk becomes a debris disk is difficult to identify. To better understand this, here we study the ˜40 au separation binary T 54 in the Chamaeleon I cloud. We derive a K5 spectral type for T 54 A (which dominates the emission of the system) and an age of ˜2 Myr. However, the dust disk properties of T 54 are consistent with those of debris disks seen around older- and earlier-type stars. At the same time, T 54 has evidence of gas remaining in the disk, as indicated by [Ne II], [Ne III], and [O I] line detections. We model the spectral energy distribution of T 54 and estimate that ˜ 3× {10}-3 {M}\\oplus of small dust grains (<0.25 μm) are present in an optically thin circumbinary disk along with at least ˜ 3× {10}-7 {M}\\oplus of larger (>10 μm) grains within a circumprimary disk. Assuming a solar-like mixture, we use Ne line luminosities to place a minimum limit on the gas mass of the disk (˜ 3× {10}-4 {M}\\oplus ) and derive a gas-to-dust mass ratio of ˜0.1. We do not detect substantial accretion, but we do see Hα in emission in one epoch, which is suggestive that there may be intermittent dumping of small amounts of matter onto the star. Considering the low dust mass, the presence of gas, and young age of T 54, we conclude that this system is on the bridge between the protoplanetary and debris disk stages.
A Search for Debris Disks Around Variable Pulsars
NASA Astrophysics Data System (ADS)
Shannon, Ryan; Cordes, J.; Lazio, J.; Kramer, M.; Lyne, A.
2009-01-01
After a supernova explosion, a modest amount of material will fall back and form a disk surrounding the resultant neutron star. This material can aggregate into rocky debris and the disk can be stable for the entire 10 million year lifetime of a canonical (non-recycled) radio pulsar. Previously, we developed a model that unifies the different classes of radio variability observed in many older pulsars. In this model, rocky material migrates inwards towards the neutron star and is ablated inside the pulsar magnetosphere. This material alters the electrodynamics in the magnetosphere which can cause the observed quiescent and bursting states observed in nulling pulsars, intermittent pulsars, and rotating radio transients. With this model in mind, we observed three nulling pulsars and one intermittent pulsar that are good candidates to host debris disks detectable by the Spitzer IRAC. Here we report how our IRAC observations constrain disk geometry, with particular emphasis on configurations that can provide the in-fall rate to cause the observed radio variability. We place these observations in the context of other searches for debris disks around neutron stars, which had studied either very young or very old (recycled) pulsars. By observing older canonical pulsars, all major classes of radio pulsars have been observed, and we can assess the presence of debris disks as a function of pulsar type. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA. Support for this work was provided by NASA through an award issued by JPL/Caltech.
ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997
NASA Technical Reports Server (NTRS)
Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.;
2013-01-01
The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.
Gas Debris Disks: A New Way to Produce Dust Patterns
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2012-01-01
Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to planets. But adding a bit of gas to our models of these disks--too little to detect-could alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. rll discuss these phenomena and whether or not we can still use dust patterns as indicators of hidden exoplanets.
The formation of Pluto's low-mass satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu
Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk ofmore » debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.« less
Structure of the Iconic Vega Debris Disk
NASA Astrophysics Data System (ADS)
Su, Kate
2015-10-01
Debris structures provide the best means to explore planets down to ice-giant masses in the outer (>5 AU) parts of extrasolar planetary systems. It is thought that the iconic Vega debris disk composes of two separate belts shepherded by unseen planets, similar to the Solar System. We will probe this possibility with SOFIA at 35 microns by: 1.) documenting the structure of the debris with sufficient resolution to distinguish a separate warm belt from the alternative model of dust flowing inward from the outer debris ring; and 2.) testing for traces of dust in its 15-60 AU zone and thus probing the possibility that ice giant planets may be shepherding the debris belts.
Subaru SCExAO First-Light Direct Imaging of a Young Debris Disk around HD 36546
NASA Technical Reports Server (NTRS)
Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, TImothy D.; Kuhn, Jonasa; Serabyn, Eugene;
2017-01-01
We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r approximately 0 3 to r approximately 0".3 to r approximately 1" (34-114 au). The disk is oriented in a near east west direction (PA approximately 75deg), is inclined by I approximately 70deg-75deg, and is strongly forward-scattering(g greater than 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disks eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t approximately 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (310 Myr) and a possible connection to Taurus-Aurigas star formation history. SCExAOs planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r greater than 20 au may explain the disks visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet disk interactions.
A Peculiar Class of Debris Disks from Herschel/DUNES: A Steep Fall Off in the Far Infrared
NASA Technical Reports Server (NTRS)
Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J. C.; Krivov, A. V.; Lohne, T.; Absil, O.; Ardila, D.; Arevalo, M.;
2012-01-01
Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims. We present photometric data of debris disks around HIP 103389 (HD199260), HIP 100350 (HN Peg, HD206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel Open TIme Key Program DUNES (DUst around NEarby Stars). Methods. We used Herschel/PACS to detect the thermal emission of the three debris disks with a 30 sigma sensitivity of a few mJy at l00 micron and 160 micron. In addition, we obtained Herschel/PACS photometric data at 70 micron for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated therma1 annealing as well as a classical grid search method. Results. The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths >= 70 micron. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal. emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions. A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented.
Modeling collisions in circumstellar debris disks
NASA Astrophysics Data System (ADS)
Nesvold, Erika
2015-10-01
Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion resonances near the chaotic zone. I investigate the effects of the initial eccentricity distribution of the disk particles and find a negligible effect on the gap size at Jovian planet masses, since collisions tend to erase memory of the initial particle eccentricity distributions. I also find that the presence of Trojan analogs is a potentially powerful diagnostic of planets in the mass range ˜1--10MJup. I apply my model to place new upper limits on planets around Fomalhaut, HR 4796 A, HD 202628, HD 181327, and beta Pictoris. Finally, to show how SMACK can be used to analyze a single debris disk in detail, I present a new model of the beta Pictoris disk and planet system that, for the first time, combines simulations of the colliding planetesimals and the dynamics of the dust grains, allowing me to model features and asymmetries in both submillimeter and scattered light images of the disk. I combine a 100,000 superparticle SMACK simulation with N-body integrations of the dust produced by the simulated collisions. I find that secular perturbations of the planet's measured inclination and eccentricity can explain the observed warp and planetesimal ring, while collisions between planetesimals shape the disk by eroding close-in material. The complex 3D structure of the disk due to the perturbations from the planet creates an azimuthally asymmetric spatial distribution of collisions, which could contribute to the observed azimuthal clump of CO gas seen with ALMA. My simulations of the small dust grains produced by collisions demonstrate that the "birth ring" approximation for beta Pictoris fails to account for the ˜54% of dust mass produced outside of the planetesimal ring. I also reproduce the gross morphology of high-resolution scattered light images of the disk, including the two-disk "x"-pattern seen in scattered light, which has not been replicated by previous dust dynamics models.
Young Debris Disks With Newly Discovered Emission Features
NASA Astrophysics Data System (ADS)
Ballering, N.
2014-04-01
We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90
A Distant Solar System Artist Concept
2004-12-09
This artist concept depicts a distant hypothetical solar system, similar in age to our own. Looking inward from the system outer fringes, a ring of dusty debris can be seen, and within it, planets circling a star the size of our Sun. This debris is all that remains of the planet-forming disk from which the planets evolved. Planets are formed when dusty material in a large disk surrounding a young star clumps together. Leftover material is eventually blown out by solar wind or pushed out by gravitational interactions with planets. Billions of years later, only an outer disk of debris remains. These outer debris disks are too faint to be imaged by visible-light telescopes. They are washed out by the glare of the Sun. However, NASA's Spitzer Space Telescope can detect their heat, or excess thermal emission, in infrared light. This allows astronomers to study the aftermath of planet building in distant solar systems like our own. http://photojournal.jpl.nasa.gov/catalog/PIA07096
"Horseshoe" Structures in the Debris Disks of Planet-Hosting Binary Stars
NASA Astrophysics Data System (ADS)
Demidova, T. V.
2018-03-01
The formation of a planetary system from the protoplanetary disk leads to destruction of the latter; however, a debris disk can remain in the form of asteroids and cometary material. The motion of planets can cause the formation of coorbital structures from the debris disk matter. Previous calculations have shown that such a ring-like structure is more stable if there is a binary star in the center of the system, as opposed to a single star. To analyze the properties of the coorbital structure, we have calculated a grid of models of binary star systems with a circumbinary planet moving in a planetesimal disk. The calculations are performed considering circular orbits of the stars and the planet; the mass and position of the planet, as well as the mass ratio of the stars, are varied. The analysis of the models shows that the width of the coorbital ring and its stability significantly depend on the initial parameters of the problem. Additionally, the empirical dependences of the width of the coorbital structure on the parameters of the system have been obtained, and the parameters of the models with the most stable coorbital structures have been determined. The results of the present study can be used for the search of planets around binary stars with debris disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalas, Paul G.; Rajan, Abhijith; Wang, Jason J.
Here, we present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ~50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the "needle" morphologymore » seen for the HD 15115 debris disk. The planet candidate is oriented ~21° away from the position angle of the primary's debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary's disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. In conclusion, we show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalas, Paul G.; Wang, Jason J.; Duchene, Gaspard
We present the first scattered light detections of the HD 106906 debris disk using the Gemini/Gemini Planet Imager in the infrared and Hubble Space Telescope (HST)/Advanced Camera for Surveys in the optical. HD 106906 is a 13 Myr old F5V star in the Sco–Cen association, with a previously detected planet-mass candidate HD 106906b projected 650 AU from the host star. Our observations reveal a near edge-on debris disk that has a central cleared region with radius ∼50 AU, and an outer extent >500 AU. The HST data show that the outer regions are highly asymmetric, resembling the “needle” morphology seenmore » for the HD 15115 debris disk. The planet candidate is oriented ∼21° away from the position angle of the primary’s debris disk, strongly suggesting non-coplanarity with the system. We hypothesize that HD 106906b could be dynamically involved in the perturbation of the primary’s disk, and investigate whether or not there is evidence for a circumplanetary dust disk or cloud that is either primordial or captured from the primary. We show that both the existing optical properties and near-infrared colors of HD 106906b are weakly consistent with this possibility, motivating future work to test for the observational signatures of dust surrounding the planet.« less
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Thébault, P.; Augereau, J.-C.; Bonsor, A.; del Burgo, C.; Ertel, S.; Marshall, J. P.; Milli, J.; Montesinos, B.; Mora, A.; Bryden, G.; Danchi, W.; Eiroa, C.; White, G. J.; Wolf, S.
2014-03-01
Context. Imaging of debris disks has found evidence for both eccentric and offset disks. One hypothesis is that they provide evidence for massive perturbers, for example, planets or binary companions, which sculpt the observed structures. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. In contrast with previously reported systems, the disk is significantly eccentric, and the system is several Gyr old. Aims: We aim to investigate the long-term evolution of eccentric structures in debris disks caused by a perturber on an eccentric orbit around the star. We hypothesise that the observed eccentric disk around ζ2 Reticuli might be evidence of such a scenario. If so, we are able to constrain the mass and orbit of a potential perturber, either a giant planet or a binary companion. Methods: Analytical techniques were used to predict the effects of a perturber on a debris disk. Numerical N-body simulations were used to verify these results and further investigate the observable structures that may be produced by eccentric perturbers. The long-term evolution of the disk geometry was examined, with particular application to the ζ2 Reticuli system. In addition, synthetic images of the disk were produced for direct comparison with Herschel observations. Results: We show that an eccentric companion can produce both the observed offsets and eccentric disks. These effects are not immediate, and we characterise the timescale required for the disk to develop to an eccentric state (and any spirals to vanish). For ζ2 Reticuli, we derive limits on the mass and orbit of the companion required to produce the observations. Synthetic images show that the pattern observed around ζ2 Reticuli can be produced by an eccentric disk seen close to edge-on, and allow us to bring additional constraints on the disk parameters of our model (disk flux and extent). Conclusions: We conclude that eccentric planets or stellar companions can induce long-lived eccentric structures in debris disks. Observations of such eccentric structures thus provide potential evidence of the presence of such a companion in a planetary system. We considered the specific example of ζ2 Reticuli, whose observed eccentric disk can be explained by a distant companion (at tens of AU) on an eccentric orbit (ep ≳ 0.3). Appendices are available in electronic form at http://www.aanda.orgHerschel Space Observatory is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Multi-Wavelength Interferometric Observations of YSO Disks
NASA Astrophysics Data System (ADS)
Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.
2010-01-01
We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.
OT2_dardila_2: PACS Photometry of Transiting-Planet Systems with Warm Debris Disks
NASA Astrophysics Data System (ADS)
Ardila, D.
2011-09-01
Dust in debris disks is produced by colliding or evaporating planetesimals, the remnant of the planet formation process. Warm dust disks, known by their emission at =<24 mic, are rare (4% of FGK main-sequence stars), and specially interesting because they trace material in the region likely to host terrestrial planets, where the dust has very short dynamical lifetimes. Dust in this region comes from very recent asteroidal collisions, migrating Kuiper Belt planetesimals, or migrating dust. NASA's Kepler mission has just released a list of 1235 candidate transiting planets, and in parallel, the Wide-Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky mapping in the 3.4, 4.6, 12, and 22 micron bands. By cross-identifying the WISE sources with Kepler candidates as well as with other transiting planetary systems we have identified 21 transiting planet hosts with previously unknown warm debris disks. We propose Herschel/PACS 100 and 160 micron photometry of this sample, to determine whether the warm dust in these systems represents stochastic outbursts of local dust production, or simply the Wien side of emission from a cold outer dust belt. These data will allow us to put constraints in the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. This program represents a unique opportunity to exploit the synergy between three great space facilities: Herschel, Kepler, and WISE. The transiting planet sample hosts will remain among the most studied group of stars for the years to come, and our knowledge of their planetary architecture will remain incomplete if we do not understand the characteristics of their debris disks.
The HIP 79977 debris disk in polarized light
NASA Astrophysics Data System (ADS)
Engler, N.; Schmid, H. M.; Thalmann, Ch.; Boccaletti, A.; Bazzon, A.; Baruffolo, A.; Beuzit, J. L.; Claudi, R.; Costille, A.; Desidera, S.; Dohlen, K.; Dominik, C.; Feldt, M.; Fusco, T.; Ginski, C.; Gisler, D.; Girard, J. H.; Gratton, R.; Henning, T.; Hubin, N.; Janson, M.; Kasper, M.; Kral, Q.; Langlois, M.; Lagadec, E.; Ménard, F.; Meyer, M. R.; Milli, J.; Mouillet, D.; Olofsson, J.; Pavlov, A.; Pragt, J.; Puget, P.; Quanz, S. P.; Roelfsema, R.; Salasnich, B.; Siebenmorgen, R.; Sissa, E.; Suarez, M.; Szulagyi, J.; Turatto, M.; Udry, S.; Wildi, F.
2017-11-01
Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims: We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods: SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (λc = 735 nm, Δλ = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0.2'' (25 AU) and 1.6'' (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results: We measure a polarized flux contrast ratio for the disk of (Fpol)disk/F∗ = (5.5 ± 0.9) × 10-4 in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec-2 at a separation of 0.2''-0.5'' along the disk spine with a maximum surface brightness contrast of 7.64 mag arcsec-2. The polarized flux has a minimum near the star <0.2'' because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The width of the disk perpendicular to the spine shows a systematic increase in FWHM from 0.1'' (12 AU) to 0.3''-0.5'', when going from a separation of 0.2'' to >1''. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination I = 85( ± 1.5)° and a radius between r0 = 60 and 90 AU. The radial density dependence is described by (r/r0)α with a steep (positive) power law index α = 5 inside r0 and a more shallow (negative) index α = -2.5 outside r0. The scattering asymmetry factor lies between g = 0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering. Conclusions: Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (Fpol)disk/F∗ with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.
Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?
NASA Technical Reports Server (NTRS)
Krivov, A. V.; Eiroa, C.; Loehne, T.; Marshall, J. P.; Montesinos, B.; DelBurgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.;
2013-01-01
Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around approx, 100 micron or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant-and in some cases extended-excess emission at 160 micron, which is larger than the 100 micron excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than approx. 100 micron, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
Herschel's "Cold Debris Disks": Background Galaxies or Quiescent Rims of Planetary Systems?
NASA Astrophysics Data System (ADS)
Krivov, A. V.; Eiroa, C.; Löhne, T.; Marshall, J. P.; Montesinos, B.; del Burgo, C.; Absil, O.; Ardila, D.; Augereau, J.-C.; Bayo, A.; Bryden, G.; Danchi, W.; Ertel, S.; Lebreton, J.; Liseau, R.; Mora, A.; Mustill, A. J.; Mutschke, H.; Neuhäuser, R.; Pilbratt, G. L.; Roberge, A.; Schmidt, T. O. B.; Stapelfeldt, K. R.; Thébault, Ph.; Vitense, Ch.; White, G. J.; Wolf, S.
2013-07-01
Infrared excesses associated with debris disk host stars detected so far peak at wavelengths around ~100 μm or shorter. However, 6 out of 31 excess sources studied in the Herschel Open Time Key Programme, DUNES, have been seen to show significant—and in some cases extended—excess emission at 160 μm, which is larger than the 100 μm excess. This excess emission has been attributed to circumstellar dust and has been suggested to stem from debris disks colder than those known previously. Since the excess emission of the cold disk candidates is extremely weak, challenging even the unrivaled sensitivity of Herschel, it is prudent to carefully consider whether some or even all of them may represent unrelated galactic or extragalactic emission, or even instrumental noise. We re-address these issues using several distinct methods and conclude that it is highly unlikely that none of the candidates represents a true circumstellar disk. For true disks, both the dust temperatures inferred from the spectral energy distributions and the disk radii estimated from the images suggest that the dust is nearly as cold as a blackbody. This requires the grains to be larger than ~100 μm, even if they are rich in ices or are composed of any other material with a low absorption in the visible. The dearth of small grains is puzzling, since collisional models of debris disks predict that grains of all sizes down to several times the radiation pressure blowout limit should be present. We explore several conceivable scenarios: transport-dominated disks, disks of low dynamical excitation, and disks of unstirred primordial macroscopic grains. Our qualitative analysis and collisional simulations rule out the first two of these scenarios, but show the feasibility of the third one. We show that such disks can indeed survive for gigayears, largely preserving the primordial size distribution. They should be composed of macroscopic solids larger than millimeters, but smaller than a few kilometers in size. If larger planetesimals were present, then they would stir the disk, triggering a collisional cascade and thus causing production of small debris, which is not seen. Thus, planetesimal formation, at least in the outer regions of the systems, has stopped before "cometary" or "asteroidal" sizes were reached.
Herschel/PACS photometry of transiting-planet host stars with candidate warm debris disks
NASA Astrophysics Data System (ADS)
Merín, Bruno; Ardila, David R.; Ribas, Álvaro; Bouy, Hervé; Bryden, Geoffrey; Stapelfeldt, Karl; Padgett, Deborah
2014-09-01
Dust in debris disks is produced by colliding or evaporating planetesimals, which are remnants of the planet formation process. Warm dust disks, known by their emission at ≤24 μm, are rare (4% of FGK main sequence stars) and especially interesting because they trace material in the region likely to host terrestrial planets, where the dust has a very short dynamical lifetime. Statistical analyses of the source counts of excesses as found with the mid-IR Wide Field Infrared Survey Explorer (WISE) suggest that warm-dust candidates found for the Kepler transiting-planet host-star candidates can be explained by extragalactic or galactic background emission aligned by chance with the target stars. These statistical analyses do not exclude the possibility that a given WISE excess could be due to a transient dust population associated with the target. Here we report Herschel/PACS 100 and 160 micron follow-up observations of a sample of Kepler and non-Kepler transiting-planet candidates' host stars, with candidate WISE warm debris disks, aimed at detecting a possible cold debris disk in any one of them. No clear detections were found in any one of the objects at either wavelength. Our upper limits confirm that most objects in the sample do not have a massive debris disk like that in β Pic. We also show that the planet-hosting star WASP-33 does not have a debris disk comparable to the one around η Crv. Although the data cannot be used to rule out rare warm disks around the Kepler planet-hosting candidates, the lack of detections and the characteristics of neighboring emission found at far-IR wavelengths support an earlier result suggesting that most of the WISE-selected IR excesses around Kepler candidate host stars are likely due to either chance alignment with background IR-bright galaxies and/or to interstellar emission. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Inner Edges of Compact Debris Disks around Metal-rich White Dwarfs
NASA Astrophysics Data System (ADS)
Rafikov, Roman R.; Garmilla, José A.
2012-12-01
A number of metal-rich white dwarfs (WDs) are known to host compact, dense particle disks, which are thought to be responsible for metal pollution of these stars. In many such systems, the inner radii of disks inferred from their spectra are so close to the WD that particles directly exposed to starlight must be heated above 1500 K and are expected to be unstable against sublimation. To reconcile this expectation with observations, we explore particle sublimation in H-poor debris disks around WDs. We show that because of the high metal vapor pressure the characteristic sublimation temperature in these disks is 300-400 K higher than in their protoplanetary analogs, allowing particles to survive at higher temperatures. We then look at the structure of the inner edges of debris disks and show that they should generically feature superheated inner rims directly exposed to starlight with temperatures reaching 2500-3500 K. Particles migrating through the rim toward the WD (and rapidly sublimating) shield the disk behind them from strong stellar heating, making the survival of solids possible close to the WD. Our model agrees well with observations of WD+disk systems provided that disk particles are composed of Si-rich material such as olivine, and have sizes in the range ~0.03-30 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedman, Matthew M.; Stark, Christopher C., E-mail: mhedman@uidaho.edu, E-mail: cstark@stsci.edu
The appearance of debris disks around distant stars depends upon the scattering/phase function (SPF) of the material in the disk. However, characterizing the SPFs of these extrasolar debris disks is challenging because only a limited range of scattering angles are visible to Earth-based observers. By contrast, Saturn’s tenuous rings can be observed over a much broader range of geometries, so their SPFs can be much better constrained. Since these rings are composed of small particles released from the surfaces of larger bodies, they are reasonable analogs to debris disks and so their SPFs can provide insights into the plausible scatteringmore » properties of debris disks. This work examines two of Saturn’s dusty rings: the G ring (at 167,500 km from Saturn’s center) and the D68 ringlet (at 67,600 km). Using data from the cameras on board the Cassini spacecraft, we are able to estimate the rings’ brightnesses at scattering angles ranging from 170° to 0.°5. We find that both of the rings exhibit extremely strong forward-scattering peaks, but for scattering angles above 60° their brightnesses are nearly constant. These SPFs can be well approximated by a linear combination of three Henyey–Greenstein functions, and are roughly consistent with the SPFs of irregular particles from laboratory measurements. Comparing these data to Fraunhofer and Mie models highlights several challenges involved in extracting information about particle compositions and size distributions from SPFs alone. The SPFs of these rings also indicate that the degree of forward scattering in debris disks may be greatly underestimated.« less
A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks
NASA Astrophysics Data System (ADS)
Draper, Zachary H.; Matthews, Brenda; Venn, Kim; Lambert, David; Kennedy, Grant; Sitnova, Tatyana
2018-04-01
In order to assess the relationship between metallicity and exoplanetary systems, we compare the abundances of AF-type main-sequence stars with debris disk properties assessed using Herschel observations of an unbiased survey of nearby stars. Hot stars are not as commonly observed, given their unique constraints in data reduction, lack of metal lines, and “astrophysical noise” from rotation speed. Here, we address that deficiency using new and archival spectra of 83 AF-type stars. We measure the abundances of a few species in addition to Fe in order to classify the stars with Ap/Am or Lambda Boo signatures. Lambda Boo stars have a chemical signature of solar-abundant volatile species and sub-solar refractory abundances that is hypothesized to be altered by the pollution of volatiles. Overall, we see no correlation between debris disks and metallicity, primarily because the sample size is cut significantly when using only reliable fits to the spectroscopic data. The abundance measured from the Mg II 4481 blend is a useful diagnostic because it can be reliably measured at large v·sin(i) and is found to be lower around stars with bright debris disks. We find that Lambda Boo stars have brighter debris disks compared to a bias-free sample of AF stars. The trend with disk brightness and Mg abundances suggests pollution effects can be significant and used as a marker for the stability of planetary systems. We explore trends with other species, such as with the C/O ratios, but are significantly limited by the low number of reliable detections.
Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki
We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. Whilemore » HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.« less
Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546
NASA Astrophysics Data System (ADS)
Currie, Thayne; Guyon, Olivier; Tamura, Motohide; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Singh, Garima; Uyama, Taichi; Kuzuhara, Masayuki; Akiyama, Eiji; Grady, Carol; Hayashi, Saeko; Knapp, Gillian; Kwon, Jung-mi; Oh, Daehyeon; Wisniewski, John; Sitko, Michael; Yang, Yi
2017-02-01
We present H-band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ˜ 0.″3 to r ˜ 1″ (34-114 au). The disk is oriented in a near east-west direction (PA ˜ 75°), is inclined by I ˜ 70°-75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ˜ 1-250 Myr), its kinematics and analysis of coeval stars suggest a young age (3-10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet-disk interactions.
Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems
NASA Astrophysics Data System (ADS)
Choquet, Elodie
2017-08-01
We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.
A peculiar class of debris disks from Herschel/DUNES. A steep fall off in the far infrared
NASA Astrophysics Data System (ADS)
Ertel, S.; Wolf, S.; Marshall, J. P.; Eiroa, C.; Augereau, J.-C.; Krivov, A. V.; Löhne, T.; Absil, O.; Ardila, D.; Arévalo, M.; Bayo, A.; Bryden, G.; del Burgo, C.; Greaves, J.; Kennedy, G.; Lebreton, J.; Liseau, R.; Maldonado, J.; Montesinos, B.; Mora, A.; Pilbratt, G. L.; Sanz-Forcada, J.; Stapelfeldt, K.; White, G. J.
2012-05-01
Context. The existence of debris disks around old main sequence stars is usually explained by continuous replenishment of small dust grains through collisions from a reservoir of larger objects. Aims: We present photometric data of debris disks around HIP 103389 (HD 199260), HIP 107350 (HN Peg, HD 206860), and HIP 114948 (HD 219482), obtained in the context of our Herschel open time key program DUNES (DUst around NEarby Stars). Methods: We used Herschel/PACS to detect the thermal emission of the three debris disks with a 3σ sensitivity of a few mJy at 100 μm and 160 μm. In addition, we obtained Herschel/PACS photometric data at 70 μm for HIP 103389. These observations are complemented by a large variety of optical to far-infrared photometric data. Two different approaches are applied to reduce the Herschel data to investigate the impact of data reduction on the photometry. We fit analytical models to the available spectral energy distribution (SED) data using the fitting method of simulated thermal annealing as well as a classical grid search method. Results: The SEDs of the three disks potentially exhibit an unusually steep decrease at wavelengths ≥70 μm. We investigate the significance of the peculiar shape of these SEDs and the impact on models of the disks provided it is real. Using grain compositions that have been applied successfully for modeling of many other debris disks, our modeling reveals that such a steep decrease of the SEDs in the long wavelength regime is inconsistent with a power-law exponent of the grain size distribution -3.5 expected from a standard equilibrium collisional cascade. In contrast, a steep grain size distribution or, alternatively an upper grain size in the range of few tens of micrometers are implied. This suggests that a very distinct range of grain sizes would dominate the thermal emission of such disks. However, we demonstrate that the understanding of the data of faint sources obtained with Herschel is still incomplete and that the significance of our results depends on the version of the data reduction pipeline used. Conclusions: A new mechanism to produce the dust in the presented debris disks, deviations from the conditions required for a standard equilibrium collisional cascade (grain size exponent of -3.5), and/or significantly different dust properties would be necessary to explain the potentially steep SED shape of the three debris disks presented. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Zodiac II: Debris Disk Imaging Potential
NASA Technical Reports Server (NTRS)
Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John
2011-01-01
Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.
Identifying Likely Disk-hosting M dwarfs with Disk Detective
NASA Astrophysics Data System (ADS)
Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration
2018-01-01
M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.
DISK DETECTIVE: DISCOVERY OF NEW CIRCUMSTELLAR DISK CANDIDATES THROUGH CITIZEN SCIENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchner, Marc J.; McElwain, Michael; Padgett, Deborah L.
The Disk Detective citizen science project aims to find new stars with 22 μ m excess emission from circumstellar dust using data from NASA’s Wide-field Infrared Survey Explorer ( WISE ) mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false positives (galaxies, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disksmore » and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 μ m excess around the previously known debris disk host star HD 22128.« less
Substantial reservoirs of molecular hydrogen in the debris disks around young stars.
Thi, W F; Blake, G A; van Dishoeck, E F; van Zadelhoff, G J; Horn, J M; Becklin, E E; Mannings, V; Sargent, A I; van Den Ancker, M E; Natta, A
2001-01-04
Circumstellar accretion disks transfer matter from molecular clouds to young stars and to the sites of planet formation. The disks observed around pre-main-sequence stars have properties consistent with those expected for the pre-solar nebula from which our own Solar System formed 4.5 Gyr ago. But the 'debris' disks that encircle more than 15% of nearby main-sequence stars appear to have very small amounts of gas, based on observations of the tracer molecule carbon monoxide: these observations have yielded gas/dust ratios much less than 0.1, whereas the interstellar value is about 100 (ref. 9). Here we report observations of the lowest rotational transitions of molecular hydrogen (H2) that reveal large quantities of gas in the debris disks around the stars beta Pictoris, 49 Ceti and HD135344. The gas masses calculated from the data are several hundreds to a thousand times greater than those estimated from the CO observations, and yield gas/dust ratios of the same order as the interstellar value.
Debris Disks Among the Shell Stars: Insights from Spitzer
NASA Technical Reports Server (NTRS)
Roberge, Aki; Weinberger, Alycia; Teske, Johanna
2008-01-01
Shell stars are a class of early-type stars that show narrow absorption lines in their spectra that appear to arise from circumstellar class. This observationally defined class contains a variety of objects, including evolved stars and classical Be stars. However, some of the main sequence shell stars harbor debris disks and younger protoplanetary disks, though this aspect of the class has been largely overlooked. We surveyed a set of main sequence stars for cool dust using Spitzer MIPS and found four additional systems with IR excesses at both 24 and 70 microns. This indicates that the stars have both circumstellar gas and dust, and are likely to be edge-on debris disks. Our estimate of the disk fraction among nearby main sequence shell stars is 48% +/- 14%. We discuss here the nature of the shell stars and present preliminary results from ground-based optical spectra of the survey target stars. We will also outline our planned studies aimed at further characterization of the shell star class.
Searching for debris disks around seven radio pulsars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhongxiang; Wang, Xuebing; Ng, C.-Y.
2014-10-01
We report on our searches for debris disks around seven relatively nearby radio pulsars, which are isolated sources that were carefully selected as targets on the basis of our deep K{sub s} -band imaging survey. The K{sub s} images obtained with the 6.5 m Baade Magellan Telescope at Las Campanas Observatory are analyzed together with the Spitzer/IRAC images at 4.5 and 8.0 μm and the WISE images at 3.4, 4.6, 12, and 22 μm. No infrared counterparts of these pulsars are found, with flux upper limits of ∼μJy at near-infrared (λ < 10 μm) and ∼10-1000 μJy at mid-infrared wavelengthsmore » (λ > 10 μm). The results of this search are discussed in terms of the efficiency of converting the pulsar spin-down energy to thermal energy and X-ray heating of debris disks, with a comparison made of the two magnetars 4U 0142+61 and 1E 2259+586, which are suggested to harbor a debris disk.« less
A PRIMER ON UNIFYING DEBRIS DISK MORPHOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu
A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, diskmore » inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focusmore » our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease with the luminosity, which may be suggestive of the disk's stirring level increasing toward earlier-type stars. The dust opacity index β ranges between zero and two, and the size distribution index q varies between three and five for all the disks in the sample.« less
Resolved Millimeter Observations of the HR 8799 Debris Disk
NASA Astrophysics Data System (ADS)
Wilner, David J.; MacGregor, Meredith A.; Andrews, Sean M.; Hughes, A. Meredith; Matthews, Brenda; Su, Kate
2018-03-01
We present 1.3 mm observations of the debris disk surrounding the HR 8799 multi-planet system from the Submillimeter Array to complement archival ALMA observations that spatially filtered away the bulk of the emission. The image morphology at 3.″8 (150 au) resolution indicates an optically thin circumstellar belt, which we associate with a population of dust-producing planetesimals within the debris disk. The interferometric visibilities are fit well by an axisymmetric radial power-law model characterized by a broad width, ΔR/R ≳ 1. The belt inclination and orientation parameters are consistent with the planet orbital parameters within the mutual uncertainties. The models constrain the radial location of the inner edge of the belt to {R}in}={104}-12+8 au. In a simple scenario where the chaotic zone of the outermost planet b truncates the planetesimal distribution, this inner edge location translates into a constraint on the planet b mass of {M}pl}={5.8}-3.1+7.9 M Jup. This mass estimate is consistent with infrared observations of the planet luminosity and standard hot-start evolutionary models, with the uncertainties allowing for a range of initial conditions. We also present new 9 mm observations of the debris disk from the Very Large Array and determine a millimeter spectral index of 2.41 ± 0.17. This value is typical of debris disks and indicates a power-law index of the grain size distribution q = 3.27 ± 0.10, close to predictions for a classical collisional cascade.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kate Y. L.; Smith, Paul S.; Rieke, George H.
HD 95086 is a young early-type star that hosts (1) a 5 M{sub J} planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 μm crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 μm. Due to the low resolution of the MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing ∼5% of the total dust mass. We also present detailed analysis of the disk spectral energy distribution and re-analysis of resolved images obtained bymore » Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (∼175 K) belt, a cold (∼55 K) disk, and an extended disk halo (up to ∼800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet, and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass ∼ 5 M{sub J} , could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system.« less
Debris Disk Studies with the ngVLA
NASA Astrophysics Data System (ADS)
Wilner, David; Matthews, Brenda; Matra, Luca; Kennedy, Grant; Wyatt, Mark; Greaves, Jane
2018-01-01
We discuss the potential for the ngVLA to advance understanding of debris disks around main-sequence stars. Since the dust-producing planetesimals that replenish these disks through collisions persist only in stable regions like belts and resonances, their locations and physical properties encode essential information about the formation of exoplanetary systems and their dynamical evolution. Observations at long millimeter wavelengths can play a special role because the large grains that dominate the emission are faithful tracers of the dust-producing planetesimals, unlike small grains seen at shorter wavelengths that are rapidly redistributed by stellar radiation and winds. Sensitive observations of debris disks with the ngVLA can (1) reveal structures resulting from otherwise inaccessible planets on wide orbits, (2) test collisional models using spectral slopes to constrain mm/cm grain size distributions, and (3) for select sources, probe the water content of exocomets using the 21 cm HI line.
A MODEL FOR (QUASI-)PERIODIC MULTIWAVELENGTH PHOTOMETRIC VARIABILITY IN YOUNG STELLAR OBJECTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kesseli, Aurora Y.; Petkova, Maya A.; Wood, Kenneth
We present radiation transfer models of rotating young stellar objects (YSOs) with hot spots in their atmospheres, inner disk warps, and other three-dimensional effects in the nearby circumstellar environment. Our models are based on the geometry expected from magneto-accretion theory, where material moving inward in the disk flows along magnetic field lines to the star and creates stellar hot spots upon impact. Due to rotation of the star and magnetosphere, the disk is variably illuminated. We compare our model light curves to data from the Spitzer YSOVAR project to determine if these processes can explain the variability observed at opticalmore » and mid-infrared wavelengths in young stars. We focus on those variables exhibiting “dipper” behavior that may be periodic, quasi-periodic, or aperiodic. We find that the stellar hot-spot size and temperature affects the optical and near-infrared light curves, while the shape and vertical extent of the inner disk warp affects the mid-IR light curve variations. Clumpy disk distributions with non-uniform fractal density structure produce more stochastic light curves. We conclude that magneto-accretion theory is consistent with certain aspects of the multiwavelength photometric variability exhibited by low-mass YSOs. More detailed modeling of individual sources can be used to better determine the stellar hot-spot and inner disk geometries of particular sources.« less
WFIRST: CGI Detection and Characterization of Circumstellar Disks
NASA Astrophysics Data System (ADS)
Debes, John; Chen, Christine; Dawson, Bekki; Douglas, Ewan S.; Duchene, Gaspard; Jang-Condell, Hannah; hines, Dean C.; Lewis, Nikole K.; Macintosh, Bruce; Mazoyer, Johan; Meshkat, Tiffany; Nemati, Bijan; Patel, Rahul; Perrin, Marshall; Poteet, Charles; Pueyo, Laurent; Ren, Bin; Rizzo, Maxime; Roberge, Aki; Stark, Chris; Turnbull, Margaret
2018-01-01
The WFIRST Coronagraphic Instrument (CGI) will be capable of obtaining up to 5×10-9 contrast to an inner working angle of ~150 mas for a selection of medium band visible light filters using shaped pupil coronagraph and hybrid Lyot coronagraph designs. We present initial work at defining the scientific capabilities of the CGI with respect to different types of circumstellar disks, including warm exo-zodiacal disks, cold debris disks, and protoplanetary disks. With the above designs, CGI will be able to detect bright protoplanetary and debris disks with sizes of >100 AU beyond 500 pc. Additionally, it will be able to discover warm exozodiacal dust disks ten times more massive than that of the Solar System for over 100 nearby solar-type stars. Finally, it will be able to characterize resolved circumstellar dust disks in multiple filters of visible light, providing constraints on the size, shape, and composition of the dust.
New disk discovered with VLT/SPHERE around the M star GSC 07396-00759
NASA Astrophysics Data System (ADS)
Sissa, E.; Olofsson, J.; Vigan, A.; Augereau, J. C.; D'Orazi, V.; Desidera, S.; Gratton, R.; Langlois, M.; Rigliaco, E.; Boccaletti, A.; Kral, Q.; Lazzoni, C.; Mesa, D.; Messina, S.; Sezestre, E.; Thébault, P.; Zurlo, A.; Bhowmik, T.; Bonnefoy, M.; Chauvin, G.; Feldt, M.; Hagelberg, J.; Lagrange, A.-M.; Janson, M.; Maire, A.-L.; Ménard, F.; Schlieder, J.; Schmidt, T.; Szulágyi, J.; Stadler, E.; Maurel, D.; Delboulbé, A.; Feautrier, P.; Ramos, J.; Rigal, F.
2018-05-01
Debris disks are usually detected through the infrared excess over the photospheric level of their host star. The most favorable stars for disk detection are those with spectral types between A and K, while the statistics for debris disks detected around low-mass M-type stars is very low, either because they are rare or because they are more difficult to detect. Terrestrial planets, on the other hand, may be common around M-type stars. Here, we report on the discovery of an extended (likely) debris disk around the M-dwarf GSC 07396-00759. The star is a wide companion of the close accreting binary V4046 Sgr. The system probably is a member of the β Pictoris Moving Group. We resolve the disk in scattered light, exploiting high-contrast, high-resolution imagery with the two near-infrared subsystems of the VLT/SPHERE instrument, operating in the Y J bands and the H2H3 doublet. The disk is clearly detected up to 1.5'' ( 110 au) from the star and appears as a ring, with an inclination i 83°, and a peak density position at 70 au. The spatial extension of the disk suggests that the dust dynamics is affected by a strong stellar wind, showing similarities with the AU Mic system that has also been resolved with SPHERE. The images show faint asymmetric structures at the widest separation in the northwest side. We also set an upper limit for the presence of giant planets to 2 MJ. Finally, we note that the 2 resolved disks around M-type stars of 30 such stars observed with SPHERE are viewed close to edge-on, suggesting that a significant population of debris disks around M dwarfs could remain undetected because of an unfavorable orientation. Based on data collected at the European Southern Observatory, Chile (ESO Program 198.C-0298).
NASA Astrophysics Data System (ADS)
Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.
2016-12-01
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μm infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min ˜ 3 μm, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10-5 ⩽ L/L ⊙ ⩽ 2 × 10-4, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.
Discovery of a substellar companion to the nearby debris disk host HR 2562
Konopacky, Quinn M.; Rameau, Julien; Duchêne, Gaspard; ...
2016-09-14
Here, we present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3 ± 0.3 au (more » $$0\\buildrel{\\prime\\prime}\\over{.} 618\\pm 0\\buildrel{\\prime\\prime}\\over{.} 004$$) from the star. With the high astrometric precision afforded by GPI, we have confirmed, to more than 5σ, the common proper motion of HR 2562B with the star, with only a month-long time baseline between observations. Spectral data in the J-, H-, and K-bands show a morphological similarity to L/T transition objects. We assign a spectral type of L7 ± 3 to HR 2562B and derive a luminosity of log(L $${}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-4.62\\pm 0.12$$, corresponding to a mass of 30 ± 15 $${M}_{\\mathrm{Jup}}$$ from evolutionary models at an estimated age of the system of 300–900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle that is consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown-dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk.« less
NASA Technical Reports Server (NTRS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-01-01
New multi-roll coronagraphic images of the HD181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/ deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain.We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass greater than 1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for themore » disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.« less
NASA Astrophysics Data System (ADS)
Stark, Christopher C.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah; Kuchner, Marc J.
2014-07-01
New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.
What Sets the Radial Locations of Warm Debris Disks?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Rieke, George H.; Su, Kate Y. L.
The architectures of debris disks encode the history of planet formation in these systems. Studies of debris disks via their spectral energy distributions (SEDs) have found infrared excesses arising from cold dust, warm dust, or a combination of the two. The cold outer belts of many systems have been imaged, facilitating their study in great detail. Far less is known about the warm components, including the origin of the dust. The regularity of the disk temperatures indicates an underlying structure that may be linked to the water snow line. If the dust is generated from collisions in an exo-asteroid belt,more » the dust will likely trace the location of the water snow line in the primordial protoplanetary disk where planetesimal growth was enhanced. If instead the warm dust arises from the inward transport from a reservoir of icy material farther out in the system, the dust location is expected to be set by the current snow line. We analyze the SEDs of a large sample of debris disks with warm components. We find that warm components in single-component systems (those without detectable cold components) follow the primordial snow line rather than the current snow line, so they likely arise from exo-asteroid belts. While the locations of many warm components in two-component systems are also consistent with the primordial snow line, there is more diversity among these systems, suggesting additional effects play a role.« less
Fast-moving features in the debris disk around AU Microscopii.
Boccaletti, Anthony; Thalmann, Christian; Lagrange, Anne-Marie; Janson, Markus; Augereau, Jean-Charles; Schneider, Glenn; Milli, Julien; Grady, Carol; Debes, John; Langlois, Maud; Mouillet, David; Henning, Thomas; Dominik, Carsten; Maire, Anne-Lise; Beuzit, Jean-Luc; Carson, Joseph; Dohlen, Kjetil; Engler, Natalia; Feldt, Markus; Fusco, Thierry; Ginski, Christian; Girard, Julien H; Hines, Dean; Kasper, Markus; Mawet, Dimitri; Ménard, François; Meyer, Michael R; Moutou, Claire; Olofsson, Johan; Rodigas, Timothy; Sauvage, Jean-Francois; Schlieder, Joshua; Schmid, Hans Martin; Turatto, Massimo; Udry, Stephane; Vakili, Farrokh; Vigan, Arthur; Wahhaj, Zahed; Wisniewski, John
2015-10-08
In the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk. The nearby, young, unusually active late-type star AU Microscopii hosts a well-studied edge-on debris disk; earlier observations in the visible and near-infrared found asymmetric localized structures in the form of intensity variations along the midplane of the disk beyond a distance of 20 astronomical units. Here we report high-contrast imaging that reveals a series of five large-scale features in the southeast side of the disk, at projected separations of 10-60 astronomical units, persisting over intervals of 1-4 years. All these features appear to move away from the star at projected speeds of 4-10 kilometres per second, suggesting highly eccentric or unbound trajectories if they are associated with physical entities. The origin, localization, morphology and rapid evolution of these features are difficult to reconcile with current theories.
The Discovery of λ Bootis Stars: The Southern Survey I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, R. O.; Riggs, Q. S.; Newsome, I. M.
The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars weremore » discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μ m. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μ m.« less
The Discovery of λ Bootis Stars: The Southern Survey I
NASA Astrophysics Data System (ADS)
Gray, R. O.; Riggs, Q. S.; Koen, C.; Murphy, S. J.; Newsome, I. M.; Corbally, C. J.; Cheng, K.-P.; Neff, J. E.
2017-07-01
The λ Boo stars are a class of chemically peculiar Population I A-type stars characterized by under-abundances of the refractory elements, but near-solar abundances of carbon, nitrogen, oxygen, and sulfur. There is some evidence that λ Boo stars have higher frequencies of “bright” debris disks than normal A-type stars. The discovery of four exoplanets orbiting HR 8799, a λ Boo star with a resolved debris disk, suggests that the λ Boo phenomenon may be related to the presence of a dynamic debris disk, perhaps perturbed by migrating planets. However, only 64 λ Boo stars are known, and those stars were discovered with different techniques, making it problematic to use that sample for statistical purposes, including determining the frequency of debris disks. The purpose of this paper is to derive a new sample of λ Boo stars using a technique that does not lead to biases with respect to the presence of infrared excesses. Through spectroscopic observations in the southern hemisphere, we have discovered 33 λ Boo stars and have confirmed 12 others. As a step toward determining the proportion of λ Boo stars with infrared excesses, we have used WISE data to examine the infrared properties of this sample out to 22 μm. On this basis, we cannot conclude that λ Boo stars have a greater tendency than normal A-type stars to show infrared excesses. However, observing this sample at longer wavelengths may change that conclusion, as many λ Boo debris disks are cool and do not radiate strongly at 22 μm.
On the observability of resonant structures in planetesimal disks due to planetary migration
NASA Astrophysics Data System (ADS)
Reche, R.; Beust, H.; Augereau, J.-C.; Absil, O.
2008-03-01
Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures. Figures 4-7 and Tables 2-4 are only available in electronic form at http://www.aanda.org
Exo-comet Detection in Debris Disks Around Young A-type Stars
NASA Astrophysics Data System (ADS)
Welsh, Barry; Montgomery, S. L.
2013-01-01
We present details of the successful search for comet-like bodies (i.e. exo-comets) in orbit around several nearby stars. These objects have been found in young stellar systems that are in the transitional stage of evolution between possession of a gaseous protoplanetary disk to that of a dust-rich debris disk. During this period it is thought that large planetesimals of ~ 1000 km diameter may cause dynamical perturbations in the population of smaller bodies (such as asteroids and comets), such that they are sent on highly eccentric orbits towards their parent star resulting in the liberation of large amounts of evaporating gas and dust. By observing the varying spectral absorption signature of the CaII K-line at 3933Å due to this liberated gas, we have been able to track the trajectory of these exo-comets over a time-frame of several nights as they approach (and sometimes pass around) the central star. The youngest debris disks (1 - 50 Myr) are thought to represent the last stage in the formation of planetary systems and they may resemble our solar system’s own debris disk at the time of the Late Heavy Bombardment when the terrestrial worlds were subject to frequent collisions with asteroids and comets. Collisions with water-rich comets from the outer regions of our solar system may have delivered water to thee Earth’s oceans.
Study of Scattered Light from Known Debris Disks
NASA Technical Reports Server (NTRS)
Rodriguez, Joseph E.; Weinberger, Alycia J.; Roberge, Aki
2011-01-01
Using the Spitzer Space Telescope, a group of edge on debris disks, surrounding main-sequence shell stars have been discovered in the infrared. These disks are of high interest because they not only have dust, but an observed amount of circumstellar gas. HD158352 was an ideal target to try and image the disk because it was one of the closest stars in this group. Using the Hubble Space Telescope's Space Telescope Imaging Spectrograph (STIS), we attempted to take a direct image of the light scattered from the known disk in a broad optical bandpass. Studying these particular type of disks in high detail will allow us to learn more about gas-dust interactions. In particular, this will allow us to learn how the circumstellar gas evolves during the planet-forming phase. Even though it was predicted that the disk should have a magnitude of 20.5 at 3", no disk was seen in any of the optical images. This suggests that the parameters used to predict the brightness of the disk are not what we first anticipated and adjustments to the model must be performed. We also present the blue visible light spectrum of the scattered light from the debris disk surrounding Beta Pictoris. We are analyzing archival observations taken by Heap, using Hubble Space Telescope's STIS instrument. A long slit with a bar was used to occult Beta Pictoris as well as the PSF star. This was done because it is necessary to subtract a PSF observed the same way at the target to detect the disk. It appears that we have detected light from the disk but the work was in progress at the time of the abstract deadline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff
Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24more » μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a {sub min} ∼ 3 μ m, although a {sub min} is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10{sup −5} ⩽ L / L {sub ⊙} ⩽ 2 × 10{sup −4}, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.« less
Molecular Gas in Disks around Young Stars with ALMA
NASA Astrophysics Data System (ADS)
Hughes, A. Meredith; Factor, Samuel; Lieman-Sifry, Jesse; Flaherty, Kevin; Daley, Cail; Mann, Rita; Roberge, Aki; Di Francesco, James; Williams, Jonathan; Ricci, Luca; Matthews, Brenda; Bally, John; Johnstone, Doug; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David; Andrews, Sean; Kastner, Joel H.; Abraham, Peter
2018-01-01
Molecular gas is a critical component of the planet formation process. In this poster, we present two analyses of the molecular gas component of circumstellar disks at extremes (young, old) of the pre-main sequence phase.(1) We characterize the molecular gas content of the disk around d216-0939, a pre-main sequence star in the Orion Nebula Cluster, using ALMA observations of CO(3-2), HCO+(4-3), and HCN(4-3) observed at 0.5" resolution. We model the density and temperature structure of the disk, returning abundances generally consistent with chemical modeling of protoplanetary disks, and obtain a dynamical mass measurement of the central star of 2.2+/-0.4 M_sun, which is inconsistent with the previously determined spectral type of K5. We also report the detection of a spatially unresolved high-velocity blue-shifted excess emission feature with a measurable position offset from the central star, consistent with an object in Keplerian orbit at 60+/-20 au. The feature is due to a local temperature and/or density enhancement consistent with either a hydrodynamic vortex or the expected signature of the envelope of a forming protoplanet within the disk, providing evidence that planet formation is ongoing within this massive and relatively isolated Orion proplyd. This work is published in Factor et al. (2017). (2) We present ~0.4" resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with ALMA. We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different. This work is published in Hughes et al. (2017).
Modélisation des disques de débris
NASA Astrophysics Data System (ADS)
Beust, H.; Halbwachs, J.-L.
2006-03-01
Debris disks are dusty and gaseous circumstellar disks orbiting stars with ages ranging from 10(7 ) yr to a few 10(8 ) yr. In contrast to genuine protoplanetary disk, they are optically thin, and are characterized by a very small amount of gas. As a consequence, their dynamics is basically gravitational. They are mainly observed in scattered light in the near infrared and/or in thermal emission at longer wavelengths. About 12 disks of this kind are known today, but their number increases rapidly thanks to the improvement of the detection techniques and instruments. What is seen in these disks is dust. Observing a scattered light profile in a debris disk, one wants to derive the spatial distribution of the dust particles. The inversion method is close to a deprojection technique. Typically (e.g., in the bp\\ disk), the surface density decreases as r(-1) up to a given distance (120 AU in the bp\\ disk) and falls off more steeply (˜~ r(-4) ) further out. Dust particles in debris disks are usually subject to an intense radiation pressure that drastically affects their dynamics. Combined with collisions, it contributes to quickly erode the dust population by removing the smallest grains. Hence the dust population must be sustained by a large population of colliding and/or evaporating planetesimals. Once produced by the parent bodies, the dust particles diffuse further out in the disk thanks to radiation pressure, or wind pressure in disks orbiting late-type stars. Nearly all debris disks that have been imaged exhibit various structures and asymetries, such as gaps, clumps, warps, and spiral arms. These structures are usually thought to originate in the distribution of the parent bodies, and to be due to gravitational perturbations by hidden planets and/or stellar companions, involving direct or secular perturbations, or interaction with mean-motion resonances. A detailed analysis of the observed structures in a given disk combined with dynamical simulations can in principle give access to the suspected planetary system. Valuable constraints have been derived in some cases. The solution is nevertheless not unique in general and the analysis is complicated by the fact that we only observe the dust particles and not the planetesimal population directly.
The Vela pulsar with an active fallback disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özsükan, Gökçe; Ekşi, K. Yavuz; Hambaryan, Valeri
2014-11-20
Fallback disks are expected to form around young neutron stars. The presence of these disks can be revealed by their blackbody spectrum in the infrared, optical, and UV bands. We present a re-reduction of the archival optical and infrared data of the Vela pulsar, together with the existing infrared and UV spectrum of Vela, and model their unpulsed components with the blackbody spectrum of a supernova debris disk. We invoke the quiescent disk solution of Sunyaev and Shakura for the description of the disk in the propeller stage and find the inner radius of the disk to be inside themore » light cylinder radius. We perform a high-resolution X-ray analysis with XMM-Newton and find a narrow absorption feature at 0.57 keV that can be interpreted as the K {sub α} line of He-like oxygen (O VII). The strength of the line indicates an element over-abundance in our line of sight exceeding the amounts that would be expected from interstellar medium. The spectral feature may originate from the pulsar wind nebula and may be partly caused by the reprocessed X-ray radiation by the fallback disk. We discuss the lower-than-three braking index of Vela as partially due to the contribution of the propeller torques. Our results suggest that the pulsar mechanism can work simultaneously with the propeller processes and that the debris disks can survive the radiation pressure for at least ∼10{sup 4} yr. As Vela is a relatively close object, and a prototypical pulsar, the presence of a disk, if confirmed, may indicate the ubiquity of debris disks around young neutron stars.« less
In-situ formation of Uranian satellites from debris disk formed by Giant Impact
NASA Astrophysics Data System (ADS)
Ishizawa, Y.; Sasaki, T.; Hosono, N.
2017-12-01
Uranus has a 98° tilt of the rotational axis with respect to the plane of Solar System, whereas the regular satellites of Uranus orbit in the plane of its equator. Several scenarios have been proposed so far to explain the large tilt and the origin of the satellites respectively (e.g., Slattery et al., 1992; Canup & Ward, 2006; Crida & Charnoz, 2012). In this study, we adapt the so-called giant impact scenario, which could explain both the large tilt of Uranus and the formation of the regular satellites simultaneously. The hydrodynamic simulations of the giant impact have been carried out using the smoothed particle hydrodynamics (SPH) method (Slattery et al, 1992; Ueta et al., in prep.). They suggested that the giant impact of an Earth-sized protoplanet with proto-Uranus could tilt the rotational axis, and a circum-planetary debris disk would be produced throughout the current Uranian satellites orbits by the impact. However, it is still unknown whether the Uranian satellites can be actually formed from the debris disk. Here we perform N-body simulations to investigate the in-situ satellites formation from the debris disk. We used a 4th order Hermite scheme for the numerical integration, and considered the gravity, collision and merger between each particle (Kokubo et al., 2000). We found that satellites with the similar orbital radius and mass to the current satellite were formed from the debris disk as a preliminary result. We also found that orbital decays of the satellites due to the tidal torque of the planet would play a key role to explain the inner satellite distribution.
DiskDetective.org: Finding Homes for Exoplanets Through Citizen Science
NASA Technical Reports Server (NTRS)
Kuchner, Marc J.
2016-01-01
The Disk Detective project is scouring the data archive from the WISE all-sky survey to find new debris disks and protoplanetary disks-the dusty dens where exoplanets form and dwell. Volunteers on this citizen science website have already performed 1.6 million classifications, searching a catalog 8x the size of any published WISE survey. We follow up candidates using ground based telescopes in California, Arizona, Chile, Hawaii, and Argentina. We ultimately expect to increase the pool of known debris disks by approx. 400 and triple the solid angle in clusters of young stars examined with WISE, providing a unique new catalog of isolated disk stars, key planet-search targets, and candidate advanced extraterrestrial civilizations. Come to this talk to hear the news about our latest dusty discoveries and the trials and the ecstasy of launching a new citizen science project. Please bring your laptop or smartphone if you like!
The peculiar debris disk of HD 111520 as resolved by the Gemini Planet Imager
Draper, Zachary H.; Duchêne, Gaspard; Millar-Blanchaer, Maxwell A.; ...
2016-07-27
Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30–100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 themore » most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0".5 to 0".8 from the star. Lastly, the combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.« less
Revealing the structure and dust content of debris disks on solar systems scales with GPI
NASA Astrophysics Data System (ADS)
Duchene, Gaspard; Fitzgerald, Michael P.; Kalas, Paul; Graham, James R.; Arriaga, Pauline; Bruzzone, Sebastian; Chen, Christine; Dawson, Rebekah Ilene; Dong, Ruobing; Draper, Zachary; Esposito, Thomas; Follette, Katherine; Hung, Li-Wei; Lawler, Samantha; Metchev, Stanimir; Millar-Blanchaer, Max; Murray-Clay, Ruth; Perrin, Marshall D.; Rameau, Julien; Wang, Jason; Wolff, Schuyler; Macintosh, Bruce; GPIES Team
2016-01-01
High contrast scattered light images offer the best prospect to assess the detailed geometry and structure of dusty debris disks. In turn, such images can yield profound insight on the architecture of the underlying planetary system as dust grains respond to the gravitational pull of planetary bodies. A new generation of extreme adaptive optics systems now enables an unprecedented exploration of circumstellar disks on solar system scales. Here we review the new science derived from over a dozen debris disks imaged with the Gemini Planet Imager (GPI) as part of the GPI Exoplanet Survey (GPIES). In addition to its exquisite imaging capability, GPI's polarimetric mode provides invaluable insight on the dust content of each disk, in most cases for the very first time. These early results typically reveal narrow belts of material with evacuated regions roughly 50-100 AU in radius, subtle asymmetries in structure and high degree of linear polarization. We will provide an overview of the disk observations made during the GPIES campaign to date and will discuss in more detail some of the most remarkable systems.This work is supported by grants NSF AST-0909188, -1411868, -1413718; NASA NNX-15AD95G, -14AJ80G, -11AD21G; and the NExSS research network.
NASA Astrophysics Data System (ADS)
Gauchet, L.; Lacour, S.; Lagrange, A.-M.; Ehrenreich, D.; Bonnefoy, M.; Girard, J. H.; Boccaletti, A.
2016-10-01
Context. The formation of planetary systems is a common, yet complex mechanism. Numerous stars have been identified to possess a debris disk, a proto-planetary disk or a planetary system. The understanding of such formation process requires the study of debris disks. These targets are substantial and particularly suitable for optical and infrared observations. Sparse aperture masking (SAM) is a high angular resolution technique strongly contributing to probing the region from 30 to 200 mas around the stars. This area is usually unreachable with classical imaging, and the technique also remains highly competitive compared to vortex coronagraphy. Aims: We aim to study debris disks with aperture masking to probe the close environment of the stars. Our goal is either to find low-mass companions, or to set detection limits. Methods: We observed eight stars presenting debris disks (β Pictoris, AU Microscopii, 49 Ceti, η Telescopii, Fomalhaut, g Lupi, HD 181327, and HR 8799) with SAM technique on the NaCo instrument at the Very Large Telescope (VLT). Results: No close companions were detected using closure phase information under 0.5'' of separation from the parent stars. We obtained magnitude detection limits that we converted to Jupiter masses detection limits using theoretical isochrones from evolutionary models. Conclusions: We derived upper mass limits on the presence of companions in the area of a few times the telescope's diffraction limits around each target star. Based on observations collected at the European Southern Observatory (ESO) during runs 087.C-0450(A), 087.C-0450(B) 087.C-0750(A), 088.C-0358(A).All magnitude detection limits maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Rahul I.; Metchev, Stanimir A.; Trollo, Joseph
In an earlier study, we reported nearly 100 previously unknown dusty debris disks around Hipparcos main-sequence stars within 75 pc by selecting stars with excesses in individual WISE colors. Here, we further scrutinize the Hipparcos 75 pc sample to (1) gain sensitivity to previously undetected, fainter mid-IR excesses and (2) remove spurious excesses contaminated by previously unidentified blended sources. We improve on our previous method by adopting a more accurate measure of the confidence threshold for excess detection and by adding an optimally weighted color average that incorporates all shorter-wavelength WISE photometry, rather than using only individual WISE colors. Themore » latter is equivalent to spectral energy distribution fitting, but only over WISE bandpasses. In addition, we leverage the higher-resolution WISE images available through the unWISE.me image service to identify contaminated WISE excesses based on photocenter offsets among the W 3- and W 4-band images. Altogether, we identify 19 previously unreported candidate debris disks. Combined with the results from our earlier study, we have found a total of 107 new debris disks around 75 pc Hipparcos main-sequence stars using precisely calibrated WISE photometry. This expands the 75 pc debris disk sample by 22% around Hipparcos main-sequence stars and by 20% overall (including non-main-sequence and non- Hipparcos stars).« less
DIRECT IMAGING AND SPECTROSCOPY OF A YOUNG EXTRASOLAR KUIPER BELT IN THE NEAREST OB ASSOCIATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Currie, Thayne; Lisse, Carey M.; Kuchner, Marc
2015-07-01
We describe the discovery of a bright, young Kuiper belt–like debris disk around HD 115600, a ∼1.4–1.5 M{sub ⊙}, ∼15 Myr old member of the Sco–Cen OB Association. Our H-band coronagraphy/integral field spectroscopy from the Gemini Planet Imager shows the ring has a (luminosity-scaled) semimajor axis of (∼22 AU) ∼ 48 AU, similar to the current Kuiper belt. The disk appears to have neutral-scattering dust, is eccentric (e ∼ 0.1–0.2), and could be sculpted by analogs to the outer solar system planets. Spectroscopy of the disk ansae reveal a slightly blue to gray disk color, consistent with major Kuiper beltmore » chemical constituents, where water ice is a very plausible dominant constituent. Besides being the first object discovered with the next generation of extreme adaptive optics systems (i.e., SCExAO, GPI, SPHERE), HD 115600's debris ring and planetary system provide a key reference point for the early evolution of the solar system, the structure, and composition of the Kuiper belt and the interaction between debris disks and planets.« less
NASA Astrophysics Data System (ADS)
Starkey, David; Agn Storm Team
2015-01-01
Reverberation mapping is a proven method for obtaining black hole mass estimates and constraining the size of the BLR. We analyze multi-wavelength continuum light curves from the 7 month AGN STORM monitoring of NGC 5548 and use reverberation mapping to model the accretion disk time delays. The model fits the light curves at UV to IR wavelengths assuming reprocessing on a flat, steady-state blackbody accretion disk. We calculate the inclination-dependent transfer function and investigate to what extent our model can determine the disk inclination, black hole MMdot and power law index of the disc temperature-radius relation.
Optical/UV-to-X-Ray Echoes from the Tidal Disruption Flare ASASSN-14li
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasham, Dheeraj R.; Sadowski, Aleksander; Cenko, S. Bradley
We carried out the first multi-wavelength (optical/UV and X-ray) photometric reverberation mapping of a tidal disruption flare (TDF) ASASSN-14li. We find that its X-ray variations are correlated with and lag the optical/UV fluctuations by 32 ± 4 days. Based on the direction and the magnitude of the X-ray time lag, we rule out X-ray reprocessing and direct emission from a standard circular thin disk as the dominant source of its optical/UV emission. The lag magnitude also rules out an AGN disk-driven instability as the origin of ASASSN-14li and thus strongly supports the tidal disruption picture for this event and similarmore » objects. We suggest that the majority of the optical/UV emission likely originates from debris stream self-interactions. Perturbations at the self-interaction sites produce optical/UV variability and travel down to the black hole where they modulate the X-rays. The time lag between the optical/UV and the X-rays variations thus correspond to the time taken by these fluctuations to travel from the self-interaction site to close to the black hole. We further discuss these time lags within the context of the three variants of the self-interaction model. High-cadence monitoring observations of future TDFs will be sensitive enough to detect these echoes and would allow us to establish the origin of optical/UV emission in TDFs in general.« less
The Geometry of Resonant Signatures in Debris Disks with Planets
NASA Astrophysics Data System (ADS)
Kuchner, M. J.; Holman, M. J.
2002-09-01
Using simple geometrical arguments, we paint an overview of the variety of resonant structures a single planet with moderate eccentricity (e < 0.6) can create in a dynamically cold, optically thin dust disk. This overview may serve as a key for interpreting images of perturbed debris disks and inferring the dynamical properties of the planets responsible for the perturbations. We compare the resonant structures found in the solar system with observations of planetary systems around Vega and other stars and we offer a new model for the asymmetries in the Epsilon Eridani disk. This work was performed in part under contract with the Jet Propulsion Laboratory (JPL) through the Michelson Fellowship program funded by NASA as an element of the Planet Finder Program.
Fomalhaut's Debris Disk and Planet: Constraining the Mass of Formalhaut B from Disk Morphology
NASA Technical Reports Server (NTRS)
Chiang, E.; Kite, E.; Kalas, P.; Graham, J. R.; Clampin, M.
2008-01-01
Following the optical imaging of exoplanet candidate Fomalhaut b (Fom b), we present a numerical model of how Fomalhaut's debris disk is gravitationally shaped by a single interior planet. The model is simple, adaptable to other debris disks, and can be extended to accommodate multiple planets. If Fom b is the dominant perturber of the belt, then to produce the observed disk morphology it must have a mass M(sub pl) < 3M(sub J), an orbital semimajor axis a(sub pl) > 101.5AU, and an orbital eccentricity e(sub pl) = 0.11 - 0.13. These conclusions are independent of Fom b's photometry. To not disrupt the disk, a greater mass for Fom b demands a smaller orbit farther removed from the disk; thus, future astrometric measurement of Fom b's orbit, combined with our model of planet-disk interaction, can be used to determine the mass more precisely. The inner edge of the debris disk at a approximately equals 133AU lies at the periphery of Fom b's chaotic zone, and the mean disk eccentricity of e approximately equals 0.11 is secularly forced by the planet, supporting predictions made prior to the discovery of Fom b. However, previous mass constraints based on disk morphology rely on several oversimplifications. We explain why our constraint is more reliable. It is based on a global model of the disk that is not restricted to the planet's chaotic zone boundary. Moreover, we screen disk parent bodies for dynamical stability over the system age of approximately 100 Myr, and model them separately from their dust grain progeny; the latter's orbits are strongly affected by radiation pressure and their lifetimes are limited to approximately 0.1 Myr by destructive grain-grain collisions. The single planet model predicts that planet and disk orbits be apsidally aligned. Fomalhaut b's nominal space velocity does not bear this out, but the astrometric uncertainties are difficult to quantify. Even if the apsidal misalignment proves real, our calculated upper mass limit of 3 M(sub J) still holds. Parent bodies are evacuated from mean-motion resonances with Fom b; these empty resonances are akin to the Kirkwood gaps opened by Jupiter. The belt contains at least 3M(sub Earth) of solids that are grinding down to dust, their velocity dispersions stirred so strongly by Fom b that collisions are destructive. Such a large mass in solids is consistent with Fom b having formed in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konopacky, Quinn M.; Rameau, Julien; Duchêne, Gaspard
Here, we present the discovery of a brown dwarf companion to the debris disk host star HR 2562. This object, discovered with the Gemini Planet Imager (GPI), has a projected separation of 20.3 ± 0.3 au (more » $$0\\buildrel{\\prime\\prime}\\over{.} 618\\pm 0\\buildrel{\\prime\\prime}\\over{.} 004$$) from the star. With the high astrometric precision afforded by GPI, we have confirmed, to more than 5σ, the common proper motion of HR 2562B with the star, with only a month-long time baseline between observations. Spectral data in the J-, H-, and K-bands show a morphological similarity to L/T transition objects. We assign a spectral type of L7 ± 3 to HR 2562B and derive a luminosity of log(L $${}_{\\mathrm{bol}}$$/$${L}_{\\odot })=-4.62\\pm 0.12$$, corresponding to a mass of 30 ± 15 $${M}_{\\mathrm{Jup}}$$ from evolutionary models at an estimated age of the system of 300–900 Myr. Although the uncertainty in the age of the host star is significant, the spectra and photometry exhibit several indications of youth for HR 2562B. The source has a position angle that is consistent with an orbit in the same plane as the debris disk recently resolved with Herschel. Additionally, it appears to be interior to the debris disk. Though the extent of the inner hole is currently too uncertain to place limits on the mass of HR 2562B, future observations of the disk with higher spatial resolution may be able to provide mass constraints. This is the first brown-dwarf-mass object found to reside in the inner hole of a debris disk, offering the opportunity to search for evidence of formation above the deuterium burning limit in a circumstellar disk.« less
MESAS: Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter Wavelengths
NASA Astrophysics Data System (ADS)
White, Jacob Aaron; Aufdenberg, Jason; Boley, A. C.; Hauschildt, Peter; Hughes, Meredith; Matthews, Brenda; Wilner, David
2018-06-01
In the early stages of planet formation, small dust grains grow to become millimeter-sized particles in debris disks around stars. These disks can in principle be characterized by their emission at submillimeter and millimeter wavelengths. Determining both the occurrence and abundance of debris in unresolved circumstellar disks of A-type main-sequence stars requires that the stellar photospheric emission be accurately modeled. To better constrain the photospheric emission for such systems, we present observations of Sirius A, an A-type star with no known debris, from the James Clerk Maxwell Telescope, Submillimeter Array, and Jansky Very Large Array at 0.45, 0.85, 0.88, 1.3, 6.7, and 9.0 mm. We use these observations to inform a PHOENIX model of Sirius A’s atmosphere. We find the model provides a good match to these data and can be used as a template for the submillimeter/millimeter emission of other early A-type stars where unresolved debris may be present. The observations are part of an ongoing observational campaign entitled Measuring the Emission of Stellar Atmospheres at Submillimeter/millimeter wavelengths.
Could the stellar magnetic field explain the structures in the AU Mic debris disk?
NASA Astrophysics Data System (ADS)
Sezestre, Élie; Augereau, Jean-Charles
2016-05-01
Recent SPHERE and reprocessed HST images of the edge-on AU Mic debris disk have revealed arch-like structures moving away from the star on unbound trajectories. No model in the literature can readily explain these features. Here, we explore the effect of the large-scale, stellar magnetic field on the dust dynamics. We show that our study may place constraints on the dust production location.
Warm Debris Disk Candidates from WISE
NASA Technical Reports Server (NTRS)
Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David
2011-01-01
The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.
NASA Technical Reports Server (NTRS)
Padgett, Deborah L.
2011-01-01
"The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages < 1 Gyr. Nearly a hundred new warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "
Images of the Extended Outer Regions of the Debris Ring around HR 4796 A
NASA Technical Reports Server (NTRS)
Thalmann, C.; Janson, M.; Buenzli, E.; Brandt, T. D.; Wisniewski, J. P.; Moro-Martin, A.; Usuda, T.; Schneider, G.; Carson, J.; McElwain, M. W.;
2012-01-01
We present high-contrast images of HR 4796 A taken with Subaru/HiCIAO in H-band, resolving the debris disk in scattered light. The application of specialized angular differential imaging methods (ADI) allows us to trace the inner edge of the disk with high precision, and reveals a pair of "streamers" extending radially outwards from the ansae. Using a simple disk model with a power-law surface brightness profile, we demonstrate that the observed streamers can be understood as part of the smoothly tapered outer boundary of the debris disk, which is most visible at the ansae. Our observations are consistent with the expected result of a narrow planetesimal ring being ground up in a collisional cascade, yielding dust with a wide range of grain sizes. Radiation forces leave large grains in the ring and push smaller grains onto elliptical, or even hyperbolic trajectories. We measure and characterize the disk's surface brightness profile, and confirm the previously suspected offset of the disk's center from the star's position along the ring's major axis. Furthermore, we present first evidence for an offset along the minor axis. Such offsets are commonly viewed as signposts for the presence of unseen planets within a disk's cavity. Our images also offer new constraints on the presence of companions down to the planetary mass regime (approx 9 M(sub Jup) at 0".5, approx 3 M(sub Jup) at 1").
NASA Astrophysics Data System (ADS)
Rodmann, Jens
2006-02-01
This thesis presents observational and theoretical studies of the size and spatial distribution of dust particles in circumstellar disks. Using millimetre interferometric observations of optically thick disks around T Tauri stars, I provide conclusive evidence for the presence of millimetre- to centimetre-sized dust aggregates. These findings demonstrate that dust grain growth to pebble-sized dust particles is completed within less than 1 Myr in the outer disks around low-mass pre-main-sequence stars. The modelling of the infrared spectral energy distributions of several solar-type main-sequence stars and their associated circumstellar debris disks reveals the ubiquity of inner gaps devoid of substantial amounts of dust among Vega-type infrared excess sources. It is argued that the absence of circumstellar material in the inner disks is most likely the result of the gravitational influence of a large planet and/or a lack of dust-producing minor bodies in the dust-free region. Finally, I describe a numerical model to simulate the dynamical evolution of dust particles in debris disks, taking into account the gravitational perturbations by planets, photon radiation pressure, and dissipative drag forces due to the Poynting-Robertson effect and stellar wind. The validity of the code it established by several tests and comparison to semi-analytic approximations. The debris disk model is applied to simulate the main structural features of a ring of circumstellar material around the main-sequence star HD 181327. The best agreement between model and observation is achieved for dust grains a few tens of microns in size locked in the 1:1 resonance with a Jupiter-mass planet (or above) on a circular orbit.
Rapid Evolution of the Gaseous Exoplanetary Debris around the White Dwarf Star HE 1349–2305
NASA Astrophysics Data System (ADS)
Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.
2018-02-01
Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of a recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349–2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution, including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349–2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.
NASA Technical Reports Server (NTRS)
Grady, Carol A; Kuchner, Marc; Woodgate, Bruce E.
2012-01-01
We present new imaging results from a well-selected sample of II circumstellar debris disks, all with HST pedigree, using STIS visible-light 6-roll PSF-template subtracted coronagraphy (PSFTSC). These new observations, pushing HST to its highest levels of coronagraphic performance, simultaneously probe both the interior regions of these debris systems, with inner working distances < app 8 AU for half the stars in this sample (corresponding to the giant planet and Kuiper belt regions within our own solar system), and the exterior regions far beyond. These new images enable direct inter-comparison of the architectures of these exoplanetary debris systems in the context of our own Solar System: These observations also permit us, for the first time, to characterize material in these regions at high spatial resolution and identify disk sub-structures that are signposts of planet formation and evolution; in particular, asymmetries and non-uniform debris structures that signal the presence of co-orbiting perturbing planets, and dynamical interactions (e.g., resulting in posited small grain stripping and disk "pollution") with the ISM. We focus here on recently acquired and reduced images of he circumstellar debris systems about: AU Mic (edge-on, and @ 10 pc the closest star in our sample), HD 61005, HD 32297 and HD 15115 (all with morphologies strongly suggestive of ISM wind interactions), HD 181327 & HDI07146 (close to face-on with respectively narrow and broad debris rings), and MP Mus (a "mature" proto-planetary disk hosted by a cTTS). All of our objects were previously observed in the near-IR with inferior spatial resolution and imaging efficacy, but with NICMOS r = 0.3" inner working angle (IWA) comparable to STIS multi-roll coronagraphy. The combination of new optical and existing near-IR imaging can strongly constrain the dust properties, thus enabling an assessment of grain processing and planetesimal populations. These results will directly inform upon the posited planet formation mechanisms that occur after the approximately 10 My epoch of gas depletion, a time in our solar system when giant planets were migrating and terrestrial planets were forming, and directly test theoretical models of these processes. These observations lmiquely probe both into the interior regions of these systems and are sensitive to and spatially resolve low surface-brightness (SB) material at large stellocentric distances with spatial resolution comparable to ACS and with augmenting NICMOS near-IR disk photometry in hand.
Where Planets Take up Residence
NASA Technical Reports Server (NTRS)
2007-01-01
This diagram illustrates that mature planetary systems like our own might be more common around twin, or binary, stars that are either really close together, or really far apart. NASA's Spitzer Space Telescope observed that debris disks, which are signposts of mature planetary systems, are more abundant around the tightest and widest of binary stars it studied. Specifically, the infrared telescope found significantly more debris disks around binary stars that are 0 to 3 astronomical units apart (top panel) and 50 to 500 astronomical units apart (bottom panel) than binary stars that are 3 to 50 astronomical units apart (middle panel). An astronomical unit is the distance between Earth and the sun. In other words, if two stars are as far apart from each other as the sun is from Jupiter (5 astronomical units) or Pluto (40 astronomical units), they would be unlikely to host a family of planetary bodies. The Spitzer data also revealed that debris disks circle all the way around both members of a close-knit binary (top panel), but only a single member of a wide duo (bottom panel). This could explain why the intermediately spaced binary systems (middle panel) can be inhospitable to planetary disks: they are too far apart to support one big disk around both stars, and they are too close together to have enough room for a disk around just one star.NASA Astrophysics Data System (ADS)
Doering, Ryan Lee
Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared (~0.8 - 2.5 mm), includes 13 filters, and has a pixel size of ~0.1 inches, resulting in a field of view of ~3' × 3'. An angular resolution of ~0.25 inches is anticipated. I provide an overview of the instrument, and report performance results with an emphasis on detector characterization.
Hubble Space Telescope Observations of the HD 202628 Debris Disk
NASA Technical Reports Server (NTRS)
Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter
2012-01-01
A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by approx.64deg from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along PA = 130deg. It has inner and outer radii (> 50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ((Delta)r/r approx. = 0.4). The maximum visible radial extent is approx. 254 AU. With a mean surface brightnesses of V approx. = 24 mag arcsec.(sup -2), this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by approx.28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).
Hubble Space Telescope Observations of the HD 202628 Debris Disk
NASA Astrophysics Data System (ADS)
Krist, John E.; Stapelfeldt, Karl R.; Bryden, Geoffrey; Plavchan, Peter
2012-08-01
A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by ~64° from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130°. It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast (Δr/r ≈ 0.4). The maximum visible radial extent is ~254 AU. With mean surface brightness of V ≈ 24 mag arcsec-2, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by ~28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca
2016-02-20
The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. Themore » gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.« less
"Missing Mass" Found in Recycled Dwarf Galaxies
NASA Astrophysics Data System (ADS)
2007-05-01
Astronomers studying dwarf galaxies formed from the debris of a collision of larger galaxies found the dwarfs much more massive than expected, and think the additional material is "missing mass" that theorists said should not be present in this kind of dwarf galaxy. Multiwavelength Image of NGC 5291 Multiwavelength image of NGC 5291 and dwarf galaxies around it. CREDIT: P-A Duc, CEA-CNRS/NRAO/AUI/NSF/NASA. Click on image for page of more graphics and full information The scientists used the National Science Foundation's Very Large Array (VLA) radio telescope to study a galaxy called NGC 5291, 200 million light-years from Earth. This galaxy collided with another 360 million years ago, and the collision shot streams of gas and stars outward. Later, the dwarf galaxies formed from the ejected debris. "Our detailed studies of three 'recycled' dwarf galaxies in this system showed that the dwarfs have twice as much unseen matter as visible matter. This was surprising, because they were expected to have very little unseen matter," said Frederic Bournaud, of the French astrophysics laboratory AIM of the French CEA and CNRS. Bournaud and his colleagues announced their discovery in the May 10 online issue of the journal Science. "Dark matter," which astronomers can detect only by its gravitational effects, comes, they believe, in two basic forms. One form is the familiar kind of matter seen in stars, planets, and humans -- called baryonic matter -- that does not emit much light or other type of radiation. The other form, called non-baryonic dark matter, comprises nearly a third of the Universe but its nature is unknown. The visible portion of spiral galaxies, like our own Milky Way, lies mostly in a flattened disk, usually with a bulge in the center. This visible portion, however, is surrounded by a much larger halo of dark matter. When spiral galaxies collide, the material expelled outward by the interaction comes from the galaxies' disks. For this reason, astronomers did not expect that "recycled" dwarf galaxies formed from this collision debris would contain much, if any, dark matter. When Bournaud and his international team of scientists used the VLA to study three dwarf galaxies formed from the debris of NGC 5291's collision, they were surprised to find two to three times the amount of dark matter as visible matter in the dwarfs. They determined the dwarfs' masses by measuring the Doppler shift of radio waves emitted by atomic Hydrogen at a frequency of 1420 MHz. The amount of shift in the frequency indicated the rotational speed in the galaxy. That, in turn, allowed the scientists to calculate the dwarf's mass. Images from two NASA satellites provided vital information about the dwarf galaxies. "Using ultraviolet images from the Galex satellite and infrared data collected by the Spitzer satellite, we had previously shown that the dwarfs all along the debris stream were star-forming galaxies," said Pierre-Alain Duc, also of the AIM laboratory (CEA/CNRS). What is the dark matter in the dwarfs? The astronomers don't believe it is the mysterious non-baryonic type, but rather cold Hydrogen molecules that are extremely difficult to detect. When the astronomers performed computer models of the collision of NGC 5291 to simulate the formation of the system seen today, the models left the resulting recycled dwarfs with almost no dark matter. These computer models had started off with all the dark matter in the galaxy's larger halo. "The result of the computer models means that the additional mass we see in the real dwarfs came from the disks, not the haloes, of the larger galaxies that collided," Bournaud said. That additional mass, the scientists believe, almost certainly is "normal" baryonic matter, probably cold molecular Hydrogen. While the discovery about NGC 5291's neighboring dwarf galaxies sheds new light on the composition of spiral galaxies, it doesn't tell the scientists anything about the non-baryonic dark matter, whose nature remains a mystery. "Still, this new information about the matter comprising galactic disks should help us work toward a better understanding of their formation and evolution," Bournaud concluded. Bournaud and Duc worked with Mederic Boquien, also of the AIM laboratory (CEA/CNRS); Elias Brinks of the University of Hertfordshire in the UK; Phillipe Amram of the Astronomical Observatory of Marseille-Provence; Ute Lisenfeld of the University of Granada, Spain; Barbel S. Koribalski of the Australia Telescope National Facility; Fabian Walter of the Max Planck Institute for Astronomy in Heidelberg, Germany; and Vassilis Charmandaris of the University of Crete, Greece. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The California Institute of Technology leads the Galaxy Evolution Explorer mission and is responsible for science operations and data analysis. NASA's Jet Propulsion Laboratory, a division of Caltech, manages the mission and built the science instrument, and also manages the Spitzer Space Telescope.
NASA Astrophysics Data System (ADS)
Meshkat, Tiffany; Mawet, Dimitri; Bryan, Marta L.; Hinkley, Sasha; Bowler, Brendan P.; Stapelfeldt, Karl R.; Batygin, Konstantin; Padgett, Deborah; Morales, Farisa Y.; Serabyn, Eugene; Christiaens, Valentin; Brandt, Timothy D.; Wahhaj, Zahed
2017-12-01
We describe a joint high-contrast imaging survey for planets at the Keck and Very Large Telescope of the last large sample of debris disks identified by the Spitzer Space Telescope. No new substellar companions were discovered in our survey of 30 Spitzer-selected targets. We combine our observations with data from four published surveys to place constraints on the frequency of planets around 130 debris disk single stars, the largest sample to date. For a control sample, we assembled contrast curves from several published surveys targeting 277 stars that do not show infrared excesses. We assumed a double power-law distribution in mass and semimajor axis (SMA) of the form f(m,a)={{Cm}}α {a}β , where we adopted power-law values and logarithmically flat values for the mass and SMA of planets. We find that the frequency of giant planets with masses 5-20 M Jup and separations 10-1000 au around stars with debris disks is 6.27% (68% confidence interval 3.68%-9.76%), compared to 0.73% (68% confidence interval 0.20%-1.80%) for the control sample of stars without disks. These distributions differ at the 88% confidence level, tentatively suggesting distinctness of these samples. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.
SPECS: The Kilometer-baseline Far-IR Interferometer in NASA’s Space Science Roadmap
2004-01-01
planetary debris disks – are detectable with cryogenically cooled telescopes having total light collecting areas in the tens of square meters. If this...of the Hubble Space Telescope. At such resolution galaxies at high redshift, protostars, and nascent planetary systems will be resolved, and...protogalaxies, the nearest star forming regions, and all but a small handful of debris disks subtend sub- arcsecond angles in the sky. To build a single
A sample of potential disk hosting first ascent red giants
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John
2018-01-01
Observations of (sub)giants with planets and disks provide the first set of proof that disks can survive the first stages of post-main-sequence evolution, even though the disks are expected to dissipate by this time. The infrared (IR) excesses present around a number of post-main-sequence (PMS) stars could be due to a traditional debris disk with planets (e.g. kappa CrB), some remnant of enhanced mass loss (e.g. the shell-like structure of R Sculptoris), and/or background contamination. We present a sample of potential disk hosting first ascent red giants. These stars all have infrared excesses at 22 microns, and possibly host circumstellar debris. We summarize the characteristics of the sample to better inform the incidence rates of thermally emitting material around giant stars. A thorough follow-up study of these candidates would serve as the first step in probing the composition of the dust in these systems that have left the main sequence, providing clues to the degree of disk processing that occurs beyond the main-sequence.
First scattered-light image of the debris disk around HD 131835 with the Gemini Planet Imager
Hung, Li -Wei; Duchêne, Gaspard; Arriaga, Pauline; ...
2015-12-09
Here, we present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ~15 Myr old A2IV star at a distance of ~120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ~75 to ~210 AU in the disk plane with roughlymore » flat surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less
FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Li-Wei; Arriaga, Pauline; Fitzgerald, Michael P.
2015-12-10
We present the first scattered-light image of the debris disk around HD 131835 in the H band using the Gemini Planet Imager. HD 131835 is a ∼15 Myr old A2IV star at a distance of ∼120 pc in the Sco-Cen OB association. We detect the disk only in polarized light and place an upper limit on the peak total intensity. No point sources resembling exoplanets were identified. Compared to its mid-infrared thermal emission, in scattered light the disk shows similar orientation but different morphology. The scattered-light disk extends from ∼75 to ∼210 AU in the disk plane with roughly flatmore » surface density. Our Monte Carlo radiative transfer model can describe the observations with a model disk composed of a mixture of silicates and amorphous carbon. In addition to the obvious brightness asymmetry due to stronger forward scattering, we discover a weak brightness asymmetry along the major axis, with the northeast side being 1.3 times brighter than the southwest side at a 3σ level.« less
Multi-Wavelength Spectroscopy of Tidal Disruption Flares: A Legacy Sample for the LSST Era
NASA Astrophysics Data System (ADS)
Cenko, Stephen
2017-08-01
When a star passes within the sphere of disruption of a massive black hole, tidal forces will overcome self-gravity and unbind the star. While approximately half of the stellar debris is ejected at high velocities, the remaining material stays bound to the black hole and accretes, resulting in a luminous, long-lived transient known as a tidal disruption flare (TDF). In addition to serving as unique laboratories for accretion physics, TDFs offer the hope of measuring black hole masses in galaxies much too distant for resolved kinematic studies.In order to realize this potential, we must better understand the detailed processes by which the bound debris circularizes and forms an accretion disk. Spectroscopy is critical to this effort, as emission and absorption line diagnostics provide insight into the location and physical state (velocity, density, composition) of the emitting gas (in analogy with quasars). UV spectra are particularly critical, as most strong atomic features fall in this bandpass, and high-redshift TDF discoveries from LSST will sample rest-frame UV wavelengths.Here we propose to obtain a sequence of UV (HST) and optical (Gemini/GMOS) spectra for a sample of 5 TDFs discovered by the Zwicky Transient Facility, doubling the number of TDFs with UV spectra. Our observations will directly test models for the generation of the UV/optical emission (circularization vs reprocessing) by searching for outflows and measuring densities, temperatures, and composition as a function of time. This effort is critical to developing the framework by which we can infer black hole properties (e.g., mass) from LSST TDF discoveries.
Hole-y Debris Disks, Batman! Where are the planets?
NASA Astrophysics Data System (ADS)
Bailey, V.; Meshkat, T.; Hinz, P.; Kenworthy, M.; Su, K. Y. L.
2014-03-01
Giant planets at wide separations are rare and direct imaging surveys are resource-intensive, so a cheaper marker for the presence of giant planets is desirable. One intriguing possibility is to use the effect of planets on their host stars' debris disks. Theoretical studies indicate giant planets can gravitationally carve sharp boundaries and gaps in their disks; this has been seen for HR 8799, β Pic, and tentatively for HD 95086 (Su et al. 2009, Lagrange et al. 2010, Moor et al. 2013). If more broadly demonstrated, this link could help guide target selection for next generation direct imaging surveys. Using Spitzer MIPS/IRS spectral energy distributions (SEDs), we identify several dozen systems with two-component and/or large inner cavity disks (aka Hole-y Debris Disks). With LBT/LBTI, VLT/NaCo, GeminiS/NICI, MMT/Clio and Magellan/Clio, we survey a subset these SEDselected targets (~20). In contrast to previous disk-selected planet surveys (e.g.: Janson et al. 2013, Wahhaj et al. 2013) we image primarily in the thermal IR (L'-band), where planet-to-star contrast is more favorable and background contaminants less numerous. Thus far, two of our survey targets host planet-mass companions, both of which were discovered in L'-band after they were unrecognized or undetectable in H-band. For each system in our sample set, we will investigate whether the known companions and/or companions below our detection threshold could be responsible for the disk architecture. Ultimately, we will increase our effective sample size by incorporating detection limits from surveys that have independently targeted some of our systems of interest. In this way we will refine the conditions under which disk SED-based target selection is likely to be useful and valid.
Dust distributions in debris disks: effects of gravity, radiation pressure and collisions
NASA Astrophysics Data System (ADS)
Krivov, A. V.; Löhne, T.; Sremčević, M.
2006-08-01
We model a typical debris disk, treated as an idealized ensemble of dust particles, exposed to stellar gravity and direct radiation pressure and experiencing fragmenting collisions. Applying the kinetic method of statistical physics, written in orbital elements, we calculate size and spatial distibutions expected in a steady-state disk, investigate timescales needed to reach the steady state, and calculate mass loss rates. Particular numerical examples are given for the debris disk around Vega. The disk should comprise a population of larger grains in bound orbits and a population of smaller particles in hyperbolic orbits. The cross section area is dominated by the smallest grains that still can stay in bound orbits, for Vega about 10 {μ m} in radius. The size distribution is wavy, implying secondary peaks in the size distribution at larger sizes. The radial profile of the pole-on surface density or the optical depth in the steady-state disk has a power-law index between about -1 and -2. It cannot be much steeper even if dust production is confined to a narrow planetesimal belt, because collisional grinding produces smaller and smaller grains, and radiation pressure pumps up their orbital eccentricities and spreads them outward, which flattens the radial profile. The timescales to reach a steady state depend on grain sizes and distance from the star. For Vega, they are about 1 Myr for grains up to some hundred {μ m} at 100 AU. The total mass of the Vega disk needed to produce the observed amount of micron and submillimeter-sized dust does not exceed several earth masses for an upper size limit of parent bodies of about 1 km. The collisional depletion of the disk occurs on Gyr timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabeshian, Maryam; Wiegert, Paul A., E-mail: mtabeshi@uwo.ca
Structures observed in debris disks may be caused by gravitational interaction with planetary or stellar companions. These perturbed disks are often thought to indicate the presence of planets and offer insights into the properties of both the disk and the perturbing planets. Gaps in debris disks may indicate a planet physically present within the gap, but such gaps can also occur away from the planet’s orbit at mean-motion resonances (MMRs), and this is the focus of our interest here. We extend our study of planet–disk interaction through MMRs, presented in an earlier paper, to systems in which the perturbing planetmore » has moderate orbital eccentricity, a common occurrence in exoplanetary systems. In particular, a new result is that the 3:1 MMR becomes distinct at higher eccentricity, while its effects are absent for circular planetary orbits. We also only consider gravitational interaction with a planetary body of at least 1 M {sub J}. Our earlier work shows that even a 1 Earth mass planet can theoretically open an MMR gap; however, given the narrow gap that can be opened by a low-mass planet, its observability would be questionable. We find that the widths, locations, and shapes of two prominent structures, the 2:1 and 3:1 MMRs, could be used to determine the mass, semimajor axis, and eccentricity of the planetary perturber and present an algorithm for doing so. These MMR structures can be used to narrow the position and even determine the planetary properties (such as mass) of any inferred but as-yet-unseen planets within a debris disk. We also briefly discuss the implications of eccentric disks on brightness asymmetries and their dependence on the wavelengths with which these disks are observed.« less
Search for Protoplanetary and Debris Disks Around Millisecond Pulsars
1995-10-06
Protoplanetary and Debris Disks Around Millisecond Pulsars 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...1 9 9 6 A p J . . . 4 6 0 . . 9 0 2 F Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Tushar; Chen, Christine H.; Jang-Condell, Hannah
During the Spitzer Space Telescope cryogenic mission, astronomers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates that have been compiled in the Spitzer IRS Debris Disk Catalog. We have discovered 10 and/or 20 μm silicate emission features toward 120 targets in the catalog and modeled the IRS spectra of these sources, consistent with MIPS 70 μm observations, assuming that the grains are composed of silicates (olivine, pyroxene, forsterite, and enstatite) and are located either in a continuous disk with power-law size and surface density distributions or thin rings that are well-characterized using two separate dust grain temperatures.more » For systems better fit by the continuous disk model, we find that (1) the dust size distribution power-law index is consistent with that expected from a collisional cascade, q = 3.5-4.0, with a large number of values outside this range, and (2) the minimum grain size, a {sub min}, increases with stellar luminosity, L {sub *}, but the dependence of a {sub min} on L {sub *} is weaker than expected from radiation pressure alone. In addition, we also find that (3) the crystalline fraction of dust in debris disks evolves as a function of time with a large dispersion in crystalline fractions for stars of any particular stellar age or mass, (4) the disk inner edge is correlated with host star mass, and (5) there exists substantial variation in the properties of coeval disks in Sco-Cen, indicating that the observed variation is probably due to stochasticity and diversity in planet formation.« less
First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Choquet, Elodie; Milli, Julien; Wahhaj, Zahed; Soummer, Remi; Roberge, Aki; Augereau, Jean-Charles; Booth, Mark; Absil, Olivier; Boccaletti, Anthony; Chen, Christine H.;
2017-01-01
We present the first scattered-light images of the debris disk around 49 Ceti, a approximately 40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1."1 (65 au) to 4." 6 (250 au) and is seen at an inclination of 73 deg, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 MJup at projected separations beyond 20 au from the star (0." 34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than approximately greater than 2 micrometers. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2-0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.
Future Missions to Study Signposts of Planets
NASA Technical Reports Server (NTRS)
Traub, Wesley A.
2011-01-01
This talk will focus on debris disks, will compare ground and space and will discuss 2 proposed missions, Exoplanetary Circumstellar Environments And Disk Explorer (EXCEDE) and Zodiac II. At least 2 missions have been proposed for disk imaging. The technology is largely in hand today. A small mission would do excellent disk science, and would test technology for a future large mission for planets.
The Evolution of Gas in Protoplanetary Systems: The Herschel GASPS Open Time Key Programme
NASA Technical Reports Server (NTRS)
Roberge, A.; Dent, W.
2010-01-01
The Gas in Protoplanetary Systems (GASPS) Open Time Key Programme for the Herschel Space Observatory will be the first extensive, systematic survey of gas in circumstellar disks over the critical transition from gas-rich protoplanetary through to gas-poor debris. The brightest spectral lines from disks lie in the far-infrared and arise from radii spanning roughly 10 to 100 AU, where giant planets are expected to form. Herschel is uniquely able to observe this wavelength regime with the sensitivity to allow a large scale survey. We will execute a 2-phase study using the PACS instrument. Phase I is a spectroscopic survey about 250 young stars for fine structure emission lines of [CII] (at 157 microns) and [OI] (at 63 microns). In Phase II, the brightest sources will be followed up with additional PACS spectroscopy ([OI] at 145 microns and some rotational lines of water). We expect that the gas mass sensitivity will be more than an order of magnitude lower than that achieved by ISO and Spitzer or expected for SOFIA. We will also measure the dust continuum to an equivalent mass sensitivity. We will observe several nearby clusters with ages from 1 to 30 Myr, encompassing a wide range of disk masses and stellar luminosities. The sample covers disk evolution from protoplanetary disks through to young debris disks, i.e. the main epoch of planet formation. With this extensive dataset, the GASPS project will: 1) trace gas and dust in the planet formation region across a large multivariate parameter space, 2) provide the first definitive measurement of the gas dissipation timescale in disks, 3) elucidate the evolutionary link between protoplanetary and debris disks, 4) investigate water abundances in the planetforming regions of disks, and 5) provide a huge database of disk observations and models with long-lasting legacy value for follow-up studies.
ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, L.; Carpenter, J. M.; Fu, B.
We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial widthmore » ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.« less
Dynamical Evolution of the Debris Disk after a Satellite Catastrophic Disruption around Saturn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyodo, Ryuki; Charnoz, Sébastien
The hypothesis of the recent origin of Saturn’s rings and its midsized moons is actively debated. It was suggested that a proto-Rhea and a proto-Dione might have collided recently, giving birth to the modern system of midsized moons. It has also been suggested that the rapid viscous spreading of the debris may have implanted mass inside Saturn’s Roche limit, giving birth to its modern ring system. However, this scenario has only been investigated in a very simplified way for the moment. This paper investigates it in detail to assess its plausibility by using N -body simulations and analytical arguments. When the debris disk is dominatedmore » by its largest remnant, N -body simulations show that the system quickly reaccretes into a single satellite without significant spreading. On the other hand, if the disk is composed of small particles, analytical arguments suggest that the disk experiences dynamical evolutions in three steps. The disk starts significantly excited after the impact and collisional damping dominates over the viscous spreading. After the system flattens, the system can become gravitationally unstable when particles are smaller than ∼100 m. However, the particles grow faster than spreading. Then, the system becomes gravitationally stable again and accretion continues at a slower pace, but spreading is inhibited. Therefore, the debris is expected to reaccrete into several large bodies. In conclusion, our results show that such a scenario may not form today’s ring system. In contrast, our results suggest that today’s midsized moons are likely reaccreted from such a catastrophic event.« less
AN ENIGMATIC POINT-LIKE FEATURE WITHIN THE HD 169142 TRANSITIONAL DISK ,
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biller, Beth A.; Males, Jared; Morzinski, Katie
2014-09-01
We report the detection of a faint point-like feature possibly related to ongoing planet-formation in the disk of the transition disk star HD 169142. The point-like feature has a Δmag(L) ∼ 6.4, at a separation of ∼0.''11 and position angle ∼0°. Given its lack of an H or K{sub S} counterpart despite its relative brightness, this candidate cannot be explained by purely photospheric emission and must be a disk feature heated by an as yet unknown source. Its extremely red colors make it highly unlikely to be a background object, but future multi-wavelength follow up is necessary for confirmation and characterization ofmore » this feature.« less
Observational constraints on black hole accretion disks
NASA Technical Reports Server (NTRS)
Liang, Edison P.
1994-01-01
We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.
UV Spectroscopy of Star-Grazing Comets Within the 49 Ceti Debris Disk
NASA Technical Reports Server (NTRS)
Miles, Brittany E.; Roberge, Aki; Welsh, Barry
2016-01-01
We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from CII and CIV but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied Beta Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of kms(-1) relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the in falling gas at the time of transit were about 0.050.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the in falling gas is super-solar, as it is in the bulk of the stable disk gas.
NIRCam Coronagraphic Observations of Disks and Planetary Systems
NASA Astrophysics Data System (ADS)
Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team
2017-06-01
The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.
High Contrast Imaging of Exoplanets and Exoplanetary Systems with JWST
NASA Astrophysics Data System (ADS)
Hinkley, Sasha; Skemer, Andrew; Biller, Beth; Baraffe, I.; Bonnefoy, M.; Bowler, B.; Carter, A.; Chen, C.; Choquet, E.; Currie, T.; Danielski, C.; Fortney, J.; Grady, C.; Greenbaum, A.; Hines, D.; Janson, M.; Kalas, P.; Kennedy, G.; Kraus, A.; Lagrange, A.; Liu, M.; Marley, M.; Marois, C.; Matthews, B.; Mawet, D.; Metchev, S.; Meyer, M.; Millar-Blanchaer, M.; Perrin, M.; Pueyo, L.; Quanz, S.; Rameau, J.; Rodigas, T.; Sallum, S.; Sargent, B.; Schlieder, J.; Schneider, G.; Stapelfeldt, K.; Tremblin, P.; Vigan, A.; Ygouf, M.
2017-11-01
JWST will transform our ability to characterize directly imaged planets and circumstellar debris disks, including the first spectroscopic characterization of directly imaged exoplanets at wavelengths beyond 5 microns, providing a powerful diagnostic of cloud particle properties, atmospheric structure, and composition. To lay the groundwork for these science goals, we propose a 39-hour ERS program to rapidly establish optimal strategies for JWST high contrast imaging. We will acquire: a) coronagraphic imaging of a newly discovered exoplanet companion, and a well-studied circumstellar debris disk with NIRCam & MIRI; b) spectroscopy of a wide separation planetary mass companion with NIRSPEC & MIRI; and c) deep aperture masking interferometry with NIRISS. Our primary goals are to: 1) generate representative datasets in modes to be commonly used by the exoplanet and disk imaging communities; 2) deliver science enabling products to empower a broad user base to develop successful future investigations; and 3) carry out breakthrough science by characterizing exoplanets for the first time over their full spectral range from 2-28 microns, and debris disk spectrophotometry out to 15 microns sampling the 3 micron water ice feature. Our team represents the majority of the community dedicated to exoplanet and disk imaging and has decades of experience with high contrast imaging algorithms and pipelines. We have developed a collaboration management plan and several organized working groups to ensure we can rapidly and effectively deliver high quality Science Enabling Products to the community.
Search For Debris Disks Around A Few Radio Pulsars
NASA Astrophysics Data System (ADS)
Wang, Zhongxiang; Kaplan, David; Kaspi, Victoria
2007-05-01
We propose to observe 7 radio pulsars with Spitzer/IRAC at 4.5 and 8.0 microns, in an effort to probe the general existence of debris disks around isolated neutron stars. Such disks, probably formed from fallback or pushback material left over from supernova explosions, has been suggested to be associated with various phenomena seen in radio pulsars. Recently, new evidence for such a disk around an isolated young neutron star was found in Spitzer observations of an X-ray pulsar. If they exist, the disks could be illuminated by energy output from central pulsars and thus be generally detectable in the infrared by IRAC. We have selected 40 relatively young, energetic pulsars from the most recent pulsar catalogue as the preliminary targets for our ground-based near-IR imaging survey. Based on the results from the survey observations, 7 pulsars are further selected because of their relatively sparse field and estimated low extinction. Combined with our near-IR images, Spitzer/IRAC observations will allow us to unambiguously identify disks if they are detected at the source positions. This Spitzer observation program we propose here probably represents the best test we can do on the general existence of disks around radio pulsars.
First Scattered-light Images of the Gas-rich Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choquet, Élodie; Milli, Julien; Wahhaj, Zahed
We present the first scattered-light images of the debris disk around 49 Ceti, a ∼40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1.″1 (65 au) to 4.″6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection largermore » than 3 M {sub Jup} at projected separations beyond 20 au from the star (0.″34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti’s dust, indicating grains larger than ≳2 μ m. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.« less
VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, Aki; Grady, Carol A.; Welsh, Barry Y.
2014-11-20
We present Hubble Space Telescope Space Telescope Imaging Spectrograph far-UV spectra of the edge-on disk around 49 Ceti, one of the very few debris disks showing submillimeter CO emission. Many atomic absorption lines are present in the spectra, most of which arise from circumstellar gas lying along the line-of-sight to the central star. We determined the line-of-sight C I column density, estimated the total carbon column density, and set limits on the O I column density. Surprisingly, no line-of-sight CO absorption was seen. We discuss possible explanations for this non-detection, and present preliminary estimates of the carbon abundances in themore » line-of-sight gas. The C/Fe ratio is much greater than the solar value, suggesting that 49 Cet harbors a volatile-rich gas disk similar to that of β Pictoris.« less
Planet Imager Discovers Young Kuiper Belt
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-07-01
A debris disk just discovered around a nearby star is the closest thing yet seen to a young version of the Kuiper belt. This disk could be a key to better understanding the interactions between debris disks and planets, as well as how our solar system evolved early on in its lifetime. Hunting for an analog The best way to understand how the Kuiper belt — home to Pluto and thousands of other remnants of early icy planet formation in our solar system — developed would be to witness a similar debris disk in an earlier stage of its life. But before now, none of the disks we've discovered have been similar to our own: the rings are typically too large, the central star too massive, or the stars exist in regions very unlike what we think our Sun's birthplace was like. A collaboration led by Thayne Currie (National Astronomical Observatory of Japan) has changed this using the Gemini Planet Imager (GPI), part of a new generation of extreme adaptive-optics systems. The team discovered a debris disk of roughly the same size as the Kuiper belt orbiting the star HD 115600, located in the nearest OB association. The star is only slightly more massive than our Sun, and it lives in a star-forming region similar to the early Sun's environment. HD 115600 is different in one key way, however: it is only 15 million years old. This means that observing it gives us the perfect opportunity to observe how our solar system might have behaved when it was much younger. A promising future GPI's spatially-resolved spectroscopy, combined with measurements of the reflectivity of the disk, have led the team to suspect that the disk might be composed partly of water ice, just as the Kuiper belt is. The disk also shows evidence of having been sculpted by the motions of giant planets orbiting the central star, in much the same way as the outer planets of our solar system may have shaped the Kuiper belt. The observations of HD 115600 are some of the very first to emerge from GPI and the new generation of planet-hunting instruments. The detection of this disk provides a promising outlook on what we can expect to discover in the future with these systems. Citation: Thayne Currie et al. 2015 ApJ 807 L7 doi:10.1088/2041-8205/807/1/L7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, Amy; Hughes, A. Meredith; Carpenter, John
The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HDmore » 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.« less
Gemini Planet Imager Exoplanet Survey: Key Results Two Years Into The Survey
NASA Astrophysics Data System (ADS)
Marchis, Franck; Rameau, Julien; Nielsen, Eric L.; De Rosa, Robert J.; Esposito, Thomas; Draper, Zachary H.; Macintosh, Bruce; Graham, James R.; GPIES
2016-10-01
The Gemini Planet Imager Exoplanet Survey (GPIES) is targeting 600 young, nearby stars using the GPI instrument. We report here on recent results obtained with this instrument from our team.Rameau et al. (ApJL, 822 2, L2, 2016) presented astrometric monitoring of the young exoplanet HD 95086 b obtained with GPI between 2013 and 2016. Efficient Monte Carlo techniques place preliminary constraints on the orbital parameters of HD 95086 b. Under the assumption of a coplanar planet-disk system, the periastron of HD 95086 b is beyond 51 AU. Therefore, HD 95086 b cannot carve the entire gap inferred from the measured infrared excess in the SED of HD 95086. Additional photometric and spectroscopic measurements reported by de Rosa et al. (2016, apJ, in press) showed that the spectral energy distribution of HD 95086 b is best fit by low temperature (T~800-1300 K), low surface gravity spectra from models which simulate high photospheric dust content. Its temperature is typical to L/T transition objects, but the spectral type is poorly constrained. HD 95086 b is an important exoplanet to test our models of atmospheric properties of young extrasolar planets.Direct detections of debris disk are keys to infer the collisional past and understand the formation of planetary systems. Two debris disks were recently studied with GPI:- Draper et al. (submitted to ApJ, 2016) show the resolved circumstellar debris disk around HD 111520 at a projected range of ~30-100 AU using both total and polarized H-band intensity. Structures in the disks such as a large brightness asymmetry and symmetric polarization fraction are seen. Additional data would confirm if a large disruption event from a stellar fly-by or planetary perturbations altered the disk density- Esposito et al. (submitted to ApJ, 2016) combined Keck NIRC2 data taken at 1.2-2.3 microns and GPI 1.6 micron total intensity and polarized light detections that probes down to projected separations less than 10 AU to show that the HD 61005 debris disk ("The Moth") support the premise of a planet-perturbed disk.These new data, and additional interesting targets, will be presented and discussed. This work is partially supported by NASA NNX14AJ80G.
NASA Astrophysics Data System (ADS)
Olofsson, J.; Henning, Th.; Nielbock, M.; Augereau, J.-C.; Juhàsz, A.; Oliveira, I.; Absil, O.; Tamanai, A.
2013-03-01
Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (~2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims: We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations. Methods: We implemented the contribution of an outer planetesimal belt in the Debra code, and successfully used it to model the spectral energy distribution (SED) as well as complementary observations, notably MIDI data. We better constrain the spatial distribution of the dust and its composition. Results: We underline the limitations of SED modeling and the need for spatially resolved observations. We improve existing models and increase our understanding of the disk around HD 113766 A. We find that the system is best described by an inner disk located within the first AU, well constrained by the MIDI data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least an eight-year time span in an environment subjected to strong radiation pressure. Conclusions: The time stability of the emission features indicates that μm-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub- μm-sized grains. We suggest that the emission features may arise from multi-composition aggregates. We discuss possible scenarios concerning the origin of the warm dust observed around HD 113766 A. The compactness of the innermost regions as probed by the MIDI visibilities and the dust composition suggest that we are witnessing the results of (at least) one collision between partially differentiated bodies, in an environment possibly rendered unstable by terrestrial planetary formation. Based on Herschel observations, OBSIDs: 1342227026, 1342227027, 1342237934, and 1342237935. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. Based on VISIR observations collected at the VLT (European Southern Observatory, Paranal, Chile) with program 089.C-0322(A).
NASA Astrophysics Data System (ADS)
Currie, Thayne
2015-06-01
We propose a unique, first-of-its-kind combined near-IR high-contrast imaging and optical interferometry study of 20 young, debris disk-bearing stars with SCExAO + HiCIAO/VAMPIRES. Our sample includes the benchmark imaged exoplanets HR 8799 bcde; luminous, resolvable debris disks; stars with asteroid belts that have yet to be resolved in scattered light; poorly-studied stars whose disks may be resolvable; and stars with compelling planet candidates requiring rapid follow-up. From proven VAMPIRES performance, SCExAO near-IR advances and HiCIAO software and hardware upgrades from our team, our data will 1) resolve known debris belts and possible hitherto unseen asteroid belts and 2) yield significantly deeper contrasts at small (r = 0.1"-0.5") separations than typical HiCIAO data (e.g. 10^{-5} at 0.4"). With the likely-operational Pyramid WFS, we will achieve extreme contrasts (< 10^{-6} at r > 0.25") and planet detection capabilities rivaling/exceeding those from GPI and SPHERE. Our program is guaranteed to result in many publications reporting new insights on known exoplanets and disks, may yield the first optical/IR images of exo-asteroid belts/other exoplanets, and could firmly establish Subaru/SCExAO as the premier extreme-AO exoplanet imaging facility.
The Size Distribution Of Cluster Galaxies
NASA Astrophysics Data System (ADS)
Kuchner, U.; Ziegler, B.; Bamford, S.; Verdugo, M.; Haeussler, B.
2017-06-01
We establish a sample of 560 spectroscopically confirmed cluster members of MACS J1206.2- 0847 at z = 0.45 and utilize multi-wavelength and multi-component Sersic profile fitting to provide luminosities and sizes for the key structural components bulge and disk. While the difference between field and cluster galaxy properties are mostly due to a preference for cluster members to be early-type (quiescent, bulge-dominated), we see evidence for an outer disk fading and a sharp rise in the number of red disks with smaller effective radii at the tidally active cluster region around R200. Even though red disks are already virialized according to their velocity distribution, they are clearly not part of the old population found in the innermost region; they represent an important population of transitional objects in clusters.
Circumstellar Material on and off the Main Sequence
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars that originates from the small-body population of planetary systems. These bodies tell us something about the chemistry and evolution of protoplanetary disks and the planetary systems they form. What happens to this material as its host star evolves off the main sequence, and how does that inform our understanding of the typical chemistry of rocky bodies in planetary systems? In this talk, I will discuss the composition(s) of circumstellar material on and off the main sequence to begin to answer the question, “Is Earth normal?” In particular, I look at three types of debris disks to understand the typical chemistry of planetary systems—young debris disks, debris disks around giant stars, and dust around white dwarfs. I will review the current understanding on how to infer dust composition for each class of disk, and present new work on constraining dust composition from infrared excesses around main sequence and giant stars. Finally, dusty and polluted white dwarfs hold a unique key to our understanding of the composition of rocky bodies around other stars. In particular, I will discuss WD1145+017, which has a transiting, disintegrating planetesimal. I will review what we know about this system through high speed photometry and spectroscopy and present new work on understanding the complex interplay of physics that creates white dwarf pollution from the disintegration of rocky bodies.
DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.
2010-04-01
We present Spitzer MIPS observations at 24 {mu}m of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% +- 6.8%, have excesses at 24 {mu}m at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity onmore » the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.« less
ALMA 1.3 Millimeter Map of the HD 95086 System -- A Young Analog of the HR 8799 System
NASA Astrophysics Data System (ADS)
Su, Kate; MacGregor, Meredith Ann; Booth, Mark; Wilner, David; Malhotra, Renu; Morrison, Sarah; OST STDT
2018-01-01
Planets and minor bodies such as asteroids, Kuiper-belt objects and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is best illustrated through resolved observations of its debris disk. Here we present ALMA 1.3 mm observations of HD 95086, a young analog of the HR 8799 system, that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-belt analogs. The location of the Kuiper-belt analog is resolved for the first time. Our deep ALMA map also reveals a bright source located near the edge of the ring. The properties of the source, based on limited data, are consistent with it being a luminous star-forming galaxy at high redshift. We will discuss future, resolved observations of debris disks, highlighting the potential of the Origins Space Telescope (OST), one of the four science and technology definition studies commissioned by NASA Headquarters for the 2020 Astronomy and Astrophysics Decadal survey.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2015-06-01
We propose to make 25 mum mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 mum) and radio (440 mum) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 mum imaging can provide some clues, since it is the wavelength between the previous 18.7 mum and the 440 mum observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 mum image can be complemental to forthecoming ALMA and NIR polarimetric data.
MIR imaging of the transitional disk source Oph IRS48
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko
2014-01-01
We propose to make 25 micron mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 micron) and radio (440 micron) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 micron imaging can provide some clues, since it is the wavelength between previous 18.7 micron and 440 micron observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 micron image can be complemental to forthecoming ALMA and NIR polarimetric data.
EVIDENCE OF AN ASTEROID ENCOUNTERING A PULSAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brook, P. R.; Karastergiou, A.; Buchner, S.
Debris disks and asteroid belts are expected to form around young pulsars due to fallback material from their original supernova explosions. Disk material may migrate inward and interact with a pulsar's magnetosphere, causing changes in torque and emission. Long-term monitoring of PSR J0738–4042 reveals both effects. The pulse shape changes multiple times between 1988 and 2012. The torque, inferred via the derivative of the rotational period, changes abruptly from 2005 September. This change is accompanied by an emergent radio component that drifts with respect to the rest of the pulse. No known intrinsic pulsar processes can explain these timing andmore » radio emission signatures. The data lead us to postulate that we are witnessing an encounter with an asteroid or in-falling debris from a disk.« less
Wang, Jason J.; Graham, James R.; Pueyo, Laurent; ...
2015-09-23
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennihy, E.; Dunlap, B. H.; Clemens, J. C.
We report the discovery of a subtle infrared excess associated with the young white dwarf EC 05365–4749 at 3.35 and 4.6 μ m. Follow-up spectroscopic observations are consistent with a hydrogen atmosphere white dwarf of effective temperature 22,800 K and log [ g (cm s{sup −2})] = 8.19. High-resolution spectroscopy reveals atmospheric metal pollution with logarithmic abundances of [Mg/H] = −5.36 and [Ca/H] = −5.75, confirming the white dwarf is actively accreting from a metal-rich source with an intriguing abundance pattern. We find that the infrared excess is well modeled by a flat, opaque debris disk, though disk parameters aremore » not well constrained by the small number of infrared excess points. We further demonstrate that relaxing the assumption of a circular dusty debris disk to include elliptical disks expands the widths of acceptable disks, adding an alternative interpretation to the subtle infrared excesses commonly observed around young white dwarfs.« less
New ALMA Images of the HD 32297 and HD 61005 Debris Disks
NASA Astrophysics Data System (ADS)
MacGregor, Meredith Ann; Weinberger, Alycia; Wilner, David; Hughes, A. Meredith; debes, John Henry; Redfield, Seth; Donaldson, Jessica; Nesvold, Erika; Schneider, Glenn; Currie, Thayne; Roberge, Aki; Rodriguez, David
2018-01-01
HD 61005 (G-type star, “The Moth") and HD 32297 (A-type star) host two of the most iconic debris disks. Scattered light images show that both disks are nearly edge-on with dramatic swept-back wings of dust. Previous studies have proposed a range of mechanisms to explain this distinctive morphology including interactions with the interstellar medium, secular perturbations of grains by low-density, neutral interstellar gas, and gravitational interactions with an inclined, eccentric companion. We present new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm that provide the highest resolution images at millimeter wavelengths to date of both systems. Observations at millimeter wavelengths are especially critical to our understanding of the physical mechanisms shaping the structure of these disks, since the large grains that dominate emission at these wavelengths are less affected by stellar radiation and winds and more reliably trace the underlying planetesimal distribution. We fit models directly to the observed visibilities within a Markov Chain Monte Carlo (MCMC) framework to characterize the continuum emission and place constraints on the structure of these unique debris disks. Our new ALMA images reveal that despite differences in spectral type, both systems are best described by a two-component structure with (1) a parent body belt, and (2) an outer halo aligned with the scattered light disk. Such halos have typically been assumed to be composed of small grains visible in scattered light, so these images are some of the first observational evidence that larger grains may also populate extended halos. In addition, we detect significant 12CO gas emission from HD 32297, and determine a robust upper limit for HD 61005.
Nature of the Warm Excess in eps Eri: Asteroid belt or Dragged-in Grains
NASA Astrophysics Data System (ADS)
Su, Kate
2014-10-01
Eps Eri and its debris disk provide a unique opportunity to probe the outer zones of a planetary system, due to its young age (~1 Gyr) and proximity (3.22 pc, the closest prominent debris disk by more than a factor of two). It is the Rosetta Stone for more distant exoplanetary debris systems and thus critical to understanding the mid-term evolution of our Solar System. From resolved images in the far-infrared and submillimeter along with spectra from 10-35 and 55-95 microns, Backman et al. (2009) found that the eps Eri disk has a complex structure, with multiple zones in both warm (asteroid-like) and cold (KBO-like) components. However, Reidemeister et al. (2011), on the contrary, suggested that the system has only one dominant cold belt and the warm excess originates from small grains in the cold disk, which are transported inward by the combination of P-R and stellar wind drags. Although both models fit the disk SED and marginally resolved far-infrared images relatively well, the resultant disk structures in the 15-50 AU range at mid-infrared wavelengths are expected to be very different. We, therefore, propose to obtain a 35 micron image of the eps Eri system using the FORCAST on SOFIA to test the validity of any models for this zone in eps Eri. No other available facilities can obtain such a 35 micron image, which will provide general constraints on the nature of the warm excess and any potential shepherding planets and their orbits in this iconic debris system. This is a re-submission of our approved cycle 2 program (02_0061), which was scheduled to be executed in Oct 2014. Due to the delay and the uncertain length of the SOFIA aircraft maintenance, it is not clear at the time of the cycle 3 deadline whether the approved observations will be executed in cycle 2. If the observations are carried out in cycle 2, we would withdraw the proposal in cycle 3.
Warm debris disks candidates in transiting planets systems
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.
2012-05-01
We have bandmerged candidate transiting planetary systems (from the Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. If confirmed, our sample ~doubles the number of currently known warm excess disks around old main sequence stars. The ratios between the measured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
The Space Infrared Interferometric Telescope (SPIRIT): Mission Study Results
2006-01-01
how planetary systems form it is essential to obtain spatially-resolved far-IR observations of protostars and protoplanetary disks . At the distance...accomplish three primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their chemical...organization; (2) Characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets
The dynamical structure of the HR8799 inner debris disk
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.
2014-11-01
The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.
High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani
NASA Astrophysics Data System (ADS)
Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam
2015-02-01
Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.
Warm debris disks candidates in transiting planets systems
NASA Astrophysics Data System (ADS)
Ribas, Á.; Merín, B.; Ardila, D. R.; Bouy, H.
2012-09-01
We have bandmerged candidate transiting planetary systems (fromthe Kepler satellite) and confirmed transiting planetary systems (from the literature) with the recent Wide-field Infrared Survey Explorer (WISE) preliminary release catalog. We have found 13 stars showing infrared excesses at either 12 μm and/or 22 μm. Without longer wavelength observations it is not possible to conclusively determine the nature of the excesses, although we argue that they are likely due to debris disks around the stars. The ratios between themeasured fluxes and the stellar photospheres are generally larger than expected for Gyr-old stars, such as these planetary hosts. Assuming temperature limits for the dust and emission from large dust particles, we derive estimates for the disk radii. These values are comparable to the planet's semi-major axis, suggesting that the planets may be stirring the planetesimals in the system.
SKARPS: The Search for Kuiper Belts around Radial-Velocity Planet Stars
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Marshall, Jonathan; Stapelfeldt, Karl; Su, Kate; Wyatt, Mark
2011-01-01
The Search for Kuiper belts Around Radial-velocity Planet Stars - SKARPS -is a Herschel survey of solar-type stars known to have orbiting planets. When complete, the 100-star SKARPS sample will be large enough for a meaningful statistical comparison against stars not known to have planets. (This control sample has already been observed by Herschel's DUst around NEarby Stars - DUNES - key program). Initial results include previously known disks that are resolved for the first time and newly discovered disks that are fainter and colder than those typically detected by Spitzer. So far, with only half of the sample in hand, there is no measured correlation between inner RV planets and cold outer debris. While this is consistent with the results from Spitzer, it is in contrast with the relationship suggested by the prominent debris disks in imaged-planet systems.
Interstellar Explorer Observations of the Solar System's Debris Disks
NASA Astrophysics Data System (ADS)
Lisse, C. M.; McNutt, R. L., Jr.; Brandt, P. C.
2017-12-01
Planetesimal belts and debris disks full of dust are known as the "signposts of planet formation" in exosystems. The overall brightness of a disk provides information on the amount of sourcing planetesimal material, while asymmetries in the shape of the disk can be used to search for perturbing planets. The solar system is known to house two such belts, the Asteroid belt and the Kuiper Belt; and at least one debris cloud, the Zodiacal Cloud, sourced by planetisimal collisions and Kuiper Belt comet evaporative sublimation. However these are poorly understood in toto because we live inside of them. E.g., while we know of the two planetesimal belt systems, it is not clear how much, if any, dust is produced from the Kuiper belt since the near-Sun comet contributions dominate near-Earth space. Understanding how much dust is produced in the Kuiper belt would give us a much better idea of the total number of bodies in the belt, especially the smallest ones, and their dynamical collisional state. Even for the close in Zodiacal cloud, questions remain concerning its overall shape and orientation with respect to the ecliptic and invariable planes of the solar system - they aren't explainable from the perturbations caused by the known planets alone. In this paper we explore the possibilities of using an Interstellar Explorer telescope placed at 200 AU from the sun to observe the brightness, shape, and extent of the solar system's debris disk(s). We should be able to measure the entire extent of the inner, near-earth zodiacal cloud; whether it connects smoothly into an outer cloud, or if there is a second outer cloud sourced by the Kuiper belt and isolated by the outer planets, as predicted by Stark & Kuchner (2009, 2010) and Poppe et al. (2012, 2016; Figure 1). VISNIR imagery will inform about the dust cloud's density, while MIR cameras will provide thermal imaging photometry related to the cloud's dust particle size and composition. Observing at high phase angle by looking back towards the sun from 200 AU, we will be able to perform deep searches for the presence of rings and dust clouds around discrete sources, and thus we will be able to search for possible strong individual sources of the debris clouds - like the Haumea family collisional fragments, or the rings of the Centaur Chariklo, or dust emitted from spallation off the 6 known bodies of the Pluto system.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott;
2012-01-01
We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas
2012-01-01
We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
A multiwavelength study of young stars in the Elephant Trunk
NASA Astrophysics Data System (ADS)
López Martí, B.; Bayo, A.; Morales Calderón, M.; Barrado, D.
2013-05-01
We present the results of a multiwavelength study of young stars in IC 1396A, ``the Elephant Trunk Nebula''. Our targets are selected combining optical, near-infrared and mid-infrared photometry. Near-infrared and optical spectroscopy are used to confirm their youth and to derive spectral types for these objects, showing that they are early to mid-M stars, and that our sample includes some of the lowest-mass objects reported so far in the region. The photometric and spectroscopic information is used to construct the spectral energy distributions and to study the properties of the stars (mass, age, accretion, disks, spatial location). The implications for the triggered star formation picture are discussed.
Multiwavelength Characteristics of Microflares
NASA Astrophysics Data System (ADS)
Poduval, Bala; Schmelz, J. T.
2016-10-01
We present the multiwavelength characteristic of microflare detected in the SDO/AIA and IRIS images using the Automated Microevent-finding Code (AMC). We have catalogued independent events with information such as location on the disk, size, lifetime and peak flux, and obtained their frequency distribution. We mapped these events to other wavelengths, using their location information, to study their associated features, and infer the temperature characteristics and evolution. Moreover, we obtained their magnetic topologies by mapping the microflare locations on to the HMI photospheric magnetic field synoptic maps. Further, we analyzed the filtered brightness profiles and light curves for each event to classify them. Finally, we carried out a differential emission measure (DEM) analysis to study their temperature characteristics.
2007-01-01
primary scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2...characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different...scientific objectives: (1) Learn how planetary systems form from protostellar disks , and how they acquire their inhomogeneous composition; (2
Is the HD 15115 inner disk really asymmetrical?
NASA Astrophysics Data System (ADS)
Mazoyer, J.; Boccaletti, A.; Augereau, J.-C.; Lagrange, A.-M.; Galicher, R.; Baudoz, P.
2014-09-01
Context. Debris disks are intrinsically connected to the planetary system's formation and evolution. The development of high-contrast imaging techniques in the past 20 years is now allowing the detection of faint material around bright stars with high angular resolution, hence opening an avenue to study in detail the structures of circumstellar disks and their relation to planetary formation. Aims: The purpose of this paper is to revisit the morphology of the almost edge-on debris disk around HD 15115. Methods: We analyzed data from the Gemini science archive obtained in 2009 and 2011 with the Near-Infrared Coronagraphic Imager instrument in the H and Ks bands using coronagraphy and angular differential imaging techniques. Results: We resolved the disk in both the H and Ks bands. We confirmed the position angles inferred by previous authors, as well as the brightness asymmetry, which is the origin of the object's nickname, the blue needle. We were able to detect the bow-like shape of the disk suspected from other observations. However, these new NICI images suggest the presence of a highly inclined ring-like disk of which we see the brighter side and the ansae located at 90 AU symmetrically about the star. The inner part is likely depleted of dust. The fainter side of the disk is suspected but not firmly detected, which also indicates a large anisotropic scattering factor. Conclusions: The morphological symmetry of the disk contrasts with the obvious brightness asymmetry. This asymmetry may be explained by the coexistence of several types of grains in this disk and/or variable dust density. Interaction with the interstellar medium was invoked by previous authors as a possible explanation but other mechanisms may account for the brightness asymmetry, for instance a recent collision in the disk. Based on data retrieved from the Gemini archive.
Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk
NASA Astrophysics Data System (ADS)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul
2014-01-01
We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.
Optical Coronagraphic Spectroscopy of AU Mic: Evidence of Time Variable Colors?
NASA Astrophysics Data System (ADS)
Lomax, Jamie R.; Wisniewski, John P.; Roberge, Aki; Donaldson, Jessica K.; Debes, John H.; Malumuth, Eliot M.; Weinberger, Alycia J.
2018-02-01
We present coronagraphic long slit spectra of AU Mic’s debris disk taken with the STIS instrument aboard the Hubble Space Telescope. Our spectra are the first spatially-resolved, scattered light spectra of the system’s disk, which we detect at projected distances between approximately 10 and 45 au. Our spectra cover a wavelength range between 5200 and 10200 Å. We find that the color of AU Mic’s debris disk is bluest at small (12–17 au) projected separations. These results both confirm and quantify the findings qualitatively noted by Krist et al. and are different than IR observations that suggested a uniform blue or gray color as a function of projected separation in this region of the disk. Unlike previous literature, which reported that the color of AU Mic’s disk became increasingly more blue as a function of projected separation beyond ∼30 au, we find the disk’s optical color between 35 and 45 au to be uniformly blue on the southeast side of the disk and decreasingly blue on the northwest side. We note that this apparent change in disk color at larger projected separations coincides with several fast, outward moving “features” that are passing through this region of the southeast side of the disk. We speculate that these phenomenon might be related and that the fast moving features could be changing the localized distribution of sub-micron-sized grains as they pass by, thereby reducing the blue color of the disk in the process. We encourage follow-up optical spectroscopic observations of AU Mic to both confirm this result and search for further modifications of the disk color caused by additional fast moving features propagating through the disk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Vaitheeswaran, Vidhya
We present diffraction-limited Ks band and L' adaptive optics images of the edge-on debris disk around the nearby F2 star HD 15115, obtained with a single 8.4 m primary mirror at the Large Binocular Telescope. At the Ks band, the disk is detected at signal-to-noise per resolution element (SNRE) {approx} 3-8 from {approx}1 to 2.''5 (45-113 AU) on the western side and from {approx}1.''2 to 2.''1 (63-90 AU) on the east. At L' the disk is detected at SNRE {approx} 2.5 from {approx}1 to 1.''45 (45-90 AU) on both sides, implying more symmetric disk structure at 3.8 {mu}m. At bothmore » wavelengths the disk has a bow-like shape and is offset from the star to the north by a few AU. A surface brightness asymmetry exists between the two sides of the disk at the Ks band, but not at L'. The surface brightness at the Ks band declines inside 1'' ({approx}45 AU), which may be indicative of a gap in the disk near 1''. The Ks - L' disk color, after removal of the stellar color, is mostly gray for both sides of the disk. This suggests that scattered light is coming from large dust grains, with 3-10 {mu}m sized grains on the east side and 1-10 {mu}m dust grains on the west. This may suggest that the west side is composed of smaller dust grains than the east side, which would support the interpretation that the disk is being dynamically affected by interactions with the local interstellar medium.« less
2013-01-01
evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object...optical to mid-IR wave- lengths. For YSOs this has led to the discovery of an empiri- cal size-luminosity relation (Millan-Gabet et al. 2001; Monnier...Millan-Gabet 2002), which in turn has led to the current paradigm (Dullemond & Monnier 2010) of a passive dusty disk with an optically thin cavity and the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, Zachary H.; Duchêne, Gaspard; Millar-Blanchaer, Maxwell A.
Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ~30–100 AU in both total and polarized H-band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520 themore » most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ~40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0".5 to 0".8 from the star. Lastly, the combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, Zachary H.; Matthews, Brenda C.; Gerard, Benjamin
Using the Gemini Planet Imager, we have resolved the circumstellar debris disk around HD 111520 at a projected range of ∼30–100 AU in both total and polarized H -band intensity. The disk is seen edge-on at a position angle of 165° along the spine of emission. A slight inclination and asymmetric warp are covariant and alter the interpretation of the observed disk emission. We employ three point-spread function subtraction methods to reduce the stellar glare and instrumental artifacts to confirm that there is a roughly 2:1 brightness asymmetry between the NW and SE extension. This specific feature makes HD 111520more » the most extreme example of asymmetric debris disks observed in scattered light among similar highly inclined systems, such as HD 15115 and HD 106906. We further identify a tentative localized brightness enhancement and scale height enhancement associated with the disk at ∼40 AU away from the star on the SE extension. We also find that the fractional polarization rises from 10% to 40% from 0.″5 to 0.″8 from the star. The combination of large brightness asymmetry and symmetric polarization fraction leads us to believe that an azimuthal dust density variation is causing the observed asymmetry.« less
General Astrophysics with TPF: Not Just Dark Energy
NASA Technical Reports Server (NTRS)
Kuchner, Marc
2006-01-01
Besides searching for Earth-LIke Planets, TPF can study Jupiters, Neptunes, and all sorts of exotic planets. It can image debris-disks, YSO disks, AGN disks, maybe even AGB disks. And you are probably aware that a large optical space telescope like TPF-C or TPF-O can be a fantastic tool for studying the equation of state of the Dark Energy. I will review some of the future science of TPF-C, TPF-I and TPF-O, focusing on the applications of TPF to the study of objects in our Galaxy: especially circumstellar disks and planets other than exo-Earths.
Modeling an exogenic origin for the equatorial ridge on Iapetus
NASA Astrophysics Data System (ADS)
Stickle, Angela M.; Roberts, James H.
2018-06-01
Iapetus has a ridge along the equator that extends continuously for more than 110° in longitude. Parts of the ridge rise as much as 20 km above the surrounding terrains. Most models for the formation of this enigmatic ridge are endogenic, generally requiring the formation of a fast-spinning Iapetus with an oblate shape due to the rotation speed. Many of these require specific scenarios and have constraining parameters in order to generate a ridge comparable to what is seen today. An exogenic formation mechanism has also been proposed, that the ridge represents the remains of an early ring system around Iapetus that collapsed onto the surface. Thus far, none of the models have conclusively identified the origin of the ridge. In this study, an exogenic origin for the ridge is assumed, which is derived from a collapsing disk of debris around Iapetus, without invoking any specific model for the generation of the debris disk. Here, we evaluate whether it is possible to generate a ridge of the size and shape as observed by simulating the impact of the collapsing debris using the CTH hydrocode. Pi-scaling calculations suggest that extremely oblique impact angles (1°-10°) are needed to add to ridge topography. These extreme impact angles severely reduce the cratering efficiency compared to a vertical impact, adding material rather than eroding it during crater formation. Furthermore, material is likely to be excavated at low angles, enhancing downrange accumulation. Multiple impacts from debris pieces will heighten this effect. Because infalling debris is predicted to impact at extremely low angles, both of these effects might have contributed to ridge formation on Iapetus. The extreme grazing angles of the impacts modeled here decouple much of the projectile energy from the target, and impact heating of the surface is not significant. These models suggest that a collapsing disk of debris should have been able to build topography to create a ridge around Iapetus.
NASA Astrophysics Data System (ADS)
Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.
2016-09-01
Context. Gaseous and dust debris disks around white dwarfs (WDs) are formed from tidally disrupted planetary bodies. This offers an opportunity to determine the composition of exoplanetary material by measuring element abundances in the accreting WD's atmosphere. A more direct way to do this is through spectral analysis of the disks themselves. Aims: Currently, the number of chemical elements detected through disk emission-lines is smaller than that of species detected through lines in the WD atmospheres. We assess the far-ultraviolet (FUV) spectrum of one well-studied object (SDSS J122859.93+104032.9) to search for disk signatures at wavelengths < 1050 Å, where the broad absorption lines of the Lyman series effectively block the WD photospheric flux. In addition, we investigate the Ca II infrared triplet (IRT) line profiles to constrain disk geometry and composition. Methods: We performed FUV observations (950-1240 Å) with the Hubble Space Telescope/Cosmic Origins Spectrograph and used archival optical spectra. We compared them with non-local thermodynamic equilibrium model spectra. Results: No disk emission-lines were detected in the FUV spectrum, indicating that the disk effective temperature is Teff ≈ 5000 K. The long-time variability of the Ca II IRT was reproduced with a precessing disk model of bulk Earth-like composition, having a surface mass density of 0.3 g cm-2 and an extension from 55 to 90 WD radii. The disk has a spiral shape that precesses with a period of approximately 37 years, confirming previous results. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.
ON A GIANT IMPACT ORIGIN OF CHARON, NIX, AND HYDRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canup, Robin M., E-mail: robin@boulder.swri.edu
It is generally believed that Charon was formed as a result of a large, grazing collision with Pluto that supplied the Pluto-Charon system with its high angular momentum. It has also been proposed that Pluto's small outer moons, Nix and Hydra, formed from debris from the Charon-forming impact, although the viability of this scenario remains unclear. Here I use smooth particle hydrodynamics impact simulations to show that it is possible to simultaneously form an intact Charon and an accompanying debris disk from a single impact. The successful cases involve colliding objects that are partially differentiated prior to impact, having thinmore » outer ice mantles overlying a uniform composition rock-ice core. The composition of the resulting debris disks varies from a mixture of rock and ice (similar to the bulk composition of Pluto and Charon) to a pure ice disk. If Nix and Hydra were formed from such an impact-generated disk, their densities should be less than or similar to that of Charon and Pluto, and the small moons could be composed entirely of ice. If they were instead formed from captured material, a mixed rock-ice composition and densities similar to that of Charon and Pluto would be expected. Improved constraints on the properties of Nix and Hydra through occultations and/or the New Horizons encounter may thus help to distinguish between these two modes of origin, particularly if the small moons are found to have ice-like densities.« less
Gharibyan, N.; Shaughnessy, D. A.; Moody, K. J.; ...
2016-08-05
The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. As a result, the collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.
Gharibyan, N; Shaughnessy, D A; Moody, K J; Grant, P M; Despotopulos, J D; Faye, S A; Jedlovec, D R; Yeamans, C B
2016-11-01
The solid debris collection capability at the National Ignition Facility has been expanded to include a third line-of-sight assembly. The solid radiochemistry nuclear diagnostic measurement of the ratio of gold isotopes is dependent on the efficient collection of neutron-activated hohlraum debris by passive metal disks. The collection of target debris at this new location is more reliable in comparison to the historic locations, and it appears to be independent of collector surface ablation.
The Gemini Planet-finding Campaign: The Frequency Of Giant Planets around Debris Disk Stars
NASA Astrophysics Data System (ADS)
Wahhaj, Zahed; Liu, Michael C.; Nielsen, Eric L.; Biller, Beth A.; Hayward, Thomas L.; Close, Laird M.; Males, Jared R.; Skemer, Andrew; Ftaclas, Christ; Chun, Mark; Thatte, Niranjan; Tecza, Matthias; Shkolnik, Evgenya L.; Kuchner, Marc; Reid, I. Neill; de Gouveia Dal Pino, Elisabete M.; Alencar, Silvia H. P.; Gregorio-Hetem, Jane; Boss, Alan; Lin, Douglas N. C.; Toomey, Douglas W.
2013-08-01
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >=5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a >=3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < -0.8 and/or α > 1.7. Likewise, we find that β < -0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a >=3 M Jup planet beyond 10 AU, and β < -0.8 and/or α < -1.5. Likewise, β < -0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
Thirty years of beta Pic and debris disks studies
NASA Astrophysics Data System (ADS)
Lagrange, Anne-Marie; Boccaletti, Anthony
2015-01-01
In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.
Thirty years of beta Pic and debris disks studies
NASA Astrophysics Data System (ADS)
Lagrange, A.-M.; Boccaletti, A.
2014-09-01
In the last 30 years, our knowledge of planetary systems has considerably evolved, in particular thanks to the development of observational techniques and computer simulations for modeling. From the observational point of view, emblematic discoveries thirty years ago have opened a way to dedicated studies, among which the IRAS detections of IR excess associated to dust surrounding main-sequence stars. Shortly after these discoveries, the first image of a debris disk around the star beta Pictoris in 1984 was made, followed in the 90's by the indirect detection of extrasolar planets and, a decade later, by the direct imaging of young giant planets. Beta Pictoris is a ground-breaking object for the study of formation and evolution of planetary systems. It is a unique system in many regards, as it is made of dust, planetesimals, comets and at least one giant planet. Observations with various techniques (imaging, spectroscopy, interferometry) at multiple wavelengths (from the UV to radio waves) have allowed significant progress in the understanding of this system. Yet, many questions are still open, and more results are expected in the coming decade thanks to the next generation of instruments like for instance ALMA, JWST, SPHERE and many others. To celebrate the thirtieth anniversary of the first debris disk image, we propose to gather experts on the analysis of beta Pictoris and interested colleagues to review and discuss the observational knowledge on this archetypal system (including the latest results), as well as its current understanding and related open questions to be addressed in the next decade, such as the history of the disk and planet formation, dynamical evolution, etc. Similar, well-studied debris disks systems with significant amount of observational data that allow in-depth modeling will be also presented and discussed. Second, in a two-days dedicated workshop, we will gather to define an action plan for the typically 3-5 next years to achieve a full, comprehensive description of the whole beta Pictoris system, and to organize the necessary work, and possible milestones. In the next years, a similar approach may, eventually, be applicable to other systems.
Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two "Baby" (BETA) Pictoris Stars
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.; Hanner, Martha S.
1999-01-01
The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 microns that resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.
The AU Mic debris ring: density profile and dynamics of the dust
NASA Astrophysics Data System (ADS)
Augereau, Jean-Charles; Beust, Herve
2005-10-01
AU Mic is an M-type star surrounded by a debris disk that is viewed almost perfectly edge-on. This disk shares many common observational properties with the well-known disk orbiting Beta Pictoris but the properties of the AU Mic disk as well as the dynamics of the dust grains have not been studied in detail yet. Using a standard deprojection technique, we derive the surface density profile of the AU Mic disk from near-IR scattered light observations. We show that irrespective of the asymmetry parameter of the phase function, most of the dust emission arises from a ring-like region that extends from 30 to 45 AU. We estimate that the mean collision time-scale at these distances is of the order of a few 10000 years. Therefore, collisional evolution can happen. A striking common feature between AU Mic and Beta Pic is the surface brightness profile. In both cases, the surface brightness falls off as r^{-5} further away than 120 AU in the case of Beta Pic and 35 AU in the case of AU Mic. In the case of Beta Pic, this profile is well explained by the combined effect of collisions and radiation pressure on the smallest dust particules (e.g. Augereau et al. 2001). But this model does not apply to AU Mic because of its low luminosity (thus generating a too low radiation pressure). Conversely, we show that a standard, solar-like stellar wind generates a drag force onto dust particles that behaves much like a radiation pressure. This wind pressure appears stronger than the radiation pressure itself and this effect is considerably enhanced by the recurrent stellar flares of AU Mic. This greatly contributes to populating the extended debris disk of AU Mic and explains the similarity between the Beta Pic and AU Mic brightness profiles.
NASA Astrophysics Data System (ADS)
Schneider, Glenn
2016-10-01
We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.
NASA Astrophysics Data System (ADS)
Schneider, Glenn
2017-08-01
We propose a 3-cycle GO program utilizing a total of HST 30 orbits to directly measure and map the line-of-sight optical depth through the brightest sector of the HD 107146 solar-analog debris ring by ring-transit differential photometry of a bright (compared to the disk), spatially extended, background galaxy. We will advantageously exploit its serendipitously unique and experiment-enabling high proper motion reflex trajectory w.r.t. the galaxy back-lighting a sectional slice the exoplanetary debris system (EDS) with a 2D grid of multiple sight-lines through the nearly face-on disk over time. These measures (the only opportunity for such in remaining HST lifetime) will uniquely provide unambiguous extinction/optical depth constraints to better elucidate the physical properties of the debris particles in this otherwise well studied EDS. With these and prior data we will: (a) disambiguate inferred particle spatial, size, and mass density distributions otherwise conflated with debris material optical property dependencies, (b) better constrain the posited pathways for planetary debris dust production mechanisms in EDSs (e.g., catastrophic collisions of parent bodies, dust-production cascades, cratering events, etc.) and (c) search for and discriminated between clumps , bumps , and clouds of collisional debris of varying particle (and mass) densities. This investigation was enabled in forethought by mapping the galaxy surface brightness out-of-transit in a comprehensive 2011 precursor study (HST GO/12228) using exactly the same STIS instrumental configuration with multi-roll PSF template subtracted coronagraphy we propose for the upcoming ring transit opportunity.
Bringing "The Moth" to light: A planet-sculpting scenario for the HD 61005 debris disk
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; ...
2016-09-16
Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less
Connections Between Jet Formation and Multiwavelength Spectral Evolution in Black Hole Transients
NASA Technical Reports Server (NTRS)
Kakemci, Emrah; Chun, Yoon-Young; Dincer, Tolga; Buxton, Michelle; Tomsick, John A.; Corbel, Stephane; Kaaret, Philip
2011-01-01
Multiwavelength observations are the key to understand conditions of jet formation in Galactic black hole transient (GBHT) systems. By studying radio and optical-infrared evolution of such systems during outburst decays, the compact jet formation can be traced. Comparing this with X-ray spectral and timing evolution we can obtain physical and geometrical conditions for jet formation, and study the contribution of jets to X-ray emission. In this work, first X-ray evolution - jet relation for XTE J1752-223 will be discussed. This source had very good coverage in X-rays, optical, infrared and radio. A long exposure with INTEGRAL also allowed us to study gamma-ray behavior after the jet turns on. We will also show results from the analysis of data from GX 339-4 in the hard state with SUZAKU at low flux levels. The fits to iron line fluorescence emission show that the inner disk radius increases by a factor of greater than 27 with respect to radii in bright states. This result, along with other disk radius measurements in the hard state will be discussed within the context of conditions for launching and sustaining jets.
NASA Astrophysics Data System (ADS)
Koerner, D. W.; Ressler, M. E.; Werner, M. W.; Backman, D. E.
1998-08-01
We report the discovery of a circumstellar disk around the young A0 star HR 4796 in thermal infrared imaging carried out at the W. M. Keck Observatory. By fitting a model of the emission from a flat dusty disk to an image at λ=20.8 μm, we derive a disk inclination, i=72deg+6deg-9deg from face-on, with the long axis of emission at P.A. 28deg+/-6deg. The intensity of emission does not decrease with radius, as expected for circumstellar disks, but increases outward from the star, peaking near both ends of the elongated structure. We simulate this appearance by varying the inner radius in our model and find an inner hole in the disk with radius Rin=55+/-15 AU. This value corresponds to the radial distance of our own Kuiper belt and may suggest a source of dust in the collision of cometesimals. By contrast with the appearance at 20.8 μm, excess emission at λ=12.5 μm is faint and concentrated at the stellar position. Similar emission is also detected at 20.8 μm in residual subtraction of the best-fit model from the image. The intensity and ratio of flux densities at the two wavelengths could be accounted for by a tenuous dust component that is confined within a few AU of the star with mean temperature of a few hundred degrees K, similar to that of zodiacal dust in our own solar system. The morphology of dust emission from HR 4796 (age 10 Myr) suggests that its disk is in a transitional planet-forming stage, between that of massive gaseous protostellar disks and more tenuous debris disks such as the one detected around Vega.
NASA Technical Reports Server (NTRS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; VanCleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.
2004-01-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14,2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and or debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Roellig, T. L.; Watson, D. M.; Uchida, K. I.; Forrest, W. J.; Van Cleve, J. E.; Herter, T. L.; Sloan, G. C.; Furlan, E.; Wilson, J. C.; Bernard-Salas, J.; Saumon, D.; Leggett, S.; Chen, C.; Kemper, F.; Hartmann, L.; Marley, M.; Cushing, M.; Mainzer, A. K.; Kirkpatrick, D.; Jura, M.; Houck, J. R.
2004-05-01
The Infrared Spectrograph (IRS) on the Spitzer Space Telescope has now been in routine science operations since Dec. 14, 2003. The IRS Science Team has used a portion of their guaranteed time to pursue three major science themes in galactic astronomy: the evolution of protostellar disks and debris disks; the composition and evolution of diffuse matter and clouds in the interstellar medium; and the composition and structure of brown dwarfs and low-mass main-sequence stars. We report here on the results from the first five months of IRS observations in these programs. Full IRS Spectra have already been obtained for large samples of YSO/protoplanetary disks in the Taurus and TW Hya associations, and of debris disks around main-sequence stars, in which many aspects of the evolution of planetary systems can be addressed for the first time. As anticipated, the mid-infrared IRS observations of brown dwarfs have yielded important new information about their atmospheres, including the identification of NH3 and measurements of new methane features. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Support for this work was provided by NASA's Office of Space Science.
Design of orbital debris shields for oblique hypervelocity impact
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1994-01-01
A new impact debris propagation code was written to link CTH simulations of space debris shield perforation to the Lagrangian finite element code DYNA3D, for space structure wall impact simulations. This software (DC3D) simulates debris cloud evolution using a nonlinear elastic-plastic deformable particle dynamics model, and renders computationally tractable the supercomputer simulation of oblique impacts on Whipple shield protected structures. Comparison of three dimensional, oblique impact simulations with experimental data shows good agreement over a range of velocities of interest in the design of orbital debris shielding. Source code developed during this research is provided on the enclosed floppy disk. An abstract based on the work described was submitted to the 1994 Hypervelocity Impact Symposium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krist, John E.; Bryden, Geoffrey; Stapelfeldt, Karl R.
A ring-shaped debris disk around the G2V star HD 202628 (d = 24.4 pc) was imaged in scattered light at visible wavelengths using the coronagraphic mode of the Space Telescope Imaging Spectrograph on the Hubble Space Telescope. The ring is inclined by {approx}64 Degree-Sign from face-on, based on the apparent major/minor axis ratio, with the major axis aligned along P.A. = 130 Degree-Sign . It has inner and outer radii (>50% maximum surface brightness) of 139 AU and 193 AU in the northwest ansae and 161 AU and 223 AU in the southeast ({Delta}r/r Almost-Equal-To 0.4). The maximum visible radialmore » extent is {approx}254 AU. With mean surface brightness of V Almost-Equal-To 24 mag arcsec{sup -2}, this is the faintest debris disk observed to date in reflected light. The center of the ring appears offset from the star by {approx}28 AU (deprojected). An ellipse fit to the inner edge has an eccentricity of 0.18 and a = 158 AU. This offset, along with the relatively sharp inner edge of the ring, suggests the influence of a planetary-mass companion. There is a strong similarity with the debris ring around Fomalhaut, though HD 202628 is a more mature star with an estimated age of about 2 Gyr. We also provide surface brightness limits for nine other stars in our study with strong Spitzer excesses around which no debris disks were detected in scattered light (HD 377, HD 7590, HD 38858, HD 45184, HD 73350, HD 135599, HD 145229, HD 187897, and HD 201219).« less
Anatomy of a flaring proto-planetary disk around a young intermediate-mass star.
Lagage, Pierre-Olivier; Doucet, Coralie; Pantin, Eric; Habart, Emilie; Duchêne, Gaspard; Ménard, François; Pinte, Christophe; Charnoz, Sébastien; Pel, Jan-Willem
2006-10-27
Although planets are being discovered around stars more massive than the Sun, information about the proto-planetary disks where such planets have built up is sparse. We have imaged mid-infrared emission from polycyclic aromatic hydrocarbons at the surface of the disk surrounding the young intermediate-mass star HD 97048 and characterized the disk. The disk is in an early stage of evolution, as indicated by its large content of dust and its hydrostatic flared geometry, indicative of the presence of a large amount of gas that is well mixed with dust and gravitationally stable. The disk is a precursor of debris disks found around more-evolved A stars such as beta-Pictoris and provides the rare opportunity to witness the conditions prevailing before (or during) planet formation.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-10-01
In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of mass ejected from colliding protoplanets is typically around 0.4 Earth masses. This mass is ejected in the form of fragments that then spread into the terrestrial planet region around the star. The fragments undergo cascading collisions as they orbit, forming an infrared-emitting debris disk at ~1 AU from the star.The authors then calculate the infrared flux profile expected from these simulated disks. They show that the warm disks can exist and radiate for up to ~100 Myr before the fragments are smashed into micrometer-sized pieces small enough to be blown out of the solar system by radiation pressure.The Spitzer Space Telescope has, thus far, observed tens of warm-debris-disk signatures roughly consistent with the authors predictions, primarily located at roughly 1 AU around stars with ages of 10100 Myr. This region is near the habitable zone of these stars, which makes it especially interesting that these systems may currently be undergoing a giant impact stage perhaps on the way to forming terrestrial planets.CitationH. Genda et al 2015 ApJ 810 136. doi:10.1088/0004-637X/810/2/136
Validating early stellar encounters as the cause of dynamically hot planetary systems
NASA Astrophysics Data System (ADS)
Kalas, Paul
2017-08-01
One of the key questions concerning exoplanetary systems is why some are dynamically cold, such as TRAPPIST-1, whereas others are dynamically hot, with highly eccentric planets and/or perturbed debris disks. Dynamical theory describes a variety of plausible mechanisms, but few can be empirically tested since the critical dynamical evolution that sets the final planetary architecture is short-lived. One rare system available for testing dynamical upheaval scenarios is the 400 Myr-old Fomalhaut system. In Cycle 22 we coronagraphically studied Fomalhaut C, which is a wide M-dwarf companion to Fomalhaut A, in order to test our prediction that the unresolved, Herschel-detected debris disk around Fomalhaut C may be highly perturbed because of a recent close interaction with Fomalhaut A. Using HST/STIS we discovered a highly asymmetric feature extending northward of Fomalhaut C by 3 that resembles our model of a dynamically hot disk. However, it may be a background galaxy and the definitive test of its physical relationship to Fomalhaut C is to demonstrate common proper motion. Using Keck adaptive optics follow-up observations in J band, we did not detect the feature, and hence follow-up HST observations are the only way to test for common proper motion. Here we request a very small program to revisit Fomalhaut C with STIS in order to validate the initial discovery as a debris disk (1 proper motion between HST epochs). The astrophysical significance is demonstrating that the Fomalhaut system is a valuable case for studying dynamical upheavals via stellar encounters that are inferred to occur in the evolution of many other planetary systems.
NASA Astrophysics Data System (ADS)
Golimowski, D. A.; Krist, J. E.; Stapelfeldt, K. R.; Chen, C. H.; Ardila, D. R.; Bryden, G.; Clampin, M.; Ford, H. C.; Illingworth, G. D.; Plavchan, P.; Rieke, G. H.; Su, K. Y. L.
2011-07-01
We present the first resolved images of the debris disk around the nearby K dwarf HD 92945, obtained with the Hubble Space Telescope's (HST 's) Advanced Camera for Surveys. Our F606W (Broad V) and F814W (Broad I) coronagraphic images reveal an inclined, axisymmetric disk consisting of an inner ring about 2farcs0-3farcs0 (43-65 AU) from the star and an extended outer disk whose surface brightness declines slowly with increasing radius approximately 3farcs0-5farcs1 (65-110 AU) from the star. A precipitous drop in the surface brightness beyond 110 AU suggests that the outer disk is truncated at that distance. The radial surface-density profile is peaked at both the inner ring and the outer edge of the disk. The dust in the outer disk scatters neutrally but isotropically, and it has a low V-band albedo of 0.1. This combination of axisymmetry, ringed and extended morphology, and isotropic neutral scattering is unique among the 16 debris disks currently resolved in scattered light. We also present new infrared photometry and spectra of HD 92945 obtained with the Spitzer Space Telescope's Multiband Imaging Photometer and InfraRed Spectrograph. These data reveal no infrared excess from the disk shortward of 30 μm and constrain the width of the 70 μm source to lsim180 AU. Assuming that the dust comprises compact grains of astronomical silicate with a surface-density profile described by our scattered-light model of the disk, we successfully model the 24-350 μm emission with a minimum grain size of a min = 4.5 μm and a size distribution proportional to a -3.7 throughout the disk, but with maximum grain sizes of 900 μm in the inner ring and 50 μm in the outer disk. Together, our HST and Spitzer observations indicate a total dust mass of ~0.001M ⊕. However, our observations provide contradictory evidence of the dust's physical characteristics: its neutral V-I color and lack of 24 μm emission imply grains larger than a few microns, but its isotropic scattering and low albedo suggest a large population of submicron-sized grains. If grains smaller than a few microns are absent, then stellar radiation pressure may be the cause only if the dust is composed of highly absorptive materials like graphite. The dynamical causes of the sharply edged inner ring and outer disk are unclear, but recent models of dust creation and transport in the presence of migrating planets support the notion that the disk indicates an advanced state of planet formation around HD 92945. Based in part on guaranteed observing time awarded by the National Aeronautics and Space Administration (NASA) to the Advanced Camera for Surveys Investigation Definition Team and the Multiband Imaging Photometer for Spitzer Instrument Team.
Balloon Exoplanet Nulling Interferometer (BENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe
2009-01-01
We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.
CAUGHT IN THE ACT: STRONG, ACTIVE RAM PRESSURE STRIPPING IN VIRGO CLUSTER SPIRAL NGC 4330
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramson, Anne; Kenney, Jeffrey D. P.; Crowl, Hugh H.
We present a multi-wavelength study of NGC 4330, a highly inclined spiral galaxy in the Virgo Cluster which is a clear example of strong, ongoing intracluster medium-interstellar medium (ICM-ISM) ram pressure stripping. The H I has been removed from well within the undisturbed old stellar disk, to 50%-65% of R{sub 25}. Multi-wavelength data (WIYN BVR-H{alpha}, Very Large Array 21 cm H I and radio continuum, and Galaxy Evolution Explorer NUV and FUV) reveal several one-sided extraplanar features likely caused by ram pressure at an intermediate disk-wind angle. At the leading edge of the interaction, the H{alpha} and dust extinction curvemore » sharply out of the disk in a remarkable and distinctive 'upturn' feature that may be generally useful as a diagnostic indicator of active ram pressure. On the trailing side, the ISM is stretched out in a long tail which contains 10% of the galaxy's total H I emission, 6%-9% of its NUV-FUV emission, but only 2% of the H{alpha}. The centroid of the H I tail is downwind of the UV/H{alpha} tail, suggesting that the ICM wind has shifted most of the ISM downwind over the course of the past 10-300 Myr. Along the major axis, the disk is highly asymmetric in the UV, but more symmetric in H{alpha} and H I, also implying recent changes in the distributions of gas and star formation. The UV-optical colors indicate very different star formation histories for the leading and trailing sides of the galaxy. On the leading side, a strong gradient in the UV-optical colors of the gas-stripped disk suggests that it has taken 200-400 Myr to strip the gas from a radius of >8 to 5 kpc, but on the trailing side there is no age gradient. All our data suggest a scenario in which NGC 4330 is falling into the cluster center for the first time and has experienced a significant increase in ram pressure over the last 200-400 Myr. Many of the UV-bright stars that form outside the thin disk due to ram pressure will ultimately produce stellar thick disk and halo components with characteristic morphologies and age distributions distinct from those produced by gravitational interactions.« less
A Herschel resolved debris disc around HD 105211
NASA Astrophysics Data System (ADS)
Hengst, S.; Marshall, J. P.; Horner, J.; Marsden, S. C.
2017-07-01
Debris discs are the dusty aftermath of planet formation processes around main-sequence stars. Analysis of these discs is often hampered by the absence of any meaningful constraint on the location and spatial extent of the disc around its host star. Multi-wavelength, resolved imaging ameliorates the degeneracies inherent in the modelling process, making such data indispensable in the interpretation of these systems. The Herschel Space Observatory observed HD 105211 (η Cru, HIP 59072) with its Photodetector Array Camera and Spectrometer (PACS) instrument in three far-infrared wavebands (70, 100 and 160 μm). Here we combine these data with ancillary photometry spanning optical to far-infrared wavelengths in order to determine the extent of the circumstellar disc. The spectral energy distribution and multi-wavelength resolved emission of the disc are simultaneously modelled using a radiative transfer and imaging codes. Analysis of the Herschel/PACS images reveals the presence of extended structure in all three PACS images. From a radiative transfer model we derive a disc extent of 87.0 ± 2.5 au, with an inclination of 70.7 ± 2.2° to the line of sight and a position angle of 30.1 ± 0.5°. Deconvolution of the Herschel images reveals a potential asymmetry but this remains uncertain as a combined radiative transfer and image analysis replicates both the structure and the emission of the disc using a single axisymmetric annulus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soummer, Rémi; Perrin, Marshall D.; Pueyo, Laurent
We have spatially resolved five debris disks (HD 30447, HD 35841, HD 141943, HD 191089, and HD 202917) for the first time in near-infrared scattered light by reanalyzing archival Hubble Space Telescope (HST)/NICMOS coronagraphic images obtained between 1999 and 2006. One of these disks (HD 202917) was previously resolved at visible wavelengths using the HST/Advanced Camera for Surveys. To obtain these new disk images, we performed advanced point-spread function subtraction based on the Karhunen-Loève Image Projection algorithm on recently reprocessed NICMOS data with improved detector artifact removal (Legacy Archive PSF Library And Circumstellar Environments (LAPLACE) Legacy program). Three of themore » disks (HD 30447, HD 35841, and HD 141943) appear edge-on, while the other two (HD 191089 and HD 202917) appear inclined. The inclined disks have been sculpted into rings; in particular, the disk around HD 202917 exhibits strong asymmetries. All five host stars are young (8-40 Myr), nearby (40-100 pc) F and G stars, and one (HD 141943) is a close analog to the young Sun during the epoch of terrestrial planet formation. Our discoveries increase the number of debris disks resolved in scattered light from 19 to 23 (a 21% increase). Given their youth, proximity, and brightness (V = 7.2-8.5), these targets are excellent candidates for follow-up investigations of planet formation at visible wavelengths using the HST/Space Telescope Imaging Spectrograph coronagraph, at near-infrared wavelengths with the Gemini Planet Imager and Very Large Telescope/SPHERE, and at thermal infrared wavelengths with the James Webb Space Telescope NIRCam and MIRI coronagraphs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Huan Y. A.; Rieke, George H.; Su, Kate Y. L.
2017-02-10
We characterize the first 40 Myr of evolution of circumstellar disks through a unified study of the infrared properties of members of young clusters and associations with ages from 2 Myr up to ∼40 Myr: NGC 1333, NGC 1960, NGC 2232, NGC 2244, NGC 2362, NGC 2547, IC 348, IC 2395, IC 4665, Chamaeleon I, Orion OB1a and OB1b, Taurus, the β Pictoris Moving Group, ρ Ophiuchi, and the associations of Argus, Carina, Columba, Scorpius–Centaurus, and Tucana–Horologium. Our work features: (1) a filtering technique to flag noisy backgrounds; (2) a method based on the probability distribution of deflections, P (more » D ), to obtain statistically valid photometry for faint sources; and (3) use of the evolutionary trend of transitional disks to constrain the overall behavior of bright disks. We find that the fraction of disks three or more times brighter than the stellar photospheres at 24 μ m decays relatively slowly initially and then much more rapidly by ∼10 Myr. However, there is a continuing component until ∼35 Myr, probably due primarily to massive clouds of debris generated in giant impacts during the oligarchic/chaotic growth phases of terrestrial planets. If the contribution from primordial disks is excluded, the evolution of the incidence of these oligarchic/chaotic debris disks can be described empirically by a log-normal function with the peak at 12–20 Myr, including ∼13% of the original population, and with a post-peak mean duration of 10–20 Myr.« less
A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086
NASA Technical Reports Server (NTRS)
Moor, A.; Abraham, P.; Kospal, A.; Szabo, Gy. M.; Apai, D.; Balog, Z.; Csengeri, T.; Grady, C.; Henning, Th.; Juhasz, J.;
2013-01-01
Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 × 5.4 (540 × 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist.
A Multiwavelength Exploration of the Grand Design Spiral M83: Diffuse X-ray Emission
NASA Astrophysics Data System (ADS)
Kuntz, K. D.; Long, K. S.; Blair, W. P.; Plucinsky, P. P.; Soria, R.; Winkler, P. F.
2013-01-01
We have obtained a series of deep X-ray images of the nearby galaxy M83, with a total exposure 729 ksec with the Chandra ACIS-S array. Since the bulk of the X-ray emitting disk falls within the BI chip, these observations allow a detailed study of the soft diffuse emission in the disk. Most of the diffuse emission is related to star-formation regions and must be powered by supernovae and stellar winds, though the amount of emission due to identifiable SNR is only a few percent. The relation between the spectral shape and surface brightness that was seen in M101 suggests that the properties of the X-ray emission in spiral disks are shaped by the local hot gas production rate (traced by the local star-formation rate) or the disk mid-plane pressure, but it is unclear which physical mechanism dominates. To illuminate this problem, we will compare M83 with the previous Chandra studies of M101 and M33.
Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi
2018-04-01
Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.
Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†
NASA Astrophysics Data System (ADS)
Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi
2018-06-01
Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.
NASA Technical Reports Server (NTRS)
Starkey, D.; Gehrels, Cornelis; Horne, Keith; Fausnaugh, M. M.; Peterson, B. M.; Bentz, M. C.; Kochanek, C. S.; Denney, K. D.; Edelson, R.; Goad, M. R.;
2017-01-01
We conduct a multi-wavelength continuum variability study of the Seyfert 1 galaxy NGC 5548 to investigate the temperature structure of its accretion disk. The 19 overlapping continuum light curves (1158 Angstrom to 9157 Angstrom) combine simultaneous Hubble Space Telescope, Swift, and ground-based observations over a 180 day period from 2014 January to July. Light-curve variability is interpreted as the reverberation response of the accretion disk to irradiation by a central time-varying point source. Our model yields the disk inclination i = 36deg +/- 10deg, temperature T(sub 1) = (44+/-6) times 10 (exp 3)K at 1 light day from the black hole, and a temperature radius slope (T proportional to r (exp -alpha)) of alpha = 0.99 +/- 0.03. We also infer the driving light curve and find that it correlates poorly with both the hard and soft X-ray light curves, suggesting that the X-rays alone may not drive the ultraviolet and optical variability over the observing period. We also decompose the light curves into bright, faint, and mean accretion-disk spectra. These spectra lie below that expected for a standard blackbody accretion disk accreting at L/L(sub Edd) = 0.1.
NASA Astrophysics Data System (ADS)
Flaccomio, E.
2014-07-01
Proto-planetary disks are affected by radiative and magnetic interactions with the central object. X-ray/UV coronal and accretion-shock emission may drive gas ionization and heating and, consequently, photo-evaporation and disk dispersal. The magnetosphere connecting the star and inner disk mediates mass and angular momentum exchanges and modifies the disk structure. These interconnected processes are highly dynamic and involve material emitting in different bands: the inner disk dust (mIR), the stellar photosphere (optical), accretion shocks (UV/X-rays), and coronae (X-rays). I will present selected results form the Coordinated Synoptic Investigation of NGC2264 (CSI-NGC2264), an unprecedented multi-wavelength month-long observing campaign of the NGC2264 region. Three space telescopes (Spitzer, CoRoT, and Chandra) simultaneously monitored a rich sample of ~3Myr old stars in the mIR, optical, and X-ray bands, providing new insights on the dynamics of the respective emitting regions and their interactions. First, I will discuss magnetic flares: for the first time we observe the heating phase (in the optical), the decay (in X-rays), and, possibly, the disk response to the flare (in the mIR). I will then focus on the longer time-scale relation between X-ray (coronal) and optical (photospheric)/mIR(disk) emission, with particular reference to the obscuration of coronal plasma by temporally varying disk structures.
HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberge, A.; Kamp, I.; Montesinos, B.
2013-07-01
We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk formore » the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.« less
Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk
NASA Technical Reports Server (NTRS)
Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J.-C.; Howard, C.;
2013-01-01
We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the “Gas in Protoplanetary Systems” (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 micron; 49 Cet is significantly extended in the 70 micron image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O i] 63 micron and [C ii] 158 micron. The C ii line was detected at the 5 sigma level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the Oi line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C ii emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.
Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk
NASA Astrophysics Data System (ADS)
Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moór, A.; Augereau, J.-C.; Howard, C.; Eiroa, C.; Thi, W.-F.; Ardila, D. R.; Sandell, G.; Woitke, P.
2013-07-01
We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the "Gas in Protoplanetary Systems" (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 μm 49 Cet is significantly extended in the 70 μm image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 μm and [C II] 158 μm. The C II line was detected at the 5σ level—the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.
Belt(s) of debris resolved around the Sco-Cen star HIP 67497
NASA Astrophysics Data System (ADS)
Bonnefoy, M.; Milli, J.; Ménard, F.; Vigan, A.; Lagrange, A.-M.; Delorme, P.; Boccaletti, A.; Lazzoni, C.; Galicher, R.; Desidera, S.; Chauvin, G.; Augereau, J. C.; Mouillet, D.; Pinte, C.; van der Plas, G.; Gratton, R.; Beust, H.; Beuzit, J. L.
2017-01-01
Aims: In 2015, we initiated a survey of Scorpius-Centaurus A-F stars that are predicted to host warm-inner and cold-outer belts of debris similar to the case of the system HR 8799. The survey aims to resolve the disks and detect planets responsible for the disk morphology. In this paper, we study the F-type star HIP 67497 and present a first-order modelization of the disk in order to derive its main properties. Methods: We used the near-infrared integral field spectrograph (IFS) and dual-band imager IRDIS of VLT/SPHERE to obtain angular-differential imaging observations of the circumstellar environnement of HIP 67497. We removed the stellar halo with PCA and TLOCI algorithms. The disk emission was modeled with the GRaTeR code. Results: We resolve a ring-like structure that extends up to 450 mas ( 50 au) from the star in the IRDIS and IFS data. It is best reproduced by models of a non-eccentric ring with an inclination of 80 ± 1°, a position angle of -93 ± 1°, and a semi-major axis of 59 ± 3 au. We also detect an additional, but fainter, arc-like structure with a larger extension (0.65 arcsec) South of the ring that we model as a second belt of debris at 130 au. We detect ten candidate companions at separations ≥1''. We estimate the mass of putative perturbers responsible for the disk morphology and compare this to our detection limits. Additional data are needed to find those perturbers, and to relate our images to large-scale structures seen with HST/STIS. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 097.C-0060(A)This work is based on data products produced at the SPHERE Data Center hosted at OSUG/IPAG, Grenoble.
Wayne K. Clatterbuck; Michael Carr
2013-01-01
Three site preparation treatments: (1) complete removal of woody debrisâdrum chopped, raked, and disked; (2) drum chopping leaving woody debris; and (3) no site preparationâplanting among dead standing trees were compared by evaluating the growth and survival of planted loblolly pine (Pinus taeda L.) after six growing seasons following a southern...
Evidence for water in the rocky debris of a disrupted extrasolar minor planet.
Farihi, J; Gänsicke, B T; Koester, D
2013-10-11
The existence of water in extrasolar planetary systems is of great interest because it constrains the potential for habitable planets and life. We have identified a circumstellar disk that resulted from the destruction of a water-rich and rocky extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating that the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
NASA Astrophysics Data System (ADS)
Chiang, Eugene; Fung, Jeffrey
2017-10-01
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ˜35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanche zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.
Stellar Winds and Dust Avalanches in the AU Mic Debris Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Eugene; Fung, Jeffrey, E-mail: echiang@astro.berkeley.edu, E-mail: jeffrey.fung@berkeley.edu
We explain the fast-moving, ripple-like features in the edge-on debris disk orbiting the young M dwarf AU Mic. The bright features are clouds of submicron dust repelled by the host star’s wind. The clouds are produced by avalanches: radial outflows of dust that gain exponentially more mass as they shatter background disk particles in collisional chain reactions. The avalanches are triggered from a region a few au across—the “avalanche zone”—located on AU Mic’s primary “birth” ring at a true distance of ∼35 au from the star but at a projected distance more than a factor of 10 smaller: the avalanchemore » zone sits directly along the line of sight to the star, on the side of the ring nearest Earth, launching clouds that disk rotation sends wholly to the southeast, as observed. The avalanche zone marks where the primary ring intersects a secondary ring of debris left by the catastrophic disruption of a progenitor up to Varuna in size, less than tens of thousands of years ago. Only where the rings intersect are particle collisions sufficiently violent to spawn the submicron dust needed to seed the avalanches. We show that this picture works quantitatively, reproducing the masses, sizes, and velocities of the observed escaping clouds. The Lorentz force exerted by the wind’s magnetic field, whose polarity reverses periodically according to the stellar magnetic cycle, promises to explain the observed vertical undulations. The timescale between avalanches, about 10 yr, might be set by time variability of the wind mass loss rate or, more speculatively, by some self-regulating limit cycle.« less
Spin Dependence in Tidal Disruption Events
NASA Astrophysics Data System (ADS)
Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert
2018-01-01
A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.
The AU Mic Debris Disk: Far-infrared and Submillimeter Resolved Imaging
NASA Astrophysics Data System (ADS)
Matthews, Brenda C.; Kennedy, Grant; Sibthorpe, Bruce; Holland, Wayne; Booth, Mark; Kalas, Paul; MacGregor, Meredith; Wilner, David; Vandenbussche, Bart; Olofsson, Göran; Blommaert, Joris; Brandeker, Alexis; Dent, W. R. F.; de Vries, Bernard L.; Di Francesco, James; Fridlund, Malcolm; Graham, James R.; Greaves, Jane; Heras, Ana M.; Hogerheijde, Michiel; Ivison, R. J.; Pantin, Eric; Pilbratt, Göran L.
2015-10-01
We present far-infrared and submillimeter maps from the Herschel Space Observatory and the James Clerk Maxwell Telescope of the debris disk host star AU Microscopii. Disk emission is detected at 70, 160, 250, 350, 450, 500, and 850 μm. The disk is resolved at 70, 160, and 450 μm. In addition to the planetesimal belt, we detect thermal emission from AU Mic’s halo for the first time. In contrast to the scattered light images, no asymmetries are evident in the disk. The fractional luminosity of the disk is 3.9× {10}-4 and its milimeter-grain dust mass is 0.01 {M}\\oplus (±20%). We create a simple spatial model that reconciles the disk spectral energy distribution as a blackbody of 53 ± 2 K (a composite of 39 and 50 K components) and the presence of small (non-blackbody) grains which populate the extended halo. The best-fit model is consistent with the “birth ring” model explored in earlier works, i.e., an edge-on dust belt extending from 8.8 to 40 AU, but with an additional halo component with an {r}-1.5 surface density profile extending to the limits of sensitivity (140 AU). We confirm that AU Mic does not exert enough radiation force to blow out grains. For stellar mass-loss rates of 10-100 times solar, compact (zero porosity) grains can only be removed if they are very small; consistently with previous work, if the porosity is 0.9, then grains approaching 0.1 μm can be removed via corpuscular forces (i.e., the stellar wind).
2004-12-09
NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or "debris disks," like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now. Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone. The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years. The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system. The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution. http://photojournal.jpl.nasa.gov/catalog/PIA07098
NASA Technical Reports Server (NTRS)
2004-01-01
[figure removed for brevity, see original site] Figure 1 NASA's Spitzer Space Telescope recently captured these infrared images of six older stars with known planets. The yellow, fuzzy blobs are stars circled by disks of dust, or 'debris disks,' like the one that surrounds our own Sun. Though astronomers had predicted that stars with planets would harbor debris disks, they could not detect such disks until now. Spitzer was able to sense these dusty disks via their warm infrared glows. Specifically, the presence of the disks was inferred from an excess amount of infrared emission relative to what is emitted from the parent star alone. The stars themselves are similar in age and temperature to our Sun. In astronomical terms, they are stellar main sequence stars, with spectral types of F, G, or K. These planet-bearing stars have a median age of four billion years. For reference, our Sun is classified as a G star, with an age of approximately five billion years. The disks surrounding these planetary systems are comprised of cool material, with temperatures less than 100 Kelvin (-173 degrees Celsius). They are10 times farther away from their parent stars than Earth is from the Sun, and are thought to be analogues of the comet-filled Kuiper Belt in our solar system. The contrast scale is the same for each image. The images are approximately 2 arcminutes on each side. North is oriented upward and east is to the left. The pictures were taken with the 70-micron filter of Spitzer's multiband imaging photometer. The telescope resolution at 70 microns is 17 arcseconds and there is no evidence for any emission extended beyond the telescope resolution.NASA Astrophysics Data System (ADS)
Choquet, É.; Bryden, G.; Perrin, M. D.; Soummer, R.; Augereau, J.-C.; Chen, C. H.; Debes, J. H.; Gofas-Salas, E.; Hagan, J. B.; Hines, D. C.; Mawet, D.; Morales, F.; Pueyo, L.; Rajan, A.; Ren, B.; Schneider, G.; Stark, C. C.; Wolff, S.
2018-02-01
We present the first scattered-light images of two debris disks around the F8 star HD 104860 and the F0V star HD 192758, respectively ∼45 and ∼67 pc away. We detected these systems in the F110W and F160W filters through our reanalysis of archival Hubble Space Telescope (HST) NICMOS data with modern starlight-subtraction techniques. Our image of HD 104860 confirms the morphology previously observed by Herschel in thermal emission with a well-defined ring at a radius of ∼114 au inclined by ∼58°. Although the outer edge profile is consistent with dynamical evolution models, the sharp inner edge suggests sculpting by unseen perturbers. Our images of HD 192758 reveal a disk at radius ∼95 au inclined by ∼59°, never resolved so far. These disks have low scattering albedos of 10% and 13%, respectively, inconsistent with water ice grain compositions. They are reminiscent of several other disks with similar inclination and scattering albedos: Fomalhaut, HD 92945, HD 202628, and HD 207129. They are also very distinct from brighter disks in the same inclination bin, which point to different compositions between these two populations. Varying scattering albedo values can be explained by different grain porosities, chemical compositions, or grain size distributions, which may indicate distinct formation mechanisms or dynamical processes at work in these systems. Finally, these faint disks with large infrared excesses may be representative of an underlying population of systems with low albedo values. Searches with more sensitive instruments on HST or on the James Webb Space Telescope and using state-of-the art starlight-subtraction methods may help discover more of such faint systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.
The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less
NASA Astrophysics Data System (ADS)
Mulders, Gijs D.; Pascucci, Ilaria; Manara, Carlo F.; Testi, Leonardo; Herczeg, Gregory J.; Henning, Thomas; Mohanty, Subhanjoy; Lodato, Giuseppe
2017-09-01
In this paper, we investigate the relation between disk mass and mass accretion rate to constrain the mechanism of angular momentum transport in protoplanetary disks. We find a correlation between dust disk mass and mass accretion rate in Chamaeleon I with a slope that is close to linear, similar to the one recently identified in Lupus. We investigate the effect of stellar mass and find that the intrinsic scatter around the best-fit {M}{dust}-{M}\\star and {\\dot{M}}{acc}-{M}\\star relations is uncorrelated. We simulate synthetic observations of an ensemble of evolving disks using a Monte Carlo approach and find that disks with a constant α viscosity can fit the observed relations between dust mass, mass accretion rate, and stellar mass but overpredict the strength of the correlation between disk mass and mass accretion rate when using standard initial conditions. We find two possible solutions. In the first one, the observed scatter in {M}{dust} and {\\dot{M}}{acc} is not primordial, but arises from additional physical processes or uncertainties in estimating the disk gas mass. Most likely grain growth and radial drift affect the observable dust mass, while variability on large timescales affects the mass accretion rates. In the second scenario, the observed scatter is primordial, but disks have not evolved substantially at the age of Lupus and Chamaeleon I owing to a low viscosity or a large initial disk radius. More accurate estimates of the disk mass and gas disk sizes in a large sample of protoplanetary disks, through either direct observations of the gas or spatially resolved multiwavelength observations of the dust with ALMA, are needed to discriminate between both scenarios or to constrain alternative angular momentum transport mechanisms such as MHD disk winds.
NASA Technical Reports Server (NTRS)
Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.;
2015-01-01
The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.
New Exozodi and Asteroid Belt Analogs using WISE
NASA Astrophysics Data System (ADS)
Patel, Rahul; Metchev, Stanimir; Heinze, Aren
2015-01-01
The presence of circumstellar dust in the terrestrial planet zone and asteroid belt regions of stars can be ascertained from the excess flux from main sequence stars in the mid-infrared wavelengths. Finding dust in these regions is significant as it traces material related to terrestrial planet formation. The WISE All-Sky survey presents an opportunity to extend the population of faint disks to flux levels 100x fainter than disks detected by IRAS.We use the WISE All-Sky Survey data to detect circumstellar debris disks at the 12 and 22 μm bandpasses (W3 and W4, respectively). We present the detection of a sample of over 214 exozodi and asteroid belt analog candidates, 45% of which are brand new detections at confidence levels >99.5%. This was done by cross-matching Hipparcos main-sequence stars with the WISE All-Sky Data Release for stars within 75 pc and outside the galactic plane (|b|>5 deg) and then seeking color excesses at W3 and W4. In addition to applying the standard WISE photometric flags and filters to remove contaminants from our sample, we also improved our selection techniques by correcting for previously unknown systematic behavior in the WISE photometry, thereby including bright saturated stars into our sample. Our debris disk candidates are reliable detections as well as unprecedentedly faint, due in large part to these improved selection techniques. These new nearby excess hosts are optimal targets for direct imaging campaigns to characterize the disk morphology and to provide a larger sample of well characterized disks with which to understand the overall exoplanetary system architecture.
Multiwavelength search for protoplanetary disks
NASA Technical Reports Server (NTRS)
Neuhaeuser, Ralph; Schmidt-Kaler, Theodor
1994-01-01
Infrared emission of circumstellar dust was observed for almost one hundred T Tauri stars. This dust is interpreted to be part of a protoplanetary disk orbiting the central star. T Tauri stars are young stellar objects and evolve into solar type stars. Planets are believed to form in these disks. The spectral energy distribution of a disk depends on its temperature profile. Different disk regions emit at different wavelengths. The disk-star boundary layer is hot and emits H(alpha) radiation. Inner disk regions at around 1 AU with a temperature of a few hundred Kelvin can be probed in near infrared wavelength regimes. Outer disk regions at around 100 AU distance from the star are colder and emit far infrared and sub-millimeter radiation. Also, X-ray emission from the stellar surface can reveal information on disk properties. Emission from the stellar surface and the boundary layer may be shielded by circumstellar gas and dust. T Tauri stars with low H(alpha) emission, i.e. no boundary layer, show stronger X-ray emission than classical T Tauri stars, because the inner disk regions of weak emission-line T Tauri stars may be clear of material. In this paper, first ROSAT all sky survey results on the X-ray emission of T Tauri stars and correlations between X-ray luminosity and properties of T Tauri disks are presented. Due to atmospheric absorption, X-ray and most infrared observations cannot be carried out on Earth, but from Earth orbiting satellites (e.g. IRAS, ROSAT, ISO) or from lunar based observatories, which would have special advantages such as a stable environment.
NASA Astrophysics Data System (ADS)
Wolff, Schuyler G.; Perrin, Marshall D.; Stapelfeldt, Karl; Duchêne, Gaspard; Ménard, Francois; Padgett, Deborah; Pinte, Christophe; Pueyo, Laurent; Fischer, William J.
2017-12-01
We present new Hubble Space Telescope (HST) Advanced Camera for Surveys observations and detailed models for a recently discovered edge-on protoplanetary disk around ESO-Hα 569 (a low-mass T Tauri star in the Cha I star-forming region). Using radiative transfer models, we probe the distribution of the grains and overall shape of the disk (inclination, scale height, dust mass, flaring exponent, and surface/volume density exponent) by model fitting to multiwavelength (F606W and F814W) HST observations together with a literature-compiled spectral energy distribution. A new tool set was developed for finding optimal fits of MCFOST radiative transfer models using the MCMC code emcee to efficiently explore the high-dimensional parameter space. It is able to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties. We confirm that ESO-Hα 569 is an optically thick nearly edge-on protoplanetary disk. The shape of the disk is well-described by a flared disk model with an exponentially tapered outer edge, consistent with models previously advocated on theoretical grounds and supported by millimeter interferometry. The scattered-light images and spectral energy distribution are best fit by an unusually high total disk mass (gas+dust assuming a ratio of 100:1) with a disk-to-star mass ratio of 0.16.
Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-12-01
Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vican, Laura; Zuckerman, B.; Schneider, Adam
We present results from two Herschel observing programs using the Photodetector Array Camera and Spectrometer. During three separate campaigns, we obtained Herschel data for 24 stars at 70, 100, and 160 μ m. We chose stars that were already known or suspected to have circumstellar dust based on excess infrared (IR) emission previously measured with the InfraRed Astronomical Satellite ( IRAS ) or Spitzer and used Herschel to examine long-wavelength properties of the dust. Fifteen stars were found to be uncontaminated by background sources and possess IR emission most likely due to a circumstellar debris disk. We analyzed the propertiesmore » of these debris disks to better understand the physical mechanisms responsible for dust production and removal. Seven targets were spatially resolved in the Herschel images. Based on fits to their spectral energy distributions, nine disks appear to have two temperature components. Of these nine, in three cases, the warmer dust component is likely the result of a transient process rather than a steady-state collisional cascade. The dust belts at four stars are likely stirred by an unseen planet and merit further investigation.« less
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
50 CFR 660.15 - Equipment requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... water, slime, mud, debris, or other materials. Scale printouts must show: (A) The vessel name and...; (ii) Random Access Memory (RAM): 256 megabytes (MB) or higher; (iii) Hard disk space: (A) If already...
Simultaneous infrared and optical observations of the transiting debris cloud around WD 1145+017
NASA Astrophysics Data System (ADS)
Zhou, G.; Kedziora-Chudczer, L.; Bailey, J.; Marshall, J. P.; Bayliss, D. D. R.; Stockdale, C.; Nelson, P.; Tan, T. G.; Rodriguez, J. E.; Tinney, C. G.; Dragomir, D.; Colon, K.; Shporer, A.; Bento, J.; Sefako, R.; Horne, K.; Cochran, W.
2016-12-01
We present multiwavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared light curves for the object, obtained on multiple nights over the span of 1 month, and recorded multiple transit events with depths varying between ˜20 and 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5-1.2 μm. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2σ lower limit of 0.8 μm on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10^{+5}_{-3} μm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R.; Wilner, David J.; MacGregor, Meredith A.
2013-08-01
Many low-mass pre-main-sequence stars exhibit strong magnetic activity and coronal X-ray emission. Even after the primordial accretion disk has been cleared out, the star's high-energy radiation continues to affect the formation and evolution of dust, planetesimals, and large planets. Young stars with debris disks are thus ideal environments for studying the earliest stages of non-accretion-driven coronae. In this paper we simulate the corona of AU Mic, a nearby active M dwarf with an edge-on debris disk. We apply a self-consistent model of coronal loop heating that was derived from numerical simulations of solar field-line tangling and magnetohydrodynamic turbulence. We alsomore » synthesize the modeled star's X-ray luminosity and thermal radio/millimeter continuum emission. A realistic set of parameter choices for AU Mic produces simulated observations that agree with all existing measurements and upper limits. This coronal model thus represents an alternative explanation for a recently discovered ALMA central emission peak that was suggested to be the result of an inner 'asteroid belt' within 3 AU of the star. However, it is also possible that the central 1.3 mm peak is caused by a combination of active coronal emission and a bright inner source of dusty debris. Additional observations of this source's spatial extent and spectral energy distribution at millimeter and radio wavelengths will better constrain the relative contributions of the proposed mechanisms.« less
ALMA 1.3 mm Map of the HD 95086 System
NASA Astrophysics Data System (ADS)
Su, Kate Y. L.; MacGregor, Meredith A.; Booth, Mark; Wilner, David J.; Flaherty, Kevin; Hughes, A. Meredith; Phillips, Neil M.; Malhotra, Renu; Hales, Antonio S.; Morrison, Sarah; Ertel, Steve; Matthews, Brenda C.; Dent, William R. F.; Casassus, Simon
2017-12-01
Planets and minor bodies such as asteroids, Kuiper-Belt objects, and comets are integral components of a planetary system. Interactions among them leave clues about the formation process of a planetary system. The signature of such interactions is most prominent through observations of its debris disk at millimeter wavelengths where emission is dominated by the population of large grains that stay close to their parent bodies. Here we present ALMA 1.3 mm observations of HD 95086, a young early-type star that hosts a directly imaged giant planet b and a massive debris disk with both asteroid- and Kuiper-Belt analogs. The location of the Kuiper-Belt analog is resolved for the first time. The system can be depicted as a broad (ΔR/R ˜ 0.84), inclined (30° ± 3°) ring with millimeter emission peaked at 200 ± 6 au from the star. The 1.3 mm disk emission is consistent with a broad disk with sharp boundaries from 106 ± 6 to 320 ± 20 au with a surface density distribution described by a power law with an index of -0.5 ± 0.2. Our deep ALMA map also reveals a bright source located near the edge of the ring, whose brightness at 1.3 mm and potential spectral energy distribution are consistent with it being a luminous star-forming galaxy at high redshift. We set constraints on the orbital properties of planet b assuming coplanarity with the observed disk.
SEARCHING FOR THE HR 8799 DEBRIS DISK WITH HST /STIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerard, B.; Marois, C.; Tannock, M.
We present a new algorithm for space telescope high contrast imaging of close-to-face-on planetary disks called Optimized Spatially Filtered (OSFi) normalization. This algorithm is used on HR 8799 Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) coronagraphic archival data, showing an over-luminosity after reference star point-spread function (PSF) subtraction that may be from the inner disk and/or planetesimal belt components of this system. The PSF-subtracted radial profiles in two separate epochs from 2011 and 2012 are consistent with one another, and self-subtraction shows no residual in both epochs. We explore a number of possible false-positive scenarios that could explainmore » this residual flux, including telescope breathing, spectral differences between HR 8799 and the reference star, imaging of the known warm inner disk component, OSFi algorithm throughput and consistency with the standard spider normalization HST PSF subtraction technique, and coronagraph misalignment from pointing accuracy. In comparison to another similar STIS data set, we find that the over-luminosity is likely a result of telescope breathing and spectral difference between HR 8799 and the reference star. Thus, assuming a non-detection, we derive upper limits on the HR 8799 dust belt mass in small grains. In this scenario, we find that the flux of these micron-sized dust grains leaving the system due to radiation pressure is small enough to be consistent with measurements of other debris disk halos.« less
On the Nature of Part-Time Radio Pulsars
NASA Astrophysics Data System (ADS)
Li, Xiang-Dong
2006-08-01
The recent discovery of rotating radio transients and the quasi-periodicity of pulsar activity in the radio pulsar PSR B1931+24 has challenged the conventional theory of radio pulsar emission. Here we suggest that these phenomena could be due to the interaction between the neutron star magnetosphere and the surrounding debris disk. The pattern of pulsar emission depends on whether the disk can penetrate the light cylinder and efficiently quench the processes of particle production and acceleration inside the magnetospheric gap. A precessing disk may naturally account for the switch-on/off behavior in PSR B1931+24.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variabilitymore » census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.« less
Polarimetry and Flux Distribution in the Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Asensio-Torres, R.; Janson, M.; Hashimoto, J.; Thalmann, C.; Currie, T.; Buenzli,; Kudo, T.; Kuzuhara, M.; Kusakabe, N.; Akiyama, E.;
2016-01-01
We present high-contrast angular differential imaging (ADI) observations of the debris disk around HD32297 in H-band, as well as the first polarimetric images for this system in polarized differential imaging (PDI) mode with Subaru/HICIAO. In ADI, we detect the nearly edge-on disk at > or = 5(sigma) levels from approx. 0.45" to approx.1.7" (50-192AU) from the star and recover the spine deviation from the midplane already found in previous works. We also find for the first time imaging and surface brightness (SB) indications for the presence of a gapped structure on both sides of the disk at distances of approx. 0.75" (NE side) and approx. 0.65" (SW side). Global forward-modeling work delivers a best-fit model disk and well-fitting parameter intervals that essentially match previous results, with high-forward scattering grains and a ring located at 110AU. However, this single ring model cannot account for the gapped structure seen in our SB profiles. We create simple double ring models and achieve a satisfactory fit with two rings located at 60 and 95AU, respectively, low-forward scattering grains and very sharp inner slopes. In polarized light we retrieve the disk extending from approx. 0.25-1.6", although the central region is quite noisy and high S/N are only found in the range approx. 0.75-1.2". The disk is polarized in the azimuthal direction, as expected, and the departure from the midplane is also clearly observed. Evidence for a gapped scenario is not found in the PDI data. We obtain a linear polarization degree of the grains that increases from approx. 10% at 0.55" to approx. 25% at 1.6". The maximum is found at scattering angles of 90, either from the main components of the disk or from dust grains blown out to larger radii.
NASA Astrophysics Data System (ADS)
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia
2017-11-01
Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semimajor axes.
Non-LTE spectral models for the gaseous debris-disk component of Ton 345
NASA Astrophysics Data System (ADS)
Hartmann, S.; Nagel, T.; Rauch, T.; Werner, K.
2014-11-01
Context. For a fraction of single white dwarfs with debris disks, an additional gaseous disk was discovered. Both dust and gas are thought to be created by the disruption of planetary bodies. Aims: The composition of the extrasolar planetary material can directly be analyzed in the gaseous disk component, and the disk dynamics might be accessible by investigating the temporal behavior of the Ca ii infrared emission triplet, hallmark of the gas disk. Methods: We obtained new optical spectra for the first helium-dominated white dwarf for which a gas disk was discovered (Ton 345) and modeled the non-LTE spectra of viscous gas disks composed of carbon, oxygen, magnesium, silicon, sulfur, and calcium with chemical abundances typical for solar system asteroids. Iron and its possible line-blanketing effects on the model structure and spectral energy distribution was still neglected. A set of models with different radii, effective temperatures, and surface densities as well as chondritic and bulk-Earth abundances was computed and compared with the observed line profiles of the Ca ii infrared triplet. Results: Our models suggest that the Ca ii emission stems from a rather narrow gas ring with a radial extent of R = 0.44-0.94 R⊙, a uniform surface density Σ = 0.3 g cm-2, and an effective temperature of Teff ≈ 6000 K. The often assumed chemical mixtures derived from photospheric abundances in polluted white dwarfs - similar to a chondritic or bulk-Earth composition - produce unobserved emission lines in the model and therefore have to be altered. We do not detect any line-profile variability on timescales of hours, but we confirm the long-term trend over the past decade for the red-blue asymmetry of the double-peaked lines. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
Collisional Cascades Following Triton's Capture
NASA Astrophysics Data System (ADS)
Cuk, Matija; Hamilton, Douglas P.; Stewart-Mukhopadhyay, Sarah T.
2017-10-01
Neptune's moon Triton is widely thought to have been captured from heliocentric orbit, most likely through binary dissociation (Agnor and Hamilton, 2006). Triton's original eccentric orbit must have been subsequently circularized by satellite tides (Goldreich et al. 1989). Cuk and Gladman (2005) found that Kozai oscillations make early tidal evolution inefficient, and have proposed that collisions between Triton and debris from pre-existing satellites was the dominant mechanism of shrinking Triton's large post-capture orbit. However, Cuk and Hamilton (DPS 2016), using numerical simulations and results of Stewart and Leinhardt (2012), have found that collisions between regular satellites are unlikely to be destructive, while collisions between prograde moons and Triton are certainly erosive if not catastrophic. An obvious outcome would be pre-existing moon material gradually grinding down Triton and making it reaccrete in the local Laplace plane, in conflict with Triton's large current inclination. We propose that the crucial ingredient for understanding the early evolution of the Neptunian system are the collisions between the moons and the prograde and retrograde debris originating from the pre-existing moons and Triton. In particular, we expect early erosive impact(s) on Triton to generate debris that will, in subsequent collisions, disrupt the regular satellites. If the retrograde material were to dominate at some planetocentric distances, the end result may be a large cloud or disk of retrograde debris that would be accreted by Triton, shrinking Triton's orbit. Some of the prograde debris could survive in a compact disk interior to Triton's pericenter, eventually forming the inner moons of Neptune. We will present results of numerical modeling of these complex dynamical processes at the meeting.
β Pictoris' inner disk in polarized light and new orbital parameters for β Pictoris b
Millar-Blanchaer, Maxwell A.; Graham, James R.; Pueyo, Laurent; ...
2015-09-16
Here, we present H-band observations of β Pic with the Gemini Planet Imager's (GPI's) polarimetry mode that reveal the debris disk between ~0farcs3 (6 AU) and ~1farcs7 (33 AU), while simultaneously detecting β Pic b. The polarized disk image was fit with a dust density model combined with a Henyey–Greenstein scattering phase function. The best-fit model indicates a disk inclined to the line of sight (more » $$\\phi =85\\buildrel{\\circ}\\over{.} {27}_{-0.19}^{+0.26}$$) with a position angle (PA) $${\\theta }_{\\mathrm{PA}}=30\\buildrel{\\circ}\\over{.} {35}_{-0.28}^{+0.29}$$ (slightly offset from the main outer disk, $${\\theta }_{\\mathrm{PA}}\\approx 29^\\circ $$), that extends from an inner disk radius of $${23.6}_{-0.6}^{+0.9}\\;\\mathrm{AU}$$ to well outside GPI's field of view.« less
On the AU Microscopii debris disk. Density profiles, grain properties, and dust dynamics
NASA Astrophysics Data System (ADS)
Augereau, J.-C.; Beust, H.
2006-09-01
Context: . AU Mic is a young M-type star surrounded by an edge-on optically thin debris disk that shares many common observational properties with the disk around β Pictoris. In particular, the scattered light surface brightness profile falls off as ˜ r-5 outside 120 AU for β Pictoris and 35 AU for AU Mic. In both cases, the disk color rises as the distance increases beyond these reference radii. Aims: . In this paper, we present the first comprehensive analysis of the AU Mic disk properties since the system was resolved by Kalas et al. (2004, Science, 303, 1990). We explore whether the dynamical model, which successfully reproduces the β Pictoris brightness profile (e.g., Augereau et al. 2001, A&A, 370, 447), could apply to AU Mic. Methods: . We calculate the surface density profile of the AU Mic disk by performing the inversion of the near-IR and visible scattered light brightness profiles measured by Liu (2004, Science, 305, 1442) and Krist et al. (2005, AJ, 129, 1008), respectively. We discuss the grain properties by analysing the blue color of the disk in the visible (Krist et al. 2005) and by fitting the disk spectral energy distribution. Finally, we evaluate the radiation and wind forces on the grains. The impact of the recurrent X-ray and UV-flares on the dust dynamics is also discussed. Results: . We show that irrespective of the mean scattering asymmetry factor of the grains, most of the emission arises from an asymmetric, collisionally-dominated region that peaks close to the surface brightness break around 35 AU. The elementary scatterers at visible wavelengths are found to be sub-micronic, but the inferred size distribution underestimates the number of large grains, resulting in sub-millimeter emissions that are too low compared to the observations. From our inversion procedure, we find that the V- to H-band scattering cross sections ratio increases outside 40 AU, in line with the observed color gradient of the disk. This behavior is expected if the grains have not been produced locally, but placed in orbits of high eccentricity by a size-dependent pressure force, resulting in a paucity of large grains beyond the outer edge of the parent bodies' disk. Because of the low luminosity of AU Mic, radiation pressure is inefficient to diffuse the smallest grains in the outer disk, even when the flares are taken into account. Conversely, we show that a standard, solar-like stellar wind generates a pressure force onto the dust particles that behaves much like a radiation pressure force. With an assumed dot{M} ≃ 3×102 dot{M}⊙, the wind pressure overcomes the radiation pressure, and this effect is enhanced by the stellar flares. This greatly contributes to populating the extended AU Mic debris disk and explains the similarity between the β Pictoris and AU Mic brightness profiles. In both cases, the color gradient beyond 120 AU for β Pictoris and 35 AU for AU Mic, is believed to be a direct consequence of the dust dynamics.
Young Stellar Objects in Lynds 1641: Disks and Accretion
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, 2MASS, and XMM covering 1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use this data, along with archival photometric data, to derive spectral types, masses, ages and extinction values. We also use the H_alpha and H_beta lines to derive accretion rates. We calculate the disk fraction as N(II)/N(II+III), where N(II) and N(III) are numbers of Class\\ II and Class\\ III sources, respectively, and obtain a disk fraction of 50% in L1641. We find that the disk frequency is almost constant as a function of stellar mass with a slight peak at log(M_*/M_sun) -0.25. The analysis of multi-epoch data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses in the M_acc vs. M_* plot. Forty-six new transition disk objects are confirmed in our spectroscopic survey and we find that the fraction of transition disks that are actively accreting is lower than for optically thick disks (40-45% vs. 77-79% respectively). We confirm our previous result that the accreting YSOs with transition disks have a similar median accretion rate to normal optically thick disks. Analyzing the age distributions of various populations, we find that the diskless YSOs are statistically older than the YSOs with optically-thick disks and the transition disk objects have a median age which is intermediate between the two populations.
Índices de color en el infrarrojo cercano y medio de enanas blancas con y sin discos de escombros
NASA Astrophysics Data System (ADS)
Saker, L.; Gómez, M.; Chavero C.
2015-08-01
In this contribution we use different color indices in near and mid infrared (IR) to identify white dwarfs (WDs) with and without debris disks. To this aim, we employ magnitudes from WISE and 2MASS for a sample of 41 EBs with disks and other 52 objects without evidence of disks, but with similar stellar properties as the first group. For each of the analyzed color-color diagrams (W1W2 vs. W1W3, HW1 vs. JH) we define regions in which EBs with or without disks are located preferably. The usefulness of the color indices, particularly in WISE bands, to select candidates EBs with disks is discussed. Also, we investigate possible correlations between the color indices and other properties of stars, such as metal abundances.
Large impacts around a solar-analog star in the era of terrestrial planet formation.
Meng, Huan Y A; Su, Kate Y L; Rieke, George H; Stevenson, David J; Plavchan, Peter; Rujopakarn, Wiphu; Lisse, Carey M; Poshyachinda, Saran; Reichart, Daniel E
2014-08-29
The final assembly of terrestrial planets occurs via massive collisions, which can launch copious clouds of dust that are warmed by the star and glow in the infrared. We report the real-time detection of a debris-producing impact in the terrestrial planet zone around a 35-million-year-old solar-analog star. We observed a substantial brightening of the debris disk at a wavelength of 3 to 5 micrometers, followed by a decay over a year, with quasi-periodic modulations of the disk flux. The behavior is consistent with the occurrence of a violent impact that produced vapor out of which a thick cloud of silicate spherules condensed that were then ground into dust by collisions. These results demonstrate how the time domain can become a new dimension for the study of terrestrial planet formation. Copyright © 2014, American Association for the Advancement of Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittenmyer, Robert A.; Marshall, Jonathan P., E-mail: rob@phys.unsw.edu.au
2015-02-01
Solid material in protoplanetary disks will suffer one of two fates after the epoch of planet formation; either being bound up into planetary bodies, or remaining in smaller planetesimals to be ground into dust. These end states are identified through detection of sub-stellar companions by periodic radial velocity (or transit) variations of the star, and excess emission at mid- and far-infrared wavelengths, respectively. Since the material that goes into producing the observable outcomes of planet formation is the same, we might expect these components to be related both to each other and their host star. Heretofore, our knowledge of planetarymore » systems around other stars has been strongly limited by instrumental sensitivity. In this work, we combine observations at far-infrared wavelengths by IRAS, Spitzer, and Herschel with limits on planetary companions derived from non-detections in the 16 year Anglo-Australian Planet Search to clarify the architectures of these (potential) planetary systems and search for evidence of correlations between their constituent parts. We find no convincing evidence of such correlations, possibly owing to the dynamical history of the disk systems, or the greater distance of the planet-search targets. Our results place robust limits on the presence of Jupiter analogs which, in concert with the debris disk observations, provides insights on the small-body dynamics of these nearby systems.« less
A multi-wavelength database of water vapor in planet-forming regions
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus
The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."
A multi-wavelength database of water vapor in planet-forming regions
NASA Astrophysics Data System (ADS)
Pontoppidan, Klaus
The inner few astronomical units of gas-rich protoplanetary disk are environments characterized by a rich and active gaseous chemistry. Primitive material left over from the formation of our own Solar System has for a long time yielded tantalizing clues to a heterogenous nebula with intricate dynamical, thermal and chemical structure that ultimately led to a great diversity in the planets and planetesimals of the Solar System. The discovery of a rich chemistry in protoplanetary disks via a forest of strong 3-40 micron molecular emission lines (H2O, OH, CO2, HCN, C2H2,...) allows us for the first time to investigate chemical diversity in other planet-forming environmments (Salyk et al. 2008; Carr & Najita 2008). Further efforts, supported by the Origins program, has established that this molecular forest is seen in the disks surrounding most young solar- type stars (Pontoppidan et al. 2010). We propose a 3-year program to analyze our growing multi-wavelength database of observations of water, OH and organic molecules in the surfaces of protoplanetary disks. The database includes high (R~25,000-100,000) and medium resolution (R~600-3000) 3- 200 micron spectra from a wide range of facilities (Keck-NIRSPEC, VLT-CRIRES, Spitzer-IRS, VLT-VISIR, Gemini-Michelle and Herschel-PACS). Our previous efforts have focused on demonstrating feasibility for observing water and other molecules in planet-forming regions, building statistics to show that the molecular forest is ubiquitous in disks around low-mass and solar-type stars and taking the first steps in understanding the implied chemical abundances. Now, as the next logical step, we will combine multi- wavelength data from our unique multi-wavelength database to map the radial distribution of, in particular, water and its derivatives. 1) Â We will use both line profile information from the high-resolution spectra, as well as line strengths, from a combination of high and low temperature lines to constrain the radial abundance of water vapor in the emitting surfaces of disks. Despite high water abundances inside ~1 AU, there is evidence that the disk surfaces are strongly depleted in water both from the gas and ice phases, by as much as 6 orders of magnitude, beyond 1-2 AU. This may be due to the settling of icy grains as part of the formation of icy planetesimals (Meijerink et al. 2009; Bergin et al. 2010). We wish to quantify the depletion factor and establish whether this is a common property of all protoplanetary disks. 2) Â We will pursue critical new datasets using upcoming observational facilities, including spectrally resolved rotational water lines in the mid-infrared. VLT-VISIR, with which we have successfully detected water lines at high resolution, is undergoing a significant hardware upgrade with a planned commissioning around January 2012. The upgrade includes a much larger and more sensitive detector based on technology developed for JWST-MIRI, which is expected to increase its efficiency by 1-2 orders of magnitude. On a longer time scale, SOFIA-EXES, JWST-NIRSpec and MIRI will become essential instruments for moving this field forward. Pontoppidan is a JWST-NIRSpec instrument scientist at STScI. 3) Â We will search for variability of water lines on time scales of months and compare them to variation already seen in CO gas to investigate its origin. One intriguing possibility is dynamical interaction with protoplanets. The proposed research is highly relevant for the Origins of Solar Systems program as described in the solicitation document. It falls into the categories dealing with "Observations related to understanding the formation and evolution of planetary systems" and "Studies of chemical processes related to the formation of planetary systems."
DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauffer, John R.; Noriega-Crespo, Alberto; Rebull, Luisa M.
2010-08-20
We have used the Spitzer Space Telescope to obtain Multiband Imaging Photometer for Spitzer (MIPS) 24 {mu}m photometry for 37 members of the {approx}100 Myr old open cluster Blanco 1. For the brightest 25 of these stars (where we have 3{sigma} uncertainties less than 15%), we find significant mid-IR excesses for eight stars, corresponding to a debris disk detection frequency of about 32%. The stars with excesses include two A stars, four F dwarfs, and two G dwarfs. The most significant linkage between 24 {mu}m excess and any other stellar property for our Blanco 1 sample of stars is withmore » binarity. Blanco 1 members that are photometric binaries show few or no detected 24 {mu}m excesses whereas a quarter of the apparently single Blanco 1 members do have excesses. We have examined the MIPS data for two other clusters of similar age to Blanco 1-NGC 2547 and the Pleiades. The AFGK photometric binary star members of both of these clusters also show a much lower frequency of 24 {mu}m excesses compared to stars that lie near the single-star main sequence. We provide a new determination of the relation between the V - K {sub s} color and K {sub s} - [24] color for main sequence photospheres based on Hyades members observed with MIPS. As a result of our analysis of the Hyades data, we identify three low mass Hyades members as candidates for having debris disks near the MIPS detection limit.« less
Imaging Forming Planetary Systems: The HST/STIS Legacy and Prospects for Future Missions
NASA Technical Reports Server (NTRS)
Grady, Carol; Woodgate, Bruce E.; Bowers, Charles; Weinberger, Alycia; Schneider, Glenn; Oegerle, William R. (Technical Monitor)
2002-01-01
The first indication that debris and protoplanetary disks associated with other, young planetary systems were sufficiently nearby to image came with the IRAS detection of infrared excesses around $\\beta$ Pic, Vega, Fomalhaut, and $\\epsilon$ Eri. Moving beyond analysis of the infrared excess to optical and near-IR imaging requires access to high Strehl ratio and high contrast imaging techniques, with the ability to efficiently reject the residual scattered and diffracted light from the star to reveal the fainter scattered light and circumstellar emission originating from the vicinity of the star. HST/STIS imaging studies have made use of incomplete Lyot coronagraphic imaging modes to reveal the warped, inner disk of $\\beta$ Pic, provide the highest spatial resolution images of young debris disk systems such as HR 4796A, have revealed the presence of azimuthally symmetric structure in HD 141569 and HD 163296, and have demonstrated that currently active, collimated outflows survive to higher stellar masses than previously expected, and through more of the star's pre-main sequence lifetime than anticipated. The HST/STIS coronagraphic imaging legacy will be discussed, together with the implications for future NIR and optical high contrast imaging capabilities.
NASA Technical Reports Server (NTRS)
Grady, C. A.; Currie, T.
2012-01-01
We present high-resolution, H-band, imaging observations, collected with Subaru/HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 135344B). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r approximates 46 AU, our observations reveal the presence of scattered light components as close as 0".2 (approx 28 AU) from the star. Moreover, we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes, independently from sub-mm observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations.
NASA Technical Reports Server (NTRS)
Muto, T.; Grady, C. A.; Hashimoto, J.; Fukagawa, M.; Hornbeck, J. B.; Sitko, M.; Russell, R.; Werren, C.; Cure, M; Currie, T.;
2012-01-01
We present high-resolution, H-band, imaging observations, collected with Subaru /HiCIAO, of the scattered light from the transitional disk around SAO 206462 (HD 1353448). Although previous sub-mm imagery suggested the existence of the dust-depleted cavity at r <= 46 AU, our observations reveal the presence of scattered light components as close as O".2 (approx 28 AU) from the star. Moreover , we have discovered two small-scale spiral structures lying within 0".5 (approx 70 AU). We present models for the spiral structures using the spiral density wave theory, and derive a disk aspect ratio of h approx. 0.1, which is consistent with previous sub-mm observations. This model can potentially give estimates of the temperature and rotation profiles of the disk based on dynamical processes. independently from sub-nun observations. It also predicts the evolution of the spiral structures, which can be observable on timescales of 10-20 years, providing conclusive tests of the model. While we cannot uniquely identify the origin of these spirals, planets embedded in the disk may be capable of exciting the observed morphology. Assuming that this is the case, we can make predictions on the locations and, possibly, the masses of the unseen planets. Such planets may be detected by future multi-wavelengths observations,
The First FUor in Early X-Ray Outburst: HBC 722
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2012-09-01
FU Ori outbursts ("FUors") play an important role in the accretion history of a pre-main sequence star. They reveal themselves as brightness increases by several magnitudes in the optical/infrared. FUors are attributed to accretion disk instabilities heating the inner disk such that it entirely dominates the optical spectrum. They decline over many years to decades. Only a handful of FUors in optical eruption have been recorded during the past decades, and no FUor has been caught in X-ray outburst before the recent eruption of the bona-fide FUor HBC 722 in 2010. We have secured two X-ray snapshot observations and now propose to obtain a high resolution Chandra image and a CCD spectrum to continue study of this object in the framework of a multi-wavelength campaign.
NASA Astrophysics Data System (ADS)
Natta, A.
Contents 1 Introduction 2 Collapse of molecular cores 2.1 Giant molecular clouds and cores 2.2 Conditions for collapse 2.3 Free-fall collapse 2.4 Collapse of an isothermal sphere of gas 2.5 Collapse of a slowly rotating core 3 Observable properties of protostars 3.1 Evidence of infall from molecular line profiles 3.2 SEDs of protostars 3.3 The line spectrumof a protostar 4 Protostellar and pre-main-sequence evolution 4.1 The protostellar phase 4.2 Pre-main-sequence evolution 4.3 The birthline 5 Circumstellar disks 5.1 Accretion disks 5.2 Properties of steady accretion disks 5.3 Reprocessing disks 5.4 Disk-star interaction 6 SEDs of disks 6.1 Power-law disks 6.2 Long-wavelength flux and disk mass 6.3 Comparison with TTS observations: Heating mechanism 7 Disk properties from observations 7.1 Mass accretion rate 7.2 Inner radius 7.3 Masses 7.4 Sizes 8 Disk lifetimes 8.1 Ground-based near and mid-infrared surveys 8.2 Mid-infrared ISOCAMsurveys 8.3 ISOPHOT 60 microm survey 8.4 Surveys at millimeter wavelengths 9 Disk evolution 9.1 Can we observe the early planet formation phase? 9.2 Evidence for grain growth 9.3 Evidence of planetesimals 9.4 Where is the diskmass? 10 Secondary or debris disks 11 Summary
Stellar Rubble May be Planetary Building Blocks
NASA Technical Reports Server (NTRS)
2006-01-01
[figure removed for brevity, see original site] Click on the image for animation Birth of 'Phoenix' Planets? This artist's concept depicts a type of dead star called a pulsar and the surrounding disk of rubble discovered by NASA's Spitzer Space Telescope. The pulsar, called 4U 0142+61, was once a massive star until about 100,000 years ago when it blew up in a supernova explosion and scattered dusty debris into space. Some of that debris was captured into what astronomers refer to as a 'fallback disk,' now circling the remaining stellar core, or pulsar. The disk resembles protoplanetary disks around young stars, out of which planets are thought to be born. Supernovas are a source of iron, nitrogen and other 'heavy metals' in the universe. They spray these elements out into space, where they eventually come together in clouds that give rise to new stars and planets. The Spitzer finding demonstrates that supernovas might also contribute heavy metals to their own planets, a possibility that was first suggested when astronomers discovered planets circling a pulsar called PSR B1257+12 in 1992. Birth of 'Phoenix' Planets? About the Movie This artist's animation depicts the explosive death of a massive star, followed by the creation of a disk made up of the star's ashes. NASA's Spitzer Space Telescope was able to see the warm glow of such a dusty disk using its heat-seeking infrared vision. Astronomers believe planets might form in this dead star's disk, like the mythical Phoenix rising up out of the ashes. The movie begins by showing a dying massive star called a red giant. This bloated star is about 15 times more massive than our sun, and approximately 40 times bigger in diameter. When the star runs out of nuclear fuel, it collapses and ultimately blows apart in what is called a supernova. A lone planet around the star is shown being incinerated by the fiery blast. Astronomers do not know if stars of this heft host planets, but if they do, the planets would probably be destroyed when the stars explode. All that remains of the dead star is its shrunken corpse, called a neutron star. Neutron stars are incredibly dense, with masses nearly one-and-one-half times that of our sun squeezed into bodies roughly 10 miles wide (16 kilometers). They are so dense that their gravity causes light to bend and warp around them. The particular neutron star depicted here, called a pulsar, spins and pulses with X-ray radiation. Some debris, or ashes, from the supernova can be seen settling into a disk in orbit around the pulsar. This material never reached the velocity needed to escape the gravity of the pulsar, and can be thought of as falling back toward the star. The resulting 'fallback disk' resembles protoplanetary disks around young stars, out of which planets are thought to form. The pulsar observed by Spitzer, called 4U 0142+61, is13,000 light-years away in the northern constellation Cassiopeia. Its disk orbits about 1 million miles (1.6 million kilometers) away from it, and probably contains about 10 Earth-masses of material -- only a few millionths of the mass of the material expelled in the supernova. At the end of the movie, small asteroids begin to form within the disk. This first step towards planet formation might be happening in this system already.NASA Astrophysics Data System (ADS)
Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.
2018-06-01
Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.
A Study of Inner Disk Gas around Young Stars in the Lupus Complex
NASA Astrophysics Data System (ADS)
Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri
2018-06-01
We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.
A debris disk around an isolated young neutron star.
Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L
2006-04-06
Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.
Spitzer c2d Legacy, Circumstellar Disks around wTT Stars
NASA Astrophysics Data System (ADS)
Wahhaj, Zahed; c2d Legacy Team
2007-05-01
The Spitzer Legacy Project From "Molecular Cores to Planet-forming Disks" conducted a 3.6 to 70um photometric survey of roughly 160 weak- line TTauri Stars (wTTs) and 20 classical TTauri stars (cTTs) in the nearby star-forming regions Chamaeleon, Lupus, Ophiuchus and Taurus. WTTs are so named because they possess weaker H-alpha emission lines signifying weaker disk accretion on to the star than cTTs. The evolution of dust disks around these young stars (Age 10 Myrs) is key to understanding planet formation. From the observed infrared excesses, we infer the presence of circumstellar disks around 12% of wTTs and 75% of cTTs. However, when considering on-cloud sources only, the wTTs disk fraction is 22%, while it is only 6% for off- cloud sources, suggesting an older age for the latter. WTTs, while not discernibly younger than cTTs in age diagnostics, in general have disks which exhibit lower fractional luminosities and larger inner clearings. However, quite a few wTTs systems have fractional disk luminosities as high as cTTs systems. In light of these findings, wTTs seem to be transitional objects between cTTs and debris disks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasper, Markus; Apai, Dániel; Wagner, Kevin
Using Very Large Telescope/SPHERE near-infrared dual-band imaging and integral field spectroscopy, we discovered an edge-on debris disk around the 17 Myr old A-type member of the Scorpius–Centaurus OB association HD 110058. The edge-on disk can be traced to about 0.″6 or 65 AU projected separation. In its northern and southern wings, the disk shows at all wavelengths two prominent, bright, and symmetrically placed knots at 0.″3 or 32 AU from the star. We interpret these knots as a ring of planetesimals whose collisions may produce most of the dust observed in the disk. We find no evidence for a bowmore » in the disk, but we identify a pair of symmetric, hooklike features in both wings. Based on similar features in the Beta Pictoris disk, we propose that this wing-tilt asymmetry traces either an outer planetesimal belt that is inclined with respect to the disk midplane or radiation-pressure-driven dust blown out from a yet unseen inner belt that is inclined with respect to the disk midplane. The misaligned inner or outer disk may be a result of interaction with a yet unseen planet. Overall, the disk geometry resembles the nearby disk around Beta Pictoris, albeit seen at smaller radial scales.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Erin L.; Mamajek, Eric E.; Pecaut, Mark J.
2014-12-10
We investigate the nature of the unusual eclipsing star OGLE LMC-ECL-11893 (OGLE J05172127-6900558) in the Large Magellanic Cloud recently reported by Dong et al. The eclipse period for this star is 468 days, and the eclipses exhibit a minimum of ∼1.4 mag, preceded by a plateau of ∼0.8 mag. Spectra and optical/IR photometry are consistent with the eclipsed star being a lightly reddened B9III star of inferred age ∼150 Myr and mass ∼4 M {sub ☉}. The disk appears to have an outer radius of ∼0.2 AU with predicted temperatures of ∼1100-1400 K. We model the eclipses as being duemore » to either a transiting geometrically thin dust disk or gaseous accretion disk around a secondary object; the debris disk produces a better fit. We speculate on the origin of such a dense circumstellar dust disk structure orbiting a relatively old low-mass companion, and on the similarities of this system to the previously discovered EE Cep.« less
Lessons from Coronagraphic Imaging with HST that may apply to JWST
NASA Astrophysics Data System (ADS)
Grady, C. A.; Hines, Dean C.; Schneider, Glenn; McElwain, Michael W.
2017-06-01
One of the major capabilities offered by JWST is coronagraphic imaging from space, covering the near through mid-IR and optimized for study of planet formation and the evolution of planetary systems. Planning for JWST has resulted in expectations for instrument performance, observation strategies and data reduction approaches. HST with 20 years of coronagraphic imaging offers some experience which may be useful to those planning for JWST. 1) Real astronomical sources do not necessarily conform to expectations. Debris disks may be accompanied by more distant material, and some systems may be conspicuous in scattered light when offering only modest IR excesses. Proto-planetary disks are not constantly illuminated, and thus a single epoch observation of the source may not be sufficient to reveal everything about it. 2) The early expectation with NICMOS was that shallow, 2-roll observations would reveal a wealth of debris disks imaged in scattered light, and that only a limited set of PSF observations would be required. Instead, building up a library of spatially resolved disks in scattered light has proven to require alternate observing strategies, is still on-going, and has taken far longer than expected. 3) A wealth of coronagraphic options with an instrument may not be scientifically informative, unless there is a similar time investment in acquisition of calibration data in support of the science observations. 4) Finally, no one anticipated what can be gleaned from coronagraphic imaging. We should expect similar, unexpected, and ultimately revolutionary discoveries with JWST.
A Complete ALMA Map of the Fomalhaut Debris Disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacGregor, Meredith A.; Wilner, David J.; Matrà, Luca
We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12more » ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.« less
HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Vanessa; Reiter, Megan; Morzinski, Katie
2014-01-01
We report the discovery of a planetary-mass companion, HD 106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 ± 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 ± 2 M {sub Jup}, making it one ofmore » the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 ± 1; the triangular H-band morphology suggests an intermediate surface gravity. HD 106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballering, Nicholas P.; Su, Kate Y. L.; Rieke, George H.
We investigate whether varying the dust composition (described by the optical constants) can solve a persistent problem in debris disk modeling—the inability to fit the thermal emission without overpredicting the scattered light. We model five images of the β Pictoris disk: two in scattered light from the Hubble Space Telescope ( HST )/Space Telescope Imaging Spectrograph at 0.58 μ m and HST /Wide Field Camera 3 (WFC 3) at 1.16 μ m, and three in thermal emission from Spitzer /Multiband Imaging Photometer for Spitzer (MIPS) at 24 μ m, Herschel /PACS at 70 μ m, and Atacama Large Millimeter/submillimeter Arraymore » at 870 μ m. The WFC3 and MIPS data are published here for the first time. We focus our modeling on the outer part of this disk, consisting of a parent body ring and a halo of small grains. First, we confirm that a model using astronomical silicates cannot simultaneously fit the thermal and scattered light data. Next, we use a simple generic function for the optical constants to show that varying the dust composition can improve the fit substantially. Finally, we model the dust as a mixture of the most plausible debris constituents: astronomical silicates, water ice, organic refractory material, and vacuum. We achieve a good fit to all data sets with grains composed predominantly of silicates and organics, while ice and vacuum are, at most, present in small amounts. This composition is similar to one derived from previous work on the HR 4796A disk. Our model also fits the thermal spectral energy distribution, scattered light colors, and high-resolution mid-IR data from T-ReCS for this disk. Additionally, we show that sub-blowout grains are a necessary component of the halo.« less
On the impact origin of Phobos and Deimos
NASA Astrophysics Data System (ADS)
Genda, Hidenori; Hyodo, Ryuki; Chanorz, Sebastian; Rosenblatt, Pascal
2017-10-01
Phobos and Deimos, the two small satellites of Mars, are thought either to be captured asteroids or to have accreted in an impact-induced debris disk. Recently, we succeeded in making them in a framework of the giant impact scenario [1]. In our canonical simulation, large moons form from the material in the dense inner disk and then migrate outwards due to gravitational interactions with the remnant disk. As the large inner moons migrate outward, their orbital resonances sweep up and gather materials distributed within a thin outer disk, facilitating accretion of two small satellites whose sizes are similar to Phobos and Deimos. The large inner moons fall back to Mars after about 5 million years due to tidal pull of Mars, and the two small outer satellites evolve into current Phobos- and Deimos-like orbits.In addition, we recently perform high-resolution SPH giant impact simulations using sophisticated equation of states (M-ANEOS). We investigate the thermodynamic and physical aspects of the impact-induced disk [2], such as degrees of melting and vaporization of materials, mixing ratio of Mars and impactor’s materials, and expected particle sizes that form Phobos and Deimos. Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.[1] Rosenblatt, P., Charnoz, S., Dunseath, K.M., Terao-Dunseath, M., Trinh, A., Hyodo, R., Genda, H., Toupin, S., 2016. Accretion of Phobos and Deimos in an extended debris disc stirred by transient moons. Nature Geoscience 9, 581-583.[2] Hyodo, R., Genda, H., Charnoz, S., Rosenblatt, P., 2017, On the impact origin of Phobos and Deimos I: Thermodynamic and physical aspects. ApJ accepted (arXiv:1707.06282).
Will new horizons see dust clumps in the Edgeworth-Kuiper Belt?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitense, Christian; Krivov, Alexander V.; Löhne, Torsten, E-mail: vitense@astro.uni-jena.de
2014-06-01
Debris disks are thought to be sculptured by neighboring planets. The same is true for the Edgeworth-Kuiper debris disk, yet no direct observational evidence for signatures of giant planets in the Kuiper Belt dust distribution has been found so far. Here we model the dust distribution in the outer solar system to reproduce the dust impact rates onto the dust detector on board the New Horizons spacecraft measured so far and to predict the rates during the Neptune orbit traverse. To this end, we take a realistic distribution of trans-Neptunian objects to launch a sufficient number of dust grains ofmore » different sizes and follow their orbits by including radiation pressure, Poynting-Robertson and stellar wind drag, as well as the perturbations of four giant planets. In a subsequent statistical analysis, we calculate number densities and lifetimes of the dust grains in order to simulate a collisional cascade. In contrast to the previous work, our model not only considers collisional elimination of particles but also includes production of finer debris. We find that particles captured in the 3:2 resonance with Neptune build clumps that are not removed by collisions, because the depleting effect of collisions is counteracted by production of smaller fragments. Our model successfully reproduces the dust impact rates measured by New Horizons out to ≈23 AU and predicts an increase of the impact rate of about a factor of two or three around the Neptune orbit crossing. This result is robust with respect to the variation of the vaguely known number of dust-producing scattered disk objects, collisional outcomes, and the dust properties.« less
NASA Astrophysics Data System (ADS)
Rufu, Raluca; Aharonson, Oded
2017-10-01
Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.
Observations of Scorpius X-1 with IUE - Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Penninx, W.; Verbunt, F.; Hertz, P.
1991-01-01
IUE UV results are presented for the low-mass X-ray binary Sco X-1. Models that predict UV continuum emission from the X-ray-heated surface from the companion star and from an X-ray illuminated accretion disk are adjusted for parameters intrinsic to Sco X-1, and fitted to the data. X-ray heating is found to be the dominant source of UV emission; the mass-accretion rate increases monotonically along the 'Z-shaped' curve in an X-ray color-color diagram. UV emission lines from He, C, N, O, and Si were detected; they all increase in intensity from the HB to the FB state. A model in which emission lines are due to outer-disk photoionization by the X-ray source is noted to give good agreement with line fluxes observed in each state.
VizieR Online Data Catalog: PHAT. XIX. Formation history of M31 disk (Williams+, 2017)
NASA Astrophysics Data System (ADS)
Williams, B. F.; Dolphin, A. E.; Dalcanton, J. J.; Weisz, D. R.; Bell, E. F.; Lewis, A. R.; Rosenfield, P.; Choi, Y.; Skillman, E.; Monachesi, A.
2018-05-01
The data for this study come from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Dalcanton+ 2012ApJS..200...18D ; Williams+ 2014, J/ApJS/215/9). Briefly, PHAT is a multiwavelength HST survey mapping 414 contiguous HST fields of the northern M31 disk and bulge in six broad wavelength bands from the near-ultraviolet to the near-infrared. The survey obtained data in the F275W and F336W bands with the UVIS detectors of the Wide-Field Camera 3 (WFC3) camera, the F475W and F814W bands in the WFC detectors of the Advanced Camera for Surveys (ACS) camera, and the F110W and F160W bands in the IR detectors of the WFC3 camera. (4 data files).
An ALMA and MagAO Study of the Substellar Companion GQ Lup B*
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Sheehan, Patrick D.; Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Teske, Johanna K.; Haug-Baltzell, Asher; Merchant, Nirav; Lyons, Eric
2017-02-01
Multi-wavelength observations provide a complementary view of the formation of young, directly imaged planet-mass companions. We report the ALMA 1.3 mm and Magellan adaptive optics Hα, I\\prime , z\\prime , and Y S observations of the GQ Lup system, a classical T Tauri star with a 10{--}40 {M}{Jup} substellar companion at ˜110 au projected separation. We estimate the accretion rates for both components from the observed Hα fluxes. In our ˜0.″05 resolution ALMA map, we resolve GQ Lup A’s disk in the dust continuum, but no signal is found from the companion. The disk is compact, with a radius of ˜22 au, a dust mass of ˜6 M ⊕, an inclination angle of ˜56°, and a very flat surface density profile indicative of a radial variation in dust grain sizes. No gaps or inner cavity are found in the disk, so there is unlikely a massive inner companion to scatter GQ Lup B outward. Thus, GQ Lup B might have formed in situ via disk fragmentation or prestellar core collapse. We also show that GQ Lup A’s disk is misaligned with its spin axis, and possibly with GQ Lup B’s orbit. Our analysis on the tidal truncation radius of GQ Lup A’s disk suggests that GQ Lup B’s orbit might have a low eccentricity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ricci, L.; Rome, H.; Pinilla, P.
We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-richmore » disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.« less
Debris disks as signposts of terrestrial planet formation
NASA Astrophysics Data System (ADS)
Raymond, S. N.; Armitage, P. J.; Moro-Martín, A.; Booth, M.; Wyatt, M. C.; Armstrong, J. C.; Mandell, A. M.; Selsis, F.; West, A. A.
2011-06-01
There exists strong circumstantial evidence from their eccentric orbits that most of the known extra-solar planetary systems are the survivors of violent dynamical instabilities. Here we explore the effect of giant planet instabilities on the formation and survival of terrestrial planets. We numerically simulate the evolution of planetary systems around Sun-like stars that include three components: (i) an inner disk of planetesimals and planetary embryos; (ii) three giant planets at Jupiter-Saturn distances; and (iii) an outer disk of planetesimals comparable to estimates of the primitive Kuiper belt. We calculate the dust production and spectral energy distribution of each system by assuming that each planetesimal particle represents an ensemble of smaller bodies in collisional equilibrium. Our main result is a strong correlation between the evolution of the inner and outer parts of planetary systems, i.e. between the presence of terrestrial planets and debris disks. Strong giant planet instabilities - that produce very eccentric surviving planets - destroy all rocky material in the system, including fully-formed terrestrial planets if the instabilities occur late, and also destroy the icy planetesimal population. Stable or weakly unstable systems allow terrestrial planets to accrete in their inner regions and significant dust to be produced in their outer regions, detectable at mid-infrared wavelengths as debris disks. Stars older than ~100 Myr with bright cold dust emission (in particular at λ ~ 70 μm) signpost dynamically calm environments that were conducive to efficient terrestrial accretion. Such emission is present around ~16% of billion-year old Solar-type stars. Our simulations yield numerous secondary results: 1) the typical eccentricities of as-yet undetected terrestrial planets are ~0.1 but there exists a novel class of terrestrial planet system whose single planet undergoes large amplitude oscillations in orbital eccentricity and inclination; 2) by scaling our systems to match the observed semimajor axis distribution of giant exoplanets, we predict that terrestrial exoplanets in the same systems should be a few times more abundant at ~0.5 AU than giant or terrestrial exoplanets at 1 AU; 3) the Solar System appears to be unusual in terms of its combination of a rich terrestrial planet system and a low dust content. This may be explained by the weak, outward-directed instability that is thought to have caused the late heavy bombardment. The movie associated to Fig. 2 is available in electronic form at http://www.aanda.org
Variations on Debris Disks. IV. An Improved Analytical Model for Collisional Cascades
NASA Astrophysics Data System (ADS)
Kenyon, Scott J.; Bromley, Benjamin C.
2017-04-01
We derive a new analytical model for the evolution of a collisional cascade in a thin annulus around a single central star. In this model, r max the size of the largest object changes with time, {r}\\max \\propto {t}-γ , with γ ≈ 0.1-0.2. Compared to standard models where r max is constant in time, this evolution results in a more rapid decline of M d , the total mass of solids in the annulus, and L d , the luminosity of small particles in the annulus: {M}d\\propto {t}-(γ +1) and {L}d\\propto {t}-(γ /2+1). We demonstrate that the analytical model provides an excellent match to a comprehensive suite of numerical coagulation simulations for annuli at 1 au and at 25 au. If the evolution of real debris disks follows the predictions of the analytical or numerical models, the observed luminosities for evolved stars require up to a factor of two more mass than predicted by previous analytical models.
A disintegrating minor planet transiting a white dwarf.
Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T
2015-10-22
Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Follette, Katherine B.; Close, Laird; Tamura, Motohide
We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.''1 {<=} r {<=} 0.''6 (12 {approx}< r {approx}< 75 AU). We compare our results with previously published spatially resolved 880 {mu}m continuum Submillimeter Array images that show an inner r {approx}< 36 AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot bemore » 'universal' for all grain sizes. Even significantly more moderate depletions ({delta} = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity ({delta} {approx} 10{sup -6}) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r {sup -3}), with no evidence of a break at the 36 AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component. We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r {approx} 10-20 AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.« less
POLARIMETRY OF DG TAU AT 350 mum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krejny, M.; Matthews, T. G.; Novak, G.
2009-11-01
We present the first 350 mum polarization measurement for the disk of the T Tauri star (TTS) DG Tau. The data were obtained using the SHARP polarimeter at the Caltech Submillimeter Observatory. We measured normalized Stokes parameters q= -0.0086 +- 0.0060 and u = -0.0012 +- 0.0061, which gives a 2sigma upper limit for the percent polarization of 1.7%. We obtain information about the polarization spectrum by comparing our 350 mum measurement with an 850 mum polarization detection previously published for this source. Comparing the two measurements in Stokes space (not in percent polarization) shows that the two data pointsmore » are not consistent, i.e., either the degree of polarization or the angle of polarization (or both) must change significantly as one moves from 850 mum to 350 mum. This conclusion concerning the polarization spectrum disagrees with the predictions of a recent model for TTS disk polarization. We show that this discrepancy can be explained by optical depth effects. Specifically, we demonstrate that if one were to add more mass to the model disk, one would expect to obtain a model polarization spectrum in which the polarization degree falls sharply with increasing frequency, consistent with the observations at the two wavelengths. We suggest that multiwavelength polarimetry of TTS disk emission may provide a promising method for probing the opacity of TTS disks.« less
NASA Astrophysics Data System (ADS)
Cody, Ann Marie; Stauffer, John; Baglin, Annie; Micela, Giuseppina; Rebull, Luisa M.; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Carpenter, John; Findeisen, Krzysztof; Carey, Sean; Terebey, Susan; Hartmann, Lee; Calvet, Nuria; Teixeira, Paula; Vrba, Frederick J.; Wolk, Scott; Covey, Kevin; Poppenhaeger, Katja; Günther, Hans Moritz; Forbrich, Jan; Whitney, Barbara; Affer, Laura; Herbst, William; Hora, Joseph; Barrado, David; Holtzman, Jon; Marchis, Franck; Wood, Kenneth; Medeiros Guimarães, Marcelo; Lillo Box, Jorge; Gillen, Ed; McQuillan, Amy; Espaillat, Catherine; Allen, Lori; D'Alessio, Paola; Favata, Fabio
2014-04-01
We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" with discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk. Based on data from the Spitzer and CoRoT missions. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.
Martial, Franck P.; Hartell, Nicholas A.
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor. PMID:22937130
Martial, Franck P; Hartell, Nicholas A
2012-01-01
Confocal microscopy is routinely used for high-resolution fluorescence imaging of biological specimens. Most standard confocal systems scan a laser across a specimen and collect emitted light passing through a single pinhole to produce an optical section of the sample. Sequential scanning on a point-by-point basis limits the speed of image acquisition and even the fastest commercial instruments struggle to resolve the temporal dynamics of rapid cellular events such as calcium signals. Various approaches have been introduced that increase the speed of confocal imaging. Nipkov disk microscopes, for example, use arrays of pinholes or slits on a spinning disk to achieve parallel scanning which significantly increases the speed of acquisition. Here we report the development of a microscope module that utilises a digital micromirror device as a spatial light modulator to provide programmable confocal optical sectioning with a single camera, at high spatial and axial resolution at speeds limited by the frame rate of the camera. The digital micromirror acts as a solid state Nipkov disk but with the added ability to change the pinholes size and separation and to control the light intensity on a mirror-by-mirror basis. The use of an arrangement of concave and convex mirrors in the emission pathway instead of lenses overcomes the astigmatism inherent with DMD devices, increases light collection efficiency and ensures image collection is achromatic so that images are perfectly aligned at different wavelengths. Combined with non-laser light sources, this allows low cost, high-speed, multi-wavelength image acquisition without the need for complex wavelength-dependent image alignment. The micromirror can also be used for programmable illumination allowing spatially defined photoactivation of fluorescent proteins. We demonstrate the use of this system for high-speed calcium imaging using both a single wavelength calcium indicator and a genetically encoded, ratiometric, calcium sensor.
NASA Astrophysics Data System (ADS)
Doering, Ryan L.
2009-01-01
Determining Herbig Ae/Be star dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation talk, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two-component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r-0.5 and r-1.8, giving disk dust masses of 3.0 x 10-4 and 5.9 x 10-5 Msun for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. Furthermore, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared ( 0.8 - 2.5 microns), includes 13 filters, and has a pixel size of 0.1 arcsec, resulting in a field of view of 3 arcmin x 3 arcmin. An angular resolution of 0.25 arcsec is anticipated. I provide an overview of the instrument and report performance results.
ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Kate Y. L.; Rieke, George H.; Misselt, Karl A.
2013-02-15
Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as 'debris disk twins'. We present Spitzer 10-35 {mu}m spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of {approx}30 {mu}m from bothmore » warm components is well described as a blackbody emission of {approx}170 K. Interestingly, two other systems, {epsilon} Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system's zodiacal dust cloud, but of far greater mass (fractional luminosity of {approx}10{sup -5} to 10{sup -6} compared to 10{sup -8} to 10{sup -7}). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 {mu}m hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio {approx}>10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.« less
Asteroid Belts in Debris Disk Twins: Vega and Fomalhaut
NASA Technical Reports Server (NTRS)
Su, Kate Y. L.; Rieke, George H.; Malhortra, Renu; Stapelfeldt, Karl R.; Hughes, A. Meredith; Bonsor, Amy; Wilner, David J.; Balog, Zoltan; Watson, Dan M.; Werner, Michael W.;
2013-01-01
Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as debris disk twins. We present Spitzer 10-35 micrometers spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of approximately 30 micrometers from both warm components is well described as a blackbody emission of approximately 170 K. Interestingly, two other systems, Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system s zodiacal dust cloud, but of far greater mass (fractional luminosity of approximately 10(exp-5) to 10(exp-6) compared to 10(exp-8) to 10(exp-7). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 micrometers hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt.We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio greater than or approximately 10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.
The Role Of Rejuvenation In Shaping The High-Mass End Of The Main Sequence
NASA Astrophysics Data System (ADS)
Mancini, Chiara
2017-06-01
We investigate the nature of star forming galaxies with reduced specific SFRs and high stellar masses, those that seemingly cause the so-called bending of the main sequence. The fact that such objects host large bulges recently lead some to suggest that the internal formation of the bulges, via compaction or disk instabilities, was the late event that induced sSFRs of massive galaxies to drop in a slow downfall and thus the main sequence to bend. We have studied in detail a sample of 16 galaxies at 0.5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael
2017-03-20
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y , J , and K 1 bands that reveals an inner gap (9–18 au), an outer disk (18–39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using themore » Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.« less
NASA Astrophysics Data System (ADS)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro; Kluska, Jacques; Kraus, Stefan; Mayama, Satoshi; McElwain, Michael W.; Oh, Daehyon; Tamura, Motohide; Uyama, Taichi; Wisniewski, John P.; Yang, Yi
2017-03-01
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45°) and their major axes, PA = 140° east of north for the outer disk, and 100° for the inner disk. We find an outer-disk inclination of 25° ± 10° from face-on, in broad agreement with the Wagner et al. measurement of 34°. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.
NASA Technical Reports Server (NTRS)
Long, Zachary C.; Fernandes, Rachel B.; Sitko, Michael; Wagner, Kevin; Muto, Takayuki; Hashimoto, Jun; Follette, Katherine; Grady, Carol A.; Fukagawa, Misato; Hasegawa, Yasuhiro;
2017-01-01
We present Gemini Planet Imager polarized intensity imagery of HD 100453 in Y, J, and K1 bands that reveals an inner gap (9-18 au), an outer disk (18-39 au) with two prominent spiral arms, and two azimuthally localized dark features that are also present in Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) total intensity images. Spectral energy distribution fitting further suggests that the radial gap extends to 1 au. The narrow, wedge-like shape of the dark features appears similar to predictions of shadows cast by an inner disk that is misaligned with respect to the outer disk. Using the Monte Carlo radiative transfer code HOCHUNCK3D, we construct a model of the disk that allows us to determine its physical properties in more detail. From the angular separation of the features, we measure the difference in inclination between the disks (45deg) and their major axes, PA = 140deg east of north for the outer disk, and 100deg for the inner disk. We find an outer-disk inclination of 25deg +/- 10deg from face-on, in broad agreement with the Wagner et al. measurement of 34deg. SPHERE data in J and H bands indicate a reddish disk, which indicates that HD 100453 is evolving into a young debris disk.
Cheng, L; Bartlett, C L; Erwin, J K; Mansuripur, M
1997-07-01
We discuss the optomechanical design and fabrication of a novel wideband (440-690-nm), leaky polarizing beam splitter with an adjustable leak ratio. This beam splitter is an important component of a multiwavelength dynamic testbed that we have constructed for testing optical disks. The multilayer thin-film structure of the beam splitter is essentially a stacked pair of narrow-band dielectric reflectors that have been fine tuned for optimal performance. The characteristics of the fabricated device are in good agreement with our theoretical calculations.
2013-09-01
of the cosmic microwave background dipole velocity onto the lens plane, as done by Kochanek (2004). We compare the simulated light curves to the...observer, the background source, the foreground lens galaxy, and its stars cause uncorrelated variations in the source magnification as a function of...hereafter SBS 0909; αJ2000 = 09h13m01.s05, δJ2000 = +52d59m28.s83) is a doubly-imaged quasar lens sys- tem in which the background quasar has redshift
NASA Technical Reports Server (NTRS)
Currie, Thayne; Thalmann, Christian; Matsumura, Soko; Madhusudhan, Nikku; Burrows, Adam; Kuchner, Marc
2011-01-01
We present and analyze a new M' detection of the young exoplanet Beta Pictoris b from 2008 VLT/NaCo data at a separation of approx. = 4 AU and a high signal-to-noise rereduction of L' data taken in December 2Q09. Based on our orbital analysis, the planet's orbit is viewed almost perfectly edge-on (i approx. 89 degrees) and has a Saturn-like semimajor axis of 9.50AU(+3.93 AU)/-(1.7AU) . Intriguingly, the planet's orbit is aligned with the major axis of the outer disk (Omega approx.31 degrees) but probably misaligned with the warp/inclined disk at 80 AU often cited as a signpost for the planet's existence. Our results motivate new studies to clarify how Beta Pic b sculpts debris disk structures and whether a second planet is required to explain the warp/inclined disk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigliaco, Elisabetta; Pascucci, I.; Mulders, G. D.
In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81more » μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 10{sup 10}-10{sup 11} cm{sup –3}. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10{sup –10} M {sub ☉} yr{sup –1}. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.« less
Probing Stellar Accretion with Mid-infrared Hydrogen Lines
NASA Astrophysics Data System (ADS)
Rigliaco, Elisabetta; Pascucci, I.; Duchene, G.; Edwards, S.; Ardila, D. R.; Grady, C.; Mendigutía, I.; Montesinos, B.; Mulders, G. D.; Najita, J. R.; Carpenter, J.; Furlan, E.; Gorti, U.; Meijerink, R.; Meyer, M. R.
2015-03-01
In this paper we investigate the origin of the mid-infrared (IR) hydrogen recombination lines for a sample of 114 disks in different evolutionary stages (full, transitional, and debris disks) collected from the Spitzer archive. We focus on the two brighter H I lines observed in the Spitzer spectra, the H I (7-6) at 12.37 μm and the H I (9-7) at 11.32 μm. We detect the H I (7-6) line in 46 objects, and the H I (9-7) in 11. We compare these lines with the other most common gas line detected in Spitzer spectra, the [Ne II] at 12.81 μm. We argue that it is unlikely that the H I emission originates from the photoevaporating upper surface layers of the disk, as has been found for the [Ne II] lines toward low-accreting stars. Using the H I (9-7)/H I (7-6) line ratios we find these gas lines are likely probing gas with hydrogen column densities of 1010-1011 cm-3. The subsample of objects surrounded by full and transitional disks show a positive correlation between the accretion luminosity and the H I line luminosity. These two results suggest that the observed mid-IR H I lines trace gas accreting onto the star in the same way as other hydrogen recombination lines at shorter wavelengths. A pure chromospheric origin of these lines can be excluded for the vast majority of full and transitional disks. We report for the first time the detection of the H I (7-6) line in eight young (<20 Myr) debris disks. A pure chromospheric origin cannot be ruled out in these objects. If the H I (7-6) line traces accretion in these older systems, as in the case of full and transitional disks, the strength of the emission implies accretion rates lower than 10-10 M ⊙ yr-1. We discuss some advantages of extending accretion indicators to longer wavelengths, and the next steps required pinning down the origin of mid-IR hydrogen lines.
First detection of hydrogen in the β Pictoris gas disk
NASA Astrophysics Data System (ADS)
Wilson, P. A.; Lecavelier des Etangs, A.; Vidal-Madjar, A.; Bourrier, V.; Hébrard, G.; Kiefer, F.; Beust, H.; Ferlet, R.; Lagrange, A.-M.
2017-03-01
The young and nearby star β Pictoris (β Pic) is surrounded by a debris disk composed of dust and gas known to host a myriad evaporating exocomets, planetesimals and at least one planet. At an edge-on inclination, as seen from Earth, this system is ideal for debris disk studies providing an excellent opportunity to use absorption spectroscopy to study the planet forming environment. Using the Cosmic Origins Spectrograph (COS) instrument on the Hubble Space Telescope (HST) we observe the most abundant element in the disk, hydrogen, through the H I Lyman α (Ly-α) line. We present a new technique to decrease the contamination of the Ly-α line by geocoronal airglow in COS spectra. This Airglow Virtual Motion (AVM) technique allows us to shift the Ly-α line of the astrophysical target away from the contaminating airglow emission revealing more of the astrophysical line profile. This new AVM technique, together with subtraction of an airglow emission map, allows us to analyse the shape of the β Pic Ly-α emission line profile and from it, calculate the column density of neutral hydrogen surrounding β Pic. The column density of hydrogen in the β Pic stable gas disk at the stellar radial velocity is measured to be log (NH/ 1 cm2) ≪ 18.5. The Ly-α emission line profile is found to be asymmetric and we propose that this is caused by H I falling in towards the star with a bulk radial velocity of 41 ± 6 km s-1 relative to β Pic and a column density of log (NH/ 1 cm2) = 18.6 ± 0.1. The high column density of hydrogen relative to the hydrogen content of CI chondrite meteorites indicates that the bulk of the hydrogen gas does not come from the dust in the disk. This column density reveals a hydrogen abundance much lower than solar, which excludes the possibility that the detected hydrogen could be a remnant of the protoplanetary disk or gas expelled by the star. We hypothesise that the hydrogen gas observed falling towards the star arises from the dissociation of water originating from evaporating exocomets.
Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.
Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona
2013-05-01
Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.
Origin of the Local Group satellite planes
NASA Astrophysics Data System (ADS)
Banik, Indranil; O'Ryan, David; Zhao, Hongsheng
2018-04-01
We attempt to understand the planes of satellite galaxies orbiting the Milky Way (MW) and M31 in the context of Modified Newtonian Dynamics (MOND), which implies a close MW-M31 flyby occurred ≈8 Gyr ago. Using the timing argument, we obtain MW-M31 trajectories consistent with cosmological initial conditions and present observations. We adjust the present M31 proper motion within its uncertainty in order to simulate a range of orbital geometries and closest approach distances. Treating the MW and M31 as point masses, we follow the trajectories of surrounding test particle disks, thereby mapping out the tidal debris distribution. Around each galaxy, the resulting tidal debris tends to cluster around a particular orbital pole. We find some models in which these preferred spin vectors align fairly well with those of the corresponding observed satellite planes. The radial distributions of material in the simulated satellite planes are similar to what we observe. Around the MW, our best-fitting model yields a significant fraction (0.22) of counter-rotating material, perhaps explaining why Sculptor counter-rotates within the MW satellite plane. In contrast, our model yields no counter-rotating material around M31. This is testable with proper motions of M31 satellites. In our best model, the MW disk is thickened by the flyby 7.65 Gyr ago to a root mean square height of 0.75 kpc. This is similar to the observed age and thickness of the Galactic thick disk. Thus, the MW thick disk may have formed together with the MW and M31 satellite planes during a past MW-M31 flyby.
On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif
2006-10-01
We explore the possibility that extended disks, such as that recently discovered in M31, are the result of a single dwarf (109-1010 Msolar) satellite merger. We conduct N-body simulations of dwarf NFW halos with embedded spheroidal stellar components on coplanar, prograde orbits in an M31-like host galaxy. As the orbit decays due to dynamical friction and the system is disrupted, the stellar particles relax to form an extended, exponential-disk-like structure that spans the radial range 30-200 kpc. The disk scale length Rd correlates with the initial extent of the stellar component within the satellite halo: the more embedded the stars, the smaller the resulting disk scale length. If the progenitors start on circular orbits, the kinematics of the stars that make up the extended disk have an average rotational motion that is 30-50 km s-1 lower than the host's circular velocity. For dwarf galaxies moving on highly eccentric orbits (e~=0.7), the stellar debris exhibits a much lower rotational velocity. Our results imply that extended galactic disks might be a generic feature of the hierarchical formation of spiral galaxies such as M31 and the Milky Way.
Disk Evolution in Cep OB2: Results from the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Sicilia-Aguilar Aurora; Hartmann, Lee W.; Calvet Nuria; Megeath, S. T.; Muzerolle, James; Allen, Lori; D'Alessio, Paola; Merin, Bruno; Stauffer, John; Lada, Charles;
2006-01-01
We presented the results of an infrared imaging survey of Tr 37 and NGC 7160 using the IRAC and MIPS instruments on board the Spitzer Space Telescope. Our observations cover the wavelength range from 3.6 to 24 microns, allowing us to detect disk emission over a typical range of radii 0.1 to 20 AU from the central star. In Tr 37, with an age of about 4 Myr, about 48% of the low-mass stars exhibit detectable disk emission in the IRAC bands. Roughly 10% of the stars with disks may be "transition" objects, with essentially photospheric fluxes at wavelengths i 4.5 microns but with excesses at longer wavelengths, indicating an optically thin inner disk. The median optically thick disk emission in Tr 37 is lower than the corresponding median for stars in the younger Taurus region; the decrease in infrared excess is larger at 6-8 microns than at 24 microns, suggesting that grain growth and/or dust settling has proceeded faster at smaller disk radii, as expected on general theoretical grounds. Only about 4% of the low-mass stars in the 10 Myr old cluster NGC 7160 show detectable infrared disk emission. We also find evidence for 24 micron excesses around a few intermediate-mass stars, which may represent so-called "debris disk" systems. Our observations provided new constraints on disk evolution through an important age range.
Young Stellar Objects in Lynds 1641: Disks, Accretion, and Star Formation History
NASA Astrophysics Data System (ADS)
Fang, Min; Kim, Jinyoung Serena; van Boekel, Roy; Sicilia-Aguilar, Aurora; Henning, Thomas; Flaherty, Kevin
2013-07-01
We investigate the young stellar objects (YSOs) in the Lynds 1641 (L1641) cloud using multi-wavelength data including Spitzer, WISE, the Two Micron All Sky Survey, and XMM covering ~1390 YSOs across a range of evolutionary stages. In addition, we targeted a sub-sample of YSOs for optical spectroscopy with the MMT/Hectospec and the MMT/Hectochelle. We use these data, along with archival photometric data, to derive spectral types, extinction values, masses, ages, and accretion rates. We obtain a disk fraction of ~50% in L1641. The disk frequency is almost constant as a function of stellar mass with a slight peak at log (M */M ⊙) ≈ -0.25. The analysis of multi-epoch spectroscopic data indicates that the accretion variability of YSOs cannot explain the two orders of magnitude of scatter for YSOs with similar masses. Forty-six new transition disk (TD) objects are confirmed in this work, and we find that the fraction of accreting TDs is lower than for optically thick disks (40%-45% versus 77%-79%, respectively). We confirm our previous result that the accreting TDs have a median accretion rate similar to normal optically thick disks. We confirm that two star formation modes (isolated versus clustered) exist in L1641. We find that the diskless YSOs are statistically older than the YSOs with optically thick disks and the TD objects have a median age that is intermediate between those of the other two populations. We tentatively study the star formation history in L1641 based on the age distribution and find that star formation started to be active 2-3 Myr ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cieza, Lucas A.; Mathews, Geoffrey S.; Kraus, Adam L.
We present deep Sparse Aperture Masking (SAM) observations obtained with the ESO Very Large Telescope of the pre-transitional disk object FL Cha (SpT = K8, d = 160 pc), the disk of which is known to have a wide optically thin gap separating optically thick inner and outer disk components. We find non-zero closure phases, indicating a significant flux asymmetry in the K{sub S} -band emission (e.g., a departure from a single point source detection). We also present radiative transfer modeling of the spectral energy distribution of the FL Cha system and find that the gap extends from 0.06{sup +0.05}{submore » -0.01} AU to 8.3 {+-} 1.3 AU. We demonstrate that the non-zero closure phases can be explained almost equally well by starlight scattered off the inner edge of the outer disk or by a (sub)stellar companion. Single-epoch, single-wavelength SAM observations of transitional disks with large cavities that could become resolved should thus be interpreted with caution, taking the disk and its properties into consideration. In the context of a binary model, the signal is most consistent with a high-contrast ({Delta}K{sub S} {approx} 4.8 mag) source at a {approx}40 mas (6 AU) projected separation. However, the flux ratio and separation parameters remain highly degenerate and a much brighter source ({Delta}K{sub S} {approx} 1 mag) at 15 mas (2.4 AU) can also reproduce the signal. Second-epoch, multi-wavelength observations are needed to establish the nature of the SAM detection in FL Cha.« less
Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
NASA Astrophysics Data System (ADS)
Lazzoni, C.; Desidera, S.; Marzari, F.; Boccaletti, A.; Langlois, M.; Mesa, D.; Gratton, R.; Kral, Q.; Pawellek, N.; Olofsson, J.; Bonnefoy, M.; Chauvin, G.; Lagrange, A. M.; Vigan, A.; Sissa, E.; Antichi, J.; Avenhaus, H.; Baruffolo, A.; Baudino, J. L.; Bazzon, A.; Beuzit, J. L.; Biller, B.; Bonavita, M.; Brandner, W.; Bruno, P.; Buenzli, E.; Cantalloube, F.; Cascone, E.; Cheetham, A.; Claudi, R. U.; Cudel, M.; Daemgen, S.; De Caprio, V.; Delorme, P.; Fantinel, D.; Farisato, G.; Feldt, M.; Galicher, R.; Ginski, C.; Girard, J.; Giro, E.; Janson, M.; Hagelberg, J.; Henning, T.; Incorvaia, S.; Kasper, M.; Kopytova, T.; LeCoroller, H.; Lessio, L.; Ligi, R.; Maire, A. L.; Ménard, F.; Meyer, M.; Milli, J.; Mouillet, D.; Peretti, S.; Perrot, C.; Rouan, D.; Samland, M.; Salasnich, B.; Salter, G.; Schmidt, T.; Scuderi, S.; Sezestre, E.; Turatto, M.; Udry, S.; Wildi, F.; Zurlo, A.
2018-03-01
Context. A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the debris belts in these disks is the presence of one or more planets dynamically carving it. For this reason these disks represent prime targets for searching planets using direct imaging instruments, like the Spectro-Polarimetric High-constrast Exoplanet Research (SPHERE) at the Very Large Telescope. Aim. The goal of this work is to investigate this scenario in systems harboring debris disks divided into two components, placed, respectively, in the inner and outer parts of the system. All the targets in the sample were observed with the SPHERE instrument, which performs high-contrast direct imaging, during the SHINE guaranteed time observations. Positions of the inner and outer belts were estimated by spectral energy distribution fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities, and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. Methods: The relation between the gap and the planet is due to the chaotic zone neighboring the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis, and on the eccentricity of the planet, and it can be estimated analytically. We first tested the different analytical predictions using a numerical tool for the detection of chaotic behavior and then selected the best formula for estimating a planet's physical and dynamical properties required to open the observed gap. We then apply the formalism to the case of one single planet on a circular or eccentric orbit. We then consider multi-planetary systems: two and three equal-mass planets on circular orbits and two equal-mass planets on eccentric orbits in a packed configuration. As a final step, we compare each couple of values (Mp, ap), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Results: For one single planet on a circular orbit we obtain conclusive results that allow us to exclude such a hypothesis since in most cases this configuration requires massive planets which should have been detected by our observations. Unsatisfactory is also the case of one single planet on an eccentric orbit for which we obtained high masses and/or eccentricities which are still at odds with observations. Introducing multi planetary architectures is encouraging because for the case of three packed equal-mass planets on circular orbits we obtain quite low masses for the perturbing planets which would remain undetected by our SPHERE observations. The case of two equal-mass planets on eccentric orbits is also of interest since it suggests the possible presence of planets with masses lower than the detection limits and with moderate eccentricity. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on eccentric orbits whose sizes are below the present detection limits. Based on observations collected at Paranal Observatory, ESO (Chile) Program ID: 095.C-0298, 096.C-0241, 097.C-0865, and 198.C-0209.
H K, Sowmya; T S, Subhash; Goel, Beena Rani; T N, Nandini; Bhandi, Shilpa H
2014-02-01
Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third.
H.K., Sowmya; T.S., Subhash; Goel, Beena Rani; T.N., Nandini; Bhandi, Shilpa H.
2014-01-01
Introduction: Decreased apical extrusion of debris and apical one third debris have strong implications for decreased incidence of postoperative inflammation and pain. Thus, the aim of this study was to assess quantitatively the apical extrusion of debris and intracanal debris in the apical third during root canal instrumentation using hand and three different types of rotary instruments. Methodology: Sixty freshly extracted single rooted human teeth were randomly divided into four groups. Canal preparation was done using step-back with hand instrumentation, crown-down technique with respect to ProTaper and K3, and hybrid technique with LightSpeed LSX. Irrigation was done with NaOCl, EDTA, and normal saline and for final irrigation, EndoVac system was used. The apically extruded debris was collected on the pre-weighed Millipore plastic filter disk and weighed using microbalance. The teeth were submitted to the histological processing. Sections from the apical third were analyzed by a trinocular research microscope that was coupled to a computer where the images were captured and analyzed using image proplus V4.1.0.0 software. The mean weight of extruded debris for each group and intracanal debris in the root canal was statistically analyzed by a Kruskal-Wallis one-way analysis of variance and Mann-Whitney U test. Results: The result showed that, hand instrumentation using K files showed the highest amount of debris extrusion apically when compared to ProTaper, K3 and LightSpeed LSX. The result also showed that there was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. Conclusion: Based on the results, all instrumentation techniques produced debris extrusion. The engine driven Ni-Ti systems extruded significantly less apical debris than hand instrumentation. There was no statistically significant difference between the groups in relation to presence of intracanal debris in the apical one third. PMID:24701536
Mapping H-band Scattered Light Emission in the Mysterious SR21Transitional Disk
NASA Technical Reports Server (NTRS)
Follette, Katherine B.; Motohide, Tamura; Hashimoto, Jun; Whitney, Barbara; Grady, Carol; Close, Laird; Andrews, Sean M.; Kwon, Jungmi; Wisniewski, John; Brandt, Timothy D.;
2013-01-01
We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 < or approx. r < or approx. 0.6 (12 < or approx. r < or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r < or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp -6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup -3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.
Multiwavelength interferometric observations and modeling of circumstellar disks
NASA Astrophysics Data System (ADS)
Schegerer, A. A.; Ratzka, T.; Schuller, P. A.; Wolf, S.; Mosoni, L.; Leinert, Ch.
2013-07-01
Aims: We investigate the structure of the innermost region of three circumstellar disks around pre-main sequence stars HD 142666, AS 205 N, and AS 205 S. We determine the inner radii of the dust disks and, in particular, search for transition objects where dust has been depleted and inner disk gaps have formed at radii of a few tenths of AU up to several AU. Methods: We performed interferometric observations with IOTA, AMBER, and MIDI in the infrared wavelength ranges 1.6-2.5 μm and 8-13 μm with projected baseline lengths between 25 m and 102 m. The data analysis was based on radiative transfer simulations in 3D models of young stellar objects (YSOs) to reproduce the spectral energy distribution and the interferometric visibilities simultaneously. Accretion effects and disk gaps could be considered in the modeling approach. Results from previous studies restricted the parameter space. Results: The objects of this study were spatially resolved in the infrared wavelength range using the interferometers. Based on these observations, a disk gap could be found for the source HD 142666 that classifies it as transition object. There is a disk hole up to a radius of Rin = 0.30 AU and a (dust-free) ring between 0.35 AU and 0.80 AU in the disk of HD 142666. The classification of AS 205 as a system of classical T Tauri stars could be confirmed using the canonical model approach, i.e., there are no hints of disk gaps in our observations. Based on observations made with telescopes of the European Organisation for Astronomical Research in the southern Hemisphere (ESO) at the Paranal Observatory, Chile, under the programs 073.A-9014, 075.C-0014, 075.C-0064, 075.C-0253, 077.C-0750, 079.C-0101, and 079.C-0595.Appendix A is available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Boccaletti, A.; Sezestre, E.; Lagrange, A.-M.; Thébault, P.; Gratton, R.; Langlois, M.; Thalmann, C.; Janson, M.; Delorme, P.; Augereau, J.-C.; Schneider, G.; Milli, J.; Grady, C.; Debes, J.; Kral, Q.; Olofsson, J.; Carson, J.; Maire, A. L.; Henning, T.; Wisniewski, J.; Schlieder, J.; Dominik, C.; Desidera, S.; Ginski, C.; Hines, D.; Ménard, F.; Mouillet, D.; Pawellek, N.; Vigan, A.; Lagadec, E.; Avenhaus, H.; Beuzit, J.-L.; Biller, B.; Bonavita, M.; Bonnefoy, M.; Brandner, W.; Cantalloube, F.; Chauvin, G.; Cheetham, A.; Cudel, M.; Gry, C.; Daemgen, S.; Feldt, M.; Galicher, R.; Girard, J.; Hagelberg, J.; Janin-Potiron, P.; Kasper, M.; Coroller, H. Le; Mesa, D.; Peretti, S.; Perrot, C.; Samland, M.; Sissa, E.; Wildi, F.; Zurlo, A.; Rochat, S.; Stadler, E.; Gluck, L.; Origné, A.; Llored, M.; Baudoz, P.; Rousset, G.; Martinez, P.; Rigal, F.
2018-06-01
Context. The nearby and young M star AU Mic is surrounded by a debris disk in which we previously identified a series of large-scale arch-like structures that have never been seen before in any other debris disk and that move outward at high velocities. Aims: We initiated a monitoring program with the following objectives: (1) track the location of the structures and better constrain their projected speeds, (2) search for new features emerging closer in, and ultimately (3) understand the mechanism responsible for the motion and production of the disk features. Methods: AU Mic was observed at 11 different epochs between August 2014 and October 2017 with the IR camera and spectrograph of SPHERE. These high-contrast imaging data were processed with a variety of angular, spectral, and polarimetric differential imaging techniques to reveal the faintest structures in the disk. We measured the projected separations of the features in a systematic way for all epochs. We also applied the very same measurements to older observations from the Hubble Space Telescope (HST) with the visible cameras STIS and ACS. Results: The main outcomes of this work are (1) the recovery of the five southeastern broad arch-like structures we identified in our first study, and confirmation of their fast motion (projected speed in the range 4-12 km s-1); (2) the confirmation that the very first structures observed in 2004 with ACS are indeed connected to those observed later with STIS and now SPHERE; (3) the discovery of two new very compact structures at the northwest side of the disk (at 0.40'' and 0.55'' in May 2015) that move to the southeast at low speed; and (4) the identification of a new arch-like structure that might be emerging at the southeast side at about 0.4'' from the star (as of May 2016). Conclusions: Although the exquisite sensitivity of SPHERE allows one to follow the evolution not only of the projected separation, but also of the specific morphology of each individual feature, it remains difficult to distinguish between possible dynamical scenarios that may explain the observations. Understanding the exact origin of these features, the way they are generated, and their evolution over time is certainly a significant challenge in the context of planetary system formation around M stars. Based on data collected at the European Southern Observatory, Chile under programs 060.A-9249, 095.C-0298, 096.C-0625, 097.C-0865, 097.C-0813, 598.C-0359.A movie associated to Fig. 6 is available at http://https://www.aanda.org
THE EVOLUTION OF INNER DISK GAS IN TRANSITION DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoadley, K.; France, K.; McJunkin, M.
2015-10-10
Investigating the molecular gas in the inner regions of protoplanetary disks (PPDs) provides insight into how the molecular disk environment changes during the transition from primordial to debris disk systems. We conduct a small survey of molecular hydrogen (H{sub 2}) fluorescent emission, using 14 well-studied Classical T Tauri stars at two distinct dust disk evolutionary stages, to explore how the structure of the inner molecular disk changes as the optically thick warm dust dissipates. We simulate the observed Hi-Lyman α-pumped H{sub 2} disk fluorescence by creating a 2D radiative transfer model that describes the radial distributions of H{sub 2} emissionmore » in the disk atmosphere and compare these to observations from the Hubble Space Telescope. We find the radial distributions that best describe the observed H{sub 2} FUV emission arising in primordial disk targets (full dust disk) are demonstrably different than those of transition disks (little-to-no warm dust observed). For each best-fit model, we estimate inner and outer disk emission boundaries (r{sub in} and r{sub out}), describing where the bulk of the observed H{sub 2} emission arises in each disk, and we examine correlations between these and several observational disk evolution indicators, such as n{sub 13–31}, r{sub in,} {sub CO}, and the mass accretion rate. We find strong, positive correlations between the H{sub 2} radial distributions and the slope of the dust spectral energy distribution, implying the behavior of the molecular disk atmosphere changes as the inner dust clears in evolving PPDs. Overall, we find that H{sub 2} inner radii are ∼4 times larger in transition systems, while the bulk of the H{sub 2} emission originates inside the dust gap radius for all transitional sources.« less
THE NATURE OF TRANSITION CIRCUMSTELLAR DISKS. II. SOUTHERN MOLECULAR CLOUDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero, Gisela A.; Schreiber, Matthias R.; Rebassa-Mansergas, Alberto
2012-04-10
Transition disk objects are pre-main-sequence stars with little or no near-IR excess and significant far-IR excess, implying inner opacity holes in their disks. Here we present a multifrequency study of transition disk candidates located in Lupus I, III, IV, V, VI, Corona Australis, and Scorpius. Complementing the information provided by Spitzer with adaptive optics (AO) imaging (NaCo, VLT), submillimeter photometry (APEX), and echelle spectroscopy (Magellan, Du Pont Telescopes), we estimate the multiplicity, disk mass, and accretion rate for each object in our sample in order to identify the mechanism potentially responsible for its inner hole. We find that our transitionmore » disks show a rich diversity in their spectral energy distribution morphology, have disk masses ranging from {approx}<1 to 10 M{sub JUP}, and accretion rates ranging from {approx}<10{sup -11} to 10{sup -7.7} M{sub Sun} yr{sup -1}. Of the 17 bona fide transition disks in our sample, three, nine, three, and two objects are consistent with giant planet formation, grain growth, photoevaporation, and debris disks, respectively. Two disks could be circumbinary, which offers tidal truncation as an alternative origin of the inner hole. We find the same heterogeneity of the transition disk population in Lupus III, IV, and Corona Australis as in our previous analysis of transition disks in Ophiuchus while all transition disk candidates selected in Lupus V, VI turned out to be contaminating background asymptotic giant branch stars. All transition disks classified as photoevaporating disks have small disk masses, which indicates that photoevaporation must be less efficient than predicted by most recent models. The three systems that are excellent candidates for harboring giant planets potentially represent invaluable laboratories to study planet formation with the Atacama Large Millimeter/Submillimeter Array.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A., E-mail: mmunoz.astro@gmail.com
We have explored the evolution of a cold debris disk under the gravitational influence of dwarf-planet-sized objects (DPs), both in the presence and absence of an interior giant planet. Through detailed long-term numerical simulations, we demonstrate that when the giant planet is not present, DPs can stir the eccentricities and inclinations of disk particles, in linear proportion to the total mass of the DPs; on the other hand, when the giant planet is included in the simulations, the stirring is approximately proportional to the mass squared. This creates two regimes: below a disk mass threshold (defined by the total massmore » of DPs), the giant planet acts as a stabilizing agent of the orbits of cometary nuclei, diminishing the effect of the scatterers; above the threshold, the giant contributes to the dispersion of the particles.« less
Forming a Moon with an Earth-like composition via a giant impact.
Canup, Robin M
2012-11-23
In the giant impact theory, the Moon formed from debris ejected into an Earth-orbiting disk by the collision of a large planet with the early Earth. Prior impact simulations predict that much of the disk material originates from the colliding planet. However, Earth and the Moon have essentially identical oxygen isotope compositions. This has been a challenge for the impact theory, because the impactor's composition would have likely differed from that of Earth. We simulated impacts involving larger impactors than previously considered. We show that these can produce a disk with the same composition as the planet's mantle, consistent with Earth-Moon compositional similarities. Such impacts require subsequent removal of angular momentum from the Earth-Moon system through a resonance with the Sun as recently proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar
We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than aroundmore » higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Gutiérrez, M. A.; Pichardo, B.; Peimbert, A.
With the use of long-term numerical simulations, we study the evolution and orbital behavior of cometary nuclei in cold Kuiper belt–like debris disks under the gravitational influence of dwarf planets (DPs); we carry out these simulations with and without the presence of a Neptune-like giant planet. This exploratory study shows that in the absence of a giant planet, 10 DPs are enough to induce strong radial and vertical heating on the orbits of belt particles. On the other hand, the presence of a giant planet close to the debris disk, acts as a stability agent reducing the radial and verticalmore » heating. With enough DPs, even in the presence of a Neptune-like giant planet some radial heating remains; this heating grows steadily, re-filling resonances otherwise empty of cometary nuclei. Specifically for the solar system, this secular process seems to be able to provide material that, through resonant chaotic diffusion, increase the rate of new comets spiraling into the inner planetary system, but only if more than the ∼10 known DP sized objects exist in the trans-Neptunian region.« less
The Long-Lived Disks in the η Chamaeleontis Cluster
NASA Astrophysics Data System (ADS)
Sicilia-Aguilar, Aurora; Bouwman, Jeroen; Juhász, Attila; Henning, Thomas; Roccatagliata, Veronica; Lawson, Warrick A.; Acke, Bram; Feigelson, Eric D.; Tielens, A. G. G. M.; Decin, Leen; Meeus, Gwendolyn
2009-08-01
We present Infrared Spectrograph spectra and revised Multiband Imaging Photometer photometry for the 18 members of the η Chamaeleontis cluster. Aged 8 Myr, the η Cha cluster is one of the few nearby regions within the 5-10 Myr age range, during which the disk fraction decreases dramatically and giant planet formation must come to an end. For the 15 low-mass members, we measure a disk fraction ~50%, high for their 8 Myr age, and four of the eight disks lack near-IR excesses, consistent with the empirical definition of "transition" disks. Most of the disks are comparable to geometrically flat disks. The comparison with regions of different ages suggests that at least some of the "transition" disks may represent the normal type of disk around low-mass stars. Therefore, their flattened structure and inner holes may be related to other factors (initial masses of the disk and the star, environment, binarity), rather than to pure time evolution. We analyze the silicate dust in the disk atmosphere, finding moderate crystalline fractions (~10%-30%) and typical grain sizes ~1-3 μm, without any characteristic trend in the composition. These results are common to other regions of different ages, suggesting that the initial grain processing occurs very early in the disk lifetime (<1 Myr). Large grain sizes in the disk atmosphere cannot be used as a proxy for age, but are likely related to higher disk turbulence. The dust mineralogy varies between the 8-12 μm and the 20-30 μm features, suggesting high temperature dust processing and little radial mixing. Finally, the analysis of IR and optical data on the B9 star η Cha reveals that it is probably surrounded by a young debris disk with a large inner hole, instead of being a classical Be star.
The SOLA Team: A Star Formation Project To Study the Soul of Lupus with ALMA
NASA Astrophysics Data System (ADS)
De Gregorio-Monsalvo, Itziar; Saito, M.; Rodon, J.; Takahashi, S.
2017-06-01
The SOLA team is a multi-national and multi-wavelength collaboration composed by scientists with technical expertise in ALMA and in infrared and optical techniques. The aim of the team is to establish a low-mass star formation scenario based on the Lupus molecular clouds. In this talk I will present our unique catalog of pre-stellar and proto-stellar cores toward Lupus molecular clouds, the results on our latest studies in protoplanetary disks, as well as our ALMA Cycle 3 data aiming at testing the formation mechanism of sub-stellar objects in Lupus molecular clouds.
Shrinking galaxy disks with fountain-driven accretion from the halo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A., E-mail: bge@watson.ibm.com, E-mail: curt@iastate.edu, E-mail: dah@lowell.edu
2014-12-01
Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a ratemore » proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, F. Y.; Bryden, G.; Werner, M. W.
We present dual-band Herschel /PACS imaging for 59 main-sequence stars with known warm dust ( T {sub warm} ∼ 200 K), characterized by Spitzer . Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μ m), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observedmore » with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer /IRS+Multiband Imaging Photometer (5-to-70 μ m) and Herschel /PACS (70-to-160 μ m) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout ( f {sub MB} = a {sub min}/ a {sub BOS} ∼ 5). We also probe the disk architecture of 39 Herschel -unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems.« less
Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach
Pichardo, Bárbara; Lake, George; Segura, Antígona
2013-01-01
Abstract Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 108 yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments. Key Words: Stellar interactions—Galactic habitable zone—Oort cloud. Astrobiology 13, 491–509. PMID:23659647
MODELING MULTI-WAVELENGTH STELLAR ASTROMETRY. I. SIM LITE OBSERVATIONS OF INTERACTING BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.
Interacting binaries (IBs) consist of a secondary star that fills or is very close to filling its Roche lobe, resulting in accretion onto the primary star, which is often, but not always, a compact object. In many cases, the primary star, secondary star, and the accretion disk can all be significant sources of luminosity. SIM Lite will only measure the photocenter of an astrometric target, and thus determining the true astrometric orbits of such systems will be difficult. We have modified the Eclipsing Light Curve code to allow us to model the flux-weighted reflex motions of IBs, in a codemore » we call REFLUX. This code gives us sufficient flexibility to investigate nearly every configuration of IB. We find that SIM Lite will be able to determine astrometric orbits for all sufficiently bright IBs where the primary or secondary star dominates the luminosity. For systems where there are multiple components that comprise the spectrum in the optical bandpass accessible to SIM Lite, we find it is possible to obtain absolute masses for both components, although multi-wavelength photometry will be required to disentangle the multiple components. In all cases, SIM Lite will at least yield accurate inclinations and provide valuable information that will allow us to begin to understand the complex evolution of mass-transferring binaries. It is critical that SIM Lite maintains a multi-wavelength capability to allow for the proper deconvolution of the astrometric orbits in multi-component systems.« less
NASA Astrophysics Data System (ADS)
Follette, Katherine Brutlag
What processes are responsible for the dispersal of protoplanetary disks? In this dissertation, beginning with a brief Introduction to planet detection, disk dispersal and high-contrast imaging in Chapter 1, I will describe how ground-based adaptive optics (AO) imaging can help to inform these processes. Chapter 2 presents Polarized Differential Imaging (PDI) of the transitional disk SR21 at H-band taken as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS). These observations were the first to show that transition disk cavities can appear markedly different at different wavelengths. The observation that the sub-mm cavity is absent in NIR scattered light is consistent with grain filtration at a planet-induced gap edge. Chapter 3 presents SEEDS data of the transition disk Oph IRS 48. This highly asymmetrical disk is also most consistent with a planet-induced clearing mechanism. In particular, the images reveal both the disk cavity and a spiral arm/divot that had not been imaged previously. This study demonstrates the power of multiwavelength PDI imaging to verify disk structure and to probe azimuthal variation in grain properties. Chapter 4 presents Magellan visible light adaptive optics imaging of the silhouette disk Orion 218-354. In addition to its technical merits, these observations reveal the surprising fact that this very young disk is optically thin at H-alpha. The simplest explanation for this observation is that significant grain growth has occurred in this disk, which may be responsible for the pre-transitional nature of its SED. Chapter 5 presents brief descriptions of several other works-in-progress that build on my previous work. These include the MagAO Giant Accreting Protoplanet Survey (GAPlanetS), which will probe the inner regions of transition disks at unprecedented resolution in search of young planets in the process of formation. Chapters 6-8 represent my educational research in quantitative literacy, beginning with an introduction to the literature and study motivation in Chapter 6. Chapter 7 describes the development and validation of the Quantitative Reasoning for College Science (QuaRCS) Assessment instrument. Chapter 8 briefly describes the next steps for Phase II of the QuaRCS study.
Galactic Black Holes in the Hard State: A Multi-Wavelength View of Accretion and Ejection
NASA Technical Reports Server (NTRS)
Kalemci; Tomsick, John A.; Migliari; Corbel; Markoff
2010-01-01
The canonical hard state is associated with emission from all three fundamental accretion components: the accretion disk, the hot accretion disk corona and the jet. On top of these, the hard state also hosts very rich temporal variability properties (low frequency QPOs in the PDS, time lags, long time scale evolution). Our group has been working on the major questions of the hard state both observationally (with mult i-wavelength campaigns using RXTE, Swift, Suzaku, Spitzer, VLA, ATCA, SMARTS) and theoretically (through jet models that can fit entire SEDs). Through spectral and temporal analysis we seek to determine the geometry of accretion components, and relate the geometry to the formation and emission from a jet. In this presentation I will review the recent contributions of our group to the field, including the Swift results on the disk geometry at low accretion rates, the jet model fits to the hard state SEDs (including Spitzer data) of GRO J1655-40, and the final results on the evolution of spectral (including X-ray, radio and infrared) and temporal properties of elected black holes in the hard states. I will also talk about impact of ASTROSAT to the science objective of our group.
An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos
NASA Astrophysics Data System (ADS)
van Zee, Liese
The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.
Gemini Planet Imager: Preliminary Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macintosh, B
2007-05-10
For the first time in history, direct and indirect detection techniques have enabled the exploration of the environments of nearby stars on scales comparable to the size of our solar system. Precision Doppler measurements have led to the discovery of the first extrasolar planets, while high-contrast imaging has revealed new classes of objects including dusty circumstellar debris disks and brown dwarfs. The ability to recover spectrophotometry for a handful of transiting exoplanets through secondary-eclipse measurements has allowed us to begin to study exoplanets as individual entities rather than points on a mass/semi-major-axis diagram and led to new models of planetarymore » atmospheres and interiors, even though such measurements are only available at low SNR and for a handful of planets that are automatically those most modified by their parent star. These discoveries have galvanized public interest in science and technology and have led to profound new insights into the formation and evolution of planetary systems, and they have set the stage for the next steps--direct detection and characterization of extrasolar Jovian planets with instruments such as the Gemini Planet Imager (GPI). As discussed in Volume 1, the ability to directly detect Jovian planets opens up new regions of extrasolar planet phase space that in turn will inform our understanding of the processes through which these systems form, while near-IR spectra will advance our understanding of planetary physics. Studies of circumstellar debris disks using GPI's polarimetric mode will trace the presence of otherwise-invisible low-mass planets and measure the build-up and destruction of planetesimals. To accomplish the science mission of GPI will require a dedicated instrument capable of achieving contrast of 10{sup -7} or more. This is vastly better than that delivered by existing astronomical AO systems. Currently achievable contrast, about 10{sup -5} at separations of 1 arc second or larger, is completely limited by quasi-static wave front errors, so that contrast does not improve with integration times longer than about 1 minute. Using the rotation of the Earth to distinguish companions from artifacts or multiwavelength imaging improves this somewhat, but GPI will still need to surpass the performance of existing systems by one to two orders of magnitude--an improvement comparable to the transition from photographic plates to CCDs. This may sound daunting, but other areas of optical science have achieved similar breakthroughs, for example, the transition to nanometer-quality optics for extreme ultraviolet lithography, the development of MEMS wave front control devices, and the ultra-high contrast demonstrated by JPL's High Contrast Imaging Test-bed. In astronomy, the Sloan Digital Sky Survey, long baseline radio interferometry, and multi-object spectrographs have led to improvements of similar or greater order of magnitude. GPI will be the first project to apply these revolutionary techniques to ground-based astronomy, with a systems engineering approach that studies the impact of every design decision on the key metric--final detectable planet contrast.« less
Collisional Time Scales in the Kuiper Disk and Their Implications
NASA Technical Reports Server (NTRS)
Stern, S. Alan
1995-01-01
We explore the rate of collisions among bodies in the present-day Kuiper Disk as a function of the total mass and population size structure of the disk. We find that collisional evolution is an important evolutionary process in the disk as a whole, and indeed, that it is likely the dominant evolutionary process beyond approx. 42 AU, where dynamical instability time scales exceed the age of the solar system. Two key findings we report from this modeling work are: that unless the disk's population structure is sharply truncated for radii smaller than approx. 1-2 km, collisions between comets and smaller debris are occurring so frequently in the disk, and with high enough velocities, that the small body (i.e., KM-class object) population in the disk has probably developed into a collisional cascade, thereby implying that the Kuiper Disk comets may not all be primordial, and that the rate of collisions of smaller bodies with larger 100 less R less 400 km objects (like 1992QB(sub 1) and its cohorts) is so low that there appears to be a dilemma in explaining how QB(sub 1)s could have grown by binary accretion in the disk as we know it. Given these findings, it appears that either the present-day paradigm for the formation of Kuiper Disk is failed in some fundamental respect, or that the present-day disk is no longer representative of the ancient structure from which it evolved. This in turn suggests the intriguing possibility that the present-day Kuiper Disk evolved through a more erosional stage reminiscent of the disks around the stars Beta Pictorus, alpha PsA, and alpha Lyr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jason J.; Graham, James R.; Pueyo, Laurent
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1'' (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1'' when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ~50 mas between 0farcs4 and 1farcs2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ~4 MJup planets at 4 AU. Lastly, we detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jason J.; Graham, James R.; De Rosa, Robert J.
We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side atmore » similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 M{sub Jup} planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.« less
New HErschel Multi-wavelength Extragalactic Survey of Edge-on Spirals (NHEMESES)
NASA Astrophysics Data System (ADS)
Holwerda, B. W.; Bianchi, S.; Baes, M.; de Jong, R. S.; Dalcanton, J. J.; Radburn-Smith, D.; Gordon, K.; Xilouris, M.
2012-08-01
Edge-on spiral galaxies offer a unique perspective on the vertical structure of spiral disks, both stars and the iconic dark dustlanes. The thickness of these dustlanes can now be resolved for the first time with Herschel in far-infrared and sub-mm emission. We present NHEMESES, an ongoing project that targets 12 edge-on spiral galaxies with the PACS and SPIRE instruments on Herschel. These vertically resolved observations of edge-on spirals will impact on several current topics. First and foremost, these Herschel observations will settle whether or not there is a phase change in the vertical structure of the ISM with disk mass. Previously, a dramatic change in dustlane morphology was observed as in massive disks the dust collapses into a thin lane. If this is the case, the vertical balance between turbulence and gravity dictates the ISM structure and consequently star-formation and related phenomena (spiral arms, bars etc.). We specifically target lower mass nearby edge-ons to complement existing Herschel observations of high-mass edge-on spirals (the HEROES project). Secondly, the combined data-set, together with existing Spitzer observations, will drive a new generation of spiral disk Spectral Energy Distribution models. These model how dust reprocesses starlight to thermal emission but the dust geometry remains the critical unknown. And thirdly, the observations will provide an accurate and unbiased census of the cold dusty structures occasionally seen extending out of the plane of the disk, when backlit by the stellar disk. To illustrate the NHEMESES project, we present early results on NGC 4244 and NGC 891, two well studies examples of a low and high-mass edge-on spiral.
High-precision polarimetry at the Mont-Mégantic Observatory with the new polarimeter POMM
NASA Astrophysics Data System (ADS)
Bastien, Pierre; Hernandez, Olivier; Albert, Loïc.; Artigau, Étienne; Doyon, René; Drissen, Laurent; Lafrenière, David; Moffat, Antony F. J.; St-Louis, Nicole
2014-07-01
A new polarimeter has been built for the "Observatoire du Mont-Mégantic" (POMM) and is now in commissioning phase. It will allow polarization measurements with a precision of 10-6, an improvement by a factor of 100 over the previous observatory polarimeter. The characteristics of the instrument that allow this goal are briefly discussed and the planned science observations are presented. They include exoplanets near their host star (hot Jupiters), transiting exoplanets, stars with debris disks, young stars with proto-planetary disks, brown dwarfs, massive Wolf-Rayet stars and comets. The details of the optical and mechanical designs are presented in two other papers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higuchi, Aya E.; Sakai, Nami; Sato, Aki
We have detected [C i] {sup 3} P {sub 1}–{sup 3} P {sub 0} emissions in the gaseous debris disks of 49 Ceti and β Pictoris with the 10 m telescope of the Atacama Submillimeter Telescope Experiment, which is the first detection of such emissions. The line profiles of [C i] are found to resemble those of CO( J = 3–2) observed with the same telescope and the Atacama Large Millimeter/submillimeter Array. This result suggests that atomic carbon (C) coexists with CO in the debris disks and is likely formed by the photodissociation of CO. Assuming an optically thin [Cmore » i] emission with the excitation temperature ranging from 30 to 100 K, the column density of C is evaluated to be (2.2 ± 0.2) × 10{sup 17} and (2.5 ± 0.7) × 10{sup 16} cm{sup −2} for 49 Ceti and β Pictoris, respectively. The C/CO column density ratio is thus derived to be 54 ± 19 and 69 ± 42 for 49 Ceti and β Pictoris, respectively. These ratios are higher than those of molecular clouds and diffuse clouds by an order of magnitude. The unusually high ratios of C to CO are likely attributed to a lack of H{sub 2} molecules needed to reproduce CO molecules efficiently from C. This result implies a small number of H{sub 2} molecules in the gas disk, i.e., there is an appreciable contribution of secondary gas from dust grains.« less
Spatially Resolved Spectroscopy and Coronagraphic Imaging of the TW Hydrae Circumstellar Disk
NASA Astrophysics Data System (ADS)
Roberge, Aki; Weinberger, Alycia J.; Malumuth, Eliot M.
2005-04-01
We present the first spatially resolved spectrum of scattered light from the TW Hydrae protoplanetary disk. This nearly face-on disk is optically thick, surrounding a classical T Tauri star in the nearby 10 Myr old TW Hya association. The spectrum was taken with the Hubble Space Telescope (HST) STIS CCD, providing resolution R~360 over the wavelength range 5250-10300 Å. Spatially resolved spectroscopy of circumstellar disks is difficult because of the high contrast ratio between the bright star and faint disk. Our novel observations provide optical spectra of scattered light from the disk between 40 and 155 AU from the star. The scattered light has the same color as the star (gray scattering) at all radii except the innermost region. This likely indicates that the scattering dust grains are larger than about 1 μm all the way out to large radii. From the spectroscopic data, we also obtained radial profiles of the integrated disk brightness at two position angles, over almost the same region as previously observed in HST WFPC2 and NICMOS coronagraphic images (35 to 173 AU from the star). The profiles have the same shape as the earlier ones, but show a small azimuthal asymmetry in the disk not previously noted. Our STIS broadband coronagraphic images of TW Hya confirm the reality of this asymmetry, and show that the disk surface brightness inside 140 AU has a sinusoidal dependence on azimuthal angle. The maximum brightness occurs at a position angle of 233.6d+/-5.7d east of north. This might be caused by the combination of forward scattering and an increase in inclination in the inner region of the disk, suggesting that the TW Hya disk has a warp like that seen in the β Pictoris debris disk.
Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Pinilla, P.; Pohl, A.; Stammler, S. M.; Birnstiel, T.
2017-08-01
Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μm to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold, which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H2O, CO2, and NH3. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H2O and CO2 (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.
NASA Astrophysics Data System (ADS)
Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sánchez Contreras, C.
2011-09-01
We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is νβ, with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β <= 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.
Dusty Dwarfs Galaxies Occulting A Bright Background Spiral
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2017-08-01
The role of dust in shaping the spectral energy distributions of low mass disk galaxies remains poorly understood. Recent results from the Herschel Space Observatory imply that dwarf galaxies contain large amounts of cool (T 20K) dust, coupled with very modest optical extinctions. These seemingly contradictory conclusions may be resolved if dwarfs harbor a variety of dust geometries, e.g., dust at larger galactocentric radii or in quiescent dark clumps. We propose HST observations of six truly occulting dwarf galaxies drawn from the Galaxy Zoo catalog of silhouetted galaxy pairs. Confirmed, true occulting dwarfs are rare as most low-mass disks in overlap are either close satellites or do not have a confirmed redshift. Dwarf occulters are the key to determining the spatial extent of dust, the small scale structure introduced by turbulence, and the prevailing dust attenuation law. The recent spectroscopic confirmation of bona-fide low mass occulting dwarfs offers an opportunity to map dust in these with HST. What is the role of dust in the SED of these dwarf disk galaxies? With shorter feedback scales, how does star-formation affect their morphology and dust composition, as revealed from their attenuation curve? The resolution of HST allows us to map the dust disks down to the fine scale structure of molecular clouds and multi-wavelength imaging maps the attenuation curve and hence dust composition in these disks. We therefore ask for 2 orbits on each of 6 dwarf galaxies in F275W, F475W, F606W, F814W and F125W to map dust from UV to NIR to constrain the attenuation curve.
Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.
1999-01-01
The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsakos, Titos; Königl, Arieh
Many of the observed spin–orbit alignment properties of exoplanets can be explained in the context of the primordial disk misalignment model, in which an initially aligned protoplanetary disk is torqued by a distant stellar companion on a misaligned orbit, resulting in a precessional motion that can lead to large-amplitude oscillations of the spin–orbit angle. We consider a variant of this model in which the companion is a giant planet with an orbital radius of a few astronomical units. Guided by the results of published numerical simulations, we model the dynamical evolution of this system by dividing the disk into inner andmore » outer parts—separated at the location of the planet—that behave as distinct, rigid disks. We show that the planet misaligns the inner disk even as the orientation of the outer disk remains unchanged. In addition to the oscillations induced by the precessional motion, whose amplitude is larger the smaller the initial inner-disk-to-planet mass ratio, the spin–orbit angle also exhibits a secular growth in this case—driven by ongoing mass depletion from the disk—that becomes significant when the inner disk’s angular momentum drops below that of the planet. Altogether, these two effects can produce significant misalignment angles for the inner disk, including retrograde configurations. We discuss these results within the framework of the Stranded Hot Jupiter scenario and consider their implications, including the interpretation of the alignment properties of debris disks.« less
Imaging an 80 au radius dust ring around the F5V star HD 157587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul
Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less
Imaging an 80 au radius dust ring around the F5V star HD 157587
Millar-Blanchaer, Maxwell A.; Wang, Jason J.; Kalas, Paul; ...
2016-10-21
Here, we present H-band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ~80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. Tomore » constrain the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ~70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system's proximity to the galactic plane and the point sources' positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk's offset from the star.« less
Cygnus X-1: A Case for a Magnetic Accretion Disk?
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Vaughan, B. A.; Dove, J.; Wilms, J.
1996-01-01
With the advent of Rossi X-ray Timing Explorer (RXTE), which is capable of broad spectral coverage and fast timing, as well as other instruments which are increasingly being used in multi-wavelength campaigns (via both space-based and ground-based observations), we must demand more of our theoretical models. No current model mimics all facets of a system as complex as an x-ray binary. However, a modern theory should qualitatively reproduce - or at the very least not fundamentally disagree with - all of Cygnus X-l's most basic average properties: energy spectrum (viewed within a broader framework of black hole candidate spectral behavior), power spectrum (PSD), and time delays and coherence between variability in different energy bands. Below we discuss each of these basic properties in turn, and we assess the health of one of the currently popular theories: Comptonization of photons from a cold disk. We find that the data pose substantial challenges for this theory, as well as all other in currently discussed models.
NASA Astrophysics Data System (ADS)
Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.
2016-11-01
Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).
DISCOVERY OF AN INNER DISK COMPONENT AROUND HD 141569 A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konishi, Mihoko; Shibai, Hiroshi; Grady, Carol A.
2016-02-20
We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0.″25, and can be traced from 0.″4 (∼46 AU) to 1.″0 (∼116 AU) after deprojection using i = 55°. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of ∼6 AU, and break points where the slope of the surface brightness changes.more » It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2″ (∼232 AU), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 ± 3 M{sub J} is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 M{sub J}, which is broadly consistent with previous estimates.« less
Studying Notable Debris Disks In L-band with the Vortex Coronagraph
NASA Astrophysics Data System (ADS)
Patel, Rahul; Beichman, Charles; Choquet, Elodie; Mawet, Dimitri; Meshkat, Tiffany; ygouf, marie
2018-01-01
Resolved images of circumstellar disks are integral to our understanding of planetary systems, as the micron sized dust grains that comprise the disk are born from the collisional grinding of planetesimals by larger planets in the system. Resolved images are essential to determining grain properties that might otherwise be degenerate from analyzing the star’s spectral energy distribution. Though the majority of scattered light images of disks are obtained at optical and near-IR wavelengths, only a few have been imaged in the thermal IR at L-band. Probing the spatial features of disks at L-band opens up the possibility of constraining additional grain properties, such as water/ice features.Here, we present the results of our effort to image the disks of a few notable systems at L-band using the NIRC2 imager at Keck, in conjunction with the newly commissioned vector vortex coronagraph. The vortex, along with the QACITS fine guiding program installed at Keck, enables us to probe the small ~lambda/D angular separations of these systems, and reach contrasts of 1/100,000. We will discuss the systems that have been imaged, and lessons learned while imaging in L-band. Our analysis of these disks reveal features previously unseen, and will lay the foundation for followup studies by missions such as JWST at similar wavelengths from space.
Discovery of an Inner Disk Component Around HD 141569 A
NASA Technical Reports Server (NTRS)
Konishi, Mihoko; Grady, Carol A.; Schneider, Glenn; Shibai, Hiroshi; McElwain, Michael W.; Nesvold, Erika R.; Kuchner, Marc J.; Carson, Joseph; Debes, John H.; Gaspar, Andras;
2016-01-01
We report the discovery of a scattering component around the HD 141569 A circumstellar debris system, interior to the previously known inner ring. The discovered inner disk component, obtained in broadband optical light with Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphy, was imaged with an inner working angle of 0 25 arcseconds, and can be traced from 0 4 seconds (approximately 46 atomic units) to 1.0 arcseconds (approximately 116 atomic units) after deprojection using inclination = 55 degrees. The inner disk component is seen to forward scatter in a manner similar to the previously known rings, has a pericenter offset of approximately 6 atomic units, and break points where the slope of the surface brightness changes. It also has a spiral arm trailing in the same sense as other spiral arms and arcs seen at larger stellocentric distances. The inner disk spatially overlaps with the previously reported warm gas disk seen in thermal emission. We detect no point sources within 2 arcseconds (approximately 232 atomic units), in particular in the gap between the inner disk component and the inner ring. Our upper limit of 9 plus or minus 3 mass Jupiter (M (sub J)) is augmented by a new dynamical limit on single planetary mass bodies in the gap between the inner disk component and the inner ring of 1 mass Jupiter, which is broadly consistent with previous estimates.
Protoplanetary and Transitional Disks in the Open Stellar Cluster IC 2395
NASA Astrophysics Data System (ADS)
Balog, Zoltan; Siegler, Nick; Rieke, G. H.; Kiss, L. L.; Muzerolle, James; Gutermuth, R. A.; Bell, Cameron P. M.; Vinkó, J.; Su, K. Y. L.; Young, E. T.; Gáspár, András
2016-11-01
We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (˜6-10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope, covering the wavelength range from 3.6 to 24 μm. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radii from ˜0.1 to ˜10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from ˜1 to ˜18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 μm excesses ([8] - [24] ≥ 1.5) increases from (8.4 ± 1.3)% at ˜3 Myr to (46 ± 5)% at ˜10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.
Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. ParkeSoil
2017-01-01
Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of...
Feasibility of Exoplanet Coronagraphy with the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Woodruff, Robert A.; Brown, Robert; Noecker, M. Charley; Cheng, Edward
2010-01-01
Herein we report on a preliminary study to assess the use of the Hubble Space Telescope (HST) for the direct detection and spectroscopic characterization of exoplanets and debris disks - an application for which HST was not originally designed. Coronagraphic advances may enable the design of a science instrument that could achieve limiting contrasts approx.10deg beyond 275 milli-arcseconds (4 lambda/D at 800 nm) inner working angle, thereby enabling detection and characterization of several known jovian planets and imaging of debris disks. Advantages of using HST are that it already exists in orbit, it's primary mirror is thermally stable and it is the most characterized space telescope yet flown. However there is drift of the HST telescope, likely due to thermal effects crossing the terminator. The drift, however, is well characterized and consists of a larger deterministic components and a smaller stochastic component. It is the effect of this drift versus the sensing and control bandwidth of the instrument that would likely limit HST coronagraphic performance. Herein we discuss the science case, quantifY the limiting factors and assess the feasibility of using HST for exoplanet discovery using a hypothetical new instrument. Keywords: Hubble Space Telescope, coronagraphy, exoplanets, telescopes
NASA Technical Reports Server (NTRS)
Ragland, S.; Ohnaka, K.; Hillenbrand, L.; Ridgway, S. T.; Colavita, M. M.; Akeson, R. L.; Cotton, W.; Danichi, W. C.; Hrynevych, M.; Milan-Gabet, R.;
2012-01-01
We present the first N-band nulling plus K- and L-band V(sup 2) observations of a young stellar object, MWC325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 micrometer wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.3 and 2 larger in the Lband and N-band, respectively, compared to that in the K-band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat-disk model, with only slight flaring in the outer regions of the disk, consisting of representative "sub-micron" (0.1 micron) and "micron" (2 micron) grains of a 50:50 ratio of silicate and graphite. This is marked contrast with the disks previously found in other Herbig Ae/Be stars suggesting a wide variety in the disk properties among Herbig Ae/Be stars.
NASA Technical Reports Server (NTRS)
Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)
1987-01-01
Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.
An Integrated Approach to Winds, Jets, and State Transitions
NASA Astrophysics Data System (ADS)
Neilsen, Joseph
2017-09-01
We propose a large multiwavelength campaign (120 ks Chandra HETGS, NuSTAR, INTEGRAL, JVLA/ATCA, Swift, XMM, Gemini) on a black hole transient to study the influence of ionized winds on relativistic jets and state transitions. With a reimagined observing strategy based on new results on integrated RMS variability and a decade of radio/X-ray monitoring, we will search for winds during and after the state transition to test their influence on and track their coevolution with the disk and the jet over the next 2-3 months. Our spectral and timing constraints will provide precise probes of the accretion geometry and accretion/ejection physics.
HD 101088, AN ACCRETING 14 AU BINARY IN LOWER CENTAURUS CRUX WITH VERY LITTLE CIRCUMSTELLAR DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitner, Martin A.; Chen, Christine H.; Muzerolle, James
2010-05-10
We present high-resolution (R = 55, 000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and Infrared Spectrometer low-resolution (R {approx} 60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the {approx}12 Myr old southern region of the Lower Centaurus Crux subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of M-dot > 1x10{supmore » -9} M{sub sun} yr{sup -1}, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 {mu}m flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 M{sub moon}. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.« less
The HR 4796A Debris System: Discovery of Extensive Exo-ring Dust Material
NASA Astrophysics Data System (ADS)
Schneider, Glenn; Debes, John H.; Grady, Carol A.; Gáspár, Andras; Henning, Thomas; Hines, Dean C.; Kuchner, Marc J.; Perrin, Marshall; Wisniewski, John P.
2018-02-01
The optically and IR-bright and starlight-scattering HR 4796A ringlike debris disk is one of the most- (and best-) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.″05 (77 au) debris ring. We present new, highly sensitive Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.″32 (23 au) to ≈15″ (1100 au). These very high-contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using six-roll PSF template–subtracted coronagraphy suppressing the primary light of HR 4796A, with three image-plane occulters, and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and biaxially asymmetric exo-ring scattering structure. These images at visible wavelengths are sensitive to and map the spatial distribution, brightness, and radial surface density of micron-size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein, we present a new morphological and photometric view of the larger-than-prior-seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.
IMAGING AN 80 au RADIUS DUST RING AROUND THE F5V STAR HD 157587
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millar-Blanchaer, Maxwell A.; Moon, Dae-Sik; Wang, Jason J.
2016-11-01
We present H -band near-infrared polarimetric imaging observations of the F5V star HD 157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of ∼80–100 au. The new GPI data complement recent Hubble Space Telescope /STIS observations that show the disk extending out to over 500 au. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrainmore » the disk geometry, we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of ∼70° and a 1.5 ± 0.6 au stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the system’s proximity to the galactic plane and the point sources’ positions relative to the disk, we consider it likely that they are background objects and unrelated to the disk’s offset from the star.« less
Applying a Particle-only Model to the HL Tau Disk
NASA Astrophysics Data System (ADS)
Tabeshian, Maryam; Wiegert, Paul A.
2018-04-01
Observations have revealed rich structures in protoplanetary disks, offering clues about their embedded planets. Due to the complexities introduced by the abundance of gas in these disks, modeling their structure in detail is computationally intensive, requiring complex hydrodynamic codes and substantial computing power. It would be advantageous if computationally simpler models could provide some preliminary information on these disks. Here we apply a particle-only model (that we developed for gas-poor debris disks) to the gas-rich disk, HL Tauri, to address the question of whether such simple models can inform the study of these systems. Assuming three potentially embedded planets, we match HL Tau’s radial profile fairly well and derive best-fit planetary masses and orbital radii (0.40, 0.02, 0.21 Jupiter masses for the planets orbiting a 0.55 M ⊙ star at 11.22, 29.67, 64.23 au). Our derived parameters are comparable to those estimated by others, except for the mass of the second planet. Our simulations also reproduce some narrower gaps seen in the ALMA image away from the orbits of the planets. The nature of these gaps is debated but, based on our simulations, we argue they could result from planet–disk interactions via mean-motion resonances, and need not contain planets. Our results suggest that a simple particle-only model can be used as a first step to understanding dynamical structures in gas disks, particularly those formed by planets, and determine some parameters of their hidden planets, serving as useful initial inputs to hydrodynamic models which are needed to investigate disk and planet properties more thoroughly.
NASA Technical Reports Server (NTRS)
Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid
2015-01-01
We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
NASA Astrophysics Data System (ADS)
Adibekyan, V.; Delgado-Mena, E.; Figueira, P.; Sousa, S. G.; Santos, N. C.; Faria, J. P.; González Hernández, J. I.; Israelian, G.; Harutyunyan, G.; Suárez-Andrés, L.; Hakobyan, A. A.
2016-06-01
Context. Several studies have reported a correlation between the chemical abundances of stars and condensation temperature (known as Tc trend). Very recently, a strong Tc trend was reported for the ζ Reticuli binary system, which consists of two solar analogs. The observed trend in ζ2 Ret relative to its companion was explained by the presence of a debris disk around ζ2 Ret. Aims: Our goal is to re-evaluate the presence and variability of the Tc trend in the ζ Reticuli system and to understand the impact of the presence of the debris disk on a star. Methods: We used very high-quality spectra of the two stars retrieved from the HARPS archive to derive very precise stellar parameters and chemical abundances. We derived the stellar parameters with the classical (nondifferential) method, while we applied a differential line-by-line analysis to achieve the highest possible precision in abundances, which are fundamental to explore for very tiny differences in the abundances between the stars. Results: We confirm that the abundance difference between ζ2 Ret and ζ1 Ret shows a significant (~2σ) correlation with Tc. However, we also find that the Tc trends depend on the individual spectrum used (even if always of very high quality). In particular, we find significant but varying differences in the abundances of the same star from different individual high-quality spectra. Conclusions: Our results for the ζ Reticuli system show, for example, that nonphysical factors, such as the quality of spectra employed and errors that are not accounted for, can be at the root of the Tc trends for the case of individual spectra. Based on data obtained from the ESO Science Archive Facility under request number vadibekyan204818, vadibekyan204820, and vadibekyan185979.The tables with EWs of the lines and chemical abundances are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A34
Dust Density Distribution and Imaging Analysis of Different Ice Lines in Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinilla, P.; Pohl, A.; Stammler, S. M.
Recent high angular resolution observations of protoplanetary disks at different wavelengths have revealed several kinds of structures, including multiple bright and dark rings. Embedded planets are the most used explanation for such structures, but there are alternative models capable of shaping the dust in rings as it has been observed. We assume a disk around a Herbig star and investigate the effect that ice lines have on the dust evolution, following the growth, fragmentation, and dynamics of multiple dust size particles, covering from 1 μ m to 2 m sized objects. We use simplified prescriptions of the fragmentation velocity threshold,more » which is assumed to change radially at the location of one, two, or three ice lines. We assume changes at the radial location of main volatiles, specifically H{sub 2}O, CO{sub 2}, and NH{sub 3}. Radiative transfer calculations are done using the resulting dust density distributions in order to compare with current multiwavelength observations. We find that the structures in the dust density profiles and radial intensities at different wavelengths strongly depend on the disk viscosity. A clear gap of emission can be formed between ice lines and be surrounded by ring-like structures, in particular between the H{sub 2}O and CO{sub 2} (or CO). The gaps are expected to be shallower and narrower at millimeter emission than at near-infrared, opposite to model predictions of particle trapping. In our models, the total gas surface density is not expected to show strong variations, in contrast to other gap-forming scenarios such as embedded giant planets or radial variations of the disk viscosity.« less
A multi-wavelength interferometric study of the massive young stellar object IRAS 13481-6124
NASA Astrophysics Data System (ADS)
Boley, Paul A.; Kraus, Stefan; de Wit, Willem-Jan; Linz, Hendrik; van Boekel, Roy; Henning, Thomas; Lacour, Sylvestre; Monnier, John D.; Stecklum, Bringfried; Tuthill, Peter G.
2016-02-01
We present new mid-infrared interferometric observations of the massive young stellar object IRAS 13481-6124, using VLTI/MIDI for spectrally-resolved, long-baseline measurements (projected baselines up to ~120 m) and GSO/T-ReCS for aperture-masking interferometry in five narrow-band filters (projected baselines of ~1.8-6.4 m) in the wavelength range of 7.5-13μm. We combine these measurements with previously-published interferometric observations in the K and N bands in order to assemble the largest collection of infrared interferometric observations for a massive YSO to date. Using a combination of geometric and radiative-transfer models, we confirm the detection at mid-infrared wavelengths of the disk previously inferred from near-infrared observations. We show that the outflow cavity is also detected at both near- and mid-infrared wavelengths, and in fact dominates the mid-infrared emission in terms of total flux. For the disk, we derive the inner radius (~1.8 mas or ~6.5 AU at 3.6 kpc), temperature at the inner rim (~1760 K), inclination (~48°) and position angle (~107°). We determine that the mass of the disk cannot be constrained without high-resolution observations in the (sub-)millimeter regime or observations of the disk kinematics, and could be anywhere from ~10-3 to 20M⊙. Finally, we discuss the prospects of interpreting the spectral energy distributions of deeply-embedded massive YSOs, and warn against attempting to infer disk properties from the spectral energy distribution. Based in part on observations with the Very Large Telescope Interferometer of the European Southern Observatory, under program IDs 384.C-0625, 086.C-0543, 091.C-0357.
The white dwarfs within 25 pc of the Sun: Kinematics and spectroscopic subtypes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sion, Edward M.; McCook, George P.; Wasatonic, Richard
2014-06-01
We present the fractional distribution of spectroscopic subtypes, range and distribution of surface temperatures, and kinematical properties of the white dwarfs (WDs) within 25 pc of the Sun. There is no convincing evidence of halo WDs in the total 25 pc sample of 224 WDs. There is also little to suggest the presence of genuine thick disk subcomponent members within 25 pc. It appears that the entire 25 pc sample likely belongs to the thin disk. We also find no significant kinematic differences with respect to spectroscopic subtypes. The total DA to non-DA ratio of the 25 pc sample ismore » 1.8, a manifestation of deepening envelope convection, which transforms DA stars with sufficiently thin H surface layers into non-DAs. We compare this ratio with the results of other studies. We find that at least 11% of the WDs within 25 pc of the Sun (the DAZ and DZ stars) have photospheric metals that likely originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, then it suggests the possibility that a similar percentage have planets, asteroid-like bodies, or debris disks orbiting them. Our volume-limited sample reveals a pileup of DC WDs at the well-known cutoff in DQ WDs at T {sub eff} ∼ 6000 K. Mindful of small number statistics, we speculate on its possible evolutionary significance. We find that the incidence of magnetic WDs in the 25 pc sample is at least 8% in our volume-limited sample, dominated by cool WDs. We derive approximate formation rates of DB and DQ degenerates and present a preliminary test of the evolutionary scenario that all cooling DB stars become DQ WDs via helium convective dredge-up with the diffusion tail of carbon extending upward from their cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Min; Kim, Jinyoung Serena; Apai, Dániel
We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of themore » sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.« less
PROTOPLANETARY AND TRANSITIONAL DISKS IN THE OPEN STELLAR CLUSTER IC 2395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balog, Zoltan; Siegler, Nick; Rieke, G. H.
We present new deep UBVRI images and high-resolution multi-object optical spectroscopy of the young (∼6–10 Myr old), relatively nearby (800 pc) open cluster IC 2395. We identify nearly 300 cluster members and use the photometry to estimate their spectral types, which extend from early B to middle M. We also present an infrared imaging survey of the central region using the IRAC and MIPS instruments on board the Spitzer Space Telescope , covering the wavelength range from 3.6 to 24 μ m. Our infrared observations allow us to detect dust in circumstellar disks originating over a typical range of radiimore » from ∼0.1 to ∼10 au from the central star. We identify 18 Class II, 8 transitional disk, and 23 debris disk candidates, respectively, 6.5%, 2.9%, and 8.3% of the cluster members with appropriate data. We apply the same criteria for transitional disk identification to 19 other stellar clusters and associations spanning ages from ∼1 to ∼18 Myr. We find that the number of disks in the transitional phase as a fraction of the total with strong 24 μ m excesses ([8] – [24] ≥ 1.5) increases from (8.4 ± 1.3)% at ∼3 Myr to (46 ± 5)% at ∼10 Myr. Alternative definitions of transitional disks will yield different percentages but should show the same trend.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.
Here, the HD 61005 debris disk ("The Moth") stands out from the growing collection of spatially resolved circumstellar disks by virtue of its unusual swept-back morphology, brightness asymmetries, and dust ring offset. Despite several suggestions for the physical mechanisms creating these features, no definitive answer has been found. In this work, we demonstrate the plausibility of a scenario in which the disk material is shaped dynamically by an eccentric, inclined planet. We present new Keck NIRC2 scattered-light angular differential imaging of the disk at 1.2–2.3 μm that further constrains its outer morphology (projected separations of 27–135 au). We also presentmore » complementary Gemini Planet Imager 1.6 μm total intensity and polarized light detections that probe down to projected separations less than 10 au. To test our planet-sculpting hypothesis, we employed secular perturbation theory to construct parent body and dust distributions that informed scattered-light models. We found that this method produced models with morphological and photometric features similar to those seen in the data, supporting the premise of a planet-perturbed disk. Briefly, our results indicate a disk parent body population with a semimajor axis of 40–52 au and an interior planet with an eccentricity of at least 0.2. Many permutations of planet mass and semimajor axis are allowed, ranging from an Earth mass at 35 au to a Jupiter mass at 5 au.« less
A SYMMETRIC INNER CAVITY IN THE HD 141569A CIRCUMSTELLAR DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazoyer, J.; Choquet, É.; Perrin, M. D.
2016-02-20
Some circumstellar disks, called transitional or hybrid disks, present characteristics of both protoplanetary disks (significant amount of gas) and debris disks (evolved structures around young main-sequence stars, composed of second generation dust, from collisions between planetesimals). Therefore, they are ideal astrophysical laboratories to witness the last stages of planet formation. The circumstellar disk around HD 141569A was intensively observed and resolved in the past from space, but also from the ground. However, the recent implementation of high contrast imaging systems has opened up new opportunities to re-analyze this object. We analyzed Gemini archival data from the Near-infrared Coronagraphic Imager obtained inmore » 2011 in the H band, using several angular differential imaging techniques (classical ADI, LOCI, KLIP). These images reveal the complex structures of this disk with an unprecedented resolution. We also include archival Hubble Space Telescope images as an independent data set to confirm these findings. Using an analysis of the inner edge of the disk, we show that the inner disk is almost axisymmetrical. The measurement of an offset toward the east observed by previous authors is likely due to the fact that the eastern part of this disk is wider and more complex in substructure. Our precise reanalysis of the eastern side shows several structures, including a splitting of the disk and a small finger detached from the inner edge to the southeast. Finally, we find that the arc at 250 AU is unlikely to be a spiral, at least not at the inclination derived from the first ring, but instead could be interpreted as a third belt at a different inclination. If the very symmetrical inner disk edge is carved by a companion, the data presented here put additional constraints on its position. The observed very complex structures will be confirmed by the new generation of coronagraphic instrument (GPI, SPHERE). However, a full understanding of this system will require gas observations at millimetric wavelengths.« less
A submillimeter background galaxy projected on the debris disk of HD95086 revealed by ALMA
NASA Astrophysics Data System (ADS)
Zapata, Luis A.; Ho, Paul T. P.; Rodríguez, Luis F.
2018-06-01
We present sensitive observations carried out with the Atacama Large Millimeter/Submillimeter Array (ALMA) of the dusty debris disc HD 95086. These observations were made in bands 6 (223 GHz) and 7 (338 GHz) with an angular resolution of about 1 arcsec, which allowed us to resolve well the debris disc with a deconvolved size of 7.0 × 6.0 arcsec2 and with an inner depression of about 2 arcsec. We do not detect emission from the star itself and the possible inner dusty belt. We also do not detect CO (J = 2-1) and (J = 3-2) emission, excluding the possibility of an evolved gaseous primordial disc as noted in previous studies of HD95086. We estimated a lower limit for the gas mass of ≤0.01 M⊕ for the debris disc of HD95086. From the mm. emission, we computed a dust mass for the debris disc HD95086 of 0.5 ± 0.2 M⊕, resulting in a dust-to-gas ratio of ≥50. Finally, we confirm the detection of a strong submillimeter source to the north-west of the disc (ALMA-SMM1) revealed by recent ALMA observations. This new source might be interpreted as a planet in formation on the periphery of the debris disc HD 95086 or as a strong impact between dwarf planets. However, given the absence of the proper motions of ALMA-SMM1 similar to those reported in the debris disc (estimated from these new ALMA observations) and for the optical star, this is more likely to be a submillimeter background galaxy.
Modeling Resonant Structure in the Kuiper Belt
NASA Astrophysics Data System (ADS)
Holmes, E. K.; Dermott, S. F.; Grogan, K.
1999-12-01
There is a possible connection between structure in circumstellar disks and the presence of planets, our own zodiacal cloud being the prime example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. At least three different types of asymmetries can serve to indicate bodies orbiting a star in a disk: (1) a warp in the plane of symmetry of the disk, (2) an offset in the center of symmetry of the disk with respect to the central star, and (3) density anomalies in the plane of the disk due to resonant trapping of dust particles. In the asteroid belt, collisions between asteroids supply dust particles to the zodiacal cloud. By comparison, it has been postulated that collisions between KBOs could initiate a collisional cascade which would produce a Kuiper dust disk. In fact, the Kuiper Belt is the region of our solar system that is most analogous to the planetary debris disks we see around other stars such as Vega, β Pic, Fomalhaut, and ɛ Eridani (Backman and Paresce 1993). A Kuiper Disk would most likely have a resonant structure, with two concentrations in brightness along the ecliptic longitude. This large scale structure arises because many of the KBOs, the Plutinos, are in the 2:3 mean motion resonance with Neptune. By running numerical integrations of particles in Pluto-like orbits, the resonant structure of the Kuiper belt can be studied by determining the percentage of particles trapped in the resonance as a function of their initial velocity and beta, where β = Frad}/F{grav. The dynamical evolution of the particles is followed from source to sink with Poynting Robertson light drag, solar wind drag, radiation pressure, and the effects of planetary gravitational perturbations included. This research was funded in part by a NASA GSRP grant.
Modeling Resonant Structure in the Kuiper Belt
NASA Astrophysics Data System (ADS)
Holmes, E. K.; Dermott, S. F.; Grogan, K.
1999-09-01
There is a possible connection between structure in circumstellar disks and the presence of planets, our own zodiacal cloud being the prime example. Asymmetries in such a disk could be diagnostic of planets which would be otherwise undetectable. At least three different types of asymmetries can serve to indicate bodies orbiting a star in a disk: (1) a warp in the plane of symmetry of the disk, (2) an offset in the center of symmetry of the disk with respect to the central star, and (3) density anomalies in the plane of the disk due to resonant trapping of dust particles. In the asteroid belt, collisions between asteroids supply dust particles to the zodiacal cloud. By comparison, it has been postulated that collisions between KBOs could initiate a collisional cascade which would produce a Kuiper dust disk. In fact, the Kuiper Belt is the region of our solar system that is most analogous to the planetary debris disks we see around other stars such as Vega, beta Pic, Fomalhaut, and epsilon Eridani (Backman and Paresce 1993). A Kuiper Disk would most likely have a resonant structure, with two concentrations in brightness along the ecliptic longitude. This large scale structure arises because many of the KBOs, the Plutinos, are in the 2:3 mean motion resonance with Neptune. By running numerical integrations of particles in Pluto-like orbits, the resonant structure of the Kuiper belt can be studied by determining the percentage of particles trapped in the resonance as a function of their initial velocity and beta, where beta = Frad/Fgrav. The dynamical evolution of the particles is followed from source to sink with Poynting Robertson light drag, solar wind drag, radiation pressure, and the effects of planetary gravitational perturbations included. This research was funded in part by a NASA GSRP grant.
NASA Technical Reports Server (NTRS)
Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol;
2013-01-01
The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.
Signatures of Exo-Solar Planets in Dust Debris Disks
NASA Technical Reports Server (NTRS)
Ozernoy, Leonid M.; Gorkavyi, Nick N.; Mather, John C.; Taidakova, Tanya A.
1999-01-01
We have developed a new numerical approach to the dynamics of minor bodies and dust particles, which enables us to increase, without using a supercomputer, the number of employed particle positions in each model up to 10(exp 10) - 10(exp 11), a factor of 10(exp 6) - 10(exp 7) higher than existing numerical simulations. We apply this powerful approach to the high-resolution modeling of the structure and emission of circumstellar dust disks, incorporating all relevant physical processes. In this Letter, we examine the resonant structure of a dusty disk induced by the presence of one planet of mass in the range of (5 x 10(exp -5) - 5 x 10(exp -3))M. It is shown that the planet, via resonances and gravitational scattering, produces (i) a central cavity void of dust; (ii) a trailing (sometimes leading) off-center cavity; and (iii) an asymmetric resonant dust belt with one, two, or more clumps. These features can serve as indicators of planet(s) embedded in the circumstellar dust disk and, moreover, can be used to determine the mass of the planet and even some of its orbital parameters. The results of our study reveal a remarkable similarity with various types of highly asymmetric circumstellar disks observed with the JCMT around Epsilon Eridani and Vega.
GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Astrophysics Data System (ADS)
Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.
2013-05-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were ~50%. For each association in the 5-20 Myr age range, ~2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass ~1 MJupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
From Disks to Planets: The Making of Planets and Their Early Atmospheres. An Introduction
NASA Astrophysics Data System (ADS)
Lammer, Helmut; Blanc, Michel
2018-03-01
This paper is an introduction to volume 56 of the Space Science Series of ISSI, "From disks to planets—the making of planets and their proto-atmospheres", a key subject in our quest for the origins and evolutionary paths of planets, and for the causes of their diversity. Indeed, as exoplanet discoveries progressively accumulated and their characterization made spectacular progress, it became evident that the diversity of observed exoplanets can in no way be reduced to the two classes of planets that we are used to identify in the solar system, namely terrestrial planets and gas or ice giants: the exoplanet reality is just much broader. This fact is no doubt the result of the exceptional diversity of the evolutionary paths linking planetary systems as a whole as well as individual exoplanets and their proto-atmospheres to their parent circumstellar disks: this diversity and its causes are exactly what this paper explores. For each of the main phases of the formation and evolution of planetary systems and of individual planets, we summarize what we believe we understand and what are the important open questions needing further in-depth examination, and offer some suggestions on ways towards solutions. We start with the formation mechanisms of circumstellar disks, with their gas and disk components in which chemical composition plays a very important role in planet formation. We summarize how dust accretion within the disk generates planet cores, while gas accretion on these cores can lead to the diversity of their fluid envelopes. The temporal evolution of the parent disk itself, and its final dissipation, put strong constraints on how and how far planetary formation can proceed. The radiation output of the central star also plays an important role in this whole story. This early phase of planet evolution, from disk formation to dissipation, is characterized by a co-evolution of the disk and its daughter planets. During this co-evolution, planets and their protoatmospheres not only grow, but they also migrate radially as a result of their interaction with the disk, thus moving progressively from their distance of formation to their final location. The formation of planetary fluid envelopes (proto-atmospheres and oceans), is an essential product of this planet formation scenario which strongly constrains their possible evolution towards habitability. We discuss the effects of the initial conditions in the disk, of the location, size and mass of the planetary core, of the disk lifetime and of the radiation output and activity of the central star, on the formation of these envelopes and on their relative extensions with respect to the planet core. Overall, a fraction of the planets retain the primary proto-atmosphere they initially accreted from the gas disk. For those which lose it in this early evolution, outgassing of volatiles from the planetary core and mantle, together with some contributions of volatiles from colliding bodies, give them a chance to form a "secondary" atmosphere, like that of our own Earth. When the disk finally dissipates, usually before 10 Million years of age, it leaves us with the combination of a planetary system and a debris disk, each with a specific radial distribution with respect to their parent star(s). Whereas the dynamics of protoplanetary disks is dominated by gas-solid dynamical coupling, debris disks are dominated by gravitational dynamics acting on diverse families of planetesimals. Solid-body collisions between them and giant impacts on young planetary surfaces generate a new population of gas and dust in those disks. Synergies between solar system and exoplanet studies are particularly fruitful and need to be stimulated even more, because they give access to different and complementary components of debris disks: whereas the different families of planetesimals can be extensively studied in the solar system, they remain unobserved in exoplanet systems. But, in those systems, long-wavelength telescopic observations of dust provide a wealth of indirect information about the unobserved population of planetesimals. Promising progress is being currently made to observe the gas component as well, using millimetre and sub-millimetre giant radio interferometers. Within planetary systems themselves, individual planets are the assembly of a solid body and a fluid envelope, including their planetary atmosphere when there is one. Their characteristics range from terrestrial planets through sub-Neptunes and Neptunes and to gas giants, each type covering most of the orbital distances probed by present-day techniques. With the continuous progress in detection and characterization techniques and the advent of major providers of new data like the Kepler mission, the architecture of these planetary systems can be studied more and more accurately in a statistically meaningful sense and compared to the one of our own solar system, which does not appear to be an exceptional case. Finally, our understanding of exoplanets atmospheres has made spectacular advances recently using the occultation spectroscopy techniques implemented on the currently operating space and ground-based observing facilities. The powerful new observing facilities planned for the near and more distant future will make it possible to address many of the most challenging current questions of the science of exoplanets and their systems. There is little doubt that, using this new generation of facilities, we will be able to reconstruct more and more accurately the complex evolutionary paths which link stellar genesis to the possible emergence of habitable worlds.
Silica Debris Disk Evidence for Giant Planet Forming Impacts
NASA Astrophysics Data System (ADS)
Lisse, C.
2014-04-01
Giant impacts are major formation events in the history of our solar system. The final assembly of the planets, as we understand it, had to include massive fast collision events as the planets grew to objects with large escape velocities or in regions of high Keplerian velocities (Chambers 2004; Kenyon & Bromley 2004a,b, 2006; Fegley & Schaefer 2005). These massive impact events should create large amounts of glassy silica material derived from the rapid melting, vaporization, and refreezing of normal silicate rich primitive rocky material. We report here the detection of 4 bright silica-rich debris disks in the Spitzer IRS spectral archive, and the possible identification of 7 others. The stellar types of the system primaries span from A5V to G0V, their ages are 10 - 100 Myr, and the dust is warm, 280 - 480 K, and is located between 1.5 and 6 AU, well inside the systems' terrestrial planet regions. The minimum amount of detected 0.1 - 20 dust mass ranges from 10^21 - 10^23 kg; assuming < 10% dust formation efficiency (Benz 2009, 2011) this implies collisions involving impactors massing at least 10^22 - 10^24 kg, i.e. from Moon to Earth mass. We find possible trends in the mineralogy of the silica, with predominantly amorphous silica found in the 2 younger systems, and crystalline silica in the older systems. We speculate this is due higher velocity impacts found in younger, hotter systems, coupled with the effects of energetic photon annealing of small amorphous silica grains. All of these measures are consistent with the creation of silica rich rubble, or construction debris, during the terrestrial planet formation era of giant impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B. C.; Melosh, H. J.; Lisse, C. M.
2012-12-10
Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris diskmore » in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.« less
Deep HST/STIS Visible-Light Imaging of Debris Systems Around Solar Analog Hosts
NASA Technical Reports Server (NTRS)
Schneider, Glenn; Grady, Carol A.; Stark, Christopher C.; Gaspar, Andras; Carson, Joseph; Debes, John H.; Henning, Thomas; Hines, Dean C.; Jang-Condell, Hannah; Kuchner, Marc J.
2016-01-01
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar systems Edgeworth Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both approx. 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F disk /F star optical brightness approx. t( exp.-0.8), similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.
Giant impacts in the Beta Pic system
NASA Astrophysics Data System (ADS)
Jackson, A.
2014-09-01
One scenario that can potentially explain the brightness asymmetry in the Beta Pictoris debris disk in the mid-infrared and millimetre is that of a comparatively recent (< 1 Myr ago) impact between planetary scale bodies at an orbital distance of ˜85 AU, as discussed by Dent et al 2014. I will discuss the details of this model, how it applies to Beta Pictoris, and how it may be applied elsewhere.
NASA Technical Reports Server (NTRS)
Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.;
2014-01-01
Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.
Strongly Magnetized Accretion Disks in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Begelman, Mitchell
Accretion disks likely provide the conduit for fueling active galactic nuclei (AGN), linking the black hole's immediate surroundings to the host galaxy's nuclear star cluster, and possibly beyond. Yet detailed AGN disk models fail to explain several of the most basic observational features of AGN: How do the outer regions of the disk avoid stalling as a result of wholesale gravitational fragmentation? What regulates the amount of star formation that is inferred to accompany accretion in some AGN? Why is the broad emission line region a ubiquitous feature of luminous AGN? What processes create and maintain the so-called "dusty torus"? Analytic work suggests that vertical pressure support of the disk primarily by a toroidal magnetic field, rather than by gas or radiation pressure, can readily resolve these problems. And recent numerical simulations have indicated that such a strong toroidal field is the inevitable consequence of the magnetorotational instability (MRI) when a disk accumulates a modest amount of net magnetic flux, thus providing a sound theoretical basis for strongly magnetized disks. We propose an analytic and computational study of such disks in the AGN context, focusing on: (1) The basic physical properties of strongly magnetized AGN disks. We will focus on the competition between field generation and buoyancy, improving on previous work by considering realistic equations of state, dissipative processes and radiative losses. We will use global simulations to test the limiting magnetic fields that can be produced by MRIdriven accretion disk dynamos and explore the driving mechanisms of disk winds and the resulting levels of mass, angular momentum and energy loss. (2) Gravitational fragmentation and star formation in strongly magnetized disks. We will determine how a strong field reduces and regulates gravitational fragmentation, by both lowering the disk density and creating a stratified structure in which star formation near the equator can co-exist with accretion at large heights. Using simulations, we will study fragmentation conditions, the clumpiness of stable AGN disks, and the mass function of collapsed clumps. (3) Physics of the broad emission line region and dusty torus . We will study the possible role of the strong toroidal field in promoting thermal instabilities to create dense lineemitting filaments, transporting them in height, and confining the line-emitting gas. Extrapolating to slightly larger distances, we will examine whether the field can elevate dusty gas to heights at which it can reprocess a substantial fraction of the AGN radiation. This study will establish a new theoretical framework for interpreting multi-wavelength observations of AGN, involving NASA s infrared, ultraviolet and X-ray observatories as well as ground-based detectors. It addresses fundamental questions about how supermassive black holes interact with their galactic environments, as well as broader issues of feedback and black hole-galaxy co-evolution.
Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?
NASA Astrophysics Data System (ADS)
Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.
2016-02-01
Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).
Color Profile Trends of Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Herrmann, Kimberly A.; LITTLE THINGS Team
2012-01-01
Radial stellar surface brightness profiles of spiral galaxies can be classified into three types: (I) single exponential, (II) truncated: the light falls off with one exponential out to a break radius and then falls off more steeply, and (III) anti-truncated: the light falls off with one exponential out to a break radius and then falls off less steeply. Stellar surface brightness profile breaks are also found in dwarf disk galaxies, but with an additional category: (FI) flat-inside: the light is roughly constant or increasing and then falls off beyond a break. Additionally, Bakos, Trujillo, & Pohlen (2008) showed that for spirals, each profile type has a characteristic color trend with respect to the break location. Furthermore, color trends reveal information about possible stellar population changes at the breaks. Here we show color trends for the four profile types from a large multi-wavelength photometric study of dwarf disk galaxies (the 141 dwarf parent sample of the LITTLE THINGS galaxies). We explore the similarities and differences between spirals and dwarfs and also between different colors. We gratefully acknowledge funding for this research from the National Science Foundation (AST-0707563).
NASA Astrophysics Data System (ADS)
Abraham, Roberto G.
In keeping with the spirit of a meeting on ‘masks,' this talk presents two short stories on the theme of dust. In the first, dust plays the familiar role of the evil obscurer, the enemy to bedefeated by the cunning observer in order to allow a key future technology (adaptive optics) to be exploited fully by heroic astronomers. In the second story, dust itself emerges as the improbable hero, in the form of a circumstellar debris disks. I will present evidence of a puzzling near-infrared excess in the continuum of high-redshift galaxies and will argue that the seemingly improbable origin of this IR excess is a population of young circumstellar disks formed around high-mass stars in distant galaxies. Assuming circumstellar disks extend down to lower masses,as they do in our own Galaxy, the excess emission presents us with an exciting opportunity to measure the formation rate of planetary systems in distant galaxies at cosmic epochs before our own solar system formed.
NASA Astrophysics Data System (ADS)
Zhu, Z. Y.; Mo, J. L.; Wang, D. W.; Zhao, J.; Zhu, M. H.; Zhou, Z. R.
2018-04-01
In this work, the interfacial friction and wear and vibration characteristics are studied by sliding a chromium bearing steel ball (AISI 52100) over both multi-grooved and single-grooved forged steel disks (20CrMnMo) at low and high rotating speeds in order to reveal the effect mechanism of groove-textured surface on tribological behaviors. The results show that the grooves modify the contact state of the ball and the disk at the contact interface. This consequently causes variations in the normal displacement, normal force, and friction force signals. The changes in these three signals become more pronounced with increasing groove width at a low speed. The collision behavior between the ball and the groove increase the amplitude of vibration acceleration at a high speed. The test results suggest that grooves with appropriate widths could trap wear debris on the ball surface while avoiding a strong collision between the disk and the ball, resulting in an improvement in the wear states.
The WIRED Survey. 2; Infrared Excesses in the SDSS DR7 White Dwarf Catalog
NASA Technical Reports Server (NTRS)
Debes, John H.; Hoard, D. W.; Wachter, Stefanie; Leisawitz, David T.; Cohen, Martin
2011-01-01
With the launch of the Wide-field Infrar.ed Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From -18,000 input targets, there are WISE detections comprising 344 "naked" WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large (approx. 6") WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.
The Herschel DUNES Open Time Key Programme
NASA Technical Reports Server (NTRS)
Danchi, William C.
2009-01-01
We will use the unique photometric capabilities provided by Herschel to perform a deep and systematic survey for faint, cold debris disks around nearby stars. Our sensitivity-limited Open Time Key Programme (OTKP) aims at finding and characterizing faint extrasolar analogues to the Edgeworth-Kuiper Belt (EKB) in an unbiased, statistically significant sample of nearby FGK main-sequence stars. Our target set spans a broad range of stellar ages (from 0.1 to 10 Gyr) and is volume-limited (distances < 20 pc). All stars with known extrasolar planets within this distance are included; additionally, some M- and A-type stars will be observed in collaboration with the Herschel DEBRIS OTKP, so that the entire sample covers a decade in stellar mass, from 0.2 to 2 solar masses. We will perform PACS and SPIRE photometric observations covering the wavelength range from 70 to 500 microns. The PACS observations at 100 microns have been designed to detect the stellar photospheres down to the confusion limit with a signal-to-noise ratio > 5. The observations in the other Herschel bands will allow us to characterize, model, and constrain the disks. As a result, it will be possible for us to reach fractional dust luminosities of a few times 10-7, close to the EKB level in the Solar System. This will provide an unprecedented lower limit to the fractional abundance of planetesimal systems and allow us to assess the presence of giant planets, which would play dynamical roles similar to those played by Jupiter and Neptune in the Solar System. The proposed observations will provide new and unique evidence for the presence of mature planetary systems in the solar neighbourhood and, in turn, will address the universality of planet/planetary system formation in disks around young stars.
NASA Astrophysics Data System (ADS)
Antwi-Danso, Jacqueline; Barger, Kathleen; Haffner, L. Matthew
2016-01-01
Tidal interactions between two dwarf galaxies near the Milky Way, the Large and Small Magellanic Clouds, have caused large quantities of gas to be flung into the halo of the Milky Way. Much of this tidal debris, known as the Magellanic System, is currently headed towards the disk of the Milky Way, spearheaded by the Leading Arm, with the Bridge connecting the two dwarf galaxies, and the trailing Magellanic Stream at the end. Estimates for the amount of gas that the Magellanic System contains are in the range of (2 - 4) × 109 M⊙ and this could supply our Galaxy with (3.7 - 6.7) M⊙ yr-1 (Fox et al. 2014). Although this is higher than the present star-formation rate of the Galaxy, the position of the tidal debris predisposes it to ionizing radiation from the extragalactic background and Galactic disk, as well as ram-pressure stripping from the halo, hindering gas accretion. Some parts of the Leading Arm, however, appear to have already survived the trip to the disk as their morphology is indicative of interaction with the interstellar medium of the Galaxy. The exact amount of gas that this structure contains is uncertain because of weak constrains in its distance. In this study, we made seven pointed Hα observations using the Wisconsin Hα Mapper Telescope and then compared the Hα intensity we obtained to models of the anticipated ionizing flux from the Milky Way and extragalactic background. From this, we calculated the distance from the Sun to the Leading Arm of the Magellanic System at the locations of our observations.
NASA Astrophysics Data System (ADS)
Kluska, Jacques; Kraus, Stefan; Davies, Claire L.; Harries, Tim; Willson, Matthew; Monnier, John D.; Aarnio, Alicia; Baron, Fabien; Millan-Gabet, Rafael; Ten Brummelaar, Theo; Che, Xiao; Hinkley, Sasha; Preibisch, Thomas; Sturmann, Judit; Sturmann, Laszlo; Touhami, Yamina
2018-03-01
High angular resolution observations of young stellar objects are required to study the inner astronomical units of protoplanetary disks in which the majority of planets form. As they evolve, gaps open up in the inner disk regions and the disks are fully dispersed within ∼10 Myr. MWC 614 is a pretransitional object with a ∼10 au radius gap. We present a set of high angular resolution observations of this object including SPHERE/ZIMPOL polarimetric and coronagraphic images in the visible, Keck/NIRC2 near-infrared (NIR) aperture masking observations, and Very Large Telescope Interferometer (AMBER, MIDI, and PIONIER) and Center for High Angular Resolution Astronomy (CLASSIC and CLIMB) long-baseline interferometry at infrared wavelengths. We find that all the observations are compatible with an inclined disk (i ∼ 55° at a position angle of ∼20°–30°). The mid-infrared data set confirms that the disk inner rim is at 12.3 ± 0.4 au from the central star. We determined an upper mass limit of 0.34 M ⊙ for a companion inside the cavity. Within the cavity, the NIR emission, usually associated with the dust sublimation region, is unusually extended (∼10 au, 30 times larger than the theoretical sublimation radius) and indicates a high dust temperature (T ∼ 1800 K). As a possible result of companion-induced dust segregation, quantum heated dust grains could explain the extended NIR emission with this high temperature. Our observations confirm the peculiar state of this object where the inner disk has already been accreted onto the star, exposing small particles inside the cavity to direct stellar radiation. Based on observations made with the Keck observatory (NASA program ID N104N2) and with ESO telescopes at the Paranal Observatory (ESO program IDs 073.C-0720, 077.C-0226, 077.C-0521, 083.C-0984, 087.C-0498(A), 190.C-0963, 095.C-0883) and with the Center for High Angular Resolution Astronomy observatory.
Characterization of the Inner Disk around HD 141569 A from Keck/NIRC2 L-Band Vortex Coronagraphy
NASA Astrophysics Data System (ADS)
Mawet, Dimitri; Choquet, Élodie; Absil, Olivier; Huby, Elsa; Bottom, Michael; Serabyn, Eugene; Femenia, Bruno; Lebreton, Jérémy; Matthews, Keith; Gomez Gonzalez, Carlos A.; Wertz, Olivier; Carlomagno, Brunella; Christiaens, Valentin; Defrère, Denis; Delacroix, Christian; Forsberg, Pontus; Habraken, Serge; Jolivet, Aissa; Karlsson, Mikael; Milli, Julien; Pinte, Christophe; Piron, Pierre; Reggiani, Maddalena; Surdej, Jean; Vargas Catalan, Ernesto
2017-01-01
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L‧ band (3.8 μm) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the inner working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q, N, and 8.6 μm PAH emission reported earlier. We also see an outward progression in dust location from the L‧ band to the H band (Very Large Telescope/SPHERE image) to the visible (Hubble Space Telescope (HST)/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L‧-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.
2010-12-01
We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observationsmore » represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 {mu}m photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L{sub disk}/L{sub *} = 2 x 10{sup -3} in 2 Myr and more tenuous than L{sub disk}/L{sub *} = 5 x 10{sup -4} in 4 Myr.« less
Selected results from the epsilon Aurigae eclipse campaign, and what lies ahead
NASA Astrophysics Data System (ADS)
Stencel, Robert E.
2013-07-01
The torrent of data generated during the 2009-2011 eclipse of the enigmatic binary, epsilon Aurigae, has provided abundant opportunity to test and refine the many ideas associated with this system. The UBVRIJH photometric light curves established times of ingress and egress, and also revealed that the differential color of the disk varied, relative to pre- or post- mid-eclipse phase. Inter-eclipse monitoring indicated secular variations suggestive of a rapidly evolving F supergiant star. Interferometric imaging decisively identified the eclipse-causing agent to be an opaque disk (CHARA+MIRC). Spectroscopy has shown that a hot source occupies the center of this disk (He I 10830A, Far-UV excess), that the disk exhibits substructure (K I 7699A) and may have an extended atmosphere (CHARA+VEGA), and that the disk is isotopically-enhanced in 13C (GNIRS) and in rare-earth elements during a third contact "still-stand" in the light curve, suggestive of a mass transfer stream. Polarimetry and spectro-polarimetry provided additional constraints on the F star atmospheric variation and the nature of the dust scattering in the disk. Numerical models of the disk are exploring its relationship to the wider class of transitional and debris-type disks, and how differential heating of the dust may reveal properties not otherwise detected spectroscopically. As the system moves to quadrature in coming years, continued observing opportunities will continue to exist. I am grateful for support from the estate of William Herschel Womble for astronomy at the University of Denver, which has made possible two decades of research on this star that otherwise has revealed its secrets only very slowly.
Characterizing the Disk of a Recent Massive Collisional Event
NASA Astrophysics Data System (ADS)
Song, Inseok
2015-10-01
Debris disks play a key role in the formation and evolution of planetary systems. On rare occasions, circumstellar material appears as strictly warm infrared excess in regions of expected terrestrial planet formation and so present an interesting opportunity for the study of terrestrial planetary regions. There are only a few known cases of extreme, warm, dusty disks which lack any colder outer component including BD+20 307, HD 172555, EF Cha, and HD 23514. We have recently found a new system TYC 8830-410-1 belonging to this rare group. Warm dust grains are extremely short-lived, and the extraordinary amount of warm dust near these stars can only be plausibly explainable by a recent (or on-going) massive transient event such as the Late Heavy Bombardment (LHB) or plantary collisions. LHB-like events are seen generally in a system with a dominant cold disk, however, warm dust only systems show no hint of a massive cold disk. Planetary collisions leave a telltale sign of strange mid-IR spectral feature such as silica and we want to fully characterize the spectral shape of the newly found system with SOFIA/FORCAST. With SOFIA/FORCAST, we propose to obtain two narrow band photometric measurements between 6 and 9 microns. These FORCAST photometric measurements will constrain the amount and temperature of the warm disk in the system. There are less than a handful systems with a strong hint of recent planetary collisions. With the firmly constrained warm disk around TYC 8830-410-1, we will publish the discovery in a leading astronomical journal accompanied with a potential press release through SOFIA.
Searching for Planets Around Pulsars
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2015-09-01
Did you know that the very first exoplanets ever confirmed were found around a pulsar? The precise timing measurements of pulsar PSR 1257+12 were what made the discovery of its planetary companions possible. Yet surprisingly, though weve discovered thousands of exoplanets since then, only one other planet has ever been confirmed around a pulsar. Now, a team of CSIRO Astronomy and Space Science researchers are trying to figure out why.Formation ChallengesThe lack of detected pulsar planets may simply reflect the fact that getting a pulsar-planet system is challenging! There are three main pathways:The planet formed before the host star became a pulsar which means it somehow survived its star going supernova (yikes!).The planet formed elsewhere and was captured by the pulsar.The planet formed out of the debris of the supernova explosion.The first two options, if even possible, are likely to be rare occurrences but the third option shows some promise. In this scenario, after the supernova explosion, a small fraction of the material falls back toward the stellar remnant and is recaptured, forming what is known as a supernova fallback disk. According to this model, planets could potentially form out of this disk.Disk ImplicationsLed by Matthew Kerr, the CSIRO astronomers set out to systematically look for these potential planets that might have formed in situ around pulsars. They searched a sample of 151 young, energetic pulsars, scouring seven years of pulse time-of-arrival data for periodic variation that could signal the presence of planetary companions. Their methods to mitigate pulsar timing noise and model realistic orbits allowed them to have good sensitivity to low-mass planets.The results? They found no conclusive evidence that any of these pulsars have planets.This outcome carries with it some significant implications. The pulsar sample spans 2 Myr in age, in which planets should have had enough time to form in debris disks. The fact that none were detected suggests that long-lived supernova fallback disks may actually be much rarer than thought, or they exist only in conditions that arent compatible with planet formation.So if thats the case, what about the planets found around PSR 1257+12? This pulsar may actually be somewhat unique, in that it was born with an unusually weak magnetic field. This birth defect might have allowed it to form a fallback disk and, subsequently, planets where the sample of energetic pulsars studied here could not.CitationM. Kerr et al.2015 ApJ 809 L11 doi:10.1088/2041-8205/809/1/L11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Lixin; Escala, Andres; Coppi, Paolo, E-mail: lixin.dai@yale.edu
We have carried out general relativistic particle simulations of stars tidally disrupted by massive black holes. When a star is disrupted in a bound orbit with moderate eccentricity instead of a parabolic orbit, the temporal behavior of the resulting stellar debris changes qualitatively. The debris is initially all bound, returning to pericenter in a short time about the original stellar orbital timescale. The resulting fallback rate can thus be much higher than the Eddington rate. Furthermore, if the star is disrupted close to the hole, in a regime where general relativity is important, the stellar and debris orbits display generalmore » relativistic precession. Apsidal precession can make the debris stream cross itself after several orbits, likely leading to fast debris energy dissipation. If the star is disrupted in an inclined orbit around a spinning hole, nodal precession reduces the probability of self-intersection, and circularization may take many dynamical timescales, delaying the onset of flare activity. An examination of the particle dynamics suggests that quasi-periodic flares with short durations, produced when the center of the tidal stream passes pericenter, may occur in the early-time light curve. The late-time light curve may still show power-law behavior which is generic to disk accretion processes. The detection triggers for future surveys should be extended to capture such 'non-standard' short-term flaring activity before the event enters the asymptotic decay phase, as this activity is likely to be more sensitive to physical parameters such as the black hole spin.« less
Massive collisions in debris disks: possible application to the beta Pic disc
NASA Astrophysics Data System (ADS)
Kral, Q.; Thébault, P.; Augereau, J.-C.; Boccaletti, A.; Charnoz, S.
2014-09-01
The new LIDT-DD code has been used to study massive collisions in debris discs. This new hybrid model is a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013). It models the full complexity of debris discs' physics such as high velocity collisions, radiation-pressure affected orbits, wide range of grains' dynamical behaviour, etc. LIDT-DD can be used on many possible applications. Our first test case concerns the violent breakup of a massive planetesimal such as the ones happening during the late stages of planetary formation or with the biggest bodies in debris belts. We investigate the duration, magnitude and spatial structure of the signature left by such a violent event, as well as its observational detectability. We find that the breakup of a Ceres-sized body creates an asymmetric dust disc that is homogenized, by the coupled action of collisions and dynamics. The luminosity excess in the breakup's aftermath should be detectable by mid-IR photometry, from a 30 pc distance. As for the asymmetric structures, we derive synthetic images for the SPHERE/VLT and MIRI/JWST instruments, showing that they should be clearly visible and resolved from a 10 pc distance. We explain the observational signature of such impacts and give scaling laws to extrapolate our results to different configurations. These first results confirm that our code can be used to study the massive collision scenario to explain some asymmetries in the Beta-Pic disc.
NASA Technical Reports Server (NTRS)
2007-01-01
Our solitary sunsets here on Earth might not be all that common in the grand scheme of things. New observations from NASA's Spitzer Space Telescope have revealed that mature planetary systems -- dusty disks of asteroids, comets and possibly planets -- are more frequent around close-knit twin, or binary, stars than single stars like our sun. That means sunsets like the one portrayed in this artist's photo concept, and more famously in the movie 'Star Wars,' might be quite commonplace in the universe. Binary and multiple-star systems are about twice as abundant as single-star systems in our galaxy, and, in theory, other galaxies. In a typical binary system, two stars of roughly similar masses twirl around each other like pair-figure skaters. In some systems, the two stars are very far apart and barely interact with each other. In other cases, the stellar twins are intricately linked, whipping around each other quickly due to the force of gravity. Astronomers have discovered dozens of planets that orbit around a single member of a very wide stellar duo. Sunsets from these worlds would look like our own, and the second sun would just look like a bright star in the night sky. But do planets exist in the tighter systems, where two suns would dip below a planet's horizon one by one? Unveiling planets in these systems is tricky, so astronomers used Spitzer to look for disks of swirling planetary debris instead. These disks are made of asteroids, comets and possibly planets. The rocky material in them bangs together and kicks up dust that Spitzer's infrared eyes can see. Our own solar system is swaddled in a similar type of disk. Surprisingly, Spitzer found more debris disks around the tightest binaries it studied (about 20 stars) than in a comparable sample of single stars. About 60 percent of the tight binaries had disks, while the single stars only had about 20 percent. These snug binary systems are as close or closer than just three times the distance between Earth and the sun. And the disks in these systems were found to circumnavigate both members of the star pair, rather than just one. Though follow-up studies are needed, the results could mean that planet formation is more common around extra-tight binary stars than single stars. Since these types of systems would experience double sunsets, the artistic view portrayed here might not be fiction. The original sunset photo used in this artist's concept was taken by Robert Hurt of the Spitzer Science Center at the California Institute of Technology, Pasadena, Calif.Design of the TMT Mid-Infrared Echelle: Science Drivers and Design Overview
2006-01-01
plausibility of an extra-terrestrial origin for the prebiotic compounds that led to the emergence of life on Earth. MIRES imaging of debris disks will...explore mechanisms by which water and prebiotic organic compounds may have been delivered to planetary surfaces. These studies will be highly synergistic...that are precursors to complex prebiotic compounds. The high sensitivity also allows the exploration of a wider range of wavelengths, including those
NASA Astrophysics Data System (ADS)
Carmona, A.; van den Ancker, M. E.; Henning, Th.; Goto, M.; Fedele, D.; Stecklum, B.
2007-12-01
We report on the first results of a search for molecular hydrogen emission from protoplanetary disks using CRIRES, ESO's new VLT Adaptive Optics high resolution near-infrared spectrograph. We observed the classical T Tauri star LkHα 264 and the debris disk 49 Cet, and searched for υ= 1-0 S(1) H2 emission at 2.1218 μm, υ = 1-0 S(0) H2 emission at 2.2233 μm and υ = 2-1 S(1) H2 emission at 2.2477 μm. The H2 line at 2.1218 μm is detected in LkHα 264 confirming the previous observations by Itoh et al. (2003). In addition, our CRIRES spectra reveal the previously observed but not detected H2 line at 2.2233 μm in LkHα 264. An upper limit of 5.3 × 10-16 erg s-1 cm-2 on the υ = 2-1 S(1) H2 line flux in LkHα 264 is derived. The detected lines coincide with the rest velocity of LkHα 264. They have a FWHM of ~20 km s-1. This is strongly suggestive of a disk origin for the lines. These observations are the first simultaneous detection of υ = 1-0 S(1) and υ = 1-0 S(0) H2 emission from a protoplanetary disk. 49 Cet does not exhibit H2 emission in any of the three observed lines. We derive the mass of optically thin H2 at T˜1500 K in the inner disk of LkHα 264 and derive stringent limits in the case of 49 Cet at the same temperature. There are a few lunar masses of optically thin hot H2 in the inner disk (~0.1 AU) of LkHα 264, and less than a tenth of a lunar mass of hot H2 in the inner disk of 49 Cet. The measured 1-0 S(0)/1-0 S(1) and 2-1 S(1)/1-0 S(1) line ratios in LkHα 264 indicate that the H2 emitting gas is at a temperature lower than 1500 K and that the H2 is most likely thermally excited by UV photons. The υ = 1-0 S(1) H2 line in LkHα 264 is single peaked and spatially unresolved. Modeling of the shape of the line suggests that the disk should be seen close to face-on (i<35°) and that the line is emitted within a few AU of the LkHα 264 disk. A comparative analysis of the physical properties of classical T Tauri stars in which the H2 υ = 1-0 S(1) line has been detected and non-detected indicates that the presence of H2 emission is correlated with the magnitude of the UV excess and the strength of the Hα line. The lack of H2 emission in the NIR spectra of 49 Cet and the absence of Hα emission suggest that the gas in the inner disk of 49 Cet has dissipated. These results combined with previous detections of 12CO emission at sub-mm wavelengths indicate that the disk surrounding 49 Cet should have an inner hole. We favor inner disk dissipation by inside-out photoevaporation, or the presence of an unseen low-mass companion as the most likely explanations for the lack of gas in the inner disk of 49 Cet. Based on observations collected at the European Southern Observatory, Chile (program ID 60.A-9064(A)).
GRB060218 as a Tidal Disruption of a White Dwarf by an Intermediate-mass Black Hole
NASA Astrophysics Data System (ADS)
Shcherbakov, Roman V.; Pe'er, Asaf; Reynolds, Christopher S.; Haas, Roland; Bode, Tanja; Laguna, Pablo
2013-06-01
The highly unusual pair of a gamma-ray burst (GRB) GRB060218 and an associated supernova, SN2006aj, has puzzled theorists for years. A supernova shock breakout and a jet from a newborn stellar mass compact object have been proposed to explain this pair's multiwavelength signature. Alternatively, we propose that the source is naturally explained by another channel: the tidal disruption of a white dwarf (WD) by an intermediate-mass black hole (IMBH). This tidal disruption is accompanied by a tidal pinching, which leads to the ignition of a WD and a supernova. Some debris falls back onto the IMBH, forms a disk, which quickly amplifies the magnetic field, and launches a jet. We successfully fit soft X-ray spectra with the Comptonized blackbody emission from a jet photosphere. The optical/UV emission is consistent with self-absorbed synchrotron emission from the expanding jet front. The temporal dependence of the accretion rate \\dot{M}(t) in a tidal disruption provides a good fit to the soft X-ray light curve. The IMBH mass is found to be about 104 M ⊙ in three independent estimates: (1) fitting the tidal disruption \\dot{M}(t) to the soft X-ray light curve, (2) computing the jet base radius in a jet photospheric emission model, and (3) inferring the mass of the central black hole based on the host dwarf galaxy's stellar mass. The position of the supernova is consistent with the center of the host galaxy, while the low supernova ejecta mass is consistent with that of a WD. The high expected rate of tidal disruptions in dwarf galaxies is consistent with one source observed by the Swift satellite over several years at a distance of 150 Mpc measured for GRB060218. Encounters with WDs provide much fuel for the growth of IMBHs.
Non-thermal X-ray emission from tidal disruption flares
NASA Astrophysics Data System (ADS)
Stone, Nicholas
2016-09-01
A star that passes too close to a supermassive black hole will be disrupted by the black hole's tidal gravity. The result is a flare of thermal emission at optical and X-ray frequencies. The return rate of stellar debris decreases from highly super-Eddington to sub-Eddington in a few years, making stellar tidal disruptions flares (TDFs) a unique laboratory to study accretion physics. In one class of models, the optical emission is due to reprocessing of the X-ray photons, thus explaining the lack of X-ray detections from optically selected TDFs. After a few years, the outer reprocessing regions will dilute, allowing us to observe any non-thermal emission from the inner disk. Here we propose Chandra observations to measure the luminosity of newly formed accretion disks in two known TDFs.
Millimeter imaging of HD 163296: probing the disk structure and kinematics
NASA Astrophysics Data System (ADS)
Isella, A.; Testi, L.; Natta, A.; Neri, R.; Wilner, D.; Qi, C.
2007-07-01
We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion. Based on observations carried out with IRAM Plateau de Bure Interferometer, Submillimeter Array and NRAO Very Large Array. IRAM Plateau de Bure Interferometer is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Appendix A and Figs. [see full text]- [see full text] are only available in electronic form at http://www.aanda.org
Explaining the Birth of the Martian Moons
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
A new study examines the possibility that Marss two moons formed after a large body slammed into Mars, creating a disk of debris. This scenario might be the key to reconciling the moons orbital properties with their compositions.Conflicting EvidenceThe different orbital (left) and spectral (right) characteristics of the Martian moons in the three different formation scenarios. Click for a better look! Phobos and Deimoss orbital characteristics are best matched by formation around Mars (b and c), and their physical characteristics are best matched by formation in the outer region of an impact-generated accretion disk (rightmost panel of c). [Ronnet et al. 2016]How were Marss two moons, Phobos and Deimos, formed? There are three standing theories:Two already-formed, small bodies from the outer main asteroid belt were captured by Mars, intact.The bodies formed simultaneously with Mars, by accretion from the same materials.A large impact on Mars created an accretion disk of material from which the two bodies formed.Our observations of the Martian moons, unfortunately, provide conflicting evidence about which of these scenarios is correct. The physical properties of the moons low albedos, low densities are consistent with those of asteroids in our solar system, and are not consistent with Marss properties, suggesting that the co-accretion scenario is unlikely. On the other hand, the moons orbital properties low inclination, low eccentricity, prograde orbits are consistent with bodies that formed around Mars rather than being captured.In a recent study,a team of scientists led by Thomas Ronnet and Pierre Vernazza (Aix-Marseille University, Laboratory of Astrophysics of Marseille) has attempted to reconcile these conflictingobservations by focusing on the third option.Moons After a Large ImpactIn the thirdscenario, an impactor of perhaps a few percent of Marss mass smashed into Mars, forming a debris disk of hot material that encircled Mars. Perturbations in the disk then led to the formation of large clumps, which eventually agglomerated to form Phobos and Deimos.The authors find that Phobos and Deimos most likely formed in the outer regions of the accretion disk that was created by a large impact with Mars. [Adapted from Ronnet et al. 2016]In the study conducted by Ronnet, Vernazza, and collaborators, the authors investigated the composition and texture of the dust that would have crystallized in an impact-generated accretion disk making up Marss moons. They find that Phobos and Deimos could not have formed out of the extremely hot, magma-filled inner regions of such a disk, because this would have resulted in different compositions than we observe.Phobos and Deimos could have formed, however, in the very outer part of an impact-generated accretion disk, where the hot gas condensed directly into small solid grains instead of passing through the magma phase. Accretion of such tiny grains would naturally explain the similarity in physical properties we observe between Marss moons and some main-belt asteroids and yet this picture is also consistent with the moons current orbital parameters.The authors argue that the formation of the Martian moons from the outer regions of an impact-generated accretion disk is therefore a plausible scenario, neatly reconciling the observed physical properties of Phobos and Diemos with their orbital properties.CitationT. Ronnet et al 2016 ApJ 828 109. doi:10.3847/0004-637X/828/2/109
The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks
NASA Astrophysics Data System (ADS)
Zuckerman, Ben
2018-01-01
The Argus Association (AA) defined by Torres et al. (2008) is distinguished from other nearby young moving groups by virtue of its unusual Galactic U-velocity. As defined by Torres et al, their initial AA consisted of 35 members of the IC 2391 open cluster (~135 pc from Earth) and 29 “field members”, 15 of which are within 100 pc of Earth. The spectral types range from F through K with the exception of two M-type members of IC 2391. Zuckerman et al. (2011 & 2012) proposed 13 additional field members – 12 A-type and one F-type -- all of which lie within 80 pc of Earth. Additional AA members have been proposed, typically a few at a time, by other researchers. Deduced ages of the AA (via various techniques) lie, typically, between 40 and 60 Myr. Bell et al (2015) consider the membership and age of a subset of proposed AA stars via color-magnitude diagrams combined with a Bayesian analysis (following Malo et al 2013 & 2014). For the sample of AA stars that they considered, the group age, membership status of individual stars, and even the reality of a coeval moving group were in some doubt. The purpose of the present communication is to consider all proposed AA members – including the frequency of dusty debris disks -- in an attempt to bring some clarity to what is going on.
A Transient Transit Signature Associated with the Young Star RIK-210
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.
We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is alwaysmore » shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.« less
STELLAR MEMBERSHIP AND DUSTY DEBRIS DISKS IN THE {alpha} PERSEI CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuckerman, B.; Melis, Carl; Rhee, Joseph H.
2012-06-10
Because of its proximity to the Galactic plane, reliable identification of members of the {alpha} Persei cluster is often problematic. Based primarily on membership evaluations contained in six published papers, we constructed a mostly complete list of high-fidelity members of spectral type G and earlier that lie within 3 arc degrees of the cluster center. {alpha} Persei was the one nearby, rich, young open cluster not surveyed with the Spitzer Space Telescope. We examined the first and final data releases of the Wide-field Infrared Survey Explorer and found 11, or perhaps 12, {alpha} Per cluster members that have excess mid-infraredmore » emission above the stellar photosphere attributable to an orbiting dusty debris disk. The most unusual of these is V488 Per, a K-type star with an excess IR luminosity 16% (or more) of the stellar luminosity; this is a larger excess fraction than that of any other known dusty main-sequence star. Much of the dust that orbits V488 Per is at a temperature of {approx}800 K; if these grains radiate like blackbodies, then they lie only {approx}0.06 AU from the star. The dust is probably the aftermath of a collision of two planetary embryos or planets with small semimajor axes; such orbital radii are similar to those of many of the transiting planets discovered by the Kepler satellite.« less
The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?
NASA Astrophysics Data System (ADS)
Zinnecker, Hans; Sandell, Goeran
2014-07-01
G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.
On the Impact Origin of Phobos and Deimos. II. True Polar Wander and Disk Evolution
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Rosenblatt, Pascal; Genda, Hidenori; Charnoz, Sébastien
2017-12-01
Phobos and Deimos are the two small Martian moons, orbiting almost on the equatorial plane of Mars. Recent works have shown that they can accrete within an impact-generated inner dense and outer light disk, and that the same impact potentially forms the Borealis basin, a large northern hemisphere basin on the current Mars. However, there is no a priori reason for the impact to take place close to the north pole (Borealis present location), nor to generate a debris disk in the equatorial plane of Mars (in which Phobos and Deimos orbit). In this paper, we investigate these remaining issues on the giant impact origin of the Martian moons. First, we show that the mass deficit created by the Borealis impact basin induces a global reorientation of the planet to realign its main moment of inertia with the rotation pole (True Polar Wander). This moves the location of the Borealis basin toward its current location. Next, using analytical arguments, we investigate the detailed dynamical evolution of the eccentric inclined disk from the equatorial plane of Mars that is formed by the Martian-moon-forming impact. We find that, as a result of precession of disk particles due to the Martian dynamical flattening J 2 term of its gravity field and particle–particle inelastic collisions, eccentricity and inclination are damped and an inner dense and outer light equatorial circular disk is eventually formed. Our results strengthen the giant impact origin of Phobos and Deimos that can finally be tested by a future sample return mission such as JAXA’s Martian Moons eXploration mission.
NASA Astrophysics Data System (ADS)
Klement, R.; Carciofi, A. C.; Rivinius, Th.; Panoglou, D.; Vieira, R. G.; Bjorkman, J. E.; Štefl, S.; Tycner, C.; Faes, D. M.; Korčáková, D.; Müller, A.; Zavala, R. T.; Curé, M.
2015-12-01
Context. The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star β CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. Aims: The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. Methods: We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Results: A parametric VDD model with radial density exponent of n = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, n = 3.0, density falloff. Theoretical consequences of this finding are discussed and the outcomes are compared with the predictions of a fully self-consistent VDD model. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35+10-5 stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be W ≳ 0.98, i.e., very close to critical. Based partly on observations from Ondřejov 2-m telescope, Czech Republic; partly on observations collected at the European Southern Observatory, Chile (Prop. No. 093.D-0571); as well as archival data from programs 072.D-0315, 082.D-0189, 084.C-0848, 085.C-0911, and 092.D-0311; partly on observations from APEX collected via CONICYT program C-092.F-9708A-2013, and partly on observations from CARMA collected via program c1100-2013a.Appendix A is available in electronic form at http://www.aanda.org
GASPS Photometry of the Tucana-Horologium Association
NASA Technical Reports Server (NTRS)
Roberge, Donaldson J.; Roberge, Aki
2010-01-01
The GASPS Open Time Key Programme on Herschel represents a new opportunity to sensitively probe protoplanetary and debris disks at far-IR wavelengths. We present preliminary PACS 70 and 160 micron photometry of eighteen stars in the 30 Myr-old Tucana-Horologium association. Of these eighteen, eight were detected in the 70 micron band. Four of these eight were also detected in the 160 micron band. We constructed SEDs for these systems using optical data from Hipparcos (B and V), near-IR data from 2MASS (J, H, and K), mid-IR data from IRAS and Spitzer MIPS (12 and 24 microns, respectively), and the new far-IR data from PACS. For the stars showing IR excess emission, we fit simple single-temperature blackbody curves to the IR excess in order to determine the rough dust abundances and temperatures. Dust observations at these wavelengths will also be important for comparison with upcoming Herschel PACS spectra that will search for gas in the disks. Our goal is to determine or limit the ever-allusive gas-to-dust ratio for these disk systems.
DISCOVERY OF A LOW-MASS COMPANION AROUND HR 3549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawet, D.; David, T.; Bottom, M.
2015-10-01
We report the discovery of a low-mass companion to HR 3549, an A0V star surrounded by a debris disk with a warm excess detected by WISE at 22 μm (10σ significance). We imaged HR 3549 B in the L band with NAOS-CONICA, the adaptive optics infrared camera of the Very Large Telescope, in January 2013 and confirmed its common proper motion in 2015 January. The companion is at a projected separation of ≃80 AU and position angle of ≃157°, so it is orbiting well beyond the warm disk inner edge of r > 10 AU. Our age estimate for thismore » system corresponds to a companion mass in the range 15–80 M{sub J}, spanning the brown dwarf regime, and so HR 3549 B is another recent addition to the growing list of brown dwarf desert objects with extreme mass ratios. The simultaneous presence of a warm disk and a brown dwarf around HR 3549 provides interesting empirical constraints on models of the formation of substellar companions.« less
High Contrast Imaging with NICMOS - I: Teaching an Old Dog New Tricks with Coronagraphic Polarimetry
NASA Astrophysics Data System (ADS)
Schneider, G.; Hines, D. C.
2007-06-01
HST's Near Infrared Camera and Multi-Object Spectrometer (NICMOS), with its highly stable point spread function, very high imaging Strehl ratio (panchromatically > 98% over its entire 0.8 - 2.4 micron wavelength regime) and coronagraphic imaging capability, celebrated its tenth anniversary in space earlier this year. These combined instrumental attributes uniquely contribute to its capability as a high-contrast imager as demonstrated by its continuing production of new examples of spatially resolved scattered-light imagery of both optically thick and thin circumstellar disks and sub-stellar companions to young stars and brown dwarfs well into the (several) Jovian mass range. We review these capabilities, illustrating with observationally based results, including examples obtained since HST's entry into two gyro guiding mode in mid 2005. The advent of a recently introduced, and now commissioned and calibrated, coronagraphic polarimetry mode has enabled very-high contrast 2 micron imaging polarimetry with 0.2 spatial resolution. Such imagery provides important constraints in the interpretation of disk-scattered starlight in assessing circumstellar disk geometries and the physical properties of their constituent grains. We demonstrate this new capability with observational results from two currently-executing HST programs obtaining 2 micron coronagraphic polarimetric images of circumstellar T-Tauri and debris disks.
System Engineering the Space Infrared Interferometric Telescope (SPIRIT)
NASA Technical Reports Server (NTRS)
Hyde, Tristram T.; Leisawitz, David T.; Rinehart, Stephen
2007-01-01
The Space Infrared Interferometric Telescope (SPIRIT) was designed to accomplish three scientific objectives: (1) learn how planetary systems form from protostellar disks and how they acquire their inhomogeneous chemical composition; (2) characterize the family of extrasolar planetary systems by imaging the structure in debris disks to understand how and where planets of different types form; and (3) learn how high-redshift galaxies formed and merged to form the present-day population of galaxies. SPIRIT will accomplish these objectives through infrared observations with a two aperture interferometric instrument. This paper gives an overview of SPIRIT design and operation, and how the three design cycle concept study was completed. The error budget for several key performance values allocates tolerances to all contributing factors, and a performance model of the spacecraft plus instrument system demonstrates meeting those allocations with margin.
NASA Astrophysics Data System (ADS)
Saburova, A. S.; Józsa, G. I. G.; Zasov, A. V.; Bizyaev, D. V.; Uklein, R. I.
2014-05-01
We present the results of a multi-wavelength study of the spiral galaxy UGC 11919 to verify that the galaxy has a peculiarly low dynamical mass-to-light ratio (M/LB) and to study its kinematical structure in general. We obtained an H I data cube of UGC 11919 with the Westerbork Synthesis Radio Telescope parallel with photometric observations with the Apache Point 0.5-m telescope. Two complementary models of the H I data cube provide a reasonable fit to the data: a model representing a symmetric S-shaped warp and a flat disc model with the deviations from axial symmetry caused by noncircular or bar streaming motions. In both cases UGC 11919 appears to have a disk of unusually low dynamical mass-to-light ratio in spite of its red color and a dark halo of moderate mass. A bottom-light stellar initial mass function could explain the results. Stellar kinematic profiles derived from long-slit observations, with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, show a signature of kinematically decoupled nuclear disk in the galaxy.
Be/X-Ray Pulsar Binary Science with LOFT
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2011-01-01
Accretion disks are ubiquitous in astronomical sources. Accretion powered pulsars are a good test bed for accretion disk physics, because unlike for other objects, the spin of the neutron star is directly observable allowing us to see the effects of angular momentum transfer onto the pulsar. The combination of a sensitive wide-field monitor and the large area detector on LOFT will enable new detailed studies of accretion powered pulsars which I will review. RXTE observations have shown an unusually high number of Be/X-ray pulsar binaries in the SMC. Unlike binaries in the Milky Way, these systems are all at the same distance, allowing detailed population studies using the sensitive LOFT WFM, potentially providing connections to star formation episodes. For Galactic accreting pulsar systems, LOFT will allow measurement of spectral variations within individual pulses, mapping the accretion column in detail for the first time. LOFT will also provide better constraints on magnetic fields in accreting pulsars, allowing measurements of cyclotron features, observations of transitions into the centrifugal inhibition regime, and monitoring of spin-up rate vs flux correlations. Coordinated multi-wavelength observations are crucial to extracting the best science from LOFT from these and numerous other objects.
Scaling Relations between Gas and Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
Bigiel, Frank; Leroy, Adam; Walter, Fabian
2011-04-01
High resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas - ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas - ΣSFR space.
Star-forming Environments throughout the M101 Group
NASA Astrophysics Data System (ADS)
Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul
2017-12-01
We present a multiwavelength study of star formation within the nearby M101 Group, including new deep Hα imaging of M101 and its two companions. We perform a statistical analysis of the Hα-to-FUV flux ratios in H II regions located in three different environments: M101's inner disk, M101's outer disk, and M101's lower-mass companion galaxy NGC 5474. We find that, once bulk radial trends in extinction are taken into account, both the median and scatter in F Hα /F FUV in H II regions are invariant across all of these environments. Also, using Starburst99 models, we are able to qualitatively reproduce the distributions of F Hα /F FUV throughout these different environments using a standard Kroupa initial mass function (IMF); hence, we find no need to invoke truncations in the upper-mass end of the IMF to explain the young star-forming regions in the M101 Group even at extremely low surface density. This implies that star formation in low-density environments differs from star formation in high-density environments only by intensity and not by cloud-to-cloud physics.
NASA Astrophysics Data System (ADS)
Lustig-Yaeger, Jacob; Schwieterman, Edward; Meadows, Victoria; Fujii, Yuka; NAI Virtual Planetary Laboratory, ISSI 'The Exo-Cartography Inverse Problem'
2016-10-01
Earth is our only example of a habitable world and is a critical reference point for potentially habitable exoplanets. While disk-averaged views of Earth that mimic exoplanet data can be obtained by interplanetary spacecraft, these datasets are often restricted in wavelength range, and are limited to the Earth phases and viewing geometries that the spacecraft can feasibly access. We can overcome these observational limitations using a sophisticated UV-MIR spectral model of Earth that has been validated against spacecraft observations in wavelength-dependent brightness and phase (Robinson et al., 2011; 2014). This model can be used to understand the information content - and the optimal means for extraction of that information - for multi-wavelength, time-dependent, disk-averaged observations of the Earth. In this work, we explore key telescope parameters and observing strategies that offer the greatest insight into the wavelength-, phase-, and rotationally-dependent variability of Earth as if it were an exoplanet. Using a generalized coronagraph instrument simulator (Robinson et al., 2016), we synthesize multi-band, time-series observations of the Earth that are consistent with large space-based telescope mission concepts, such as the Large UV/Optical/IR (LUVOIR) Surveyor. We present fits to this dataset that leverage the rotationally-induced variability to infer the number of large-scale planetary surface types, as well as their respective longitudinal distributions and broadband albedo spectra. Finally, we discuss the feasibility of using such methods to identify and map terrestrial exoplanets surfaces with the next generation of space-based telescopes.
GASPS--A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics
NASA Technical Reports Server (NTRS)
Dent, W.R.F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.;
2013-01-01
We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted approx. 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 micron the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 micron, [CII] at 157 µm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 micron. Additionally, GASPS included continuum photometry at 70, 100 and 160 micron, around the peak of the dust emission. The targets were SED Class II– III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarize some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 micron was the brightest line seen in almost all objects, by a factor of 10. Overall [OI] 63 micron detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 µm detection of approx.10(exp -5) Solar M.. Normalizing to a distance of 140 pc, 84% of objects with dust masses =10 (exp -5) Solar M can be detected in this line in the present survey; 32% of those of mass 10(exp -6) – 10 (exp -5) Solar M, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centered on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were approx. 50%. For each association in the 5–20 Myr age range, approx. 2 stars remain detectable in [OI] 63 micron, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that approx. 18% of stars retain a gas-rich disk of total mass approx. Jupiter- M for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 micron, [CII]157 micron and CO J = 18- 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.
Stratospheric Observatory For Infrared Astronomy (SOFIA)
NASA Astrophysics Data System (ADS)
Becklin, E. E.; Moon, L. J.
2004-12-01
The joint U.S. and German SOFIA project to develop and operate a 2.5-meter infrared airborne telescope in a Boeing 747-SP is now well into development. First science flights will begin in 2004 with 20% of the observing time assigned to German investigators. The observatory is expected to operate for over 20 years. The sensitivity, characteristics and science instrument complement are discussed. SOFIA will have a number of experiments related to Dust Debris Disks; some of these are discussed.
VizieR Online Data Catalog: Spitzer obs. of warm dust in 83 debris disks (Ballering+, 2017)
NASA Astrophysics Data System (ADS)
Ballering, N. P.; Rieke, G. H.; Su, K. Y. L.; Gaspar, A.
2018-04-01
For our sample, we used the systems with a warm component found by Ballering+ (2013, J/ApJ/775/55), where "warm" was defined as warmer than 130K. All of these systems have data available from the Multiband Imaging Photometer for Spitzer (MIPS) at 24 and 70um and from the Spitzer Infrared Spectrograph (IRS). The selected 83 targets used for our analysis are listed in Table 1. (5 data files).
A Multiwavelength Characterization of Proto-brown-dwarf Candidates in Serpens
NASA Astrophysics Data System (ADS)
Riaz, B.; Vorobyov, E.; Harsono, D.; Caselli, P.; Tikare, K.; Gonzalez-Martin, O.
2016-11-01
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3-G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source has an L bol ˜ 0.05 L ⊙. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ˜20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.
A MULTIWAVELENGTH CHARACTERIZATION OF PROTO-BROWN-DWARF CANDIDATES IN SERPENS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riaz, B.; Caselli, P.; Vorobyov, E.
2016-11-10
We present results from a deep submillimeter survey in the Serpens Main and Serpens/G3–G6 clusters, conducted with the Submillimetre Common-User Bolometer Array (SCUBA-2) at the James Clerk Maxwell Telescope. We have combined near- and mid-infrared spectroscopy, Herschel PACS far-infrared photometry, submillimeter continuum, and molecular gas line observations, with the aim of conducting a detailed multiwavelength characterization of “proto-brown-dwarf” (proto-BD) candidates in Serpens. We have performed continuum and line radiative transfer modeling and have considered various classification schemes to understand the structure and the evolutionary stage of the system. We have identified four proto-BD candidates, of which the lowest-luminosity source hasmore » an L {sub bol} ∼ 0.05 L {sub ☉}. Two of these candidates show characteristics consistent with Stage 0/I systems, while the other two are Stage I-T/Class Flat systems with tenuous envelopes. Our work has also revealed a ∼20% fraction of misidentified Class 0/I/Flat sources that show characteristics consistent with Class II edge-on disk systems. We have set constraints on the mass of the central object using the measured bolometric luminosities and numerical simulations of stellar evolution. Considering the available gas+dust mass reservoir and the current mass of the central source, three of these candidates are likely to evolve into BDs.« less
Multi-wavelength Observations of Blazar AO 0235+164 in the 2008-2009 Flaring State
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fuhrmann, L.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hughes, R. E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Rastawicki, D.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Sbarra, C.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Szostek, A.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.; Fermi-LAT Collaboration; Moderski, R.; Nalewajko, K.; Sikora, M.; Villata, M.; Raiteri, C. M.; Aller, H. D.; Aller, M. F.; Arkharov, A. A.; Benítez, E.; Berdyugin, A.; Blinov, D. A.; Boettcher, M.; Bravo Calle, O. J. A.; Buemi, C. S.; Carosati, D.; Chen, W. P.; Diltz, C.; Di Paola, A.; Dolci, M.; Efimova, N. V.; Forné, E.; Gurwell, M. A.; Heidt, J.; Hiriart, D.; Jordan, B.; Kimeridze, G.; Konstantinova, T. S.; Kopatskaya, E. N.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; Larionova, E. G.; Larionova, L. V.; Larionov, V. M.; Leto, P.; Lindfors, E.; Lin, H. C.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Oksman, M.; Roustazadeh, P.; Sievers, A.; Sigua, L. A.; Sillanpää, A.; Takahashi, T.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Troitsky, I. S.; Umana, G.; GASP-WEBT Consortium; Angelakis, E.; Krichbaum, T. P.; Nestoras, I.; Riquelme, D.; F-GAMMA; Krips, M.; Trippe, S.; Iram-PdBI; Arai, A.; Kawabata, K. S.; Sakimoto, K.; Sasada, M.; Sato, S.; Uemura, M.; Yamanaka, M.; Yoshida, M.; Kanata; Belloni, T.; Tagliaferri, G.; RXTE; Bonning, E. W.; Isler, J.; Urry, C. M.; SMARTS; Hoversten, E.; Falcone, A.; Pagani, C.; Stroh, M.; (Swift-XRT
2012-06-01
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to γ-ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP-WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the γ-ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 R g. We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
Multi-Wavelength Photometric Identification of Quenching Galaxies in ZFOURGE
NASA Astrophysics Data System (ADS)
Forrest, Ben; Tran, Kim-Vy; ZFOURGE Collaboration
2018-01-01
In the new millennium, multi-wavelength photometric surveys of thousands of galaxies, such as SDSS, CANDELS, NMBS, and ZFOURGE have become the standard for analyzing large populations.With ongoing surveys such as DES, and upcoming programs with LSST and JWST, finding ways to leverage large amounts of data will continue to be an area of important research.Many diagnostics have been used to classify these galaxies, most notably the rest-frame UVJ color-color diagram, which splits galaxies into star-forming and quiescent populations.With the plethora of data probing wavelengths outside of the optical however, we can do better.In this talk I present a scheme for classifying galaxies with using composite SEDs that clearly reveals rare populations such as extreme emission line galaxies and post-starburst galaxies.We use a sample of ~8000 galaxies from ZFOURGE which have SNR_Ks>20, observations from 0.3-8 microns, and are at 1
NASA's Hubble Space Telescope Finds Dead Stars 'Polluted with Planet Debris'
2017-12-08
This is an artist’s impression of a white dwarf (burned-out) star accreting rocky debris left behind by the star’s surviving planetary system. It was observed by Hubble in the Hyades star cluster. At lower right, an asteroid can be seen falling toward a Saturn-like disk of dust that is encircling the dead star. Infalling asteroids pollute the white dwarf’s atmosphere with silicon. Credit: NASA, ESA, and G. Bacon (STScI) --- NASA's Hubble Space Telescope has found the building blocks for Earth-sized planets in an unlikely place-- the atmospheres of a pair of burned-out stars called white dwarfs. These dead stars are located 150 light-years from Earth in a relatively young star cluster, Hyades, in the constellation Taurus. The star cluster is only 625 million years old. The white dwarfs are being polluted by asteroid-like debris falling onto them. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ya-Lin; Close, Laird M.; Males, Jared R.
2016-05-20
We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μ m detection ( z ′ = 20.3 ± 0.4 mag; Δ z ′ = 13.0 ± 0.4 mag) of the 11 M {sub Jup} circumbinary planet HD 106906AB b, as well as 1 and 3.8 μ m detections of the debris disk around the binary. The disk has an east–west asymmetry in length and surface brightness, especially at 3.8 μ m where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K{sub S}more » -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest ( a ≳ 100 AU) low mass ratio ( M {sub p}/ M {sub ⋆} ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive.« less
The Late-Time Formation and Dynamical Signatures of Small Planets
NASA Astrophysics Data System (ADS)
Lee, Eve Jihyun
The riddle posed by super-Earths is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. In this thesis, I demonstrate that this puzzle is solved if super-Earths formed late, in the inner cavities of transitional disks. Super-puffs present the inverse problem of being too voluminous for their small masses. I show that super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside 1 AU, and then migrate in just after super-Earths appear. Super-Earths and Earth-sized planets around FGKM dwarfs are evenly distributed in log orbital period down to 10 days, but dwindle in number at shorter periods. I demonstrate that both the break at 10 days and the slope of the occurrence rate down to 1 day can be reproduced if planets form in disks that are truncated by their host star magnetospheres at co-rotation. Planets can be brought from disk edges to ultra-short (<1 day) periods by asynchronous equilibrium tides raised on their stars. Small planets may remain ubiquitous out to large orbital distances. I demonstrate that the variety of debris disk morphologies revealed by scattered light images can be explained by viewing an eccentric disk, secularly forced by a planet of just a few Earth masses, from different observing angles. The farthest reaches of planetary systems may be perturbed by eccentric super-Earths.
Magellan AO System z‧, Y S , and L‧ Observations of the Very Wide 650 AU HD 106906 Planetary System
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Bailey, Vanessa P.; Rodigas, Timothy J.; Males, Jared R.; Morzinski, Katie M.; Follette, Katherine B.; Hinz, Philip M.; Puglisi, Alfio; Briguglio, Runa; Xompero, Marco
2016-05-01
We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μm detection (z‧ = 20.3 ± 0.4 mag; Δz‧ = 13.0 ± 0.4 mag) of the 11 M Jup circumbinary planet HD 106906AB b, as well as 1 and 3.8 μm detections of the debris disk around the binary. The disk has an east-west asymmetry in length and surface brightness, especially at 3.8 μm where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K S -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest (a ≳ 100 AU) low mass ratio (M p/M ⋆ ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
CHARACTERIZATION OF THE INNER DISK AROUND HD 141569 A FROM KECK/NIRC2 L-BAND VORTEX CORONAGRAPHY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mawet, Dimitri; Bottom, Michael; Matthews, Keith
HD 141569 A is a pre-main sequence B9.5 Ve star surrounded by a prominent and complex circumstellar disk, likely still in a transition stage from protoplanetary to debris disk phase. Here, we present a new image of the third inner disk component of HD 141569 A made in the L ′ band (3.8 μ m) during the commissioning of the vector vortex coronagraph that has recently been installed in the near-infrared imager and spectrograph NIRC2 behind the W.M. Keck Observatory Keck II adaptive optics system. We used reference point-spread function subtraction, which reveals the innermost disk component from the innermore » working distance of ≃23 au and up to ≃70 au. The spatial scale of our detection roughly corresponds to the optical and near-infrared scattered light, thermal Q , N , and 8.6 μ m PAH emission reported earlier. We also see an outward progression in dust location from the L ′ band to the H band (Very Large Telescope/SPHERE image) to the visible ( Hubble Space Telescope ( HST )/STIS image), which is likely indicative of dust blowout. The warm disk component is nested deep inside the two outer belts imaged by HST-NICMOS in 1999 (at 406 and 245 au, respectively). We fit our new L ′-band image and spectral energy distribution of HD 141569 A with the radiative transfer code MCFOST. Our best-fit models favor pure olivine grains and are consistent with the composition of the outer belts. While our image shows a putative very faint point-like clump or source embedded in the inner disk, we did not detect any true companion within the gap between the inner disk and the first outer ring, at a sensitivity of a few Jupiter masses.« less
NASA Astrophysics Data System (ADS)
Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.
2015-02-01
Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.
Technology Advancement of the Visible Nulling Coronagraph
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Thompson, Patrick; Bolcar, Matt; Madison, Timothy; Woodruff, Robert; Noecker, Charley; Kendrick, Steve
2010-01-01
The critical high contrast imaging technology for the Extrasolar Planetary Imaging Coronagraph (EPIC) mission concept is the visible nulling coronagraph (VNC). EPIC would be capable of imaging jovian planets, dust/debris disks, and potentially super-Earths and contribute to answering how bright the debris disks are for candidate stars. The contrast requirement for EPIC is 10(exp 9) contrast at 125 milli-arseconds inner working angle. To advance the VNC technology NASA/Goddard Space Flight Center, in collaboration with Lockheed-Martin, previously developed a vacuum VNC testbed, and achieved narrowband and broadband suppression of the core of the Airy disk. Recently our group was awarded a NASA Technology Development for Exoplanet Missions to achieve two milestones: (i) 10(exp 8) contrast in narrowband light, and, (ii) 10(ecp 9) contrast in broader band light; one milestone per year, and both at 2 Lambda/D inner working angle. These will be achieved with our 2nd generation testbed known as the visible nulling testbed (VNT). It contains a MEMS based hex-packed segmented deformable mirror known as the multiple mirror array (MMA) and coherent fiber bundle, i.e. a spatial filter array (SFA). The MMA is in one interferometric arm and works to set the wavefront differences between the arms to zero. Each of the MMA segments is optically mapped to a single mode fiber of the SFA, and the SFA passively cleans the sub-aperture wavefront error leaving only piston, tip and tilt error to be controlled. The piston degree of freedom on each segment is used to correct the wavefront errors, while the tip/tilt is used to simultaneously correct the amplitude errors. Thus the VNT controls both amplitude and wavefront errors with a single MMA in closed-loop in a vacuum tank at approx.20 Hz. Herein we will discuss our ongoing progress with the VNT.
IRTF/SPEX OBSERVATIONS OF THE UNUSUAL KEPLER LIGHT CURVE SYSTEM KIC 8462852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisse, C. M.; Sitko, M. L.; Marengo, M., E-mail: carey.lisse@jhuapl.edu
2015-12-20
We have utilized the NASA/IRTF 3 m SpeX instrument’s high-resolution spectral mode to observe and characterize the near-infrared flux emanating from the unusual Kepler light curve system KIC 8462852. By comparing the resulting 0.8–4.2 μm spectrum to a mesh of model photospheric spectra, the 6 emission line analyses of the Rayner et al. catalog, and the 25 system collections of debris disks we have observed to date using SpeX under the Near InfraRed Debris disk Survey, we have been able to additionally characterize the system. Within the errors of our measurements, this star looks like a normal solar abundance main-sequencemore » F1V to F3V dwarf star without any obvious traces of significant circumstellar dust or gas. Using Connelley and Greene’s emission measures, we also see no evidence of significant ongoing accretion onto the star nor any stellar outflow away from it. Our results are inconsistent with large amounts of static close-in obscuring material or the unusual behavior of a YSO system, but are consistent with the favored episodic giant comet models of a Gyr old stellar system favored by Boyajian et al. We speculate that KIC 8462852, like the ∼1.4 Gyr old F2V system η Corvi, is undergoing a late heavy bombardment, but is only in its very early stages.« less
The Anemic Stellar Halo of M101
NASA Astrophysics Data System (ADS)
Holwerda, Benne
2014-10-01
Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.
Particle Number Dependence of the N-body Simulations of Moon Formation
NASA Astrophysics Data System (ADS)
Sasaki, Takanori; Hosono, Natsuki
2018-04-01
The formation of the Moon from the circumterrestrial disk has been investigated by using N-body simulations with the number N of particles limited from 104 to 105. We develop an N-body simulation code on multiple Pezy-SC processors and deploy Framework for Developing Particle Simulators to deal with large number of particles. We execute several high- and extra-high-resolution N-body simulations of lunar accretion from a circumterrestrial disk of debris generated by a giant impact on Earth. The number of particles is up to 107, in which 1 particle corresponds to a 10 km sized satellitesimal. We find that the spiral structures inside the Roche limit radius differ between low-resolution simulations (N ≤ 105) and high-resolution simulations (N ≥ 106). According to this difference, angular momentum fluxes, which determine the accretion timescale of the Moon also depend on the numerical resolution.
NASA Technical Reports Server (NTRS)
2006-01-01
Infant stars are glowing gloriously in this infrared image of the Serpens star-forming region, captured by NASA's Spitzer Space Telescope. The reddish-pink dots are baby stars deeply embedded in the cosmic cloud of gas and dust that collapsed to create it. A dusty disk of cosmic debris, or 'protoplanetary disk,' that may eventually form planets, surrounds the infant stars. Wisps of green throughout the image indicate the presence of carbon rich molecules called polycyclic aromatic hydrocarbons. On Earth, these molecules can be found on charred barbecue grills and in automobile exhaust. Blue specks sprinkled throughout the image are background stars in our Milky Way galaxy. The Serpens star-forming region is located approximately 848 light-years away in the Serpens constellation. The image is a three-channel, false-color composite, where emission at 4.5 microns is blue, emission at 8.0 microns is green, and 24 micron emission is red.Stratospheric Observatory for Infrared Astornomy and Planetary Science
NASA Astrophysics Data System (ADS)
Reach, William T.; SOFIA Sciece Mission Operations
2016-10-01
The Stratospheric Observatory for Infrared Astronomy enables observations at far-infrared wavelengths, including the range 30-300 microns that is nearly completely obscured from the ground. By flying in the stratosphere above 95% of atmospheric water vapor, access is opened to photometric, spectroscopic, and polarimetric observations of Solar System targets spanning small bodies through major planets. Extrasolar planetary systems can be observed through their debris disks or transits, and forming planetary systems through protoplanetary disks, protostellar envelopes, and molecular cloud cores. SOFIA operates out of Southern California most of the year. For the summer of 2016, we deployed to New Zealand with 3 scientific instruments. The HAWC+ far-infrared photopolarimeter was recently flown and is in commissioning, and two projects are in Phase A study to downselect to one new facility instrument. The Cycle 5 observing proposal results are anticipated to be be released by the time of this DPS meeting, and successful planetary proposals will be advertised.
Star formation in the Auriga-California Giant Molecular Cloud and its circumstellar disk population
NASA Astrophysics Data System (ADS)
Broekhoven-Fiene, Hannah
2016-05-01
This thesis presents a multiwavelength analysis, from the infrared to the microwave, of the young, forming stars in the Auriga-California Molecular Cloud and a first look at the disks they host and their potential for forming planetary systems. At the beginning of this thesis, Auriga-Cal had only recently been identified as one contiguous cloud with its distance placing it within the Gould Belt of nearby star-forming regions (Lada et al. 2009). This thesis presents the largest body of work to date on Auriga-Cal's star formation and disk population. Auriga-Cal is one of two nearby giant molecular clouds (GMCs) in the Gould Belt, the other being the Orion A molecular cloud. These two GMCs have similar mass ( 10^5 Msolar), spatial scale ( 80 pc), distance ( 450 pc), and filamentary morphology, yet the two clouds present very different star formation qualities and quantities. Namely, Auriga-Cal is forming far fewer stars and does not exhibit the high-mass star formation seen in Orion A. In this thesis, I present a census of the star forming objects in the infrared with the Spitzer Space Telescope showing that Auriga-Cal contains at least 166 young stellar objects (YSOs), 15-20x fewer stars than Orion A, the majority of which are located in the cluster around LkHalpha 101, NGC 1529, and the filament extending from it. I find the submillimetre census with the James Clerk Maxwell Telescope, sensitive to the youngest objects, arrives at a similar result showing the disparity between the two clouds observed in the infrared continues to the submillimetre. Therefore the relative star formation rate between the two clouds has remained constant in recent times. The final chapter introduces the first study targeted at the disk population to measure the formation potential of planetary systems around the young stars in Auriga-Cal. The dust thermal emission at cm wavelengths is observed to measure the relative amounts of cm-sized grains, indicative of the grain growth processes that take place in disks and are necessary for planet formation. For a subsample of our targets, we are able to measure the spectral slope in the cm to confirm the thermal nature of the observed emission that we detect and characterize the signature of grain growth. The sensitivity of our observations probes masses greater than the minimum mass solar nebula (MMSN), the disk mass required to form the Solar System. We detect 19 disks, representing almost a third of our sample, comparable to the numbers of disks in other nearby star-forming regions with disks masses exceeding the MMSN, suggesting that the disk population in Auriga-Cal possesses similar planet formation potential as populations in other clouds. Confirmation of this result requires future observations with mm interferometry, the wavelength regime where the majority of statistics of disks has been measured.
Protoplanetary Disk Masses from Stars to Brown Dwarfs
NASA Astrophysics Data System (ADS)
Mohanty, Subhanjoy; Greaves, Jane; Mortlock, Daniel; Pascucci, Ilaria; Scholz, Aleks; Thompson, Mark; Apai, Daniel; Lodato, Giuseppe; Looper, Dagny
2013-08-01
We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ~100 AU for intermediate-mass stars, solar types, and VLMS, and ~20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ~ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly constant mean of log10[M disk/M *] ≈ -2.4 all the way from intermediate-mass stars to VLMS/BDs, supporting previous qualitative suggestions that the ratio is ~1% throughout the stellar/BD domain. (6) Similar analysis shows that the disk mass in close solar-type Taurus binaries (sep <100 AU) is significantly lower than in singles (by a factor of 10), while that in wide solar-type Taurus binaries (>=100 AU) is closer to that in singles (lower by a factor of three). (7) We discuss the implications of these results for planet formation around VLMS/BDs, and for the observed dependence of accretion rate on stellar mass.
SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilikova, Jana; Chu Youhua; Gruendl, Robert A.
2012-05-01
Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less
Expelled grains from an unseen parent body around AU Microscopii
NASA Astrophysics Data System (ADS)
Sezestre, É.; Augereau, J.-C.; Boccaletti, A.; Thébault, P.
2017-11-01
Context. Recent observations of the edge-on debris disk of AU Mic have revealed asymmetric, fast outward-moving arch-like structures above the disk midplane. Although asymmetries are frequent in debris disks, no model can readily explain the characteristics of these features. Aims: We present a model aiming to reproduce the dynamics of these structures, more specifically their high projected speeds and their apparent position. We test the hypothesis of dust emitted by a point source and then expelled from the system by the strong stellar wind of this young M-type star. In this model we make the assumption that the dust grains follow the same dynamics as the structures, I.e., they are not local density enhancements. Methods: We perform numerical simulations of test particle trajectories to explore the available parameter space, in particular the radial location R0 of the dust producing parent body and the size of the dust grains as parameterized by the value of β (ratio of stellar wind and radiation pressure forces over gravitation). We consider the cases of a static and of an orbiting parent body. Results: We find that for all considered scenarios (static or moving parent body), there is always a set of (R0,β) parameters able to fit the observed features. The common characteristics of these solutions is that they all require a high value of β, of around 6. This means that the star is probably very active, and the grains composing the structures are submicronic in order for observable grains to reach such high β values. We find that the location of the hypothetical parent body is closer in than the planetesimal belt, around 8 ± 2 au (orbiting case) or 28 ± 7 au (static case). A nearly periodic process of dust emission appears, of 2 yr in the orbiting scenarios and 7 yr in the static case. Conclusions: We show that the scenario of sequential dust releases by an unseen point-source parent body is able to explain the radial behavior of the observed structures. We predict the evolution of the structures to help future observations discriminate between the different parent body configurations that have been considered. In the orbiting parent body scenario, we expect new structures to appear on the northwest side of the disk in the coming years.
Disk Detective Follow-Up Program
NASA Astrophysics Data System (ADS)
Kuchner, Marc
As new data on exoplanets and young stellar associations arrive, we will want to know: which of these planetary systems and young stars have circumstellar disks? The vast allsky database of 747 million infrared sources from NASA's Wide-field Infrared Survey Explorer (WISE) mission can supply answers. WISE is a discovery tool intended to find targets for JWST, sensitive enough to detect circumstellar disks as far away as 3000 light years. The vast WISE archive already serves us as a roadmap to guide exoplanet searches, provide information on disk properties as new planets are discovered, and teach us about the many hotly debated connections between disks and exoplanets. However, because of the challenges of utilizing the WISE data, this resource remains underutilized as a tool for disk and planet hunters. Attempts to use WISE to find disks around Kepler planet hosts were nearly scuttled by confusion noise. Moreover, since most of the stars with WISE infrared excesses were too red for Hipparcos photometry, most of the disks sensed by WISE remain obscure, orbiting stars unlisted in the usual star databases. To remedy the confusion noise problem, we have begun a massive project to scour the WISE data archive for new circumstellar disks. The Disk Detective project (Kuchner et al. 2016) engages layperson volunteers to examine images from WISE, NASA's Two Micron All-Sky Survey (2MASS) and optical surveys to search for new circumstellar disk candidates via the citizen science website DiskDetective.org. Fueled by the efforts of > 28,000 citizen scientists, Disk Detective is the largest survey for debris disks with WISE. It has already uncovered 4000 disk candidates worthy of follow-up. However, most host stars of the new Disk Detective disk candidates have no known spectral type or distance, especially those with red colors: K and M stars and Young Stellar Objects. Others require further observations to check for false positives. The Disk Detective project is supported by NASA ADAP funds, which are not allowed to fund a major observational follow-up campaign. So here we propose a campaign of follow-up observations that will turn the unique, growing catalog of Disk Detective disk candidates into a reliable, publically-available treasure trove of new data on nearby disks in time to complement the upcoming new catalogs of planet hosts and stellar moving groups. We will use automated adaptive optics (AO) instruments to image disk candidates and check them for contamination from background objects. We will correlate our discoveries with the vast Gaia and LAMOST surveys to study disks in associations with other young stars. We will follow up disk candidates spectroscopically to remove more false positives. We will search for cold dust around our disk candidates with the James Clerk Maxwell Telescope (JCMT) and analyze data from the Gemini Planet Imager (GPI) to image young, nearby disk candidates. This follow up work will realize the full potential of the WISE mission as a roadmap to future exoplanet discoveries. It will yield contamination rates that will be crucial for interpreting all disk searches done with WISE. Our search will yield 2000 well-vetted nearby disks, including 60 that the Gaia mission will likely find to contain giant planets. This crucial follow-up work should be done now to take full advantage of Gaia during JWST's planned lifetime.
Comparing Sliding-Wear Characteristics of the Electro-Pressure Sintered and Wrought Cobalt
NASA Astrophysics Data System (ADS)
Lee, J. E.; Kim, Y. S.; Kim, T. W.
Dry sliding wear tests of hot-pressure sintered and wrought cobalt were carried out to compare their wear characteristics. Cobalt powders with average size of 1.5µm were electro-pressure sintered to make sintered-cobalt disk wear specimens. A vacuum-induction melted cobalt ingot was hot-rolled at 800°C to a plate, from which wrought-cobalt disk specimens were machined. The specimens were heat treated at various temperatures to vary grain size and phase fraction. Wear tests of the cobalt specimens were carried out using a pin-on-disk wear tester against a glass (83% SiO2) bead at 100N with the constant sliding speed and distance of 0.36m/s and 600m, respectively. Worn surfaces, their cross sections, and wear debris were examined by an SEM. The wear of the cobalt was found to be strongly influenced by the strain-induced phase transformation of ɛ-Co (hcp) to α-Co (fcc). The sintered cobalt had smaller uniform grain size and showed higher wear rate than the wrought cobalt. The higher wear rate of the sintered cobalt was explained by the more active deformation-induced phase transformation than in the wrought cobalt with larger irregular grains.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
MULTIWAVELENGTH PHOTOMETRY AND HUBBLE SPACE TELESCOPE SPECTROSCOPY OF THE OLD NOVA V842 CENTAURUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sion, Edward M.; Szkody, Paula; Mukadam, Anjum
2013-08-01
We present ground-based optical and near infrared photometric observations and Hubble Space Telescope (HST) COS spectroscopic observations of the old nova V842 Cen (Nova Cen 1986). Analysis of the optical light curves reveals a peak at 56.5 {+-} 0.3 s with an amplitude of 8.9 {+-} 4.2 mma, which is consistent with the rotation of a magnetic white dwarf primary in V842 Cen that was detected earlier by Woudt et al., and led to its classification as an intermediate polar. However, our UV lightcurve created from the COS time-tag spectra does not show this periodicity. Our synthetic spectral analysis ofmore » an HST COS spectrum rules out a hot white dwarf photosphere as the source of the FUV flux. The best-fitting model to the COS spectrum is a full optically thick accretion disk with no magnetic truncation, a low disk inclination angle, low accretion rate and a distance less than half the published distance that was determined on the basis of interstellar sodium D line strengths. Truncated accretion disks with truncation radii of 3 R{sub wd} and 5 R{sub wd} yielded unsatisfactory agreement with the COS data. The accretion rate is unexpectedly low for a classical nova only 24 yr after the explosion when the accretion rate is expected to be high and the white dwarf should still be very hot, especially if irradiation of the donor star took place. Our low accretion rate is consistent with those derived from X-ray and ground-based optical data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainline, Laura J.; Morgan, Christopher W.; MacLeod, Chelsea L.
2013-09-01
We present three complete seasons and two half-seasons of Sloan Digital Sky Survey (SDSS) r-band photometry of the gravitationally lensed quasar SBS 0909+532 from the U.S. Naval Observatory, as well as two seasons each of SDSS g-band and r-band monitoring from the Liverpool Robotic Telescope. Using Monte Carlo simulations to simultaneously measure the system's time delay and model the r-band microlensing variability, we confirm and significantly refine the precision of the system's time delay to {Delta}t{sub AB} = 50{sub -4}{sup +2} days, where the stated uncertainties represent the bounds of the formal 1{sigma} confidence interval. There may be a conflictmore » between the time delay measurement and a lens consisting of a single galaxy. While models based on the Hubble Space Telescope astrometry and a relatively compact stellar distribution can reproduce the observed delay, the models have somewhat less dark matter than we would typically expect. We also carry out a joint analysis of the microlensing variability in the r and g bands to constrain the size of the quasar's continuum source at these wavelengths, obtaining log {l_brace}(r{sub s,r}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 15.3 {+-} 0.3 and log {l_brace}(r{sub s,g}/cm)[cos i/0.5]{sup 1/2}{r_brace} = 14.8 {+-} 0.9, respectively. Our current results do not formally constrain the temperature profile of the accretion disk but are consistent with the expectations of standard thin disk theory.« less
Observational Studies of Protoplanetary Disks at Mid-Infrared Wavelengths
NASA Astrophysics Data System (ADS)
Li, Dan; Telesco, Charles; Wright, Christopher; Packham, Christopher; Marinas, Naibi
2013-07-01
We have used mid-infrared cameras on 8-to-10 m class telescopes to study the properties of young circumstellar disks. During the initial phases of this program we examined a large sample of mid-IR images of standard stars delivered by T-ReCS at Gemini South to evaluate its on-sky performance as characterized by, for example the angular resolution, the PSF shape, and the PSF temporal stability, properties that are most relevant to our high-angular resolution study of disks. With this information we developed an Interactive Data Language (IDL) package of routines optimized for reducing the data and correcting for image defects commonly seen in ground-based mid-IR data. We obtained, reduced, and analyzed mid-IR images and spectra of several Herbig Ae/Be disks (including HD 259431, MWC 1080, VV Ser) and the debris disk (β Pic), and derived their physical properties by means of radiative transfer modeling or spectroscopic decomposition and analyses. These results are highlighted here. During this study, we also helped commission CanariCam, a new mid-IR facility instrument built by the University of Florida for the 10.4 m Gran Telescopio Canarias (GTC) on La Palma, Canary Islands, Spain. CanariCam is an imager with spectroscopic, polarimetric, and coronagraphic capabilities, with the dual-beam polarimetry being a unique mode introduced with CanariCam for the first time to a 10 m telescope at mid-IR wavelengths. It is well known that measurements of polarization, originating from aligned dust grains in the disks and their environments, have the potential to shed light on the morphologies of the magnetic fields in these regions, information that is critical to understanding how stars and planets form. We have obtained polarimetric data of several Herbig Ae/Be disks and YSOs, and the data reduction and analyses are in process. We present preliminary results here. This poster is based upon work supported by the NSF under grant AST-0903672 and AST-0908624 awarded to C.M.T.
NASA Astrophysics Data System (ADS)
Mendillo, Christopher B.; Howe, Glenn A.; Hewawasam, Kuravi; Martel, Jason; Finn, Susanna C.; Cook, Timothy A.; Chakrabarti, Supriya
2017-09-01
The Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) mission will directly image debris disks and exozodiacal dust around nearby stars from a high-altitude balloon using a vector vortex coronagraph. Four leakage sources owing to the optical fabrication tolerances and optical coatings are: electric field conjugation (EFC) residuals, beam walk on the secondary and tertiary mirrors, optical surface scattering, and polarization aberration. Simulations and analysis of these four leakage sources for the PICTUREC optical design are presented here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meschiari, Stefano, E-mail: stefano@astro.as.utexas.edu
2014-07-20
Recent simulations have shown that the formation of planets in circumbinary configurations (such as those recently discovered by Kepler) is dramatically hindered at the planetesimal accretion stage. The combined action of the binary and the protoplanetary disk acts to raise impact velocities between kilometer-sized planetesimals beyond their destruction threshold, halting planet formation within at least 10 AU from the binary. It has been proposed that a primordial population of 'large' planetesimals (100 km or more in size), as produced by turbulent concentration mechanisms, would be able to bypass this bottleneck; however, it is not clear whether these processes are viablemore » in the highly perturbed circumbinary environments. We perform two-dimensional hydrodynamical and N-body simulations to show that kilometer-sized planetesimals and collisional debris can drift and be trapped in a belt close to the central binary. Within this belt, planetesimals could initially grow by accreting debris, ultimately becoming 'indestructible' seeds that can accrete other planetesimals in situ despite the large impact speeds. We find that large, indestructible planetesimals can be formed close to the central binary within 10{sup 5} yr, therefore showing that even a primordial population of 'small' planetesimals can feasibly form a planet.« less