NASA Astrophysics Data System (ADS)
Cover, M. R.; de La Fuente, J.
2008-12-01
Debris flows are common erosional processes in steep mountain areas throughout the world, but little is known about the long-term ecological effects of debris flows on stream ecosystems. Based on debris flow histories that were developed for each of ten tributary basins, we classified channels as having experienced recent (1997) or older (pre-1997) debris flows. Of the streams classified as older debris flow streams, three streams experienced debris flows during floods in 1964 or 1974, while two streams showed little or no evidence of debris flow activity in the 20th century. White alder (Alnus rhombifolia) was the dominant pioneer tree species in recent debris flow streams, forming localized dense patches of canopy cover. Maximum temperatures and daily temperature ranges were significantly higher in recent debris flow streams than in older debris flow streams. Debris flows resulted in a shift in food webs from allochthonous to autochthonous energy sources. Primary productivity, as measured by oxygen change during the day, was greater in recent debris flow streams, resulting in increased abundances of grazers such as the armored caddisfly Glossosoma spp. Detritivorous stoneflies were virtually absent in recent debris flow streams because of the lack of year-round, diverse sources of leaf litter. Rainbow trout (Oncorhynchus mykiss) were abundant in four of the recent debris flow streams. Poor recolonizers, such as the Pacific giant salamander (Dicamptodon tenebrosus), coastal tailed frog (Ascaphus truei), and signal crayfish (Pacifistacus leniusculus), were virtually absent in recent debris flow streams. Forest and watershed managers should consider the role of forest disturbances, such as road networks, on debris flow frequency and intensity, and the resulting ecological effects on stream ecosystems.
Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California
NASA Astrophysics Data System (ADS)
Cover, M. R.; Delafuente, J. A.; Resh, V. H.
2006-12-01
We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of removal of riparian vegetation. Because debris flow frequency increases following road construction and timber harvest, the long-term biological effects of debris flows on stream ecosystems, including anadromous fish populations, needs to be considered in forest management decisions.
Sedell, Edwin R; Gresswell, Bob; McMahon, Thomas E.
2015-01-01
Habitat fragmentation and degradation and invasion of nonnative species have restricted the distribution of native trout. Many trout populations are limited to headwater streams where negative effects of predicted climate change, including reduced stream flow and increased risk of catastrophic fires, may further jeopardize their persistence. Headwater streams in steep terrain are especially susceptible to disturbance associated with postfire debris flows, which have led to local extirpation of trout populations in some systems. We conducted a reach-scale spatial analysis of debris-flow risk among 11 high-elevation watersheds of the Colorado Rocky Mountains occupied by isolated populations of Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus). Stream reaches at high risk of disturbance by postfire debris flow were identified with the aid of a qualitative model based on 4 primary initiating and transport factors (hillslope gradient, flow accumulation pathways, channel gradient, and valley confinement). This model was coupled with a spatially continuous survey of trout distributions in these stream networks to assess the predicted extent of trout population disturbances related to debris flows. In the study systems, debris-flow potential was highest in the lower and middle reaches of most watersheds. Colorado River Cutthroat Trout occurred in areas of high postfire debris-flow risk, but they were never restricted to those areas. Postfire debris flows could extirpate trout from local reaches in these watersheds, but trout populations occupy refugia that should allow recolonization of interconnected, downstream reaches. Specific results of our study may not be universally applicable, but our risk assessment approach can be applied to assess postfire debris-flow risk for stream reaches in other watersheds.
To understand the impacts of debris flows on the distribution of an amphipod with limited dispersal ability in the context of stream networks, we surveyed the presence of Gammarus nipponensis in 87 headwater streams with different legacies of debris flow occurrence within an 8.5-...
Debris dams and the relief of headwater streams.
S.T. Lancaster; G.E. Grant
2005-01-01
In forested, mountain landscapes where debris flows are common, valley-spanning debris dams formed by debris-flow deposition are a common feature of headwater valleys. In this paper, we examine how wood and boulder steps, i.e., debris dams, affect longitudinal profile relief and gradient at the debris-flow-fluvial transition in three sites in the Oregon Coast Range,...
May, Christine L.; Gresswell, Robert E.
2003-01-01
Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was used to estimate the time since the previous debris flow and the time since the last stand-replacement fire in unlogged basins in the central Coast Range of Oregon. Debris flow activity increased 42 per cent above the background rate in the decades immediately following the last wildfire. Changes in wood and sediment storage were quantified for 13 streams that ranged from 4 to 144 years since the previous debris flow. The volume of wood and sediment in the channel, and the length of channel with exposed bedrock, were strongly correlated with the time since the previous debris flow. Wood increased the storage capacity of the channel and trapped the majority of the sediment in these steep headwater streams. In the absence of wood, channels that have been scoured to bedrock by a debris flow may lack the capacity to store sediment and could persist in a bedrock state for an extended period of time. With an adequate supply of wood, low-order channels have the potential of storing large volumes of sediment in the interval between debris flows and can function as one of the dominant storage reservoirs for sediment in mountainous terrain.
Response of a Brook Trout Population and Instream Habitat to a Catastrophic Flood and Debris Flow
Criag N. Roghair; C. Andrew Dolloff; Martin K. Underwood
2002-01-01
In June 1995, a massive flood and debris flow impacted fish and habitat along the lower 1.9 km of the Staunton River, a headwater stream located in Shenandoah National Park, Virginia. In the area affected by debris flow, the stream bed was scoured and new substrate materials were deposited, trees were removed from a 30-m-wide band in the riparian area, and all fish...
Organic debris in small streams, Prince of Wales Island, Southeast Alaska.
Frederick J. Swanson; Mason D. Bryant; George W. Lienkaemper; James R. Sedell
1984-01-01
Quantities of coarse and fine organic debris in streams flowing through areas clearcut before 1975 are 3 and 6 times greater than quantities in streams sampled in old-growth stands in Tongass National Forest, central Prince of Wales Island, southeast Alaska. The concentration of debris in streams of clearcut Sitka spruce-western hemlock forests in southeast Alaska,...
Response of steelhead/rainbow trout (Oncorhynchus mykiss) populations to debris flows
Jason L. White; Bret C. Harvey
2017-01-01
To better understand the effects of debris flows on salmonid populations, we studied juvenile steelhead/rainbow trout (Oncorhynchus mykiss) populations in six streams in the Klamath Mountains of northern California: three affected by debris flows on 01 January 1997 and three that experienced elevated streamflows but no debris flows. We surveyed...
Network Structure as a Modulator of Disturbance Impacts in Streams
NASA Astrophysics Data System (ADS)
Warner, S.; Tullos, D. D.
2017-12-01
This study examines how river network structure affects the propagation of geomorphic and anthropogenic disturbances through streams. Geomorphic processes such as debris flows can alter channel morphology and modify habitat for aquatic biota. Anthropogenic disturbances such as road construction can interact with the geomorphology and hydrology of forested watersheds to change sediment and water inputs to streams. It was hypothesized that the network structure of streams within forested watersheds would influence the location and magnitude of the impacts of debris flows and road construction on sediment size and channel width. Longitudinal surveys were conducted every 50 meters for 11 kilometers of third-to-fifth order streams in the H.J. Andrews Experimental Forest in the Western Cascade Range of Oregon. Particle counts and channel geometry measurements were collected to characterize the geomorphic impacts of road crossings and debris flows as disturbances. Sediment size distributions and width measurements were plotted against the distance of survey locations through the network to identify variations in longitudinal trends of channel characteristics. Thresholds for the background variation in sediment size and channel width, based on the standard deviations of sample points, were developed for sampled stream segments characterized by location as well as geomorphic and land use history. Survey locations were classified as "disturbed" when they deviated beyond the reference thresholds in expected sediment sizes and channel widths, as well as flow-connected proximity to debris flows and road crossings. River network structure was quantified by drainage density and centrality of nodes upstream of survey locations. Drainage density and node centrality were compared between survey locations with similar channel characteristic classifications. Cluster analysis was used to assess the significance of survey location, proximity of survey location to debris flows and road crossings, drainage density and node centrality in predicting sediment size and channel width classifications for locations within the watershed. Results contribute to the understanding of susceptibility and responses of streams supporting critical habitat for aquatic species to debris flows and forest road disturbances.
Zackary J. Mondry; Susan J. Hilton
2000-01-01
Large landslides and debris flows in January 1997 produced contrasting downstream debris flood effects in two adjacent Northern California Klamath Mountain streams. Valley morphology and riparian forests were examined on post-flood 1:3000 air photos along two approximately 8 km survey reaches.
Headwater Stream Management Dichotomies: Local Amphibian Habitat vs. Downstream Fish Habitat
NASA Astrophysics Data System (ADS)
Jackson, C. R.
2002-12-01
Small headwater streams in mountainous areas of the Pacific Northwest often do not harbor fish populations because of low water depth and high gradients. Rather, these streams provide habitat for dense assemblages of stream-dwelling amphibians. A variety of management goals have been suggested for such streams such as encouraging large woody debris recruitment to assist in sediment trapping and valley floor formation, encouraging large woody debris recruitment to provide downstream wood when debris flows occur, providing continuous linear stream buffers within forest harvest areas to provide shade and bank stability, etc. A basic problem with analying the geomorphic or biotic benefits of any of these strategies is the lack of explicit management goals for such streams. Should managers strive to optimize downstream fish habitat, local amphibian habitat, or both? Through observational data and theoretical considerations, it will be shown that these biotic goals will lead to very different geomorphic management recommendations. For instance, woody debris greater than 60 cm diameter may assist in valley floor development, but it is likely to create subsurface channel flow of unknown value to amphibians. Trapping and retention of fine sediments within headwater streams may improve downstream spawning gravels, but degrades stream-dwelling amphibian habitat. In response to the need for descriptive information on habitat and channel morphology specific to small, non-fish-bearing streams in the Pacific Northwest, morphologies and wood frequencies in forty-two first- and second-order forested streams less than four meters wide were surveyed. Frequencies and size distributions of woody debris were compared between small streams and larger fish-bearing streams as well as between second-growth and virgin timber streams. Statistical models were developed to explore dominant factors affecting channel morphology and habitat. Findings suggest geomorphological relationships, specifically the role of woody debris in habitat formation, documented for larger streams do not apply to headwater streams. Relatively small wood (diameters between 10 and 40 cm), inorganic material, and organic debris (diameters less than 10 cm) were major step-forming agents while big woody debris pieces (> 40 cm dia.) created less than 10% of steps. Streams in virgin and managed stands did not differ in relative importance of very large woody debris. Due to low fluvial power, pool habitat was rare. These streams featured mostly step-riffle morphology, not step-pool, indicating insufficient flow for pool-scour. Stream power and unit stream power were dominant channel shaping factors.
Detecting debris flows using ground vibrations
LaHusen, Richard G.
1998-01-01
Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.
NASA Astrophysics Data System (ADS)
De La Fuente, J. A.; Mikulovsky, R. P.
2016-12-01
Wildfires in summer 2014 burned more than 200,000 acres on the Klamath National Forest in Northern California, east of Seiad, CA. Much of the area burned at high and moderate severity, and is underlain by Slinkard Pluton granitic rock. During winter 2014-2015, there were a few debris flows in small streams, and some clogged culverts on the road system, but overall road damage was minor. In July of 2015, a strong convective storm triggered several large debris flows, including East Fork Walker and No Name Creeks. These and other debris flows damaged road stream crossings, and delivered a large volume of sediment to the stream network. LiDAR differencing is being used to identify and quantify erosion and deposition from that storm. Field inventories revealed widespread rills and small gullies on steep, burned hillslopes, particularly where underlain by granitic rock. Resulting debris flows were of the sediment bulking variety, and no landslide-triggered debris flows were observed. This may be because intense summer storms are of short duration, and are unlikely to saturate the surface mantle, due also to water repellant soil conditions. It is unknown if erosion during the first winter affected the response to the July storm. Storms around January 17, 2016 initiated many road fill failures, and most were limited to the outer half of the road. Field investigations revealed that granitic road fills failed in a variety of settings, including planar hillslopes, on the flanks of ridges, channel crossings, and at road dips. In virtually all cases, vegetation on the fills, up to 50 years old, had been killed by the 2014 fire. Some fills developed small cracks and scarps, whereas others failed catastrophically as debris slides/flows. Few sediment-bulking debris flows were observed in January, 2016. Road damage exceeded two million dollars, and qualified for Emergency Relief Federally Owned funding (ERFO). The effects of the July, 2015 storm were dominated by sheet wash, rilling, flooding, and debris flows, and road damage was concentrated at stream crossings. In contrast, storms in winter 2015-2016 produced many road fill failures, often far from stream crossings, and these were probably associated with deeper saturation of the regolith. Thus, it is critical that road repair measures address both overland flow and saturation responses.
Reid, Mark E.; Coe, Jeffrey A.; Brien, Dianne
2016-01-01
Many debris flows increase in volume as they travel downstream, enhancing their mobility and hazard. Volumetric growth can result from diverse physical processes, such as channel sediment entrainment, stream bank collapse, adjacent landsliding, hillslope erosion and rilling, and coalescence of multiple debris flows; incorporating these varied phenomena into physics-based debris-flow models is challenging. As an alternative, we embedded effects of debris-flow growth into an empirical/statistical approach to forecast potential inundation areas within digital landscapes in a GIS framework. Our approach used an empirical debris-growth function to account for the effects of growth phenomena. We applied this methodology to a debris-flow-prone area in the Oregon Coast Range, USA, where detailed mapping revealed areas of erosion and deposition along paths of debris flows that occurred during a large storm in 1996. Erosion was predominant in stream channels with slopes > 5°. Using pre- and post-event aerial photography, we derived upslope contributing area and channel-length growth factors. Our method reproduced the observed inundation patterns produced by individual debris flows; it also generated reproducible, objective potential inundation maps for entire drainage networks. These maps better matched observations than those using previous methods that focus on proximal or distal regions of a drainage network.
On debris flows, river networks, and the spatial structure of channel morphology.
P.E. Bigelow; L.E. Benda; D.J. Miller; K.M. Burnett
2007-01-01
In this paper, we examine the influence of debris-flow deposits and fans on channels and habitat characteristics in small to intermediate-size watersheds in the Oregon Coast Range. We evaluate: (1) the proportion of stream length bordered by debris fans and the spacing between fans, (2) the recurrence interval of debris flows in unmanaged watersheds, (3) the proportion...
Daniel J. Miller; Kelly M. Burnett
2008-01-01
Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...
Particulate organic contributions from forests and streams: debris isn't so bad
C. Andrew Dolloff; Jackson R. Webster
2000-01-01
It is clear that the input of "debris" from terrestrial plants falling into streams is one of the most significant processes occurring at the interface of terrestrial and stream ecosystems. Organic matter?leaves, twigs, branches, and whole trees?provides energy, nutrients, and structure to streams flowing through forests. A host of vertebrate and invertebrate...
K.M. Burnett; D.J. Miller
2007-01-01
Headwater streams differ in susceptibility to debris flows and thus in importance as wood and sediment sources for larger rivers. Identifying and appropriately managing the most susceptible headwater streams is of interest. We developed and illustrated a method to delineate alternative aquatic conservation emphasis zones (ACEZs) considering probabilities for traversal...
Amanda E. Rosenberger; Jason B. Dunham; John M. Buffington; Mark S. Wipfli
2011-01-01
Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in...
Rainfall Generated Debris flows on Mount Shasta: July 21, 2015
NASA Astrophysics Data System (ADS)
Mikulovsky, R. P.; De La Fuente, J. A.; Courtney, A.; Bachmann, S.; Rodriguez, H.; Rust, B.; Schneider, F.; Veich, D.
2015-12-01
Convective storms on the evening of July 21, 2015 generated a number of debris flows on the SE flank of Mount Shasta Volcano, Shasta-Trinity National Forest. Widespread rilling, gullying and sheet erosion occurred throughout the affected area. These storms damaged roads by scouring drainage ditches, blocking culverts, eroding road prisms, and depositing debris where streams emerged from their incised channels and flowed over their alluvial fans. Effects were limited geographically to a narrow band about 6 miles wide trending in a northeasterly direction. Debris flows were identified at Pilgrim Creek and nearby channels, and Mud Creek appears to have experienced sediment laden flows rather than debris flows. Doppler radar data reveal that the storm cells remained nearly stationary for two hours before moving in a northeasterly direction. Debris flows triggered by convective storms occur often at Mount Shasta, with a similar event recorded in 2003 and a larger one in 1935, which also involved glacial melt. The 1935 debris flow at Whitney Creek buried Highway 97 north of Weed, CA, and took out the railroad above the highway. In September, 2014, a large debris flow occurred in Mud Creek, but it was associated solely with glacial melt and was not accompanied by rain. The 2014 event at Mud Creek filled the channel and parts of the floodplain with debris. This debris was in turn reworked and eroded by sediment laden flows on July 21, 2015. This study was initiated in August, 2015, and began with field inventories to identify storm effects. Lidar data will be used to identify possible avulsion points that could result in unexpected flash flooding outside of the main Mud Creek channel and on adjacent streams. The results of this study will provide critical information that can be used to assess flash flood risk and better understand how to manage those risks. Finally, some conclusions may be drawn on the kinds of warning systems that may be appropriate for possible flash flood events and possible effective road designs for stream crossings and road surface drainage.
NASA Astrophysics Data System (ADS)
Hattanji, T.; Wasklewicz, T.
2006-12-01
We examined geometry change of a steep first-order channel with a laserscanner before and after a small debris flow. The study site is located in chert area, Ashio Mountains, Japan. On August 12, 2005, a 20-year storm event with maximum 1-hour rainfall of 75.4 mm/h triggered a small landslide at a steep channel head. The sliding material moved as a debris flow along the first-order channel (C3) to the mouth. We successfully measured high-resolution channel topography with the Leica Geosystems High-Definition Surveying Laser Scanner before (April 30) and after the debris-flow event (October 9-11). Width, depth and other related parameters were measured for 30 selected cross sections. Bankfull stage of this first-order channel after the debris-flow event is much higher than two-year flood stage. The magnitude of channel geometry change varies non-linearly in downstream direction. The non-linear variability is attributed to differences in stream bed and bank characteristics. Bedrock-channel reach is less impacted by the debris flow. The largest magnitude changes in the channel geometry parameters occur along colluvially confined channel reaches.
Effects of woody debris on anadromous salmonid habitat, Prince of Wales Island, southeast Alaska
Thomas E. Lisle
1986-01-01
Abstract - The effects of woody debris on anadromous salmonid habitat in eight streams on Prince of Wales Island, southeast Alaska, were investigated by comparing low-gradient (1-9%) first- or second-order streams flowing through either spruce-hemlock forests or 6-10-year-old clearcuts, and by observing changes after debris was selectively removed from clear-cut...
Stephen W. Golladay; Juliann M. Battle; Brian J. Palik
2007-01-01
In southeastern Coastal Plain streams, wood debris can be very abundant and is recruited from extensive forested floodplains. Despite importance of wood debris, there have been few opportunities to examine recruitment and redistribution of wood in an undisturbed setting, particularly in the southeastern Coastal Plain. Following extensive flooding in 1994, measurements...
Dendrogeomorphic evidence of debris flow frequency and magnitude at Mount Shasta, California
Hupp, C.R.
1984-01-01
Debris-flow deposits and woody vegetation adjacent to and growing within the channels of Whitney, Bolam, Mud, Ash, and Panthe creeks provide a 300-year record of debris-flow frequency at Mount Shasta Dendrochronologic (tree-ring) dating methods for the debris flows proved consistent with available documented records of debris flows Nine debris flows not reported in the historic record were documented and dated dendrochronologically. The oldest tree-ring date for a mudflow was about 1670 Combined geomorphic and botanical evidence shows that debris flows are a common occurrence at Mount Shasta Debris flows traveling at least 2 km have occurred at the rate of about 8 3 per century Smaller debris flows occur substantially more frequently and usually do not proceed as far downslope as larger debris flows. Cyclic scouring and filling by debris flows, in and adjacent to the stream channels, is suggested by dendrogeomorphic evidence and appears to be related to their magnitude and frequency Debris flows, small and large, may be the major surficial geomorphic agent in the vicinity of mount Shasta, sculpturing the channels and developing large alluvial fans ?? 1984 Springer-Verlag New York Inc.
Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington
Curran, Janet H.; Wohl, Ellen E.
2003-01-01
Total flow resistance, measured as Darcy-Weisbach f, in 20 step-pool channels with large woody debris (LWD) in Washington, ranged from 5 to 380 during summer low flows. Step risers in the study streams consist of either (1) large and relatively immobile woody debris, bedrock, or roots that form fixed, or “forced,” steps, or (2) smaller and relatively mobile wood or clasts, or a mixture of both, arranged across the channel by the stream. Flow resistance in step-pool channels may be partitioned into grain, form, and spill resistance. Grain resistance is calculated as a function of particle size, and form resistance is calculated as large woody debris drag. Combined, grain and form resistance account for less than 10% of the total flow resistance. We initially assumed that the substantial remaining portion is spill resistance attributable to steps. However, measured step characteristics could not explain between-reach variations in flow resistance. This suggests that other factors may be significant; the coefficient of variation of the hydraulic radius explained 43% of the variation in friction factors between streams, for example. Large woody debris generates form resistance on step treads and spill resistance at step risers. Because the form resistance of step-pool channels is relatively minor compared to spill resistance and because wood in steps accentuates spill resistance by increasing step height, we suggest that wood in step risers influences channel hydraulics more than wood elsewhere in the channel. Hence, the distribution and function, not just abundance, of large woody debris is critical in steep, step-pool channels.
Rosenberger, A.E.; Dunham, J.B.; Buffington, J.M.; Wipfli, M.S.
2011-01-01
Wildfire and debris flows are important physical and ecological drivers in headwater streams of western North America. Past research has primarily examined short-term effects of these disturbances; less is known about longer-term impacts. We investigated wildfire effects on the invertebrate prey base for drift-feeding rainbow trout (Oncorhynchus mykiss, Walbaum) in Idaho headwater streams a decade after wildfire. Three stream types with different disturbance histories were examined: 1) unburned, 2) burned, and 3) burned followed by debris flows that reset channel morphology and riparian vegetation. The quantity of macroinvertebrate drift (biomass density) was more variable within than among disturbance categories. Average body weight and taxonomic richness of drift were significantly related to water temperature and influenced by disturbance history. During the autumn sampling period, the amount of terrestrial insects in rainbow trout diets varied with disturbance history and the amount of overhead canopy along the stream banks. Results indicate that there are detectable changes to macroinvertebrate drift and trout diet a decade after wildfire, and that these responses are better correlated with specific characteristics of the stream (water temperature, canopy cover) than with broad disturbance classes.
Quaternary deposits and landscape evolution of the central Blue Ridge of Virginia
Eaton, L. Scott; Morgan, Benjamin A.; Kochel, R. Craig; Howard, Alan D.
2003-01-01
A catastrophic storm that struck the central Virginia Blue Ridge Mountains in June 1995 delivered over 775 mm (30.5 in) of rain in 16 h. The deluge triggered more than 1000 slope failures; and stream channels and debris fans were deeply incised, exposing the stratigraphy of earlier mass movement and fluvial deposits. The synthesis of data obtained from detailed pollen studies and 39 radiometrically dated surficial deposits in the Rapidan basin gives new insights into Quaternary climatic change and landscape evolution of the central Blue Ridge Mountains.The oldest depositional landforms in the study area are fluvial terraces. Their deposits have weathering characteristics similar to both early Pleistocene and late Tertiary terrace surfaces located near the Fall Zone of Virginia. Terraces of similar ages are also present in nearby basins and suggest regional incision of streams in the area since early Pleistocene–late Tertiary time. The oldest debris-flow deposits in the study area are much older than Wisconsinan glaciation as indicated by 2.5YR colors, thick argillic horizons, and fully disintegrated granitic cobbles. Radiocarbon dating indicates that debris flow activity since 25,000 YBP has recurred, on average, at least every 2500 years. The presence of stratified slope deposits, emplaced from 27,410 through 15,800 YBP, indicates hillslope stripping and reduced vegetation cover on upland slopes during the Wisconsinan glacial maximum.Regolith generated from mechanical weathering during the Pleistocene collected in low-order stream channels and was episodically delivered to the valley floor by debris flows. Debris fans prograded onto flood plains during the late Pleistocene but have been incised by Holocene stream entrenchment. The fan incision allows Holocene debris flows to largely bypass many of the higher elevation debris fan surfaces and deposit onto the topographically lower surfaces. These episodic, high-magnitude storm events are responsible for transporting approximately half of the sediment from high gradient, low-order drainage basins to debris fans and flood plains.
Walder, J.S.; Driedger, C.L.
1994-01-01
As part of a hazards-assessment study, we examined the nature and rate of geomorphic change caused by outburst floods and debris flows along Tahoma Creek. Mount Rainier, since 1967. Archival aerial photographs of the area proved to be a rich source of qualitative geomorphic information. On the basis of limited direct evidence and considerations of stream hydrology, we conclude that nearly all of these debris flows began as outburst floods from South Tahoma Glacier. The water floods transformed to debris flows by incorporating large masses of sediment in a 2-km-long channel reach where the stream has incised proglacial sediments and debris-rich, stagnant glacier ice. Comparison of topographic maps for 1970 and 1991 shows that the average sediment flux out of the incised reach has been about 2 to 4 × 105 m3 a-1 corresponding to an average denudation rate in the upper part of the Tahoma Creek drainage basin of about 20 to 40 mm a-1, a value exceeded only rarely in basins affected by debris flows. However, little of this sediment has yet passed out of the Tahoma Creek basin. Comparison of geomorphic change at Tahoma Creek to that in two other alpine basins affected by outburst floods suggests that debris-rich stagnant ice can be an important source of sediment for debris flows as long as floods are frequent or channel slope is great.
Flow behavior and mobility of contaminated waste rock materials in the abandoned Imgi mine in Korea
NASA Astrophysics Data System (ADS)
Jeong, S. W.; Wu, Y.-H.; Cho, Y. C.; Ji, S. W.
2018-01-01
Incomplete mine reclamation can cause ecological and environmental impacts. This paper focuses on the geotechnical and rheological characteristics of waste rock materials, which are mainly composed of sand-size particles, potentially resulting in mass movement (e.g., slide or flow) and extensive acid mine drainage. To examine the potential for contaminant mobilization resulting from physicochemical processes in abandoned mines, a series of scenario-based debris flow simulations was conducted using Debris-2D to identify different hazard scenarios and volumes. The flow behavior of waste rock materials was examined using a ball-measuring rheometric apparatus, which can be adapted for large particle samples, such as debris flow. Bingham yield stresses determined in controlled shear rate mode were used as an input parameter in the debris flow modeling. The yield stresses ranged from 100 to 1000 Pa for shear rates ranging from 10- 5 to 102 s- 1. The results demonstrated that the lowest yield stress could result in high mobility of debris flow (e.g., runout distance > 700 m from the source area for 60 s); consequently, the material contaminants may easily reach the confluence of the Suyoung River through a mountain stream. When a fast slide or debris flow occurs at or near an abandoned mine area, it may result in extremely dynamic and destructive geomorphological changes. Even for the highest yield stress of debris flow simulation (i.e., τy = 2000 Pa), the released debris could flow into the mountain stream; therefore, people living near abandoned mines may become exposed to water pollution throughout the day. To maintain safety at and near abandoned mines, the physicochemical properties of waste materials should be monitored, and proper mitigation measures post-mining should be considered in terms of both their physical damage and chemical pollution potential.
Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution
NASA Astrophysics Data System (ADS)
Struble, W.; Roering, J. J.
2017-12-01
In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.
Impact of debris dams on hyporheic interaction along a semi-arid stream
NASA Astrophysics Data System (ADS)
Lautz, Laura K.; Siegel, Donald I.; Bauer, Robert L.
2006-01-01
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi-arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface.Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi-arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS-P, a one-dimensional, surface-water, solute-transport model from which we extracted the storage exchange rate and cross-sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short-term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non-gaining reach, stream water was diverted to the subsurface by debris dams and captured by large-scale near-stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams.
Debris flows: behavior and hazard assessment
Iverson, Richard M.
2014-01-01
Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.
The Time-Frequency Signatures of Advanced Seismic Signals Generated by Debris Flows
NASA Astrophysics Data System (ADS)
Chu, C. R.; Huang, C. J.; Lin, C. R.; Wang, C. C.; Kuo, B. Y.; Yin, H. Y.
2014-12-01
The seismic monitoring is expected to reveal the process of debris flow from the initial area to alluvial fan, because other field monitoring techniques, such as the video camera and the ultrasonic sensor, are limited by detection range. For this reason, seismic approaches have been used as the detection system of debris flows over the past few decades. The analysis of the signatures of the seismic signals in time and frequency domain can be used to identify the different phases of debris flow. This study dedicates to investigate the different stages of seismic signals due to debris flow, including the advanced signal, the main front, and the decaying tail. Moreover, the characteristics of the advanced signals forward to the approach of main front were discussed for the warning purpose. This study presents a permanent system, composed by two seismometers, deployed along the bank of Ai-Yu-Zi Creek in Nantou County, which is one of the active streams with debris flow in Taiwan. The three axes seismometer with frequency response of 7 sec - 200 Hz was developed by the Institute of Earth Sciences (IES), Academia Sinica for the purpose to detect debris flow. The original idea of replacing the geophone system with the seismometer technique was for catching the advanced signals propagating from the upper reach of the stream before debris flow arrival because of the high sensitivity. Besides, the low frequency seismic waves could be also early detected because of the low attenuation. However, for avoiding other unnecessary ambient vibrations, the sensitivity of seismometer should be lower than the general seismometer for detecting teleseism. Three debris flows with different mean velocities were detected in 2013 and 2014. The typical triangular shape was obviously demonstrated in time series data and the spectrograms of the seismic signals from three events. The frequency analysis showed that enormous debris flow bearing huge boulders would induce low frequency seismic waves. Owing to the less attenuation of low frequency waves, advanced signals mainly ranged between 2 and 10 Hz were detected in several minutes prior to the arrival of the main surge of a debris flow. As the results, the prior time of the advanced signals could be used not only to extend the warning time, but also to identify the initial location of a developing debris flow.
NASA Astrophysics Data System (ADS)
Gomi, Takashi; Sidle, Roy C.; Swanston, Douglas N.
2004-03-01
Hydrogemorphic linkages related to sediment transport in headwater streams following basin wide clear-cut logging on Prince of Wales Island, southeast Alaska, were investigated. Landslides and debris flows transported sediment and woody debris in headwater tributaries in 1961, 1979, and 1993. Widespread landsliding in 1961 and 1993 was triggered by rainstorms with recurrence intervals (24 h precipitation) of 7.0 years and 4.2 years respectively. Occurrence, distribution, and downstream effects of these mass movements were controlled by landform characteristics such as channel gradient and valley configuration. Landslides and channelized debris flows created exposed bedrock reaches, log jams, fans, and abandoned channels. The terminus of the deposits did not enter main channels because debris flows spread and thinned on the unconfined bottom of the U-shaped glaciated valley. Chronic sediment input to channels included surface erosion of exposed till (rain splash, sheet erosion, and freeze-thaw action) and bank failures. Bedload sediment transport in a channel impacted by 1993 landslides and debris flows was two to ten times greater and relatively finer compared with bedload transport in a young alder riparian channel that had last experienced a landslide and debris flow in 1961. Sediment transport and storage were influenced by regeneration of riparian vegetation, storage behind recruited woody debris, development of a streambed armour layer, and the decoupling of hillslopes and channels. Both spatial and temporal variations of sediment movement and riparian condition are important factors in understanding material transport within headwaters and through channel networks.
Transport of sediment through a channel network during a post-fire debris flow
NASA Astrophysics Data System (ADS)
Nyman, P.; Box, W. A. C.; Langhans, C.; Stout, J. C.; Keesstra, S.; Sheridan, G. J.
2017-12-01
Transport processes linking sediment in steep headwaters with rivers during high magnitude events are rarely examined in detail, particularly in forested settings where major erosion events are rare and opportunities for collecting data are limited. Yet high magnitude events in headwaters are known to drive landscape change. This study examines how a debris flow after wildfire impacts on sediment transport from small headwaters (0.02 km2) through a step pool stream system within a larger 14 km2 catchment, which drains into the East Ovens River in SE Australia. Sediment delivery from debris flows was modelled and downstream deposition of sediment was measured using a combination of aerial imagery and field surveys. Particle size distributions were measured for all major deposits. These data were summarised to map sediment flux as a continuous variable over the drainage network. Total deposition throughout the stream network was 39 x 103 m3. Catchment efflux was 61 x 103 m3 (specific sediment yield of 78 ton ha-1), which equates to 400-800 years of background erosion, based on measurements in nearby catchments. Despite the low gradient (ca. 0.1 m m-1) of the main channel there was no systematic downstream sorting in sediment deposits in the catchment. This is due to debris flow processes operating throughout the stream network, with lateral inputs sustaining the process in low gradient channels, except in the most downstream reaches where the flow transitioned towards hyper-concentrated flow. Overall, a large proportion ( 88%) of the eroded fine fraction (<63 micron) exited the catchment, when compared to the overall ratio (55%) of erosion to deposition. The geomorphic legacy of this post-wildfire event depends on scale. In the lower channels (steam order 4-5), where erosion was nearly equal to deposition, the event had no real impact on total sediment volumes stored. In upper channels (stream orders < 3) erosion was widespread but deposition rates were low. So debris flows are really effective at removing sediment from headwaters, but at some scale (between 3th and 4th order channels) they are equally effective at depositing sediment. In these lower reaches the geomorphic legacy of the post-wildfire debris flow is about how channel sediment is distributed rather than how much volume is stored.
NASA Astrophysics Data System (ADS)
Sujatha, Evangelin Ramani; Sridhar, Venkataramana
2017-12-01
Rapid debris flows, a mixture of unconsolidated sediments and water travelling at speeds > 10 m/s are the most destructive water related mass movements that affect hill and mountain regions. The predisposing factors setting the stage for the event are the availability of materials, type of materials, stream power, slope gradient, aspect and curvature, lithology, land use and land cover, lineament density, and drainage. Rainfall is the most common triggering factor that causes debris flow in the Palar subwatershed and seismicity is not considered as it is a stable continental region and moderate seismic zone. Also, there are no records of major seismic activities in the past. In this study, one of the less explored heuristic methods known as the analytical network process (ANP) is used to map the spatial propensity of debris flow. This method is based on top-down decision model and is a multi-criteria, decision-making tool that translates subjective assessment of relative importance to weights or scores and is implemented in the Palar subwatershed which is part of the Western Ghats in southern India. The results suggest that the factors influencing debris flow susceptibility in this region are the availability of material on the slope, peak flow, gradient of the slope, land use and land cover, and proximity to streams. Among all, peak discharge is identified as the chief factor causing debris flow. The use of micro-scale watersheds demonstrated in this study to develop the susceptibility map can be very effective for local level planning and land management.
Debris flow-induced topographic changes: effects of recurrent debris flow initiation.
Chen, Chien-Yuan; Wang, Qun
2017-08-12
Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.
Brook trout movement during and after recolonization of a naturally defaunated stream reach
Craig N. Roghair; C. Andrew Dolloff
2005-01-01
In june 1995 a debris flow associated with a massive streamwide flood completely eliminated brook trout Salvelinus fontinalis from the lower 1.9 km of the Staunton River in Shenandoah National Park, Virginia. Biannual diver counts revealed that brook trout moved several hundred meters into the debris-flow-affected area each year, resulting in...
Pyron, M.; Covich, A.P.; Black, R.W.
1999-01-01
In this paper, we report the sizes and distributional orientation of woody debris in a headwater rainforest stream in the Luquillo Experimental Forest (LEF), Puerto Rico. We also provide results of a 4-month study of a wood addition experiment designed to increase cover for benthic macroinvertebrates (freshwater shrimp). We added branch-sized woody debris to 20 pools in three streams. We trapped four species of freshwater shrimp (two species of benthic detritivores and two predatory shrimp species) during each of the 4 months following wood additions. An analysis of pool morphology (maximum depth, surface area and volume) provided a useful predictor of shrimp abundances. In general, numbers of shrimps increased with sizes of stream pools. A repeated measures ANOVA demonstrated no effect of woody debris additions on total numbers of shrimp per pool area. Two detritivore species (Atya lanipes, a filter feeder and Xiphocaris elongata, a shredder) decreased in abundance with increased woody debris and there was no statistical relationship between woody debris additions and predators (Macrobrachium carcinus and M. crenulatum). Small woody debris additions may have altered flow velocities that were important to filter-feeding Atya at the microhabitat scale, although the overall velocities within pools were not altered by wood additions. Lower numbers of Atya and Xiphocaris in two of the three streams may result from the occurrence of two predaceous fishes (American eel and mountain mullet) and more predatory Macrobrachium in these streams. One likely interpretation of the results of this study is that the stream pools in these study reaches had sufficient habitat structure provided by numerous rock crevices (among large rocks and boulders) to provide refuge from predators. Addition of woody debris did not add significantly to the existing structure. These results may not apply to stream channels with sand and gravel substrata where crevices and undercut banks are lacking and where woody debris often plays a major role by providing structure and refuge.
NASA Astrophysics Data System (ADS)
Stancanelli, Laura Maria; Peres, David Johnny; Cancelliere, Antonino; Foti, Enrico
2017-07-01
Rainfall-induced shallow slides can evolve into debris flows that move rapidly downstream with devastating consequences. Mapping the susceptibility to debris flow is an important aid for risk mitigation. We propose a novel practical approach to derive debris flow inundation maps useful for susceptibility assessment, that is based on the integrated use of DEM-based spatially-distributed hydrological and slope stability models with debris flow propagation models. More specifically, the TRIGRS infiltration and infinite slope stability model and the FLO-2D model for the simulation of the related debris flow propagation and deposition are combined. An empirical instability-to-debris flow triggering threshold calibrated on the basis of observed events, is applied to link the two models and to accomplish the task of determining the amount of unstable mass that develops as a debris flow. Calibration of the proposed methodology is carried out based on real data of the debris flow event occurred on 1 October 2009, in the Peloritani mountains area (Italy). Model performance, assessed by receiver-operating-characteristics (ROC) indexes, evidences fairly good reproduction of the observed event. Comparison with the performance of the traditional debris flow modeling procedure, in which sediment and water hydrographs are inputed as lumped at selected points on top of the streams, is also performed, in order to assess quantitatively the limitations of such commonly applied approach. Results show that the proposed method, besides of being more process-consistent than the traditional hydrograph-based approach, can potentially provide a more accurate simulation of debris-flow phenomena, in terms of spatial patterns of erosion and deposition as well on the quantification of mobilized volumes and depths, avoiding overestimation of debris flow triggering volume and, thus, of maximum inundation flow depths.
Skinner, Kenneth D.
2013-01-01
A preliminary hazard assessment was developed for debris-flow hazards in the 465 square-kilometer (115,000 acres) area burned by the 2013 Beaver Creek fire near Hailey in central Idaho. The burn area covers all or part of six watersheds and selected basins draining to the Big Wood River and is at risk of substantial post-fire erosion, such as that caused by debris flows. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the Intermountain Region in Western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within the burn area and to estimate the same for analyzed drainage basins within the burn area. Input data for the empirical models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (13 mm); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (19 mm); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (22 mm). Estimated debris-flow probabilities for drainage basins upstream of 130 selected basin outlets ranged from less than 1 to 78 percent with the probabilities increasing with each increase in storm magnitude. Probabilities were high in three of the six watersheds. For the 25-year storm, probabilities were greater than 60 percent for 11 basin outlets and ranged from 50 to 60 percent for an additional 12 basin outlets. Probability estimates for stream segments within the drainage network can vary within a basin. For the 25-year storm, probabilities for stream segments within 33 basins were higher than the basin outlet, emphasizing the importance of evaluating the drainage network as well as basin outlets. Estimated debris-flow volumes for the three modeled storms range from a minimal debris flow volume of 10 cubic meters [m3]) to greater than 100,000 m3. Estimated debris-flow volumes increased with basin size and distance downstream. For the 25-year storm, estimated debris-flow volumes were greater than 100,000 m3 for 4 basins and between 50,000 and 100,000 m3 for 10 basins. The debris-flow hazard rankings did not result in the highest hazard ranking of 5, indicating that none of the basins had a high probability of debris-flow occurrence and a high debris-flow volume estimate. The hazard ranking was 4 for one basin using the 10-year-recurrence storm model and for three basins using the 25-year-recurrence storm model. The maps presented herein may be used to prioritize areas where post-wildfire remediation efforts should take place within the 2- to 3-year period of increased erosional vulnerability.
NASA Astrophysics Data System (ADS)
Schoch, Anna; Hoffmann, Thomas; Dikau, Richard
2014-05-01
Sediment fluxes in mountain headwater streams are strongly conditioned by sediment supply from hillslopes and thus hillslope-channel coupling, defined as linkages connecting slopes and channels through sediment transport processes. Sediment supply from hillslopes can have major influences on channel characteristics. The main goal of my research is to achieve a better understanding of these influences on mountain headwater streams in two study areas. This is conducted through the investigation of "channel-reach morphology" according to MONTGOMERY AND BUFFINGTON (1997), morphometric and sedimentological characteristics of the channels and analysis of the slope-channel coupling system. The study was conducted in two valleys in the Swiss National Park, i.e. Val dal Botsch (VdB) and Val Mueschauns (VMu). In both headwaters slopes and channel are coupled effectively due to the small spatial vicinity and frequent debris flow processes connecting the two system components. Both catchments were glaciated in the Pleistocene but show contrasting glacial imprints today. While VdB has a V-shaped morphometry that is dominated by unconsolidated sediments (mainly talus and moraine material), VMu is U-shaped in the upper valley segments and the surface is mainly covered with bedrock. Several methods for data collection and analyses were used: (1) Channel-reach morphology classification, (2) DEM-based analysis of long profiles, ksn-values, slope-area plots and measurement of cross sections in the field, (3) investigation of sedimentological characteristics with pebble counts as well as (4) mapping of recent linkages between slopes and channel and determination of connectivity (effectivity of coupling) using a heuristic approach. The results show that sediment input into both headwater streams is dominated by debris flows. The debris flow catchments, as parts of the slope system, have the highest connectivity to the channels. Channel changes are greatest where debris flows cause massive sediment input. Channel changes include an increase in sediment size and density of boulders, a decline in grain roundness and particle sorting as well as slope steepening and alterations of cross sections due to channel incision into the deposited debris flow material. Channel-reach morphology can be modified as well, e.g. from step pool to cascade. The intensity of the influence on channels varies among the investigated debris flows. A comparison of the larger debris flows reveals that debris flows with catchments dominated by bedrock and large areal extend (absolute and relative to main channel drainage area) have the strongest influence on channels. These results suggest that the variable influence on the channel is linked to differences in the Pleistocene glacial imprint of the two study areas. Geomorphic heritage plays a crucial role in recent alpine systems. Reference: MONTGOMERY, D. R. AND J. M. BUFFINGTON (1997): Channel-reach morphology in mountain drainage basins. Geol. Soc. Am. Bull. 109 (5), 596-611.
Mount Baker lahars and debris flows, ancient, modern, and future
Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott
2014-01-01
Holocene lahars and large debris flows (>106 m3) have left recognizable deposits in the Middle Fork Nooksack valley. A debris flow in 2013 resulting from a landslide in a Little Ice Age moraine had an estimated volume of 100,000 m3, yet affected turbidity for the entire length of the river, and produced a slug of sediment that is currently being reworked and remobilized in the river system. Deposits of smaller-volume debris flows, deposited as terraces in the upper valley, may be entirely eroded within a few years. Consequently, the geologic record of small debris flows such as those that occurred in 2013 is probably very fragmentary. Small debris flows may still have significant impacts on hydrology, biology, and human uses of rivers downstream. Impacts include the addition of waves of fine sediment to stream loads, scouring or burying salmon-spawning gravels, forcing unplanned and sudden closure of municipal water intakes, damaging or destroying trail crossings, extending river deltas into estuaries, and adding to silting of harbors near river mouths.
NASA Astrophysics Data System (ADS)
Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin
2018-02-01
Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (< 1% Annual Exceedance Probability for durations exceeding 6 h) and resulted in flooding and sediment deposition across the alluvial fan. The impacts of the 2011 and 2016 events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.
Fire, flow and dynamic equilibrium in stream macroinvertebrate communities
Arkle, R.S.; Pilliod, D.S.; Strickler, K.
2010-01-01
The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Tsunetaka, H.; Hotta, N.; Imaizumi, F.; Hayakawa, Y. S.
2015-12-01
Large sediment movements, such as deep-seated landslides, produce unstable sediment over the long term. Most of the unstable sediment in a mountain torrent is discharged via the development of debris flows through entrainment. Consequently, after a large sediment movement, debris flows have long-term effects on the watershed regime. However, the development of debris flows in mountain torrents is poorly understood, since the topography is more complicated than downstream. We compared temporal changes in topography to examine how topography affects the development of flows. The study site was the Ichino-sawa subwatershed in the Ohya-kuzure landslide, Japan. Unstable sediment has been produced continuously since the landslide occurred in 1707. Several topographic surveys using a terrestrial laser scanner (TLS) and aerial shoots by an unmanned aerial vehicle (UAV) were performed between November 2011 (TLS) or November 2014 (UAV) and August 2015. High-resolution digital elevation models were created from the TLS and UAV results to detect temporal topographic changes. Debris flow occurrences and rainfall were also monitored using interval cameras and rain gauges. Downstream, the deposit depth decreased after the debris flows. Upstream, more complex changes were detected due to surges in the debris flows, which not only induced entrainment, but were also deposited in the valley floor. Furthermore, sediment was supplied from the stream bank during the debris flows. Consequently, several debris flows of different magnitudes were observed, although the rainfall conditions did not differ significantly. The results imply that the magnitude of the debris flows was affected by successive sediment movement resulting from the changing of the topographic conditions.
Influence of wood on invertebrate communities in streams and rivers
Arthur Benke; J. Bruce Wallace
2010-01-01
Wood plays a major role in creating multiple invertebrate habitats in small streams and large rivers. In small streams, wood debris dams are instrumental in creating a step and pool profile of habitats, enhancing habitat heterogeneity, retaining organic matter, and changing current velocity. Beavers can convert sections of free-flowing streams into ponds and wetlands...
Debris flow run-out simulation and analysis using a dynamic model
NASA Astrophysics Data System (ADS)
Melo, Raquel; van Asch, Theo; Zêzere, José L.
2018-02-01
Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.
Calibration of numerical models for small debris flows in Yosemite Valley, California, USA
Bertolo, P.; Wieczorek, G.F.
2005-01-01
This study compares documented debris flow runout distances with numerical simulations in the Yosemite Valley of California, USA, where about 15% of historical events of slope instability can be classified as debris flows and debris slides (Wieczorek and Snyder, 2004). To model debris flows in the Yosemite Valley, we selected six streams with evidence of historical debris flows; three of the debris flow deposits have single channels, and the other three split their pattern in the fan area into two or more channels. From field observations all of the debris flows involved coarse material, with only very small clay content. We applied the one dimensional DAN (Dynamic ANalysis) model (Hungr, 1995) and the two-dimensional FLO2D model (O'Brien et al., 1993) to predict and compare the runout distance and the velocity of the debris flows observed in the study area. As a first step, we calibrated the parameters for the two softwares through the back analysis of three debris- flows channels using a trial-and-error procedure starting with values suggested in the literature. In the second step we applied the selected values to the other channels, in order to evaluate their predictive capabilities. After parameter calibration using three debris flows we obtained results similar to field observations We also obtained a good agreement between the two models for velocities. Both models are strongly influenced by topography: we used the 30 m cell size DTM available for the study area, that is probably not accurate enough for a highly detailed analysis, but it can be sufficient for a first screening. European Geosciences Union ?? 2005 Author(s). This work is licensed under a Creative Commons License.
Debris flow susceptibility assessment after the 2008 Wenchuan earthquake
NASA Astrophysics Data System (ADS)
Fan, Xuanmei; van Westen, Cees; Tang, Chenxiao; Tang, Chuan
2014-05-01
Due to a tremendous amount of loose material from landslides that occurred during the Wenchuan earthquake, the frequency and magnitude of debris flows have been immensely increased, causing many casualties and economic losses. This study attempts to assess the post-earthquake debris flow susceptibility based on catchment units in the Wenchuan county, one of the most severely damaged county by the earthquake. The post earthquake debris flow inventory was created by RS image interpretation and field survey. According to our knowledge to the field, several relevant factors were determined as indicators for post-earthquake debris flow occurrence, including the distance to fault surface rupture, peak ground acceleration (PGA), coseismic landslide density, rainfall data, internal relief, slope, drainage density, stream steepness index, existing mitigation works etc. These indicators were then used as inputs in a heuristic model that was developed by adapting the Spatial Multi Criteria Evaluation (SMCE) method. The relative importance of the indicators was evaluated according to their contributions to the debris flow events that have occurred after the earthquake. The ultimate goal of this study is to estimate the relative likelihood of debris flow occurrence in each catchment, and use this result together with elements at risk and vulnerability information to assess the changing risk of the most susceptible catchment.
Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska
NASA Astrophysics Data System (ADS)
Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.
2012-12-01
The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current and low TKE between Main and 800 indicate that this section of river may be the best site for deploying hydrokinetic devices. Woody debris exists as individual pieces or as large tangled masses on the surface, as full depth vertically oriented debris moving down river and as submerged debris posing a potential hazard to surface or subsurface deployed hydrokinetic devices. Submerged debris consists of logs, root balls, and small (mulch-like) debris. A surface debris diversion device has been tested and shown to be effective at diverting isolated debris and may reduce hazards for surface mounted devices.Figure 1. AHERC Tanana River test site at Nenana, AK.
Sedimentary gravity flows from subaerial fan-deltas in Loreto Bay, Baja California Sur, Mexico
NASA Astrophysics Data System (ADS)
Navarro-Lozano, José O.; Nava-Sánchez, Enrique H.; Godínez-Orta, Lucio
2010-05-01
Fan-deltas from Loreto Bay show recent evidences of sedimentary gravity flows as a result from catastrophic events during hurricane rainfalls. The knowledge of hydrological characteristics of these flows is important for understanding the effects of storms on fan-deltas geomorphology in this region, as well as for the urban developing planning of the city of Loreto in order to avoid hazardous zones. The analysis of precipitation and hurricane tracks data for the period 1945 to 2009 indicates that hurricanes have caused catastrophic floods every 20 years. Stratigraphy from the channel incision shows a sequence of stream flow and debris flow controlled by changes in the competence and capacity of the stream, which are associated to the gentle slope (<2 °) of the fan-deltas. However fans from the north of the bay (Arce and Gúa) show deposits of debris flows associated to catastrophic floods, which have caused the incision channel to drift towards the southern part of the fans, while flows from Las Parras fan-delta, from the middle of the bay, are dominated by stream flows. These differences in the type of the flows are controlled by lithology, shape and size of the drainage basin, and slope of the transit zone in the feeder channel.
Scaling and design of landslide and debris-flow experiments
Iverson, Richard M.
2015-01-01
Scaling plays a crucial role in designing experiments aimed at understanding the behavior of landslides, debris flows, and other geomorphic phenomena involving grain-fluid mixtures. Scaling can be addressed by using dimensional analysis or – more rigorously – by normalizing differential equations that describe the evolving dynamics of the system. Both of these approaches show that, relative to full-scale natural events, miniaturized landslides and debris flows exhibit disproportionately large effects of viscous shear resistance and cohesion as well as disproportionately small effects of excess pore-fluid pressure that is generated by debris dilation or contraction. This behavioral divergence grows in proportion to H3, where H is the thickness of a moving mass. Therefore, to maximize geomorphological relevance, experiments with wet landslides and debris flows must be conducted at the largest feasible scales. Another important consideration is that, unlike stream flows, landslides and debris flows accelerate from statically balanced initial states. Thus, no characteristic macroscopic velocity exists to guide experiment scaling and design. On the other hand, macroscopic gravity-driven motion of landslides and debris flows evolves over a characteristic time scale (L/g)1/2, where g is the magnitude of gravitational acceleration and L is the characteristic length of the moving mass. Grain-scale stress generation within the mass occurs on a shorter time scale, H/(gL)1/2, which is inversely proportional to the depth-averaged material shear rate. A separation of these two time scales exists if the criterion H/L < < 1 is satisfied, as is commonly the case. This time scale separation indicates that steady-state experiments can be used to study some details of landslide and debris-flow behavior but cannot be used to study macroscopic landslide or debris-flow dynamics.
Systems and Sensors for Debris-flow Monitoring and Warning
Arattano, Massimo; Marchi, Lorenzo
2008-01-01
Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums, photocells, trip wires etc. Event warning systems for debris flows have a strong linkage with debris-flow monitoring that is carried out for research purposes: the same sensors are often used for both monitoring and warning, although warning systems have higher requirements of robustness than monitoring systems. The paper presents a description of the sensors employed for debris-flow monitoring and event warning systems, with attention given to advantages and drawbacks of different types of sensors. PMID:27879828
Predicting sediment delivery from debris flows after wildfire
NASA Astrophysics Data System (ADS)
Nyman, Petter; Smith, Hugh G.; Sherwin, Christopher B.; Langhans, Christoph; Lane, Patrick N. J.; Sheridan, Gary J.
2015-12-01
Debris flows are an important erosion process in wildfire-prone landscapes. Predicting their frequency and magnitude can therefore be critical for quantifying risk to infrastructure, people and water resources. However, the factors contributing to the frequency and magnitude of events remain poorly understood, particularly in regions outside western USA. Against this background, the objectives of this study were to i) quantify sediment yields from post-fire debris flows in southeast Australian highlands and ii) model the effects of landscape attributes on debris flow susceptibility. Sediment yields from post-fire debris flows (113-294 t ha- 1) are 2-3 orders of magnitude higher than annual background erosion rates from undisturbed forests. Debris flow volumes ranged from 539 to 33,040 m3 with hillslope contributions of 18-62%. The distribution of erosion and deposition above the fan were related to a stream power index, which could be used to model changes in yield along the drainage network. Debris flow susceptibility was quantified with a logistic regression and an inventory of 315 debris flow fans deposited in the first year after two large wildfires (total burned area = 2919 km2). The differenced normalised burn ratio (dNBR or burn severity), local slope, radiative index of dryness (AI) and rainfall intensity (from rainfall radar) were significant predictors in a susceptibility model, which produced excellent results in terms identifying channels that were eroded by debris flows (Area Under Curve, AUC = 0.91). Burn severity was the strongest predictor in the model (AUC = 0.87 when dNBR is used as single predictor) suggesting that fire regimes are an important control on sediment delivery from these forests. The analysis showed a positive effect of AI on debris flow probability in landscapes where differences in moisture regimes due to climate are associated with large variation in soil hydraulic properties. Overall, the results from this study based in the southeast Australian highlands provide a novel basis upon which to model sediment delivery from post-fire debris flows. The modelling approach has wider relevance to post-fire debris flow prediction both from risk management and landscape evolution perspectives.
NASA Astrophysics Data System (ADS)
Llanes, F.; Rodolfo, K. S.; Lagmay, A. M. A.
2017-12-01
On 17 October 2015, Typhoon Koppu brought heavy rains that generated debris flows in the municipalities of Bongabon, Laur, and Gabaldon in Nueva Ecija province. Roughly two months later on 15 December, Typhoon Melor made landfall in the province of Oriental Mindoro, bringing heavy rains that also generated debris flows in multiple watersheds in the municipality of Baco. Despite not being in the direct path of the typhoon, debris flows were triggered in Bongabon, Gabaldon, and Laur, whereas old debris-flow deposits were remobilized in Dingalan, a coastal town in Aurora province adjacent to Gabaldon. During the onslaught of Typhoons Koppu and Melor, landslides of rock, soil, and debris converged in the mountain stream networks where they were remobilized into debris flows that destroyed numerous houses and structures situated on alluvial fans. Satellite images before and after the two typhoons were compared to calculate the deposit extents on the fans and to determine the number and extent of landslides on each watershed. The affected alluvial fans were investigated in the field to determine whether they are debris flow or flood-prone, using a set of established geomorphic and sedimentary characteristics that differentiate deposits of the two processes. Melton ratio, watershed length, and other significant morphometric indices were calculated and analyzed for the affected watersheds using geographic information system (GIS) and high-resolution digital terrain models. A GIS model that can delineate debris flow susceptible alluvial fans in the Philippines was derived and developed from the analysis. Limitations of the model are discussed, as well as recommendations to improve and refine it.
Exploiting LSPIV to assess debris-flow velocities in the field
NASA Astrophysics Data System (ADS)
Theule, Joshua I.; Crema, Stefano; Marchi, Lorenzo; Cavalli, Marco; Comiti, Francesco
2018-01-01
The assessment of flow velocity has a central role in quantitative analysis of debris flows, both for the characterization of the phenomenology of these processes and for the assessment of related hazards. Large-scale particle image velocimetry (LSPIV) can contribute to the assessment of surface velocity of debris flows, provided that the specific features of these processes (e.g. fast stage variations and particles up to boulder size on the flow surface) are taken into account. Three debris-flow events, each of them consisting of several surges featuring different sediment concentrations, flow stages, and velocities, have been analysed at the inlet of a sediment trap in a stream in the eastern Italian Alps (Gadria Creek). Free software has been employed for preliminary treatment (orthorectification and format conversion) of video-recorded images as well as for LSPIV application. Results show that LSPIV velocities are consistent with manual measurements of the orthorectified imagery and with front velocity measured from the hydrographs in a channel recorded approximately 70 m upstream of the sediment trap. Horizontal turbulence, computed as the standard deviation of the flow directions at a given cross section for a given surge, proved to be correlated with surface velocity and with visually estimated sediment concentration. The study demonstrates the effectiveness of LSPIV in the assessment of surface velocity of debris flows and permit the most crucial aspects to be identified in order to improve the accuracy of debris-flow velocity measurements.
Debris-flow origin for the Simud/Tiu deposit on Mars
Tanaka, K.L.
1999-01-01
A late Hesperian smooth plains deposit on Mars interpreted as a debris flow extends more than 2000 km from Hydraotes Chaos, through Simud and Tiu Valles, and into Chryse Planitia. The Simud/Tiu deposit widens out to >1000 km and embays streamlined landforms and knobs made up of sedimentary and perhaps volcanic deposits that were carved by earlier channeling activity. Morphologic features of the Simud/Tiu deposit observed in Viking and Pathfinder images are generally consistent with a debris-flow origin, but some of the deposit's salient features are not readily explained by catastrophic flooding or ice flow. Internal depressions appear to be bounded by linear scarps along flow margins where differential shearing may have occurred and in areas where flow spreading may have produced zones of extensional breakup and thinning within the flow. Possible flow lobes within the deposit may have formed by successive flow surges within the flow unit. The Pathfinder landing site is on the Simud/Tiu deposit, and the observations there are consistent with debris flow. The low, longitudinal ridges at the site may have formed by clast interactions as the flow ground to a halt. Imbricated, planar rocks on the ridges, such as in the Rock Garden, also may have been emplaced by debris or ice flow. However, stream energy calculations at Ares Vallis and channel geology indicate that flooding probably was incapable of emplacing the meter-size boulders observed at the Pathfinder site. Dewatering of pressurized zones in the debris flow or underlying material may be responsible for mud eruptions that formed a couple of patches of low pancakelike shields up to 5 km in diameter and for probable water flows that formed two small rille channels a few kilometers long. Local irregular grooves may be cracks that resulted from later desiccation and contraction of the flow material. The debris-flow unit apparently coalesced from outflows of water-fluidized debris originating from beneath chaotic and hummocky terrains within and along the margins of Simud and Tiu Valles. The deposit is onlapped from the north by another flow deposit originating from Acidalia Planitia. If the Simud/Tiu debris flow had entered a standing body of water, a turbidity current may have arisen from the debris flow and then backflowed over the debris flow to account for the Acidalia deposit.
Dynamics of wood in stream networks of the western Cascades Range, Oregon
Nicole M. Czarnomski; David M. Dreher; Kai U. Snyder; Julia A. Jones; Frederick J. Swanson
2008-01-01
We develop and test a conceptual model of wood dynamics in stream networks that considers legacies of forest management practices, floods, and debris flows. We combine an observational study of wood in 25 km of 2nd- through 5th-order streams in a steep, forested watershed of the western Cascade Range of Oregon with whole-network studies of forest cutting, roads, and...
Brooks, William E.; Willett, Jason C.; Kent, Jonathan D.; Vasquez, Victor; Rosales, Teresa
2005-01-01
Debris flows caused by El Niño events, earthquakes, and glacial releases have affected northern Perú for centuries. The Muralla Pircada, a northeast-trending, 2.5 km long stone wall east of the Santa Rita B archaeological site (Moche-Chimú) in the Chao Valley, is field evidence that ancient Andeans recognized and, more importantly, attempted to mitigate the effects of debris flows. The Muralla is upstream from the site and is perpendicular to local drainages. It is 1–2 m high, up to 5 m wide, and is comprised of intentionally-placed, well-sorted, well-rounded, 20–30 cm cobbles and boulders from nearby streams. Long axes of the stones are gently inclined and parallel local drainage. Case-and-fill construction was used with smaller cobbles and pebbles used as fill. Pre-Muralla debris flows are indicated by meter-sized, angular boulders that were incorporated in-place into construction of the dam and are now exposed in breeches in the dam. Post-Muralla debris flows in the Chao Valley are indicated by meter-sized, angular boulders that now abut the retention dam.
NASA Astrophysics Data System (ADS)
Yu, Guo-an; Huang, He Qing; Wang, Zhaoyin; Brierley, Gary; Zhang, Kang
2012-01-01
SummaryRehabilitation of Shengou Creek, a small, steep mountain stream in southwestern China that is prone to debris flows, started more than 30 years ago through an integrated program of engineering applications (check dams and guiding dikes), biological measures (reforestation), and social measures (reducing human disturbance). Small and medium-sized check dams and guiding dikes were constructed on key upper and middle sections of the creek to stabilize hillslopes and channel bed. Meanwhile, Leucaena leucocephala, a drought-tolerant, fast-growing, and highly adaptive plant species, was introduced to promote vegetation recovery in the watershed. The collective community structure of tree, shrub, and herb assemblages in the artificial L. leucocephala forest, which developed after 7 years, enhanced soil structure and drastically reduced soil erosion on hillslopes. Cultivation of steep land was strictly controlled in the basin, and some inhabitants were encouraged to move from upstream areas to downstream towns to reduce disturbance. These integrated measures reduced sediment supply from both hillslopes and upstream channels, preventing sediment-related hazards. The development of natural streambed resistance structures (mainly step-pool systems) and luxuriant riparian vegetation aided channel stability, diversity of stream habitat, and ecological maintenance in the creek. These findings are compared with Jiangjia and Xiaobaini Ravines, two adjacent non-rehabilitated debris-flow streams which have climate and geomorphologic conditions similar to Shengou Creek. Habitat diversity indices, taxa richness, biodiversity, and bio-community indices are much higher in Shengou Creek relative to Jiangjia and Xiaobaini Ravines, attesting to the effectiveness of rehabilitation measures.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
NASA Astrophysics Data System (ADS)
Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin
2017-02-01
Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in debris-flow dominated fans of the Lianhe Formation. Thus the Late Cretaceous climate changes are inferred to have influenced and preserved signals in the alluvial stratigraphy of the Yongchong Basin.
Sediment pulses in mountain rivers. Part 1. Experiments
Y. Cui; G. Parker; T. E. Lisle; J. Gott; M. E. Hansler; J. E. Pizzuto; N. E. Almendinger; J. M. Reed
2003-01-01
Sediment often enters rivers in discrete pulses associated with landslides and debris flows. This is particularly so in the case of mountain streams. The topographic disturbance created on the bed of a stream by a single pulse must be gradually eliminated if the river is to maintain its morphological integrity. Two mechanisms for elimination have been identified:...
Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland
NASA Astrophysics Data System (ADS)
Walter, Fabian; Burtin, Arnaud; McArdell, Brian W.; Hovius, Niels; Weder, Bianca; Turowski, Jens M.
2017-06-01
Heavy precipitation can mobilize tens to hundreds of thousands of cubic meters of sediment in steep Alpine torrents in a short time. The resulting debris flows (mixtures of water, sediment and boulders) move downstream with velocities of several meters per second and have a high destruction potential. Warning protocols for affected communities rely on raising awareness about the debris-flow threat, precipitation monitoring and rapid detection methods. The latter, in particular, is a challenge because debris-flow-prone torrents have their catchments in steep and inaccessible terrain, where instrumentation is difficult to install and maintain. Here we test amplitude source location (ASL) as a processing scheme for seismic network data for early warning purposes. We use debris-flow and noise seismograms from the Illgraben catchment, Switzerland, a torrent system which produces several debris-flow events per year. Automatic in situ detection is currently based on geophones mounted on concrete check dams and radar stage sensors suspended above the channel. The ASL approach has the advantage that it uses seismometers, which can be installed at more accessible locations where a stable connection to mobile phone networks is available for data communication. Our ASL processing uses time-averaged ground vibration amplitudes to estimate the location of the debris-flow front. Applied to continuous data streams, inversion of the seismic amplitude decay throughout the network is robust and efficient, requires no manual identification of seismic phase arrivals and eliminates the need for a local seismic velocity model. We apply the ASL technique to a small debris-flow event on 19 July 2011, which was captured with a temporary seismic monitoring network. The processing rapidly detects the debris-flow event half an hour before arrival at the outlet of the torrent and several minutes before detection by the in situ alarm system. An analysis of continuous seismic records furthermore indicates that detectability of Illgraben debris flows of this size is unaffected by changing environmental and anthropogenic seismic noise and that false detections can be greatly reduced with simple processing steps.
NASA Astrophysics Data System (ADS)
Cheng, Weiming; Wang, Nan; Zhao, Min; Zhao, Shangmin
2016-03-01
The geomorphic setting of the tectonically active area around Beijing is a result of complex interactions involving Yanshan neotectonic movements and processes of erosion and deposition. The Beijing Mountain study area contains the junction of two mountain ranges (the Yanshan Mountains and the Taihang Mountains). Tectonic activity has significantly influenced the drainage system and the geomorphic situation in the area, leading to a high probability of the development of debris flows, which is one of the major abrupt geological disasters in the region. Based on 30-m-resolution ASTER GDEM data, a total of 752 drainage basins were extracted using ArcGIS software. A total of 705 debris flow valleys were visually interpreted from ALOS satellite images and published documents. Seven geomorphic indices were calculated for each basin including the relief amplitude, the hypsometric integral, the stream length gradient, the basin shape indices, the fractal dimension, the asymmetry factor, and the ratio of the valley floor width to the height. These geomorphic indices were divided into five classes and the ratio of the number of the debris flow valleys to the number of the drainage basins for each geomorphic index was computed and analyzed for every class. Average class values of the seven indices were used to derive an index of relative active tectonics (IRAT). The ratio of the number of the debris flow valleys to the number of the drainage basins was computed for every class of IRAT. The degree of probable risk level was then defined from the IRAT classes. Finally, the debris flow hazard was evaluated for each drainage basin based on the combined effect of probable risk level and occurrence frequency of the debris flows. The result showed a good correspondence between IRAT classes and the ratio of the number of the debris flow valleys to the number of the drainage basins. Approximately 65% of the drainage basins with occurred debris flow valleys are at a high risk level, while 43% of the drainage basins without occurred debris flow valleys are at a high risk level. A comparison with results from past studies demonstrated that the accuracy of these findings is greater than 85%, indicating that the basin topography created by rapid tectonic deformations is more favorable for debris flows.
NASA Astrophysics Data System (ADS)
Gordon, R. P.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.
2012-12-01
The tropical glaciers of the Cordillera Blanca of Peru are retreating rapidly due to climate change, which threatens water resources for the quarter-million inhabitants of the upper Rio Santa river valley and many more downstream. Recent studies have shown that glacial melt supplies approximately half of dry season stream discharge in Cordillera Blanca valleys. The remainder of streamflow is supplied by groundwater stored in alpine meadows, moraines and talus slopes. In the future, when glacier loss has reduced the influence of melt water on streams, groundwater discharge will be the primary dry-season source of stream water for irrigation, municipalities, and hydropower in the Santa watershed. A better understanding of the dynamics of alpine groundwater, including sources and exchange fluxes, is therefore important for future planning in this region. Understanding these groundwater-surface water interactions is necessary for making accurate estimates of meltwater contributions to the hydrologic budget, and for our ability to make predictions about future water resources under deglaciating conditions. We combined measurements of groundwater-surface water exchange during the dry season with synoptic sampling of stream water and end-members in order to quantify the groundwater contributions to streamflow from an alpine meadow, debris fan, and moraine complex in a glacierized valley of the Cordillera Blanca. Using stream tracer-dilution techniques, we calculated channel water balances for 9 stream reaches of 100-200 m throughout the meadow and measured the discharge of glacial meltwater into debris fan and moraine units. We used vertical heat tracing to measure stream-groundwater exchange at 2-hour increments over 2 weeks in 13 stream locations in the meadow, debris fan, and moraine units. Channel water balance and heat tracing results show that, during the studied portion of the dry season, the stream loses water (2.5 l/s or ~25% of flow) to the subsurface in the upstream half of the meadow, and gains water (7 l/s or ~6% of flow) in the lower half. The debris fan adjacent to the meadow received 22 l/s of surficial melt water from a glacial lake but contributed ~100 l/s of streamflow to the meadow, mostly through springs at the fan-meadow interface. In contrast, the terminal moraine complex at the head of the meadow received 36 l/s of glacial lake discharge but only contributed 5 l/s of streamflow to the meadow; the remainder of stream discharge over the moraine was apparently lost to an underlying aquifer. Results show that gains and losses of stream water are unequally distributed across the landscape in the dry season, with the debris fan and meadow being net sources of streamflow, and the moraine a net sink. Almost all of the stream water exiting the catchment (115 l/s) spent some time in the subsurface, with approximately half originating as groundwater within the studied watershed.
The role of structure in the physical habitat of anadromous salmonids
Thomas E. Lisle
1983-01-01
A fundamental difference between a canal and a natural stream is structure. Structure includes all the typical anomalies of natural streams that deflect the general downstream flow, such as bends, bars, bedrock knobs, boulders, landslide deposits, and large woody debris. This results in the storage of watershed products in the channel, and in a great heterogeneity in...
NASA Astrophysics Data System (ADS)
Lewicki, M.; Buffington, J. M.; Thurow, R. F.; Isaak, D. J.
2006-12-01
Mountain rivers in central Idaho receive pulsed sediment inputs from a variety of mass wasting processes (side-slope landslides, rockfalls, and tributary debris flows). Tributary debris flows and hyperconcentrated flows are particularly common due to winter "rain-on-snow" events and summer thunderstorms, the effects of which are amplified by frequent wildfire and resultant changes in vegetation, soil characteristics, and basin hydrology. Tributary confluences in the study area are commonly characterized by debris fans built by these repeated sediment pulses, providing long-term controls on channel slope, hydraulics and sediment transport capacity in the mainstem channel network. These long-term impacts are magnified during debris-flow events, which deliver additional sediment and wood debris to the fan and may block the mainstem river. These changes in physical conditions also influence local and downstream habitat for aquatic species, and can impact local human infrastructure (roads, bridges). Here, we conduct numerical simulations using a modified version of Cui's [2005] network routing model to examine bedload transport and debris-fan evolution in medium- sized watersheds (65-570 km2) of south-central Idaho. We test and calibrate the model using data from a series of postfire debris-flow events that occurred from 2003-4. We investigate model sensitivity to different controlling factors (location of the pulse within the stream network, volume of the pulse, and size distribution of the input material). We predict that on decadal time scales, sediment pulses cause a local coarsening of the channel bed in the vicinity of the sediment input, and a wave of downstream fining over several kilometers of the river (as long as the pulse material is not coarser than the stream bed itself). The grain-size distribution of the pulse influences its rate of erosion, the rate and magnitude of downstream fining, and the time required for system recovery. The effects of textural fining on spawning habitat depend on the size of sediment in the wave relative to that of the downstream channel; fining can improve spawning habitat availability in channels that are otherwise too coarse, or degrade habitat availability in finer-grained channels. Despite the perceived negative effects of sediment pulses, they can be important sources of gravel and wood debris, creating downstream spawning sites and productive wood-forced habitats. Field observations illustrate that opportunistic salmonids will spawn along the margins of recently deposited debris fans, emphasizing the biological value of such disturbances and the plasticity of salmonids to natural disturbances.
Debris-flow hazards caused by hydrologic events at Mount Rainier, Washington
Vallance, James W.; Cunico, Michelle L.; Schilling, Steve P.
2003-01-01
At 4393 m, ice-clad Mount Rainier has great potential for debris flows owing to its precipitous slopes and incised steep valleys, the large volume of water stored in its glaciers, and a mantle of loose debris on its slopes. In the past 10,000 years, more than sixty Holocene lahars have occurred at Mount Rainier (Scott et al., 1985), and, in addition more than thirty debris flows not related to volcanism have occurred in historical time (Walder and Driedger, 1984). Lahars at Mount Rainier can be classed in 3 groups according to their genesis: (1) flank collapse of hydrothermally altered, water-saturated rock; (2) eruption-related release of water and loose debris; and (3) hydrologic release of water and debris (Scott et al., 1985). Lahars in the first two categories are commonly voluminous and are generally related to unrest and explosions that occur during eruptive episodes. Lahars in the third category, distinguished here as debris flows, are less voluminous than the others but occur frequently at Mount Rainier, often with little or no warning. Historically at Mount Rainier, glacial outburst floods, torrential rains, and stream capture have caused small- to moderate-size debris flows (Walder and Driedger, 1984). Such debris flows are most likely to occur in drainages that have large glaciers in them. Less commonly, a drainage diversion has triggered a debris flow in an unglaciated drainage basin. For example, the diversion of Kautz Glacier meltwater into Van Trump basin triggered debris flows on the south side of Rainier in August 2001. On the basis of historical accounts, debris flows having hydrologic origins are likely to be unheralded, and have occurred as seldom as once in 8 years and as often as four times per year at Mount Rainier (Walder and Driedger, 1984). Such debris flows are most likely to occur during periods of hot dry weather or during periods of intense rainfall, and therefore must occur during the summer and fall. They are likely to begin at or above the elevations of glacier termini and extend down valley. This report discusses potential hazards from debris flows induced by hydrologic events such as glacial outburst floods and torrential rain at Mount Rainier and the surrounding area bounded by Mount Rainier National Park. The report also shows, in the accompanying hazard-zonation maps, which areas are likely to be at risk from future such debris flows at Mount Rainier. Lahar hazards related to avalanches of altered rock and to the interactions of hot rock and ice during eruptions are discussed in Scott and Vallance (1995) and Hoblitt et al. (1998) and are not addressed in this report.
What controls channel form in steep mountain streams?
NASA Astrophysics Data System (ADS)
Palucis, M. C.; Lamb, M. P.
2017-07-01
Steep mountain streams have channel morphologies that transition from alternate bar to step-pool to cascade with increasing bed slope, which affect stream habitat, flow resistance, and sediment transport. Experimental and theoretical studies suggest that alternate bars form under large channel width-to-depth ratios, step-pools form in near supercritical flow or when channel width is narrow compared to bed grain size, and cascade morphology is related to debris flows. However, the connection between these process variables and bed slope—the apparent dominant variable for natural stream types—is unclear. Combining field data and theory, we find that certain bed slopes have unique channel morphologies because the process variables covary systematically with bed slope. Multiple stable states are predicted for other ranges in bed slope, suggesting that a competition of underlying processes leads to the emergence of the most stable channel form.
NASA Astrophysics Data System (ADS)
Cucchiaro, Sara; Beinat, Alberto; Calsamiglia, Aleix; Cavalli, Marco; Cazorzi, Federico; Crema, Stefano; Marchi, Lorenzo
2017-04-01
The Moscardo Torrent (eastern Italian Alps) is a small rugged catchment (drainage area 4.1 km2, range in elevation between 890 and 2043 m) frequently affected by debris flows that deliver large amounts of sediment to the receiving stream, and cause concerns for infrastructures located on the alluvial fan and near the confluence. Over the last decades, hydraulic control works were implemented in the main channel to limit bed erosion and to stabilize channel banks. Although the objectives of training works have been only partly achieved, check dams and hillslope stabilization works have affected the sediment transfer from hillslopes to the channels and along the main channel. The effects of hydraulic control works were investigated by means of multi-temporal Structure from Motion (SfM) surveys based on images taken from the ground and UAV. The ground and air based surveys were carried out over a channel reach in which two check dams have recently been built. SfM surveys were taken before and after three debris-flow events (occurred between June and July 2016), allowing the generation of four high-resolution Digital Elevation Models (DEMs). Geomorphic changes caused by the debris-flow events have been assessed in order to produce the DEM of Differences (DoDs with a 0.2 m spatial resolution) that allowed estimating erosion and deposition volumes in the study area. Furthermore a debris-flow monitoring system has been in operation in the Moscardo Torrent; the analysis of the videos and of the hydrographs recorded by ultrasonic sensors permitted to assess the debris-flow volumes. These estimates were used to characterize the magnitude of events in support of the topographic analysis. By examining the changing pattern of erosion and deposition over time it was possible to understand the check dams' effects on sediment dynamics. The results show that the new check dams effectively stored sediment transported by the three debris flows. However, once the check dams have been completely filled, they lost their functionality, letting sediment flow downstream along paths drawn accidentally by the torrent control works and by the morphology of debris-flow deposits. Moreover, debris-flow lobes deposited upstream of the check dams could act as sediment sources further increasing downstream debris-flow magnitude.
Major, Jon J.; Newhall, Christopher G.
1989-01-01
Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3.The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).
NASA Astrophysics Data System (ADS)
Major, Jon J.; Newhall, Christopher G.
1989-10-01
Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).
C. L. May; R. E. Gresswell
2003-01-01
Abstract - Channels that have been scoured to bedrock by debris flows provide unique opportunities to calculate the rate of sediment and wood accumulation in low-order streams, to understand the temporal succession of channel morphology following disturbance, and to make inferences about processes associated with input and transport of sediment. Dendrochronology was...
Sedimentology, Behavior, and Hazards of Debris Flows at Mount Rainier, Washington
Scott, K.M.; Vallance, J.W.; Pringle, P.T.
1995-01-01
Mount Rainier is potentially the most dangerous volcano in the Cascade Range because of its great height, frequent earthquakes, active hydrothermal system, and extensive glacier mantle. Many debris flows and their distal phases have inundated areas far from the volcano during postglacial time. Two types of debris flows, cohesive and noncohesive, have radically different origins and behavior that relate empirically to clay content. The two types are the major subpopulations of debris flows at Mount Rainier. The behavior of cohesive flows is affected by the cohesion and adhesion of particles; noncohesive flows are dominated by particle collisions to the extent that particle cataclasis becomes common during near-boundary shear. Cohesive debris flows contain more than 3 to 5 percent of clay-size sediment. The composition of these flows changed little as they traveled more than 100 kilometers from Mount Rainier to inundate parts of the now-populated Puget Sound lowland. They originate as deep-seated failures of sectors of the volcanic edifice, and such failures are sufficiently frequent that they are the major destructional process of Mount Rainier's morphologic evolution. In several deposits of large cohesive flows, a lateral, megaclast-bearing facies (with a mounded or hummocky surface) contrasts with a more clay-rich facies in the center of valleys and downstream. Cohesive flows at Mount Rainier do not correlate strongly with volcanic activity and thus can recur without warning, possibly triggered by non-magmatic earthquakes or by changes in the hydrothermal system. Noncohesive debris flows contain less than 3 to 5 percent clay-size sediment. They form most commonly by bulking of sediment in water surges, but some originate directly or indirectly from shallow slope failures that do not penetrate the hydrothermally altered core of the volcano. In contrast with cohesive flows, most noncohesive flows transform both from and to other flow types and are, therefore, the middle segments of flow waves that begin and end as flood surges. Proximally, through the bulking of poorly sorted volcaniclastic debris on the flanks of the volcano, flow waves expand rapidly in volume by transforming from water surges through hyperconcentrated stream flow (20 to 60 percent sediment by volume) to debris flow. Distally, the transformations occur more slowly in reverse order - from debris flow, to hyperconcentrated flow, and finally to normal streamflow with less than 20 percent sediment by volume. During runout of the largest noncohesive flows, hyperconcentrated flow has continued for as much as 40 to 70 kilometers. Lahars (volcanic debris flows and their deposits) have occurred frequently at Mount Rainier over the past several thousand years, and generally they have not clustered within discrete eruptive periods as at Mount St. Helens. An exception is a period of large noncohesive flows during and after construction of the modern summit cone. Deposits from lahar-runout flows, the hyperconcentrated distal phases of lahars, document the frequency and extent of noncohesive lahars. These deposits also record the following transformations of debris flows: (1) the direct, progressive dilution of debris flow to hyperconcentrated flow, (2) deposition of successively finer grained lobes of debris until only the hyperconcentrated tail of the flow remains to continue downstream, and (3) dewatering of coarse debris flow deposits to yield fine-grained debris flow or hyperconcentrated flow. Three planning or design case histories represent different lengths of postglacial time. Case I is representative of large, infrequent (500 to 1,000 years on average) cohesive debris flows. These flows need to be considered in long-term planning in valleys around the volcano. Case II generalizes the noncohesive debris flows of intermediate size and recurrence (100 to 500 years). This case is appropriate for consideration in some structural design. Case III flows are
NASA Astrophysics Data System (ADS)
Roverato, M.; Capra, L.
2010-12-01
Colima volcano is an andesitic stratovolcano located in the western part of the Trans-Mexican Volcanic Belt (TMVB) and at the southern end of the N-S trending Colima graben, about 70 km from the Pacific Ocean coast. It is probably the most active Mexican volcano in historic time and one of the most active of North America. Colima volcano yielded numerous partial edifice collapses with emplacement of debris avalanche deposits (DADs) of contrasting volume, morphology, texture and origin. This work has the aim to provide the evidences of how the climatic condition during the 13 ka flank collapse of the Colima volcano affected the textural characteristic and the mobility of the debris avalanche and debris flow originated from this event that occurred just after the Last Glacial Maximum in Mexico (18.4-14.5 ka 14C BP with snow line at 3600 m a.s.l. up to 13 ka BP). The 13,000 yrs old debris avalanche deposit, here named Tonila (TDAD) presents the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) but at approximately 13 km from the source, the deposit transforms to an hybrid phase with debris avalanche fragments imbedded in a finer, homogenous and indurated matrix more similar to a debris flow deposit. The debris avalanche deposit is directly overly by debris flows, often more than 10 m thick that contains large amount of logs from pine tree, mostly accumulated toward the base and imbricated down flow. Fluvial deposits also occur throughout all successions, representing periods of stream and river reworking highly localized and re-establishment. All these evidences point to the presence of water in the mass previous to the failure. The event here described represent an anomalous event between the previously described deposit associated to volcanic complex, and evidence as climatic condition can alter and modifies the depositional sequences incrementing the hazard.
NASA Astrophysics Data System (ADS)
Blahut, J.; Luna, B. Quan; Akbas, S. O.; van Westen, C. J.
2009-04-01
On Sunday morning of 13th July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of Valtellina valley between Morbegno and Berbenno. One of the largest debris flows occurred in Selvetta, a fraction of Colorina municipality. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. At first several rock blocks about 2 m3 in size fell down from the direction of the torrent. The blocks were followed by a wave of debris and mud that immediately destroyed one building and caused damage to other nine houses. A stream flow following the debris flow consisting of fine mud with high water content that partially washed away the accumulation of deposits from the debris phase could also be distinguished. Geomorphologic investigations allowed identification of five main sections of the flow: 1) the proper scarp; 2) path in the forested area; 3) path on the alpine meadows; 4) accelerating section; 5) accumulation area. The initiation area of the flow is situated at 1760 m. a.s.l. (1480 m above the deposition zone) in a coniferous forest. The proper scarp consisted of an area of approximately 20 m2 in size, and a height of about 0.8 m. The final volume of the debris was estimated by field mapping to be between 12 000 and 15 000 m3. It was observed that erosion and entrainment played an important role in the development of the debris flow. The Selvetta event was modelled with the FLO2D program. FLO2D is an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. Entrainment was modeled at each section of the flow, and different hydrographs were produced in agreement with the behavior of the debris flow during its course. The significance of calculated values of pressure and velocity were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which is defined as the ratio between the monetary loss and the reconstruction value. Two different empirical vulnerability curves were obtained, which are functions of debris flow velocity and pressure, respectively.
Woody debris in north Iberian streams: influence of geomorphology, vegetation, and management.
Diez, J R; Elosegi, A; Pozo, J
2001-11-01
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (phi > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m-2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.
Physical consequences of large organic debris in Pacific Northwest streams.
Frederick J. Swanson; George W. Lienkaemper
1978-01-01
Large organic debris in streams controls the distribution of aquatic habitats, the routing of sediment through stream systems, and the stability of streambed and banks. Management activities directly alter debris loading by addition or removal of material and indirectly by increasing the probability of debris torrents and removing standing streamside trees. We propose...
NASA Astrophysics Data System (ADS)
Kafle, Jeevan; Kattel, Parameshwari; Mergili, Martin; Fischer, Jan-Thomas; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
Dense geophysical mass flows such as landslides, debris flows and debris avalanches may generate super tsunami waves as they impact water bodies such as the sea, hydraulic reservoirs or mountain lakes. Here, we apply a comprehensive and general two-phase, physical-mathematical mass flow model (Pudasaini, 2012) that consists of non-linear and hyperbolic-parabolic partial differential equations for mass and momentum balances, and present novel, high-resolution simulation results for two-phase flows, as a mixture of solid grains and viscous fluid, impacting fluid reservoirs with obstacles. The simulations demonstrate that due to the presence of different obstacles in the water body, the intense flow-obstacle-interaction dramatically reduces the flow momentum resulting in the rapid energy dissipation around the obstacles. With the increase of obstacle height overtopping decreases but, the deflection and capturing (holding) of solid mass increases. In addition, the submarine solid mass is captured by the multiple obstacles and the moving mass decreases both in amount and speed as each obstacle causes the flow to deflect into two streams and also captures a portion of it. This results in distinct tsunami and submarine flow dynamics with multiple surface water and submarine debris waves. This novel approach can be implemented in open source GIS modelling framework r.avaflow, and be applied in hazard mitigation, prevention and relevant engineering or environmental tasks. This might be in particular for process chains, such as debris impacts in lakes and subsequent overtopping. So, as the complex flow-obstacle-interactions strongly and simultaneously dissipate huge energy at impact such installations potentially avoid great threat against the integrity of the dam. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
Morphology and sedimentology of glacigenic submarine fans on the west Greenland continental margin
NASA Astrophysics Data System (ADS)
O'Cofaigh, Colm; Hogan, Kelly A.; Dowdeswell, Julian A.; Jennings, Anne E.; Noormets, Riko; Evans, Jeffrey
2014-05-01
Along the West Greenland continental margin adjoining Baffin Bay, bathymetric data show a series of large submarine fans located at the mouths of cross-shelf troughs. Two of these fans, the Uummannaq Fan and the Disko Fan are trough-mouth fans built largely of debris delivered from ice sheet outlets of the Greenland Ice Sheet during past glacial maxima. On the Uummannaq Fan glacigenic debris flow deposits occur on the upper slope and extend to at least 1800 m water depth in front of the trough-mouth. The debris flow deposits are related to the remobilisation of subglacial debris that was delivered onto the upper slope at times when an ice stream was positioned at the shelf edge. In contrast, sedimentary facies from the northern sector of the fan are characterised by hemipelagic and ice-rafted sediments and turbidites; glacigenic debris flows are notably absent in cores from this region. Further south along the Greenland continental margin the surface of the Disko Fan is prominently channelised and associated sediments are acoustically stratified. Although glacigenic debris flow deposits do occur on the upper Disko Fan, sediments recovered in cores from elsewhere on the fan record the influence of turbidity current and meltwater sedimentation. The channelised form of the Disko fan contrasts markedly with that of the Uummannaq Fan and, more widely, with trough mouth fans from the Polar North Atlantic. Collectively these data highlight the variability of glacimarine depositional processes operating on trough-mouth fans on high-latitude continental slopes and show that glacigenic debris flows are but one of a number of mechanisms by which such large glacially-influenced depocentres form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pudasaini, Shiva P.; Miller, Stephen A.
The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include amore » dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the submarine debris speed can be faster than the tsunami speed. This information can be useful for early warning strategies in the coastal regions. These findings substantially increase our understanding of complex multi-phase systems and multi-physics and flows, and allows for the proper modeling of landslide and debris induced tsunami, the dynamics of turbidity currents and sediment transport, and the associated applications to hazard mitigation, geomorphology and sedimentology.« less
NASA Astrophysics Data System (ADS)
Webb, Ashley A.; Erskine, Wayne D.
2003-03-01
The complex yet poorly understood interactions between riparian vegetation, large woody debris and fluvial geomorphology in an anthropogenically undisturbed reach of an alluvial, sand-bed forest stream in SE Australia have been determined. Riparian vegetation exhibits lateral and vertical zonation of understorey and overstorey species. The dominant riparian tree species, Tristaniopsis laurina (water gum), grows within the channel and on the floodplain within one channel width of the stream. Larger Eucalyptus species only grow on the highest parts of the floodplain and on a low Pleistocene river terrace. A complete large woody debris (LWD) census conducted in the 715-m-long study reach revealed that water gum comprises 17.6% of the total LWD loading, which, at 576 m 3 ha -1, is high for a stream with a catchment area of 187 km 2. Although most LWD has a small diameter (0.1-0.3 m), the greatest contribution to the total volume of LWD is by pieces with a diameter between 0.3 and 0.7 m. A high proportion of LWD (10.4%) has a blockage ratio greater than 10%. The spatial distribution of LWD is random both longitudinally and within individual meander bends. Dominant recruitment processes of LWD vary by species. T. laurina trees are recruited to the channel by minor bank erosion and senescence, while the Eucalyptus species are predominantly recruited from the highest parts of the floodplain/low-river terrace by episodic windthrow during large storms. Multiple radiocarbon dates of outer wood of immobile LWD indicate a maximum residence time of 240±40 years BP for T. laurina timber. The high loading of LWD combined with the extensive root systems of riparian vegetation stabilize Tonghi Creek. Log steps form natural wooden drop-structures with a mean height of 29 mm that were responsible for 20.5% of the total head loss under base flow conditions ( Q=0.08 m 3 s -1). Large woody debris is buried in the bed at depths of up to 2.3 m and is responsible for an estimated 49% of the 11, 600 m 3 of sand stored in the study reach. Pools are spaced at 0.8 channel widths and 82% of pools are formed by scour over, under, around, or beside LWD or by the impoundment of water upstream of debris dams. Due to the high density of hardwood timber species, debris dams, however, do not readily form in Tonghi Creek as the timber is difficult to transport and LWD usually sinks to the bed of the stream. Despite the high degree of channel stability provided by LWD, high blockage ratios in the channel result in relatively frequent overbank flows. These flows are often concentrated in chutes across the neck of meanders or multiple loops, which can develop into cutoffs and channel avulsions, respectively.
Dahlström, Niklas; Nilsson, Christer
2004-03-01
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.
NASA Astrophysics Data System (ADS)
Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.
2017-04-01
In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.
Frederick Swanson; George W. Lienkaemper; James R. Sedell
1976-01-01
Large organic debris has historically been an important element in small mountain streams of the Pacific Northwest. The debris serves to slow the movement of water and inorganic and fine organic matter through the channel. Debris may remain in the channel for decades or longer, and tends to stabilize some sections of a streambed and stream banks while destabilizing...
Wilcox, Andrew C.; Wohl, Ellen E.
2006-01-01
Flow resistance dynamics in step‐pool channels were investigated through physical modeling using a laboratory flume. Variables contributing to flow resistance in step‐pool channels were manipulated in order to measure the effects of various large woody debris (LWD) configurations, steps, grains, discharge, and slope on total flow resistance. This entailed nearly 400 flume runs, organized into a series of factorial experiments. Factorial analyses of variance indicated significant two‐way and three‐way interaction effects between steps, grains, and LWD, illustrating the complexity of flow resistance in these channels. Interactions between steps and LWD resulted in substantially greater flow resistance for steps with LWD than for steps lacking LWD. LWD position contributed to these interactions, whereby LWD pieces located near the lip of steps, analogous to step‐forming debris in natural channels, increased the effective height of steps and created substantially higher flow resistance than pieces located farther upstream on step treads. Step geometry and LWD density and orientation also had highly significant effects on flow resistance. Flow resistance dynamics and the resistance effect of bed roughness configurations were strongly discharge‐dependent; discharge had both highly significant main effects on resistance and highly significant interactions with all other variables.
Hal Liechty
2007-01-01
Shortleaf pine (Pinus echinata Mill.) is a dominant tree species in pine and pine-hardwood forest communities located on ridges and upper- to mid-slope positions in the Ouachita Mountains. The stream reaches located in these stands flow infrequently and are classified as ephemeral or intermittent, have low stream orders, and have relatively narrow...
Multiple large earthquakes in the past 1500 years on a fault in metropolitan Manila, the Philippines
Nelson, A.R.; Personius, S.F.; Rimando, R.E.; Punongbayan, R.S.; Tungol, N.; Mirabueno, H.; Rasdas, A.
2000-01-01
The first 14C-based paleoseismic study of an active fault in the Philippines shows that a right-lateral fault on the northeast edge of metropolitan Manila poses a greater seismic hazard than previously thought. Faulted hillslope colluvium, stream-channel alluvium, and debris-flow deposits exposed in trenches across the northern part of the west Marikina Valley fault record two or three surface-faulting events. Three eroded, clay-rich soil B horizons suggest thousands of years between surface faulting events, whereas 14C ages on detrital charcoal constrain the entire stratigraphic sequence to the past 1300-1700 years. We rely on the 14C ages to infer faulting recurrence of hundreds rather than thousands of years. Minimal soil development and modern 14C ages from colluvium overlying a faulted debris-flow deposit in a nearby stream exposure point to a historic age for a probable third or fourth (most recent) faulting event.
Vadose zone process that control landslide initiation and debris flow propagation
NASA Astrophysics Data System (ADS)
Sidle, Roy C.
2015-04-01
Advances in the areas of geotechnical engineering, hydrology, mineralogy, geomorphology, geology, and biology have individually advanced our understanding of factors affecting slope stability; however, the interactions among these processes and attributes as they affect the initiation and propagation of landslides and debris flows are not well understood. Here the importance of interactive vadose zone processes is emphasized related to the mechanisms, initiation, mode, and timing of rainfall-initiated landslides that are triggered by positive pore water accretion, loss of soil suction and increase in overburden weight, and long-term cumulative rain water infiltration. Both large- and small-scale preferential flow pathways can both contribute to and mitigate instability, by respectively concentrating and dispersing subsurface flow. These mechanisms are influenced by soil structure, lithology, landforms, and biota. Conditions conducive to landslide initiation by infiltration versus exfiltration are discussed relative to bedrock structure and joints. The effects of rhizosphere processes on slope stability are examined, including root reinforcement of soil mantles, evapotranspiration, and how root structures affect preferential flow paths. At a larger scale, the nexus between hillslope landslides and in-channel debris flows is examined with emphasis on understanding the timing of debris flows relative to chronic and episodic infilling processes, as well as the episodic nature of large rainfall and related stormflow generation in headwater streams. The hydrogeomorphic processes and conditions that determine whether or not landslides immediately mobilize into debris flows is important for predicting the timing and extent of devastating debris flow runout in steep terrain. Given the spatial footprint of individual landslides, it is necessary to assess vadose zone processes at appropriate scales to ascertain impacts on mass wasting phenomena. Articulating the appropriate level of detail of small-scale vadose zone processes into landslide models is a particular challenge. As such, understanding flow pathways in regoliths susceptible to mass movement is critical, including distinguishing between conditions conducive to vertical recharge of water through relatively homogeneous soil mantles and conditions where preferential flow dominates - either by rapid infiltration and lateral flow through interconnected preferential flow networks or via exfiltration through bedrock fractures. These different hydrologic scenarios have major implications for the occurrence, timing, and mode of slope failures.
Glacial geology of the Shingobee River headwaters area, north-central Minnesota
Melchior, Robert C.
2014-01-01
During middle and late Wisconsin time in the Shingobee River headwaters area, the Laurentide Wadena lobe, Hewitt and Itasca phases, produced terminal and ground moraine along with a variety of associated glacial features. The stratigraphic record is accessible and provides details of depositional mode as well as principal glacial events during the advance and retreat of middle and late Wisconsin ice tongues. Geomorphic features such as tunnel valleys, stream terraces, and postglacial stream cuts formed by erosional events persist to the present day. Middle Wisconsin Hewitt phase deposits are the oldest and include drumlins, ground moraine, boulder pavements, and outwash. Together, these deposits suggest a wet-based, periodically surging glacier in a subpolar thermal state. Regional permafrost and deposition from retreating ice are inferred between the end of the Hewitt phase and the advance of late Wisconsin Itasca phase ice. Itasca phase glaciation occurred as a contemporaneous pair of adjacent ice tongues whose contrasting moraine styles suggest independent flow modes. The western (Shingobee) portion of the Itasca moraine contains composite ridges, permafrost phenomena, hill-hole pairs, and debris flows. By contrast, eastern (Onigum) moraine deposits generally lack glaciotectonic features and consist almost exclusively of mud and debris flows. Near the end of the Itasca phase, large-scale hill-hole pairs developed in the Shingobee division, and debris flows from the Onigum division blocked the preexisting Shingobee tunnel valley to form glacial lake Willobee. Postglacial streams formed deep valleys as glacial lake Willobee catastrophically drained. Dates based on temperature trends in Greenland ice cores are proposed for prominent glacial events in the Shingobee area. This report proposes that Hewitt phase glaciation occurred between 27.2 and 23.6 kiloannum and Itasca phase glaciation between 22.8 and 14.7 kiloannum. Des Moines lobe (Younger Dryas) glaciation, which had only secondary effects on the Shingobee headwaters area, occurred between 13.5 and 11.6 kiloannum.
Erosion and Sedimentation from the Bagley Fire, Eastern Klamath Mountains, Northern CA
NASA Astrophysics Data System (ADS)
De La Fuente, J. A.; Bachmann, S.; Mai, C.; Mikulovsky, R.; Mondry, Z. J.; Rust, B.; Young, D.
2014-12-01
The Bagley Fire burned about 19,000 hectares on the Shasta-Trinity National Forest in the late summer of 2012, with soil burn severities of 11% high, 19% moderate and 48% low. Two strong storms in November and December followed the fire. The first storm had a recurrence interval of about 2 years, and generated runoff with a return interval of 10-25 years, causing many road stream crossing failures in parts of the fire. The second storm had a recurrence interval of 25-50 years, and initiated more severe erosion throughout the fire area. Erosional processes were dominated by sheet, rill and gully erosion, and landslides were uncommon. A model predicted high potential for debris flows, but few were documented, and though most stream channels exhibited fresh scour and deposition, residual deposits lacked boulder levees or other evidence of debris flow. Rather, deposits were stratified and friable, suggesting a sediment laden flood flow rather than debris flow origin. The resulting sediment was rich in gravel and finer particles, and poor in larger rock. Soil loss was estimated at 0.5-5.6 cm on most hillslopes. A high resolution DEM (LiDAR) was used to measure gullies, small landslides, and stream scour, and also to estimate sedimentation in Squaw Creek, and Shasta Lake. A soil erosion model was used to estimate surface erosion. Total erosion in the Squaw Creek watershed was estimated at 2.24 million metric tons, which equates to 260 metric tons/hectare. Of this, about 0.89 million metric tons were delivered to the stream system (103 metric tons/hectare). Nearly half of this sediment, 0.41 million metric tons, was temporarily stored in the Squaw Creek channel, and around 0.33 million metric tons of fine sediment were carried into Shasta Lake. Squaw Creek also delivered about 0.17 million metric tons of sand, gravel and cobbles to the lake. This estimate is very tenuous, and was made by measuring the volume of a delta in Shasta Lake from a tributary to Squaw Creek and extrapolating to the entire watershed. LidAR measurements of gully and landslide volume were considered the most reliable values, followed by estimates of channel scour and deposition in Squaw Creek and tributaries. The soil erosion model outputs were calibrated with data from a small debris basin. The most uncertain estimates were those for Shasta Lake sedimentation.
On the inlet vortex system. [preventing jet engine damage caused by debris pick-up
NASA Technical Reports Server (NTRS)
Bissinger, N. C.; Braun, G. W.
1974-01-01
The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.
NASA Astrophysics Data System (ADS)
Gresswell, R. E.; Sedell, E. R.; Cannon, S.; Hostetler, S. W.; Williams, J. E.; Haak, A. L.; Kershner, J. L.
2009-12-01
Climate change will potentially alter physical habitat availability for trout species (both native and nonnative) in the western USA, and ultimately affect population distribution and abundance in watersheds across the region. To understand the biological consequences of habitat alteration associated with climate change, we have developed models linking contemporary patterns of occurrence and abundance to geomorphic variables (e.g., aspect, elevation, and slope) and stream conditions derived from the habitat (e.g., temperature, discharge, and flood regimes). Because headwater streams may be especially susceptible to catastrophic disturbances in the form of debris flow torrents that have the potential to radically alter the physical structure of channels and sometimes extirpate local fish populations, we are focusing fine-scale spatial analyses in the high elevation systems. Risks of such disturbances increase exponentially in landscapes that have experienced recent wildfires when high-intensity precipitation or runoff events occur. Although predicting the timing, extent, and severity of future wildfires or subsequent precipitation and runoff events is difficult, it is possible to identify channels within stream networks that may be prone to debris flows. These channels can be identified using models based on characteristic storm and burn scenarios and geographic information describing topographic, soil, and vegetation characteristics. At-risk channels are being mapped throughout the stream networks within the study areas in the headwaters of the Colorado River to provide information about the potential for catastrophic population disturbance in response to variety of wildfire and post-wildfire storm scenarios.
NASA Astrophysics Data System (ADS)
Elkadiri, R.; Sultan, M.; Nurmemet, I.; Al Harbi, H.; Youssef, A.; Elbayoumi, T.; Zabramwi, Y.; Alzahrani, S.; Bahamil, A.
2014-12-01
We developed methodologies that heavily rely on observations extracted from a wide-range of remote sensing data sets (TRMM, Landsat ETM, ENVISAT, ERS, SPOT, Orbview, GeoEye) to develop a warning system for rainfall-induced debris flows in the Jazan province in the Red Sea Hills. The developed warning system integrates static controlling factors and dynamic triggering factors. The algorithm couples a susceptibility map with a rainfall I-D curve, both are developed using readily available remote sensing datasets. The static susceptibility map was constructed as follows: (1) an inventory was compiled for debris flows identified from high spatial resolution datasets and field verified; (2) 10 topographical and land cover predisposing factors (i.e. slope angle, slope aspect, normalized difference vegetation index, topographical position index, stream power index, flow accumulation, distance to drainage line, soil weathering index, elevation and topographic wetness index) were generated; (3) an artificial neural network model (ANN) was constructed, optimized and validated; (4) a debris-flow susceptibility map was generated using the ANN model and refined (using differential backscatter coefficient radar images). The rainfall threshold curve was derived as follows: (1) a spatial database was generated to host temporal co-registered and radiometrically and atmospherically corrected Landsat images; (2) temporal change detection images were generated for pairs of successively acquired Landsat images and criteria were established to identify "the change" related to debris flows, (3) the duration and intensity of the precipitation event that caused each of the identified debris flow events was assumed to be that of the most intense event within the investigated period; and (4) the I-D curve was extracted using data (intensity and duration of precipitation) for the inventoried events. Our findings include: (1) the spatial controlling factors with the highest predictive power of debris-flow locations are: topographic position index, slope, NDVI and distance to drainage line; (2) the ANN model showed an excellent prediction performance (area under receiver operating characteristic [ROC] curve: 0.961); 3) the preliminary I-D curve is I=39.797×D-0.7355 (I: Intensity and D: duration).
Tichavský, Radek; Šilhán, Karel; Tolasz, Radim
2017-02-01
Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.
2017-12-01
An extensive three-dimensional seismic dataset is used to investigate the sedimentary processes and morphological evolution of the mid-Norwegian continental slope through the Quaternary. These data reveal hundreds of buried landforms, including channels and debris flows of variable morphology, as well as gullies, iceberg ploughmarks, slide scars and sediment waves. Slide scars, turbidity currents and debris flows comprise slope systems controlled by local slope morphology, showing the spatial variability of high-latitude sedimentation. Channels dominate the Early Pleistocene ( 2.7-0.8 Ma) morphological record of the mid-Norwegian slope. During Early Plesitocene, glacimarine sedimentation on the slope was influenced by dense bottom-water flow and turbidity currents. Glacigenic debris-flows appear within the Middle-Late Pleistocene ( 0.8-0 Ma) succession. Their abundance increases on Late Pleistocene palaeo-surfaces, marking a paleo-environmental change characterised by decreasing role for channelized turbidity currents and dense water flows. This transition coincides with the gradual shift to full-glacial ice-sheet conditions marked by the appearance of the first erosive fast-flowing ice streams and an associated increase in sediment flux to the shelf edge, emphasizing first-order climate control on the temporal variability of high-latitude sedimentary slope records.
Neuswanger, Jason R.; Wipfli, Mark S.; Rosenberger, Amanda E.; Hughes, Nicholas F.
2014-01-01
Drift-feeding fish are challenged to discriminate between prey and similar-sized particles of debris, which are ubiquitous even in clear-water streams. Spending time and energy pursuing debris mistaken as prey could affect fish growth and the fitness potential of different foraging strategies. Our goal was to determine the extent to which debris influences drift-feeding fish in clear water under low-flow conditions when the distracting effect of debris should be at a minimum. We used high-definition video to measure the reactions of drift-feeding juvenile Chinook salmon (Oncorhynchus tshawytscha) to natural debris and prey in situ in the Chena River, Alaska. Among all potential food items fish pursued, 52 % were captured and quickly expelled from the mouth, 39 % were visually inspected but not captured, and only 9 % were ingested. Foraging attempt rate was only moderately correlated with ingestion rate (Kendall’s τ = 0.55), raising concerns about the common use of foraging attempts as a presumed index of foraging success. The total time fish spent handling debris increased linearly with foraging attempt rate and ranged between 4 and 25 % of total foraging time among observed groups. Our results help motivate a revised theoretical view of drift feeding that emphasizes prey detection and discrimination, incorporating ideas from signal detection theory and the study of visual attention in cognitive ecology. We discuss how these ideas could lead to better explanations and predictions of the spatial behavior, prey selection, and energy intake of drift-feeding fish.
Erosional origin of drumlins and megaridges
NASA Astrophysics Data System (ADS)
Eyles, Nick; Putkinen, Niko; Sookhan, Shane; Arbelaez-Moreno, Lina
2016-06-01
The erodent layer hypothesis (ELH) proposes that drumlinization leaves no substantial stratigraphic record because it is primarily an erosional process that cuts an unconformity across pre-existing bed materials. Drumlins most commonly have autochthonous cores of antecedent till(s), other stiff and coarse-grained sediment and rock or any combination thereof, and are also found closely juxtaposed with rock drumlins within the same flow sets ('mixed beds'). This is at odds with the suggested growth of drumlins by vertical accretion ('emergence') from deforming subglacial till ('soft beds'). ELH argues that drumlins 'grow down' by erosional carving of pre-existing stiff till, sediment and/or rock by a thin (< 1 m) layer of deforming subglacial debris which abrades its substrate. This process is well known to the science of tribology (the study of wearing surfaces) where remnant micro-drumlins, ridges and grooves comparable to drumlins and megaridges are cut by debris ('erodent layers') between surfaces in relative motion. In the subglacial setting the erodent layer comprises deforming diamict containing harder 'erodents' such as boulders, clast-rich zones or frozen rafts. Similar, till-like erodent layers (cataclasites) cut streamlined surfaces below gravity-driven mass flows such as rock avalanches, landslides and slumps, pyroclastic flows and debris flows; streamlined surfaces including drumlin-like 'ellipsoidal bumps' and ridges are also common on the surfaces of faults. Megadrumlins, drumlins and megaridges comprise an erosional continuum in many flow sets. This records the progressive dissection of large streamlined bedforms to form successively more elongate daughter drumlins and megaridges ('clones') as the bed is lowered to create a low-slip surface that allows fast ice flow and ice streaming. Clones are the 'missing links' in the continuum. ELH predicts preservation within drumlins of antecedent remnant tills and stratigraphies deposited earlier in the glacial cycle under sluggish or steady-state ice flows that were then streamlined by erosion under streaming ice flows. The erodent layer may be preserved as a relatively thin, loosely-consolidated surficial till that drapes the streamlined bedform (the 'upper till', 'cap till', 'till veneer', 'till mantle', 'retreat till', or 'englacial debris' of many previous reports). ELH suggests that there is a fundamental commonality of all forms of erosional wear and streamlining on sliding interfaces from the microscopic scale to the macroscopic scale of ice sheet beds.
Tillery, Anne C.; Matherne, Anne Marie; Verdin, Kristine L.
2012-01-01
In May and June 2012, the Whitewater-Baldy Fire burned approximately 1,200 square kilometers (300,000 acres) of the Gila National Forest, in southwestern New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 128 basins burned by the Whitewater-Baldy Fire. A pair of empirical hazard-assessment models developed by using data from recently burned basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and for selected drainage basins within the burned area. The models incorporate measures of areal burned extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. In response to the 2-year-recurrence, 30-minute-duration rainfall, modeling indicated that four basins have high probabilities of debris-flow occurrence (greater than or equal to 80 percent). For the 10-year-recurrence, 30-minute-duration rainfall, an additional 14 basins are included, and for the 25-year-recurrence, 30-minute-duration rainfall, an additional eight basins, 20 percent of the total, have high probabilities of debris-flow occurrence. In addition, probability analysis along the stream segments can identify specific reaches of greatest concern for debris flows within a basin. Basins with a high probability of debris-flow occurrence were concentrated in the west and central parts of the burned area, including tributaries to Whitewater Creek, Mineral Creek, and Willow Creek. Estimated debris-flow volumes ranged from about 3,000-4,000 cubic meters (m3) to greater than 500,000 m3 for all design storms modeled. Drainage basins with estimated volumes greater than 500,000 m3 included tributaries to Whitewater Creek, Willow Creek, Iron Creek, and West Fork Mogollon Creek. Drainage basins with estimated debris-flow volumes greater than 100,000 m3 for the 25-year-recurrence event, 24 percent of the basins modeled, also include tributaries to Deep Creek, Mineral Creek, Gilita Creek, West Fork Gila River, Mogollon Creek, and Turkey Creek, among others. Basins with the highest combined probability and volume relative hazard rankings for the 25-year-recurrence rainfall include tributaries to Whitewater Creek, Mineral Creek, Willow Creek, West Fork Gila River, West Fork Mogollon Creek, and Turkey Creek. Debris flows from Whitewater, Mineral, and Willow Creeks could affect the southwestern New Mexico communities of Glenwood, Alma, and Willow Creek. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be necessary within a 2- to 3-year period of vulnerability following the Whitewater-Baldy Fire. This work is preliminary and is subject to revision. It is being provided because of the need for timely "best science" information. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.
Invertabrates Associated with Woody Debris in a Southeastern U.S. Forested Floodplain Wetland
Amy Braccia; Darold P. Batzer
2001-01-01
Woody debris is an ecologically important resource in upland forests and stream ecosystems. Although much is known about invertebrate-woody debris interactions in forests and streams, little information exists for forested wetlands. In this study, invertebrates associated with woody debris in a Southeastern U. S. forested floodplain are described and factors that shape...
EFFECTIVENESS OF LARGE WOODY DEBRIS IN STREAM REHABILITATION PROJECTS IN URBAN BASINS. (R825284)
Urban stream rehabilitation projects commonly include log placement to establish the types of habitat features associated with large woody debris (LWD) in undisturbed streams. Six urban in-stream rehabilitation projects were examined in the Puget Sound Lowland of western Washi...
NASA Astrophysics Data System (ADS)
Moser, Markus; Mehlhorn, Susanne; Rudolf-Miklau, Florian; Suda, Jürgen
2017-04-01
Since the beginning of systematic torrent control in Austria 130 years ago, barriers are constructed for protection purposes. Until the end of the 1960s, solid barriers were built at the exits of depositional areas to prevent dangerous debris flows from reaching high consequence areas. The development of solid barriers with large slots or slits to regulate sediment transport began with the use of reinforced concrete during the 1970s (Rudolf-Miklau, Suda 2011). In order to dissipate the energy of debris flows debris flow breakers have been designed since the 1980s. By slowing and depositing the surge front of the debris flow, downstream reaches of the stream channel and settlement areas should be exposed to considerably lower dynamic impact. In the past, the technological development of these constructions was only steered by the experiences of the engineering practice while an institutionalized process of standardization comparable to other engineering branches was not existent. In future all structures have to be designed and dimensioned according to the EUROCODE standards. This was the reason to establish an interdisciplinary working group (ON-K 256) at the Austrian Standards Institute (ASI), which has managed to developed comprehensive new technical standards for torrent control engineering, including load models, design, dimensioning and life cycle assessment of torrent control works (technical standard ONR 24800 - series). Extreme torrential events comprise four definable displacement processes floods; fluvial solid transport; hyper-concentrated solid transport (debris floods) and debris flow (stony debris flow or mud-earth flow). As a rule, the design of the torrential barriers has to follow its function (Kettl, 1984). Modern protection concepts in torrent control are scenario-oriented and try to optimize different functions in a chain of protections structures (function chain). More or less the first step for the designing the optimal construction type is the definition of the displacement processes for each torrent section. The criteria for each process are defined in the technical standard ONR 24800 - series in Austria. According to ONR 24800 the functions of torrential barriers can be divided in process control functional types (retention; dosing and filtering; energy dissipation). The last step is the designing of the construction type. Bedload and debris events in Austria showed the functionality of the barriers. On the basis of these findings and results, some recommendations were derived to improve the function fulfilment of the technical protection measures.
Adaptation to wildfire: A fish story
John Kirkland; Rebecca Flitcroft; Gordon Reeves; Paul Hessburg
2017-01-01
In the Pacific Northwest, native salmon and trout are some of the toughest survivors on the block. Over time, these fish have evolved behavioral adaptations to natural disturbances, and they rely on these disturbances to deliver coarse sediment and wood that become complex stream habitat. Powerful disturbances such as wildfire, postfire landslides, and debris flows may...
PIV-Based Examination of Dynamic Stall on an Oscillating Airfoil
2008-03-01
vectors at a very large number of points simultaneously” ( Adrian R. , 2005). PIV is accomplished by tracking indiscriminate particles in the flow at...Particle image velocimetry (PIV) theory has been discussed, developed, and used for over 20 years ( Adrian R. , 2005) as a tool for researchers to...stream flow. It is important to note that single image pair solution can have anomalies (i.e. due to turbulence, blooming , particle debris) that
NASA Astrophysics Data System (ADS)
Box, Walter; Keestra, Saskia; Nyman, Petter; Langhans, Christoph; Sheridan, Gary
2015-04-01
South-eastern Australia is generally regarded as one of the world's most fire-prone environments because of its high temperatures, low rainfall and flammable native Eucalyptus forests. Modifications to the landscape by fire can lead to significant changes to erosion rates and hydrological processes. Debris flows in particular have been recognised as a process which increases in frequency as a result of fire. This study used a debris flow event in the east Upper Ovens occurred on the 28th of February 2013 as a case study for analysing sediment transport processes and connectivity of sediment sources and sinks. Source areas were identified using a 15 cm resolution areal imagery and a logistic regression model was made based on fire severity, aridity index and slope to predict locations of source areas. Deposits were measured by making cross-sections using a combination of a differential GPS and a total station. In total 77 cross-sections were made in a 14.1 km2 sub-catchment and distributed based on channel gradient and width. A more detailed estimation was obtained by making more cross-sections where the volume per area is higher. Particle size distribution between sources and sink areas were obtained by combination of field assessment, photography imagery analyses and sieve and laser diffraction. Sediment was locally eroded, transported and deposited depending on factors such as longitude gradient, stream power and the composition of bed and bank material. The role of headwaters as sediment sinks changed dramatically as a result of the extreme erosion event in the wildfire affected areas. Disconnected headwaters became connected to low order streams due to debris flow processes in the contributing catchment. However this redistribution of sediment from headwaters to the drainage network was confined to upper reaches of the Ovens. Below this upper part of the catchment the event resulted in redistribution of sediment already existing in the channel through a combination of debris flows and hyperconcentrated flows. These results indicate that there is a stepwise outflow of sediment influencing long-term erosion rates and landform development.
Bret C. Harvey; Rodney J. Nakamoto; Jason L. White
1999-01-01
Abstract - To improve understanding of the significance of large woody debris to stream fishes, we examined the influence of woody debris on fall and winter movement by adult coastal cutthroat trout (Oncorhynchus clarki) using radiotelemetry. Fish captured in stream pools containing large woody debris moved less than fish captured in pools lacking large woody debris or...
Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor
1998-01-01
Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...
Using Sediment Provenance to Study Ice Streams in the Weddell Sea Embayment of Antarctica
NASA Astrophysics Data System (ADS)
Hemming, S. R.; Williams, T.; Boswell, S.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Kuhn, G.; Hillenbrand, C. D.; Zhai, X.
2016-12-01
The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During deglacial times it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. We seek to find the provenance of this IRD, identify the ice streams contributing to the IRD load, and interpret the geographic sequence of ice sheet retreat in the Weddell Sea embayment for the last three deglaciations. In December 2014 we conducted fieldwork to collect samples of rock and sediment debris carried by three of the major ice streams draining the Weddell Sea embayment: the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier. We sampled both modern moraines at the edges of the ice streams and older till on hillsides next to the ice streams. In addition to rocks representing the geology of local outcrops, we found that each of the three ice streams carries a characteristic set of erratic lithologies from further upstream, giving clues to the geology hidden under the ice sheet. Downstream, subglacial till and proximal glaciomarine sediment from existing core sites located at the edge of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern, characterize the geochemical and geochronological fingerprint along ice flow lines extending from the ice streams. Finally, two deep-water RV Polarstern sites contain a continuous record of IRD sourced from the set of Weddell embayment ice streams over the last few glacial cycles. Here we present new 40Ar/39Ar hornblende and biotite thermochronological data from individual mineral grains, K-Ar from the silt fraction, and U-Pb zircon geochronology from the onshore tills and offshore sediments. Using this data we will discuss provenance matching between the IRD and the ice streams, and the possibilities for using provenance to understand ice sheet dynamics over the course of glacial cycles.
NASA Astrophysics Data System (ADS)
Cervania, A.; Knack, I. M. W.
2017-12-01
The presence of woody debris (WD) jams in rivers and streams increases the risk of backwater flooding and reduces the navigability of a channel, but adds fish and macroinvertebrate habitat to the stream. When designing river engineering projects engineers use hydraulic models to predict flow behavior around these obstructions. However, the complexities of flow through and beneath WD jams are still poorly understood. By increasing the ability to predict flow behavior around WD jams, landowners and engineers are empowered to develop sustainable practices regarding the removal or placement of WD in rivers and flood plains to balance the desirable and undesirable effects to society and the environment. The objective of this study is to address some of this knowledge gap by developing a method to estimate the vertical velocity profile of flow under WD jams. When flow passes under WD jams, it becomes affected by roughness elements on all sides, similar to turbulent flows in pipe systems. Therefore, the method was developed using equations that define the velocity profiles of turbulent pipe flows: the law of the wall, the logarithmic law, and the velocity defect law. Flume simulations of WD jams were conducted and the vertical velocity profiles were measured along the centerline. A calculated velocity profile was fit to the measured profile through the calibration of eight parameters. An optimal value or range of values have been determined for several of these parameters using cross-validation techniques. The results indicate there may be some promise to using this method in hydraulic models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, R.D.; Pyne, A.R.; Hunter, L.E.
1992-01-01
Marine-ending glaciers may retreat with global warming as sea level rises by ocean thermal expansion. If the sea floor rises by sediment accumulation, then glaciers may not feel the effect of sea level rise. A submersible ROV and other techniques have been used to collect data from temperate and polar glaciers to compare sediment production and mass balance of their grounding-line systems. Temperature Alaskan valley glaciers flow at about 0.2--2 km/a and have high volumes of supraglacial, englacial and subglacial debris. However, most sediment contributed to the base of their tidewater cliffs comes from subglacial streams or squeezing out subglacialmore » sediment and pushing it with other marine sediment into a morainal bank. Blue Glacier, a thin, locally fed polar glacier in Antarctica, flows slowly and has minimal glacial debris. The grounding-line system at the tidewater cliff is a morainal bank that forms solely by pushing of marine sediment. An Antarctic polar outlet glacier, Mackay Glacier, terminating as a floating glacier-tongue, has similar volumes of basal debris to Alaskan temperature glaciers and flows at 250 m/a. However, no subglacial streams issued from Mackay's grounding line and all sedimentation was by rockfall and grainfall rainout from seawater undermelt of the tongue. A grounding-line wedge of glacimarine diamicton is deposited over subglacial (lodgement ) till. Although Antarctic grounding-line accumulation rates are three orders of magnitude smaller than Alaskan rates, both are capable of compensating for predicted rises in sea level by thermal heating from global warming.« less
NASA Astrophysics Data System (ADS)
Lukram, I. M.
2007-12-01
Tributary fan deposits are well preserved on either side of the Teesta river in the non-glaciated middle part of the Himalayan valley lying in a tectonic region bounded by the MCT and MBT. The lithofacies characteristics and assemblage patterns of these deposits bear testimony to the effects of tectonic and climatic activities on the sedimentation process in the basin. Two tributary streams, with small catchments namely Turung Khola and Bembung Khola are important in this context. Three major fan lobes (F2, F1, and F0) are preserved at Turung Khola. In contrast, two fan lobes (F1,F0) are preserved at the confluence of the Bembung Khola. Terraces, floodplains, channel bars, chute bars are associated geomorphic features in this part of the Teesta basin. Landslides cover an area of 7% and 15% in the catchment of Turung Khola and Bembung Khola, respectively. Dense forest covers 24% and 12%; open forest covers 30% and 29 %; and scrubby vegetation covers 39% and 49% of the Turung Khola and Bembung Khola, respectively. The landslides mainly occur along the margins of the dense forest where they are active in every rainy season. Tributary longitudinal profiles and Hack profiles indicate a relationship between the knick points and high SL-Index values, where fault /thrust intersections are present. Active landslides and scarps are close to the major fault/thrust planes. Sediment characteristics of these fan deposits suggest that four types of depositional flows viz. debris flows, hyperconcentrated flows, sheet flows and channel flows laid down these sequences. The channel flow deposits are dominant (32%-54 %) in the fan sequence of the Turung Khola followed by sheet flow deposits (28.5%), hyperconcentrated flow deposits (26%) and debris flow deposits (12%), respectively. Hyperconcentrated flow deposits are dominant (44%) in the F1 sequence, whereas the active channel fanlobe is dominant (80%) in the channel flow deposits. The rest of the active channel sequence is composed of sheet flow deposits (20%). On the other hand, the major part (52%) of the F1 fanlobe of Bembung Khola is built up of debris flow deposits and F0 fanlobe is composed of channel flow deposits and flood sediment. From the above analysis, an evolutionary model of the deposition and incision at the tributary stream fan confluence is proposed. The insetting of the younger fan lobes into older fan lobe surfaces is an evidence of tectonic uplift in the region. The landform and their depositional pattern are a responds to link tectonic- climatic process systems; some depositional lithofacies assemblages are responses to climatic events.
Measurement of discharge using tracers
Kilpatrick, Frederick A.; Cobb, Ernest D.
1984-01-01
The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where:Turbulence is excessive for current meter measurement but conducive to good mixing.Moving rocks and debris are damaging to any instruments placed in the flow.Cross-sectional areas or velocities are indeterminant or changing.There are some unsteady flows such as exist with storm-runoff events on small streams.The flow is physically inaccessible or unsafe.From a practical standpoint, such measurements are limited primarily to small streams due to excessively long channel mixing lengths required of larger streams. Very good accuracy can be obtained provided:Adequate mixing length and time are allowed.Careful field and laboratory techniques are employed.Dye losses are not significant.This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and Laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.
Large woody debris and land management in California's hardwood-dominated watersheds.
Opperman, Jeff J
2005-03-01
Although large woody debris (LWD) has been studied extensively in conifer-dominated watersheds, relatively little is known about LWD in hardwood-dominated watersheds. Field surveys of 32 hardwood-dominated stream reaches in northern coastal California revealed that levels of LWD varied with land ownership and that living trees strongly influenced debris jam formation. Almost half of the channel-spanning debris jams, which stored the most wood and were most likely to form a pool, were formed behind a key piece that was still living. These living key pieces might provide greater longevity and stability than would otherwise be expected from hardwood LWD. Compared to streams on private land, streams on public land had significantly greater LWD loading and debris-jam frequency. Land management practices that remove wood from streams might be contributing to the degradation of salmonid habitat in California's hardwood-dominated watersheds.
NASA Astrophysics Data System (ADS)
Roverato, M.; Capra, L.; Sulpizio, R.; Norini, G.
2011-10-01
Throughout its history, Colima Volcano has experienced numerous partial edifice collapses with associated emplacement of debris avalanche deposits of contrasting volume, morphology and texture. A detailed stratigraphic study in the south-eastern sector of the volcano allowed the recognition of two debris avalanche deposits, named San Marcos (> 28,000 cal yr BP, V = ~ 1.3 km 3) and Tonila (15,000-16,000 cal yr BP, V = ~ 1 km 3 ). This work sheds light on the pre-failure conditions of the volcano based primarily on a detailed textural study of debris avalanche deposits and their associated pyroclastic and volcaniclastic successions. Furthermore, we show how the climate at the time of the Tonila collapse influenced the failure mechanisms. The > 28,000 cal yr BP San Marcos collapse was promoted by edifice steep flanks and ongoing tectonic and volcanotectonic deformation, and was followed by a magmatic eruption that emplaced pyroclastic flow deposits. In contrast, the Tonila failure occurred just after the Last Glacial Maximum (22,000-18,000 cal BP) and, in addition to the typical debris avalanche textural characteristics (angular to sub-angular clasts, coarse matrix, jigsaw fit) it shows a hybrid facies characterized by debris avalanche blocks embedded in a finer, homogenous and partially cemented matrix, a texture more characteristic of debris flow deposits. The Tonila debris avalanche is directly overlain by a 7-m thick hydromagmatic pyroclastic succession. Massive debris flow deposits, often more than 10 m thick and containing large amounts of tree trunk logs, represent the top unit in the succession. Fluvial deposits also occur throughout all successions; these represent periods of highly localized stream reworking. All these lines of evidence point to the presence of water in the edifice prior to the Tonila failure, suggesting it may have been a weakening factor. The Tonila failure appears to represent an anomalous event related to the particular climatic conditions at the time of the collapse. The presence of extensive water at the onset of deglaciation modified the mobility of the debris avalanche, and led to the formation of a thick sequence of debris flows. The possibility that such a combination of events can occur, and that their probability is likely to increase during the rainy season, should be taken into consideration when evaluating hazards associated with future collapses at Colima volcano.
October 2005 Debris Flows at Panabaj, Guatemala:Hazard Assessment
NASA Astrophysics Data System (ADS)
Sheridan, M. F.; Connor, C.; Connor, L.; Stinton, A.; Galacia, O. R.; Barrios, G.
2007-05-01
In October, 2005, tropical storm Stan caused heavy precipitation throughout much of Guatemala. In the community of Panabaj, Santiago Atitlán, a landslide of pyroclastic material originating high on the slopes of Tolimán volcano buried much of the community, leaving approximately 400 people dead. Current estimates by the Coordinadora Nacional para la Reducción de Desastres (CONRED) suggest that at least 2,600 people from the community of Panabaj, Santiago Atitlán have been displaced by the debris flows. Because the temporary housing for people displaced by the debris flows is located in an area that is geologically and morphologically similar to the area inundated by flows in October, 2005, this area may be potentially inundated by debris flows as well. In addition to the thousands of people living in temporary shelters, many hundreds of people are currently reoccupying land adjacent to or on the October, 2005 debris flows. Thus a large fraction of the surviving Panabaj community appears to remain at risk from future debris flows. We used differential GPS (Global Positioning System) to outline the boundaries of the debris flows, to estimate variation in flow thicknesses, and to determine their volumes. Mass movement on Tolimán volcano resulted in the generation of a moderate size debris flow (360,000 m3 of sediment plus water) that descended the volcano rapidly, bifurcated into two stream valleys high on the flanks of the volcano, and continued to descend both channels until these flows reached the alluvial fan near the shores of Lago de Atitlán. After bifurcating into two flows high on the flanks of the volcano, about 65% of the flow (by volume) descended the western channel, forming the Western flow. Approximately one kilometer above the alluvial fan, this channel descends steep topography, with a slope of 11.5°. This average slope gradually decreases down the channel, reaching only 5.3° just above the alluvial fan. In contrast, average slopes on the Eastern channel are up to 16.7°. Also, this channel thalweg steepens dramatically to 12.8° just above the alluvial fan. Flow velocities in channelized sections were estimated by superelevation at bends at two locations for each of the two flow branches. In measured cross sectional areas between 144 and 160 m2 the calculated velocities ranged from 8.3-10.6 ms-1 yielding fluxes between 1280 and 1680 m3s- 1. The fluxes for the two flows are surprisingly similar. The planimetric area inundated by the Western flow is approximately 180,000 m2 and the area inundated by the Eastern debris flow is 77,000 m2. On reaching the gently-sloping (2.8°) depositional fan where the village of Panabaj is located, the flows thinned to 0.5-3.0 m and spread laterally as a broad sheet flow bounded by distinct flow fronts of 0.30-0.6 m height. Although thin, the flows had sufficient power to sweep away most of the concrete block houses in their paths. Based on observations of high water marks preserved on buildings, up to 40% of the flow by volume consisted of water and fine grained sediments that have been dewatered from the deposit during and since deposition.
Geomorphic Response to Significant Sediment Loading Along Tahoma Creek on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Anderson, S.; Kennard, P.; Pitlick, J.
2012-12-01
Increased sediment loading in streams draining the flanks of Mt. Rainier has caused significant damage to National Park Service infrastructure and has prompted concern in downstream communities. The processes driving sedimentation and the controls on downstream response are explored in the 37 km2 Tahoma Creek basin, using repeat LiDAR surveys supplemented with additional topographic datasets. DEM differencing between 2003 and 2008 LiDAR datasets shows that over 2.2 million cubic meters of material was evacuated from the upper reaches of the basin, predominately in the form of debris flows. These debris flows were sourced in recently exposed lateral moraines, bulking through the broad collapse of unstable hillslopes. 40% of this material was deposited in the historic debris fan 4-6 km downstream of the terminus, while 55% completely exited the system at the downstream point of the surveys. Distinct zones of aggradation and incision of up to one meter are present along the lower channel and appear to be controlled by valley constrictions and inflections. However, the lower channel has shown remarkable long-term stability in the face of significant sediment loads. Alder ages suggest fluvial high stands in the late 70's and early 90's, immediately following periods of significant debris flow activity, yet the river quickly returned to pre-disturbance elevations. On longer time scales, the presence of old-growth forest on adjacent floodplain/terrace surfaces indicates broad stability on both vertical and horizontal planes. More than a passive indicator, these forested surfaces play a significant role in maintaining channel stability through increased overbank roughness and the formation of bank-armoring log jams. Sediment transport mechanics along this lower reach are explored using the TomSED sediment transport model, driven by data from an extensive sediment sampling and stream gaging effort. In its current state, the model is able to replicate the stability of the channel but significantly under predicts total loads when compared to the LiDAR differencing.
Measurement of discharge using tracers
Kilpatrick, F.A.; Cobb, Ernest D.
1985-01-01
The development of fluorescent dyes and fluorometers that can measure these dyes at very low concentrations has made dye-dilution methods practical for measuring discharge. These methods are particularly useful for determining discharge under certain flow conditions that are unfavorable for current meter measurements. These include small streams, canals, and pipes where 1. Turbulence is excessive for current-meter measurement but conducive to good mixing. 2. Moving rocks and debris may damage instruments placed in the flow. 3. Cross-sectional areas or velocities are indeterminate or changing. 4. The flow is unsteady, such as the flow that exists with storm-runoff events on small streams and urban storm-sewer systems. 5. The flow is physically inaccessible or unsafe. From a practical standpoint, such methods are limited primarily to small streams, because of the excessively long channel-mixing lengths required for larger streams. Very good accuracy can be obtained provided that 1. Adequate mixing length and time are allowed. 2. Careful field and laboratory techniques are used. 3. Dye losses are not significant. This manual describes the slug-injection and constant-rate injection methods of performing tracer-dilution measurements. Emphasis is on the use of fluorescent dyes as tracers and the equipment, field methods, and laboratory procedures for performing such measurements. The tracer-velocity method is also briefly discussed.
NASA Astrophysics Data System (ADS)
Yang, Zongji; Bogaard, Thom. A.; Qiao, Jianping; Jiang, Yuanjun
2015-04-01
Prevention and mitigation of rainfall induced geological hazards after the Ms=8 Wenchuan earthquake on May 12th, 2008 were gained more significance for the rebuild of earthquake hit regions in China. After the Wenchuan earthquake, there were thousands of slopes failure, which were much more susceptible to subsequent heavy rainfall and many even transformed into potential debris flows. An typical example can be found in the catastrophic disaster occurred in Zhongxing County, Chengdu City on 10th July, 2013 in which the unknown fractured slope up the mountain was triggered by a downpour and transformed into subsequent debris flow which wiped the community downstream, about 200 victims were reported in that tragic event. The transform patterns of rainfall-induced mass re-mobilization was categorized into three major type as the erosion of fractured slopes, initiate on loosen deposit and outbreak of landslide (debris flow) dams according to vast field investigation in the earthquake hit region. Despite the widespread and hidden characters,the complexity of the process also demonstrated in the transforms of the mass re-mobilized by the erosion of both gravity and streams in the small watersheds which have never been reported before the giant Wenchuan Earthquake in many regions. As a result, an increasing number of questions for disaster relief and mitigation were proposed including the threshold of early warning and measurement of the volume for the design of mitigation measures on rainfall-induced mass re-mobilization in debris flow gullies. This study is aimed for answer the essential questions about the threshold and amount of mass initiation triggered by the subsequent rainfall in post earthquake time. In this study, experimental tests were carried out for simulating the failure of the rainfall-induced mass re-mobilization in respectively in a natural co-seismic fractured slope outside and the debris flow simulation platform inside the laboratory. A natural fractured slope was selected to conduct the field experimental test,after the field experimental test, the correlation of rainfall parameters, deformation criterion and water content as well as the failure volume of gravity erosion was investigated. In addition, the loosen mass re-mobilized by the stream was also simulated by the model experiment by which the correlation of rainfall thresholds, and the initial volume of mass triggered by the flow was analyzed. Thus, the threshold and volume measurement model for the initiation of mass re-mobilization were proposed by means of this experimental research. Despite of the fact that the simplicity of the model derived from experimental and empirical method and some drawbacks connected with the uncertainty and complexity of the geological phenomenon, the proposed method have contributed a lot in application for the early warning and prevention of mass transformed debris flows in earthquake hit region, China.
Evolution of large, organic debris after timber harvest: Maybeso Creek, 1949 to1978
Mason D. Bryant
1980-01-01
The Maybeso Creek valley was logged from 1953 to 1960. Stream maps showing large accumulations of debris and stream channel features were made in 1949 and updated to 1960. The objectives of this paper are to document the effects of natural and logging debris on channel morphome try and to examine the fate of logging debris during and after logging. Map sections from...
Snyder, C.D.; Johnson, Z.B.
2006-01-01
In June 1995, heavy rains caused severe flooding and massive debris flows on the Staunton River, a 3rd-order stream in the Blue Ridge Mountains (Virginia, USA). Scouring caused the loss of the riparian zone and repositioned the stream channel of the lower 2.1 km of the stream. Between 1998 and 2001, we conducted seasonal macroinvertebrate surveys at sites on the Staunton River and on White Oak Canyon Run, a reference stream of similar size and geology that was relatively unaffected by the flood. Our study was designed to determine the extent to which flood-induced changes to the stream channel and riparian habitats caused long-term changes to macroinvertebrate community structure and composition. Sites within the impacted zone of the Staunton River supported diverse stable benthic macroinvertebrate assemblages 3 y after the flood despite dramatic and persistent changes in environmental factors known to be important controls on stream ecosystem function. However, significant differences in total macroinvertebrate density and trophic structure could be attributed to the flood. In autumn, densities of most feeding guilds, including shredders, were higher at impacted-zone sites than at all other sites, suggesting higher overall productivity in the impacted zone. Higher shredder density in the impacted zone was surprising in light of expected decreases in leaf-litter inputs because of removal of riparian forests. In contrast, in spring, we observed density differences in only one feeding guild, scrapers, which showed higher densities at impacted-zone sites than at all other sites. This result conformed to a priori expectations that reduced shading in the impacted zone would lead to increased light and higher instream primary production. We attribute the seasonal differences in trophic structure to the effects of increased temperatures on food quality and to the relationship between the timing of our sampling and the emergence patterns of important taxa. ?? 2006 by The North American Benthological Society.
Effects of large woody debris placement on stream channels and benthic macroinvertebrates
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff; Kelly L. Harpster
1997-01-01
Large woody debris (LWD)was added as an experimental stream restoration techniquein two streams in southwest Virginia. Additions were designed to compare human judgement in log placements against a randomized design and an unmanipulated reach, &d also to compare effectiveness in a low- and a high-gradient stream. Pool area increased 146% in the systematic placement...
Trout Use of Woody Debris and Habitat in Appalachian Wilderness Streams of North Carolina
Patricia A. Flebbe; C. Andrew Dolloff
1995-01-01
Wilderness areas in the Appalachian Mountains of North Carolina are set aside to preserve characteristics of both old-growth and second-growth forests and associated streams. Woody debris loadings, trout habitat, and trout were inventoried in three southern Appalachian wilderness streams in North Carolina by the basin-wide visual estimation technique. Two streams in...
Backwater development by woody debris
NASA Astrophysics Data System (ADS)
Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton
2017-04-01
Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.
A sorting mechanism for a riffle-pool sequence
Thomas Lisle
1979-01-01
Transport of coarse, heterogeneous debris in a natural stream under a wide range of flows usually results in a remarkably stable, undulatory bed profile, which manifests an in transit sorting process of the bed material. In general, finer material representative of the bulk of the normal bed load resides in the deep sections, or pools, below flood stages. At high...
Glacimarine Sedimentary Processes and Facies on the Polar North Atlantic Margins
NASA Astrophysics Data System (ADS)
Dowdeswell, J. A.; Elverhfi, A.; Spielhagen, R.
Major contrasts in the glaciological, oceanic and atmospheric parameters affecting the Polar North Atlantic, both over space between its eastern and western margins, and through time from full glacial to interglacial conditions, have lead to the deposition of a wide variety of sedimentary facies in these ice-influenced seas. The dynamics of the glaciers and ice sheets on the hinterlands surrounding the Polar North Atlantic have exterted a major influence on the processes, rates and patterns of sedimentation on the continental margins of the Norwegian and Greenland seas over the Late Cenozoic. The western margin is influenced by the cold East Greenland Current and the Svalbard margin by the northernmost extent of the warm North Atlantic Drift and the passage of relatively warm cyclonic air masses. In the fjords of Spitsbergen and the northwestern Barents Sea, glacial meltwater is dominant in delivering sediments. In the fjords of East Greenland the large numbers of icebergs produced from fast-flowing outlets of the Greenland Ice Sheet play a more significant role in sedimentation. During full glacials, sediments are delivered to the shelf break from fast-flowing ice streams, which drain huge basins within the parent ice sheet. Large prograding fans located on the continental slope offshore of these ice streams are made up of stacked debris flows. Large-scale mass failures, turbidity currents, and gas-escape structures also rework debris in continental slope and shelf settings. Even during interglacials, both the margins and the deep ocean basins beyond them retain a glacimarine overprint derived from debris in far-travelled icebergs and sea ice. Under full glacial conditions, the glacier influence is correspondingly stronger, and this is reflected in the glacial and glacimarine facies deposited at these times.
Walder, J.S.; Driedger, C.L.
1994-01-01
Debris flows have caused rapid geomorphic change in several glacierized drainages on Mount Rainier, Washington. Nearly all of these flows began as glacial outburst floods, then transformed to debris flows by incorporating large masses of sediment in channel reaches where streams have incised proglacial sediments and stagnant glacier ice. This stagnant ice is a relic of advanced glacier positions achieved during the mid-nineteenth century Little Ice Age maximum and the readvance of the 1960's and 1970's. Debris flows have been especially important agents of geomorphic change along Tahoma Creek, which drains South Tahoma Glacier. Debris flows in Tahoma Creek valley have transported downstream about 107 m3 Of sediment since 1967, causing substantial aggradation and damage to roads and facilities in Mount Rainier National Park. The average denudation rate in the upper part of the Tahoma Creek drainage basin in the same period has been extraordinarily high: more than 20 millimeters per year, a value exceeded only rarely in basins affected by debris flows. However, little or none of this sediment has yet passed out of the Tahoma Creek drainage basin. Outburst floods from South Tahoma Glacier form by release of subglacially stored water. The volume of stored water discharged during a typical outburst flood would form a layer several tens of millimeters thick over the bed of the entire glacier, though it is more likely that large linked cavities account for most of the storage. Statistical analysis shows that outburst floods usually occur during periods of atypically hot or rainy weather in summer or early autumn, and that the probability of an outburst increases with temperature (a proxy measure of ablation rate) or rainfall rate. On the basis of these results, we suggest that outburst floods are triggered when rapid input of water to the glacier bed causes transient increase in water pressure, thereby destabilizing the linked-cavity system. The probabilistic nature of the relation between water-input rate and outburst-flood occurrence suggests that the connections between englacial conduits, basal cavities and main meltwater channels may vary temporally. The correlation between outburst floods and meteorological factors casts doubt on an earlier hypothesis that melting around geothermal vents triggers outburst floods from South Tahoma Glacier. The likelihood that outburst floods from South Tahoma Glacier will trigger debris flows should decrease with time, as the deeply incised reach of Tahoma Creek widens by normal slope processes and stagnant ice decays. Drawing analogies to the geomorphic evolution of a reach of Tahoma Creek first incised by an outburst flood in 1967, we suggest the present period of debris-flow activity along Tahoma Creek will last about 25 years, that is, until about the year 2010. Comparison of geomorphic change at Tahoma Creek to that in two other glacierized alphine basins indicates that debris-rich stagnant ice can be an importantsource of sediment to debris flows as long as floods are frequent or channel slope is great.
NASA Astrophysics Data System (ADS)
Friedrich, H.; Spreitzer, G.; Tunnicliffe, J. F.
2017-12-01
The morphology of steep (>0.01 m/m) forested streams is governed not only by water-sediment interplay, but also by accumulations of coarse and fine organic debris. In this project we look at the jamming dynamics (formation, persistence and hydraulic feedbacks) of large woody debris with the help of scaled laboratory experiments. In New Zealand, the recruitment of wood from both natural tree-fall and forest harvesting has led to obstruction of culverts, bridges and other river constrictions. Understanding the dynamics of jam formation and persistence is important for harvest practice guidelines, management of sediment accumulation, as well as establishing impacts to habitat and infrastructure. In this study, we provide the context of our work, present our experimental setup for studying the complex flow-sediment-wood interactions and present some initial results. In our experimental setup, we varied feed rates of sediment and organic fine material in order to establish concentration thresholds for jam formation, and development of sediment retention capacity upstream of the jam. Large woody debris accumulation is studied for different blocking scenarios, and the effect on sediment transport is measured. Sediment quantities and changes in channel bed morphology upstream of the critical cross section are evaluated, together with resulting backwater effects, and associated energy losses. In the long term, our results will inform our understanding of the processes that take place from the mobilization of woody debris to accumulation.
Invertebrates Associated with Coarse Woody Debris in Streams, Upland Forests, and Wetlands: A Review
A. Braccia; D.P. Batzer
1999-01-01
We reviewed literature on the inbvertebrate groups associated with coarse woody debris in forests, streams, and wetlands, and contrasted patterns of invertebrate community development and wood decomposition among ecosystems.
NASA Astrophysics Data System (ADS)
Vennari, Carmela; Santangelo, Nicoletta; Santo, Antonio; Parise, Mario
2015-04-01
Debris-flow and flood events cause yearly wide damages to buildings and infrastructures, and produce many casualties and fatalities. These processes are very common in Italy, affecting mainly torrential stream basins with different geological and morphological settings: in the Alpine mountain areas they are quite well analysed, whilst much less attention is generally paid in contexts such as those of the Apennines mostly due to the minor frequency of the events. Nevertheless, debris-flows and flood processes occur along many alluvial fans, have greatly contributed to their building up, and are therefore worth to be studied. Along many areas of the Southern Apennines, coalescent alluvial fans are a widespread geomorphic unit, typically located at the foot of steep slopes. In most cases these areas correspond to the more highly urbanised sectors, generally considered to be safer than the bottom valley, as concerns the direct effects from flooding. During intense storms, villages and towns built on alluvial fans may be affected by flooding and/or debris flow processes originated in the above catchment, and rapidly transferred downslope due to the steep slopes and the torrential character of the streams. This creates a very high hazard to the population and is at the origin of the severe and recurrent damage to urban settlements. Starting from the above considerations, we compiled a catalogue of flood and debris-flow events occurred in Campania Region, southern Italy, by consulting very different information sources: national and local newspapers and journals, regional historical archives, scientific literature, internet blogs. More than 350 events, occurred in Campania from 1700 to present, were collected. Information on time of occurrence and location are available for each event, with different level of accuracy, that is typically lower going back to the oldest events for which only the year or the month of occurrence of the event was identified; nevertheless, for more than 75 % of the collected data, the complete date of occurrence is known. All the provinces of Campania are affected by debris-flow and flood processes, but the most interested appear to be Naples and Salerno. Debris flows and flood produced in the Region more than 2400 fatalities, about 200 injured people, and about 100 missing people, with more than 6000 homeless. Very harmful were the events occurred in 1581, 1841, 1910,1924, 1954, 1998; each of these caused more than 100 fatalities. With regard to homeless, the most damaging event took place in the area of Salerno, causing more than 5000 homeless. Buildings and infrastructures were also involved by the events dealt with here. A third of the processes included in the catalogue caused the total destruction of private buildings, and serious damage to communication routes (roads and railways), pipelines, factories and architectonical structures. The most disastrous season, as concerns the damage to infrastructures and humans, is the autumn. The catalogue is still in progress, being continually updated for new events, but, at the same time, continuing to perform archive and literature scrutiny as regards the past events. Further, another important part of the research is the investigation of the link with the triggering events (rainfall): at this aim, daily (or hourly, when available) pluviometric data are being analysed. Our final goal is to provide a method to estimate hazard assessment in alluvial basins torrents, that might be exportable in similar geological-geomorphological contexts. In such an effort, the first and mandatory step is the collection of historical data.
NASA Astrophysics Data System (ADS)
Hayakawa, Y. S.; Imaizumi, F.; Hotta, N.; Tsunetaka, H.
2013-12-01
Deformation of steep terrain has been occurring since the formation of Ohyakuzure landslide in 1707. Although erosion controls in recent decades have resulted in vegetation recovery in downstream portions of the landslide terrain, hillslope erosion and debris flows frequently occur in uppermost steep subwatersheds in the landslide area to yield vast amount of sediment downstream. Ichino-sawa subwatershed in the landslide terrain, where detailed monitoring of debris flows and related topographic changes have previously been performed, has particularly steep slopes, and geomorphic processes therein have been quite active. Freeze-thaw weathering of fractured bedrock on hillslopes made of shale and sandstone frequently occurs in winter to spring season, and resultant sediment particles are provided into channel beds, which act as a source of debris flows that frequently occurs in summer season with heavy or accumulated rainfalls. High-resolution assessment of erosion/deposition patterns in channel bed of the Ichinosawa catchment was performed using multi-temporal terrestrial laser scanning data covering 3 seasons for 2 years. Seasonal changes in spatial distribution of erosion and deposition in the channel bed is quantified using a 0.1-m DEM converted from the original point cloud by TLS. The multi-temporal datasets provides an estimate of annual sediment storage and yield on the order of 1,000 - 5,000 m3. Analysis of changes in elevation by transverse and longitudinal profiles shows contrasting patterns of erosion and deposition along the studied reach: in particular, changes in bed elevation is found to be less in a 50-m long reach, whose downstream part seems bounded by valley narrowing and a knickpoint. Several topographic metrics, including stream gradient, surface roughness and topographic openness, were examined to estimate the characteristics of differing transport processes induced by debris flows along the reaches.
Longevity of Wood-Forced Pools in an Old-Growth Forest
NASA Astrophysics Data System (ADS)
Buffington, J. M.; Woodsmith, R. D.; Johnson, A. C.
2009-12-01
Wood debris plays an important role in scouring pools in forest channels and providing resultant habitat for aquatic organisms. We investigated the longevity of such pools in a gravel-bed river flowing through old-growth forest in southeastern Alaska by aging trees and “bear’s bread” fungi (Ganoderma applanatum, Fomitopsis pinicola) growing on pool-forming wood debris. Ages were determined by counting annual growth rings from cores and cross sections of trees and fungi growing on the wood debris. These ages are minimum values because they do not account for lag time between debris recruitment and seedling/spore establishment on the debris, nor do they account for flood scour that may periodically reset tree and fungi growth on the debris. The study stream has a gradient of about 1%, bankfull width and depth of 13.3 and 0.78 m, respectively, median grain size of 18 mm, a high wood loading (0.8 pieces/m), and a correspondingly low pool spacing (0.3 bankfull widths/pool), with 81% of the pools forced by wood debris. The size of wood debris in the study stream is large relative to the channel (average log length of 7.6 m and diameter of 0.35 m), rendering most debris immobile. Eighty-one pool-forming pieces of wood were dated over 1.2 km of stream length, with 28% of these pieces causing scour of more than one pool. In all, 122 wood-forced pools were dated, accounting for 38% of all pools at the site and 47% of the wood-forced pools. Fifty-three percent of the wood-forced pools lacked datable wood because these pieces either: were newly recruited; had been scoured by floods; or were contained below the active channel elevation, prohibiting vegetation establishment on the wood debris (the most common cause). The debris age distribution declined exponentially from 2 to 113 yrs., with a median value of 18 yrs. Similar exponential residence time distributions have been reported in other studies, but our analysis focused specifically on the ages of pool-forming wood as opposed to all in-channel wood. Most pool scour was relatively recent (60% ≤ 25 yrs. old), but 16% of the pools were old features (50-100+ yrs.), indicating long-term availability of pool habitats at the study site. Future studies will use these results to develop a wood budget model that accounts for pool scour and availability of pool habitats. For such modeling, our data suggest that stand-replacing disturbances (e.g. wildfire, riparian clear cutting) will cause a sharp drop in the numbers of wood-forced pools, as most of those are ≤ 25 yrs. old.
Roberts, S.B.; Stanton, R.W.; Flores, R.M.
1994-01-01
Coal and clastic facies investigations of a Paleocene coal-bearing succession in the Grass Creek coal mine, southwestern Bighorn Basin, Wyoming, USA, suggest that disruption of peat accumulation in recurrent mires was caused by the repetitive progradation of crevasse splays and, ultimately, by a catastrophic mass movement. The mass movement, represented by deposits of debris flow, marked the termination of significant peat accumulation in the Grass Creek coal mine area. Megascopic and microscopic analyses of coal beds exposed along the mine highwalls suggest that these deposits developed in low-lying mires, as evidenced primarily by their ash yields and maceral composition. Disruption of peat accumulation in successive mires was caused by incursions of sediment into the mire environments. Termination by crevasse splay progradation is represented by coarsening-upward successions of mudrock and tabular, rooted sandstone, which overlie coal beds in the lower part of the coal-bearing interval. A more rapid process of mire termination by mass movement is exemplified by a debris flow deposit of diamictite, which overlies the uppermost coal bed at the top of the coal-bearing interval. The diamictite consists of a poorly sorted, unstratified mixture of quartzite cobbles and pebbles embedded in a claystone-rich or sandy mudstone matrix. Deposition of the diamictite may have taken place over a matter of weeks, days, or perhaps even hours, by catastrophic flood, thus reflecting an instantaneous process of mire termination. Coarse clastics and mud were transported from the southwest some 20-40 km as a viscous debris flow along stream courses from the ancestral Washakie Range to the Grass Creek area, where the flow overrode a low-lying mire and effectively terminated peat accumulation. ?? 1994.
Effects of Debris Entrainment and Multi-Phase Flow on Plug Loading in an MX Trench.
1978-09-15
gas stream of density (pg) and velocity (Vg) is: -., * -) - * 2~ TD FD Pg (V P V) Vp-Vg I CD( TD ) (A.1) 4 where the drag coefficient (CD) is defined by...ATTN: FCPR ATTN: Code L53 , J. Forrest Field Command Naval Facilities Engineering Command Defense Nuclear Agency ATTN: Code 09M22C Livermore Division
Debris flow hazards mitigation--Mechanics, prediction, and assessment
Chen, C.-L.; Major, J.J.
2007-01-01
These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.
NASA Astrophysics Data System (ADS)
Oskoruš, D.; Miković, N.; Ljevar, I.
2012-04-01
Riverbed erosion and bottom deepening are part of natural fluvial processes in the upper stream of Sava River. The increasing gradient of those changes is interconnected with the level of human influence in the river basin and riverbed as well. In time period of last forty years the consequences of riverbed erosion are become serious as well as dangerous and they threaten the stability of hydro technical structures. The increasing value of flow velocity in riverbed in urban part of river section during high water level, mud and debris flow during the floods as well, is especially dangerous for old bridges. This paper contains result of velocity measurements during high waters taken by Hydrological Service of Republic Croatia, load transport monitoring during such events and cross sections in some vulnerable location. In this paper is given one example of Jakuševac railway bridge in Zagreb, heavily destroyed during high water event on the 30 March 2009., recently reconstructed by "Croatian Railways" company. Keywords: Riverbed erosion, flow velocity, mud and debris flow, risk identification, stability of bridges
Effects of forest harvesting on large organic debris in coastal streams
Christopher G. Surfleet; Robert R. Ziemer
1996-01-01
Abstract - Large organic debris (LOD) was inventoried in two coastal streams to assess the impacts of forest harvesting on LOD recruitment in 90-year-old, second-growth redwood and fir stands on the Jackson Demonstration State Forest in northern California. One stream, North Fork of Caspar Creek, drained a 508-ha watershed that had been 60% clear-cut, with riparian...
NASA Astrophysics Data System (ADS)
Hürlimann, Marcel; Abancó, Claudia; Moya, Jose; Chevalier, Guillaume; Raïmat, Carles; Luis-Fonseca, Roberto
2010-05-01
Direct observations of debris flows in the field by monitoring stations are of great importance to improve understandings of triggering, flow behaviour and accumulation of debris flows. Upon the knowledge of the authors, in Europe debris-flow monitoring stations are only situated in the Alps (Italy and Switzerland), while no test site is located in a catchment affected by Mediterranean climate. In 2005, the first monitoring system was set up by GEOBRUGG IBERICA SA in the Erill catchment, situated in the Axial Pyrenees. A flexible ring net VX160-H4 with load-cells was installed together with a video camera and four geophones. In addition, a meteorological station completed the instrumentation. During 2009, the monitoring of two additional catchments has been set up; Senet in the Axial Pyrenees and Ensija in the Pre-Pyrenees. Four geophones and one ultrasonic device are installed along the torrent in order to determine the flow velocity and flow depth/discharge of the events. As in Erill, a meteorological station completes the devices and measures rainfall and temperature. The main objective of the three monitoring stations is to get some insights on how the Mediterranean climate influences the critical rainfall for debris-flow initiation. The flow behaviour of debris flows is another major goal, while the Erill test site focuses basically on the effectiveness of flexible ring nets. In addition, the Erill installation also acts as protection for the village located on the fan. The calibration, installation and analysis during the testing phase showed that a correct implementation of the different sensors is not an easy task and needs knowledge in geophysics, electronics, telecommunications etc. Especially geophones and ultrasonic devices need special attentions. Geophone outputs are strongly affected by the type of underground and the distance to the torrent, while the measures of the ultrasonic sensor clearly depend on the temperature. To simplify the data storage and processing, geophone signals are converted into impulses. This involves definition of a threshold to filter seismic "noise" caused by other processes. An additional difficulty in our test sites is the remoteness, which needs an independent power supply by solar panels and GSM-transmission of the data gathered. In Senet and Ensija catchment, hyperconcentrated flows have been observed during summer 2009 by field surveys, although these events could not have been clearly detected by the geophones and the ultrasonic device. Thus, only the critical rainfall amount for generating such type of flows could be analysed. These data support the hypothesis that short-lasting and intensive summer storms are common triggering precipitations for hyperconcentrated flows and also for debris flows. In Erill, three small events with volumes of a few hundreds of cubic-meters have been occurred till now. All of them were stopped by the flexible ring barrier, while the barrier has been self-cleaned by the natural dynamics of the stream. Such events (hyperconcentrated flows) are allegedly exceptional; therefore the flows have been generated as consequence of high intensity rainfall, very common in this area. For this reason it's thought that the debris flow phenomenon and the trigger conditions should be studied in detail, to achieve the required knowledge to calculate the future impact loads and scenarios.
The Continuous Monitoring of Flash Flood Velocity Field based on an Automated LSPIV System
NASA Astrophysics Data System (ADS)
Li, W.; Ran, Q.; Liao, Q.
2014-12-01
Large-scale particle image velocimetry (LSPIV) is a non-intrusive tool for flow velocity field measurement and has more advantages against traditional techniques, with its applications on river, lake and ocean, especially under extreme conditions. An automated LSPIV system is presented in this study, which can be easily set up and executed for continuous monitoring of flash flood. The experiment site is Longchi village, Sichuan Province, where 8.0 magnitude earthquake occurred in 2008 and debris flow happens every year since then. The interest of area is about 30m*40m of the channel which has been heavily destroyed by debris flow. Series of videos obtained during the flood season indicates that flood outbreaks after rainstorm just for several hours. Measurement is complete without being influenced by this extreme weather condition and results are more reliable and accurate due to high soil concentration. Compared with direct measurement by impellor flow meter, we validated that LSPIV works well at mountain stream, with index of 6.7% (Average Relative Error) and 95% (Nash-Sutcliffe Coefficient). On Jun 26, the maximum flood surface velocity reached 4.26 m/s, and the discharge based on velocity-area method was also decided. Overall, this system is safe, non-contact and can be adjusted according to our requirement flexibly. We can get valuable data of flood which is scarce before, which will make a great contribution to the analysis of flood and debris flow mechanism.
Drainage basins, channels, and flow characteristics of selected streams in central Pennsylvania
Brush, Lucien M.
1961-01-01
The hydraulic, basin, and geologic characteristics of 16 selected streams in central Pennsylvania were measured for the purpose of studying the relations among these general characteristics and their process of development. The basic parameters which were measured include bankfull width and depth, channel slope, bed material size and shape, length of stream from drainage divide, and size of drainage area. The kinds of bedrock over which the streams flow were noted. In these streams the bankfull channel is filled by flows approximating the 2.3-year flood. By measuring the breadth and mean depth of the channel, it was possible to compute the bankfull mean velocity for each of the 119 sampling stations. These data were then used to compute the downstream changes in hydraulic geometry of the streams studied. This method has been called an indirect computation of the hydraulic geometry. The results obtained by the indirect method are similar to those of the direct method of other workers. The basins were studied by examining the relations of drainage area, discharge, and length of stream from drainage divide. For the streams investigated, excellent correlations were found to exist between drainage area and the 2.3-year flood, as well as between length of stream from the basin divide and drainage area. From these correlations it is possible to predict the discharge for the 2.3-year flood at any arbitrary point along the length of the stream. The long, intermediate, and short axes of pebbles sampled from the bed of the stream were recorded to study both size and sphericity changes along individual streams and among the streams studied. No systematic downstream changes in sphericity were found. Particle size changes are erratic and show no consistent relation to channel slope. Particle size decreases downstream in many streams but remains constant or increases in others. Addition of material by tributaries is one factor affecting particle size and another is the parent material. Wear does not appear to account for some of the changes noted in particle size in a downstream direction. Comparison with laboratory studies indicates that at least in some streams the downstream decrease in size is much greater than would be expected from wear alone. The type of bedrock underlying the channels included in this study appears to affect both channel slope and particle size. For a given length of stream, a stream channel underlain by sandstone tends to have a steeper slope and larger bed material than channels underlain by shale or limestone. Hence, a stream which heads in sandstone and ends in limestone tends to have a more rapid decrease in slope and particle size than a stream heading in limestone and ending in sandstone. The association of steep slopes and small particles for limestone channels implies that slope and particle size may show a vague correlation between lithologic groups although no correlation may exist within a given lithologic type. In addition to the effect of bedrock on slope and particle size, there is some evidence that channels in limestone or dolomite have a slightly smaller cross section at bankfull stage than channels in shale or sandstone. Near the headwaters of many of these streams, a deposit of periglacial rubble affects the slope and bed material size. Some of the debris contains residual boulders which are too large to be moved by ordinary floods and, therefore, impose larger particle sizes in the bed of the stream. The addition of this very coarse debris to the bed material is another example of the influence of geologic factors on stream channels even though the channel consists of unconsolidated debris instead of bedrock. The influence of geologic factors noted in selected streams in central Pennsylvania may not be directly applicable to areas other than the Appalachian Mountains, but the general process is no doubt similar in most areas. In large alluvial valleys bedrock cannot be much of an influencing factor; yet large, thick alluvial deposits and terraces are in a sense "bedrock" materials upon which the stream works to form the landscape.
1972-06-01
Recreation Water pollution Delaware River Sewage disposal N Navi ation ABSTRACT ( R ,..-,- "war .04 ,, 09e -, Identifby block numb.,) The problems of water...characteristics ....... ..... . ...... 2 Land use and development .. ....... . . , 3 Water supply ................. .* 8 Sewage disposal...AND SURROUNDING AREA . . . * * 19 8 SEWAGE TREATMENT PLANT ON NORTH BRANCH PENNSAKEN CREEK FLOOD PLAIN ...... . . 21 9 DEBRIS IN POCACK CREEK
Rehabilitation and Flood Management Planning in a Steep, Boulder-Bedded Stream
NASA Astrophysics Data System (ADS)
Caruso, Brian S.; Downs, Peter W.
2007-08-01
This study demonstrates the integration of rehabilitation and flood management planning in a steep, boulder-bedded stream in a coastal urban catchment on the South Island of New Zealand. The Water of Leith, the primary stream flowing through the city of Dunedin, is used as a case study. The catchment is steep, with a short time of concentration and rapid hydrologic response, and the lower stream reaches are highly channelized with floodplain encroachment, a high potential for debris flows, significant flood risks, and severely degraded aquatic habitat. Because the objectives for rehabilitation and flood management in urban catchments are often conflicting, a number of types of analyses at both the catchment and the reach scales and careful planning with stakeholder consultation were needed for successful rehabilitation efforts. This included modeling and analysis of catchment hydrology, fluvial geomorphologic assessment, analysis of water quality and aquatic ecology, hydraulic modeling and flood risk evaluation, detailed feasibility studies, and preliminary design to optimize multiple rehabilitation and flood management objectives. The study showed that all of these analyses were needed for integrated rehabilitation and flood management and that some incremental improvements in stream ecological health, aesthetics, and public recreational opportunities could be achieved in this challenging environment. These methods should be considered in a range of types of stream rehabilitation projects.
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2015-03-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
EDDA: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2014-11-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
[Research progress in post-fire debris flow].
Di, Xue-ying; Tao, Yu-zhu
2013-08-01
The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.
Post-disturbance sediment recovery: Implications for watershed resilience
NASA Astrophysics Data System (ADS)
Rathburn, Sara L.; Shahverdian, Scott M.; Ryan, Sandra E.
2018-03-01
Sediment recovery following disturbances is a measure of the time required to attain pre-disturbance sediment fluxes. Insight into the controls on recovery processes and pathways builds understanding of geomorphic resilience. We assess post-disturbance sediment recovery in three small (1.5-100 km2), largely unaltered watersheds within the northern Colorado Rocky Mountains affected by wildfires, floods, and debris flows. Disturbance regimes span 102 (floods, debris flows) to 103 years (wildfires). For all case studies, event sediment recovery followed a nonlinear pattern: initial high sediment flux during single precipitation events or high annual snowmelt runoff followed by decreasing sediment fluxes over time. Disturbance interactions were evaluated after a high-severity fire within the South Fork Cache la Poudre basin was followed by an extreme flood one year post-fire. This compound disturbance hastened suspended sediment recovery to pre-fire concentrations 3 years after the fire. Wildfires over the last 1900 YBP in the South Fork basin indicate fire recurrence intervals of 600 years. Debris flows within the upper Colorado River basin over the last two centuries have shifted the baseline of sediment recovery caused by anthropogenic activities that increased debris flow frequency. An extreme flood on North St. Vrain Creek with an impounding reservoir resulted in extreme sedimentation that led to a physical state change. We introduce an index of resilience as sediment recovery/disturbance recurrence interval, providing a relative comparison between sites. Sediment recovery and channel form resilience may be inversely related because of high or low physical complexity in streams. We propose management guidelines to enhance geomorphic resilience by promoting natural processes that maintain physical complexity. Finally, sediment connectivity within watersheds is an additional factor to consider when establishing restoration treatment priorities.
Morton, D.M.; Alvarez, R.M.; Ruppert, K.R.; Goforth, B.
2008-01-01
Debris flows are widespread and common in many steeply sloping areas of southern California. The San Bernardino Mountains community of Forest Falls is probably subject to the most frequently documented debris flows in southern California. Debris flows at Forest Falls are generated during short-duration high-intensity rains that mobilize surface material. Except for debris flows on two consecutive days in November 1965, all the documented historic debris flows have occurred during high-intensity summer rainfall, locally referred to as 'monsoon' or 'cloudburst' rains. Velocities of the moving debris range from about 5??km/h to about 90??km/h. Velocity of a moving flow appears to be essentially a function of the water content of the flow. Low velocity debris flows are characterized by steep snouts that, when stopped, have only small amounts of water draining from the flow. In marked contrast are high-velocity debris flows whose deposits more resemble fluvial deposits. In the Forest Falls area two adjacent drainage basins, Snow Creek and Rattlesnake Creek, have considerably different histories of debris flows. Snow Creek basin, with an area about three times as large as Rattlesnake Creek basin, has a well developed debris flow channel with broad levees. Most of the debris flows in Snow Creek have greater water content and attain higher velocities than those of Rattlesnake Creek. Most debris flows are in relative equilibrium with the geometry of the channel morphology. Exceptionally high-velocity flows, however, overshoot the channel walls at particularly tight channel curves. After overshooting the channel, the flows degrade the adjacent levee surface and remove trees and structures in the immediate path, before spreading out with decreasing velocity. As the velocity decreases the clasts in the debris flows pulverize the up-slope side of the trees and often imbed clasts in them. Debris flows in Rattlesnake Creek are relatively slow moving and commonly stop in the channel. After the channel is blocked, subsequent debris flows cut a new channel upstream from the blockage that results in the deposition of new debris-flow deposits on the lower part of the fan. Shifting the location of debris flows on the Rattlesnake Creek fan tends to prevent trees from becoming mature. Dense growths of conifer seedlings sprout in the spring on the late summer debris flow deposits. This repeated process results in stands of even-aged trees whose age records the age of the debris flows. ?? 2007.
Woody Debris: Denitrification Hotspots and N2O Production in Fluvial Systems
The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and control nitrous oxide (N2O) production. We examined the effects of ...
Debris flow initiation in proglacial gullies on Mount Rainier, Washington
NASA Astrophysics Data System (ADS)
Legg, Nicholas T.; Meigs, Andrew J.; Grant, Gordon E.; Kennard, Paul
2014-12-01
Effects of climate change, retreating glaciers, and changing storm patterns on debris flow hazards concern managers in the Cascade Range (USA) and mountainous areas worldwide. During an intense rainstorm in November 2006, seven debris flows initiated from proglacial gullies of separate basins on the flanks of Mount Rainier. Gully heads at glacier termini and widespread failure of gully walls imply that overland flow was transformed into debris flow along gullies. We characterized gully change and morphology, and assessed spatial distributions of debris flows to infer the processes and conditions for debris flow initiation. Slopes at gully heads were greater than ~ 0.35 m m- 1 (19°) and exhibited a significant negative relationship with drainage area. A break in slope-drainage area trends among debris flow gullies also occurs at ~ 0.35 m m- 1, representing a possible transition to fluvial sediment transport and erosion. An interpreted hybrid model of debris flow initiation involves bed failure near gully heads followed by sediment recruitment from gully walls along gully lengths. Estimates of sediment volume loss from gully walls demonstrate the importance of sediment inputs along gullies for increasing debris flow volumes. Basin comparisons revealed significantly steeper drainage networks and higher elevations in debris flow-producing than non-debris flow-producing proglacial areas. The high slopes and elevations of debris flow-producing proglacial areas reflect positive slope-elevation trends for the Mount Rainier volcano. Glacier extent therefore controls the slope distribution in proglacial areas, and thus potential for debris flow generation. As a result, debris flow activity may increase as glacier termini retreat onto slopes inclined at angles above debris flow initiation thresholds.
Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ
NASA Astrophysics Data System (ADS)
Reavis, K. J.; Wasklewicz, T. A.
2014-12-01
Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.
The Effect of Debris-Flow Composition on Runout Distance
NASA Astrophysics Data System (ADS)
Haas, T. D.; Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.
2014-12-01
Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, debris-flow composition had a larger effect on runout distance than topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.
The effect of debris-flow composition on runout distance
NASA Astrophysics Data System (ADS)
de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten
2015-04-01
Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.
Impact of stream restoration on flood waves
NASA Astrophysics Data System (ADS)
Sholtes, J.; Doyle, M.
2008-12-01
Restoration of channelized or incised streams has the potential to reduce downstream flooding via storing and dissipating the energy of flood waves. Restoration design elements such as restoring meanders, reducing slope, restoring floodplain connectivity, re-introducing in-channel woody debris, and re-vegetating banks and the floodplain have the capacity to attenuate flood waves via energy dissipation and channel and floodplain storage. Flood discharge hydrographs measured up and downstream of several restored reaches of varying stream order and located in both urban and rural catchments are coupled with direct measurements of stream roughness at various stages to directly measure changes to peak discharge, flood wave celerity, and dispersion. A one-dimensional unsteady flow routing model, HEC-RAS, is calibrated and used to compare attenuation characteristics between pre and post restoration conditions. Modeled sensitivity results indicate that a restoration project placed on a smaller order stream demonstrates the highest relative reduction in peak discharge of routed flood waves compared to one of equal length on a higher order stream. Reductions in bed slope, extensions in channel length, and increases in channel and floodplain roughness follow restoration placement with the watershed in relative importance. By better understanding how design, scale, and location of restored reaches within a catchment hydraulically impact flood flows, this study contributes both to restoration design and site decision making. It also quantifies the effect of reach scale stream restoration on flood wave attenuation.
NASA Astrophysics Data System (ADS)
Camerlenghi, Angelo; Rebesco, Michele; Pedrosa, Mayte; Demol, Ben; Giulia Lucchi, Renata; Urgeles, Roger; Colmenero-Hidalgo, Elena; Andreassen, Karin; Sverre Laberg, Jan; Winsborrow, Monica
2010-05-01
IPY Activity N. 367 focusing on Neogene ice streams and sedimentary processes on high- latitude continental margins (NICE-STREAMS) resulted in two coordinated cruises on the adjacent Storfjorden and Kveithola trough-mouth fans in the NW Barents Sea: SVAIS Cruise of BIO Hespérides, summer 2007, and EGLACOM Cruise of Cruise R/V OGS-Explora, summer 2008. The objectives were to acquire a high-resolution set of bathymetric, seismic and sediment core data in order to decipher the Neogene architectural development of the glacially-dominated NW Barents Sea continental margin in response to natural climate change. The paleo-ice streams drained ice from southern Spitsbergen, Spitsbergen Bank, and Bear Island. The short distance from the ice source to the calving front produced a short residence time of ice, and therefore a rapid response to climatic changes. In the outer trough of southern Storfjorden, lobate moraines superimpose and are cut by very large linear features attributed to mega-iceberg scours. In the adjacent Kveithola trough, a fresh morphology includes mega-scale glacial lineations overprinted by transverse grounding-zone wedges, diagnostic of episodic ice stream retreat. A 15 m thick glacimarine drape suggests an high post-deglaciation sedimentation rate. Preliminary interpretation suggests that the retreat of the Svalbard/Barents Sea Ice Sheet was highly dynamic and that grounded ice persisted on Spitsbergen Bank for some thousands years after the main Barents Sea deglaciation.The Storfjorden continental slope is divided into three wide lobes. Opposite the two northernmost lobes the slope is dominated by straight gullies in the upper part, and deposition of debris lobes on the mid and lower parts. In contrast, the southernmost lobe is characterized by widespread occurrence of submarine landslides. Sediment failure has accompanied the evolution of the southern Storfjorden and Kveithola margin throughout the Late Neogene, with very large mass transport deposits up to 200 m thick in the early phases of the development of the glacially influenced margin. Conversely, the central and northern parts of the Storfjorden margin have prograded without appreciable episodes of mass failure. Sedimentation has occurred through alternate layering of decimeter-thick glacial debris flows deposits, with laminated and acoustically transparent interglacial sediment drape. Gullies and paleo-gullies incise the glacial debris flows and are covered by the interglacial drape. They are formed early during each deglaciation phase, most likely by the erosive action of short-lived hyperpycnal flows generated by sediment-laden subglacial meltwater discharge. In sediment cores thick finely-laminated sedimentary beds on the upper continental slope of the southern part of the margin indicate preferential deposition by settlement of meltwater sediment plumes. High sedimentation rates of plumites may contribute to the slope instability and suggest that meltwater discharge was focused on the southern Storfjorden and Kveithola paleo-ice streams.
NASA Astrophysics Data System (ADS)
Stuurman, C. M.; Holt, J.; Levy, J.
2016-12-01
On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.
Erosion and channel changes due to extreme flooding in the Fourmile Creek catchment, Colorado
NASA Astrophysics Data System (ADS)
Wicherski, Will; Dethier, David P.; Ouimet, William B.
2017-10-01
Infrequent, large magnitude geomorphic events generate quantifiable change on geologically short timescales and are crucial to understanding landscape evolution. Airborne lidar surveys and field measurements were used to investigate floodplain erosion and deposition along a 19.5 km reach of Fourmile Creek, Colorado that was devastated by severe flooding in 2013 that followed a 2010 wildfire. > 350 mm of rain fell on the Fourmile catchment from September 9-15, 2013, generating discharge that exceeded bankfull for > 120 h at the Orodell gage, with local unit stream power > 300 W m- 2 throughout the study reach. Debris flows occurred on steep hillslopes and tributary channels in the most intensely burned areas. Lidar difference measurements and field studies highlight zones of local deposition along the study reach, but demonstrate overall net erosion of 0.25 m for the 19.5 km reach of Fourmile floodplain, mainly by channel widening. Tributary junctions where debris-flow sediment entered the floodplain and local decreases in unit stream power controlled some zones of deposition. Overall, mass balance calculations show that a total sediment loss of 91,000-161,000 m3 from the Fourmile Creek floodplain and hillslopes, which is broadly consistent with channel sediment flux estimates of 71,000-111,000 m3. Measurements from the Fourmile catchment demonstrate that floodplain erosion was a major source of sediment in the 2013 flood and demonstrate that infrequent events marked by long-duration flooding and high total energy expenditure can account for a large fraction of total sediment transport in mountain streams.
Autogenic dynamics of debris-flow fans
NASA Astrophysics Data System (ADS)
van den Berg, Wilco; de Haas, Tjalling; Braat, Lisanne; Kleinhans, Maarten
2015-04-01
Alluvial fans develop their semi-conical shape by cyclic avulsion of their geomorphologically active sector from a fixed fan apex. These cyclic avulsions have been attributed to both allogenic and autogenic forcings and processes. Autogenic dynamics have been extensively studied on fluvial fans through physical scale experiments, and are governed by cyclic alternations of aggradation by unconfined sheet flow, fanhead incision leading to channelized flow, channel backfilling and avulsion. On debris-flow fans, however, autogenic dynamics have not yet been directly observed. We experimentally created debris-flow fans under constant extrinsic forcings, and show that autogenic dynamics are a fundamental intrinsic process on debris-flow fans. We found that autogenic cycles on debris-flow fans are driven by sequences of backfilling, avulsion and channelization, similar to the cycles on fluvial fans. However, the processes that govern these sequences are unique for debris-flow fans, and differ fundamentally from the processes that govern autogenic dynamics on fluvial fans. We experimentally observed that backfilling commenced after the debris flows reached their maximum possible extent. The next debris flows then progressively became shorter, driven by feedbacks on fan morphology and flow-dynamics. The progressively decreasing debris-flow length caused in-channel sedimentation, which led to increasing channel overflow and wider debris flows. This reduced the impulse of the liquefied flow body to the flow front, which then further reduced flow velocity and runout length, and induced further in-channel sedimentation. This commenced a positive feedback wherein debris flows became increasingly short and wide, until the channel was completely filled and the apex cross-profile was plano-convex. At this point, there was no preferential transport direction by channelization, and the debris flows progressively avulsed towards the steepest, preferential, flow path. Simultaneously, the debris flows started to channelize, forced by increasingly effective concentration of the flow impulse to the flow front, which caused more effective lateral levee formation and an increasingly well-defined channel. This process continued until the debris flows reached their maximum possible extent and the cycle was reverted. Channelization occurred in the absence of erosion, in contrast with fluvial fans. Backfilling and channelization cycles were gradual and symmetric, requiring multiple debris flows to be completed. These results add debris-flow fans to the spectrum of fan-shaped aqueous systems that are affected by autogenic dynamics, now ranging from low-gradient rivers systems to steep-gradient mass-flow fans.
Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona
Webb, R.H.; Pringle, P.T.; Rink, G.R.
1987-01-01
A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content < 40% by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows have reached the Colorado River on an average of once every 20 to 30 yr in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 yr in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 yr, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cu ft/sec. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cu ft/sec. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cu ft/sec. Debris flows in the Grand Canyon generally are composed of 10 to 40% sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek drainage. Reworking of debris fans by the Colorado River creates debris bars that constrain the size of eddy systems and forms secondary rapids and riffles below tributary mouths. (See also W89-09239) (Lantz-PTT)
Debris-flow generation from recently burned watersheds
Cannon, S.H.
2001-01-01
Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.
Effects of debris-flow composition on runout and erosion
NASA Astrophysics Data System (ADS)
Haas, T. D.; Kleinhans, M. G.
2016-12-01
Predicting debris-flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout depends on debris-flow composition (i.e., particle-size distribution and water content), but how is poorly understood. Moreover, debris flows can grow greatly in size by entrainment of bed material, enhancing their volume and thereby runout and hazardous impact. Debris-flow erosion rates also depend on debris-flow composition, but the relation between the two is largely unexplored. Composition thus strongly affects the dynamics of debris flows. We experimentally investigate the effects of composition on debris-flow runout and erosion. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. We further find that debris-flow runout depends at least as much on composition as on topography. In general, erosion depth increases with basal shear stress in our experiments, while there is no correlation with grain collisional stress. There are substantial differences in the scour caused by different types of debris flows. Mean and maximum erosion depths generally become larger with increasing water fraction and grain size and decrease with increasing clay content. However, the erodibility of the very coarse-grained experimental debris flows is unrelated to basal shear stress. This relates to the relatively large influence of grain-collisional stress to the total bed stress in these flows (30-50%). The relative effect of grain-collisional stress is low in the other experimental debris flows (<5%) causing erosion to be largely controlled by basal shear stress. These results show that the erosive behaviour of debris flows may change from basal-shear stress dominated to grain-collisional stress dominated in increasingly coarse-grained debris flows. In short, this study improves our understanding of the effects of debris-flow composition on runout and erosion.
NASA Astrophysics Data System (ADS)
Williams, T.; Hemming, S. R.; Licht, K.; Agrios, L.; Brachfeld, S. A.; van de Flierdt, T.; Hillenbrand, C. D.; Ehrmann, W. U.; Zhai, X.; Cai, Y.; Corley, A. D.; Kuhn, G.
2017-12-01
The geochemical and geochronological fingerprint of rock debris eroded and carried by ice streams may be used to identify the provenance of iceberg-rafted debris (IRD) in the marine sediment record. During ice retreat following glacial maxima, it has been shown that there is an increase in IRD accumulation in marine sediments underlying the western limb of the Weddell Gyre. Here we present IRD provenance records from sediment core PS1571-1 in the NW Weddell Sea, and interpret these records in terms of the geographic sequence of ice sheet retreat in the Weddell Sea embayment during the most recent deglaciation. We first characterize the source areas of eroded debris around the Weddell Sea Embayment, using published mapping of the embayment and new material from: 1. Till in modern moraines at the edges of ice streams, including the Foundation Ice Stream, the Academy Glacier, and the Recovery Glacier; and 2. Subglacial till and proximal glaciomarine sediment from existing cores located along the front of the Filchner and Ronne Ice Shelves, collected on past expeditions of the RV Polarstern. The analyses on these samples include 40Ar/39Ar hornblende and biotite thermochronology and U-Pb zircon geochronology on individual mineral grains, and K-Ar thermochronology, Nd isotopes, and clay mineralogy on the clay grain size fraction. Results so far indicate that samples along the front of the Filchner and Ronne Ice Shelves record the geochemical and geochronological fingerprint that would be expected from tracing ice flow lines back to the bedrock terranes. The Ronne (west), Hughes (central), and Filchner (east) sectors have distinguishable provenance source signatures, and further subdivision is possible. In core PS1571-1, downcore IRD provenance changes reflect iceberg output and ice sheet retreat from the different sectors of the embayment through the last deglaciation. The detrital provenance method of interpreting the geographic sequence of ice retreat can equally be applied to previous deglaciations of the Weddell Sea Embayment.
NASA Astrophysics Data System (ADS)
Haas, Tjalling; Braat, Lisanne; Leuven, Jasper R. F. W.; Lokhorst, Ivar R.; Kleinhans, Maarten G.
2015-09-01
Predicting debris flow runout is of major importance for hazard mitigation. Apart from topography and volume, runout distance and area depends on debris flow composition and rheology, but how is poorly understood. We experimentally investigated effects of composition on debris flow runout, depositional mechanisms, and deposit geometry. The small-scale experimental debris flows were largely similar to natural debris flows in terms of flow behavior, deposit morphology, grain size sorting, channel width-depth ratio, and runout. Deposit geometry (lobe thickness and width) in our experimental debris flows is largely determined by composition, while the effects of initial conditions of topography (i.e., outflow plain slope and channel slope and width) and volume are negligible. We find a clear optimum in the relations of runout with coarse-material fraction and clay fraction. Increasing coarse-material concentration leads to larger runout. However, excess coarse material results in a large accumulation of coarse debris at the flow front and enhances diffusivity, increasing frontal friction and decreasing runout. Increasing clay content initially enhances runout, but too much clay leads to very viscous flows, reducing runout. Runout increases with channel slope and width, outflow plain slope, debris flow volume, and water fraction. These results imply that debris flow runout depends at least as much on composition as on topography. This study improves understanding of the effects of debris flow composition on runout and may aid future debris flow hazard assessments.
Johnson, Kevin K.; Goodwin, Greg E.
2013-01-01
Lake Michigan diversion accounting is the process used by the U. S. Army Corps of Engineers to quantify the amount of water that is diverted from the Lake Michigan watershed into the Illinois and Mississippi River Basins. A network of streamgages within the Chicago area waterway system monitor tributary river flows and the major river flow on the Chicago Sanitary and Ship Canal near Lemont as one of the instrumental tools used for Lake Michigan diversion accounting. The mean annual discharges recorded by these streamgages are used as additions or deductions to the mean annual discharge recorded by the main stream gaging station currently used in the Lake Michigan diversion accounting process, which is the Chicago Sanitary and Ship Canal near Lemont, Illinois (station number 05536890). A new stream gaging station, Summit Conduit near Summit, Illinois (station number 414757087490401), was installed on September 23, 2010, for the purpose of monitoring stage, velocity, and discharge through the Summit Conduit for the U.S. Army Corps of Engineers in accordance with Lake Michigan diversion accounting. Summit Conduit conveys flow from a small part of the lower Des Plaines River watershed underneath the Des Plaines River directly into the Chicago Sanitary and Ship Canal. Because the Summit Conduit discharges into the Chicago Sanitary and Ship Canal upstream from the stream gaging station at Lemont, Illinois, but does not contain flow diverted from the Lake Michigan watershed, it is considered a flow deduction to the discharge measured by the Lemont stream gaging station in the Lake Michigan diversion accounting process. This report offers a technical summary of the techniques and methods used for the collection and computation of the stage, velocity, and discharge data at the Summit Conduit near Summit, Illinois stream gaging station for the 2011 and 2012 Water Years. The stream gaging station Summit Conduit near Summit, Illinois (station number 414757087490401) is an example of a nonstandard stream gage. Traditional methods of equating stage to discharge historically were not effective. Examples of the nonstandard conditions include the converging tributary flows directly upstream of the gage; the trash rack and walkway near the opening of the conduit introducing turbulence and occasionally entraining air bubbles into the flow; debris within the conduit creating conditions of variable backwater and the constant influx of smaller debris that escapes the trash rack and catches or settles in the conduit and on the equipment. An acoustic Doppler velocity meter was installed to measure stage and velocity to compute discharge. The stage is used to calculate area based the stage-area rating. The index-velocity from the acoustic Doppler velocity meter is applied to the velocity-velocity rating and the product of the two rated values is a rated discharge by the index-velocity method. Nonstandard site conditions prevalent at the Summit Conduit stream gaging station generally are overcome through the index-velocity method. Despite the difficulties in gaging and measurements, improvements continue to be made in data collection, transmission, and measurements. Efforts to improve the site and to improve the ratings continue to improve the quality and quantity of the data available for Lake Michigan diversion accounting.
Erosion of steepland valleys by debris flows
Stock, J.D.; Dietrich, W.E.
2006-01-01
Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris-flow incision if we hope to understand the evolution of steep topography around the world. ?? 2006 Geological Society of America.
Melis, Theodre S.; Webb, Robert H.; ,
1993-01-01
Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.
The effects of road crossings on prairie stream habitat and function
Bouska, Wesley W.; Keane, Timothy; Paukert, Craig P.
2010-01-01
Improperly designed stream crossing structures may alter the form and function of stream ecosystems and habitat and prohibit the movement of aquatic organisms. Stream sections adjoining five concrete box culverts, five low-water crossings (concrete slabs vented by one or multiple culverts), and two large, single corrugated culvert vehicle crossings in eastern Kansas streams were compared to reference reaches using a geomorphologic survey and stream classification. Stream reaches were also compared upstream and downstream of crossings, and crossing measurements were used to determine which crossing design best mimicked the natural dimensions of the adjoining stream. Four of five low-water crossings, three of five box culverts, and one of two large, single corrugated pipe culverts changed classification from upstream to downstream of the crossings. Mean riffle spacing upstream at low-water crossings (8.6 bankfull widths) was double that of downstream reaches (mean 4.4 bankfull widths) but was similar upstream and downstream of box and corrugated pipe culverts. There also appeared to be greater deposition of fine sediments directly upstream of these designs. Box and corrugated culverts were more similar to natural streams than low-water crossings at transporting water, sediments, and debris during bankfull flows.
Using Google Earth To Interpret The Southern Taiwan Hsiaolin Village Catastrophe
NASA Astrophysics Data System (ADS)
Lin, Y. H.; Huang, C. M.; Keck, J.; Wei, L. W.; Pan, K. L.
2012-04-01
The August, 2009 Typhoon Morakot resulted in accumulated rainfalls exceeding 2000 mm and the triggering of a massive debris flow that buried Hsiaolin village. Hundreds of people were killed and both domestic and international natural disaster prevention agencies took note of this large scale disaster that was not prevented. Interpretation of Google Earth satellite images reveals that the Hsiaolin debris flow originated in a single location and then split into two parts. The northern debris flow, the smaller of the two parts, flowed within a ravine. The southern part of the debris flow, much larger than the northern part, was responsible for the burial of Hsiaolin village. The movement of the debris flow can be divided into three processes. First a slope failure and subsequent debris flow occurred within a curved ravine. Second, the debris flow eroded the bank of the ravine laterally, causing translational failure of the ravine walls. A massive debris flow, made up of a combination of materials from both the original debris flow and the ravine walls, jammed within the ravine. Finally, as a result of the jam, the debris flow was redirected towards Hsiaolin village. Overlaying locations of the post-Hsiaolin debris flow landforms on top of pre-failure satellite images reveals that characteristics of the post failure landforms match perfectly with characteristics observed in the pre-failure satellite images. This finding supports the thought that large scale geologic disasters are reoccurring. This finding also suggests that areas near villages can use simple satellite image analysis to rapidly identify ancient landslides and that such information may help early evacuation planning. With such planning, property and life losses due to natural disasters can be reduced. Key word: Hsiaolin Village, Debris Flow, Remote Sensing, Image Interpretation, Cause of Disaster, Disaster Recovery, Deep-Seated Landslide, Ancient Debris Flow
NASA Astrophysics Data System (ADS)
McGuire, Luke A.; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-07-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
McGuire, Luke; Rengers, Francis K.; Kean, Jason W.; Staley, Dennis M.
2017-01-01
Postwildfire debris flows are frequently triggered by runoff following high-intensity rainfall, but the physical mechanisms by which water-dominated flows transition to debris flows are poorly understood relative to debris flow initiation from shallow landslides. In this study, we combined a numerical model with high-resolution hydrologic and geomorphic data sets to test two different hypotheses for debris flow initiation during a rainfall event that produced numerous debris flows within a recently burned drainage basin. Based on simulations, large volumes of sediment eroded from the hillslopes were redeposited within the channel network throughout the storm, leading to the initiation of numerous debris flows as a result of the mass failure of sediment dams that built up within the channel. More generally, results provide a quantitative framework for assessing the potential of runoff-generated debris flows based on sediment supply and hydrologic conditions.
Debris flows from tributaries of the Colorado River, Grand Canyon National Park, Arizona
Webb, Robert H.; Pringle, Patrick T.; Rink, Glenn R.
1989-01-01
A reconnaissance of 36 tributaries of the Colorado River indicates that debris flows are a major process by which sediment is transported to the Colorado River in Grand Canyon National Park. Debris flows are slurries of sediment and water that have a water content of less than about 40 percent by volume. Debris flows occur frequently in arid and semiarid regions. Slope failures commonly trigger debris flows, which can originate from any rock formation in the Grand Canyon. The largest and most frequent flows originate from the Permian Hermit Shale, the underlying Esplanade Sandstone of the Supai Group, and other formations of the Permian and Pennsylvanian Supai Group. Debris flows also occur in the Cambrian Muav Limestone and underlying Bright Angel Shale and the Quaternary basalts in the western Grand Canyon. Debris-flow frequency and magnitude were studied in detail in the Lava-Chuar Creek drainage at Colorado River mile 65.5; in the Monument Creek drainage at mile 93.5; and in the Crystal Creek drainage at mile 98.2. Debris flows have reached the Colorado River on an average of once every 20 to 30 years in the Lava-Chuar Creek drainage since about 1916. Two debris flows have reached the Colorado River in the last 25 years in Monument Creek. The Crystal Creek drainage has had an average of one debris flow reaching the Colorado River every 50 years, although the debris flow of 1966 has been the only flow that reached the Colorado River since 1900. Debris flows may actually reach the Colorado River more frequently in these drainages because evidence for all debris flows may not have been preserved in the channel-margin stratigraphy. Discharges were estimated for the peak flow of three debris flows that reached the Colorado River. The debris flow of 1966 in the Lava-Chuar Creek drainage had an estimated discharge of 4,000 cubic feet per second. The debris flow of 1984 in the Monument Creek drainage had a discharge estimated between 3,600 and 4,200 cubic feet per second. The debris flow of 1966 in the Crystal Creek drainage had a discharge estimated between 9,200 and 14,000 cubic feet per second. Determination of the effective cross-sectional area was a problem in all calculations involving superelevations on bends because areas near superelevation marks were 1.5 to 3.5 times larger than areas of upstream or downstream cross sections. Debris flows in the Grand Canyon generally are composed of 10 to 40 percent sand by weight and may represent a significant source of beach-building sand along the Colorado River. The particle-size distributions are very poorly sorted and the largest transported boulders were in the Crystal Creek drainage. The large boulders transported into the Colorado River by debris flows create or change hydraulic controls (rapids); these controls appear to be governed by the magnitude and frequency of tributary-flow events and the history of discharges on the Colorado River. Reworking of debris fans by the Colorado River creates debris bars that constrain the size of eddy systems and forms secondary rapids and riffles below tributary mouths.
NASA Astrophysics Data System (ADS)
Ewertowski, Marek; Pleskot, Krzysztof; Tomczyk, Aleksandra
2015-04-01
The extensive recession of Svalbard's glaciers exposed areas containing large amount of dead-ice covered by relatively thin - usually less than a couple of meters - veneer of debris. This landscape can be very dynamic, mainly due to the mass movement processes and dead-ice melting. Continuous redistribution of sediments causes several phases of debris transfer and relief inversion. Hence, the primary glacial deposits released from ice are subsequently transferred by mass movement processes, until they finally reach more stable position. Investigations of dynamics of the mass movement and the way in which they alter the property of glacigenic sediments are therefore cruicial for proper understanding of sedimentary records of previous glaciations. The main objectives of this study were to: (1) quantify short-term dynamic of mass wasting processes; (2) investigate the transformation of the sediment's characteristic by mass wasting processes; (3) asses the contribution of different process to the overall dynamic of proglacial landscape. We focused on the mass-wasting processes in the forelands of two glaciers, Ebbabreen and Ragnarbreen, located near the Petuniabukta at the northern end of the Billefjorden, Spitsbergen. Repetitive topographic scanning was combined with sedimentological analysis of: grain size, clast shape in macro and micro scale and thin sections. Debris falls, slides, rolls and flows were the most important processes leading to reworking of glacigenic sediments and altering their properties. Contribution of different processes to the overall dynamic of the landforms was related mainly to the local conditions. Four different morphological types of sites were identified: (1) near vertical ice-cliffs covered with debris, transformed mainly due to dead-ice backwasting and debris falls and slides, (2) steep debris slopes with exposed ice-cores dominated by debris slides, (3) gentle sediment-mantled slopes transformed due to debris flows, and (4) non-active debris-mantled areas transformed only by dead-ice downwasting. The amount of volume loss due to the active mass movement processes and dead-ice melting (including both backwasting and downwasting) was up to more than 1.8 m a-1. In comparison, the amount of volume loss due to the dead-ice downwasting only was significantly lower at a maximum of 0.3 m a-1. The spatial and temporal distribution of volume changes, however, was quite diverse and for the most part related to local geomorphic conditions (e.g. slope gradient, occurrence of streams, and meltwater channels). We proposed a simplified model of spatio-temporal switching between stable and active conditions within the forelands of the studied glaciers. Transformations of landforms were attributed to the period of deglaciation and debris cover development. Stage 1 - shortly after deglaciation when the debris cover is thin (thinner than the permafrost active layer's thickness) mass movement processes become fairly common. They are facilitated by the dead-ice melting and steepness of the slopes. This stage can be observed in many lateral moraines, which are characterised by steep slopes, abundance of active mass movement processes, and by consequence a high degree of transformation. Stage 2 - ongoing mass-wasting processes lead to the transfer of sediments from steep slopes to more stable positions. As the thickness of the sediments increases, the debris cover starts to protect the dead-ice from melting and also contribute to the decrease in slope gradient. Thus, the resulting landscape is relatively stable and in equilibrium with current climatic and topographic conditions. This stage characterises most parts of the frontal (end) moraine complex of the studied glaciers; thus, their transformation rates are either very low or close to zero. Stage 3 - some parts of this stable landscape can be subsequently transformed again into an unstable state, mainly due to the effect of external factors such as streams or meltwater channels. This can lead to the development of mass movement processes and further slope instability, which could facilitate subsequent generation of debris flows. Stages described above can occur in a sort of spatio-temporal cycle, and, depending on local and external factors, the changes between stabilization of landforms and activation of mass flows can be repeated several times for any given area until the dead-ice is completely melted.
Fires, storms, and water supplies: a case of compound extremes?
NASA Astrophysics Data System (ADS)
Sheridan, G. J.; Nyman, P.; Langhans, C.; Jones, O.; Lane, P. N.
2013-12-01
Intense rainfall events following fire can wash sediment and ash into streams and reservoirs, contaminating water supplies for cities and towns. Post fire flooding and debris flows damage infrastructure and endanger life. These kinds of risks which are associated with a combination of two or more events (which may or may not be extreme when occurring independently) are an example of what the IPCC recently referred to as ';compound extremes'. Detailed models exist for modeling fire and erosion events separately, however there have been few attempts to integrate these models so as to estimate the water quality and infrastructure risks associated with combined fire and rainfall regimes. This presentation will articulate the issues associated with modeling the compound effects of fire and subsequent rainfall events on erosion, debris flows and water quality, and will describe and contrast several new approaches to modeling this problem developed and applied to SE Australian fire prone landscapes under the influence of climate change.
NASA Astrophysics Data System (ADS)
Okano, Kazuyuki; Suwa, Hiroshi; Kanno, Tadahiro
2012-01-01
We analyzed rainstorm control on debris-flow magnitude and flow characteristics using the 14 sets of rainstorm and debris-flow data obtained from 1980 to 2005 at the Kamikamihorizawa Creek of Mount Yakedake. With the principal component analysis on five parameters of debris flows: frontal velocity, peak velocity, peak flow depth, peak discharge and total discharge, and with video-record of boulder-dams in motion, and the preceding rainfall intensities, we conclude that the 14 debris flows could be categorized into three groups. The flows in the first group have large hydraulic magnitude and massive and turbulent boulder-dams filled with slurry matrix. The flows in the second group have small hydraulic magnitude and boulder-dams scarcely filled with slurry matrix, and the dam is observed to alternate between stopping and starting. The flows in the third group have small hydraulic magnitude and boulder dams filled with slurry matrix. Analysis of hillslope hydrology and debris-flow data asserted that the antecedent rainfall conditions control not only the hydraulic magnitude of debris flows but also the boulder-dam features. Large rainstorms of high intensity and durations as short as 10 minutes induces fast and large storm runoff to the headwaters and the source reaches of debris flow, while rainstorms with durations as long as 24 h raises water content in the bottom deposits along the debris-flow growth reaches and generates substantial runoff from the tributaries. Classification of the three groups is done based on water availability to debris flows on the source and growth reaches at the occurrence of debris flow.
Assessment and prediction of debris-flow hazards
Wieczorek, Gerald F.; ,
1993-01-01
Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.
Melis, T.S.; Webb, R.H.; Griffiths, P.G.; Wise, T.J.
1995-01-01
Debris flows occur in 529 tributaries of the Colorado River in Grand Canyon between Lees Ferry and Diamond Creek, Arizona (river miles 0 to 225). An episodic type of flash flood, debris flows transport poorly-sorted sediment ranging in size from clay to boulders into the Colorado River. Debris flows create and maintain debris fans and the hundreds of associated riffles and rapids that control the geomorphic framework of the Colorado River downstream from Glen Canyon Dam. Between 1984 and 1994, debris flows created 4 new rapids and enlarged 17 existing rapids and riffles. Debris flows in Grand Canyon are initiated by slope failures that occur during intense rainfall. Three of these mechanisms of slope failure are documented. Failures in weathered bedrock, particularly in the Hermit Shale and Supai Group, have initiated many historic debris flows in Grand Canyon. A second mechanism, termed the fire-hose effect, occurs when runoff pours over cliffs onto unconsolidated colluvial wedges, triggering a failure. A third initiation mechanism occurs when intense precipitation causes failures in colluvium overlying bedrock. Multiple source areas and extreme topographic relief in Grand Canyon commonly result in combinations of these three initiation mechanisms. Interpretation of 1,107 historical photographs spanning 120 years, supplemented with aerial photography made between 1935 and 1994, yielded information on the frequency of debris flows in 168 of the 529 tributaries (32 percent) of the Colorado River in Grand Canyon. Of the 168 tributaries, 96 contain evidence of debris flows that have occurred since 1872, whereas 72 tributaries have not had a debris flow during the last century. The oldest debris flow we have documented in Grand Canyon occurred 5,400 years ago in an unnamed tributary at river mile 63.3-R. Our results indicate that the frequency of debris flows ranges from one every 10 to 15 years in certain eastern tributaries, to less than one per century in other drainage basins. On average, debris flows may recur approximately every 30 to 50 years in individual tributaries, although adjacent tributaries may have considerably different histories. Peak discharges were estimated in 18 drainages for debris flows that occurred between 1939 and 1994. Typically, discharges range from about 100 to 300 cubic meters per second (m3/s). The largest debris flow in Grand Canyon during the last century, which occurred in Prospect Canyon in 1939, had a peak discharge of about 1,000 m3/s. Debris-flow deposits generally contain 15 to 30 percent sand-and-finer sediment; however, the variability of sand-and-finer sediment contained by recent debris flows is large. Reconstitution of debris-flow samples indicates a range in water content of 10 to 25 percent by weight;. Before flow regulation of the Colorado River began, debris fans aggraded by debris flows were periodically reworked by large river floods that may have been as large as 11,000 m3/s. Impoundment of the river by Glen Canyon Dam in 1963, and subsequent operation of the reservoir have reduced the magnitude of these floods. Flow releases from the dam since 1963 have only partly reworked recently-aggraded debris fans. Significant reworking of new debris-flow deposits now occurs only during river discharges higher than typical power plant releases, which currently range between 142 and 510 m3/s.
Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,
2003-01-01
In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.
Debris flow deposition and reworking by the Colorado River in Grand Canyon, Arizona
Yanites, Brian J.; Webb, Robert H.; Griffiths, Peter G.; Magirl, Christopher S.
2006-01-01
Flow regulation by large dams affects downstream flow competence and channel maintenance. Debris flows from 740 tributaries in Grand Canyon, Arizona, transport coarse‐grained sediment onto debris fans adjacent to the Colorado River. These debris fans constrict the river to form rapids and are reworked during river flows that entrain particles and transport them downstream. Beginning in 1963, flood control operations of Glen Canyon Dam limited the potential for reworking of aggraded debris fans. We analyzed change in debris fans at the mouths of 75‐Mile and Monument Creeks using photogrammetry of aerial photography taken from 1965 to 2000 and supplemented with ground surveys performed from 1987 to 2005. Our results quantify the debris fan aggradation that resulted from debris flows from 1984 to 2003. Volume, area, and river constriction increased at both debris fans. Profiles of the two debris fans show that net aggradation occurred in the middle of debris fans at stages above maximum dam releases, and surface shape shifted from concave to convex. Dam releases above power plant capacity partially reworked both debris fans, although reworking removed much less sediment than what was added by debris flow deposition. Large dam releases would be required to create additional reworking to limit the rate of debris fan aggradation in Grand Canyon.
Influence of large woody debris on stream insect communities and benthic detritus
A. Dennis Lemly; Robert H. Hilderbrand
2000-01-01
We examined the extent to which benthic detritus loadings and the functional feeding group structure of stream insect communities respond to channel modifications produced by experimental addition of large woody debris (LWD, entire logs) to Stony Creek, VA. Benthic detritus loadings per sample did not change after LWD additions, but large increases in pool habitats...
Coarse Woody Debris Ecology in a Second-Growth Sequoia sempervirens Forest Stream
Matthew D. O' Connor; Robert R. Ziemer
1989-01-01
Coarse woody debris (CWD) contributes to high quality habitat for anadromous fish. CWD volume, species, and input mechanisms was inventoried in North Fork Caspar Creek to assess rates of accumulation and dominant sources of CWD in a 100-year-old second-growth redwood (Sequoia sempervirens) forest. CWD accumulation in the active stream channel and in...
Empirical model for the volume-change behavior of debris flows
Cannon, S.H.; ,
1993-01-01
The potential travel down hillsides; movement stops where the volume-change behavior of flows as they travel down hillsides ; movement stops where the volume of actively flowing debris becomes negligible. The average change in volume over distance for 26 recent debris flows in the Honolulu area was assumed to be a function of the slope over which the debris flow traveled, the degree of flow confinement by the channel, and an assigned value for the type of vegetation through which the debris flow traveled. Analysis of the data yielded a relation that can be incorporated into digital elevation models to characterize debris-flow travel on Oahu.
Rainfall threshold calculation for debris flow early warning in areas with scarcity of data
NASA Astrophysics Data System (ADS)
Pan, Hua-Li; Jiang, Yuan-Jun; Wang, Jun; Ou, Guo-Qiang
2018-05-01
Debris flows are natural disasters that frequently occur in mountainous areas, usually accompanied by serious loss of lives and properties. One of the most commonly used approaches to mitigate the risk associated with debris flows is the implementation of early warning systems based on well-calibrated rainfall thresholds. However, many mountainous areas have little data regarding rainfall and hazards, especially in debris-flow-forming regions. Therefore, the traditional statistical analysis method that determines the empirical relationship between rainstorms and debris flow events cannot be effectively used to calculate reliable rainfall thresholds in these areas. After the severe Wenchuan earthquake, there were plenty of deposits deposited in the gullies, which resulted in several debris flow events. The triggering rainfall threshold has decreased obviously. To get a reliable and accurate rainfall threshold and improve the accuracy of debris flow early warning, this paper developed a quantitative method, which is suitable for debris flow triggering mechanisms in meizoseismal areas, to identify rainfall threshold for debris flow early warning in areas with a scarcity of data based on the initiation mechanism of hydraulic-driven debris flow. First, we studied the characteristics of the study area, including meteorology, hydrology, topography and physical characteristics of the loose solid materials. Then, the rainfall threshold was calculated by the initiation mechanism of the hydraulic debris flow. The comparison with other models and with alternate configurations demonstrates that the proposed rainfall threshold curve is a function of the antecedent precipitation index (API) and 1 h rainfall. To test the proposed method, we selected the Guojuanyan gully, a typical debris flow valley that during the 2008-2013 period experienced several debris flow events, located in the meizoseismal areas of the Wenchuan earthquake, as a case study. The comparison with other threshold models and configurations shows that the selected approach is the most promising starting point for further studies on debris flow early warning systems in areas with a scarcity of data.
Wooten, R.M.; Gillon, K.A.; Witt, A.C.; Latham, R.S.; Douglas, T.J.; Bauer, J.B.; Fuemmeler, S.J.; Lee, L.G.
2008-01-01
In September 2004, rain from the remnants of Hurricanes Frances and Ivan triggered at least 155 landslides in the Blue Ridge Mountains of North Carolina. At least 33 debris flows occurred in Macon County, causing 5 deaths, destroying 16 homes, and damaging infrastructure. We mapped debris flows and debris deposits using a light-detecting and ranging digital elevation model, remote imagery and field studies integrated in a geographic information system. Evidence of past debris flows was found at all recent debris flow sites. Orographic rainfall enhancement along topographic escarpments influenced debris flow frequency at higher elevations. A possible trigger for the Wayah and fatal Peeks Creek debris flows was a spiral rain band within Ivan that moved across the area with short duration rainfall rates of 150-230 mm/h. Intersecting bedrock structures in polydeformed metamorphic rock influence the formation of catchments within structural-geomorphic domains where debris flows originate. ?? 2007 Springer-Verlag.
Debris flows associated with the 2015 Gorkha Earthquake in Nepal
NASA Astrophysics Data System (ADS)
Dahlquist, M. P.; West, A. J.; Martinez, J.
2017-12-01
Debris flows are a primary driver of erosion and a major geologic hazard in many steep landscapes, particularly near the headwaters of rivers, and are generated in large numbers by extreme events. The 2015 Mw 7.8 Gorkha Earthquake triggered 25,000 coseismic landslides in central Nepal. During the ensuing monsoon, sediment delivered to channels by landslides was mobilized in the heavy rains, and new postseismic landslides were triggered in rock weakened by the shaking. These coseismic and postseismic landslide-generated debris flows form a useful dataset for studying the impact and behavior of debris flows on one of the most active landscapes on Earth. Debris flow-dominated channel reaches are generally understood to have a topographic signature recognizable in slope-area plots and distinct from fluvial channels, but in examining debris flows associated with the Gorkha earthquake we find they frequently extend into reaches with geometry typically associated with fluvial systems. We examine a dataset of these debris flows, considering whether they are generated by coseismic or postseismic landslides, whether they are likely to be driving active incision into bedrock, and whether their channels correspond with those typically associated with debris flows. Preliminary analysis of debris flow channels in Nepal suggests there may be systematic differences in the geometry of channels containing debris flows triggered by coseismic versus postseismic landslides, which potentially holds implications for hazard analyses and the mechanics behind the different debris flow types.
On the connection of permafrost and debris flow activity in Austria
NASA Astrophysics Data System (ADS)
Huber, Thomas; Kaitna, Roland
2016-04-01
Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.
... from landslides and debris flows In the United States, landslides and debris flows result in 25 to 50 deaths each year. ... and debris flows. Learn whether landslides or debris flows have ... department, state geological surveys or departments of natural resources, or ...
Uncertainties in predicting debris flow hazards following wildfire [Chapter 19
Kevin D. Hyde; Karin Riley; Cathelijne Stoof
2017-01-01
Wildfire increases the probability of debris flows posing hazardous conditions where valuesâatârisk exist downstream of burned areas. Conditions and processes leading to postfire debris flows usually follow a general sequence defined here as the postfire debris flow hazard cascade: biophysical setting, fire processes, fire effects, rainfall, debris flow, and valuesâatâ...
Comparing two models for post-wildfire debris flow susceptibility mapping
NASA Astrophysics Data System (ADS)
Cramer, J.; Bursik, M. I.; Legorreta Paulin, G.
2017-12-01
Traditionally, probabilistic post-fire debris flow susceptibility mapping has been performed based on the typical method of failure for debris flows/landslides, where slip occurs along a basal shear zone as a result of rainfall infiltration. Recent studies have argued that post-fire debris flows are fundamentally different in their method of initiation, which is not infiltration-driven, but surface runoff-driven. We test these competing models by comparing the accuracy of the susceptibility maps produced by each initiation method. Debris flow susceptibility maps are generated according to each initiation method for a mountainous region of Southern California that recently experienced wildfire and subsequent debris flows. A multiple logistic regression (MLR), which uses the occurrence of past debris flows and the values of environmental parameters, was used to determine the probability of future debris flow occurrence. The independent variables used in the MLR are dependent on the initiation method; for example, depth to slip plane, and shear strength of soil are relevant to the infiltration initiation, but not surface runoff. A post-fire debris flow inventory serves as the standard to compare the two susceptibility maps, and was generated by LiDAR analysis and field based ground-truthing. The amount of overlap between the true locations where debris flow erosion can be documented, and where the MLR predicts high probability of debris flow initiation was statistically quantified. The Figure of Merit in Space (FMS) was used to compare the two models, and the results of the FMS comparison suggest that surface runoff-driven initiation better explains debris flow occurrence. Wildfire can breed conditions that induce debris flows in areas that normally would not be prone to them. Because of this, nearby communities at risk may not be equipped to protect themselves against debris flows. In California, there are just a few months between wildland fire season and the wet season to assess a community's risk and prepare. It is important, therefore, that researchers have a way to quickly and accurately assess the susceptibility for debris flows in recently burned areas.
Timing of susceptibility to post-fire debris flows in the western USA
DeGraff, Jerome V.; Cannon, Susan H.; Gartner, Joseph E.
2015-01-01
Watersheds recently burned by wildfires can have an increased susceptibility to debris flow, although little is known about how long this susceptibility persists, and how it changes over time. We here use a compilation of 75 debris-flow response and fire-ignition dates, vegetation and bedrock class, rainfall regime, and initiation process from throughout the western U.S. to address these issues. The great majority (85 percent) of debris flows occurred within the first 12 months following wildfire, with 71 percent within the first six months. Seven percent of the debris flows occurred between 1 and 1.5 years after a fire, or during the second rainy season to impact an area. Within the first 1.5 years following fires, all but one of the debris flows initiated through runoff-dominated processes, and debris flows occurred in similar proportions in forested and non-forested landscapes. Geologic materials affected how long debris-flow activity persisted, and the timing of debris flows varied within different rainfall regimes. A second, later period of increased debris flow susceptibility between 2.2 and 10 years after fires is indicated by the remaining 8 percent of events, which occurred primarily in forested terrains and initiated largely through landslide processes. The short time period between fire and debris-flow response within the first 1.5 years after ignition, and the longer-term response between 2.2 and 10 years after fire, demonstrate the necessity of both rapid and long-term reactions by land managers and emergency-response agencies to mitigate hazards from debris flows from recently burned areas in the western U.S.
A modified siphon sampler for shallow water
Diehl, Timothy H.
2008-01-01
A modified siphon sampler (or 'single-stage sampler') was developed to sample shallow water at closely spaced vertical intervals. The modified design uses horizontal rather than vertical sample bottles. Previous siphon samplers are limited to water about 20 centimeters (cm) or more in depth; the modified design can sample water 10 cm deep. Several mounting options were used to deploy the modified siphon sampler in shallow bedrock streams of Middle Tennessee, while minimizing alteration of the stream bed. Sampling characteristics and limitations of the modified design are similar to those of the original design. Testing showed that the modified sampler collects unbiased samples of suspended silt and clay. Similarity of the intake to the original siphon sampler suggests that the modified sampler would probably take downward-biased samples of suspended sand. Like other siphon samplers, it does not sample isokinetically, and the efficiency of sand sampling can be expected to change with flow velocity. The sampler needs to be located in the main flow of the stream, and is subject to damage from rapid flow and floating debris. Water traps were added to the air vents to detect the flow of water through the sampler, which can cause a strong upward bias in sampled suspended-sediment concentration. Water did flow through the sampler, in some cases even when the top of the air vent remained above water. Air vents need to be extended well above maximum water level to prevent flow through the sampler.
Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona
Wohl, E.E.; Pearthree, P.P.
1991-01-01
Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.
NASA Astrophysics Data System (ADS)
Nyman, Petter; Sherwin, Christopher; Sheridan, Gary; Lane, Patrick
2015-04-01
This study uses aerial imagery and field surveys to develop a statistical model for determining debris flow susceptibility in a landscape with variable terrain, soil and vegetation properties. A measure of landscape scale debris flow response was obtained by recording all debris flow affected drainage lines in the first year after fire in a ~258 000 ha forested area that was burned by the 2009 Black Saturday Wildfire in Victoria. A total of 12 500 points along the drainage network were sampled from catchments ranging in size from 0.0001 km2to 75 km2. Local slope and the attributes of the drainage areas (including the spatially averaged peak intensity) were extracted for each sample point. A logistic regression was used to model how debris flow susceptibility varies with the normalised burn ratio (dNBR, from Landsat imagery), rainfall intensity (from rainfall radar), slope (from DEM) and aridity (from long-term radiation, temperature and rainfall data).The model of debris flow susceptibility produced a good fit with the observed debris flow response of drainage networks within the burned area and was reliable in distinguishing between drainage lines which produced debris flows and those which didn't. The performance of the models was tested through multiple iterations of fitting and testing using unseen data. The local channel slope captured the effect of scale on debris flow susceptibility with debris flow probability approaching zero as the channel slope decreased with increasing drainage area. Aridity emerged as an important predictor of debris flow susceptibility, with increased likelihood of debris flows in drier parts of the landscape, thus reinforcing previous research in the region showing that post-fire surface runoff from wet Eucalypt forests is insufficient for initiating debris flows. Fire severity, measured as dNBR, was also a very important predictor. The inclusion of local channel slope as a predictor of debris flow susceptibility proved to be an effective approach for implicitly incorporating scale and relief as parameters. When combined with models of debris flow magnitude the results from this study can be used obtain continuous probability-magnitude relations of sediment flux from debris flows for drainage networks across entire burned areas.
Sources of debris flow material in burned areas
Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.
2008-01-01
The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are much more important sources of debris than rills. Levees are very common, but the size and effect on the amount of debris that reaches a canyon mouth is highly variable. ?? 2007 Elsevier B.V. All rights reserved.
Debris mitigation methods for bridge piers.
DOT National Transportation Integrated Search
2012-06-01
Debris accumulation on bridge piers is an on-going national problem that can obstruct the waterway openings at bridges and result in significant erosion of stream banks and scour at abutments and piers. In some cases, the accumulation of debris can a...
Debris mitigation methods for bridge piers : tech transfer summary.
DOT National Transportation Integrated Search
2012-06-01
Problem statement: Debris accumulation on bridge piers is an on-going national problem that can obstruct waterway openings at bridges and also result in significant erosion of stream banks and scour at abutments and piers. : In some cases, debris acc...
NASA Astrophysics Data System (ADS)
Dorn, Ronald I.
2016-11-01
After recognition that debris flows co-occur with human activities, the next step in a hazards analysis involves estimating debris-flow probability. Prior research published in this journal in 2010 used varnish microlamination (VML) dating to determine a minimum occurrence of 5 flows per century over the last 8100 years in a small mountain range of South Mountain adjacent to neighborhoods of Phoenix, Arizona. This analysis led to the conclusion that debris flows originating in small mountain ranges in arid regions like the Sonoran Desert could pose a hazard. Two major precipitation events in the summer of 2014 generated 35 debris flows in the same study area of South Mountain-providing support for the importance of probability analysis as a key step in a hazards analysis in warm desert settings. Two distinct mechanisms generated the 2014 debris flows: intense precipitation on steep slopes in the first storm; and a firehose effect whereby runoff from the second storm was funneled rapidly by cleaned-out debris-flow chutes to remobilize Pleistocene debris-flow deposits. When compared to a global database on debris flows, the 2014 storms were among the most intense to generate desert debris flows - indicating that storms of lesser intensity are capable of generating debris flows in warm desert settings. The 87Sr/86Sr analyses of fines and clasts in South Mountain debris flows of different ages reveal that desert dust supplies the fines. Thus, wetter climatic periods of intense rock decay are not needed to resupply desert slopes with fines; instead, a combination of dust deposition supplying fines and dirt cracking generating coarse clasts can re-arm chutes in a warm desert setting with abundant dust.
Santi, P.; Cannon, S.; DeGraff, J.
2013-01-01
Wildfire is a worldwide phenomenon that is expected to increase in extent and severity in the future, due to fuel accumulations, shifting land management practices, and climate change. It immediately affects the landscape by removing vegetation, depositing ash, influencing water-repellent soil formation, and physically weathering boulders and bedrock. These changes typically lead to increased erosion through sheetwash, rilling, dry ravel, and increased mass movement in the form of floods, debris flow, rockfall, and landslides. These process changes bring about landform changes as hillslopes are lowered and stream channels aggrade or incise at increased rates. Furthermore, development of alluvial fans, debris fans, and talus cones are enhanced. The window of disturbance to the landscape caused by wildfire is typically on the order of three to four years, with some effects persisting up to 30 years.
NASA Astrophysics Data System (ADS)
Kean, J. W.; McCoy, S. W.; Staley, D. M.; Coe, J.; Leeper, R.; Tucker, G. E.
2012-12-01
Direct measurements of natural debris flows provide valuable insights into debris-flow processes and hazards. Yet debris flows are difficult to "catch" because they live in rugged terrain, appear infrequently, and have an appetite for destroying monitoring equipment. We present an overview of some successful (and failed) techniques we have used over the past four years to obtain direct measurements of 40+ debris flows in Colorado and southern California. Following the "MacGyver" theme of the session, we focus on the improvised equipment and methods we use in our hunt for quality data. These include an inexpensive erosion sensor to measure rates of debris-flow entrainment, a custom load cell enclosure for measuring debris-flow normal force, tracer rocks implanted with passive integrated transponders, basic pressure transducers to measure debris-flow timing, and standard digital cameras adapted to obtain high-resolution (1936 x 1288 pixels) video footage of debris flows. These techniques are also suitable for catching data on elusive flash floods. In addition, we also share some practical solutions to the logistical problems associated with installing monitoring equipment in rugged debris-flow terrain, such as suspension of non-contact stage gages high above channels.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.; Staley, Dennis M.; Worstell, Bruce B.
2009-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 Station fire in Los Angeles County, southern California. Statistical-empirical models developed for postfire debris flows are used to estimate the probability and volume of debris-flow production from 678 drainage basins within the burned area and to generate maps of areas that may be inundated along the San Gabriel mountain front by the estimated volume of material. Debris-flow probabilities and volumes are estimated as combined functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 1-year-recurrence thunderstorm and to a 12-hour-duration, 2-year recurrence storm. Debris-flow inundation areas are mapped for scenarios where all sediment-retention basins are empty and where the basins are all completely full. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire. Tributary basins that drain into Pacoima Canyon, Big Tujunga Canyon, Arroyo Seco, West Fork of the San Gabriel River, and Devils Canyon were identified as having probabilities of debris-flow occurrence greater than 80 percent, the potential to produce debris flows with volumes greater than 100,000 m3, and the highest Combined Relative Debris-Flow Hazard Ranking in response to both storms. The predicted high probability and large magnitude of the response to such short-recurrence storms indicates the potential for significant debris-flow impacts to any buildings, roads, bridges, culverts, and reservoirs located both within these drainages and downstream from the burned area. These areas will require appropriate debris-flow mitigation and warning efforts. Probabilities of debris-flow occurrence greater than 80 percent, debris-flow volumes between 10,000 and 100,000 m3, and high Combined Relative Debris-Flow Hazard Rankings were estimated in response to both short recurrence-interval (1- and 2-year) storms for all but the smallest basins along the San Gabriel mountain front between Big Tujunga Canyon and Arroyo Seco. The combination of high probabilities and large magnitudes determined for these basins indicates significant debris-flow hazards for neighborhoods along the mountain front. When the capacity of sediment-retention basins is exceeded, debris flows may be deposited in neighborhoods and streets and impact infrastructure between the mountain front and Foothill Boulevard. In addition, debris flows may be deposited in neighborhoods immediately below unprotected basins. Hazards to neighborhoods and structures at risk from these events will require appropriate debris-flow mitigation and warning efforts.
Numerical investigation of debris materials prior to debris flow hazards using satellite images
NASA Astrophysics Data System (ADS)
Zhang, N.; Matsushima, T.
2018-05-01
The volume of debris flows occurred in mountainous areas is mainly affected by the volume of debris materials deposited at the valley bottom. Quantitative evaluation of debris materials prior to debris flow hazards is important to predict and prevent hazards. At midnight on 7th August 2010, two catastrophic debris flows were triggered by the torrential rain from two valleys in the northern part of Zhouqu City, NW China, resulting in 1765 fatalities and huge economic losses. In the present study, a depth-integrated particle method is adopted to simulate the debris materials, based on 2.5 m resolution satellite images. In the simulation scheme, the materials are modeled as dry granular solids, and they travel down from the slopes and are deposited at the valley bottom. The spatial distributions of the debris materials are investigated in terms of location, volume and thickness. Simulation results show good agreement with post-disaster satellite images and field observation data. Additionally, the effect of the spatial distributions of the debris materials on subsequent debris flows is also evaluated. It is found that the spatial distributions of the debris materials strongly influence affected area, runout distance and flow discharge. This study might be useful in hazard assessments prior to debris flow hazards by investigating diverse scenarios in which the debris materials are unknown.
Coarse woody debris ecology in a second-growth Sequoia sempervirens forest stream
Matthew D. O' Connor; Robert R. Ziemer
1989-01-01
Abstract - Coarse woody debris (CWD) contributes to high quality habitat for anadromous fish. CWD volume, species, and input mechanisms was inventoried in North Fork Caspar Creek to assess rates of accumulation and dominant sources of CWD in a 100-year-old second-growth redwood (Sequoia sempervirens) forest. CWD accumulation in the active stream channel and in pools...
Triggering conditions and mobility of debris flows associated to complex earthflows
NASA Astrophysics Data System (ADS)
Malet, J.-P.; Laigle, D.; Remaître, A.; Maquaire, O.
2005-03-01
Landslides on black marl slopes of the French Alps are, in most cases, complex catastrophic failures in which the initial structural slides transform into slow-moving earthflows. Under specific hydrological conditions, these earthflows can transform into debris flows. Due to their sediment volume and their high mobility, debris flow induced by landslides are far much dangerous than these resulting from continuous erosive processes. A fundamental point to correctly delineate the area exposed to debris flows on the alluvial fans is therefore to understand why and how some earthflows transform into debris flow while most of them stabilize. In this paper, a case of transformation from earthflow to debris flow is presented and analysed. An approach combining geomorphology, hydrology, geotechnics and rheology is adopted to model the debris flow initiation (failure stage) and its runout (postfailure stage). Using the Super-Sauze earthflow (Alpes-de-Haute-Provence, France) as a case study, the objective is to characterize the hydrological and mechanical conditions leading to debris flow initiation in such cohesive material. Results show a very good agreement between the observed runout distances and these calculated using the debris flow modeling code Cemagref 1-D. The deposit thickness in the depositional area and the velocities of the debris flows are also well reproduced. Furthermore, a dynamic slope stability analysis shows that conditions in the debris source area under average pore water pressures and moisture contents are close to failure. A small excess of water can therefore initiate failure. Seepage analysis is used to estimate the volume of debris that can be released for several hydroclimatic conditions. The failed volumes are then introduced in the Cemagref 1-D runout code to propose debris flow hazard scenarios. Results show that clayey earthflow can transform under 5-year return period rainfall conditions into 1-km runout debris flow of volumes ranging between 2000 to 5000 m 3. Slope failures induced by 25-year return period rainfall can trigger large debris flow events (30,000 to 50,000 m 3) that can reach the alluvial fan and cause damage.
Holocene debris flows on the Colorado Plateau: The influence of clay mineralogy and chemistry
Webb, R.H.; Griffiths, P.G.; Rudd, L.P.
2008-01-01
Holocene debris flows do not occur uniformly on the Colorado Plateau province of North America. Debris flows occur in specific areas of the plateau, resulting in general from the combination of steep topography, intense convective precipitation, abundant poorly sorted material not stabilized by vegetation, and the exposure of certain fine-grained bedrock units in cliffs or in colluvium beneath those cliffs. In Grand and Cataract Canyons, fine-grained bedrock that produces debris flows contains primarily single-layer clays - notably illite and kaolinite - and has low multilayer clay content. This clay-mineral suite also occurs in the colluvium that produces debris flows as well as in debris-flow deposits, although unconsolidated deposits have less illite than the source bedrock. We investigate the relation between the clay mineralogy and major-cation chemistry of fine-grained bedrock units and the occurrence of debris flows on the entire Colorado Plateau. We determined that 85 mapped fine-grained bedrock units potentially could produce debris flows, and we analyzed clay mineralogy and major-cation concentration of 52 of the most widely distributed units, particularly those exposed in steep topography. Fine-grained bedrock units that produce debris flows contained an average of 71% kaolinite and illite and 5% montmorillonite and have a higher concentration of potassium and magnesium than nonproducing units, which have an average of 51% montmorillonite and a higher concentration of sodium. We used multivariate statistics to discriminate fine-grained bedrock units with the potential to produce debris flows, and we used digital-elevation models and mapped distribution of debris-flow producing units to derive a map that predicts potential occurrence of Holocene debris flows on the Colorado Plateau. ?? 2008 Geological Society of America.
NASA Astrophysics Data System (ADS)
Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.
2012-04-01
Debris flows occurring in the European Alps frequently cause significant damage to settlements, power-lines and transportation infrastructure which has led to traffic disruptions, economic loss and even death. Estimating the debris flow run-out extent and the parameter uncertainty related to run-out modeling are some of the difficulties found in the Quantitative Risk Assessment (QRA) of debris flows. Also, the process of the entrainment of material into a debris flow is until now not completely understood. Debris flows observed in the French Alps entrain 5 - 50 times the amount of volume compared to the initially mobilized source volume. In this study we analyze a debris flow that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The analysis was carried out using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2D numerical modeling software. The historic event was back calibrated based on source, entrainment and deposit volumes, including the run-out distance, velocities and deposit heights of the debris flow. This was then followed by a sensitivity analysis of the rheological and entrainment parameters to produce 120 debris flow scenarios leading to a frequency assessment of the run-out distance and deposit height at the debris fan. The study shows that the Voellmy frictional parameters mainly influence the run-out distance and velocity of the flow, while the entrainment parameter has a major impact on the debris flow height. The frequency assessment of the 120 simulated scenarios further gives an indication on the most likely debris flow run-out extents and heights for this catchment. Such an assessment can be an important link between the rheological model parameters and the spatial probability of the run-out for the Quantitative Risk Assessment (QRA) of debris flows.
NASA Astrophysics Data System (ADS)
Zhang, S.; Zhang, L. M.
2017-01-01
The 2008 Wenchuan earthquake triggered the largest number of landslides among the recent strong earthquake events around the world. The loose landslide materials were retained on steep terrains and deep gullies. In the period from 2008 to 2015, numerous debris flows occurred during rainstorms along the Provincial Road 303 (PR303) near the epicentre of the earthquake, causing serious damage to the reconstructed highway. Approximately 5.24 × 106 m3 of debris-flow sediment was deposited shortly after the earthquake. This paper evaluates the evolution of the debris flows that occurred after the Wenchuan earthquake, which helps understand long-term landscape evolution and cascading effects in regions impacted by mega earthquakes. With the aid of a GIS platform combined with field investigations, we continuously tracked movements of the loose deposit materials in all the debris flow gullies along an 18 km reach of PR303 and the characteristics of the regional debris flows during several storms in the past seven years. This paper presents five important aspects of the evolution of debris flows: (1) supply of debris flow materials; (2) triggering rainfall; (3) initiation mechanisms and types of debris flows; (4) runout characteristics; and (5) elevated riverbed due to the deposited materials from the debris flows. The hillslope soil deposits gradually evolved into channel deposits and the solid materials in the channels moved towards the ravine mouth. Accordingly, channelized debris flows became dominant gradually. Due to the decreasing source material volume and changes in debris flow characteristics, the triggering rainfall tends to increase from 30 mm h- 1 in 2008 to 64 mm h- 1 in 2013, and the runout distance tends to decrease over time. The runout materials blocked the river and elevated the riverbed by at least 30 m in parts of the study area. The changes in the post-seismic debris flow activity can be categorized into three stages, i.e., active, unstable, and recession.
Kean, J.W.; Staley, D.M.; Cannon, S.H.
2011-01-01
Debris flows often occur in burned steeplands of southern California, sometimes causing property damage and loss of life. In an effort to better understand the hydrologic controls on post-fire debris-flow initiation, timing and magnitude, we measured the flow stage, rainfall, channel bed pore fluid pressure and hillslope soil-moisture accompanying 24 debris flows recorded in five different watersheds burned in the 2009 Station and Jesusita Fires (San Gabriel and Santa Ynez Mountains). The measurements show substantial differences in debris-flow dynamics between sites and between sequential events at the same site. Despite these differences, the timing and magnitude of all events were consistently associated with local peaks in short duration (< = 30 min) rainfall intensity. Overall, debris-flow stage was best cross-correlated with time series of 5-min rainfall intensity, and lagged the rainfall by an average of just 5 min. An index of debris-flow volume was also best correlated with short-duration rainfall intensity, but found to be poorly correlated with storm cumulative rainfall and hillslope soil water content. Post-event observations of erosion and slope stability modeling suggest that the debris flows initiated primarily by processes related to surface water runoff, rather than shallow landslides. By identifying the storm characteristics most closely associated with post-fire debris flows, these measurements provide valuable guidance for warning operations and important constraints for developing and testing models of post-fire debris flows. copyright. 2011 by the American Geophysical Union.
Denlinger, R.P.; Iverson, R.M.
2001-01-01
Numerical solutions of the equations describing flow of variably fluidized Coulomb mixtures predict key features of dry granular avalanches and water-saturated debris flows measured in physical experiments. These features include time-dependent speeds, depths, and widths of flows as well as the geometry of resulting deposits. Threedimensional (3-D) boundary surfaces strongly influence flow dynamics because transverse shearing and cross-stream momentum transport occur where topography obstructs or redirects motion. Consequent energy dissipation can cause local deceleration and deposition, even on steep slopes. Velocities of surge fronts and other discontinuities that develop as flows cross 3-D terrain are predicted accurately by using a Riemann solution algorithm. The algorithm employs a gravity wave speed that accounts for different intensities of lateral stress transfer in regions of extending and compressing flow and in regions with different degrees of fluidization. Field observations and experiments indicate that flows in which fluid plays a significant role typically have high-friction margins with weaker interiors partly fluidized by pore pressure. Interaction of the strong perimeter and weak interior produces relatively steep-sided, flat-topped deposits. To simulate these effects, we compute pore pressure distributions using an advection-diffusion model with enhanced diffusivity near flow margins. Although challenges remain in evaluating pore pressure distributions in diverse geophysical flows, Riemann solutions of the depthaveraged 3-D Coulomb mixture equations provide a powerful tool for interpreting and predicting flow behavior. They provide a means of modeling debris flows, rock avalanches, pyroclastic flows, and related phenomena without invoking and calibrating Theological parameters that have questionable physical significance.
Rengers, Francis K.; McGuire, Luke; Coe, Jeffrey A.; Kean, Jason W.; Baum, Rex L.; Staley, Dennis M.; Godt, Jonathan W.
2016-01-01
We explored regional influences on debris-flow initiation throughout the Colorado Front Range (Colorado, USA) by exploiting a unique data set of more than 1100 debris flows that initiated during a 5 day rainstorm in 2013. Using geospatial data, we examined the influence of rain, hillslope angle, hillslope aspect, and vegetation density on debris-flow initiation. In particular we used a greenness index to differentiate areas of high tree density from grass and bare soil. The data demonstrated an overwhelming propensity for debris-flow initiation on south-facing hillslopes. However, when the debris-flow density was analyzed with respect to total rainfall and greenness we found that most debris flows occurred in areas of high rainfall and low tree density, regardless of hillslope aspect. These results indicate that present-day tree density exerts a stronger influence on debris-flow initiation locations than aspect-driven variations in soil and bedrock properties that developed over longer time scales.
Entrainment of bed sediment by debris flows: results from large-scale experiments
Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.
2011-01-01
When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.
Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.
2013-01-01
Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.
Effects of composition of grains of debris flow on its impact force
NASA Astrophysics Data System (ADS)
Tang, jinbo; Hu, Kaiheng; Cui, Peng
2017-04-01
Debris flows compose of solid material with broad size distribution from fine sand to boulders. Impact force imposed by debris flows is a very important issue for protection engineering design and strongly influenced by their grain composition. However, this issue has not been studied in depth and the effects of grain composition not been considered in the calculation of the impact force. In this present study, the small-scale flume experiments with five kinds of compositions of grains for debris flow were carried out to study the effect of the composition of grains of debris flow on its impact force. The results show that the impact force of debris flow increases with the grain size, the hydrodynamic pressure of debris flow is calibrated based on the normalization parameter dmax/d50, in which dmax is the maximum size and d50 is the median size. Furthermore, a log-logistic statistic distribution could be used to describe the distribution of magnitude of impact force of debris flow, where the mean and the variance of the present distribution increase with grain size. This distribution proposed in the present study could be used to the reliability analysis of structures impacted by debris flow.
Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.
2013-01-01
Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.
NASA Astrophysics Data System (ADS)
Parker, L.; Nolin, A. W.
2009-04-01
Title: Climatological and meteorological conditions associated with rain-induced periglacial debris flows in the Cascade Range, USA Authors: L. Parker, A.W. Nolin Affiliation: Department of Geosciences, Oregon State University, Corvallis, Oregon, USA In November of 2006 an intense rainstorm of tropical origin, known colloquially as "Pineapple Express," inundated the Pacific Northwest region of the United States, initiating numerous periglacial debris flows on several of the stratovolcanoes in the Cascade Range of Oregon and Washington. Rain-induced periglacial debris flows are the result of the over-saturation and subsequent collapse of steep moraine in formerly glaciated valleys. These debris flows rapidly aggrade channels, deposit thick sediments in their path, and severely damage infrastructure. Here we focus on Mount Hood, Oregon and Mount Rainier, Washington in the investigation of meteorological and climatological conditions surrounding rain-induced periglacial debris flow events and their variability over time. Both anecdotal and observational evidence suggest that the Pineapple Express storms are a likely triggering mechanism for these rain-induced debris flows on the stratovolcanoes. Dates for the debris flow events for each mountain were linked with corresponding Pineapple Express storm events. Preliminary analysis suggests that one or more particular climatological or meteorological conditions may be central to the initiation of debris flows, though these conditions may not always be present during Pineapple Express storms. Antecedent snowpack conditions are also hypothesized to play an important role in periglacial rain-induced debris flow initiation as the presence of snow cover on the moraines and glaciers is thought to reduce the likelihood of a debris flow. Radiosonde and precipitation data from Salem, Oregon (KSLE) and Quillayute, Washington (KUIL) data are used to determine if freezing levels and precipitation amounts have changed over time for all documented Pineapple Express events. Particular focus is placed on those events associated with debris flows. Additionally, Snowpack Telemetry (SNOTEL) data are used to examine the antecedent snowpack conditions for each debris flow event. These results will ultimately be coupled with research concerning the geomorphological mechanisms behind debris flows on stratovolcanoes in the Cascades, and may lead to improved understanding and future projections concerning the timing, frequency and intensity of rain-induced periglacial debris flow events.
Erosional and Depositional Aspects of Hurricane Camille in Virginia, 1969
Williams, Garnett P.; Guy, Harold P.
1973-01-01
Probably the worst natural disaster in central Virginia's recorded history was the flood resuiting from an 8-hour deluge of about 28 inches (710 mm) of rain on the night of August 19-20, 1969. This study examines some of the intensive sediment erosion and deposition that resulted from the storm and flood. Most of the 150 people whom the flood killed in this mountainous area died from broken bones and other blunt-force injuries, rather than by drowning. The transport of sediment and other debris by the water therefore was very significant in loss of life and in property damage. Erosion resulted mainly from debris avalanches down the mountain-sides and channel scour along streams and head-water tributaries. Total amounts of sediment yield from certain mountainous areas in Nelson County were about 3.2-4.6 million cubic feet per square mile, probably the equivalent of several thousand years of normal denudation. Characteristics of the debris avalanches were that (1) they usually followed pre-existing depressions on hillsides and occurred on slopes greater than 35 percent, (2) the upslope tip of the avalanche scar tended to be located at the steepest part of the hillside, where the convex slope merged with the concave or planar zone immediately below, (3) hillsides facing north, northeast and east were more susceptible to avalanching than slopes facing other directions, and (4) debris-avalanches caused rapid and devastating surges of water and sediment in the mountain-stream channels. Such surges in some instances temporarily blocked the channel flow upstream. Slightly more than half of the total sediment contributed to the stream system was from erosion of stream channels. Channel erosion was very irregularly distributed; some ravines 10-20 feet wide and 5-10 feet deep were scoured in places which formerly had only a very small channel, whereas other channels only a few hundred yards away experienced little or no channel erosion. By the use of figures for the total amount of sediment removed from a drainage basin and the duration of the storm, estimates were made of the storm-average sediment-transport rate at the mouth of various basins. For drainage basins ranging up to about 1.5 square miles, the estimated storm-average sediment-transport rates varied from practically nothing to as much as 172,000 pounds per second (7.4 million tons per day). The types of sediment deposits were (1) debris-avalanche deposits, rather rare, at the base of hillslopes, (2) mountain-stream channel deposits, usually in scattered sediment patches but locally occurring as large wedge-shaped deposits behind debris dams, (3) alluvial fans, (4) delta-like deposits at the junction of a stream and major highway, where water backed up during the flood due to plugging of a culvert, and (5) accretion deposits on flood plains. The highway deltas and some downstream flood-plain sediments consisted mostly of sand-sized grains, but the other types of deposits usually contained particles ranging from silt or clay to boulders 5-10 feet in diameter. Changes in grain size and in volume of deposition with distance downstream were measured, and sedimentary features of the various types of deposits are described.
NASA Astrophysics Data System (ADS)
Tang, H.; McGuire, L.; Rengers, F. K.; Kean, J. W.; Staley, D. M.
2017-12-01
Wildfire significantly changes the hydrological characteristics of soil for a period of several years and increases the likelihood of flooding and debris flows during high-intensity rainfall in steep watersheds. Hazards related to post-fire flooding and debris flows increase as populations expand into mountainous areas that are susceptible to wildfire, post-wildfire flooding, and debris flows. However, our understanding of post-wildfire debris flows is limited due to a paucity of direct observations and measurements, partially due to the remote locations where debris flows tend to initiate. In these situations, numerical modeling becomes a very useful tool for studying post-wildfire debris flows. Research based on numerical modeling improves our understanding of the physical mechanisms responsible for the increase in erosion and consequent formation of debris flows in burned areas. In this contribution, we study changes in sediment transport efficiency with time since burning by combining terrestrial laser scanning (TLS) surveys of a hillslope burned during the 2016 Fish Fire with numerical modeling of overland flow and sediment transport. We also combine the numerical model with measurements of debris flow timing to explore relationships between post-wildfire rainfall characteristics, soil infiltration capacity, hillslope erosion, and debris flow initiation at the drainage basin scale. Field data show that an initial rill network developed on the hillslope, and became more efficient over time as the overall rill density decreased. Preliminary model results suggest that this can be achieved when flow driven detachment mechanisms dominate and raindrop-driven detachment is minimized. Results also provide insight into the hydrologic and geomorphic conditions that lead to debris flow initiation within recently burned areas.
Sinuous Ridge on the Orson Welles Bajada
2015-04-22
Alluvial fans are piles of debris dumped by rivers when they emerge from the mountains and enter a mostly dry valley as seen by NASA Mars Reconnaissance Orbiter. A bajada (such as this example named after the famous American filmmaker) consists of a series of coalescing alluvial fans along a mountain front. On the surface of this bajada, one can see many sinuous ridges. These ridges mark the path that streams of water took as they flowed into this crater. The sinuosity of the ridges tells us something about the speed of the water flow. Fast moving flows tend to be straighter than slow-moving. Observations like this help us build a picture of how rivers behaved on ancient Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19366
Paleoenvironmental analysis of a middle Wisconsinan biota site, southwestern Virginia, U.S.A.
NASA Astrophysics Data System (ADS)
Whittecar, G. Richard; Wynn, Thomas C.; Bartlett, Charles S.
2007-07-01
The Ratcliff Site in southwestern Virginia lies in a small second-order stream valley filled with approximately 3.5 m of organic-rich deposits that contain bones of mammoth, mastodon, deer (or antelope), logs, and plant macrofossils. Radiocarbon analyses indicate the age of the organic-rich sediment ranges from > 44,000 to 29,100 14C yr BP, a time period with no fossil remains reported in this region of the Appalachians. Analyses of field observations, textural data, organic carbon content, and plant macrofossils indicate that the organic-rich sediments contain interbedded standing-water and debris-flow deposits. Up to 6 m of oxidized debris-flow sediments bury the organic-rich sediments. The presence of Rubus parviflorus (Thimble Berry) throughout the deposit indicates the site had a boreal environment from > 44,000 to 29,100 14C yr BP. Plant macrofossil evidence indicates the uplands had stands of spruce/jack-pine forests while the valley contained ponds and associated wetlands. Three debris flows occurred at the site between approximately 38,000 and 29,000 14C yr BP, suggesting a recurrence interval for major storms of approximately 3000 yr, even though the apparent stability of the boreal environment implies a climate not conducive to catastrophic rainstorms. This conflicting combination of features suggests that during the middle Wisconsinan this area experienced generally cool climates, dominated by polar air masses, but was punctuated by relatively brief warm periods marked by incursions of tropical air masses.
Evaluating tsunami hazards from debris flows
Watts, P.; Walder, J.S.; ,
2003-01-01
Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.
Debris flow occurrence and sediment persistence, Upper Colorado River Valley, CO
Grimsley, Kyle J; Rathburn, Sara L.; Friedman, Jonathan M.; Mangano, Joseph F.
2016-01-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO
NASA Astrophysics Data System (ADS)
Grimsley, K. J.; Rathburn, S. L.; Friedman, J. M.; Mangano, J. F.
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
Debris Flow Occurrence and Sediment Persistence, Upper Colorado River Valley, CO.
Grimsley, K J; Rathburn, S L; Friedman, J M; Mangano, J F
2016-07-01
Debris flow magnitudes and frequencies are compared across the Upper Colorado River valley to assess influences on debris flow occurrence and to evaluate valley geometry effects on sediment persistence. Dendrochronology, field mapping, and aerial photographic analysis are used to evaluate whether a 19th century earthen, water-conveyance ditch has altered the regime of debris flow occurrence in the Colorado River headwaters. Identifying any shifts in disturbance processes or changes in magnitudes and frequencies of occurrence is fundamental to establishing the historical range of variability (HRV) at the site. We found no substantial difference in frequency of debris flows cataloged at eleven sites of deposition between the east (8) and west (11) sides of the Colorado River valley over the last century, but four of the five largest debris flows originated on the west side of the valley in association with the earthen ditch, while the fifth is on a steep hillslope of hydrothermally altered rock on the east side. These results suggest that the ditch has altered the regime of debris flow activity in the Colorado River headwaters as compared to HRV by increasing the frequency of debris flows large enough to reach the Colorado River valley. Valley confinement is a dominant control on response to debris flows, influencing volumes of aggradation and persistence of debris flow deposits. Large, frequent debris flows, exceeding HRV, create persistent effects due to valley geometry and geomorphic setting conducive to sediment storage that are easily delineated by valley confinement ratios which are useful to land managers.
NASA Astrophysics Data System (ADS)
Penserini, Brian D.; Roering, Joshua J.; Streig, Ashley
2017-04-01
In unglaciated steeplands, valley reaches dominated by debris flow scour and incision set landscape form as they often account for > 80% of valley network length and relief. While hillslope and fluvial process models have frequently been combined with digital topography to develop morphologic proxies for erosion rate and drainage divide migration, debris-flow-dominated networks, despite their ubiquity, have not been exploited for this purpose. Here, we applied an empirical function that describes how slope-area data systematically deviate from so-called fluvial power-law behavior at small drainage areas. Using airborne LiDAR data for 83 small ( 1 km2) catchments in the western Oregon Coast Range, we quantified variation in model parameters and observed that the curvature of the power-law scaling deviation varies with catchment-averaged erosion rate estimated from cosmogenic nuclides in stream sediments. Given consistent climate and lithology across our study area and assuming steady erosion, we used this calibrated denudation-morphology relationship to map spatial patterns of long-term uplift for our study catchments. By combining our predicted pattern of long-term uplift rate with paleoseismic and geodetic (tide gauge, GPS, and leveling) data, we estimated the spatial distribution of coseismic subsidence experienced during megathrust earthquakes along the Cascadia Subduction Zone. Our estimates of coseismic subsidence near the coast (0.4 to 0.7 m for earthquake recurrence intervals of 300 to 500 years) agree with field measurements from numerous stratigraphic studies. Our results also demonstrate that coseismic subsidence decreases inland to negligible values > 25 km from the coast, reflecting the diminishing influence of the earthquake deformation cycle on vertical changes of the interior coastal ranges. More generally, our results demonstrate that debris flow valley networks serve as highly localized, yet broadly distributed indicators of erosion (and rock uplift), making them invaluable for mapping crustal deformation and landscape adjustment.
Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami
2015-01-01
Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.
NASA Astrophysics Data System (ADS)
Zhou, Zhen-Hua; Ren, Zhe; Wang, Kun; Yang, Kui; Tang, Yong-Jun; Tian, Lin; Xu, Ze-Min
2018-05-01
Debris flows with long reaches are one of the major natural hazards to human life and property on alluvial fans, as shown by the debris flow that occurred in the Dongyuege (DYG) Gully in August 18, 2010, and caused 96 deaths. The travel distance and the runout distance of the DYG large-scale tragic debris flow were 11 km and 9 km, respectively. In particular, the runout distance over the low gradient channel (channel slope < 5°) upstream of the depositional fan apex reached up to 3.3 km. The build-up and maintenance of excess pore pressure in the debris-flow mass might have played a crucial role in the persistence and long runout of the bouldery viscous debris flow. Experiments to measure pore pressure and pore water escape have been carried out by reconstituting the debris flow bodies with the DYG debris flow deposit. The slurrying of the debris is governed by solid volumetric concentration (SVC), and the difference between the lower SVC limit and the upper SVC limit can be defined as debris flow index (Id). Peak value (Kp) and rate of dissipation (R) of relative excess pore pressure are dependent on SVC. Further, the SVC that gives the lowest rate of dissipation is regarded as the optimum SVC (Cvo). The dissipation response of excess pore pressure can be characterized by the R value under Cvo at a given moment (i.e., 0.5 h, 1 h or 2 h later after peak time). The results reveal that a relatively high level of excess pore pressure developed within the DYG debris-flow mass and had a strong persistence capability. Further research shows that the development, peak value and dissipation of excess pore pressure in a mixture of sediment and water are related to the maximum grain size (MGS), gradation and mineralogy of clay-size particles of the sediment. The layer-lattice silicates in clay particles can be the typical clay minerals, including kaolinite, montmorillonite and illite, and also the unrepresentative clay minerals such as muscovite and chlorite. Moreover, small woody debris can also contribute to the slurrying of sediments and maintenance of debris flows in well vegetated mountainous areas and the boulders suspended in debris flows can elevate excess pore pressure and extend debris-flow mobility. The parameters, including Id, Kp, R and etc., are affected by the intrinsic properties of debris. They, therefore, can reflect the slurrying susceptibility of sediments, and can also be applied to the research on the occurrence mechanisms and risk assessment of other debris flows.
Determination of habitat requirements for Apache Trout
Petre, Sally J.; Bonar, Scott A.
2017-01-01
The Apache Trout Oncorhynchus apache, a salmonid endemic to east-central Arizona, is currently listed as threatened under the U.S. Endangered Species Act. Establishing and maintaining recovery streams for Apache Trout and other endemic species requires determination of their specific habitat requirements. We built upon previous studies of Apache Trout habitat by defining both stream-specific and generalized optimal and suitable ranges of habitat criteria in three streams located in the White Mountains of Arizona. Habitat criteria were measured at the time thought to be most limiting to juvenile and adult life stages, the summer base flow period. Based on the combined results from three streams, we found that Apache Trout use relatively deep (optimal range = 0.15–0.32 m; suitable range = 0.032–0.470 m) pools with slow stream velocities (suitable range = 0.00–0.22 m/s), gravel or smaller substrate (suitable range = 0.13–2.0 [Wentworth scale]), overhead cover (suitable range = 26–88%), and instream cover (large woody debris and undercut banks were occupied at higher rates than other instream cover types). Fish were captured at cool to moderate temperatures (suitable range = 10.4–21.1°C) in streams with relatively low maximum seasonal temperatures (optimal range = 20.1–22.9°C; suitable range = 17.1–25.9°C). Multiple logistic regression generally confirmed the importance of these variables for predicting the presence of Apache Trout. All measured variables except mean velocity were significant predictors in our model. Understanding habitat needs is necessary in managing for persistence, recolonization, and recruitment of Apache Trout. Management strategies such as fencing areas to restrict ungulate use and grazing and planting native riparian vegetation might favor Apache Trout persistence and recolonization by providing overhead cover and large woody debris to form pools and instream cover, shading streams and lowering temperatures.
Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?
NASA Astrophysics Data System (ADS)
Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.
2008-12-01
The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a complex view of debris flow initiation. Retreat and fragmentation of glaciers create debris-covered stagnant ice masses in the steep-sided, tiered channels and expose steep edifices of unstable glacial material, both of which may promote debris flow initiation. Possible reduced snow cover and higher freezing levels during autumn storms due to climate warming may further influence debris flow initiation on the glaciated stratovolcanoes of Washington and Oregon.
Webb, Robert H.; Melis, Theodore S.; Wise, Thomas W.; Elliott, John G.
1996-01-01
Lava Falls Rapid is the most formidable reach of whitewater on the Colorado River in Grand Canyon and is one of the most famous rapids in the world. Although the rapid was once thought to be controlled by the remnants of lava dams of Pleistocene age, Lava Falls was created and is maintained by frequent debris flows from Prospect Canyon. We used 232 historical photographs, of which 121 were replicated, and 14C and 3He dating methods to reconstruct the ages and, in some cases, the magnitudes of late Holocene debris flows. We quantified the interaction between Prospect Canyon debris flows and the Colorado River using image processing of the historical photographs. The highest and oldest debris-flow deposits on the debris fan yielded a 3He date of 2.9?0.6 ka (950 BC), which indicates predominately late Holocene aggradation of one of the largest debris fans in Grand Canyon. The deposit, which has a 25-m escarpment caused by river reworking, crossed the Colorado River and raised its base level by 30 m for an indeterminate, although probably short, period. We mapped depositional surfaces of 6 debris flows that occurred after 950 BC. The most recent prehistoric debris flow occurred no more than 500 years ago (AD 1434). From April 1872 to July 1939, no debris flows occurred in Prospect Canyon. Debris flows in 1939, 1954, 1955, 1963, 1966, and 1995 constricted the Colorado River between 35 and 80 percent and completely changed the pattern of flow through the rapid. The debris flows had discharges estimated between about 290 and 1,000 m3/s and transported boulders as heavy as 30 Mg. The recurrence interval of these debris flows, calculated from the volume of the aggraded debris fan, ranged from 35 to 200 yrs. The 1939 debris flow in Prospect Canyon appears to have been the largest debris flow in Grand Canyon during the last 125 years. Debris flows in Prospect Canyon are initiated by streamflow pouring over a 325-m waterfall onto unconsolidated colluvium, a process called the firehose effect. Floods in Prospect Valley above the waterfall are generated during regional winter storms, localized summer thunderstorms, and occasional tropical cyclones. Winter precipitation has increased in the Grand Canyon region since the early 1960s, and the most recent debris flows have occurred during winter storms. Summer rainfall has declined in the same period, decreasing the potential for debris flows in the summer months. The history of river reworking of the Prospect Canyon debris fan illustrates the interrelation between tributary debris fans and mainstem floods in bedrock canyons. Lava Falls Rapid did not change despite Colorado River floods of 8,500 m3/s in 1884 and 6,230 m3/s in 1921. Floods up to 3,540 m3/s that occurred after the historical, pre-dam debris flows removed most of the deposits within 3 years. Releases in 1965 from Glen Canyon Dam that were above powerplant capacity but less than 1,640 m3/s removed most of the debris fan deposited in 1963, and the combination of dam releases and a 1973 flood on the Little Colorado River removed the 1966 aggradation. About 4,800 m3 of the 1995 deposit was reworked on the day of the 1995 debris flow, dam releases of less than 570 m3/s had not reworked the remainder of the aggraded debris fan. Lava Falls Rapid has been the most unstable reach of whitewater in Grand Canyon during the late Holocene and particularly during the last 120 years. Rapids in bedrock canyons controlled by tributary deposition in the main channel are aggradational features that reflect the net effect of tributary-mainstem interactions. Boulders that form the core of rapids in Grand Canyon are essentially immobile by both regulated and unregulated Colorado River flows. Historical operation of Glen Canyon Dam, which was completed in 1963, has reduced the potential for reworking of debris fans, and has accelerated the rate of net aggradation at the mouths of tributary canyons. Because debris fans that formed after 196
Experimental studies of deposition at a debris-flow flume
Major, Jon J.
1995-01-01
Geologists commonly infer the flow conditions and the physical properties of debris flows from the sedimentologic, stratigraphic, and morphologic characteristics of their deposits. However, such inferences commonly lack corroboration by direct observation because the capricious nature of debris flows makes systematic observation and measurement of natural events both difficult and dangerous. Furthermore, in contrast to the numerous experimental studies of water flow and related fluvial deposition, few real-time observations and measurements of sediment deposition by large-scale mass flow of debris under controlled conditions have been made. Recent experiments at the U.S. Geological Survey debris-flow flume in the H. J. Andrews Experimental Forest, Oregon (Iverson and others, 1992) are shedding new insight on sediment deposition by debris flows and on the veracity of methods commonly used to reconstruct flow character from deposit characteristics.
Risk assessment of debris flow hazards in natural slope
NASA Astrophysics Data System (ADS)
Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin
2016-04-01
The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)
NASA Astrophysics Data System (ADS)
Iverson, Richard M.
1997-08-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Iverson, R.M.
1997-01-01
Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate permeability of the debris. Realistic models of debris flows therefore require equations that simulate inertial motion of surges in which high-resistance fronts dominated by solid forces impede the motion of low-resistance tails more strongly influenced by fluid forces. Furthermore, because debris flows characteristically originate as nearly rigid sediment masses, transform at least partly to liquefied flows, and then transform again to nearly rigid deposits, acceptable models must simulate an evolution of material behavior without invoking preternatural changes in material properties. A simple model that satisfies most of these criteria uses depth-averaged equations of motion patterned after those of the Savage-Hutter theory for gravity-driven flow of dry granular masses but generalized to include the effects of viscous pore fluid with varying pressure. These equations can describe a spectrum of debris flow behaviors intermediate between those of wet rock avalanches and sediment-laden water floods. With appropriate pore pressure distributions the equations yield numerical solutions that successfully predict unsteady, nonuniform motion of experimental debris flows.
Staley, Dennis M.
2014-01-01
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Springs fire in Ventura County, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 9 of the 99 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 28 of the 99 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings, and that residents adhere to any evacuation orders.
NOAA-USGS Debris-Flow Warning System - Final Report
,
2005-01-01
Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a national scope.
Resistance formulas in hydraulics-based models for routing debris flows
Chen, Cheng-lung; Ling, Chi-Hai
1997-01-01
The one-dimensional, cross-section-averaged flow equations formulated for routing debris flows down a narrow valley are identical to those for clear-water flow, except for the differences in the values of the flow parameters, such as the momentum (or energy) correction factor, resistance coefficient, and friction slope. Though these flow parameters for debris flow in channels with cross-sections of arbitrary geometric shape can only be determined empirically, the theoretical values of such parameters for debris flow in wide channels exist. This paper aims to derive the theoretical resistance coefficient and friction slope for debris flow in wide channels using a rheological model for highly-concentrated, rapidly-sheared granular flows, such as the generalized viscoplastic fluid (GVF) model. Formulating such resistance coefficient or friction slope is equivalent to developing a generally applicable resistance formula for routing debris flows. Inclusion of a nonuniform term in the expression of the resistance formula proves useful in removing the customary assumption that the spatially varied resistance at any section is equal to what would take place with the same rate of flow passing the same section under conditions of uniformity. This in effect implies an improvement in the accuracy of unsteady debris-flow computation.
Numerical modelling study of gully recharge and debris flows in Haida Gwaii, British Columbia
NASA Astrophysics Data System (ADS)
Martin, Yvonne; Johnson, Edward; Chaikina, Olga
2015-04-01
In high mountains, debris flows are a major process responsible for transferring sediment to more downstream fluvial reaches. This sediment transfer begins on mountain hillslopes where various mass wasting processes move sediment from hillslopes to uppermost reaches of the channel system (these reaches are herein referred to as gullies and only experience water flow during high intensity precipitation events). Sediment recharge into gullies, which has received minimal attention in the scientific literature, refers to the transfer of sediment and other debris from surrounding hillslopes into gullies (Jakob and Oden, 2005). Debris flow occurrence and debris flow volumes depend on some precipitation threshold as well as volumes of material contained in the particular gully. For example, if one debris flow has removed all of the accumulated material from the gully, then any subsequent debris flow will be smaller if enough time has not yet passed for notable sediment recharge. Herein, we utilize the numerical model of landscape development, LandMod (Martin, 1998; Dadson and Church, 2005; Martin, 2007), to explore connections between hillslope processes, gully recharge rates, and transfer of sediment to downstream channel reaches in the Haida Gwaii, British Columbia. Hillslope processes in the model include shallow landsliding, bedrock failures and weathering. The updated debris flow algorithm is based on extensive field data available for debris flows in Haida Gwaii (e.g., Rood, 1984; Oden, 1994; Jakob and Oden, 2005), as well as theoretical considerations based on debris flow studies. The most significant model extension is the calculation of gully recharge rates; for each gully, the total accumulated sediment in gullies at each time step is determined using a power-law relation for area-normalized recharge rate versus elapsed time since the last debris flow. Thus, when the stochastic driver for debris flow occurrence triggers an event, the amount of stored material is known and can be transferred and deposited along the channel system. Results show that the size distribution of debris flows and sediment transfers from gullies to downstream reaches are modified by the inclusion of a module that accounts for sediment recharge when compared to model runs that do not consider gully recharge.
NASA Astrophysics Data System (ADS)
Kovanen, Dori J.; Slaymaker, Olav
2008-07-01
Active debris flow fans in the North Cascade Foothills of Washington State constitute a natural hazard of importance to land managers, private property owners and personal security. In the absence of measurements of the sediment fluxes involved in debris flow events, a morphological-evolutionary systems approach, emphasizing stratigraphy, dating, fan morphology and debris flow basin morphometry, was used. Using the stratigraphic framework and 47 radiocarbon dates, frequency of occurrence and relative magnitudes of debris flow events have been estimated for three spatial scales of debris flow systems: the within-fan site scale (84 observations); the fan meso-scale (six observations) and the lumped fan, regional or macro-scale (one fan average and adjacent lake sediments). In order to characterize the morphometric framework, plots of basin area v. fan area, basin area v. fan gradient and the Melton ruggedness number v. fan gradient for the 12 debris flow basins were compared with those documented for semi-arid and paraglacial fans. Basin area to fan area ratios were generally consistent with the estimated level of debris flow activity during the Holocene as reported below. Terrain analysis of three of the most active debris flow basins revealed the variety of modes of slope failure and sediment production in the region. Micro-scale debris flow event systems indicated a range of recurrence intervals for large debris flows from 106-3645 years. The spatial variation of these rates across the fans was generally consistent with previously mapped hazard zones. At the fan meso-scale, the range of recurrence intervals for large debris flows was 273-1566 years and at the regional scale, the estimated recurrence interval of large debris flows was 874 years (with undetermined error bands) during the past 7290 years. Dated lake sediments from the adjacent Lake Whatcom gave recurrence intervals for large sediment producing events ranging from 481-557 years over the past 3900 years and clearly discernible sedimentation events in the lacustrine sediments had a recurrence interval of 67-78 years over that same period.
Gartner, J.E.; Cannon, S.H.; Santi, P.M.; deWolfe, V.G.
2008-01-01
Recently burned basins frequently produce debris flows in response to moderate-to-severe rainfall. Post-fire hazard assessments of debris flows are most useful when they predict the volume of material that may flow out of a burned basin. This study develops a set of empirically-based models that predict potential volumes of wildfire-related debris flows in different regions and geologic settings. The models were developed using data from 53 recently burned basins in Colorado, Utah and California. The volumes of debris flows in these basins were determined by either measuring the volume of material eroded from the channels, or by estimating the amount of material removed from debris retention basins. For each basin, independent variables thought to affect the volume of the debris flow were determined. These variables include measures of basin morphology, basin areas burned at different severities, soil material properties, rock type, and rainfall amounts and intensities for storms triggering debris flows. Using these data, multiple regression analyses were used to create separate predictive models for volumes of debris flows generated by burned basins in six separate regions or settings, including the western U.S., southern California, the Rocky Mountain region, and basins underlain by sedimentary, metamorphic and granitic rocks. An evaluation of these models indicated that the best model (the Western U.S. model) explains 83% of the variability in the volumes of the debris flows, and includes variables that describe the basin area with slopes greater than or equal to 30%, the basin area burned at moderate and high severity, and total storm rainfall. This model was independently validated by comparing volumes of debris flows reported in the literature, to volumes estimated using the model. Eighty-seven percent of the reported volumes were within two residual standard errors of the volumes predicted using the model. This model is an improvement over previous models in that it includes a measure of burn severity and an estimate of modeling errors. The application of this model, in conjunction with models for the probability of debris flows, will enable more complete and rapid assessments of debris flow hazards following wildfire.
NASA Astrophysics Data System (ADS)
Dietrich, A.; Krautblatter, M.
2017-06-01
Debris flows are among the most important natural hazards. The Northern Calcareous Alps with their susceptible lithology are especially affected by a double digit number of major hazard events per year. It is hypothesised that debris-flow intensity has increased significantly in the last decades in the Northern Calcareous Alps coincident to increased rainstorm frequencies, but yet there is only limited evidence. The Plansee catchment exposes extreme debris-flow activity due to the intensely jointed Upper Triassic Hauptdolomit lithology, being responsible for most of the debris-flow activity in the Northern Calcareous Alps. The debris flows feed into a closed sediment system, the Plansee Lake, where Holocene/Lateglacial sedimentation rates, rates since the late 1940s and recent rates can be inferred accurately. Using aerial photos and field mapping, the temporal and spatial development of eight active debris-flow fans is reconstructed in six time intervals from 1947, 1952, 1971, 1979, 1987, 2000 and 2010 and mean annual debris-flow volumes are calculated. These are compared with mean Holocene/Lateglacial debris-flow volumes derived from the most prominent cone whose contact with the underlying till is revealed by electrical resistivity tomography (ERT). Debris-flow activity there increased by a factor of 10 from 1947-1952 (0.23 ± 0.07 · 103 m3/yr) to 1987-2000 (2.41 ± 0.66 · 103 m3/yr). Mean post-1980 rates from all eight fans exceed pre-1980 rates by a factor of more than three coinciding with enhanced rainstorm activity recorded at meteorological stations in the Northern Calcareous Alps. The frequency of rain storms (def. 35 mm/d) has increased in the study area on average by 10% per decade and has nearly doubled since 1921. Recent debris-flow activity is also 2-3 times higher than mean Holocene/Lateglacial rates. The strong correlation between the non-vegetated catchment area and the annual debris-flow volume might indicate a decadal positive feedback between enhanced rainstorm activity and debris flows. Here we investigate the temporal and spatial development of debris-flow fans to better understand the sensitivity of alpine catchments to heavy rainfall events in the context of climate change. n.m. = not measurable.
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.
2010-12-01
Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.
NASA Astrophysics Data System (ADS)
Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric
2016-06-01
Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.
Hydraulic modeling of unsteady debris-flow surges with solid-fluid interactions
Iverson, Richard M.
1997-01-01
Interactions of solid and fluid constituents produce the unique style of motion that typifies debris flows. To simulate this motion, a new hydraulic model represents debris flows as deforming masses of granular solids variably liquefied by viscous pore fluid. The momentum equation of the model describes how internal and boundary forces change as coarse-grained surge heads dominated by grain-contact friction grade into muddy debris-flow bodies more strongly influenced by fluid viscosity and pressure. Scaling analysis reveals that pore-pressure variations can cause flow resistance in surge heads to surpass that in debris-flow bodies by orders of magnitude. Numerical solutions of the coupled momentum and continuity equations provide good predictions of unsteady, nonuniform motion of experimental debris flows from initiation through deposition.
Modeling sediment concentration in debris flow by Tsallis entropy
NASA Astrophysics Data System (ADS)
Singh, Vijay P.; Cui, Huijuan
2015-02-01
Debris flow is a natural hazard that occurs in landscapes having high slopes, such as mountainous areas. It can be so powerful that it destroys whatever comes in its way, that is, it can kill people and animals; decimate roads, bridges, railway tracks, homes and other property; and fill reservoirs. Owing to its frequent occurrence, it is receiving considerable attention these days. Of fundamental importance in debris flow modeling is the determination of concentration of debris (or sediment) in the flow. The usual approach to determining debris flow concentration is either empirical or hydraulic. Both approaches are deterministic and therefore say nothing about the uncertainty associated with the sediment concentration in the flow. This paper proposes to model debris flow concentration using the Tsallis entropy theory. Verification of the entropy-based distribution of debris flow concentration using the data and equations reported in the literature shows that the Tsallis entropy-proposed model is capable of mimicking the field observed concentration and has potential for practical application.
Predicting Debris-Slide Locations in Northwestern California
Mark E. Reid; Stephen D. Ellen; Dianne L. Brien; Juan de la Fuente; James N. Falls; Billie G. Hicks; Eric C. Johnson
2007-01-01
We tested four topographic models for predicting locations of debris-slide sources: 1) slope; 2) proximity to stream; 3) SHALSTAB with "standard" parameters; and 4) debris-slide-prone landforms, which delineates areas similar to "inner gorge" and "headwall swale" using experience-based rules. These approaches were compared in three diverse...
NASA Astrophysics Data System (ADS)
Bunte, Kristin; Swingle, Kurt W.; Turowski, Jens M.; Abt, Steven R.; Cenderelli, Daniel A.
2016-08-01
Coarse particulate organic matter (CPOM) provides a food source for benthic organisms, and the fluvial transport of CPOM is one of the forms in which carbon is exported from a forested basin. However, little is known about transport dynamics of CPOM, its relation to discharge, and its annual exports from mountain streams. Much of this knowledge gap is due to sampling difficulties. In this study, CPOM was sampled over one-month snowmelt high flow seasons in two high-elevation, subalpine, streams in the Rocky Mountains. Bedload traps developed for sampling gravel bedload were found to be suitable samplers for CPOM transport. CPOM transport rates were well related to flow in consecutive samples but showed pronounced hysteresis over the diurnal fluctuations of flow, between consecutive days, and over the rising and falling limbs of the high-flow season. In order to compute annual CPOM load, hysteresis effects require intensive sampling and establishing separate rating curves for all rising and falling limbs. Hysteresis patterns of CPOM transport relations identified in the well-sampled study streams may aid with estimates of CPOM transport and export in less well-sampled Rocky Mountain streams. Transport relations for CPOM were similar among three high elevation mountain stream with mainly coniferous watersheds. Differences among streams can be qualitatively attributed to differences in CPOM contributions from litter fall, from the presence of large woody debris, its grinding into CPOM sized particles by gravel-cobble bedload transport, hillslope connectivity, drainage density, and biological consumption. CPOM loads were 3.6 and 3.2 t/yr for the two Rocky Mountain streams. Adjusted to reflect decadal averages, values increased to 11.3 and 10.2 t/yr. CPOM yields related to the entire watershed were 2.7 and 4 kg/ha/yr for the years studied, but both streams exported similar amounts of 6.5 and 6.6 kg/ha/yr when taking the forested portion of the watershed into account. To reflect decadal averages, CPOM yields per basin area were adjusted to 8.6 and 12.6 kg/ha/yr and to 21 kg/ha/yr for the forested watershed parts. CPOM yield may be more meaningfully characterized if annual CPOM loads are normalized by the area of a seam along the stream banks together with the stream surface area rather than by the forested or total watershed area.
Robert H. Hilderbrand; A. Dennis Lemly; C. Andrew Dolloff; Kelly L. Harpster
1998-01-01
Log length exerted a critical influence in stabilizing large woody debris (LWD) pieces added as an experimental stream restoration technique. Logs longer than the average bank-full channel width (5.5 m) were significantly less likely to be displaced than logs shorter than this width. The longest log in stable log groups was significantly longer than the longest log in...
J. M. McClure; R. K. Kolka; A. White
2004-01-01
The distribution of coarse woody debris (CWD) was analyzed in three Appalachian watersheds in eastern Kentucky, eighteen years after harvest. The three watersheds included an unharvested control (Control), a second watershed with best management practices (BMPs) applied that included a 15.2 m unharvested zone near the stream (BMP watershed), and a third watershed that...
Elliott, John G.; Ruddy, Barbara C.; Verdin, Kristine L.; Schaffrath, Keelin R.
2012-01-01
Debris flows are fast-moving, high-density slurries of water, sediment, and debris that can have enormous destructive power. Although debris flows, triggered by intense rainfall or rapid snowmelt on steep hillsides covered with erodible material, are a common geomorphic process in some unburned areas, a wildfire can transform conditions in a watershed with no recent history of debris flows into conditions that pose a substantial hazard to residents, communities, infrastructure, aquatic habitats, and water supply. The location, extent, and severity of wildfire and the subsequent rainfall intensity and duration cannot be known in advance; however, hypothetical scenarios based on empirical debris-flow models are useful planning tools for conceptualizing potential postwildfire debris flows. A prewildfire study to determine the potential for postwildfire debris flows in the Pikes Peak area in El Paso and Teller Counties, Colorado, was initiated in 2010 by the U.S. Geological Survey, in cooperation with the City of Colorado Springs, Colorado Springs Utilities. The study was conducted to provide a relative measure of which subwatersheds might constitute the most serious potential debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall.
Kean, Jason W.; Staley, Dennis M.; Leeper, Robert J.; Schmidt, Kevin Michael; Gartner, Joseph E.
2012-01-01
Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics. The basin response timescale (tb) to generate flow at each site was determined from an analysis of the cross correlation between time series of flow pressure and 5-min rainfall intensity. This timescale was found to be less than 30 minutes for 40 post-fire floods and 11 post-fire debris flows recorded in 15 southern California watersheds ({less than or equal to} 1.4 km2). Including data from 24 other debris flows recorded at 5 more instrumentally advanced monitoring stations, we find there is not a substantial difference in the median tb for floods and debris flows (11 and 9 minutes, respectively); however, there are slight, statistically significant differences in the trends of flood and debris-flow tb with basin area, which are presumably related to differences in flow speed between floods and debris flows.
George, David L.; Iverson, Richard M.
2011-01-01
Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.
NASA Astrophysics Data System (ADS)
Urgeles, R.; Llopart, J.; Lucchi, R.; Rebesco, M.; Brückner, N. W.; Rüther, D. C.; Lantzsch, H.
2017-12-01
Submarine slope instability plays a major role in the development of Arctic Trough Mouth Fans (TMFs). TMFs consist of an alternation of rapidly deposited glacigenic debris flows and a sequence of well-layered plumites and hemipelagic sediments. In this sedimentary context, shallow geophysical data and core samples indicate that there is a specific timing (i.e. shortly after the deglaciation phase) for the occurrence of slope failures. High mean sedimentation rates during glacial maxima of up to 18 kg m-2 yr-1 likely allow excess pore pressure to develop in the water rich plumites and hemipelagic sediments deposited in the previous deglacial period, particularly where such plumites attain a significant thickness. Basin numerical models considering the effect of (1) sediment physical properties, (2) polar margin architecture and (3) ice stream sediment dispersal patterns on resulting stresses, fluid flow and slope failure initiation of the Storfjorden Trough Mouth Fan, NW Barents Sea, show that during glacial maxima, ice streams and rapid accumulation of glacigenic debris flows on the slope induce pore pressure build-up in continental shelf/upper slope sediments. The overpressure developed during glacial maxima remains during the deglacial phase. This overpressure combined with downslope stratification of high water content and low shear strength deglacial/interglacial sediments results in a significant decrease in the factor of safety of the upper slope sediments. The position of the submarine landslides in the stratigraphic record suggest, however, that such excess pore pressure is not enough to trigger the slope failures and indicate that earthquakes related to isostatic rebound are likely involved in the final activation.
Mapping debris-flow hazard in Honolulu using a DEM
Ellen, Stephen D.; Mark, Robert K.; ,
1993-01-01
A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.
Southern Laurentide ice lobes were created by ice streams: Des Moines Lobe in Minnesota, USA
Patterson, C.J.
1997-01-01
Regional mapping in southern Minnesota has illuminated a suite of landforms developed by the Des Moines Lobe that delimit the position of the lobe at its maximum and at lesser readvances. The ice lobe repeatedly advanced, discharged its subglacial water, and subsequently stagnated. Recent glaciological research on Antarctic ice streams has led some glacial geologists to postulate that ice streams drained parts of the marine-based areas of the Laurentide Ice Sheet. I postulate that such ice streams may develop in land-based areas of an ice sheet as well, and that the Des Moines Lobe, 200 km wide and 900 km long, was an outlet glacier of an ice stream. It appears to have been able to advance beyond the Laurentide Ice Sheet as long as adequate water pressure was maintained. However, the outer part of the lobe stagnated because subglacial water that facilitated the flow was able to drain away through tunnel valleys. Stagnation of the lobe is not equivalent to stoppage of the ice stream, because ice repeatedly advanced into and onto the stagnant margins, stacking ice and debris. Similar landforms are also seen in other lobes of the upper midwestern United States.
Depositional processes in large-scale debris-flow experiments
Major, J.J.
1997-01-01
This study examines the depositional process and characteristics of deposits of large-scale experimental debris flows (to 15 m3) composed of mixtures of gravel (to 32 mm), sand, and mud. The experiments were performed using a 95-m-long, 2-m-wide debris-flow flume that slopes 31??. Following release, experimental debris flows invariably developed numerous shallow (???10 cm deep) surges. Sediment transported by surges accumulated abruptly on a 3?? runout slope at the mouth of the flume. Deposits developed in a complex manner through a combination of shoving forward and shouldering aside previously deposited debris and through progressive vertical accretion. Progressive accretion by the experimental flows is contrary to commonly assumed en masse sedimentation by debris flows. Despite progressive sediment emplacement, deposits were composed of unstratified accumulations of generally unsorted debris; hence massively textured, poorly sorted debris-flow deposits are not emplaced uniquely en masse. The depositional process was recorded mainly by deposit morphology and surface texture and was not faithfully registered by interior sedimentary texture; homogeneous internal textures could be misinterpreted as the result of en masse emplacement by a single surge. Deposition of sediment by similar, yet separate, debris flows produced a homogenous, massively textured composite deposit having little stratigraphic distinction. Similar deposit characteristics and textures are observed in natural debris-flow deposits. Experimental production of massively textured deposits by progressive sediment accretion limits interpretations that can be drawn from deposit characteristics and casts doubt on methods of estimating flow properties from deposit thickness or from relations between particle size and bed thickness.
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-01-01
In step‐pool stream channels, flow resistance is created primarily by bed sediments, spill over step‐pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step‐pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult‐to‐measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume‐derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
NASA Astrophysics Data System (ADS)
Wilcox, Andrew C.; Nelson, Jonathan M.; Wohl, Ellen E.
2006-05-01
In step-pool stream channels, flow resistance is created primarily by bed sediments, spill over step-pool bed forms, and large woody debris (LWD). In order to measure resistance partitioning between grains, steps, and LWD in step-pool channels we completed laboratory flume runs in which total resistance was measured with and without grains and steps, with various LWD configurations, and at multiple slopes and discharges. Tests of additive approaches to resistance partitioning found that partitioning estimates are highly sensitive to the order in which components are calculated and that such approaches inflate the values of difficult-to-measure components that are calculated by subtraction from measured components. This effect is especially significant where interactions between roughness features create synergistic increases in resistance such that total resistance measured for combinations of resistance components greatly exceeds the sum of those components measured separately. LWD contributes large proportions of total resistance by creating form drag on individual pieces and by increasing the spill resistance effect of steps. The combined effect of LWD and spill over steps was found to dominate total resistance, whereas grain roughness on step treads was a small component of total resistance. The relative contributions of grain, spill, and woody debris resistance were strongly influenced by discharge and to a lesser extent by LWD density. Grain resistance values based on published formulas and debris resistance values calculated using a cylinder drag approach typically underestimated analogous flume-derived values, further illustrating sources of error in partitioning methods and the importance of accounting for interaction effects between resistance components.
NASA Astrophysics Data System (ADS)
Fan, Linfeng; Lehmann, Peter; McArdell, Brian; Or, Dani
2017-03-01
Debris flows and landslides induced by heavy rainfall represent an ubiquitous and destructive natural hazard in steep mountainous regions. For debris flows initiated by shallow landslides, the prediction of the resulting pathways and associated hazard is often hindered by uncertainty in determining initiation locations, volumes and mechanical state of the mobilized debris (and by model parameterization). We propose a framework for linking a simplified physically-based debris flow runout model with a novel Landslide Hydro-mechanical Triggering (LHT) model to obtain a coupled landslide-debris flow susceptibility and hazard assessment. We first compared the simplified debris flow model of Perla (1980) with a state-of-the art continuum-based model (RAMMS) and with an empirical model of Rickenmann (1999) at the catchment scale. The results indicate that predicted runout distances by the Perla model are in reasonable agreement with inventory measurements and with the other models. Predictions of localized shallow landslides by LHT model provides information on water content of released mass. To incorporate effects of water content and flow viscosity as provided by LHT on debris flow runout, we adapted the Perla model. The proposed integral link between landslide triggering susceptibility quantified by LHT and subsequent debris flow runout hazard calculation using the adapted Perla model provides a spatially and temporally resolved framework for real-time hazard assessment at the catchment scale or along critical infrastructure (roads, railroad lines).
Staley, Dennis M.
2013-01-01
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can produce dangerous flash floods and debris flows. In this report, empirical models are used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year rainstorm for the 2013 Rim fire in Yosemite National Park and the Stanislaus National Forest, California. Overall, the models predict a relatively high probability (60–80 percent) of debris flow for 28 of the 1,238 drainage basins in the burn area in response to a 10-year recurrence interval design storm. Predictions of debris-flow volume suggest that debris flows may entrain a significant volume of material, with 901 of the 1,238 basins identified as having potential debris-flow volumes greater than 10,000 cubic meters. These results of the relative combined hazard analysis suggest there is a moderate likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, wildlife, and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.
Debris flows through different forest age classes in the central Oregon Coast Range
C. L. May
2002-01-01
Abstract - Debris flows in the Pacific Northwest can play a major role in routing sediment and wood stored on hillslopes and in first- through third-order channels and delivering it to higher-order channels. Field surveys following a large regional storm event investigated 53 debris flows in the central Oregon Coast Range to determine relationships among debris flow...
Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado
NASA Astrophysics Data System (ADS)
Godt, Jonathan W.; Coe, Jeffrey A.
2007-02-01
On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43 mm of rain in 4 h, 35 mm of which fell in the first 2 h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30°) in catchments with small contributing areas (< 8000 m 2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths.
Alpine debris flows triggered by a 28 July 1999 thunderstorm in the central Front Range, Colorado
Godt, J.W.; Coe, J.A.
2007-01-01
On 28 July 1999, about 480 alpine debris flows were triggered by an afternoon thunderstorm along the Continental Divide in Clear Creek and Summit counties in the central Front Range of Colorado. The thunderstorm produced about 43??mm of rain in 4??h, 35??mm of which fell in the first 2??h. Several debris flows triggered by the storm impacted Interstate Highway 70, U.S. Highway 6, and the Arapahoe Basin ski area. We mapped the debris flows from color aerial photography and inspected many of them in the field. Three processes initiated debris flows. The first process initiated 11% of the debris flows and involved the mobilization of shallow landslides in thick, often well vegetated, colluvium. The second process, which was responsible for 79% of the flows, was the transport of material eroded from steep unvegetated hillslopes via a system of coalescing rills. The third, which has been termed the "firehose effect," initiated 10% of the debris flows and occurred where overland flow became concentrated in steep bedrock channels and scoured debris from talus deposits and the heads of debris fans. These three processes initiated high on steep hillsides (> 30??) in catchments with small contributing areas (< 8000??m2), however, shallow landslides occurred on slopes that were significantly less steep than either overland flow process. Based on field observations and examination of soils mapping of the northern part of the study area, we identified a relation between the degree of soil development and the process type that generated debris flows. In general, areas with greater soil development were less likely to generate runoff and therefore less likely to generate debris flows by the firehose effect or by rilling. The character of the surficial cover and the spatially variable hydrologic response to intense rainfall, rather than a threshold of contributing area and topographic slope, appears to control the initiation process in the high alpine of the Front Range. Because debris flows initiated by rilling and the firehose effect tend to increase in volume as they travel downslope, these debris flows are potentially more hazardous than those initiated by shallow landslides, which tend to deposit material along their paths. ?? 2006 Elsevier B.V. All rights reserved.
Staley, Dennis M.; Gartner, Joseph E.; Smoczyk, Greg M.; Reeves, Ryan R.
2013-01-01
Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. We use empirical models to predict the probability and magnitude of debris flow occurrence in response to a 10-year rainstorm for the 2013 Mountain fire near Palm Springs, California. Overall, the models predict a relatively high probability (60–100 percent) of debris flow for six of the drainage basins in the burn area in response to a 10-year recurrence interval design storm. Volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 8 of the 14 basins identified as having potential debris-flow volumes greater than 100,000 cubic meters. These results suggest there is a high likelihood of significant debris-flow hazard within and downstream of the burn area for nearby populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National Weather Service–issued Debris Flow and Flash Flood Outlooks, Watches and Warnings and that residents adhere to any evacuation orders.
Debris flows resulting from glacial-lake outburst floods in tibet, China
Cui, P.; Dang, C.; Cheng, Z.; Scott, K.
2010-01-01
During the last 70 years of general climatic amelioration, 18 glacial-lake outburst floods (GLOFs) and related debris flows have occurred from 15 moraine-dammed lakes in Tibet, China. Catastrophic loss of life and property has occurred because of the following factors: the large volumes of water discharged, the steep gradients of the U-shaped channels, and the amount and texture of the downstream channel bed and bank material. The peak discharge of each GLOF exceeded 1000 m3/s. These flood discharges transformed to non-cohesive debris flows if the channels contained sufficient loose sediment for entrainment (bulking) and if their gradients were >1%. We focus on this key element, transformation, and suggest that it be included in evaluating future GLOF-related risk, the probability of transformation to debris flow and hyperconcentrated flow. The general, sequential evolution of the flows can be described as from proximal GLOFs, to sedimentladen streamflow, to hyperconcentrated flow, to non-cohesive debris flow (viscous or cohesive debris flow only if sufficient fine sediment is present), and then, distally, back to hyperconcentrated flow and sediment-laden streamflow as sediment is progressively deposited. Most of the Tibet examples transformed only to non-cohesive debris flows. The important lesson for future hazard assessment and mitigation planning is that, as a GLOF entrains (bulks) enough sediment to become a debris flow, the flow volume must increase by at least three times (the "bulking factor"). In fact, the transforming flow waves overrun and mix with downstream streamflow, in addition to adding the entrained sediment (and thus enabling addition of yet more sediment and a bulking factor in excess of three times). To effectively reduce the risk of GLOF debris flows, reducing the level of a potentially dangerous lake with a siphon or excavated spillway or installing gabions in combination with a downstream debris dam are the primary approaches.
NASA Astrophysics Data System (ADS)
Smith, Hugh G.; Sheridan, Gary J.; Nyman, Petter; Child, David P.; Lane, Patrick N. J.; Hotchkis, Michael A. C.; Jacobsen, Geraldine E.
2012-02-01
Fine sediment supply has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides ( 137Cs, 210Pb ex and 239,240Pu) as tracers to measure proportional contributions of fine sediment (< 10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While 137Cs and 210Pb ex have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The ranges in estimated proportional hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment were 22-69% and 32-74%. The greater susceptibility of 210Pb ex to apparent reductions in the ash content of channel deposits relative to hillslope sources resulted in its exclusion from the final analysis. No systematic change in the proportional source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the tracing analysis with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and fine sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Smith, Hugh; Sheridan, Gary; Nyman, Petter; Child, David; Lane, Patrick; Hotchkis, Michael
2013-04-01
The supply of fine sediment and ash has been identified as an important factor contributing to the initiation of runoff-generated debris flows after fire. However, despite the significance of fines for post-fire debris flow generation, no investigations have sought to quantify sources of this material in debris flow affected catchments. In this study, we employ fallout radionuclides (Cs-137, excess Pb-210 and Pu-239,240) as tracers to measure proportional contributions of fine sediment (<10 μm) from hillslope surface and channel bank sources to levee and terminal fan deposits formed by post-fire debris flows in two forest catchments in southeastern Australia. While Cs-137 and excess Pb-210 have been widely used in sediment tracing studies, application of Pu as a tracer represents a recent development and was limited to only one catchment. The estimated range in hillslope surface contributions of fine sediment to individual debris flow deposits in each catchment was 22-69% and 32-74%, respectively. No systematic change in the source contributions to debris flow deposits was observed with distance downstream from channel initiation points. Instead, spatial variability in source contributions was largely influenced by the pattern of debris flow surges forming the deposits. Linking the sediment tracing with interpretation of depositional evidence allowed reconstruction of temporal sequences in sediment source contributions to debris flow surges. Hillslope source inputs dominated most elevated channel deposits such as marginal levees that were formed under peak flow conditions. This indicated the importance of hillslope runoff and sediment supply for debris flow generation in both catchments. In contrast, material stored within channels that was deposited during subsequent surges was predominantly channel-derived. The results demonstrate that fallout radionuclide tracers may provide unique information on the changing source contributions of fine sediment during debris flow events.
NASA Astrophysics Data System (ADS)
Wasklewicz, T.; Scheinert, C.
2016-01-01
Channel change has been a constant theme throughout William L. Graf's research career. Graf's work has examined channel changes in the context of natural environmental fluctuations, but more often has focused on quantifying channel change in the context of anthropogenic modifications. Here, we consider how channelization of a debris flows along a bajada has perpetuated and sustained the development of 'telescoping' alluvial fan. Two-dimensional debris-flow modeling shows the importance of the deeply entrenched channelized flow in the development of a telescoping alluvial fan. GIS analyses of repeat (five different debris flows), high-resolution (5 cm) digital elevation models (DEMs) generated from repeat terrestrial laser scanning (TLS) data elucidate sediment and topographic dynamics of the new telescoping portion of the alluvial fan (the embryonic fan). Flow constriction from channelization helps to perpetuate debris-flow runout and to maintain the embryonic fan and telescoping nature of the alluvial fan complex. Embryonic fan development, in response to five debris flows, proceeds with a major portion of the flows depositing on the southern portion of the embryonic fan. The third through the fifth debris flows also begin to shift some deposition to the northern portion of the embryonic. The transfer of sediment from a higher portion of the embryonic fan to a lower portion continues currently on the embryonic fan. While channelized flow has been shown to be critical to the maintenance of the telescoping fan, the flow constriction has led to higher than background levels of sediment deposition in Chalk Creek, a tributary of the Arkansas River. A majority of the sediment from each debris flow is incorporated into Chalk Creek as opposed to being stored on the embryonic fan.
The Transportation of Debris by Running Water
Gilbert, Grove Karl; Murphy, Edward Charles
1914-01-01
Scope.-The finer debris transported by a stream is borne in suspension. The coarser is swept along the channel bed. The suspended load is readily sampled and estimated, and much is known as to its quantity. The bed load is inaccessible and we are without definite information as to its amount. The primary purpose of the investigation was to learn the laws which control the movement of bed load, and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the debris. Method.-To this end a laboratory was equipped at Berkeley, Cal., and experiments were performed in which each of the three conditions mentioned was separately varied and the resulting variations of load were observed and measured. Sand and gravel were sorted by sieves into grades of uniform size. Determinate discharges were used. In each experiment a specific load was fed to a stream of specific width and discharge, and measurement was made of the slope to which the stream automatically adjusted its bed so as to enable the current to transport the load. The slope factor.-For each combination of discharge, width, and grade of debris there is a slope, called competent slope, which limits transportation. With lower slopes there is no load, or the stream has no capacity for load. With higher slopes capacity exists; and increase of slope gives increase of capacity. The value of capacity is approximately proportional to a power of the excess of slope above competent slope. If S equal the stream's slope and sigma equal competent slope, then the stream's capacity varies as (S - sigma)n. This is not a deductive, but an empiric law. The exponent n has not a fixed value, but an indefinite series of values depending on conditions. Its range of values in the experience of the laboratory is from 0.93 to 2.37, the values being greater as the discharges are smaller or the debris is coarser. The discharge factor.-For each combination of width, slope, and grade of debris there is a competent discharge, k. Calling the stream's discharge Q, the stream's capacity varies as (Q - k)o. The observed range of values for o is from 0.81 to 1.24, the values being greater as the slopes are smaller or the debris is coarser. Under like conditions o is less than n; or, in other words, capacity is less sensitive to change3 of discharge than to changes of slope. The fineness factor.-For each combination of width, slope, and discharge there is a limiting fineness of debris below which no transportation takes place. Calling fineness (or degree of comminution) F and competent fineness o, the stream's capacity varies with (F - o)p. The observed range of values for p is from 0.50 to 0.62, the values being greater as slopes and discharges are smaller. Capacity is less sensitive to changes in fineness of debris than to changes in discharge or slope. The form factor.-Most of the experiments were with straight channels. A few with crooked channels yielded nearly the same estimates of capacity. The ratio of depth to width is a more important factor. For any combination of slope, discharge, and fineness it is possible to reduce capacity to zero by making the stream very wide and shallow or very narrow and deep. Between these extremes is a particular ratio of depth to width, p, corresponding to a maximum capacity. The values of p range, under laboratory conditions, from 0.5 to 0.04, being greater as slope, discharge, and fineness are less. Velocity.-The velocity which determines capacity for bed load is that near the stream's bed, but attempts to measure bed velocity were not successful. Mean velocity was measured instead. To make a definite comparison between capacity and mean velocity it is necessary to postulate constancy in some accessory condition. If slope be the constant, in which case velocity changes with discharge, capacity varies on the average with the 3.2 power of velocity. If discharge be the constant, in w
Fleming, R.W.; Ellen, S.D.; Algus, M.A.
1989-01-01
The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.
Surge dynamics coupled to pore-pressure evolution in debris flows
Savage, S.B.; Iverson, R.M.; ,
2003-01-01
Temporally and spatially varying pore-fluid pressures exert strong controls on debris-flow motion by mediating internal and basal friction at grain contacts. We analyze these effects by deriving a one-dimensional model of pore-pressure diffusion explicitly coupled to changes in debris-flow thickness. The new pore-pressure equation is combined with Iverson's (1997) extension of the depth-averaged Savage-Hutter (1989, 1991) granular avalanche equations to predict motion of unsteady debris-flow surges with evolving pore-pressure distributions. Computational results illustrate the profound effects of pore-pressure diffusivities on debris-flow surge depths and velocities. ?? 2003 Millpress,.
Donna B. Scheungrab; Carl C. Trettin; Russ Lea; Martin F. Jurgensen
2000-01-01
Woody debris can be defined as any dead, woody plant material, including logs, branches, standing dead trees, and root wads. Woody debris is an important part of forest and stream ecosystems because it has a role in carbon budgets and nutrient cycling, is a source of energy for aquatic ecosystems, provides habitat for terrestrial and aquatic organisms, and contributes...
John Wooster; Sue Hilton
2004-01-01
Large woody debris (LWD) was inventoried in 1999 in five streams where LWD was removed in the early 1980s, and no LWD has been artificially introduced since. All study sites are second order channels near the confluence of the South Fork and main-stem Eel River, California. Watershed contributing areas range from 4.7 to 17.4 km², and mean active channel widths...
NASA Astrophysics Data System (ADS)
Tsunetaka, Haruka; Hotta, Norifumi; Imaizumi, Fumitoshi; Hayakawa, Yuichi S.; Yumen, Noriki
2015-04-01
Large-scale sediment movements, such as a deep-seated landslide, not only induce immediate sediment disasters but also produce a large amount of unstable sediment upstream. Most of the unstable sediment residing in the upstream area is discharged as debris flow. Hence, after the occurrence of large-scale sediment movement, debris flows have a long-term effect on the watershed regime. However, the characteristics of debris flow in upstream areas are not well understood, due to the topographic and grain-size conditions that are more complicated than the downstream area. This study was performed to reveal the relationship between such a riverbed condition and the characteristics of debris flow by field observations. The study site was Ichinosawa-subwatershed in the Ohya-kuzure basin, Shizuoka Prefecture, Japan. The basin experienced a deep-seated landslide about 300 years ago and is currently actively yielding sediment with a clear annual cycle. During the winter season, sediment is deposited on the valley bottom by freeze-thaw and weathering. In the summer season, the deposited sediment is discharged incrementally by debris flows related to storm events. Topographical survey and grain-size analysis were performed several times between November 2011 and November 2014. High-resolution digital elevation models (10 cm) were created from the results of a topographical survey using a terrestrial laser scanner. A grain-size analysis was conducted in the upper, middle, and lower parts of the study site. Debris flow occurrences were also monitored in the same period by a sensor-triggered video camera and interval camera. Rainfall was observed during the summer season for comparison with debris flow occurrence. Several debris flows of different magnitudes were observed during the study period. Although heavy rainfall events altered the bed inclination, the thickness of deposited sediment, and the grain-size distribution, more significant changes were detected after the debris flow. While the initial grain-size distribution in early spring was roughly identical across the study site, the subsequent changes in the grain-size distribution differed according to location. The source, transport and deposition areas of the debris flows differed among rainfall events, resulting in different transitions in topographic conditions at different locations. Furthermore, surges of debris flow not only induced erosion-deposited sediment but also suspended and deposited sediment in the same area during one typhoon event. A comparison of the results indicated that, in addition to the conditions of the triggering rainfall, topographic and grain-size conditions affected the debris flow occurrence and magnitude. These interactions also showed that the magnitude and form of the succeeding debris flow could be dominant, depending on changing riverbed condition by past debris flows in upstream areas.
Coe, Jeffrey A.; Reid, Mark E.; Brien, Dainne L.; Michael, John A.
2011-01-01
To better understand controls on debris-flow entrainment and travel distance, we examined topographic and drainage network characteristics of initiation locations in two separate debris-flow prone areas located 700 km apart along the west coast of the U.S. One area was located in northern California, the other in southern Oregon. In both areas, debris flows mobilized from slides during large storms, but, when stratified by number of contributing initiation locations, median debris-flow travel distances in Oregon were 5 to 8 times longer than median distances in California. Debris flows in Oregon readily entrained channel material; entrainment in California was minimal. To elucidate this difference, we registered initiation locations to high-resolution airborne LiDAR, and then examined travel distances with respect to values of slope, upslope contributing area, planform curvature, distance from initiation locations to the drainage network, and number of initiation areas that contributed to flows. Results show distinct differences in the topographic and drainage network characteristics of debris-flow initiation locations between the two study areas. Slope and planform curvature of initiation locations (landslide headscarps), commonly used to predict landslide-prone areas, were not useful for predicting debris-flow travel distances. However, a positive, power-law relation exists between median debris-flow travel distance and the number of contributing debris-flow initiation locations. Moreover, contributing area and the proximity of the initiation locations to the drainage network both influenced travel distances, but proximity to the drainage network was the better predictor of travel distance. In both study areas, flows that interacted with the drainage network flowed significantly farther than those that did not. In California, initiation sites within 60 m of the network were likely to reach the network and generate longtraveled flows; in Oregon, the threshold was 80 m.
NASA Astrophysics Data System (ADS)
Shen, Yi; Diplas, Panayiotis
2008-01-01
SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.
NASA Astrophysics Data System (ADS)
Faizien Haza, Zainul
2018-03-01
Debris flows of lahar flows occurred in post mount eruption is a phenomenon in which large quantities of water, mud, and gravel flow down a stream at a high velocity. It is a second stage of danger after the first danger of lava flows, pyroclastic, and toxic gases. The debris flow of lahar flows has a high density and also high velocity; therefore it has potential detrimental consequences against homes, bridges, and infrastructures, as well as loss of life along its pathway. The collision event between lahar flows and pier of a bridge is observed. The condition is numerically simulated using commercial software of computational fluid dynamic (CFD). The work is also conducted in order to investigate drag force generated during collision. Rheological data of lahar is observed through laboratory test of lahar model as density and viscosity. These data were used as the input data of the CFD simulation. The numerical model is involving two types of fluid: mud and water, therefore multiphase model is adopted in the current CFD simulation. The problem formulation is referring to the constitutive equations of mass and momentum conservation for incompressible and viscous fluid, which in perspective of two dimension (2D). The simulation models describe the situation of the collision event between lahar flows and pier of a bridge. It provides sequential view images of lahar flow impaction and the propagation trend line of the drag force coefficient values. Lahar flow analysis used non-dimensional parameter of Reynolds number. According to the results of numerical simulations, the drag force coefficients are in range 1.23 to 1.48 those are generated by value of flow velocity in range 11.11 m/s to 16.67 m/s.
NASA Astrophysics Data System (ADS)
Gordon, R.; Lautz, L. K.; McKenzie, J. M.; Mark, B. G.; Chavez, D.
2013-12-01
Melting tropical glaciers supply approximately half of dry season stream discharge in glacierized valleys of the Cordillera Blanca, Peru. The remainder of streamflow originates as groundwater stored in alpine meadows, moraines and talus slopes. A better understanding of the dynamics of alpine groundwater, including sources and contributions to streamflow, is important for making accurate estimates of glacial inputs to the hydrologic budget, and for our ability to make predictions about future water resources as glaciers retreat. Our field study, conducted during the dry season in the Llanganuco valley, focused on a 0.5-km2 alpine meadow complex at 4400 m elevation, which includes talus slopes, terminal moraines, and a debris fan. Two glacial lakes and springs throughout the complex feed a network of stream channels that flow across the meadow (~2 km total length). We combined tracer measurements of stream and spring discharge and groundwater-surface water exchange with synoptic sampling of water isotopic and geochemical composition, in order to characterize and quantify contributions to streamflow from different geomorphic features. Surface water inputs to the stream channels totaled 58 l/s, while the stream gained an additional 57 l/s from groundwater inputs. Water chemistry is primarily controlled by flowpath type (surface/subsurface) and length, as well as bedrock lithology, while stable water isotopic composition appears to be controlled by water source (glacial lake, meadow or deep groundwater). Stream water chemistry is most similar to meadow groundwater springs, but isotopic composition suggests that the majority of stream water, which issues from springs at the meadow/fan interface, is from the same glacial source as the up-gradient lake. Groundwater sampled from piezometers in confined meadow aquifers is unique in both chemistry and isotopic composition, but does not contribute a large percentage of stream water exiting this small meadow, as quantified by discharge measurements and isotopic mixing. However, we expect that as streams flow down through extensive meadows and wetlands in many Cordillera Blanca valleys, meadow groundwater is a more significant contributor to streamflow. Results from this small, high meadow in Llanganuco will be compared to a larger and lower-elevation meadow system in the Quilcayhuanca valley.
Wildfire-related debris-flow initiation processes, Storm King Mountain, Colorado
Cannon, S.H.; Kirkham, R.M.; Parise, M.
2001-01-01
A torrential rainstorm on September 1, 1994 at the recently burned hillslopes of Storm King Mountain, CO, resulted in the generation of debris flows from every burned drainage basin. Maps (1:5000 scale) of bedrock and surficial materials and of the debris-flow paths, coupled with a 10-m Digital Elevation Model (DEM) of topography, are used to evaluate the processes that generated fire-related debris flows in this setting. These evaluations form the basis for a descriptive model for fire-related debris-flow initiation. The prominent paths left by the debris flows originated in 0- and 1st-order hollows or channels. Discrete soil-slip scars do not occur at the heads of these paths. Although 58 soil-slip scars were mapped on hillslopes in the burned basins, material derived from these soil slips accounted for only about 7% of the total volume of material deposited at canyon mouths. This fact, combined with observations of significant erosion of hillslope materials, suggests that a runoff-dominated process of progressive sediment entrainment by surface runoff, rather than infiltration-triggered failure of discrete soil slips, was the primary mechanism of debris-flow initiation. A paucity of channel incision, along with observations of extensive hillslope erosion, indicates that a significant proportion of material in the debris flows was derived from the hillslopes, with a smaller contribution from the channels. Because of the importance of runoff-dominated rather than infiltration-dominated processes in the generation of these fire-related debris flows, the runoff-contributing area that extends upslope from the point of debris-flow initiation to the drainage divide, and its gradient, becomes a critical constraint in debris-flow initiation. Slope-area thresholds for fire-related debris-flow initiation from Storm King Mountain are defined by functions of the form Acr(tan ??)3 = S, where Acr is the critical area extending upslope from the initiation location to the drainage divide, and tan ?? is its gradient. The thresholds vary with different materials. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lai, H.; Russell, C. T.; Wei, H.; Delzanno, G. L.; Connors, M. G.
2014-12-01
Near-Earth objects (NEOs) of tens of meters in diameter are difficult to detect by optical methods from the Earth but they result in the most damage per year. Many of these bodies are produced in non-destructive collisions with larger well-characterized NEOs. After generation, the debris spreads forward and backward in a cocoon around the orbit of the parent body. Thereafter, scattering will occur due to gravitational perturbations when the debris stream passes near a planet even when the parent body has no such close approaches. Therefore "safe" NEOs which have no close encounters to the Earth for thousands of years may be accompanied by potentially hazardous co-orbiting debris. We have developed a technique to identify co-orbiting debris by detecting the magnetic signature produced when some of the debris suffers destructive collisions with meteoroids, which are numerous and can be as small as tens of centimeters in diameter. Clouds of nanoscale dust/gas particles released in such collisions can interact coherently with the solar wind electromagnetically. The resultant magnetic perturbations are readily identified when they pass spacecraft equipped with magnetometers. We can use such observations to obtain the spatial and size distribution as well as temporal variation of the debris streams. A test of this technique has been performed and debris streams both leading and trailing asteroid 138175 have been identified. There is a finite spread across the original orbit and most of the co-orbitals were tens of meters in diameter before the disruptive collisions. We estimate that there were tens of thousands of such co-orbiting objects, comprising only 1% of the original mass of the parent asteroid but greatly increasing the impact hazard. A loss of the co-orbitals since 1970s has been inferred from observations with a decay time consistent with that calculated from the existing collisional model [Grün et al., 1985]. Therefore disruptive collisions are the main loss mechanism of the co-orbiting debris associated with 138175. In summary, our technique helps us to identify which NEOs are accompanied by hazardous debris trails. Although our technique provides only the statistical properties, it indicates where high resolution optical surveys should be obtained in order to identify and track specific hazardous bodies.
Staley, Dennis; Kean, Jason W.; Cannon, Susan H.; Schmidt, Kevin M.; Laber, Jayme L.
2012-01-01
Rainfall intensity–duration (ID) thresholds are commonly used to predict the temporal occurrence of debris flows and shallow landslides. Typically, thresholds are subjectively defined as the upper limit of peak rainstorm intensities that do not produce debris flows and landslides, or as the lower limit of peak rainstorm intensities that initiate debris flows and landslides. In addition, peak rainstorm intensities are often used to define thresholds, as data regarding the precise timing of debris flows and associated rainfall intensities are usually not available, and rainfall characteristics are often estimated from distant gauging locations. Here, we attempt to improve the performance of existing threshold-based predictions of post-fire debris-flow occurrence by utilizing data on the precise timing of debris flows relative to rainfall intensity, and develop an objective method to define the threshold intensities. We objectively defined the thresholds by maximizing the number of correct predictions of debris flow occurrence while minimizing the rate of both Type I (false positive) and Type II (false negative) errors. We identified that (1) there were statistically significant differences between peak storm and triggering intensities, (2) the objectively defined threshold model presents a better balance between predictive success, false alarms and failed alarms than previous subjectively defined thresholds, (3) thresholds based on measurements of rainfall intensity over shorter duration (≤60 min) are better predictors of post-fire debris-flow initiation than longer duration thresholds, and (4) the objectively defined thresholds were exceeded prior to the recorded time of debris flow at frequencies similar to or better than subjective thresholds. Our findings highlight the need to better constrain the timing and processes of initiation of landslides and debris flows for future threshold studies. In addition, the methods used to define rainfall thresholds in this study represent a computationally simple means of deriving critical values for other studies of nonlinear phenomena characterized by thresholds.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2003-01-01
These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.
McCoy, Scott W.; Coe, Jeffrey A.; Kean, Jason W.; Tucker, Greg E.; Staley, Dennis M.; Wasklewicz, Thad A.
2011-01-01
Debris flows initiated by surface-water runoff during short duration, moderate- to high-intensity rainfall are common in steep, rocky, and sparsely vegetated terrain. Yet large uncertainties remain about the potential for a flow to grow through entrainment of loose debris, which make formulation of accurate mechanical models of debris-flow routing difficult. Using a combination of in situ measurements of debris flow dynamics, video imagery, tracer rocks implanted with passive integrated transponders (PIT) and pre- and post-flow 2-cm resolution digital terrain models (terrain data presented in a companion paper by STALEY et alii, 2011), we investigated the entrainment and transport response of debris flows at Chalk Cliffs, CO, USA. Four monitored events during the summer of 2009 all initiated from surface-water runoff, generally less than an hour after the first measurable rain. Despite reach-scale morphology that remained relatively constant, the four flow events displayed a range of responses, from long-runout flows that entrained significant amounts of channel sediment and dammed the main-stem river, to smaller, short-runout flows that were primarily depositional in the upper basin. Tracer-rock travel-distance distributions for these events were bimodal; particles either remained immobile or they travelled the entire length of the catchment. The long-runout, large-entrainment flow differed from the other smaller flows by the following controlling factors: peak 10-minute rain intensity; duration of significant flow in the channel; and to a lesser extent, peak surge depth and velocity. Our growing database of natural debris-flow events can be used to develop linkages between observed debris-flow transport and entrainment responses and the controlling rainstorm characteristics and flow properties.
Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.
2016-06-30
Wildfire can significantly alter the hydrologic response of a watershed to the extent that even modest rainstorms can generate dangerous flash floods and debris flows. To reduce public exposure to hazard, the U.S. Geological Survey produces post-fire debris-flow hazard assessments for select fires in the western United States. We use publicly available geospatial data describing basin morphology, burn severity, soil properties, and rainfall characteristics to estimate the statistical likelihood that debris flows will occur in response to a storm of a given rainfall intensity. Using an empirical database and refined geospatial analysis methods, we defined new equations for the prediction of debris-flow likelihood using logistic regression methods. We showed that the new logistic regression model outperformed previous models used to predict debris-flow likelihood.
Differentiation of debris-flow and flash-flood deposits: implications for paleoflood investigations
Waythomas, Christopher F.; Jarrett, Robert D.; ,
1993-01-01
Debris flows and flash floods are common geomorphic processes in the Colorado Rocky Mountain Front Range and foothills. Usually, debris flows and flash floods are associated with excess summer rainfall or snowmelt, in areas were unconsolidated surficial deposits are relatively thick and slopes are steep. In the Front Range and foothills, flash flooding is limited to areas below about 2300m whereas, debris flow activity is common throughout the foothill and alpine zones and is not necessarily elevation limited. Because flash floods and debris flows transport large quantities of bouldery sediment, the resulting deposits appear somewhat similar even though such deposits were produced by different processes. Discharge estimates based on debris-flow deposits interpreted as flash-flood deposits have large errors because techniques for discharge retrodiction were developed for water floods with negligible sediment concentrations. Criteria for differentiating between debris-flow and flash-flood deposits are most useful for deposits that are fresh and well-exposed. However, with the passage of time, both debris-flow and flash-flood deposits become modified by the combined effects of weathering, colluviation, changes in surface morphology, and in some instances removal of interstitial sediment. As a result, some of the physical characteristics of the deposits become more alike. Criteria especially applicable to older deposits are needed. We differentiate flash-flood from debris-flow and other deposits using clast fabric measurements and other morphologic and sedimentologic techniques (e.g., deposit morphology, clast lithology, particle size and shape, geomorphic setting).
Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria
NASA Astrophysics Data System (ADS)
Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland
2017-04-01
Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.
NASA Technical Reports Server (NTRS)
Rudd, Lawrence; Merenyi, Erzsebet
2004-01-01
Worldwide debris flows destroy property and take human lives every year (Costa, 1984). As a result of extensive property damage and loss of life there is a pressing need to go beyond just describing the nature and extent of debris flows as they occur. Most of the research into debris-flow initiation has centered on rainfall, slope angle, and existing debris-flow deposits (Costa and Wieczorek, 1987). The factor of source lithology has been recently addressed by studies in the sedimentary terranes of Grand Canyon (Webb et al., 1996; Griffiths et al., 1996) and on the Colorado Plateau as a whole.3 On the Colorado Plateau shales dominated by kaolinite and illite clays are significantly more likely to be recent producers of debris-flows than are shales in which smectite clays dominate.3 Establishing the location of shales and colluvial deposits containing kaolinite and illite clays in sedimentary terranes on the Colorado Plateau is essential to predicting where debris flows are likely to occur. AVIRIS imagery can be used to distinguish between types of clay minerals (Chabrillat et al., 2001), providing the basis for surface-materials maps. The ultimate product of this study will be a model that can be used to estimate the debris-flow hazard in Cataract Canyon, Utah. This model will be based on GIS overlay analysis of debris-flow initiation factor maps, including surface-materials maps derived from AVIRIS data.
Spin Dependence in Tidal Disruption Events
NASA Astrophysics Data System (ADS)
Kesden, Michael; Stone, Nicholas; van Velzen, Sjoert
2018-01-01
A supermassive black hole (SBH) can tidally disrupt stars when its tidal field overwhelms the stars’ self-gravity. The stellar debris produced in such tidal disruption events (TDEs) evolves into tidal streams that can self-intersect. These inelastic stream collisions dissipate orbital energy, both circularizing the tidal stream and contributing to the emission observed during the TDE. Once circularized into a disk, the stellar debris can be viscously accreted by the SBH powering additional luminous emission. We explore how SBH spin can affect the tidal disruption process. Tidal forces are spin dependent, as is the minimum orbital angular momentum below which stars are directly captured by the SBH. This implies that the TDE rate will be spin dependent, particularly for more massive SBHs for which relativistic effects are more significant. SBH spin also affects TDE light curves through the initial debris orbits, the nature of the stream collisions, the viscous evolution of the accretion disk, and the possibility of launching jets. We explore the spin dependence of these phenomena to identify promising signatures for upcoming surveys expected to discover hundreds of TDE candidates in the next decade.
GIS-based modeling of debris flow processes in an Alpine catchment, Antholz valley, Italy
NASA Astrophysics Data System (ADS)
Sandmeier, Christine; Damm, Bodo; Terhorst, Birgit
2010-05-01
Debris flows are frequent natural hazards in mountain regions, which seriously can threat human lives and economic values. In the European Alps the occurrence of debris flows might even increase with respect to climate change, including permafrost degradation, glacier retreat and variable precipitation patterns. Thus, detailed understanding of process parameters and spatial distribution of debris flows is necessary to take appropriate protection measures for risk assessment. In this context, numerical models have been developed and applied successfully for simulation and prediction of debris-flow hazards and related process areas. In our study a GIS-based model is applied in an alpine catchment to address the following questions: Where are potential initiating areas of debris flows? How much material can be mobilized? What is the influence of topography and precipitation? The study area is located in the Antholz valley in the eastern Alps of Northern Italy. The investigated catchment of the Klammbach creek comprises 6.5 km² and is divided into two sub-catchments. Geologically it is dominated by metamorphic rock and altitudes range between 1310 and 3270 m. In summer 2005 a debris flow of more than 100000 m³ took place, originating from a steep, sparsely vegetated debris cone in the western part of the catchment. According to a regional study, the lower permafrost boundary in this area has risen by 250 m. In a first step, during a field survey, geomorphological mapping was performed, several channel cross-sections were measured and sediment samples were taken. Using mapping results and aerial images, a geomorphological map was created. In further steps, results from the field work, the geomorphological map and existing digital data sets, including a digital elevation model with 2.5 m resolution, are used to derive input data for the modeling of debris flow processes. The model framework ‘r.debrisflow' based on GRASS GIS is applied (Mergili, 2008*), as it is capable of simulating the potential spatial patterns of debris flow deposition, as well as their initiation and movement. Furthermore it is a freely available and opensource software and can thus be improved and extended. ‘r.debrisflow' couples a hydraulic, a slope stability, a sediment transport and a debris flow runout model, which are combined differently in 6 simulation modes. In a first step, model parameters are calibrated using the runout only mode with known parameters of the 2005 debris flow. Finally, the full mode will be used to evaluate the debris-flow potential of the whole catchment. First results from the geomorphological mapping reveal numerous surface forms, like levees, debris flow lobes or scars that indicate past and recent debris flow activity in the area. In both sub-catchments, there are large areas of unconsolidated, sparsely or unvegetated sediments, surrounded by high rock walls, which conduct precipitation rapidly into the debris. The two sub-catchments, however, have different topographic characteristics, which can be analyzed with the model in more detail. In a next step, the potential starting areas of future debris flows shall be identified and the potential amount of mobilized material shall be estimated by the model. *Mergili, M. (2008): Integrated modelling of debris flows with Open Source GIS. Ph.D. thesis. University of Innsbruck. http://www.uibk.ac.at/geographie/personal/mergili/dissertation.pdf
Wildfire impacts on the processes that generate debris flows in burned watersheds
Parise, M.; Cannon, S.H.
2012-01-01
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events. ?? 2011 Springer Science+Business Media B.V.
Coe, Jeffrey A.; Michael, John A.; Burgos, Marianela Mercado
2011-01-01
This 1:12,000-scale map shows an inventory of debris flows caused by rainfall during 1996 in a 94.4 km2 area in the southern Coast Range of Oregon. This map and associated digital data are part of a larger U.S. Geological Survey study of debris flows in the southern Coast Range. Available evidence indicates that the flows were triggered by a rain storm that occurred between November 17 and 19. The closest rain gage in the Coast Range (Goodwin Peak) recorded 245 mm during the storm. Maximum rainfall intensity during the storm was 13.2 mm/hr on November 18. Debris flows were photogrammetrically mapped from 1:12,000-scale aerial photographs flown in May, 1997. The inventory is presented on imagery derived from LiDAR data acquired in 2008. We classified mapped debris flows into four categories based on the type of debris-flow activity: (1) discrete slide source areas, (2) predominantly erosion, (3) predominantly transport or mixed erosion and deposition, and (4) predominantly deposition. Locations of woody-debris jams are also shown on the map. The area encompassed by debris flows is 2.1 percent of the 94.4 km2 map area.
NASA Astrophysics Data System (ADS)
Bardou, E.
The triggering of debris flows is a complex phenomenon in which rainfall amount and intensity, antecedent moisture, temperature, etc., play a part. Some interesting observations were made during the October 2000 bad weather, particularly about the effects of the 0C isotherm's rise. First, a map showing the differential rise of the 0C isotherm was drawn. The com- puter performed interpolation was manually corrected to reflect as well as possible the effects of the topography. In parallel, the major part of the territory of the canton of Valais was surveyed, and relative intensities of debris flows were estimated. This means that we took even into account debris flows which didn't cause damages. In concrete terms, the magnitude of the October 2000 events were compared to the size of the older ones (or to the tracks of the past events). Assuming that the climatic situ- ation was an extreme one, we divided the debris flows in 3 classes: debris flows with an abnormal high magnitude, debris flows with an abnormal low magnitude, and de- bris flows with a normal magnitude. Then we compared the relative magnitude of the debris flows with the intensity of the 0C isotherm's rise on the same area. The results show a good agreement between these two parameters. Thus, the 0C isotherm's rise is a new parameter to be taken into account for the assessment of the debris flow's hazard. The present study gives new possibilities for watershed's monitoring.
The perfect debris flow? Aggregated results from 28 large-scale experiments
Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Berti, Matteo
2010-01-01
Aggregation of data collected in 28 controlled experiments reveals reproducible debris-flow behavior that provides a clear target for model tests. In each experiment ∼10 m3 of unsorted, water-saturated sediment composed mostly of sand and gravel discharged from behind a gate, descended a steep, 95-m flume, and formed a deposit on a nearly horizontal runout surface. Experiment subsets were distinguished by differing basal boundary conditions (1 versus 16 mm roughness heights) and sediment mud contents (1 versus 7 percent dry weight). Sensor measurements of evolving flow thicknesses, basal normal stresses, and basal pore fluid pressures demonstrate that debris flows in all subsets developed dilated, coarse-grained, high-friction snouts, followed by bodies of nearly liquefied, finer-grained debris. Mud enhanced flow mobility by maintaining high pore pressures in flow bodies, and bed roughness reduced flow speeds but not distances of flow runout. Roughness had these effects because it promoted debris agitation and grain-size segregation, and thereby aided growth of lateral levees that channelized flow. Grain-size segregation also contributed to development of ubiquitous roll waves, which had diverse amplitudes exhibiting fractal number-size distributions. Despite the influence of these waves and other sources of dispersion, the aggregated data have well-defined patterns that help constrain individual terms in a depth-averaged debris-flow model. The patterns imply that local flow resistance evolved together with global flow dynamics, contradicting the hypothesis that any consistent rheology applied. We infer that new evolution equations, not new rheologies, are needed to explain how characteristic debris-flow behavior emerges from the interactions of debris constituents.
Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.
2007-01-01
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data from the pre-construction and initial post-construction phases are presented in this report. ?? 2007 ASCE.
O'Connor, J. E.; Hardison, J.H.; Costa, J.E.
2001-01-01
The highest concentration of lakes dammed by Neoglacial moraines in the conterminous United States is in the Mount Jefferson and Three Sisters Wilderness Areas in central Oregon. Between 1930 and 1980, breakouts of these lakes have resulted in 11 debris flows. The settings and sequences of events leading to breaching and the downstream flow behavior of the resulting debris flows provide guidance on the likelihood and magnitude of future lake breakouts and debris flows.
Slope failure as an upslope source of stream wood
Daniel Miller
2013-01-01
Large woody debris is recognized as an important component of stream geomorphology and stream ecosystem function, and forest-land management is recognized as an important control on the quantity (and size and species distributions) of wood available for recruitment to streams. Much of the wood present in streams comes from adjacent forests, and riparian management...
Connolly, P.J.; Jezorek, I.G.; Prentice, E.F.
2005-01-01
We have developed detector systems for fish implanted with Passive Integrated Transponder (PIT) tags to assess their movement behavior and habitat use within fast flowing streams. Fish tested have primarily been wild anadromous and resident forms of rainbow trout Oncorhynchus mykiss and cutthroat trout O. clarki. Longitudinal arrangements of two- and six-antennas allow determination of direction of movement and efficiency of detection. Our first detector system became operational in August 2001, with subsequent improvements over time. In tests with a two-antenna system, detection efficiency of tagged, downstreammoving fish was high (96%) during low flows, but less (69%) during high flows. With an increase in the number of antennas to six, arranged in a 2x3 array, the detection efficiency of downstream-moving fish was increased to 95-100% at all flows. Detection efficiency of upstream-moving fish was high (95-100%) in both the two-and six-antenna system during all flows. Antennas were anchored to the substrate and largely spanned the bank-full width. Modifications to the methods used to anchor antennas have increased the likelihood of the system remaining intact and running at full detection capability during challenging flow and debris conditions, largely achieving our goal to have continuous monitoring of fish movement throughout an annual cycle. In August 2004, we placed a similar detector system in another watershed. Success has much relied on the quality of transceivers and electrical power. Detection of tagged fish passing our static PIT-tag detectors has produced valuable information on how selected fish species use the network of streams in a watershed. Integrating information from our detectors in tributary streams with that from detectors downstream at dams in the Columbia River has promise to be a powerful tool for monitoring movement patterns of anadromous fish species and to understanding full lifecycle fish behavior and habitat use.
Woody debris transport modelling by a coupled DE-SW approach
NASA Astrophysics Data System (ADS)
Persi, Elisabetta; Petaccia, Gabriella; Sibilla, Stefano
2016-04-01
The presence of wood in rivers is gaining more and more attention: on one side, the inclusion of woody debris in streams is emphasized for its ecological benefits; on the other hand, particular attention must be paid to its management, not to affect hydraulic safety. Recent events have shown that wood can be mobilized during floodings (Comiti et al. 2008, Lange and Bezzola 2006), aggravating inundations, in particular near urban areas. For this reason, the inclusion of woody debris influence on the prediction of flooded areas is an important step toward the reduction of hydraulic risk. Numerical modelling plays an important role to this purpose. Ruiz-Villanueva et al. (2014) use a two-dimensional numerical model to calculate the kinetics of cylindrical woody debris transport, taking into account also the hydrodynamic effects of wood. The model here presented couples a Discrete Element approach (DE) for the calculation of motion of a cylindrical log with the solution of the Shallow Water Equations (SW), in order to simulate woody debris transport in a two-dimensional stream. In a first step, drag force, added mass force and side force are calculated from flow and log velocities, assuming a reference area and hydrodynamic coefficients taken from literature. Then, the equations of dynamics are solved to model the planar roto-translation of the wooden cylinder. Model results and its physical reliability are clearly affected by the values of the drag and side coefficients, which in turn depend upon log submergence and angle towards the flow direction. Experimental studies to evaluate drag and side coefficients can be found for a submerged cylinder, with various orientations (Gippel et al. 1996; Hoang et al. 2015). To extend such results to the case of a floating (non-totally submerged) cylinder, the authors performed a series of laboratory tests whose outcomes are implemented in the proposed DE-SW model, to assess the effects of these values on the dynamic of woody debris motion. References Comiti, F. et al., 2008. Large wood and flash floods: Evidence from the 2007 event in the Davča basin (Slovenia). WIT Transactions on Engineering Sciences, 60, pp.173-182. Gippel, C.J. et al., 1996. Hydraulic Guidelines for the Re-Introduction and Management of Large Woody Debris in Lowland Rivers. Regulated Rivers: Research & Management, 12, pp.223-236. Available at: http://doi.wiley.com/10.1002/(SICI)1099-1646(199603)12:2/3<223::AID-RRR391>3.3.CO;2-R. Hoang, M.C., Laneville, A. & Légeron, F., 2015. Experimental study on aerodynamic coefficients of yawed cylinders. Journal of Fluids and Structures, 54, pp.597-611. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0889974615000067. Lange, D. & Bezzola, G.R., 2006. Schwemmholz-Probleme und Lösungsansätze. Mitteilungen, 188. Ruiz-Villanueva, V. et al., 2014. Two-dimensional numerical modeling of wood transport. Journal of Hydroinformatics, 16(5), p.1077. Available at: http://www.iwaponline.com/jh/016/jh0161077.htm.
Probabilistic forecasts of debris-flow hazard at the regional scale with a combination of models.
NASA Astrophysics Data System (ADS)
Malet, Jean-Philippe; Remaître, Alexandre
2015-04-01
Debris flows are one of the many active slope-forming processes in the French Alps, where rugged and steep slopes mantled by various slope deposits offer a great potential for triggering hazardous events. A quantitative assessment of debris-flow hazard requires the estimation, in a probabilistic framework, of the spatial probability of occurrence of source areas, the spatial probability of runout areas, the temporal frequency of events, and their intensity. The main objective of this research is to propose a pipeline for the estimation of these quantities at the region scale using a chain of debris-flow models. The work uses the experimental site of the Barcelonnette Basin (South French Alps), where 26 active torrents have produced more than 150 debris-flow events since 1850 to develop and validate the methodology. First, a susceptibility assessment is performed to identify the debris-flow prone source areas. The most frequently used approach is the combination of environmental factors with GIS procedures and statistical techniques, integrating or not, detailed event inventories. Based on a 5m-DEM and derivatives, and information on slope lithology, engineering soils and landcover, the possible source areas are identified with a statistical logistic regression model. The performance of the statistical model is evaluated with the observed distribution of debris-flow events recorded after 1850 in the study area. The source areas in the three most active torrents (Riou-Bourdoux, Faucon, Sanières) are well identified by the model. Results are less convincing for three other active torrents (Bourget, La Valette and Riou-Chanal); this could be related to the type of debris-flow triggering mechanism as the model seems to better spot the open slope debris-flow source areas (e.g. scree slopes), but appears to be less efficient for the identification of landslide-induced debris flows. Second, a susceptibility assessment is performed to estimate the possible runout distance with a process-based model. The MassMov-2D code is a two-dimensional model of mud and debris flow dynamics over complex topography, based on a numerical integration of the depth-averaged motion equations using shallow water approximation. The run-out simulations are performed for the most active torrents. The performance of the model has been evaluated by comparing modelling results with the observed spreading areas of several recent debris flows. Existing data on the debris flow volume, input discharge and deposits were used to back-analyze those events and estimate the values of the model parameters. Third, hazard is estimated on the basis of scenarios computed in a probabilistic way, for volumes in the range 20'000 to 350'000 m3, and for several combinations of rheological parameters. In most cases, the simulations indicate that the debris flows cause significant overflowing on the alluvial fans for volumes exceeding 100'000 m3 (height of deposits > 2 m, velocities > 5 m.s-1). Probabilities of debris flow runout and debris flow intensities are then computed for each terrain units.
A debris avalanche at Forest Falls, San Bernardino County, California, July 11, 1999
Morton, Douglas M.; Hauser, Rachel M.
2001-01-01
This publication consists of the online version of a CD-ROM publication, U.S. Geological Survey Open-File Report 01-146. The data for this publication total 557 MB on the CD-ROM. For speed of transfer, the main PDF document has been compressed (with a subsequent loss of image quality) from 145 to 18.1 MB. The community of Forest Falls, California, is frequently subject to relatively slow moving debris flows. Some 11 debris flow events that were destructive to property have been recorded between 1955 and 1998. On July 11 and 13, 1999, debris flows again occurred, produced by high-intensity, short-duration monsoon rains. Unlike previous debris flow events, the July 11 rainfall generated a high-velocity debris avalanche in Snow Creek, one of the several creeks crossing the composite, debris flow dominated, alluvial fan on which Forest Falls is located. This debris avalanche overshot the bank of the active debris flow channel of Snow Creek, destroying property in the near vicinity and taking a life. The minimum velocity of this avalanche is calculated to have been in the range of 40 to 55 miles per hour. Impact from high-velocity boulders removed trees where the avalanche overshot the channel bank. Further down the fan, the rapidly moving debris fragmented the outer parts of the upslope side of large pine trees and embedded rock fragments into the tree trunks. Unlike the characteristic deposits formed by debris flows, the avalanche spread out down-slope and left no deposit suggestive of a debris avalanche. This summer monsoon-generated debris avalanche is apparently the first recorded for Forest Falls. The best indications of past debris avalanches may be the degree of permanent scars produced by extensive abrasion and splintering of the outer parts of pine trees that were in the path of an avalanche.
NASA Astrophysics Data System (ADS)
Blais-Stevens, A.; Behnia, P.
2016-02-01
This research activity aimed at reducing risk to infrastructure, such as a proposed pipeline route roughly parallel to the Yukon Alaska Highway Corridor (YAHC), by filling geoscience knowledge gaps in geohazards. Hence, the Geological Survey of Canada compiled an inventory of landslides including debris flow deposits, which were subsequently used to validate two different debris flow susceptibility models. A qualitative heuristic debris flow susceptibility model was produced for the northern region of the YAHC, from Kluane Lake to the Alaska border, by integrating data layers with assigned weights and class ratings. These were slope angle, slope aspect, surficial geology, plan curvature, and proximity to drainage system. Validation of the model was carried out by calculating a success rate curve which revealed a good correlation with the susceptibility model and the debris flow deposit inventory compiled from air photos, high-resolution satellite imagery, and field verification. In addition, the quantitative Flow-R method was tested in order to define the potential source and debris flow susceptibility for the southern region of Kluane Lake, an area where documented debris flow events have blocked the highway in the past (e.g. 1988). Trial and error calculations were required for this method because there was not detailed information on the debris flows for the YAHC to allow us to define threshold values for some parameters when calculating source areas, spreading, and runout distance. Nevertheless, correlation with known documented events helped define these parameters and produce a map that captures most of the known events and displays debris flow susceptibility in other, usually smaller, steep channels that had not been previously documented.
NASA Astrophysics Data System (ADS)
Blais-Stevens, A.; Behnia, P.
2015-05-01
This research activity aimed at reducing risk to infrastructure, such as a proposed pipeline route roughly parallel to the Yukon Alaska Highway Corridor (YAHC) by filling geoscience knowledge gaps in geohazards. Hence, the Geological Survey of Canada compiled an inventory of landslides including debris flow deposits, which were subsequently used to validate two different debris flow susceptibility models. A qualitative heuristic debris flow susceptibility model was produced for the northern region of the YAHC, from Kluane Lake to the Alaska border, by integrating data layers with assigned weights and class ratings. These were slope angle, slope aspect (derived from a 5 m × 5 m DEM), surficial geology, permafrost distribution, and proximity to drainage system. Validation of the model was carried out by calculating a success rate curve which revealed a good correlation with the susceptibility model and the debris flow deposit inventory compiled from air photos, high resolution satellite imagery, and field verification. In addition, the quantitative Flow-R method was tested in order to define the potential source and debris flow susceptibility for the southern region of Kluane Lake, an area where documented debris flow events have blocked the highway in the past (e.g., 1988). Trial and error calculations were required for this method because there was not detailed information on the debris flows for the YAHC to allow us to define threshold values for some parameters when calculating source areas, spreading, and runout distance. Nevertheless, correlation with known documented events helped define these parameters and produce a map that captures most of the known events and displays debris flow susceptibility in other, usually smaller, steep channels that had not been previously documented.
Verdin, Kristine L.; Dupree, Jean A.; Stevens, Michael R.
2013-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2013 West Fork Fire Complex near South Fork in southwestern Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence, potential volume of debris flows, and the combined debris-flow hazard ranking along the drainage network within and just downstream from the burned area, and to estimate the same for 54 drainage basins of interest within the perimeter of the burned area. Input data for the debris-flow models included topographic variables, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm; (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm; and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm. Estimated debris-flow probabilities at the pour points of the 54 drainage basins of interest ranged from less than 1 to 65 percent in response to the 2-year storm; from 1 to 77 percent in response to the 10-year storm; and from 1 to 83 percent in response to the 25-year storm. Twelve of the 54 drainage basins of interest have a 30-percent probability or greater of producing a debris flow in response to the 25-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 2,400 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages also were predicted to produce substantial debris flows. One of the 54 drainage basins of interest had the highest combined hazard ranking, while 9 other basins had the second highest combined hazard ranking. Of these 10 basins with the 2 highest combined hazard rankings, 7 basins had predicted debris-flow volumes exceeding 100,000 cubic meters, while 3 had predicted probabilities of debris flows exceeding 60 percent. The 10 basins with high combined hazard ranking include 3 tributaries in the headwaters of Trout Creek, four tributaries to the West Fork San Juan River, Hope Creek draining toward a county road on the eastern edge of the burn, Lake Fork draining to U.S. Highway 160, and Leopard Creek on the northern edge of the burn. The probabilities and volumes for the modeled storms indicate a potential for debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located within and immediately downstream from the burned area. U.S. Highway 160, on the eastern edge of the burn area, also is susceptible to impacts from debris flows.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
Thirty-one years of debris-flow observation and monitoring near La Honda, California, USA
Wieczorek, G.F.; Wilson, R.C.; Ellen, S.D.; Reid, M.E.; Jayko, A.S.
2007-01-01
From 1975 until 2006,18 intense storms triggered at least 248 debris flows within 10 km2 northwest of the town of La Honda within the Santa Cruz Mountains, California. In addition to mapping debris flows and other types of landslides, studies included soil sampling and geologic mapping, piezometric and tensiometer monitoring, and rainfall measurement and recording. From 1985 until 1995, a system with radio telemetered rain gages and piezometers within the La Honda region was used for issuing six debris-flow warnings within the San Francisco Bay region through the NOAA ALERT system. Depending upon the relative intensity of rainfall during storms, debris flows were generated from deep slumps, shallow slumps, shallow slides in colluvium and shallow slides over bedrock. Analysis shows the storms with abundant antecedent rainfall followed by several days of steady heavy intense rainfall triggered the most abundant debris flows. ?? 2007 millpress.
The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations
Pujolar, José Martin; Vincenzi, Simone; Zane, Lorenzo; Jesensek, Dusan; De Leo, Giulio A.; Crivelli, Alain J.
2011-01-01
A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change. PMID:21931617
Earth Observations taken by the Expedition 16 Crew
2007-11-22
ISS016-E-012047 (22 Nov. 2007) --- Tyndall Glacier, located in the Torres del Paine National Park in Chile, is featured in this image photographed by an Expedition 16 crewmember on the International Space Station. This glacier, which has a measured total area of 331 square kilometers and length of 32 kilometers (1996 measurements), begins in the Patagonian Andes Mountains to the west and terminates in Lago Geikie. A medial moraine is visible in the center of the glacier, extending along its length (center left). These accumulations of soil and rock debris form along the edges of a glacier as it flows downhill across the landscape (much like a snowplow builds ridges of snow along the roadside). Glaciers flowing downslope through adjacent feeder valleys merge when they encounter each other, and debris entrained along their sides becomes concentrated in the central portion of the new combined ice mass -- much as small streams join to form a river. Crevasse fields are also visible in the image. The crevasses -- small, but potentially quite deep fissures -- form as a result of stress between slower- and faster-moving ice within the glacier. Crevasse fields on Tyndall Glacier are most evident near rock promontories extending into the glacier -- causing the ice to slow as it flows around the obstruction.
NASA Astrophysics Data System (ADS)
Traper, Sandra; Pöppl, Ronald; Rascher, Eric; Sass, Oliver
2016-04-01
In recent times different types of natural disasters like debris flow events have attracted increasing attention worldwide, since they can cause great damage and loss of infrastructure or even lives is not unusual when it comes to such an event. The engagement with debris flows is especially important in mountainous areas like Austria, since Alpine regions have proved to be particularly prone to the often harmful consequences of such events because of increasing settlement of previously uninhabited regions. Due to those frequently damaging effects of debris flows, research on this kind of natural disaster often focuses on mitigation and recovery measures after an event and on how to restore the initial situation. However, a view on the situation of an area, where severe debris flows recently occurred and are well documented, before the actual event can aid in discovering important preparatory factors that contribute to initiating debris flows and hillslope-channel connectivity in the first place. Valuable insights into the functioning and preconditions of debris flows and their potential connectivity to the main channel can be gained. The study focuses on two geologically different areas in the Austrian Alps, which are both prone to debris flows and have experienced rather severe events recently. Based on data from debris flow events in two regions in Styria (Austria), the Kleinsölk and the Johnsbach valleys, the aim of the study is to identify factors which influence the development of debris flows and the potential of such debris flows to reach the main channel potentially clogging up the river (hillslope-channel connectivity). The degree of hillslope-channel coupling was verified in extensive TLS and ALS surveys, resulting in DEMs of different resolution and spatial extension. Those factors are obtained, analyzed and evaluated with DEM-based GIS- and statistical analyses. These include factors that are attributed to catchment topography, such as slope angle, curvature, size, shape as well as topographic channel parameters. Together with factors of land cover/use and lithology those features provide the independent variables for further statistical analyses. With the help of several logistic regressions the likelihoods of influencing topographical and lithological factors and factors of land cover/use leading to debris flow events and those for debris flows to reach the main channel (hillslope-channel connectivity) are computed. First results will be presented at the EGU General Assembly 2016.
NASA Astrophysics Data System (ADS)
Dietrich, Andreas; Krautblatter, Michael
2016-04-01
From 1950 to 2011 almost 80.000 people lost their lives through the occurrence of debris flow events (Dowling and Santi, 2014). Debris flows occur in all alpine regions due to intensive rainstorms and mobilisable loose debris. Due to their susceptible lithology, the Northern Calcareous Alps are affected by a double digit number of major hazard events per year. Some authors hypothesised a relation between an increasing frequency of heavy rainstorms and an increasing occurrence of landslides in general (Beniston and Douglas, 1996) and debris flows in special (Pelfini and Santilli, 2008), but yet there is only limited evidence. The Plansee catchment in the Ammergauer Alps consists of intensely jointed Upper Triassic Hauptdolomit lithology and therefore shows extreme debris flow activity. To investigate this activity in the last decades, the temporal and spatial development of eight active debris flow fans is examined with GIS and field mapping. The annual rates since the late 1940s are inferred accurately by using aerial photos from 1947, 1952, 1971, 1979, 1987, 2000 and 2010. These rates are compared to the mean Holocene/Lateglacial debris flow volume derived from the most prominent cone. The contact with the underlying till is revealed by electrical resistivity tomography (ERT). It shows that the mean annual debris flow volume has increased there by a factor of 10 from 1947-1952 (0.23 ± 0.07 10³m³/yr) to 1987-2000 (2.41 ± 0.66 10³m³/yr). A similar trend can be seen on all eight fans: mean post-1980 rates exceed pre-1980 rates by a factor of more than three. This increasing debris flow activity coincides with an enhanced rainstorm (def. 35 mm/d) frequency recorded at the nearest meteorological station. Since 1921 the frequency of heavy rainstorms has increased there on average by 10% per decade. Recent debris flow rates are also 2-3 times higher compared to mean Holocene/Lateglacial rates. Furthermore, we state a strong correlation between the non-vegetated catchment area and the annual debris flow volume. This might indicate a decadal positive feedback between enhanced rainstorm frequency and the occurrence of debris flows. The study contributes to a better understanding of the sensitivity of alpine catchments to heavy rainfall events in the context of climate change. Beniston, M., Douglas, G.F., 1996. Impacts of climate change on mountain regions. In: Watson, R.T., Zinyowera, M.C., Moss, R.H., Dokken, D.J. (Eds.), Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analysis. Cambridge Univ. Press, Cambridge, pp. 191-213. Dowling, C.A., Santi, P.M., 2014. Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 71, 203-227. doi: 10.1007/s11069-013-0907-4 Pelfini, M., Santilli, M., 2008. Frequency of debris flows and their relation with precipitation: A case study in the Central Alps, Italy. Geomorphology 101, 721-730. doi:10.1016/j.geomorph.2008.04.002
Generation of Martian chaos and channels by debris flows
NASA Technical Reports Server (NTRS)
Nummedal, D.; Prior, D. B.
1981-01-01
A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.
Simple measures of channel habitat complexity predict transient hydraulic storage in streams
Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2004-01-01
Results of a present preliminary assessment of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris flows issuing from basins burned by the Padua Fire of October 2003 in southern California in response to 25-year, 10-year, and 2-year recurrence, 1-hour duration rain storms are presented. The resulting probability maps are based on the application of a logistic multiple-regression model (Cannon and others, 2004) that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients, and storm rainfall. The resulting peak discharge maps are based on application of a multiple-regression model (Cannon and others, 2004) that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Padua Fire range between 0 and 99% and estimates of debris-flow peak discharges range between 1211 and 6,096 ft3/s (34 to 173 m3/s). These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.
Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams
1995-06-01
Cheesman, a masters student at the University of Nottingham. 0 3 L 2 LITERATURE REVIEW 2.1 IINTRODUCTION In a literature review of published material ...loading or biological factors (death and fitter f&il (Keller, 1979)); or from inside the channel, through erosion S and flotation of material (Hogan, 1987...move material , but in larger streams distinct jams may form, while in even larger rivers debris UJ may never accumulate because it is carried away
NASA Astrophysics Data System (ADS)
George, D. L.; Iverson, R. M.
2012-12-01
Numerically simulating debris-flow motion presents many challenges due to the complicated physics of flowing granular-fluid mixtures, the diversity of spatial scales (ranging from a characteristic particle size to the extent of the debris flow deposit), and the unpredictability of the flow domain prior to a simulation. Accurately predicting debris-flows requires models that are complex enough to represent the dominant effects of granular-fluid interaction, while remaining mathematically and computationally tractable. We have developed a two-phase depth-averaged mathematical model for debris-flow initiation and subsequent motion. Additionally, we have developed software that numerically solves the model equations efficiently on large domains. A unique feature of the mathematical model is that it includes the feedback between pore-fluid pressure and the evolution of the solid grain volume fraction, a process that regulates flow resistance. This feature endows the model with the ability to represent the transition from a stationary mass to a dynamic flow. With traditional approaches, slope stability analysis and flow simulation are treated separately, and the latter models are often initialized with force balances that are unrealistically far from equilibrium. Additionally, our new model relies on relatively few dimensionless parameters that are functions of well-known material properties constrained by physical data (eg. hydraulic permeability, pore-fluid viscosity, debris compressibility, Coulomb friction coefficient, etc.). We have developed numerical methods and software for accurately solving the model equations. By employing adaptive mesh refinement (AMR), the software can efficiently resolve an evolving debris flow as it advances through irregular topography, without needing terrain-fit computational meshes. The AMR algorithms utilize multiple levels of grid resolutions, so that computationally inexpensive coarse grids can be used where the flow is absent, and much higher resolution grids evolve with the flow. The reduction in computational cost, due to AMR, makes very large-scale problems tractable on personal computers. Model accuracy can be tested by comparison of numerical predictions and empirical data. These comparisons utilize controlled experiments conducted at the USGS debris-flow flume, which provide detailed data about flow mobilization and dynamics. Additionally, we have simulated historical large-scale debris flows, such as the (≈50 million m^3) debris flow that originated on Mt. Meager, British Columbia in 2010. This flow took a very complex route through highly variable topography and provides a valuable benchmark for testing. Maps of the debris flow deposit and data from seismic stations provide evidence regarding flow initiation, transit times and deposition. Our simulations reproduce many of the complex patterns of the event, such as run-out geometry and extent, and the large-scale nature of the flow and the complex topographical features demonstrate the utility of AMR in flow simulations.
Hammarstrom, J.M.; Seal, R.R.; Meier, A.L.; Jackson, J.C.
2003-01-01
Metal cycling via physical and chemical weathering of discrete sources (copper mines) and regional (non-point) sources (sulfide-rich shale) is evaluated by examining the mineralogy and chemistry of weathering products in Great Smoky Mountains National Park, Tennessee, and North Carolina, USA. The elements in copper mine waste, secondary minerals, stream sediments, and waters that are most likely to have negative impacts on aquatic ecosystems are aluminum, copper, zinc, and arsenic because these elements locally exceed toxicity guidelines for surface waters or for stream sediments. Acid-mine drainage has not developed in streams draining inactive copper mines. Acid-rock drainage and chemical weathering processes that accompany debris flows or human disturbances of sulfidic rocks are comparable to processes that develop acid-mine drainage elsewhere. Despite the high rainfall in the mountain range, sheltered areas and intermittent dry spells provide local venues for development of secondary weathering products that can impact aquatic ecosystems.
Cannon, Susan H.
1997-01-01
The Dome fire of April 1996 burned 6684 ha in Bandelier National Monument and the adjacent Sante Fe National Forest. The potential for significant debris- and hyperconcentrated-flow activity in Capulin Canyon is evaluated through 1) a systematic consideration of geologic and geomorphic factors that characterize the condition of the hillslope materials and channels following the fire, 2) examination of sedimentologic evidence for past debris-flow activity in the canyon, and 3) evaluation of the response of the watershed through the 1996 summer monsoon season. The lack of accumulations of dry-ravel material on the hillslopes or in channels, the absence of a continuous hydrophobic layer, the relatively intact condition of the riparian vegetation and of the fibrous root mat on the hillslopes, and the lack of evidence of widespread past debris- and hyperconcentrated-flow activity, even with evidence of past fires, indicate a low potential for debris-flow activity in Capulin Canyon. In addition, thunderstorms during the summer monsoon of 1996 resulted in abundant surface overland flow on the hillslopes which transported low-density pumice, charcoal, ash and some mineral soil downslope as small-scale and non-erosive debris flows. In some places cobble- and boulder-sized material was moved short distances. A moderate potential for debris- and hyperconcentrated-flow activity is identified for the two major tributary canyons to Capulin Canyon based on evidence of both summer of 1996 and possible historic significant debris-flow activity.
[Relations of landslide and debris flow hazards to environmental factors].
Zhang, Guo-ping; Xu, Jing; Bi, Bao-gui
2009-03-01
To clarify the relations of landslide and debris flow hazards to environmental factors is of significance to the prediction and evaluation of landslide and debris flow hazards. Base on the latitudinal and longitudinal information of 18431 landslide and debris flow hazards in China, and the 1 km x 1 km grid data of elevation, elevation difference, slope, slope aspect, vegetation type, and vegetation coverage, this paper analyzed the relations of landslide and debris flow hazards in this country to above-mentioned environmental factors by the analysis method of frequency ratio. The results showed that the landslide and debris flow hazards in China more occurred in lower elevation areas of the first and second transitional zones. When the elevation difference within a 1 km x 1 km grid cell was about 300 m and the slope was around 30 degree, there was the greatest possibility of the occurrence of landslide and debris hazards. Mountain forest land and slope cropland were the two land types the hazards most easily occurred. The occurrence frequency of the hazards was the highest when the vegetation coverage was about 80%-90%.
Effects of wood on debris flow runout in small mountain watersheds.
Stephen T. Lancaster; Shannon K. Hayes
2003-01-01
Debris flows have typically been viewed as two-phase mixtures of sediment and water, but in forested mountain landscapes, wood can represent a sizable fraction of total flow volume. The effects of this third phase on flow behavior are poorly understood. To evaluate whether wood can have a significant effect on debris flow runout in small mountainous watersheds, we used...
DeGraff, J.V.; Wagner, D.L.; Gallegos, A.J.; DeRose, M.; Shannon, C.; Ellsworth, T.
2011-01-01
On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 P.M., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 P.M. Both debris flows caused significant disruption and damage to local communities. ?? 2011 Springer-Verlag.
Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor
NASA Astrophysics Data System (ADS)
Hübl, J.; Steinwendtner, H.
2000-09-01
Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.
Development of a debris flow model in a geotechnical centrifuge
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2013-04-01
Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.
NASA Astrophysics Data System (ADS)
Lyu, L.; Xu, M., III; Wang, Z.
2017-12-01
Fine sediment has been identified as an important factor determining the critical runoff that initiates debris flows because its contribution to shear strength through consolidation. Especially, owing to the 2008 Wenchuan earthquake in China enormous of loose sediment with different fractions of fine particles was eroded and supplied as materials for debris flows. The loose materials are gradually consolidated along with time, and therefore stronger rainfall is required to overcome the shear strength and to initiate debris flows. In this study, flume experiments were performed to explore soil consolidation and shear strength on mass failure and debris flow initiation under the conditions that different fractions of fine sediment were contained in the materials. Under the low content of fine sediment conditions (mass percentages: 0-10%), the debris flows formed with large pores and low shear strength and thus fine particles were too few to fill up the pores among the coarse particles. The consolidation rate was mostly influenced by the content of the fine particles. Consolidation of fine particles caused an increase of the shear strength and decrease of the rainfall infiltration, and therefore, debris flow initiation required stronger rainfall as the consolidation of the fine particles developed.
VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.
Chen, Cheng-lung
1986-01-01
This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.
NASA Astrophysics Data System (ADS)
Mazur, Robert; Kałuża, Tomasz; Chmist, Joanna; Walczak, Natalia; Laks, Ireneusz; Strzeliński, Paweł
2016-08-01
This paper presents problems caused by organic material transported by flowing water. This material is usually referred to as plant debris or organic debris. Its composition depends on the characteristic of the watercourse. For lowland rivers, the share of the so-called small organic matter in plant debris is considerable. This includes both various parts of water plants and floodplain vegetation (leaves, stems, blades of grass, twigs, etc.). During floods, larger woody debris poses a significant risk to bridges or other water engineering structures. It may cause river jams and may lead to damming of the flowing water. This, in turn, affects flood safety and increases flood risk in river valleys, both directly and indirectly. The importance of fine plant debris for the phenomenon being studied comes down to the hydrodynamic aspect (plant elements carried by water end up on trees and shrubs, increase hydraulic flow resistance and contribute to the nature of flow through vegetated areas changed from micro-to macro-structural). The key part of the research problem under analysis was to determine qualitative and quantitative debris parameters and to establish the relationship between the type of debris and the type of land use of river valleys (crop fields, meadows and forested river sections). Another problem was to identify parameters of plant debris for various flow conditions (e.g. for low, medium and flood flows). The research also included an analysis of the materials deposited on the structure of shrubs under flood flow conditions during the 2010 flood on the Warta River.
Evidence for debris flow gully formation initiated by shallow subsurface water on Mars
Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.
2010-01-01
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.
NASA Astrophysics Data System (ADS)
Kang, Sinhang; Lee, Seung-Rae
2018-05-01
Many debris flow spreading analyses have been conducted during recent decades to prevent damage from debris flows. An empirical approach that has been used in various studies on debris flow spreading has advantages such as simple data acquisition and good applicability for large areas. In this study, a GIS-based empirical model that was developed at the University of Lausanne (Switzerland) is used to assess the debris flow susceptibility. Study sites are classified based on the types of soil texture or geological conditions, which can indirectly consider geotechnical or rheological properties, to supplement the weaknesses of Flow-R which neglects local controlling factors. The mean travel angle for each classification is calculated from a debris flow inventory map. The debris flow susceptibility is assessed based on changes in the flow-direction algorithm, an inertial function with a 5-m DEM resolution. A simplified friction-limited model was applied to the runout distance analysis by using the appropriate travel angle for the corresponding classification with a velocity limit of 28 m/s. The most appropriate algorithm combinations that derived the highest average of efficiency and sensitivity for each classification are finally determined by applying a confusion matrix with the efficiency and the sensitivity to the results of the susceptibility assessment. The proposed schemes can be useful for debris flow susceptibility assessment in both the study area and the central region of Korea, which has similar environmental factors such as geological conditions, topography and rainfall characteristics to the study area.
Typical Geo-Hazards and Countermeasures of Mines in Yunnan Province, Southwest China
NASA Astrophysics Data System (ADS)
Cheng, Xianfeng; Qi, Wufu; Huang, Qianrui; Zhao, Xueqiong; Fang, Rong; Xu, Jun
2016-10-01
Mining-induced geo-hazards have caused enormous destruction and threat to mines. Known as the "kingdom of nonferrous metals" and located in Southwest China, Yunnan Province developed mining-induced geo-hazards well with characteristics of multiple types, widespread distribution and serious damage. Landslides and debris flows are two common sub-types of geohazards causing most serious damage in Yunnan, and some of them were very representative in the world. Two landslides and two debris flows were chosen to analyze deeply. Both Laojinshan Landslide and Sunjiaqing Landslide possess the characteristic of rock avalanches. The high sliding speed and long distance made the landslides translate into clastic flows with impact force and caused enormous destruction. Rainstorm and mining waste rock were two main factors to induce debris flows in Yunnan mines. Heishan valley debris flow of Dongchuan copper mine was a super large rainstorm type viscose debris flow with very low frequency, which brought a good caution to utilize valleys which looked an unlikely debris flow. Nandagou Valley of Jinding lead-zinc mine in Lanping County was a rainstorm stimulating, gully-type, high frequency and large scale debris flow, which was induced by mining activities. Many countermeasures have been used for Yunnan mines, including engineering treatment technology and ecological remediation, monitoring and forecasting, relocation and public administration.
Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.; Bragg, Heather M.
2008-01-01
On November 6, 2006, a rocky debris flow surged off the western slopes of Mount Jefferson into the drainage basins of Milk and Pamelia Creeks in Oregon. This debris flow was not a singular event, but rather a series of surges of both debris and flooding throughout the day. The event began during a severe storm that brought warm temperatures and heavy rainfall to the Pacific Northwest. Precipitation measurements near Mount Jefferson at Marion Forks and Santiam Junction showed that more than 16.1 centimeters of precipitation fell the week leading up to the event, including an additional 20.1 centimeters falling during the 2 days afterward. The flooding associated with the debris flow sent an estimated 15,500 to 21,000 metric tons, or 9,800 to 13,000 cubic meters, of suspended sediment downstream, increasing turbidity in the North Santiam River above Detroit Lake to an estimated 35,000 to 55,000 Formazin Nephelometric Units. The debris flow started small as rock and ice calved off an upper valley snowfield, but added volume as it eroded weakly consolidated deposits from previous debris flows, pyroclastic flows, and glacial moraines. Mud run-up markings on trees indicated that the flood stage of this event reached depths of at least 2.4 meters. Velocity calculations indicate that different surges of debris flow and flooding reached 3.9 meters per second. The debris flow reworked and deposited material ranging in size from sand to coarse boulders over a 0.1 square kilometer area, while flooding and scouring as much as 0.45 square kilometer. Based on cross-sectional transect measurements recreating pre-event topography and other field measurements, the total volume of the deposit ranged from 100,000 to 240,000 cubic meters.
Ruddy, Barbara C.; Stevens, Michael R.; Verdin, Kristine
2010-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the Fourmile Creek fire in Boulder County, Colorado, in 2010. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volumes of debris flows for selected drainage basins. Data for the models include burn severity, rainfall total and intensity for a 25-year-recurrence, 1-hour-duration rainstorm, and topographic and soil property characteristics. Several of the selected drainage basins in Fourmile Creek and Gold Run were identified as having probabilities of debris-flow occurrence greater than 60 percent, and many more with probabilities greater than 45 percent, in response to the 25-year recurrence, 1-hour rainfall. None of the Fourmile Canyon Creek drainage basins selected had probabilities greater than 45 percent. Throughout the Gold Run area and the Fourmile Creek area upstream from Gold Run, the higher probabilities tend to be in the basins with southerly aspects (southeast, south, and southwest slopes). Many basins along the perimeter of the fire area were identified as having low probability of occurrence of debris flow. Volume of debris flows predicted from drainage basins with probabilities of occurrence greater than 60 percent ranged from 1,200 to 9,400 m3. The predicted moderately high probabilities and some of the larger volumes responses predicted for the modeled storm indicate a potential for substantial debris-flow effects to buildings, roads, bridges, culverts, and reservoirs located both within these drainages and immediately downstream from the burned area. However, even small debris flows that affect structures at the basin outlets could cause considerable damage.
NASA Astrophysics Data System (ADS)
Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.
2012-10-01
The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.
Distinguishing between debris flows and floods from field evidence in small watersheds
Pierson, Thomas C.
2005-01-01
Post-flood indirect measurement techniques to back-calculate flood magnitude are not valid for debris flows, which commonly occur in small steep watersheds during intense rainstorms. This is because debris flows can move much faster than floods in steep channel reaches and much slower than floods in low-gradient reaches. In addition, debris-flow deposition may drastically alter channel geometry in reaches where slope-area surveys are applied. Because high-discharge flows are seldom witnessed and automated samplers are commonly plugged or destroyed, determination of flow type often must be made on the basis of field evidence preserved at the site.
NASA Astrophysics Data System (ADS)
Xu, Wenbo; Jing, Shaocai; Yu, Wenjuan; Wang, Zhaoxian; Zhang, Guoping; Huang, Jianxi
2013-11-01
In this study, the high risk areas of Sichuan Province with debris flow, Panzhihua and Liangshan Yi Autonomous Prefecture, were taken as the studied areas. By using rainfall and environmental factors as the predictors and based on the different prior probability combinations of debris flows, the prediction of debris flows was compared in the areas with statistical methods: logistic regression (LR) and Bayes discriminant analysis (BDA). The results through the comprehensive analysis show that (a) with the mid-range scale prior probability, the overall predicting accuracy of BDA is higher than those of LR; (b) with equal and extreme prior probabilities, the overall predicting accuracy of LR is higher than those of BDA; (c) the regional predicting models of debris flows with rainfall factors only have worse performance than those introduced environmental factors, and the predicting accuracies of occurrence and nonoccurrence of debris flows have been changed in the opposite direction as the supplemented information.
Cannon, Susan H.; DeGraff, Jerry
2009-01-01
In southern California and the intermountain west of the USA, debris flows generated from recently-burned basins pose significant hazards. Increases in the frequency and size of wildfires throughout the western USA can be attributed to increases in the number of fire ignitions, fire suppression practices, and climatic influences. Increased urbanization throughout the western USA, combined with the increased wildfire magnitude and frequency, carries with it the increased threat of subsequent debris-flow occurrence. Differences between rainfall thresholds and empirical debris-flow susceptibility models for southern California and the intermountain west indicate a strong influence of climatic and geologic settings on post-fire debris-flow potential. The linkages between wildfires, debris-flow occurrence, and global warming suggests that the experiences in the western United States are highly likely to be duplicated in many other parts of the world, and necessitate hazard assessment tools that are specific to local climates and physiographies.
NASA Astrophysics Data System (ADS)
Huang, Xinghui; Li, Zhengyuan; Yu, Dan; Xu, Qiang; Fan, Junyi; Hao, Zhen; Niu, Yanping
2017-10-01
The catastrophic Sanyanyu and Luojiayu debris flows, which were induced by heavy rainfall, occurred at approximately midnight, August 7th, 2010 (Beijing time, UTC + 8) and claimed 1,765 lives. Most seismic stations located within 150 km did not detect the debris flows except for the closest seismic station, ZHQ, indicating that the seismic signals generated by the debris flows decayed rapidly. We analyzed broadband seismic signals from the ZHQ seismic station, beginning approximately 20 min before the outbreak of the Sanyanyu debris flow, to rebuild its evolution processes. Seismic signals can detect development of the Sanyanyu debris flow approximately 20 min after a heavy rain started falling in its initiation area; this time was characterized by a gradual increase in seismic amplitude accompanied by a series of spike signals that were probably generated by rock collapses within the catchment. The frequency contents and the characteristics of seismic signals before and after 23:33:15 (T1) are distinctively different, which we interpret as being generated by a large quantity of flowing material entering the main channel, marking the formation of the Sanyanyu debris flow. We attribute seismic amplitude increases between 23:33:15 (T1) and 23:34:26 (T2) and between 23:35:40 (T3) and 23:36:49 (T4) to entrainment of the deposit material after initiation of the debris flow and to its flow through a colluvial deposit area, respectively. The main frequency band broadening of seismic signals after 23:37:30 (T5) is believed to have been induced by impacts between the flowing material and check dams.
Model simulations of flood and debris flow timing in steep catchments after wildfire
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L. A.; Kean, J. W.; Staley, D. M.; Hobley, D. E. J.
2016-08-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most postwildfire debris flows are generated from water runoff. The majority of existing debris flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's n) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall, the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Model simulations of flood and debris flow timing in steep catchments after wildfire
Rengers, Francis K.; McGuire, Luke; Kean, Jason W.; Staley, Dennis M.; Hobley, D.E.J
2016-01-01
Debris flows are a typical hazard on steep slopes after wildfire, but unlike debris flows that mobilize from landslides, most post-wildfire debris flows are generated from water runoff. The majority of existing debris-flow modeling has focused on landslide-triggered debris flows. In this study we explore the potential for using process-based rainfall-runoff models to simulate the timing of water flow and runoff-generated debris flows in recently burned areas. Two different spatially distributed hydrologic models with differing levels of complexity were used: the full shallow water equations and the kinematic wave approximation. Model parameter values were calibrated in two different watersheds, spanning two orders of magnitude in drainage area. These watersheds were affected by the 2009 Station Fire in the San Gabriel Mountains, CA, USA. Input data for the numerical models were constrained by time series of soil moisture, flow stage, and rainfall collected at field sites, as well as high-resolution lidar-derived digital elevation models. The calibrated parameters were used to model a third watershed in the burn area, and the results show a good match with observed timing of flow peaks. The calibrated roughness parameter (Manning's $n$) was generally higher when using the kinematic wave approximation relative to the shallow water equations, and decreased with increasing spatial scale. The calibrated effective watershed hydraulic conductivity was low for both models, even for storms occurring several months after the fire, suggesting that wildfire-induced changes to soil-water infiltration were retained throughout that time. Overall the two model simulations were quite similar suggesting that a kinematic wave model, which is simpler and more computationally efficient, is a suitable approach for predicting flood and debris flow timing in steep, burned watersheds.
Riparian management in forests of the continental eastern United States
Elon S. Verry; James W. Hornbeck; C. Andrew Dolloff
2000-01-01
As we meditate on the management of stream riparian areas, it is clear that the input of "debris" from terrestrial plants falling into streams is one of the most significant processes occurring at the interface of terrestrial and stream ecosystems. Organic matter - leaves. twigs, branches, and whole trees - provides energy, nutrients, and structure to streams...
Mobility statistics and automated hazard mapping for debris flows and rock avalanches
Griswold, Julia P.; Iverson, Richard M.
2008-01-01
Power-law equations that are physically motivated and statistically tested and calibrated provide a basis for forecasting areas likely to be inundated by debris flows, rock avalanches, and lahars with diverse volumes. The equations A=α1V2/3 and B=α2V2/3 are based on the postulate that the maximum valley cross-sectional area (A) and total valley planimetric area (B) likely to be inundated by a flow depend only on its volume (V) and the topography of the flow path. Testing of these equations involves determining whether or not they fit data for documented flows satisfactorily, and calibration entails determining best-fit values of the coefficients α1 and α2 for debris flows, rock avalanches, and lahars. This report describes statistical testing and calibration of the equations by using field data compiled from many sources, and it describes application of the equations to delineation of debris-flow hazard zones. Statistical results show that for each type of flow (debris flows, rock avalanches, and lahars), the dependence of A and B on V is described well by power laws with exponents equal to 2/3. This value of the exponent produces fits that are effectively indistinguishable from the best fits obtained by using adjustable power-law exponents. Statistically calibrated values of the coefficients α1 and α2 provide scale-invariant indices of the relative mobilities of rock avalanches (α1 = 0.2, α2 = 20), nonvolcanic debris flows (α1 = 0.1, α2 = 20), and lahars (α1 = 0.05, α2 = 200). These values show, for example, that a lahar of specified volume can be expected to inundate a planimetric area ten times larger than that inundated by a rock avalanche or nonvolcanic debris flow of the same volume. The utility of the calibrated debris-flow inundation equations A=0.1V2/3 and B=20V2/3 is demonstrated by using them within the GIS program LAHARZ to delineate nested hazard zones for future debris flows in an area bordering the Umpqua River in the south-central Oregon Coast Range. This application requires use of high-resolution topographic data derived form LIDAR surveys, knowledge of local geology to specify a suitable range of prospective debris-flow volumes, and development and use of a new algorithm for identification of prospective debris-flow source areas in finely dissected terrain.
NASA Astrophysics Data System (ADS)
Su, Pengcheng; Sun, Zhengchao; li, Yong
2017-04-01
Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the hazard assessment model. In this paper, regional debris flows hazard assessment method with strong universality and reliable evaluation result is presented. The whole study area is divided into 1674 units by automatically extracting and artificial identification, and then 11 factors are selected as the initial assessment factors of debris flow hazard assessment in the study area. The factors of the evaluation index system are quantified using the method of standardized watershed unit amount ratio. The relationship between debris flow occurrence and each evaluation factor is simulated using logistic regression model. The weights of evaluation factors are determined, and the model of debris flows hazard assessment is established in the study area. Danger assessment result of debris flow was applied in line optimization and engineering disaster reduction of Sichuan-Tibet highway (section of Luding-Kangding).
Spatial and temporal patterns of debris flow deposition in the Oregon Coast Range, USA
May, Christine L.; Gresswell, Robert E.
2004-01-01
Patterns of debris-flow occurrence were investigated in 125 headwater basins in the Oregon Coast Range. Time since the previous debris-flows was established using dendrochronology, and recurrence interval estimates ranged from 98 to 357 years. Tributary basins with larger drainage areas had a greater abundance of potential landslide source areas and a greater frequency of scouring events compared to smaller basins. The flux rate of material delivered to the confluence with a larger river influenced the development of small-scale debris-flow fans. Fans at the mouths of tributary basins with smaller drainage areas had a higher likelihood of being eroded by the mainstem river in the interval between debris-flows, compared to bigger basins that had larger, more persistent fans. Valley floor width of the receiving channel also influenced fan development because it limited the space available to accommodate fan formation. Of 63 recent debris-flows, 52% delivered sediment and wood directly to the mainstem river, 30% were deposited on an existing fan before reaching the mainstem, and 18% were deposited within the confines of the tributary valley before reaching the confluence. Spatial variation in the location of past and present depositional surfaces indicated that sequential debris-flow deposits did not consistently form in the same place. Instead of being spatially deterministic, results of this study suggest that temporally variable and stochastic factors may be important for predicting the runout length of debris-flows.
Three occurred debris flows in North-Eastern Italian Alps: documentation and modeling
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2015-04-01
Three occurred events of debris flows are documented and modeled by back-analysis. The three debris flows events are those occurred at Rio Lazer on the 4th of November 1966, at Fiames on the 5th of July 2006 and at Rovina di Cancia on the 18th of July 2009. All the three sites are located in the North-Eastern Italian Alps. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. Map of deposition pattern of sediments are built by using post-events photos through stereoscopy techniques. The second event concerns the routing of debris flow along the main channel descending from Pomagagnon Fork. Due to the obstruction of the cross-section debris flow deviated from the original path on the left side and routed downstream by cutting a new channel on the fan. It dispersed in multiple paths when met the wooden area. Map of erosion and deposition depths are built after using a combination of Lidar and GPS data. The third event concerns the routing of debris flow in the Rovina di Cancia channel that filled the reservoir built at the end of the channel and locally overtopped the retaining wall on the left side. A wave of mud and debris inundated the area downstream the overtopping point. Map of erosion and deposition depths are obtained by subtracting two GPS surveys, pre and post event. All the three occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph downstream the triggering areas. The routing of the solid-liquid hydrograph was simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. The same parameters for computing erosion and deposition were used for the three occurred events.
NASA Astrophysics Data System (ADS)
Uchida, Taro; Sakurai, Wataru; Iuchi, Takuma; Izumiyama, Hiroaki; Borgatti, Lisa; Marcato, Gianluca; Pasuto, Alessandro
2018-04-01
Monitoring of sediment transport from hillslopes to channel networks as a consequence of floods with suspended and bedload transport, hyperconcentrated flows, debris and mud flows is essential not only for scientific issues, but also for prevention and mitigation of natural disasters, i.e. for hazard assessment, land use planning and design of torrent control interventions. In steep, potentially unstable terrains, ground-based continuous monitoring of hillslope and hydrological processes is still highly localized and expensive, especially in terms of manpower. In recent years, new seismic and acoustic methods have been developed for continuous bedload monitoring in mountain rivers. Since downstream bedload transport rate is controlled by upstream sediment supply from tributary channels and bed-external sources, continuous bedload monitoring might be an effective tool for detecting the sediments mobilized by debris flow processes in the upper catchment and thus represent an indirect method to monitor slope instability processes at the catchment scale. However, there is poor information about the effects of episodic sediment supply from upstream bed-external sources on downstream bedload transport rate at a single flood time scale. We have examined the effects of sediment supply due to upstream debris flow events on downstream bedload transport rate along the Yotagiri River, central Japan. To do this, we have conducted continuous bedload observations using a hydrophone (Japanese pipe microphone) located 6.4 km downstream the lower end of a tributary affected by debris flows. Two debris flows occurred during the two-years-long observation period. As expected, bedload transport rate for a given flow depth showed to be larger after storms triggering debris flows. That is, although the magnitude of sediment supply from debris flows is not large, their effect on bedload is propagating >6 km downstream at a single flood time scale. This indicates that continuous bedload observations could be effective for detecting sediment supply as a consequence of debris flow events.
May, Christine L.; Gresswell, Robert E.
2003-01-01
Large wood recruitment and redistribution mechanisms were investigated in a 3.9 km2 basin with an old-growth Pseudotsuga menziesii (Mirb.) Franco and Tsuga heterophylla (Raf.) Sarg. forest, located in the southern Coast Range of Oregon. Stream size and topographic setting strongly influenced processes that delivered wood to the channel network. In small colluvial channels draining steep hillslopes, processes associated with slope instability dominated large wood recruitment. In the larger alluvial channel, windthrow was the dominant recruitment process from the local riparian area. Consequently, colluvial channels received wood from further upslope than the alluvial channel. Input and redistribution processes influenced piece location relative to the direction of flow and thus, affected the functional role of wood. Wood recruited directly from local hillslopes and riparian areas was typically positioned adjacent to the channel or spanned its full width, and trapped sediment and wood in transport. In contrast, wood that had been fluvially redistributed was commonly located in mid-channel positions and was associated with scouring of the streambed and banks. Debris flows were a unique mechanism for creating large accumulations of wood in small streams that lacked the capacity for abundant fluvial transport of wood, and for transporting wood that was longer than the bank-full width of the channel.
Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.
2001-01-01
Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and precipitation, as well as magmatic activity and eruptions. (3) Risk of collapse begins with initial magmatic activity and increases as intrusion proceeds. An archetypal debris flow from volcanic terrain occurred in Colombia with a tectonic earthquake (M 6.4) in 1994. The Rio Piez conveyed a catastrophic wave of debris flow over 100 kilometers, coalesced from multiple slides of surflcial material weakened both by weathering and by hydrothermal alteration in a large strato- volcano. Similar seismogenic flows occurred in Mexico in 1920 (M -6.5), Chile in 1960 (M 9.2), and Ecuador in 1987 (M 6.1 and 6.9). Velocities of wave fronts in two examples were 60 to 90 km/hr (17-25 meters per second) over the initial 30 kilometers. Volcano flank and sector collapses may produce untransformed debris avalanches, as occurred initially at Mount St. Helens in 1980. However, at least as common is direct transformation of the failed mass to a debris flow. At two other volcanoes in the Cascade Range-- Mount Rainier and Mount Baker--rapid transformation and high mobility were typical of most of at least 15 Holocene flows. This danger exists downstream from many stratovolcanoes worldwide; the population at risk is near 150,000 and increasing at Mount Rainier. The first step in preventing future catastrophes is documenting past flows. Deposits of some debris flows, however, can be mistaken for those of less-mobile debris avalanches on the basis of mounds formed by buoyed megaclasts. Megaclasts may record only the proximal phase of a debris flow that began as a debris avalanche. Runout may have extended much farther, and thus furore flow mobility may be underestimated. Processes and behaviors of megaclast-bearing paleoflows are best inferred from the intermegaclast matrix. Mitigation strategy can respond to volcanic flows regardless of type and trigger by: (1) Avoidance: Limit settlement in flow pathways to numbers that can be evacuated after event warnings (flow is occurring). (2) Instrumental even
Brabb, Earl E.; Colgan, Joseph P.; Best, Timothy C.
2000-01-01
Introduction Debris flows, debris avalanches, mud flows and lahars are fast-moving landslides that occur in a wide variety of environments throughout the world. They are particularly dangerous to life and property because they move quickly, destroy objects in their paths, and often strike without warning. This map represents a significant effort to compile the locations of known debris flows in United Stated and predict where future flows might occur. The files 'dfipoint.e00' and 'dfipoly.e00' contain the locations of over 6600 debris flows from published and unpublished sources. The locations are referenced by numbers that correspond to entries in a bibliography, which is part of the pamphlet 'mf2329pamphlet.pdf'. The areas of possible future debris flows are shown in the file 'susceptibility.tif', which is a georeferenced TIFF file that can be opened in an image editing program or imported into a GIS system like ARC/INFO. All other databases are in ARC/INFO export (.e00) format.
NASA Astrophysics Data System (ADS)
Abancó, C.; Hürlimann, M.; Sempere, D.; Berenguer, M.
2012-04-01
Torrential processes such as debris flows or hyperconcentrated flows are fast movements formed by a mix of water and different amounts of unsorted solid material. They occur in steep torrents and suppose a high risk for the human settlements. Rainfall is the most common triggering factor for debris flows. The rainfall threshold defines the rainfall conditions that, when reached or exceeded, are likely to provoke one or more events. Many different types of empirical rainfall thresholds for landslide triggering have been defined. Direct measurements of rainfall data are normally not available from a point next to or in the surroundings of the initiation area of the landslide. For this reason, most of the thresholds published for debris flows have been established by data measured at the nearest rain gauges (often located several km far from the landslide). Only in very few cases, the rainfall data to analyse the triggering conditions of the debris flows have been obtained by weather (Doppler) radar. Radar devices present certain limitations in mountainous regions due to undesired reboots, but their main advantage is that radar data can be obtained for any point of the territory. The objective of this work was to test the use of the weather radar data for the definition of rainfall thresholds for debris-flow triggering. Thus, rainfall data obtained from 3 to 5 rain gauges and from radar were compared for a dataset of events occurred in Catalonia (Spain). The goal was to determine in which cases the description of the rainfall episode (in particular the maximum intensity) had been more accurate. The analysed dataset consists of: 1) three events occurred in the Rebaixader debris-flow monitoring station (Axial Pyrenees) including two hyperconcentrated flows and one debris flow; 2) one debris-flow event occurred in the Port Ainé ski resort (Axial Pyrenees); 3) one debris-flow event in Montserrat (Mediterranean Coastal range). The comparison of the hyetographs from the different devices showed that the reliability of the radar is higher for short, high intensity storms more than for long lasting, medium intensity ones. Additionally, the best fit corresponds to the situations where the storm nucleus is located near the source area of the debris flow. The results of the comparison between different rain gauges show similar trends. The ones located in the same valley as the debris flow usually show good results, but if there are orographic elements in-between the debris-flow torrent and the rain gauge or the distance is large, the results can imply a great error in the definition of rainfall intensity. Therefore, we can state that the reliability of the use of the weather radar to define rainfall thresholds is strongly depending on the type of the storm and the distance between the source area and the nucleus of the storm.
Wall shear stress effects of different endodontic irrigation techniques and systems.
Goode, Narisa; Khan, Sara; Eid, Ashraf A; Niu, Li-na; Gosier, Johnny; Susin, Lisiane F; Pashley, David H; Tay, Franklin R
2013-07-01
This study examined débridement efficacy as a result of wall shear stresses created by different irrigant delivery/agitation techniques in an inaccessible recess of a curved root canal model. A reusable, curved canal cavity containing a simulated canal fin was milled into mirrored titanium blocks. Calcium hydroxide (Ca(OH)2) paste was used as debris and loaded into the canal fin. The titanium blocks were bolted together to provide a fluid-tight seal. Sodium hypochlorite was delivered at a previously-determined flow rate of 1 mL/min that produced either negligible or no irrigant extrusion pressure into the periapex for all the techniques examined. Nine irrigation delivery/agitation techniques were examined: NaviTip passive irrigation control, Max-i-Probe(®) side-vented needle passive irrigation, manual dynamic agitation (MDA) using non-fitting and well-fitting gutta-percha points, EndoActivator™ sonic agitation with medium and large points, VPro™ EndoSafe™ irrigation system, VPro™ StreamClean™ continuous ultrasonic irrigation and EndoVac apical negative pressure irrigation. Débridement efficacies were analysed with Kruskal-Wallis ANOVA and Dunn's multiple comparisons tests (α=0.05). EndoVac was the only technique that removed more than 99% calcium hydroxide debris from the canal fin at the predefined flow rate. This group was significantly different (p<0.05) from the other groups that exhibited incomplete Ca(OH)2 removal. The ability of the EndoVac system to significantly clean more debris from a mechanically inaccessible recess of the model curved root canal may be caused by robust bubble formation during irrigant delivery, creating higher wall shear stresses by a two-phase air-liquid flow phenomenon that is well known in other industrial débridement systems. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lehmann, Peter; von Ruette, Jonas; Fan, Linfeng; Or, Dani
2014-05-01
Rapid debris flows initiated by rainfall induced shallow landslides present a highly destructive natural hazard in steep terrain. The impact and run-out paths of debris flows depend on the volume, composition and initiation zone of released material and are requirements to make accurate debris flow predictions and hazard maps. For that purpose we couple the mechanistic 'Catchment-scale Hydro-mechanical Landslide Triggering (CHLT)' model to compute timing, location, and landslide volume with simple approaches to estimate debris flow runout distances. The runout models were tested using two landslide inventories obtained in the Swiss Alps following prolonged rainfall events. The predicted runout distances were in good agreement with observations, confirming the utility of such simple models for landscape scale estimates. In a next step debris flow paths were computed for landslides predicted with the CHLT model for a certain range of soil properties to explore its effect on runout distances. This combined approach offers a more complete spatial picture of shallow landslide and subsequent debris flow hazards. The additional information provided by CHLT model concerning location, shape, soil type and water content of the released mass may also be incorporated into more advanced models of runout to improve predictability and impact of such abruptly-released mass.
David R. Montgomery; Kevin M. Schmidt; William E. Dietrich; Jim McKean
2009-01-01
The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium....
NASA Astrophysics Data System (ADS)
Ulizio, T. P.; Palucis, M. C.; Fuller, B. M.; Lamb, M. P.
2017-12-01
Steep, rocky landscapes often produce large sediment yields and increased debris flow activity following wildfire. There are two main hypotheses for debris flow initiation in burned regions during rain storms: (1) debris flows initiate from failure of the soil mantle on hillslopes where fire has destroyed root systems resulting in loss of soil strength, and (2) debris flows initiate in river channels that have been loaded by dry ravel following incineration of vegetation dams on hillslopes. To evaluate these hypotheses, we monitored a steep first-order catchment that burned in the 2016 Fish Canyon fire within the front range of the San Gabriel Mountains, CA. Following each post-fire storm, we measured the hillslope and channel topography using UAV imaging and structure-from-motion, and monitored activity during storm events with field cameras. Following the fire, but prior to the first storm event, most of the hillslopes were stripped to bedrock and 0.5 m of dry ravel had accumulated along the length of the channel. By using measurements of sediment storage behind vegetation in a nearby unburned catchment, but with a similar burn history, we found that much of the loose sediment in the channel can be attributed to dry ravel following incineration of vegetation dams. Throughout the rainy season, the catchment produced a series of debris flows that evacuated the accumulated dry ravel in the channel, exposed bedrock in the channel, and built a debris flow fan across a terrace that abuts the downstream end of the channel. Although later storms were larger, most sediment transport occurred during the first few storms, indicating that sediment supply can limit debris flow activity, and that larger storms do not necessarily produce larger debris flows. Our measurements of the volume of the newly formed debris flow fan approximately matches the volume of evacuated ravel from the channel, and we did not observe landslide scars on hillslopes. Together, these observations and mass-balance constraints support the model by which limited hillslope soil in steep rocky landscapes is destabilized as dry ravel following wildfire, leading to infilling of channels with relatively fine and loose sediment that subsequently fails, producing debris flows during rain storms.
McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman
1998-01-01
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.
McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.
1998-06-23
A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.
NASA Astrophysics Data System (ADS)
Graff, Kévin; Viel, Vincent; Carlier, Benoit; Lissak, Candide; Arnaud-Fassetta, Gilles; Fort, Monique; Madelin, Malika
2016-04-01
In mountainous areas, especially in large catchments with torrential tributaries, the production and sediment transport significantly increase flood impacts in the valley bottoms. The quantification and characterisation of sedimentary transfers are therefore major challenges to provide better flood risk management. As a part of SAMCO (ANR 12 SENV-0004 SAMCO) project, for mountain hazard assessment in a context of global changes, we tried to improve the knowledge of these hydromorphological systems at both spatial and temporal scales, by identifying sediment supply and sediment dynamics from torrential tributaries to the main channel. A sediment budget was used as a tool for quantifying erosion, transport and deposition processes. This research is focused on the upper Guil catchment (Queyras, Southern French Alps - 317 km2) entrenched in "schistes lustrés" and ophiolitic bedrock. This catchment is prone to catastrophic summer floods [June 1957 (>R.I. 100 yr), June 2000 (R.I. 30 yr)] characterised by huge sediment transport from tributaries to downvalley, very much facilitated by strong hillslope-channel connectivity (about 12,000 m3 volume of sediment aggraded in the Peyronnelle fan during the June 2000 RI-30 year flood event). We intend to highlight sediment dynamics on small torrential channels and its connection with gravel-bed streams. Four study sites characterised by avalanche and debris flow-dominated channels located in the upper Guil catchment were investigated. In order to better assess sediment movement, we used the pit-tags technique. In total, 560 pit-tags (pt) have been implemented in four catchments: Peyronnelle (320pt), Combe Morel (40pt), Bouchouse (120pt), and Maloqueste (80pt). Distances and trajectories of gravels sediments have been monitored since two years during summer periods. We specifically describe results obtained along the Peyronnelle channel affected by a large debris-flow during august 2015. Data are used to discuss lag time, processes and thresholds needed to observe significant sediments fluxes. Results highlight the pulsating character of sediment fluxes associated with high magnitude and low frequency events and indicate the strongest functionality of debris flow-dominated channels. We intend to continue this monitoring long enough to observe sediment connection with gravel-bed streams.
Cannon, S.H.; Gartner, J.E.; Wilson, R.C.; Bowers, J.C.; Laber, J.L.
2008-01-01
Debris flows generated during rain storms on recently burned areas have destroyed lives and property throughout the Western U.S. Field evidence indicate that unlike landslide-triggered debris flows, these events have no identifiable initiation source and can occur with little or no antecedent moisture. Using rain gage and response data from five fires in Colorado and southern California, we document the rainfall conditions that have triggered post-fire debris flows and develop empirical rainfall intensity-duration thresholds for the occurrence of debris flows and floods following wildfires in these settings. This information can provide guidance for warning systems and planning for emergency response in similar settings. Debris flows were produced from 25 recently burned basins in Colorado in response to 13 short-duration, high-intensity convective storms. Debris flows were triggered after as little as six to 10??min of storm rainfall. About 80% of the storms that generated debris flows lasted less than 3??h, with most of the rain falling in less than 1??h. The storms triggering debris flows ranged in average intensity between 1.0 and 32.0??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for floods and debris flows sufficiently large to pose threats to life and property from recently burned areas in south-central, and southwestern, Colorado are defined by: I = 6.5D-??0.7 and I = 9.5D-??0.7, respectively, where I = rainfall intensity (in mm/h) and D = duration (in hours). Debris flows were generated from 68 recently burned areas in southern California in response to long-duration frontal storms. The flows occurred after as little as two hours, and up to 16??h, of low-intensity (2-10??mm/h) rainfall. The storms lasted between 5.5 and 33??h, with average intensities between 1.3 and 20.4??mm/h, and had recurrence intervals of two years or less. Threshold rainfall conditions for life- and property-threatening floods and debris flows during the first winter season following fires in Ventura County, and in the San Bernardino, San Gabriel and San Jacinto Mountains of southern California are defined by I = 12.5D-0.4, and I = 7.2D-0.4, respectively. A threshold defined for flood and debris-flow conditions following a year of vegetative recovery and sediment removal for the San Bernardino, San Gabriel and San Jacinto Mountains of I = 14.0D-0.5 is approximately 25??mm/h higher than that developed for the first year following fires. The thresholds defined here are significantly lower than most identified for unburned settings, perhaps because of the difference between extremely rapid, runoff-dominated processes acting in burned areas and longer-term, infiltration-dominated processes on unburned hillslopes. Crown Copyright ?? 2007.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
In June 2011, the Track Fire burned 113 square kilometers in Colfax County, northeastern New Mexico, and Las Animas County, southeastern Colorado, including the upper watersheds of Chicorica and Raton Creeks. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from basins burned by the Track Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of post-fire debris flows following the fire. In response to a design storm of 38 millimeters of rain in 30 minutes (10-year recurrence-interval), the probability of debris flow estimated for basins burned by the Track fire ranged between 2 and 97 percent, with probabilities greater than 80 percent identified for the majority of the tributary basins to Raton Creek in Railroad Canyon; six basins that flow into Lake Maloya, including the Segerstrom Creek and Swachheim Creek basins; two tributary basins to Sugarite Canyon, and an unnamed basin on the eastern flank of the burned area. Estimated debris-flow volumes ranged from 30 cubic meters to greater than 100,000 cubic meters. The largest volumes (greater than 100,000 cubic meters) were estimated for Segerstrom Creek and Swachheim Creek basins, which drain into Lake Maloya. The Combined Relative Debris-Flow Hazard Ranking identifies the Segerstrom Creek and Swachheim Creek basins as having the highest probability of producing the largest debris flows. This finding indicates the greatest post-fire debris-flow impacts may be expected to Lake Maloya. In addition, Interstate Highway 25, Raton Creek and the rail line in Railroad Canyon, County road A-27, and State Highway 526 in Sugarite Canyon may also be affected where they cross drainages downstream from recently burned basins. Although this assessment indicates that a rather large debris flow (approximately 42,000 cubic meters) may be generated from the basin above the City of Raton (basin 9) in response to the design storm, the probability of such an event is relatively low (approximately 10 percent). Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into the City of Raton. In addition, even small debris flows may affect structures at or downstream from basin outlets and increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Track Fire.
Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment
Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.
2011-01-01
Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.
Iverson, R.M.; ,
2003-01-01
Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.
NASA Astrophysics Data System (ADS)
Bachmann, S.; De La Fuente, J. A.; Hill, B.; Mai, C.; Mikulovsky, R. P.; Mondry, Z.; Rust, B.; Young, D.
2013-12-01
The US Forest Service is conducting a study of sediment mobilization, transport, and deposition on the Bagley Fire, which burned about 18,000 hectares in late summer, 2012, on the Shasta-Trinity National Forest, south of McCloud, CA. The fire area is in steep terrain of the Eastern Klamath Mountains that are underlain primarily by metasedimentary rock. The watersheds affected drain into the headwaters of Squaw Creek, along with small streams tributary to the McCloud and Pit Rivers, all of which flow into Shasta Lake Reservoir. In November and December of 2012, intense storms occurred over the fire area with estimated return intervals of 25-50 years, based on 4-day storm totals in ranging from 38 to 56 cm. The Squaw Creek storm response was unique for this area, in that it remained turbid for about 2 months following the storms. Subsequent small storms through June, 2013 have also generated prolonged turbidity. This may be attributable to the remobilization of fine particles temporarily stored in the channel network. Preliminary observations from field reconnaissance include the following: a) Erosional processes were dominated by sheet, rill, and gully erosion, and the resulting sediment delivered to channels was rich in fine particles and gravels; b) Landslides were infrequent, and as a result, a limited amount of large rock and logs were delivered to channels; c) Sediment laden flows occurred in most burned low order channels, but classic debris flows, those scouring all vegetation from channel bottoms, were very uncommon; d) Most road stream crossing culverts failed in high severity burn areas; e) Low gradient stream reaches in Squaw Creek were aggraded with fine sediment; f) Sustained high levels of turbidity occurred in the main stem of Squaw Creek. The goals of this study are to characterize relative roles of surface erosion, landslides, and debris flows in delivering sediment to streams after the fire, and if possible, to develop a rough sediment budget, comparing the amount of sediment delivered to the reservoir to that mobilized on hillslopes and in channels. A combination of remote sensing and field methods are being used. Remote sensing methods include post-fire air photo interpretation and mapping, LiDAR data analysis, and reservoir bathymetry. Field methods include reconnaissance traverses, and transects for direct estimates of sediment volume from surface erosion, gullies, and landslides. Results of this study will improve our understanding of erosional and sedimentation processes in this specific post-wildfire response domain, including reservoir sedimentation rates. They will also provide land managers with sound information upon which to base future decisions on the management of the local natural resources. Lastly, they will facilitate the work of Burned Area Emergency Response teams (BAER) which respond to future wildfires in this domain, and promote development of better designs for road/stream crossings.
Tillery, Anne C.; Haas, Jessica R.; Miller, Lara W.; Scott, Joe H.; Thompson, Matthew P.
2014-01-01
Wildfire can drastically increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although there is no way to know the exact location, extent, and severity of wildfire, or the subsequent rainfall intensity and duration before it happens, probabilities of fire and debris-flow occurrence for different locations can be estimated with geospatial analysis and modeling efforts. The purpose of this report is to provide information on which watersheds might constitute the most serious, potential, debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall in the Sandia and Manzano Mountains. Potential probabilities and estimated volumes of postwildfire debris flows in the unburned Sandia and Manzano Mountains and surrounding areas were estimated using empirical debris-flow models developed by the U.S. Geological Survey in combination with fire behavior and burn probability models developed by the U.S. Department of Agriculture Forest Service. The locations of the greatest debris-flow hazards correlate with the areas of steepest slopes and simulated crown-fire behavior. The four subbasins with the highest computed debris-flow probabilities (greater than 98 percent) were all in the Manzano Mountains, two flowing east and two flowing west. Volumes in sixteen subbasins were greater than 50,000 square meters and most of these were in the central Manzanos and the western facing slopes of the Sandias. Five subbasins on the west-facing slopes of the Sandia Mountains, four of which have downstream reaches that lead into the outskirts of the City of Albuquerque, are among subbasins in the 98th percentile of integrated relative debris-flow hazard rankings. The bulk of the remaining subbasins in the 98th percentile of integrated relative debris-flow hazard rankings are located along the highest and steepest slopes of the Manzano Mountains. One of the subbasins is several miles upstream from the community of Tajique and another is several miles upstream from the community of Manzano, both on the eastern slopes of the Manzano Mountains. This prewildfire assessment approach is valuable to resource managers because the analysis of the debris-flow threat is made before a wildfire occurs, which facilitates prewildfire management, planning, and mitigation. In northern New Mexico, widespread watershed restoration efforts are being carried out to safeguard vital watersheds against the threat of catastrophic wildfire. This study was initiated to help select ideal locations for the restoration efforts that could have the best return on investment.
Wieczorek, G.F.; Larsen, M.C.; Eaton, L.S.; Morgan, B.A.; Blair, J.L.
2001-01-01
Heavy rainfall from the storm of December 14-16, 1999 triggered thousands of landslides on steep slopes of the Sierra de Avila north of Caracas, Venezuela. In addition to landslides, heavy rainfall caused flooding and massive debris flows that damaged coastal communities in the State of Vargas along the Caribbean Sea. Examination of the rainfall pattern obtained from the GOES-8 satellite showed that the pattern of damage was generally consistent with the area of heaviest rainfall. Field observations of the severely affected drainage basins and historical records indicate that previous flooding and massive debris-flow events of similar magnitude to that of December 1999 have occurred throughout this region. The volume of debris-flow deposits and the large boulders that the flows transported qualifies the 1999 event amongst the largest historical rainfall-induced debris flows documented worldwide.
NASA Astrophysics Data System (ADS)
Woo, C.; Kang, M.; Seo, J.; Kim, D.; Lee, C.
2017-12-01
As the mountainous urbanization has increased the concern about landslides in the living area, it is essential to develop the technology to minimize the damage through quick identification and sharing of the disaster occurrence information. In this study, to establish an effective system of alert evacuation that has influence on the residents, we used the debris flow combination degree of risk to predict the risk of the disaster and the level of damage and to select evacuation priorities. Based on the GIS information, the physical strength and social vulnerability were determined by following the debris flow combination of the risk formula. The results classify the physical strength hazard rating of the debris flow combination of the through the normalization process. Debris flow the estimated residential population included in the damage range of the damage prediction map is based on the area and the unit size data. Prediction of occupant formula was calculated by applying different weighting to the resident population and users, and the result was classified into 5 classes as the debris flow physical strength. The debris flow occurrence physical strength and social and psychological vulnerability were classified into the classifications to be reflected in the debris flow integrated risk map using the matrix technique. In addition, to supplement the risk of incorporation of debris flow, we added weight to disaster vulnerable facilities that require a lot of time and manpower to evacuate. The basic model of welfare facilities was supplemented by using basic data, population density, employment density and GDP. First, evacuate areas with high integrated degree of risk level, and evacuate with consideration of physical class differences if classification difficult because of the same or similar grade among the management areas. When the physical hazard class difference is similar, the population difference of the area including the welfare facility is considered first, and the priority is decided in order of age distribution, population density by period, and class difference of residential facility. The results of this study are expected be used as basic data for establishing a safety net for landslide by evacuation systems for disasters. Keyword: Landslide, Debris flow, Early warning system, evacuation
Volcano fact sheet; glacier-generated debris flows at Mount Rainier
Walder, J.S.; Driedger, C.L.
1993-01-01
Mount Rainier is a young volcano whose slopes are undergoing rapid change by a variety of geologic processes, including debris flows. Debris flows are churning masses of water, rock and mud that travel rapidly down the volcano's steep, glacially carved valleys, leaving in their wake splintered trees, picnic sites buried in mud, and damaged roads. Debris flows typically contain as much as 65 to 70 percent rock and soil by volume and have the appearance of wet concrete. At Mount Rainier National Park, these flows invariably begin in remote areas nearly inaccessible to people, but may move rapidly downstream into areas frequented by visitors.
An integrated study to evaluate debris flow hazard in alpine environment
NASA Astrophysics Data System (ADS)
Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara
2018-05-01
Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.
R. M. Wooten; K. A. Gillon; A. C. Witt; R. S. Latham; T. J. Douglas; J. B. Bauer; S. J. Fuemmeler; L. G. Lee
2008-01-01
In September 2004, rain from the remnants of Hurricanes Frances and Ivan triggered at least 155 landslides in the Blue Ridge Mountains of North Carolina. At least 33 debris flows occurred in Macon County, causing 5 deaths, destroying 16 homes, and damaging infrastructure. We mapped debris flows and debris deposits using a light-detecting and ranging digital elevation...
Debris-flow initiation from large, slow-moving landslides
Reid, M.E.; Brien, D.L.; LaHusen, R.G.; Roering, J.J.; de la Fuente, J.; Ellen, S.D.; ,
2003-01-01
In some mountainous terrain, debris flows preferentially initiate from the toes and margins of larger, deeper, slower-moving landslides. During the wet winter of 1997, we began real-time monitoring of the large, active Cleveland Corral landslide complex in California, USA. When the main slide is actively moving, small, shallow, first-time slides on the toe and margins mobilize into debris flows and travel down adjacent gullies. We monitored the acceleration of one such failure; changes in velocity provided precursory indications of rapid failure. Three factors appear to aid the initiation of debris flows at this site: 1) locally steepened ground created by dynamic landslide movement, 2) elevated pore-water pressures and abundant soil moisture, and 3) locally cracked and dilated materials. This association between debris flows and large landslides can be widespread in some terrain. Detailed photographic mapping in two watersheds of northwestern California illustrates that the areal density of debris-flow source landsliding is about 3 to 7 times greater in steep geomorphically fresher landslide deposits than in steep ground outside landslide deposits. ?? 2003 Millpress.
Tillery, Anne C.; Darr, Michael J.; Cannon, Susan H.; Michael, John A.
2011-01-01
The Las Conchas Fire during the summer of 2011 was the largest in recorded history for the state of New Mexico, burning 634 square kilometers in the Jemez Mountains of north-central New Mexico. The burned landscape is now at risk of damage from postwildfire erosion, such as that caused by debris flows and flash floods. This report presents a preliminary hazard assessment of the debris-flow potential from 321 basins burned by the Las Conchas Fire. A pair of empirical hazard-assessment models developed using data from recently burned basins throughout the intermountain western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows at the outlets of selected drainage basins within the burned area. The models incorporate measures of burn severity, topography, soils, and storm rainfall to estimate the probability and volume of debris flows following the fire. In response to a design storm of 28.0 millimeters of rain in 30 minutes (10-year recurrence interval), the probabilities of debris flows estimated for basins burned by the Las Conchas Fire were greater than 80 percent for two-thirds (67 percent) of the modeled basins. Basins with a high (greater than 80 percent) probability of debris-flow occurrence were concentrated in tributaries to Santa Clara and Rio del Oso Canyons in the northeastern part of the burned area; some steep areas in the Valles Caldera National Preserve, Los Alamos, and Guaje Canyons in the east-central part of the burned area; tributaries to Peralta, Colle, Bland, and Cochiti canyons in the southwestern part of the burned area; and tributaries to Frijoles, Alamo, and Capulin Canyons in the southeastern part of the burned area (within Bandelier National Monument). Estimated debris-flow volumes ranged from 400 cubic meters to greater than 72,000 cubic meters. The largest volumes (greater than 40,000 cubic meters) were estimated for basins in Santa Clara, Los Alamos, and Water Canyons, and for two basins at the northeast edge of the burned area tributary to Rio del Oso and Vallecitos Creek. The Combined Relative Debris-Flow Hazard Rankings identify the areas of highest probability of the largest debris flows. Basins with high Combined Relative Debris-Flow Hazard Rankings include upper Santa Clara Canyon in the northern section of the burn scar, and portions of Peralta, Colle, Bland, Cochiti, Capulin, Alamo, and Frijoles Canyons in the southern section of the burn scar. Three basins with high Combined Relative Debris-Flow Hazard Rankings also occur in areas upstream from the city of Los Alamos—the city is home to and surrounded by numerous technical sites for the Los Alamos National Laboratory. Potential debris flows in the burned area could affect the water supply for Santa Clara Pueblo and several recreational lakes, as well as recreational and archeological resources in Bandelier National Monument. Debris flows could damage bridges and culverts along State Highway 501 and other roadways. Additional assessment is necessary to determine if the estimated volume of material is sufficient to travel into areas downstream from the modeled basins along the valley floors, where they could affect human life, property, agriculture, and infrastructure in those areas. Additionally, further investigation is needed to assess the potential for debris flows to affect structures at or downstream from basin outlets and to increase the threat of flooding downstream by damaging or blocking flood mitigation structures. The maps presented here may be used to prioritize areas where erosion mitigation or other protective measures may be necessary within a 2- to 3-year window of vulnerability following the Las Conchas Fire.
NASA Astrophysics Data System (ADS)
Guo, Xiaojun; Cui, Peng; Li, Yong; Ma, Li; Ge, Yonggang; Mahoney, William B.
2016-01-01
The Ms 8.0 Wenchuan Earthquake has greatly altered the rainfall threshold for debris flows in the affected areas. This study explores the local intensity-duration (I-D) relationship based on 252 post-earthquake debris flows. It was found that I = 5.25 D-0.76 accounts for more than 98% of the debris flow occurrences with rainfall duration between 1 and 135 h; therefore the curve defines the threshold for debris flows in the study area. This gives much lower thresholds than those proposed by the previous studies, suggesting that the earthquake has greatly decreased the thresholds in the past years. Moreover, the rainfall thresholds appear to increase annually in the period of 2008-2013, and present a logarithmic increasing tendency, indicating that the thresholds will recover in the future decades.
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
Tripp, Richard B.; Curtin, Gary C.; Nokleberg, Warren J.; Huston, David L.; Hampton, James R.
1993-01-01
Exploratory geochemical sampling was done in 1979, 1980, and 1981. The collection of composite samples of stream sediment or glacial debris was emphasized the first 2 years; the last year was spent collecting mineralized stream pebbles, float, and outcrop samples. The stream-sediment and heavy- mineral-concentrate samples were collected at 795 sites on tributary streams having drainage basins ranging from 1 to 5 mi 2 in area. The glacial debris samples were collected at 116 sites on tributary glaciers also having drainage basins ranging from 1 to 5 mi2 in area. All of these samples were analyzed for 31 elements by six-step semiquantitative emission spectrography (Grimes and Marranzino, 1968). In addition, all samples were analyzed for zinc by an atomic absorption method (Ward and others, 1969). The spectrographic and chemical results are available in O'Leary and others (1982).
NASA Astrophysics Data System (ADS)
Destro, Elisa; Amponsah, William; Nikolopoulos, Efthymios I.; Marchi, Lorenzo; Marra, Francesco; Zoccatelli, Davide; Borga, Marco
2018-03-01
The concurrence of flash floods and debris flows is of particular concern, because it may amplify the hazard corresponding to the individual generative processes. This paper presents a coupled modelling framework for the predictions of flash flood response and of the occurrence of debris flows initiated by channel bed mobilization. The framework combines a spatially distributed flash flood response model and a debris flow initiation model to define a threshold value for the peak flow which permits identification of channelized debris flow initiation. The threshold is defined over the channel network as a function of the upslope area and of the local channel bed slope, and it is based on assumptions concerning the properties of the channel bed material and of the morphology of the channel network. The model is validated using data from an extreme rainstorm that impacted the 140 km2 Vizze basin in the Eastern Italian Alps on August 4-5, 2012. The results show that the proposed methodology has improved skill in identifying the catchments where debris-flows are triggered, compared to the use of simpler thresholds based on rainfall properties.
Numerical simulation of failure behavior of granular debris flows based on flume model tests.
Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na
2013-01-01
In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.
Basic processes and factors determining the evolution of collapse sinkholes: a sensitivity study
NASA Astrophysics Data System (ADS)
Romanov, Douchko; Kaufmann, Georg
2017-04-01
Collapse sinkholes appear as closed depressions at the surface. The origin of these karst features is related to the continuous dissolution of the soluble rock caused by a focussed sub-surface flow. Water flowing along a preferential pathway through fissures and fractures within the phreatic part of a karst aquifer is able to dissolve the rock (limestone, gypsum, anhydrite). With time, the dissolved void volume increases and part of the ceiling above the stream can become unstable, collapses, and accumulates as debris in the flow path. The debris partially blocks the flow and thus activates new pathways. Because of the low compaction of the debris (high hydraulic conductivity), the flow and the dissolution rates within this crushed zone remain high. This allows a relatively fast dissolutional and erosional removal of the crushed material and the development of new empty voids. The void volume expands upwards towards the surface until a collapse sinkhole is formed. The collapse sinkholes exhibit a large variety of shapes (cylindrical, cone-, bowl-shaped), depths (from few to few hundred meters) and diameters (meters up to hundreds of meters). Two major processes are responsible for this diversity: a) the karst evolution of the aquifer - responsible for the dissolutional and erosional removal of material; b) the mechanical evolution of the host rock and the existence of structural features, faults for example, which determine the stability and the magnitude of the subsequent collapses. In this work we demonstrate the influence of the host rock type, the hydrological and geological boundary conditions, the chemical composition of the flowing water, and the geometry and the scale of the crushed zone, on the location and the evolution of the growing sinkhole. We demonstrate the ability of the karst evolution models to explain, at least qualitatively, the growth and the morphology of the collapse sinkholes and to roughly predict their shape and location. Implementing simple rules that describe the mechanical collapse, we come to the conclusion that a complete quantitative and qualitative description of a collapse sinkhole is possible, but for this it is necessary to take into account also the mechanical properties of the rock and the processes determining the mechanics of the collapses.
A Detailed Study of Debris Flow Source Areas in the Northern Colorado Front Range.
NASA Astrophysics Data System (ADS)
Arana-Morales, A.; Baum, R. L.; Godt, J.
2014-12-01
Nearly continuous, heavy rainfall occurred during 9-13 September 2013 causing flooding and widespread landslides and debris flows in the northern Colorado Front Range. Whereas many recent studies have identified erosion as the most common process leading to debris flows in the mountains of Colorado, nearly all of the debris flows mapped in this event began as small, shallow landslides. We mapped the boundaries of 415 September 2013 debris flows in the Eldorado Springs and Boulder 7.5-minute quadrangles using 0.5-m-resolution satellite imagery. We characterized the landslide source areas of six debris flows in the field as part of an effort to identify what factors controlled their locations. Four were on a dip slope in sedimentary rocks in the Pinebrook Hills area, near Boulder, and the other two were in granitic rocks near Gross Reservoir. Although we observed no obvious geomorphic differences between the source areas and surrounding non-landslide areas, we noted several characteristics that the source areas all had in common. Slopes of the source areas ranged from 28° to 35° and most occurred on planar or slightly concave slopes that were vegetated with grass, small shrubs, and sparse trees. The source areas were shallow, irregularly shaped, and elongated downslope: widths ranged from 4 to 9 m, lengths from 6 to 40 m and depths ranged from 0.7 to 1.2 m. Colluvium was the source material for all of the debris flows and bedrock was exposed in the basal surface of all of the source areas. We observed no evidence for concentrated surface runoff upslope from the sources. Local curvature and roughness of bedrock and surface topography, and depth distribution and heterogeneity of the colluvium appear to have controlled the specific locations of these shallow debris-flow source areas. The observed distribution and characteristics of the source areas help guide ongoing efforts to model initiation of the debris flows.
Modeling four occurred debris flow events in the Dolomites area (North-Eastern Italian Alps)
NASA Astrophysics Data System (ADS)
Boreggio, Mauro; Gregoretti, Carlo; Degetto, Massimo; Bernard, Martino
2016-04-01
Four occurred debris flows in the Dolomites area (North-Eastern Italian Alps) are modeled by back-analysis. The four debris flows events are those occurred at Rio Lazer (Trento) on the 4th of November 1966, at Fiames (Belluno) on the 5th of July 2006, at Rovina di Cancia (Belluno) on the 18th of July 2009 and at Rio Val Molinara (Trento) on the 15th of August 2010. In all the events, runoff entrained sediments present on natural channels and formed a solid-liquid wave that routed downstream. The first event concerns the routing of debris flow on an inhabited fan. The second event the deviation of debris flow from the usual path due to an obstruction with the excavation of a channel in the scree and the downstream spreading in a wood. The third event concerns the routing of debris flow in a channel with an ending the reservoir, its overtopping and final spreading in the inhabited area. The fourth event concerns the routing of debris flow along the main channel downstream the initiation area until spreading just upstream a village. All the four occurred debris flows are simulated by modeling runoff that entrained debris flow for determining the solid-liquid hydrograph. The routing of the solid-liquid hydrograph is simulated by a bi-phase cell model based on the kinematic approach. The comparison between simulated and measured erosion and deposition depths is satisfactory. Nearly the same parameters for computing erosion and deposition were used for all the four occurred events. The maps of erosion and deposition depths are obtained by comparing the results of post-event surveys with the pre-event DEM. The post-event surveys were conducted by using different instruments (LiDAR and GPS) or the combination photos-single points depth measurements (in this last case it is possible obtaining the deposition/erosion depths by means of stereoscopy techniques).
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ammo Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Ranch Fire in Ventura and Los Angeles Counties, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
IntroductionThe objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Harris Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Rice Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Poomacha Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Witch Fire in San Diego County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Slide and Grass Valley Fires in San Bernardino County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 3.50 inches (88.90 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Buckweed Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Canyon Fire in Los Angeles County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 2.25 inches (57.15 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Bauer, Mark A.; Stitt, Susan C.; Knifong, Donna L.; McNamara, Bernard J.; Roque, Yvonne M.
2007-01-01
INTRODUCTION The objective of this report is to present a preliminary emergency assessment of the potential for debris-flow generation from basins burned by the Santiago Fire in Orange County, southern California in 2007. Debris flows are among the most hazardous geologic phenomena; debris flows that followed wildfires in southern California in 2003 killed 16 people and caused tens of millions of dollars of property damage. A short period of even moderate rainfall on a burned watershed can lead to debris flows. Rainfall that is normally absorbed into hillslope soils can run off almost instantly after vegetation has been removed by wildfire. This causes much greater and more rapid runoff than is normal from creeks and drainage areas. Highly erodible soils in a burn scar allow flood waters to entrain large amounts of ash, mud, boulders, and unburned vegetation. Within the burned area and downstream, the force of rushing water, soil, and rock can destroy culverts, bridges, roadways, and buildings, potentially causing injury or death. This emergency debris-flow hazard assessment is presented as relative ranking of the predicted median volume of debris flows that can issue from basin outlets in response to 1.75 inches (44.45 mm) of rainfall over a 3-hour period. Such a storm has a 10-year return period. The calculation of debris flow volume is based on a multiple-regression statistical model that describes the median volume of material that can be expected from a recently burned basin as a function of the area burned at high and moderate severity, the basin area with slopes greater than or equal to 30 percent, and triggering storm rainfall. Cannon and others (2007) describe the methods used to generate the hazard maps. Identification of potential debris-flow hazards from burned drainage basins is necessary to issue warnings for specific basins, to make effective mitigation decisions, and to help plan evacuation timing and routes.
NASA Astrophysics Data System (ADS)
Armanini, Aronne; Cardoso, Antonio H.; Di Baldassarre, Giuliano; Bellin, Alberto; Breinl, Korbinian; Canelas, Ricardo B.; Larcher, Michele; Majone, Bruno; Matos, Jorges; Meninno, Sabrina; Nucci, Elena; Rigon, Riccardo; Rosatti, Giorgio; Zardi, Dino
2017-04-01
The STEEP STREAMS (Solid Transport Evaluation and Efficiency in Prevention: Sustainable Techniques of Rational Engineering and Advanced MethodS) project consists of a collaboration among the Universities of Trento, Uppsala and Lisbon, who joined in a consortium within the ERANET Water JPI call WaterWorks2014. The aim of the project is to produce new rational criteria for the design of protection works against debris flows, a phenomenon consisting in hyper-concentrated flows of water and sediments, classified as catastrophic events typical of small mountainous basins (area <10 km2) and triggered by intense rainstorms. Such events are non-stationary phenomena that arise in a very short time, and their recurrence is rather difficult to determine. Compared to flash floods, they are more difficult to anticipate, mostly since they are triggered by convective precipitation events, posing a higher risk of damage and even loss of human lives. These extreme events occur almost annually across Europe, though the formal return period in an exposed site is much larger. Recently, an increase in intensity and frequency of small-scale storm events, leading to extreme solid transport in steep channels, are recognized as one of the effects of climate change. In this context, one of the key challenges of this project is the use of comparatively coarse RCM projections to the small catchments examined in STEEP STREAMS. Given these changes, conventional protection works and their design criteria may not suffice to provide adequate levels of protection to human life and urban settlements. These structures create a storage area upstream the alluvial fans and the settlements, thereby reducing the need of channelization in areas often constrained by urban regulations. To optimize the lamination, and in particular to reduce the peak of solid mass flux, it is necessary that the deposition basin is controlled by a slit check dam, capable of inducing a controlled sedimentation of the solid mas flux. In order to achieve that, reliable design tools are needed. Driftwood represents another important factor increasing the risk, as clogging induced by the vegetal material represents a major problem for the operational reliability of slit check dams. Current procedures in compiling hazardous maps do not account for such effects. The STEEPS STREAMS project aims at developing structural innovative solutions and design criteria reliable to mitigate the impacts of flash floods and debris flows especially in presence of intense woody material transport, typical of mountain catchments.
Geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado
Shroba, Ralph R.; Kellogg, Karl S.; Brandt, Theodore R.
2014-01-01
The geologic map of the Granite 7.5' quadrangle, Lake and Chaffee Counties, Colorado, portrays the geology in the upper Arkansas valley and along the lower flanks of the Sawatch Range and Mosquito Range near the town of Granite. The oldest rocks, exposed in the southern and eastern parts of the quadrangle, include gneiss and plutonic rocks of Paleoproterozoic age. These rocks are intruded by younger plutonic rocks of Mesoproterozoic age. Felsic hypabyssal dikes, plugs, and plutons, ranging in age from Late Cretaceous or Paleocene to late Oligocene, locally intruded Proterozoic rocks. A small andesite lava flow of upper Oligocene age overlies Paleoproterozoic rock, just south of the Twin Lakes Reservoir. Gravelly fluvial and fan deposits of the Miocene and lower Pliocene(?) Dry Union Formation are preserved in the post-30 Ma upper Arkansas valley graben, a northern extension of the Rio Grande rift. Mostly north-northwest-trending faults displace deposits of the Dry Union Formation and older rock units. Light detection and ranging (lidar) imagery suggests that two short faults, near the Arkansas River, may displace surficial deposits as young as middle Pleistocene. Surficial deposits of middle Pleistocene to Holocene age are widespread in the Granite quadrangle, particularly in the major valleys and on slopes underlain by the Dry Union Formation. The main deposits are glacial outwash and post-glacial alluvium; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; till deposited during the Pinedale, Bull Lake, and pre-Bull Lake glaciations; rock-glacier deposits; and placer-tailings deposits formed by hydraulic mining and other mining methods used to concentrate native gold. Hydrologic and geologic processes locally affect use of the land and locally may be of concern regarding the stability of buildings and infrastructure, chiefly in low-lying areas along and near stream channels and locally in areas of moderate to steep slopes. Low-lying areas along major and minor streams are subject to periodic stream flooding. Mass-movement deposits and deposits of the Dry Union Formation that underlie moderate to steep slopes are locally subject to creep, debris-flow deposition, and landsliding. Proterozoic rocks that underlie steep slopes are locally subject to rockfall. Sand and gravel resources for construction and other uses in and near the Granite quadrangle are present in outwash-terrace deposits of middle and late Pleistocene age along the Arkansas River and along tributary streams in glaciated valleys.
Restrepo, P.; Jorgensen, D.P.; Cannon, S.H.; Costa, J.; Laber, J.; Major, J.; Martner, B.; Purpura, J.; Werner, K.
2008-01-01
Debris flows, also known as mudslides, are composed gravity-driven mixtures of sediment and water that travel through steep channels, over open hillslopes, and the like. Addressing this issue, US Geological Survey (USGS) and NOAA have established a debris-flow warning system that has the ability to monitor and forecast precipitation and issue timely weather hazard warning. In 2005, this joint NOAA-USGS prototype debris-flow warning system was issued in Southern California and as a result, it has provided valuable information to emergency managers in affected communities.
McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.
2010-01-01
Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.
Onset of submarine debris flow deposition far from original giant landslide.
Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A
2007-11-22
Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.
Analysis of the Mobilization of Debris Flows
1974-10-01
31 17 . Debris-flow source area at Roofing Granule Quarry, San Bernardino County, California 39 18. Debris-flow source area at Roofing Granule...down a channel about 12 to 16 cm wide with a 35 degree slope. Water, oozing out of the landslide mass into 17 wmmaaaamam’j ■ma the debris channel...marble used as roofing granules (Fig. 17 ) 2 1/2 km north of the town of Wrightwood, about 65 km north- * east of Los Angeles, California (Fig. 1
The role of large woody debris in modulating the dispersal of a post-fire sediment pulse
NASA Astrophysics Data System (ADS)
Short, Lauren E.; Gabet, Emmanuel J.; Hoffman, Daniel F.
2015-10-01
In 2001, a series of post-fire debris flows brought 30,000 m3 of sediment, deposited as fans, to the narrow valley floor of Sleeping Child Creek in western Montana (USA). In 2005, pebble-counts and surveys of the channel in proximity to six of the debris flow fans documented a regular sequence of fine-grained aggradation upstream of the fans, incision through the fans, and coarse-grained aggradation downstream of the fans. These measurements were repeated in 2012. We found that the delivery of large woody debris (LWD) over the intervening 7 years has been a dominant factor in the disposition of the debris-flow material. The amount of LWD in the study reach has increased by as much as 50% in the areas with a high burn severity, leading to the formation of large logjams that interrupt the flow of sediment along the streambed. Nearly all of the surveyed reaches have aggraded since 2005, including those that had initially begun incising through the debris flow deposits, and the streambed has become generally finer. We hypothesize that, over the next few decades, debris flow sediment not colonized and anchored by riparian vegetation will trickle out of the affected reaches as the logjams slowly degrade.
NASA Astrophysics Data System (ADS)
Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.
2014-11-01
The Tapado catchment is located in the upper Elqui river basin (4000-5550 m) in northern Chile. It comprises the Tapado glacial complex, which is an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier, and moraines). Although the hydrological functioning of this catchment is poorly known, it is assumed to actively supply water to the lower semi-arid areas of the Elqui river basin. To improve our knowledge of the interactions and water transfers between the cryospheric compartment (glacier, debris-covered glacier, and rock glacier) and the hydrological compartment (aquifers, streams), the results of monitoring of meteorological conditions, as well as discharge, conductivity and temperature of streams and springs located in the Tapado catchment were analyzed. The hydrological results are compared to results inferred from a ground penetrating radar (GPR) survey of the underground structure of the glacial foreland. Water production from the Tapado glacier was shown to be highly correlated with daily and monthly weather conditions, particularly solar radiation and temperature. The resulting daily and monthly streamflow cycles were buffered by the glacial foreland, where underground transfers took place through complex flow paths. However, the development of a thermokarst drainage network in a portion of the glacial foreland enabled rapid concentrated water transfers that reduced the buffer effect. The glacial foreland was shown to act as a reservoir, storing water during high melt periods and supplying water to downstream compartments during low melt periods. GPR observations revealed the heterogeneity of the internal structure of the glacial foreland, which is composed of a mixture of ice and rock debris mixture, with variable spatial ice content, including massive ice lenses. This heterogeneity may explain the abovementioned hydrological behaviors. Finally, calculation of a partial hydrological budget confirmed the importance of the Tapado catchment in supplying water to lower areas of the Elqui river basin. Water production from, and transfer through, cryospheric compartments, and its subsequent interactions with hydrological compartments are key processes driving the summer water supply from the Tapado catchment.
NASA Astrophysics Data System (ADS)
von Boetticher, Albrecht; Rickenmann, Dieter; McArdell, Brian; Kirchner, James W.
2017-04-01
Debris flows are dense flowing mixtures of water, clay, silt, sand and coarser particles. They are a common natural hazard in mountain regions and frequently cause severe damage. Modeling debris flows to design protection measures is still challenging due to the complex interactions within the inhomogeneous material mixture, and the sensitivity of the flow process to the channel geometry. The open-source, OpenFOAM-based finite-volume debris flow model debrisInterMixing (von Boetticher et al, 2016) defines rheology parameters based on the material properties of the debris flow mixture to reduce the number of free model parameters. As a simplification in this first model version, gravel was treated as a Coulomb-viscoplastic fluid, neglecting grain-to-grain collisions and the coupling between the coarser gravel grains and the interstitial fluid. Here we present an extension of that solver, accounting for the particle-to-particle and particle-to-boundary contacts with a Lagrangian Particle Simulation composed of spherical grains and a user-defined grain size distribution. The grain collisions of the Lagrangian particles add granular flow behavior to the finite-volume simulation of the continuous phases. The two-way coupling exchanges momentum between the phase-averaged flow in a finite volume cell, and among all individual particles contained in that cell, allowing the user to choose from a number of different drag models. The momentum exchange is implemented in the momentum equation and in the pressure equation (ensuring continuity) of the so-called PISO-loop, resulting in a stable 4-way coupling (particle-to-particle, particle-to-boundary, particle-to-fluid and fluid-to-particle) that represents the granular and viscous flow behavior of debris flow material. We will present simulations that illustrate the relative benefits and drawbacks of explicitly representing grain collisions, compared to the original debrisInterMixing solver.
NASA Astrophysics Data System (ADS)
Luna, B. Quan; Blahut, J.; van Westen, C. J.; Sterlacchini, S.; van Asch, T. W. J.; Akbas, S. O.
2011-07-01
For a quantitative assessment of debris flow risk, it is essential to consider not only the hazardous process itself but also to perform an analysis of its consequences. This should include the estimation of the expected monetary losses as the product of the hazard with a given magnitude and the vulnerability of the elements exposed. A quantifiable integrated approach of both hazard and vulnerability is becoming a required practice in risk reduction management. This study aims at developing physical vulnerability curves for debris flows through the use of a dynamic run-out model. Dynamic run-out models for debris flows are able to calculate physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk could suffer an impact. These results can then be applied to consequence analyses and risk calculations. On 13 July 2008, after more than two days of intense rainfall, several debris and mud flows were released in the central part of the Valtellina Valley (Lombardy Region, Northern Italy). One of the largest debris flows events occurred in a village called Selvetta. The debris flow event was reconstructed after extensive field work and interviews with local inhabitants and civil protection teams. The Selvetta event was modelled with the FLO-2D program, an Eulerian formulation with a finite differences numerical scheme that requires the specification of an input hydrograph. The internal stresses are isotropic and the basal shear stresses are calculated using a quadratic model. The behaviour and run-out of the flow was reconstructed. The significance of calculated values of the flow depth, velocity, and pressure were investigated in terms of the resulting damage to the affected buildings. The physical damage was quantified for each affected structure within the context of physical vulnerability, which was calculated as the ratio between the monetary loss and the reconstruction value. Three different empirical vulnerability curves were obtained, which are functions of debris flow depth, impact pressure, and kinematic viscosity, respectively. A quantitative approach to estimate the vulnerability of an exposed element to a debris flow which can be independent of the temporal occurrence of the hazard event is presented.
Keeton, William S; Kraft, Clifford E; Warren, Dana R
2007-04-01
Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.
NASA Astrophysics Data System (ADS)
Celis, C.; Sepulveda, S. A.; Castruccio, A.; Lara, M.
2017-12-01
Debris and mudflows are some of the main geological hazards in the mountain foothills of Central Chile. The risk of flows triggered in the basins of ravines that drain the Andean frontal range into the capital city, Santiago, increases with time due to accelerated urban expansion. Susceptibility assessments were made by several authors to detect the main active ravines in the area. Macul and San Ramon ravines have a high to medium debris flow susceptibility, whereas Lo Cañas, Apoquindo and Las Vizcachas ravines have a medium to low debris flow susceptibility. This study emphasizes in delimiting the potential hazardous zones using the numerical simulation program RAMMS-Debris Flows with the Voellmy model approach, and the debris-flow model LAHARZ. This is carried out by back-calculating the frictional parameters in the depositional zone with a known event as the debris and mudflows in Macul and San Ramon ravines, on May 3rd, 1993, for the RAMMS approach. In the same scenario, we calibrate the coefficients to match conditions of the mountain foothills of Santiago for the LAHARZ model. We use the information obtained for every main ravine in the study area, mainly for the similarity in slopes and material transported. Simulations were made for the worst-case scenario, caused by the combination of intense rainfall storms, a high 0°C isotherm level and material availability in the basins where the flows are triggered. The results show that the runout distances are well simulated, therefore a debris-flow hazard map could be developed with these models. Correlation issues concerning the run-up, deposit thickness and transversal areas are reported. Hence, the models do not represent entirely the complexity of the phenomenon, but they are a reliable approximation for preliminary hazard maps.
NASA Astrophysics Data System (ADS)
Iverson, R. M.
2015-12-01
Episodic landslides and debris flows play a key role in sculpting many steep landscapes, and they also pose significant natural hazards. Field evidence, laboratory experiments, and theoretical analyses show that variations in the quantity, speed, and distance of sediment transport by landslides and debris flows can depend strongly on nuanced differences in initial conditions. Moreover, initial conditions themselves can be strongly dependent on the geological legacy of prior events. The scope of these dependencies is revealed by the results of landslide dynamics experiments [Iverson et al., Science, 2000], debris-flow erosion experiments [Iverson et al., Nature Geosci., 2011], and numerical simulations of the highly destructive 2014 Oso, Washington, landslide [Iverson et al., Earth Planet. Sci. Let., 2015]. In each of these cases, feedbacks between basal sediment deformation and pore-pressure generation cause the speed and distance of sediment transport to be very sensitive to subtle differences in the ambient sediment porosity and water content. On the other hand, the onset of most landslides and debris flows depends largely on pore-water pressure distributions and only indirectly on sediment porosity and water content. Thus, even if perfect predictions of the locations and timing of landslides and debris flows were available, the dynamics of the events - and their consequent hazards and sediment transport - would be difficult to predict. This difficulty is a manifestation of the nonlinear physics involved, rather than of poor understanding of those physics. Consequently, physically based models for assessing the hazards and sediment transport due to landslides and debris flows must take into account both evolving nonlinear dynamics and inherent uncertainties about initial conditions. By contrast, landscape evolution models that use prescribed algebraic formulas to represent sediment transport by landslides and debris flows lack a sound physical basis.
Impact of recent extreme Arizona storms
Magirl, C.S.; Webb, R.H.; Schaffner, M.; Lyon, S.W.; Griffiths, P.G.; Shoemaker, C.; Unkrich, C.L.; Yatheendradas, S.; Troch, Peter A.; Pytlak, E.; Goodrich, D.C.; Desilets, S.L.E.; Youberg, A.; Pearthree, P.A.
2007-01-01
Heavy rainfall on 27–31 July 2006 led to record flooding and triggered an historically unprecedented number of debris flows in the Santa Catalina Mountains north of Tucson, Ariz. The U.S. Geological Survey (USGS) documented record floods along four watercourses in the Tucson basin, and at least 250 hillslope failures spawned damaging debris flows in an area where less than 10 small debris flows had been documented in the past 25 years. At least 18 debris flows destroyed infrastructure in the heavily used Sabino Canyon Recreation Area (http://wwwpaztcn.wr.usgs.gov/rsch_highlight/articles/20061 l.html). In four adjacent canyons, debris flows reached the heads of alluvial fans at the boundary of the Tucson metropolitan area. While landuse planners in southeastern Arizona evaluate the potential threat of this previously little recognized hazard to residents along the mountain front, an interdisciplinary group of scientists has collaborated to better understand this extreme event.
Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.
2007-01-01
This report describes the approach used to assess potential debris-flow hazards from basins burned by the Buckweed, Santiago, Canyon, Poomacha, Ranch, Harris, Witch, Rice, Ammo, Slide, Grass Valley and Cajon Fires of 2007 in southern California. The assessments will be presented as a series of maps showing a relative ranking of the predicted volume of debris flows that can issue from basin outlets in response to a 3-hour duration rainstorm with a 10-year return period. Potential volumes of debris flows are calculated using a multiple-regression model that describes debris-flow volume at a basin outlet as a function of measures of basin gradient, burn extent, and storm rainfall. This assessment provides critical information for issuing basin-specific warnings, locating and designing mitigation measures, and planning of evacuation timing and routes.
Haas, Jessica R.; Thompson, Matthew P.; Tillery, Anne C.; Scott, Joe H.
2017-01-01
Wildfires can increase the frequency and magnitude of catastrophic debris flows. Integrated, proactive natural hazard assessment would therefore characterize landscapes based on the potential for the occurrence and interactions of wildfires and postwildfire debris flows. This chapter presents a new modeling effort that can quantify the variability surrounding a key input to postwildfire debris-flow modeling, the amount of watershed burned at moderate to high severity, in a prewildfire context. The use of stochastic wildfire simulation captures variability surrounding the timing and location of ignitions, fire weather patterns, and ultimately the spatial patterns of watershed area burned. Model results provide for enhanced estimates of postwildfire debris-flow hazard in a prewildfire context, and multiple hazard metrics are generated to characterize and contrast hazards across watersheds. Results can guide mitigation efforts by allowing planners to identify which factors may be contributing the most to the hazard rankings of watersheds.
Active fans and grizzly bears: Reducing risks for wilderness campers
NASA Astrophysics Data System (ADS)
Sakals, M. E.; Wilford, D. J.; Wellwood, D. W.; MacDougall, S. A.
2010-03-01
Active geomorphic fans experience debris flows, debris floods and/or floods (hydrogeomorphic processes) that can be hazards to humans. Grizzly bears ( Ursus arctos) can also be a hazard to humans. This paper presents the results of a cross-disciplinary study that analyzed both hydrogeomorphic and grizzly bear hazards to wilderness campers on geomorphic fans along a popular hiking trail in Kluane National Park and Reserve in southwestern Yukon Territory, Canada. Based on the results, a method is proposed to reduce the risks to campers associated with camping on fans. The method includes both landscape and site scales and is based on easily understood and readily available information regarding weather, vegetation, stream bank conditions, and bear ecology and behaviour. Educating wilderness campers and providing a method of decision-making to reduce risk supports Parks Canada's public safety program; a program based on the principle of user self-sufficiency. Reducing grizzly bear-human conflicts complements the efforts of Parks Canada to ensure a healthy grizzly bear population.
Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador
NASA Astrophysics Data System (ADS)
Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.
2017-04-01
We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (<13 ky) mass movement of high-altitude (>3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.
NASA Astrophysics Data System (ADS)
Morino, Costanza; Conway, Susan J.; Balme, Matthew R.; Jordan, Colm; Hillier, John; Sæmundsson, Þorsteinn; Argles, Tom
2015-04-01
A debris flow is a very rapid to extremely rapid flow (e.g., 0.8-28 ms-1) [1], that occurs when coarse and poorly-sorted debris, mixed with water and/or air, move down hill slopes in response to gravity [2]. Both the fluid and the solid have a strong influence on the movement of debris flows. They can be extremely destructive, due to their capability of transporting metre-size boulders [e.g., 3, 4]. There are two main ways in which a debris flow can be initiated: by slope failure or by the "fire hose" effect. The slope failure type is particularly common in alpine regions, where landslides can evolve into debris flows [5], triggered by the coalescence of different slope failures. Steep slope gradients, high pore-water pressures, heavy rainfall and/or snowmelt favour this process. The "fire hose" effect occurs when there is a high concentration of debris accumulated within a pre-existing channel; a surge of water through the channel can then develop into a debris flow by incorporating this debris [e.g. 5-7]. In this study, we examine the triggering style of debris flows above the town of Ísafjörður in the Westfjords of Iceland. The slope above the town is characterised by a large topographic bench upon which 20-35 m of glacial till is perched. The sediments are unstable at the bench margin and thus generate frequent, large, hillslope debris flows [8, 9]. In our new analysis, we report on the comparison between the two airborne LiDAR elevation models (collected in 2007 and 2013 by the UK Natural Environment Research Council Airborne Research and Survey Facility), which display several new debris flows and also related mass movements. From these analyses, we find that debris flows in the region are triggered by simple failure of the glacial till, as recognised before [8, 9]. However, debris flows may also be regenerated by the "fire hose" effect, when debris that has collapsed into chutes is remobilised by a later snowmelt or precipitation event. Comparing different airborne LiDAR datasets has proven to be a powerful tool, not just in the topographic analysis of landscape, but also in the discrimination of the causes of potentially disastrous phenomena. This suggests new possibilities for using remote sensing analysis to mitigate the effects of natural hazards. References: [1] Rickenmann, D., 1999. Natural Hazards, 19 (1), 47-77. [2] Iverson, R.M., 1997. Reviews of Geophysics, 35 (3), 245-296. [3] Clague, J.J., Evans, S.G., Blown, I.G., 1985. Journal of Earth Sciences, 22 (10), 1492-1502. [4] Kanji, M.A., Cruz, P.T., Massad, F., 2008. Landslides, 5 (1), 71-82. [5] Johnson, A.M. and Rodine, J. R. 1984. Slope Instability. Wiley, New York, 257-361. [6] Coe, J.A., Glancy, P.A., Whitney, J.W., 1997. Geomorphology, 20, 11-28. [7] Griffiths, P.G., Webb, R.H., Melis, T.S., 2004. Journal of Geophysical Research, 109, 321-336. [8] Conway, S. J., Decaulne, A., Balme, M. R., Murray, J. B., Towner, M. C., 2010. Geomorphology, 114 (4), 556-572. [9] Decaulne, A., Sæmundsson, Þ., Pétursson, O., 2005. Geografiska Annaler: Series A, Physical Geography, 87A, 487-500.
Dethier, David P.
2003-01-01
The Puye quadrangle covers an area on the eastern flank of the Jemez Mountains, north of Los Alamos and west of Espanola, New Mexico. Most of the quadrangle consists of a dissected plateau that was formed on the resistant caprock of the Bandelier Tuff, which was erupted from the Valles caldera approximately 1 to 2 million years ago. Within the canyons of the east-flowing streams that eroded this volcanic tableland, Miocene and Pliocene fluvial deposits of the Puye Formation and Santa Fe Group are exposed beneath the Bandelier Tuff. These older units preserve sand and gravel that were deposited by streams and debris flows flowing from source areas located mostly north and northeast of the Puye quadrangle. The landscape of the southeastern part of the quadrangle is dominated by the valley of the modern Rio Grande, and by remnants of piedmont-slope and river-terrace deposits that formed during various stages of incision of the Rio Grande drainage on the landscape. Landslide deposits are common along the steep canyon walls where broad tracts of the massive caprock units have slumped toward the canyons on zones of weakness in underlying strata, particularly on silt/clay-rich lacustrine beds within the Puye Formation.
Lahar Hazards at Casita and San Cristóbal Volcanoes, Nicaragua
Vallance, J.W.; Schilling, S.P.; Devoli, G.; Reid, M.E.; Howell, M.M.; Brien, D.L.
2004-01-01
Casita and San Cristóbal volcanoes are part of a volcano complex situated at the eastern end of the Cordillera de los Maribios. Other centers of volcanism in the complex include El Chonco, Cerro Moyotepe, and La Pelona. At 1745 m, San Cristóbal is the highest and only historically active volcano of the complex. The volcano’s crater is 500 to 600 m across and elongate east to west; its western rim is more than 100 m higher than its eastern rim. The conical volcano is both steep and symmetrical. El Chonco, which lies west of San Cristóbal, is crudely conical but has been deeply dissected by streams. Cerro Moyotepe to the northeast of San Cristóbal is even more deeply incised by erosion than El Chonco, and its crater is breached by erosion. Casita volcano, about 5 km east of San Cristóbal volcano, comprises a broad ridge like form, elongate along an eastwest axis, that is deeply dissected. Nested along the ridge are two craters. The younger one, La Ollada crater, truncates an older smaller crater to the east near Casita’s summit (1430 m). La Ollada crater is about 1 km across and 100 m deep. Numerous small fumarole fields occur near the summit of Casita and on nearby slopes outside of the craters. Casita volcano overlaps the 3-km-wide crater of La Pelona to the east. Stream erosion has deeply incised the slopes of La Pelona, and it is likely the oldest center of the Casita-San Cristóbal volcano complex. In late October and early November 1998, torrential rains of Hurricane Mitch caused numerous slope failures in Central America. The most catastrophic occurred at Casita volcano, on October 30, 1998. At Casita, five days of heavy rain triggered a 1.6-million-cubic-meter rock and debris avalanche that generated an 2- to 4- million-cubic-meter debris flow that swept down the steep slopes of the volcano. The debris flow spread out across the volcano’s apron, destroyed two towns, and killed more than 2500 people. In prehistoric time, Casita erupted explosively to form ash-fall deposits (tephra), debris avalanches, lava flows, and hot flowing mixtures of ash and rock (called pyroclastic flows). The chronology of activity at Casita is rather poorly known. Its last documented eruption occurred 8300 years ago, and included a pyroclastic flow. Tephra deposits exposed in the east crater suggest the possibility of subsequent eruptions. Work prior to Hurricane Mitch suggested that a part of the volcano’s apron that included the area inundated during the 1998 event south of Casita was a lahar pathway. Erosion during Hurricane Mitch revealed that at least three large lahars descended this pathway to distances of up to 10 km. This report describes the hazards of landslides and lahars in general, and discusses potential hazards from future landslides and lahars at San Cristóbal and Casita volcanoes in particular. The report also shows, in the accompanying lahar hazard-zonation maps, which areas are likely to be at risk from future landslides and lahars at Casita and San Cristóbal.
Talmage, Philip J.; Lee, Kathy E.; Goldstein, Robert M.; Anderson, Jesse P.; Fallon, James D.
1999-01-01
Water quality, physical habitat, and fish-community composition were characterized at 13 Twin Cities metropolitan area streams during low-flow conditions, September 1997. Fish communities were resampled during September 1998. Sites were selected based on a range of human population density. Nutrient concentrations were generally low, rarely exceeding concentrations found in agricultural streams or water-quality criteria. Seventeen pesticides and five pesticide metabolites were detected, with atrazine being the only pesticide detected at all 13 streams. Colony counts of fecal coliform bacteria ranged from 54 to greater than 11,000 colonies per 100 mL. Instream fish habitat was sparse with little woody debris and few boulders, cobble, or other suitable fish habitat. Thirty-eight species and one hybrid from 10 families were collected. Fish communities were characterized by high percentages of omnivores and tolerant species with few intolerant species. Index of Biotic Integrity scores were low, with most streams rating fair to very poor. Percent impervious surface was positively correlated with sodium and chloride concentrations and human population density, but was negatively correlated with fish species richness and diversity. Urban land use and human population density influence fish communities and water quality in Twin Cities metropolitan area streams. Other factors that may influence fish community composition include percent impervious cover, water chemistry, water temperature, geomorphology, substrate, instream habitat, and migration barriers.
Geological mechanism of hazardous debris flows in central Taiwan
NASA Astrophysics Data System (ADS)
Chen, H.; Chen, R. H.; Lin, M. L.; Su, D. Y.
2003-04-01
GEOLOGICAL MECHANISM OF HAZARDOUS DEBRIS FLOWS IN CENTRAL PART OF TAIWAN H. Chen (1), R. H. Chen (2), M. L. Lin (2), D.Y. Su (3) (1) Department of Geosciences, National Taiwan University, (2) Department of Civil Engineering, National Taiwan University, (3) MAA Ltd., Taiwan hche02@esc.cam.ac.uk/Fax:+44-01223-333450 This study revealed that the distribution of rock discontinuities, geomaterial characteristics and water pressure were the major hazardous factors of the triggering mechanism in the debris flows. Attention is drawn to the discontinuities pattern within the sidewalls of the gullies, which emphasized the significance of material slumping and forming the accumulated deposits in the gullies. The accumulated deposits are the main source of the debris flow once the disaster is triggered and produced large quantities of debris. A modified channel box test was used to comprehend the effect of water sources in this study. The results of this experimental test displayed that water supplied from the bottom or the top will both cause large material movement. But water supplied from the bottom tends to cause a larger and faster flow than water from the top. The visual evidence of a flushed network of discontinuities exposed after the debris flow provided in situ indications of increased pore water pressure. This rapidly increasing water pressure evidently contributed a sizable dynamic force to initiate movement of the debris flow. The heavy slurry became an effective cutting device to erode the sidewalls and move large quantities of the debris materials to the end of the gullies. Based on field investigations and laboratory tests, the precipitation could increase the water content and water pressure, and decrease the shear strength of the gullies material. It also can add confirmation to this research that debris flows are triggered by accumulated deposits from sidewalls and moved by high intensity precipitation.
Dynamics of Unusual Debris Flows on Martian Sand Dunes
NASA Technical Reports Server (NTRS)
Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary
2004-01-01
Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 10(exp 2) Pa s and the yield strength of 10(exp 2) Pa can form the observed deposits with a flow rate of 0.5 cu m/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.
Anne C. Tillery; Jessica Haas
2016-01-01
Wildfire can substantially increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although the exact location, extent, and severity of wildfire or subsequent rainfall intensity and duration cannot be known, probabilities of fire and debrisâflow...
Limiting the immediate and subsequent hazards associated with wildfires
DeGraff, Jerome V.; Cannon, Susan H.; Parise, Mario
2013-01-01
Similarly, our capability to limit impacts from post-fire debris flows is improving. Empirical models for estimating the probability of debris-flow occurrence, the volume of such an event, and mapping the inundated area, linked with improved definitions of the rainfall conditions that trigger debris flows, can be used to provide critical information for post-fire hazard mitigation and emergency-response planning.
Mechanics of debris flows and rock avalanches: Chapter 43
Iverson, Richard M.; Fernando, Harindra Joseph
2012-01-01
Debris flows are geophysical phenomena intermediate in character between rock avalanches and flash floods. They commonly originate as water-laden landslides on steep slopes and transform into liquefied masses of fragmented rock, muddy water, and entrained organic matter that disgorge from canyons onto valley floors. Typically including 50%–70% solid grains by volume, attaining speeds >10 m/s, and ranging in size up to ∼109 m3, debris flows can denude mountainsides, inundate floodplains, and devastate people and property (Figure 43.1). Notable recent debris-flow disasters resulted in more than 20,000 fatalities in Armero, Colombia, in 1985 and in Vargas state, Venezuela, in 1999.
Controls on debris flow bulking in proglacial gully networks on Mount Rainier, WA
NASA Astrophysics Data System (ADS)
Legg, N. T.; Meigs, A.; Grant, G. E.; Kennard, P.
2012-12-01
Conversion of floodwaters to debris flows due to sediment bulking continues to be a poorly understood phenomenon. This study examines the initiation zone of a series of six debris flows that originated in proglacial areas of catchments on the flank of Mount Rainier during one storm in 2006. One-meter spatial resolution aerial photographs and LiDAR DEMs acquired before and after the storm reveal the lack of a single mass failure to explain the debris flow deposits. Rather, the imagery show appreciable gully widening along reaches up to approximately 1.5 km in length. Based on gully discharges estimated from rainfall rates and estimates of sediment contribution from gully wall width change, we find that the sediment volumes contributed from gully walls are sufficient to bulk floodwaters up to debris flow concentrations. Points in gullies where width change began (upstream limit) in 2006 have a power law trend (R2 = 0.58) in terms of slope-drainage area. Reaches with noticeable width change, which we refer to as bulking reaches (BR), plot along a similar trend with greater drainage areas and gentler slopes. We then extracted slope and drainage area of all proglacial drainage networks to examine differences in morphology between debris flow basins (DFB) and non-debris flow basins (NDFB), hypothesizing that DFB would have a greater portion of their drainage networks with similar morphology to BR than NDFB. A comparison of total network length with greater slope and area than BR reveals that the two basins types are not statistically different. Lengths of the longest reaches with greater slope and drainage area than the BR trend, however, are statistically longer in DFB than in the NDFBs (p<0.05). These results suggest that debris flow initiation by sediment bulking does not operate as a simple threshold phenomenon in slope-area space. Instead debris flow initiation via bulking depends upon slope, drainage area, and gully length. We suspect the dependence on length relates to the poorly understood bulking process where feedback mechanisms working to progressively increase sediment concentrations likely operate. The apparent length dependence revealed in this study requires a shift in thought about the conditions leading to debris flow generation in catchments dominated by unconsolidated and transportable material.
Tillery, Anne C.; Matherne, Anne Marie
2013-01-01
A preliminary hazard assessment was developed of the debris-flow potential from 56 drainage basins burned by the Little Bear Fire in south-central New Mexico in June 2012. The Little Bear Fire burned approximately 179 square kilometers (km2) (44,330 acres), including about 143 km2 (35,300 acres) of National Forest System lands of the Lincoln National Forest. Within the Lincoln National Forest, about 72 km2 (17,664 acres) of the White Mountain Wilderness were burned. The burn area also included about 34 km2 (8,500 acres) of private lands. Burn severity was high or moderate on 53 percent of the burn area. The area burned is at risk of substantial postwildfire erosion, such as that caused by debris flows and flash floods. A postwildfire debris-flow hazard assessment of the area burned by the Little Bear Fire was performed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Forest Service, Lincoln National Forest. A set of two empirical hazard-assessment models developed by using data from recently burned drainage basins throughout the intermountain Western United States was used to estimate the probability of debris-flow occurrence and volume of debris flows along the burn area drainage network and for selected drainage basins within the burn area. The models incorporate measures of areal burn extent and severity, topography, soils, and storm rainfall intensity to estimate the probability and volume of debris flows following the fire. Relative hazard rankings of postwildfire debris flows were produced by summing the estimated probability and volume ranking to illustrate those areas with the highest potential occurrence of debris flows with the largest volumes. The probability that a drainage basin could produce debris flows and the volume of a possible debris flow at the basin outlet were estimated for three design storms: (1) a 2-year-recurrence, 30-minute-duration rainfall of 27 millimeters (mm) (a 50 percent chance of occurrence in any given year); (2) a 10-year-recurrence, 30-minute-duration rainfall of 42 mm (a 10 percent chance of occurrence in any given year); and (3) a 25-year-recurrence, 30-minute-duration rainfall of 51 mm (a 4 percent chance of occurrence in any given year). Thirty-nine percent of the 56 drainage basins modeled have a high (greater than 80 percent) probability of debris flows in response to the 2-year design storm; 80 percent of the modeled drainage basins have a high probability of debris flows in response to the 25-year design storm. For debris-flow volume, 7 percent of the modeled drainage basins have an estimated debris-flow volume greater than 100,000 cubic meters (m3) in response to the 2-year design storm; 9 percent of the drainage basins are included in the greater than 100,000 m3 category for both the 10-year and the 25-year design storms. Drainage basins in the greater than 100,000 m3 volume category also received the highest combined hazard ranking. The maps presented herein may be used to prioritize areas where emergency erosion mitigation or other protective measures may be needed prior to rainstorms within these drainage basins, their outlets, or areas downstream from these drainage basins within the 2- to 3-year period of vulnerability. This work is preliminary and is subject to revision. The assessment herein is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government may be held liable for any damages resulting from the authorized or unauthorized use of the assessment.
Experiment study of mud to the moving process influent about viscous debris flow along slope
NASA Astrophysics Data System (ADS)
Jun, JiXian; Ying, Liang; Li, Pan Hua; Qiang, OuGuo
2018-01-01
Mud is the main component of viscous debris flow. The physical model experiments of viscous debris flow were carried out through the mixing mud with different density and fixed components of coarse particles. The width, longitudinal movement distance and motion velocity were recorded by video cameras during experiment. Through viscous debris flow physical model experiments, the influence of mud to transverse width, longitudinal movement distance and motion velocity was discussed. The physical model experiment results show that the motion forms change from inviscid particle flow to viscous debris flow and to the whole mass sliding with the increase of mud density; the width and the length along the slope decrease with mud density increasing; the movement process has classified phenomena about viscous debris flow composed by different mud densities: the velocity increases rapidly with time and the change gradient is steady when the density of mud is lower than 1.413g/cm3; the movement process can be divided into two stages when the density of mud is higher than 1.413g/cm3: the movement velocity is lower and the gradient change is small in the initial stage; but in the second stage, the movement velocity increases quickly, and the gradient is higher than the first stage, and with steady value.
Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alstatt, Catherine M.
2012-07-01
The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for containers with incidental amounts of liquids, even if the liquid is less than 50% of the total waste volume. Under the proposed variance, all free or containerised liquids (up to 3.8 liters(L)) found in the debris would be treated and returned in solid form to the debris waste stream from which they originated. The waste would then be macro-encapsulated. (author)« less
Flow Patterns of Lobate Debris Aprons and Lineated Valley Fill North of Ismeniae Fossae, Mars
NASA Astrophysics Data System (ADS)
Baker, D. M.; Head, J. W.; Marchant, D. R.
2009-03-01
Flow patterns are mapped within lobate debris aprons and lineated valley fill north of Ismeniae Fossae, Mars. Flowlines are sourced in plateau alcoves and form large, well-integrated systems, consistent with a debris-covered glacier interpretation.
Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.
2011-01-01
To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.
Apparatus for controlling nuclear core debris
Jones, Robert D.
1978-01-01
Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.
Debris Flows and Related Phenomena
NASA Astrophysics Data System (ADS)
Ancey, C.
Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements borrowed from geomorphology, geology, hydrology, soil mechanics, and fluid mechanics. The purpose of this chapter is to provide an introduction to physical aspects of debris flows, with specific attention directed to their rheological features. Despite attempts to provide a coherent view on the topic, coverage is incomplete and the reader is referred to a series of papers and books. Three books are particularly commendable [3-5]. Some review papers provide interesting overviews, introducing the newcomers to the field to the main concepts [6-8]. The background material in rheology can be found in Chaps. 2 and 3.
Mitigation of Debris Flow Damage--Â A Case Study of Debris Flow Damage
NASA Astrophysics Data System (ADS)
Lin, J. C.; Jen, C. H.
Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.
Debris flows susceptibility mapping under tropical rain conditions in Rwanda.
NASA Astrophysics Data System (ADS)
Nduwayezu, Emmanuel; Nsengiyumva, Jean-Baptiste; BUgnon, Pierre-Charles; Jaboyedoff, Michel; Derron, Marc-Henri
2017-04-01
Rwanda is a densely populated country. It means that all the space is exploited, including sometimes areas with very steep slopes. This has as for consequences that during the rainy season slopes with human activities are affected by gravitational processes, mostly debris and mud flows and shallow landslides. The events of early May 2016 (May 8 and 9), with more than 50 deaths, are an illustration of these frequents landslides and inundations. The goal of this work is to produce a susceptibility map for debris/mud flows at regional/national scale. Main available pieces of data are a national digital terrain model at 10m resolution, bedrock and soil maps, and information collected during field visits on some specific localities. The first step is the characterization of the slope angle distribution for the different types of bedrock or soils (decomposition in Gaussian populations). Then, the combination of this information with other geomorphic and hydrologic parameters is used to define potential source areas of debris flows. Finally, propagation maps of debris flows are produced using FLOW-R (Horton et al. 2013). Horton, P., Jaboyedoff, M., Rudaz, B., and Zimmermann, M.: Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale, Nat. Hazards Earth Syst. Sci., 13, 869-885, doi:10.5194/nhess-13-869-2013, 2013. The paper is in open access.
D.N. Swanston
1974-01-01
Natural soil-mass-movements on forested slopes in the Western United States can be divided into two major groups of closely related landslide types. These include, in order of decreasing importance and regional frequency of occurrence: (1) debris slides, debris avalanches, debris flows, and debris torrents; and (2) creep, slumps, and earth flows. Each type requires the...
Experimental testing of flexible barriers for containment of debris flows
DeNatale, Jay S.; Iverson, Richard M.; Major, Jon J.; LaHusen, Richard G.; Fliegel, Gregg L.; Duffy, John D.
1999-01-01
In June 1996, six experiments conducted at the U.S. Geological Survey Debris Flow Flume demonstrated that flexible, vertical barriers constructed of wire rope netting can stop small debris flows. All experimental debris flows consisted of water-saturated gravelly sand with less than two percent finer sediment by weight. All debris flows had volumes of about 10 cubic meters, masses of about 20 metre tons, and impact velocities of 5 to 9 meters per second. In four experiments, the debris flow impacted pristine, unreformed barriers of varying design; in the other two experiments, the debris flow impacted barriers already loaded with sediment from a previous flow. Differences in barrier design led to differences in barrier performance. Experiments were conducted with barriers constructed of square-mesh wire-rope netting with 30centimeter, 20centimeter, and 15 centimeter mesh openings as well as 30centimeter diameter interlocking steel rings. In all cases, sediment cascading downslope at the leading edge of the debris flows tended to spray through the nets. Nets fitted with finer-mesh chain link or chicken wire liners contained more sediment than did unlined nets, and a ring net fitted with a synthetic silt screen liner contained nearly 100 percent of the sediment. Irreversible net displacements of up to 2 meters and friction brake engagement on the support and anchor cables dissipated some of the impact energy. However, substantial forces developed in the steel support columns and the lateral and tie-back anchor cables attached to these columns. As predicted by elementary mechanics, the anchor cables experienced larger tensile forces when the support columns were hinged at the base rather than bolted rigidly to the foundation. Measured loads in the lateral anchor cables exceeded those in the tie-back anchor cables and the load cell capacity of 45 kilo-Newtons. Measurements also indicated that the peak loads in the tie- back anchors were highly transient and occurred at the points of maximum momentum impulse to the net.
Adolphson, Debbie L.; Fazio, David J.; Harris, Mitchell A.
2001-01-01
Data collection for the lower Illinois River Basin (LIRB) National Water-Quality Assessment (NAWQA) program began in 1996. Data on habitat, fish, benthic macroinvertebrates, and sediment were collected at eight stations on six streams in the basin--Illinois River, Panther Creek, Mackinaw River, Indian Creek, Sangamon River, and La Moine River. These streams typically flow through agricultural lands with very low gradients. Substrates typically are clay to gravel with areas of cobble. Banks are high, steep, and sparsely vegetated. Topographic surveys provide illustrations of the geometry that promote understanding of channel geometry and a data set that, in the future, can be used by others to assess stream changes. Suspended-sediment particle size, woody debris, and stream velocity are important to fish and benthic macroinvertebrate communities. Fine particles (silts and clays) were abundant in suspended sediment and stream banks, and fish insectivorous cyprinid community composition increased with decreases in the concentration of these suspended fines. Suckers were prevalent in stream reaches with abundant woody-snag cover, whereas sunfish communities were most abundant in areas with slow water velocities. Hydropsychidae, Chironomidae, and Baetidae were the most abundant benthic macroinvertebrate families collected throughout the region, but stream size and water velocity were important to benthic macroinvertebrate community composition. Tricorythodes mayflies and Elmidae had higher relative abundance at sites in small- and moderate-size drainage basins, and Baetidae density was greatest in reaches with highest water velocity.
NASA Astrophysics Data System (ADS)
Petley, D. N.
2013-12-01
Kedarnath is small town built around in important Hindu temple in the Rudraprayag district, Uttarakhand in northern India. Located at an elevation of 3,583 m, it is situated in a remote valley with no vehicular access. In summer, the temple is an important pilgrimage destination, with thousands of visitors per day, all of whom have to access the location via a 14 km trek or horse ride along a paved pathway, or via a helicopter ride. Between 14th and 17th June 2013, Uttarakhand was affected by unusually heavy early monsoonal rainfall. Whilst the rainfall totals did not reach record levels, the precipitation fell onto thawing snow, inducing very large debris flows. Kedarnath was affected by two major debris flows. According to eyewitness reports the first struck without warning in the evening of 16th June at about 7 pm local time. The second, larger, event occurred the following morning at about 6 am. The two debris flows destroyed most of the buildings in Kedarnath, although the temple survived with some damage. Across Uttarakhand it is estimated that about 5700 people died in the debris flows; the majority of these losses were at Kedarnath and in the immediate downstream communities. In the aftermath of the disaster there was considerable uncertainty as to the cause of the debris flows, with much speculation about the possibility that either a rock avalanche had developed on the flanks of the adjacent mountains or that there had been a catastrophic glacial collapse event upstream of the town. On 18th June the Indian Remote Sensing Organisation (IRSO) captured and released a RISAT-1 image of Kedarnath. Although the resolution was insufficient to determine what had occurred to trigger the disaster, it served to highlight two potential sources of the debris flows. One of these was an area of disturbance at the snout of the Charobari Glacier upslope from the town; the other was a possible landslide scar on an adjacent slope. On 23rd June 2013 NASA captured a Landsat 8 image of the site, which suggested that both of these sources might have been responsible for the debris flows. Finally, on 27th June IRSO released a high resolution RISAT-1 image of the Kedarnath region. This showed clearly that the first (16th June) debris flow originated from a landslide event upstream and to the east of the town. This took the form of an initially small, superficial landslide that entrained large volumes of debris before striking the town as a highly mobile debris flow. The second debris flow (on 17th June) was caused when an ephemeral lake, trapped behind a lateral moraine from the Charobari glacier upstream and to the east of the town, overtopped and catastrophically breached its barrier. The resultant flood scoured a large volume of sediment from the steep channel above the town, generating a very dense debris flow that was exceptionally destructive. Subsequent analyses by ground-based teams has suggested that this initial interpretation from remotely-sensed data was correct. Both of the sources of the debris flows were clearly evident on images captured before the event, and it is also clear that temple and the adjacent town were built on a terrace constructed in an earlier debris event. Thus, remotely sensed images could have played a role in the management of the hazard prior to the disaster.
Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.
2003-01-01
Logistic regression was used to predict the probability of debris flows occurring in areas recently burned by wildland fires. Multiple logistic regression is conceptually similar to multiple linear regression because statistical relations between one dependent variable and several independent variables are evaluated. In logistic regression, however, the dependent variable is transformed to a binary variable (debris flow did or did not occur), and the actual probability of the debris flow occurring is statistically modeled. Data from 399 basins located within 15 wildland fires that burned during 2000-2002 in Colorado, Idaho, Montana, and New Mexico were evaluated. More than 35 independent variables describing the burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows were delineated from National Elevation Data using a Geographic Information System (GIS). (2) Data describing the burn severity, geology, land surface gradient, rainfall, and soil properties were determined for each basin. These data were then downloaded to a statistics software package for analysis using logistic regression. (3) Relations between the occurrence/non-occurrence of debris flows and burn severity, geology, land surface gradient, rainfall, and soil properties were evaluated and several preliminary multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combination produced the most effective model. The multivariate model that best predicted the occurrence of debris flows was selected. (4) The multivariate logistic regression model was entered into a GIS, and a map showing the probability of debris flows was constructed. The most effective model incorporates the percentage of each basin with slope greater than 30 percent, percentage of land burned at medium and high burn severity in each basin, particle size sorting, average storm intensity (millimeters per hour), soil organic matter content, soil permeability, and soil drainage. The results of this study demonstrate that logistic regression is a valuable tool for predicting the probability of debris flows occurring in recently-burned landscapes.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 High Park fire near Fort Collins in Larimer County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and volume of debris flows along the burned area drainage network and to estimate the same for 44 selected drainage basins along State Highway 14 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall (25 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall (43 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall (51 millimeters). Estimated debris-flow probabilities along the drainage network and throughout the drainage basins of interest ranged from 1 to 84 percent in response to the 2-year-recurrence, 1-hour-duration rainfall; from 2 to 95 percent in response to the 10-year-recurrence, 1-hour-duration rainfall; and from 3 to 97 in response to the 25-year-recurrence, 1-hour-duration rainfall. Basins and drainage networks with the highest probabilities tended to be those on the eastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Estimated debris-flow volumes range from a low of 1,600 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, roads, bridges, and culverts located both within and immediately downstream from the burned area. Colorado State Highway 14 is also susceptible to impacts from debris flows.
NASA Astrophysics Data System (ADS)
Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.
2016-12-01
Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer timescale processes, our analysis suggests landslide susceptibility was primarily governed by the local, geo-mechanical effects of vegetation during this extreme rainfall event.
Are erosion regimes in SE Australian forests responding to anthropogenic climate change?
NASA Astrophysics Data System (ADS)
Nyman, P.; Rutherfurd, I.; Lane, P. N. J.; Sheridan, G. J.
2017-12-01
In southeast Australia a series of exceptional climate events over the last decade have resulted in widespread debris flow activity across the region. The Millennium Drought (1996-2010), extreme fire-weather and record breaking rainfall in the La Nina year of 2011 have all contributed to an intensification of processes such as runoff production and mass failures that lead to debris flows. Debris flows in landmark locations such as the Grampians and Wilsons Promontory National Parks in 2011 were triggered by mass failure as a result of large volumes of intense summer rainfall. Runoff generated debris flows in burned areas have been occurring regularly and in large numbers along the East Coast Dividing Range from the Warrumbungle Mountains (New South Wales) in the north to Kinglake (Victoria) in the south. In northeast Victoria debris flows have been delivering sediment to the Ovens River following wildfires in 2003, 2007, 2009 and in 2013. The impact of these erosion events on infrastructure, water quality and aquatic ecosystems are considerable and important questions are emerging around i) how frequently events have occurred in the past, ii) the importance of fire as a geomorphic agent, and iii) the effects of climate change on erosion regimes. In this paper we investigate the conditions under which these debris flows occurred, and examine the underlying climatic events in context of historical records. Using data on rainfall distributions and fire history dating back to the 1960s we quantify the frequency with which catchments are primed for extreme erosion events. With these data we begin to speculate on whether or not current catchment conditions (e.g. soil depths, colluvial storage and accumulation rate) is consistent with the erosion regimes we observe. The broader aim of our research is to quantify debris flow thresholds using geophysical response models and use these models to determine the sensitivity of debris flow frequency to climatic forcing. In the presentation we outline a conceptual framework for combining such models with data on past debris flow activity to conduct an attribution study into the effect of anthropogenic climate change on erosion regimes in southeast Australian temperate forests.
Debris flow monitoring in the Acquabona watershed on the Dolomites (Italian Alps)
Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R.
2000-01-01
In 1997 a field monitoring system was installed in Acquabona Creek in the Dolomites (Eastern Italian Alps) to observe the hydrologic conditions for debris flow occurrence and some dynamic properties of debris flow. The monitoring system consists of three remote stations: an upper one located at the head of a deeply-incised channel and two others located downstream. The system is equipped with sensors for measuring rainfall, pore pressures in the mobile channel bottom, ground vibrations, debris flow depth, total normal stress and fluid pore-pressure at the base of the flow. Two video cameras record events at the upper channel station and one video is installed at the lowermost station. During summer 1998, three debris flows (volumes from less than 1000 m3 up to 9000 m3) occurred at Acquabona. The following results were obtained from a preliminary analysis of the data: 1) All of the flows were triggered by rainfalls of less than 1 hour duration, with peak rainfall intensities ranging from 4.8 to 14.7 mm / 10 minute. 2) Debris flows initiated in several reaches of the channel, including the head of the talus slope. 3) The initial surges of the mature flows had a higher solid concentration and a lower velocity (up to 4 m/s) than succeeding, more dilute surges (more than 7 m/s). 4) Total normal stress and pore fluid pressures measured at the base of the flow (mean depth about 1.1 m) were similar (about 15 kPa), indicating a completely liquefied flow. 5) Peak flows entrained debris at a rate of about 6 m3/m of channel length and channel bed scouring was proportional to the local slope gradient and was still evident in the lower channel where the slope was 7??. ?? 2000 Elsevier Science Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.
2003-04-01
A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an underlain shearing zone, where the shear stress exceeded the yield strength of the sediments. Mud-matrix, and clast-dominated debris flow deposits are the pervasive ones. Intensely sheared thin layers (5- to 20 cm) with sharp bases, displayed as successive layers at the base of mud/debris flow deposits, or as isolated depositional units interbedded in hemipelagic sediments, are as interesting, as enigmatic. They are interpreted as basal self-lubricating layers, of having high shear stress and pore pressures, over which the mud/debris flows were able to travel for very long distances.
Digital inventory of landslides and related deposits in Honduras triggered by Hurricane Mitch
Harp, Edwin L.; Hagaman, Kirk W.; Held, Matthew D.; McKenna, Jonathan P.
2002-01-01
Intense rainfall from Hurricane Mitch from October 27-31, 1998, exceeded 900 mm in places in Honduras and triggered in excess of 500,000 landslides throughout the country. Landslides damaged an estimated 70% of the road network in Honduras based on estimates by the U. S Army Corps of Engineers. Numbers of fatalities due to landslides are not accurately known due to the fact that numerous small villages throughout Honduras lost residents to landslides without an official count being recorded. A conservative estimate would place the number at near 1,000. Debris flows accounted for over 95% of the landslides and ranged in thickness from 1 to 15 m. Flow path lengths of these failures ranged from several meters to 7.5 km. The highest concentrations of debris flows occurred in the mountains near the town of Choluteca where over 900 mm of rain fell in three days. Although landslides other than debris flows were few, several deep-seated landslides in the city of Tegucigalpa severely impacted people and property. The 'El Berrinche' rotational slump/earth flow of approximately six million cubic meters volume destroyed the entire neighborhood of Colonia Soto near the center of the city. The landslide also dammed the Rio Choluteca and created a lagoon behind the landslide dam, which immediately posed a health problem for the city, because raw, untreated sewage was emptying into the Rio Choluteca. Several areas of highly concentrated landslides have been responsible for much of the flooding problem as well. Huge sediment influxes from landslide source areas near La Ceiba, La Libertad, Marale, and in several arms of El Cajon Reservoir have reduced stream capacities to practically nothing and have exacerbated flooding conditions in even the moderate rainfall seasons since Hurricane Mitch. The ongoing hazard to communities from landslides triggered during Hurricane Mitch are being analyzed using aerial photography taken by the U.S. Air Force and by supplemental photography taken by local contractors. Through the use of digital elevation models derived from 1:50,000-scale topographic maps and geologic maps, landslide susceptibility maps will be derived to aid land-use planning and relocation efforts.
In 2013, the United States generated 530 million tons of construction and demolition debris (CDD), 90% of which was related to demolition. Despite this major contribution to national waste streams, Life Cycle Assessment (LCA) studies and product declarations of buildings and buil...
Waythomas, C.F.; Wallace, K.L.
2002-01-01
An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.
NASA Astrophysics Data System (ADS)
Iovine, G.; D'Ambrosio, D.; Di Gregorio, S.
2005-03-01
In modelling complex a-centric phenomena which evolve through local interactions within a discrete time-space, cellular automata (CA) represent a valid alternative to standard solution methods based on differential equations. Flow-type phenomena (such as lava flows, pyroclastic flows, earth flows, and debris flows) can be viewed as a-centric dynamical systems, and they can therefore be properly investigated in CA terms. SCIDDICA S 4a is the last release of a two-dimensional hexagonal CA model for simulating debris flows characterised by strong inertial effects. S 4a has been obtained by progressively enriching an initial simplified model, originally derived for simulating very simple cases of slow-moving flow-type landslides. Using an empirical strategy, in S 4a, the inertial character of the flowing mass is translated into CA terms by means of local rules. In particular, in the transition function of the model, the distribution of landslide debris among the cells is obtained through a double cycle of computation. In the first phase, the inertial character of the landslide debris is taken into account by considering indicators of momentum. In the second phase, any remaining debris in the central cell is distributed among the adjacent cells, according to the principle of maximum possible equilibrium. The complexities of the model and of the phenomena to be simulated suggested the need for an automated technique of evaluation for the determination of the best set of global parameters. Accordingly, the model is calibrated using a genetic algorithm and by considering the May 1998 Curti-Sarno (Southern Italy) debris flow. The boundaries of the area affected by the debris flow are simulated well with the model. Errors computed by comparing the simulations with the mapped areal extent of the actual landslide are smaller than those previously obtained without genetic algorithms. As the experiments have been realised in a sequential computing environment, they could be improved by adopting a parallel environment, which allows the performance of a great number of tests in reasonable times.
Relation of channel stability to scour at highway bridges over waterways in Maryland
Doheny, Edward J.; ,
1993-01-01
Data from assessments of channel stability and observed-scour conditions at 876 highway bridges over Maryland waterways were entered into a database. Relations were found to exist among specific, deterministic variables and observed-scour and debris conditions. Relations were investigated between (1) high-flow angle of attack and pier- and abutment-footing exposure, (2)abutment location and abutment-footing exposure, (3) type of bed material and pier-footing exposure, (4) tree cover on channel banks and mass wasting of the channel banks, and (5) land use near the bridge and the presence of debris blockage at the bridge opening. The results of the investigation indicate the following: (1) The number of pier and abutment-footing exposures increased for increasing high-flow angles of attack, (2) the number of abutment-footing exposures increased for abutments that protrude into the channel, (3) pier-footing exposures were most common for bridges over streams with channel beds of gravel, (4) mass wasting of channel banks with tree cover of 50 percent or greater near the bridge was less than mass wasting of channel banks with tree cover of less than 50 percent near the bridge, and (5) bridges blockage than bridge in row crop and swamp basins.
2003-09-11
KENNEDY SPACE CENTER, FLA. - In the Columbia Debris Hangar, Scott Thurston, NASA vehicle flow manager, addresses the media about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.
NASA Astrophysics Data System (ADS)
Leung, V.; Montgomery, D. R.
2010-12-01
The interactions between woody debris, fluid flow and sediment transport in rivers play a fundamental role in ecogeomorphology, affecting channel roughness, streambed morphology, and sediment transport and storage. In particular, woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments of flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of field surveys and sediment transport experiments of streambed morphology around stationary woody debris on a mobile bed. These experiments test the effects of root presence, root geometry and log orientation of individual stationary trees on streambed morphology. The flume contains a deformable sediment bed of medium sand, and has subcritical and turbulent flow, corresponding to flow conditions found in nature. Field surveys on the Hoh River, WA, measure the local streambed morphology around woody debris (e.g. pool and gravel-bar length, width and depth), as well as woody debris characteristics (e.g. tree diameter, tree length, root diameter and root depth). We quantified the amount of local sediment scour and deposition around woody debris of varying sizes, geometries and orientations relative to flow. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the root cross-sectional area, oriented orthogonal to flow. Sediment transport around woody debris is episodic and occurs during flood events, making it difficult to take active measurements. A combined methodology of flume experiments and fieldwork allows for a general understanding of sediment transport around woody debris that includes the complexities of natural systems. A better understanding of the underlying sediment physics and hydraulics around naturally occurring woody debris in rivers can provide guidance and criteria for use in river restoration and engineering as well as scientific insights into a complex interdisciplinary problem.
NASA Astrophysics Data System (ADS)
Arabnia, O.; Sklar, L. S.; Mclaughlin, M. K.
2014-12-01
Rock particles in debris flows are reduced in size through abrasion and fracture. Wear of coarse sediments results in production of finer particles, which alter the bulk material rheology and influence flow dynamics and runout distance. Particle wear also affects the size distribution of coarse particles, transforming the initial sediment size distribution produced on hillslopes into that delivered to the fluvial channel network. A better understanding of the controls on particle wear in debris flows would aid in the inferring flow conditions from debris flow deposits, in estimating the initial size of sediments entrained in the flow, and in modeling debris flow dynamics and mapping hazards. The rate of particle size reduction with distance traveled should depend on the intensity of particle interactions with other particles and the flow boundary, and on rock resistance to wear. We seek a geomorphic transport law to predict rate of particle wear with debris flow travel distance as a function of particle size distribution, flow depth, channel slope, fluid composition and rock strength. Here we use four rotating drums to create laboratory debris flows across a range of scales. Drum diameters range from 0.2 to 4.0 m, with the largest drum able to accommodate up to 2 Mg of material, including boulders. Each drum has vanes along the boundary to prevent sliding. Initial experiments use angular clasts of durable granodiorite; later experiments will use less resistant rock types. Shear rate is varied by changing drum rotational velocity. We begin experiments with well-sorted coarse particle size distributions, which are allowed to evolve through particle wear. The fluid is initially clear water, which rapidly acquires fine-grained wear products. After each travel increment all coarse particles (mass > 0.4 g) are weighed individually. We quantify particle wear rates using statistics of size and mass distributions, and by fitting various comminution functions to the data. Laboratory data are compared with longitudinal evolution of grain size and angularity of particles deposited by debris flows along Inyo Creek, Sierra Nevada, California. Preliminary results suggest wear rates can be scaled across drum sizes and to field conditions using non-dimensional metrics of flow dynamics including Savage, Bagnold, and Froude numbers.
Friction in debris flows: inferences from large-scale flume experiments
Iverson, Richard M.; LaHusen, Richard G.; ,
1993-01-01
A recently constructed flume, 95 m long and 2 m wide, permits systematic experimentation with unsteady, nonuniform flows of poorly sorted geological debris. Preliminary experiments with water-saturated mixtures of sand and gravel show that they flow in a manner consistent with Coulomb frictional behavior. The Coulomb flow model of Savage and Hutter (1989, 1991), modified to include quasi-static pore-pressure effects, predicts flow-front velocities and flow depths reasonably well. Moreover, simple scaling analyses show that grain friction, rather than liquid viscosity or grain collisions, probably dominates shear resistance and momentum transport in the experimental flows. The same scaling indicates that grain friction is also important in many natural debris flows.
NASA Astrophysics Data System (ADS)
Bowman, Elisabeth; Sanvitale, Nicoletta; Bird, Joshua
2014-05-01
Debris flows, masses of saturated, channelized, granular materials that flow at high speeds downslope, present a hazard to lives and infrastructure in regions of high relief and runoff. They also present a challenge to modelling due to the heterogeneous, multi-phase, nature of the constituent materials, with particles ranging from boulder-size to silt-size and fluid viscosity being altered by the presence of fine particles and clay. As a debris flow travels on its flow path, it will tend to segregate, with larger particles being focused to the flow front and fluid being concentrated in the tail - resulting in different rheological behaviour in time and space. It will also tend to erode and deposit material as it moves through different channel segments or reaches, with this behaviour influenced by the confinement of the channel and the angle of the slope within each reach. Flume studies offer the potential to examine in detail the behaviour of model debris flows within the penultimate and final (deposit fan area) reaches - zones which are generally of most interest in terms of human risk. Flume studies which are conducted using transparent debris offer additional benefits to more traditional methods that use opaque materials, enabling insights to the flow behaviour that are inaccessible via other physical methods. We present flume model work which has been designed to capture some essential aspects of debris flow behaviour using well graded (polydisperse) transparent debris, albeit at reduced scale. These aspects include the final deposit spread or runout increasing for a lower concentration of solids and a higher penultimate reach slope angle, and observable particle size segregation during downslope motion. We present time-varying measurements made internally and externally at a point in the channel via Plane Laser Induced Fluorescence and Particle Image Velocimetry, PIV. The measurements enable velocity distributions of the segregating flows over time to be determined that can be directly compared with theoretical relationships developed from measurements made at flow margins.
Emma F. Betts; Jeremy B. Jones
2009-01-01
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...
Hydraulic Physical Model of Debris Flow for Malaysia Case Study
NASA Astrophysics Data System (ADS)
Arif Zainol, M. R. R. Mohd; Awahab, M. K.
2018-06-01
In the recent decade, several debris flow events occurred and caused hundreds of deaths, missing or injury and damaged many facilities. In addition to causing significant morphological changes along riverbeds and mountain slopes, these flows are frequently reported to bring about extensive property damage and loss of life. Debris flow phenomena occasionally occur in Malaysia and numbers of death reported cause by this event. In order to investigate the debris flow and its deposition process, experiments were conducted at the School of Civil Engineering Laboratory, Universiti Sains Malaysia. The models consists of three main parts which are water tank, rectangular flume and deposition board. A high speed video camera (HSVC) had been placed nearly downstream of the rectangular flume to capture the movement characteristics of particle grain. From this study, the characteristics of particle routing segregation can be understand clearly, therefore this input will be a very useful information to other researchers for further investigation in terms of knowledge sharing between researchers. Catastrophic cause by debris flow event can be minimized therefore in term of economy losses can be reduce and human life can be safe.
Numerical modeling of the debris flows runout
NASA Astrophysics Data System (ADS)
Federico, Francesco; Cesali, Chiara
2017-06-01
Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.
NASA Astrophysics Data System (ADS)
Deng, Mingfeng; Chen, Ningsheng; Ding, Haitao
2018-02-01
The Parlung Zangbo Basin in the southeastern Tibet Plateau is affected by the summer monsoon from the Indian Ocean, which produces large rainfall gradients in the basin. Rainfall data during 2012-2015 from five new meteorological stations are used to analyse the rainfall characteristics. The daily rainfall, rainfall duration, mean rainfall intensity, and peak rainfall intensity are consistent, but sometimes contrasting. For example, these values decrease with increasing altitude, and the gradient is large downstream and small upstream, respectively. Moreover, the rainfall intensity peaks between 01:00 and 06:00 and increases during the afternoon. Based on the analysis of 14 debris flow cases in the basin, differences in the rainfall threshold differ depending on the location as sediment varieties. The sediment in the middle portions of the basin is wet and well structured; thus, long-duration, high-intensity rainfall is required to generate debris flows. Ravels in the upstream area are arid and not well structured, and short-duration rainfall is required to trigger debris flows. Between the above two locations, either long-duration, low-intensity rainfall or short-duration, high-intensity rainfall could provoke debris flows. Clearly, differences in rainfall characteristics and rainfall thresholds that are associated with the location must be considered in debris flow monitoring and warnings.
Jenkins, S.E.; Hull, Sieg C.; Anderson, D.E.; Kaufman, D.S.; Pearthree, P.A.
2011-01-01
Long-term fire history reconstructions enhance our understanding of fire behaviour and associated geomorphic hazards in forested ecosystems. We used 14C ages on charcoal from fire-induced debris-flow deposits to date prehistoric fires on Kendrick Mountain, northern Arizona, USA. Fire-related debris-flow sedimentation dominates Holocene fan deposition in the study area. Radiocarbon ages indicate that stand-replacing fire has been an important phenomenon in late Holocene ponderosa pine (Pinus ponderosa) and ponderosa pine-mixed conifer forests on steep slopes. Fires have occurred on centennial scales during this period, although temporal hiatuses between recorded fires vary widely and appear to have decreased during the past 2000 years. Steep slopes and complex terrain may be responsible for localised crown fire behaviour through preheating by vertical fuel arrangement and accumulation of excessive fuels. Holocene wildfire-induced debris flow events occurred without a clear relationship to regional climatic shifts (decadal to millennial), suggesting that interannual moisture variability may determine fire year. Fire-debris flow sequences are recorded when (1) sufficient time has passed (centuries) to accumulate fuels; and (2) stored sediment is available to support debris flows. The frequency of reconstructed debris flows should be considered a minimum for severe events in the study area, as fuel production may outpace sediment storage. ?? IAWF 2011.
Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams
1997-06-01
the channel, 4 through erosion and flotation of emergent and riparian trees (Hogan, 1987) (Figuie 2.1). Fetherston et al. (1995) suggest that debris...the CEM or is actively meandering. Jams tend to form where the key debris elements fall into the river and, hence, ar,- commonly located at bend apices ... flotation force due to the pressure on the under surface of a submerged or partially submerged body is given by: Ff - p•,gLA (5.1) where, Ft. - flotation
Impacts of Woody Debris on Fluvial Processes and Channel Morphology in Stable and Unstable Streams
1996-05-01
flotation of emergent and riparian trees (Howan, 1987), (Figure 2.1). 0 Fetherston et al. (1995) suggest that debris inputs are either "’chronic or episodic...the channel. Jams are therefore commonly located in bend apices or in unstable reaches downstream of knickpoints. Figure 4.2 demonstrates this...observation, showing debris jam locations just downstream of bend apices on a planform plot of Abiaca Creek. Jams do not, however, appear to have a regular
Discharge source with gas curtain for protecting optics from particles
Fornaciari, Neal R.; Kanouff, Michael P.
2004-03-30
A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.
NASA Astrophysics Data System (ADS)
Lopez Saez, J.; Corona, C.; Stoffel, M.; Gotteland, A.; Berger, F.; Liébault, F.
2011-05-01
Hydrogeomorphic processes are a major threat in many parts of the Alps, where they periodically damage infrastructure, disrupt transportation corridors or even cause loss of life. Nonetheless, past torrential activity and the analysis of areas affected during particular events remain often imprecise. It was therefore the purpose of this study to reconstruct spatio-temporal patterns of past debris-flow activity in abandoned channels on the forested cone of the Manival torrent (Massif de la Chartreuse, French Prealps). A Light Detecting and Ranging (LiDAR) generated Digital Elevation Model (DEM) was used to identify five abandoned channels and related depositional forms (lobes, lateral levees) in the proximal alluvial fan of the torrent. A total of 156 Scots pine trees (Pinus sylvestris L.) with clear signs of debris flow events was analyzed and growth disturbances (GD) assessed, such as callus tissue, the onset of compression wood or abrupt growth suppression. In total, 375 GD were identified in the tree-ring samples, pointing to 13 debris-flow events for the period 1931-2008. While debris flows appear to be very common at Manival, they have only rarely propagated outside the main channel over the past 80 years. Furthermore, analysis of the spatial distribution of disturbed trees contributed to the identification of four patterns of debris-flow routing and led to the determination of three preferential breakout locations. Finally, the results of this study demonstrate that the temporal distribution of debris flows did not exhibit significant variations since the beginning of the 20th century.
NASA Astrophysics Data System (ADS)
Pedrosa, Mayte; Camerlengui, Angelo; de Mol, Ben; Lucchi, Renata. G.; Úrgeles, Roger; Rebesco, Michele; Winsborrow, Monica; Laberg, Jan. S.; Andreassen, Karin; Accettella, Daniela
2010-05-01
This seafloor morphological study of the Storfjorden Trough Mouth Fan (TMF) (offshore Svalbard, NW Barents Sea) is based on new multibeam bathymetry and chirp sub-bottom profiler data acquired in 2007 during the BIO Hespérides cruise SVAIS that provides an unprecedented image of the sedimentary processes that accompanied the last advance and retreat of the Storfjorden Ice Stream. Compared to other glacial-marine sedimentary systems (such as the adjacent Bjørnøyrenna TMF), the Storfjorden TMF system is small and associated to a relatively small terrestrial ice sheet, approximately 40.000 km2, with local provenance from Svalbard and the Spitsbergen Bank. Due to this short distance from the ice source to the calving areas and the resulting short residence time of ice in the ice sheet, therefore the glacio -marine system of the Storfjorden reacts rapidly to climatic changes. The Storfjorden continental slope is characterized by three depositional lobes, produced by focused sedimentation at the terminus of ice streams that have changed their location with time. The superficial morphology features associated to the two northernmost lobes are straight gullies in the upper slope, and debris lobes starting from the midslope onwards. The seafloor expression of the southernmost lobe, adjacent to the much smaller Kveithola TMF, demonstrate almost no gully incisions and is dominated by the widespread occurrence of small-scale submarine landslides. The subbottom profiles illustrate that sediment failures occurred throughout the Late Neogene evolution of the southern Storfjorden and Kveithola margin, including large-scale mass transport deposits of up to 200 m thick. Seismic facies of the Neogene sequence shows an alternation of glacigenic debris flows and laminated sediment drape inferred to be plumites. Gullies incising glacigenic debris flows at the surface and subsurface and are filled by an interglacial drape sequence. The gullies are formed during each deglaciation phase, most likely by the erosive action of short-lived high density currents originated by sediment-loaded subglacial melt water discharge.At the outer continental shelf of the southernmost lobe a striking fresh linear straight, which has a width of 1, 5 kilometres and cut the morainal deposits. These features are interpreted as mega-scale glacial lineations, which are tentatively attributed to mega-iceberg scours. These lineations are witness the latest advances of the Storfjorden ice streams before the final retreat which was located at the southernmost lobe. One of the main pre-conditioning factors to slope instability on the southern part of the Storfjorden TMF is identified as high sedimentation rate plumites deposited on the middle-upper continental slope by glacial melt water plumes. This study is part of the SVAIS project (funded by the Spanish IPY), that has a main objective to improve the understanding and the relationship between sedimentation and ice sheet dynamics under natural climatic changes.
A novel mechanical model for phase-separation in debris flows
NASA Astrophysics Data System (ADS)
Pudasaini, Shiva P.
2015-04-01
Understanding the physics of phase-separation between solid and fluid phases as a two-phase mass moves down slope is a long-standing challenge. Here, I propose a fundamentally new mechanism, called 'separation-flux', that leads to strong phase-separation in avalanche and debris flows. This new model extends the general two-phase debris flow model (Pudasaini, 2012) to include a separation-flux mechanism. The new flux separation mechanism is capable of describing and controlling the dynamically evolving phase-separation, segregation, and/or levee formation in a real two-phase, geometrically three-dimensional debris flow motion and deposition. These are often observed phenomena in natural debris flows and industrial processes that involve the transportation of particulate solid-fluid mixture material. The novel separation-flux model includes several dominant physical and mechanical aspects that result in strong phase-separation (segregation). These include pressure gradients, volume fractions of solid and fluid phases and their gradients, shear-rates, flow depth, material friction, viscosity, material densities, boundary structures, gravity and topographic constraints, grain shape, size, etc. Due to the inherent separation mechanism, as the mass moves down slope, more and more solid particles are brought to the front, resulting in a solid-rich and mechanically strong frontal surge head followed by a weak tail largely consisting of the viscous fluid. The primary frontal surge head followed by secondary surge is the consequence of the phase-separation. Such typical and dominant phase-separation phenomena are revealed here for the first time in real two-phase debris flow modeling and simulations. However, these phenomena may depend on the bulk material composition and the applied forces. Reference: Pudasaini, Shiva P. (2012): A general two-phase debris flow model. J. Geophys. Res., 117, F03010, doi: 10.1029/2011JF002186.
Gelfenbaum, G.; Noble, M.
1993-01-01
Photographs of the seabed taken from an instrumented bottom tripod located approximately 100 km east of Charleston, South Carolina, reveal bed elevation changes of over 20 cm between July and November 1978. The tripod was in 85 m of water and was equipped with two current meters at 38.7 and 100 cm from the bed, a pressure sensor, a transmissometer, which fouled early during the deployment, a temperature sensor and a camera. The sediment under the tripod was composed of poorly sorted sand, some shell debris and numerous small biological tubes. Bed roughness varied throughout the deployment from biologically-produced mounds (2-5 cm high and 5-20 cm diameter) to streaks to a smooth bed, depending upon the frequency and magnitude of the sediment transporting events. Even though these events were common, especially during the later part of the deployment, the bed was rarely rippled, and there was no evidence of large bedforms such as dunes or sand waves migrating through the field of view of the camera. Photographs did clearly show, however, a gradual net deposition of the bed of nearly 20 cm, followed by erosion of approximately 5 cm. The flow field near the bed was dominated by sub-tidal period currents. Hourly-averaged currents at 100 cm from the bed typically varied between 10 and 30 cm s-1 and occasionally were as high as 60 cm s-1. The large flow events were predominantly toward the southwest along the shelf in the opposite direction of the northeast flowing Gulf Stream. The cross-shore component of the flow near the bed was predominantly directed offshore due to a local topographic steering effect. Current, temperature and satellite data suggest that the largest flow events were associated with the advection of Gulf Stream filaments past the tripod. Erosion events, as seen from the photographs, were highly correlated with the passage of these Gulf Stream filaments past the tripod. Gradual deposition of sediment, which occurred during the first half of the deployment, appears to have been associated with the convergence of the near-bed sediment flux near the shelf break. ?? 1993.
Tracking Debris Shed by a Space-Shuttle Launch Vehicle
NASA Technical Reports Server (NTRS)
Stuart, Phillip C.; Rogers, Stuart E.
2009-01-01
The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.
Verdin, Kristine L.; Dupree, Jean A.; Elliott, John G.
2012-01-01
This report presents a preliminary emergency assessment of the debris-flow hazards from drainage basins burned by the 2012 Waldo Canyon fire near Colorado Springs in El Paso County, Colorado. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of debris-flow occurrence and potential volume of debris flows along the drainage network of the burned area and to estimate the same for 22 selected drainage basins along U.S. Highway 24 and the perimeter of the burned area. Input data for the models included topographic parameters, soil characteristics, burn severity, and rainfall totals and intensities for a (1) 2-year-recurrence, 1-hour-duration rainfall, referred to as a 2-year storm (29 millimeters); (2) 10-year-recurrence, 1-hour-duration rainfall, referred to as a 10-year storm (42 millimeters); and (3) 25-year-recurrence, 1-hour-duration rainfall, referred to as a 25-year storm (48 millimeters). Estimated debris-flow probabilities at the pour points of the the drainage basins of interest ranged from less than 1 to 54 percent in response to the 2-year storm; from less than 1 to 74 percent in response to the 10-year storm; and from less than 1 to 82 percent in response to the 25-year storm. Basins and drainage networks with the highest probabilities tended to be those on the southern and southeastern edge of the burn area where soils have relatively high clay contents and gradients are steep. Nine of the 22 drainage basins of interest have greater than a 40-percent probability of producing a debris flow in response to the 10-year storm. Estimated debris-flow volumes for all rainfalls modeled range from a low of 1,500 cubic meters to a high of greater than 100,000 cubic meters. Estimated debris-flow volumes increase with basin size and distance along the drainage network, but some smaller drainages were also predicted to produce substantial volumes of material. The predicted probabilities and some of the volumes predicted for the modeled storms indicate a potential for substantial debris-flow impacts on structures, reservoirs, roads, bridges, and culverts located both within and immediately downstream from the burned area. U.S. Highway 24, on the southern edge of the burn area, is also susceptible to impacts from debris flows.
Derivation of debris flow critical rainfall thresholds from land stability modeling
NASA Astrophysics Data System (ADS)
Papa, M. N.; Medina, V.; Bateman, A.; Ciervo, F.
2012-04-01
The aim of the work is to develop a system capable of providing debris flow warnings in areas where historical events data are not available as well as in the case of changing environments and climate. For these reasons, critical rainfall threshold curves are derived from mathematical and numerical simulations rather than the classical derivation from empirical rainfall data. The operational use of distributed model, based on the stability analysis for each grid cell of the basin, is not feasible in the case of warnings due to the long running time required for this kind of model as well as the lack of detailed information on the spatial distribution of the properties of the material in many practical cases. Moreover, with the aim of giving debris flow warnings, it is not necessary to know the distribution of instable elements along the basin but only if a debris flow may affect the vulnerable areas in the valley. The capability of a debris flow of reaching the downstream areas depends on many factors linked with the topography, the solid concentration, the rheological properties of the debris mixture and the flow discharge as well as the occurrence of liquefaction of the sliding mass. In relation to a specific basin, many of these factors may be considered as not time dependent. The most rainfall dependent factors are flow discharge and correlated total debris volume. In the present study, the total volume that is instable, and therefore available for the flow, is considered as the governing factor from which it is possible to assess whether a debris flow will affect the downstream areas or not. The possible triggering debris flow is simulated, in a generic element of the basin, by an infinite slope stability analysis. The groundwater pressure is calculated by the superposition of the effect of an "antecedent" rainfall and an "event" rainfall. The groundwater pressure response to antecedent rainfall is used as the initial condition for the time-dependent computation of the groundwater pressure response to the event rainfall. Antecedent rainfall response is estimated in the hypotheses of low intensity and long duration, thus assuming steady state conditions and slope parallel groundwater flux. The short term response to rainfall is assessed in the hypothesis of vertical infiltration. The simulations are performed in a virtual basin, representative of the one studied, taking into account the uncertainties linked with the definition of the characteristics of the soil. The approach presented is based on the simulation of a large number of cases covering the entire range of the governing input dynamic variables. For any possible combination of rainfall intensity, duration and antecedent rain, the total debris volume, available for the flow, is estimated. The resulting database is elaborated in order to obtain rainfall threshold curves. When operating in real time, if the observed and forecasted rainfall exceeds a given threshold, the corresponding probability of debris flow occurrence may be estimated.
Amplification of postwildfire peak flow by debris
NASA Astrophysics Data System (ADS)
Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.
2016-08-01
In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.
Amplification of postwildfire peak flow by debris
Kean, Jason W.; McGuire, Luke; Rengers, Francis K.; Smith, Joel B.; Staley, Dennis M.
2016-01-01
In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.
Clime, Liviu; Hoa, Xuyen D; Corneau, Nathalie; Morton, Keith J; Luebbert, Christian; Mounier, Maxence; Brassard, Daniel; Geissler, Matthias; Bidawid, Sabah; Farber, Jeff; Veres, Teodor
2015-02-01
Detecting pathogenic bacteria in food or other biological samples with lab-on-a-chip (LOC) devices requires several sample preparation steps prior to analysis which commonly involves cleaning complex sample matrices of large debris. This often underestimated step is important to prevent these larger particles from clogging devices and to preserve initial concentrations when LOC techniques are used to concentrate or isolate smaller target microorganisms for downstream analysis. In this context, we developed a novel microfluidic system for membrane-free cleaning of biological samples from debris particles by combining hydrodynamic focusing and inertial lateral migration effects. The microfluidic device is fabricated using thermoplastic elastomers being compatible with thermoforming fabrication techniques leading to low-cost single-use devices. Microfluidic chip design and pumping protocols are optimized by investigating diffusive losses numerically with coupled Navier-Stokes and convective-diffusion theoretical models. Stability of inertial lateral migration and separation of debris is assessed through fluorescence microscopy measurements with labelled particles serving as a model system. Efficiency of debris cleaning is experimentally investigated by monitoring microchip outlets with in situ optical turbidity sensors, while retention of targeted pathogens (i.e., Listeria monocytogenes) within the sample stream is assessed through bacterial culture techniques. Optimized pumping protocols can remove up to 50 % of debris from ground beef samples while percentage for preserved microorganisms can account for 95 % in relatively clean samples. However, comparison between inoculated turbid and clean samples (i.e., with and without ground beef debris) indicate some degree of interference between debris inertial lateral migration and hydrodynamic focusing of small microorganisms. Although this interference can lead to significant decrease in chip performance through loss of target bacteria, it remains possible to reach 70 % for sample recovery and more than 50 % for debris removal even in the most turbid samples tested. Due to the relatively simple design, the robustness of the inertial migration effect itself, the high operational flow rates and fabrication methods that leverage low-cost materials, the proposed device can have an impact on a wide range of applications where high-throughput separation of particles and biological species is of interest.
Scott, K.M.; Vallance, J.W.; Kerle, N.; Macias, J.L.; Strauch, W.; Devoli, G.
2005-01-01
A catastrophic lahar began on 30 October 1998, as hurricane precipitation triggered a small flank collapse of Casita volcano, a complex and probably dormant stratovolcano. The initial rockslide-debris avalanche evolved on the flank to yield a watery debris flood with a sediment concentration less than 60 per cent by volume at the base of the volcano. Within 2-5 km, however, the watery flow entrained (bulked) enough sediment to transform entirely to a debris flow. The debris flow, 6 km downstream and 1??2 km wide and 3 to 6 m deep, killed 2500 people, nearly the entire populations of the communities of El Porvenir and Rolando Rodriguez. These 'new towns' were developed in a prehistoric lahar pathway: at least three flows of similar size since 8330 14C years BP are documented by stratigraphy in the same 30-degree sector. Travel time between perception of the flow and destruction of the towns was only 2??5-3??0 minutes. The evolution of the flow wave occurred with hydraulic continuity and without pause or any extraordinary addition of water. The precipitation trigger of the Casita lahar emphasizes the nee d, in volcano hazard assessments, for including the potential for non-eruption-related collapse lahars with the more predictable potential of their syneruption analogues. The flow behaviour emphasizes that volcano collapses can yield not only volcanic debris avalanches with restricted runouts, but also mobile lahars that enlarge by bulking as they flow. Volumes and hence inundation areas of collapse-runout lahars can increase greatly beyond their sources: the volume of the Casita lahar bulked to at least 2??6 times the contributing volume of the flank collapse and 4??2 times that of the debris flood. At least 78 per cent of the debris flow matrix (sediment < -1??0??; 2 mm) was entrained during flow. Copyright c 2004 John Wiley & Sons, Ltd.
Coarse-grained debris flow dynamics on erodible beds
NASA Astrophysics Data System (ADS)
Lanzoni, Stefano; Gregoretti, Carlo; Stancanelli, Laura Maria
2017-03-01
A systematic set of flume experiments is used to investigate the features of velocity profiles within the body of coarse-grained debris flows and the dependence of the transport sediment concentration on the relevant parameters (runoff discharge, bed slope, grain size, and form). The flows are generated in a 10 m long laboratory flume, initially filled with a layer consisting of loose debris. After saturation, a prescribed water discharge is suddenly supplied over the granular bed, and the runoff triggers a debris flow wave that reaches nearly steady conditions. Three types of material have been used in the tests: gravel with mean grain size of 3 and 5 mm, and 3 mm glass spheres. Measured parameters included: triggering water discharge, volumetric sediment discharge, sediment concentration, flow depth, and velocity profiles. The dynamic similarity with full-sized debris flows is discussed on the basis of the relevant dimensionless parameters. Concentration data highlight the dependence on the slope angle and the importance of the quasi-static friction angle. The effects of flow rheology on the shape of velocity profiles are analyzed with attention to the role of different stress-generating mechanisms. A remarkable collapse of the dimensionless profiles is obtained by scaling the debris flow velocity with the runoff velocity, and a power law characterization is proposed following a heuristic approach. The shape of the profiles suggests a smooth transition between the different rheological regimes (collisional and frictional) that establish in the upper and lower regions of the flow and is compatible with the presence of multiple length scales dictated by the type of contacts (instantaneous or long lasting) between grains.
Experimental Study on Impact Load on a Dam Due to Debris Flow
lwao Miyoshi
1991-01-01
When a dam is struck by mud or debris flow, it is put under a great impact load and sometimes is destroyed. To prevent such destruction, it is important to perform basic research about the impact load on a dam due to debris flow. Thus, we have made an experimental study and tried to establish a method to estimate such a impact load on the dam. The experiment was...
Debris-flow mobilization from landslides
Iverson, R.M.; Reid, M.E.; LaHusen, R.G.
1997-01-01
Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.
Role of large wood (LW) in rivers affected by the 2008 Chaitén volcano explosive eruption
NASA Astrophysics Data System (ADS)
Iroume, A.; Andreoli, A.; Ulloa, H.; Merino, A.; da Canal, M.; Iroume, A., Jr.
2010-12-01
In January 2010 we begun a research to study LW quantity, spatial distribution and transport rate, sediment and discharge quantification and channel morphology in different rivers affected by 2008 Chaitén volcano eruption. This document presents some insights from a first survey on LW characterization and its effect on river channel morphology. We monitored the following streams in the Chaiten area: Rio Chaitén (Rio Blanco) heavily impacted by pyroclastic flow, lahars flow and seasonal floods, the Rio Negro affected by ash deposits and seasonal flows and the Rio Rayas impacted by lahars flow and glacial melting. In this document we concentrated on Rio Chaitén. We are characterizing longitudinal distribution, volume and structures of LW (wood elements of more than 10 cm of diameter and 1 m of longitude) through field sampling and photogrammetric interpretation and studying LW mobilization using active (RFID) and passive tags. We select representative cross-sections for repeated measurements. Future surveys will include seasonal suspended and bedload sampling, LW spatial distribution and influence on channel morphology and bank erosion and LW mobilization linked with floods and channel geometry changes. During the first field survey we found huge LW input rate due to eruption influence (killed trees and pyroclastic flows and floods), erosion of different terraces generated from intense debris-flow sedimentations caused by Chaitén Volcano explosion, typical on stream LW structures (log-steps, jams) contributing to streambed stability and channel avulsion caused by log-dams. Also, LW deposited parallel to stream indicates high mobilization and LW deposited on external curve contribute to bank stabilization. We measured high sediment transport rate also in low-flow conditions due to huge availability of fine volcanic sediments. Associated risks to LW are: dam break processes, more channel avulsion caused by log accumulations, flow resistance increase favoring channel divagation (especially important for town segment) and logs floating downstream can obstruct/damage bridges and culverts. Funding for this research has been provided by Chile's National Research Foundation through FONDECYT Projects N 1080249 and 1090774. The authors thank USGS and SERNAGEOMIN for their cooperation.
Erosion and deposition on a debris-flow fan
NASA Astrophysics Data System (ADS)
Densmore, A. L.; Schuerch, P.; Rosser, N. J.; McArdell, B. W.
2011-12-01
The ability of a debris flow to entrain or deposit sediment controls the downstream evolution of flow volume, and ultimately dictates both the geomorphic impact of the flow and the potential hazard that it represents. Our understanding of the patterns of, and controls on, such flow volume changes remains extremely limited, however, partly due to a poor mechanistic grasp of the interactions between debris flows and their bed and banks. In addition, we lack a good understanding of the cumulative long-term effects of sequences of flows in a single catchment-fan system. Here we begin to address these issues by using repeated terrestrial laser scanning (TLS) to characterize the detailed surface change associated with the passage of multiple debris flows on the Illgraben fan, Switzerland. We calculate surface elevation change along a 300 m study reach, and from this derive the downfan rate of flow volume change, or lag rate; for comparison, we also derive the spatially-averaged lag rate over the entire ~2 km length of the fan. Lag rates are broadly comparable over both length scales, indicating that flow behavior does not vary significantly across the fan for most flows, but importantly we find that flow volume at the fan head is a poor predictor of volume at the fan toe. The sign and magnitude of bed elevation change scale with local flow depth; at flow depths < 2 m, erosion and deposition are approximately equally likely, but erosion becomes increasingly dominant for flow depths > 2 m. On the Illgraben fan, this depth corresponds to a basal shear stress of 3-4 kPa. Because flow depth is in part a function of channel cross-sectional topography, which varies strongly both within and between flows, this result indicates that erosion and deposition are likely to be highly dynamic. The dependence of flow volume change on both the channel topography and the flow history may thus complicate efforts to predict debris-flow inundation areas by simple flow routing. We then apply a 2d numerical model of debris-flow fan evolution to explore the key controls on debris-flow routing and topographic development over sequences of multiple flows. We find that fan topographic roughness plays an important role in both channel development and fan surface stability. We also find that, while first-order fan shape is largely insensitive to the input flow sequence, second-order variables such as the pattern of surface exposure ages and the distribution of channel characteristics hold more promise as robust recorders of past flow conditions. Further work is needed to understand the degree to which the TLS-derived (and Illgraben-specific) relationship between bed elevation change and flow depth can be applied in different settings, and to elucidate the role played by coarse debris in controlling patterns of erosion and deposition.
Instream Large Wood: Dentrification Hotspots With Low N2O Production
The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and nitrous oxide (N2O) production. We examined the effects of woody an...
Diaz-Castellon, Rodolfo; Hubbard, Bernard E.; Carrasco-Nunez, Gerardo; Rodríguez-Vargas, José Luis
2012-01-01
Cofre de Perote volcano is a compound, shield-like volcano located in the northeastern Trans-Mexican volcanic belt. Large debris avalanche and lahar deposits are associated with the evolution of Cofre. The two best preserved of these debris-avalanche and debris-flow deposits are the ∼42 ka “Los Pescados debris flow” deposit and the ∼11–13 ka “Xico avalanche” deposit, both of which display contrasting morphological and textural characteristics, source materials, origins and emplacement environments. Laboratory X-ray diffraction and visible-infrared reflectance spectroscopy were used to identify the most abundant clay, sulfate, ferric-iron, and silica minerals in the deposits, which were either related to hydrothermal alteration or chemical weathering processes. Cloud-free Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) remote sensing imagery, supporting EO-1 Hyperion image spectra, and field ground truth samples were used to map the mineralogy and distribution of hydrothermally altered rocks on the modern summit of Cofre de Perote. The results were then compared to minerals identified in the two debris-avalanche and debris-flow deposits in order to assess possible source materials and origins for the two deposits.The older Los Pescados debris-flow deposit contains mostly halloysite and hydrous silica minerals, which match the dominant mineralogy of soils and weathered volcanic deposit in the surrounding flanks of Cofre de Perote. Its source materials were most likely derived from initially noncohesive or clay-poor flows, which subsequently bulked with clay-rich valley soils and alluvium in a manner similar to lahars from Nevado del Ruiz in 1985, but on a larger scale. The younger Xico avalanche deposit contains abundant smectite, jarosite, kaolinite, gypsum, and mixed-layered illite/smectite, which are either definitely or most likely of hydrothermal alteration origin. Smectite in particular appears to be the most abundant and spectrally dominant mineral in summit ground truth samples, ASTER mapping results, Xico avalanche deposit, and an older (pre-Xico avalanche) deposit derived from collapse(s) of ancestral Cofre de Perote edifice. However, both Xico avalanche and Los Pescados debris flow deposits show some evidence of secondary, postemplacement weathering and induration, which is evident by the presence of gibbsite, and hydroxyl interlayered minerals, in addition to recently formed halloysite and hydrous silica (i.e., indurating) cements. Field-based, visible infrared image spectroscopy (VIS/IR) spectral measurements offer the possibility of distinguishing primary minerals of hydrothermal alteration origin in debris-avalanche and debris-flow deposits from those produced either by in situ chemical weathering or bulked from weathered source materials.
Abundance and Morphological Effects of Large Woody Debris in Forested Basins of Southern Andes
NASA Astrophysics Data System (ADS)
Andreoli, A.; Comiti, F.; Lenzi, M. A.
2006-12-01
The Southern Andes mountain range represents an ideal location for studying large woody debris (LWD) in streams draining forested basins thanks to the presence of both pristine and managed woodland, and to the general low level of human alteration of stream corridors. However, no published investigations have been performed so far in such a large region. The investigated sites of this research are three basins (9-13 km2 drainage area, third-order channels) covered by Nothofagus forests: two of them are located in the Southern Chilean Andes (the Tres Arroyos in the Malalcahuello National Reserve and the Rio Toro within the Malleco Natural Reserve) and one basin lies in the Argentinean Tierra del Fuego (the Buena Esperanza basin, near the city of Ushuaia). Measured LWD were all wood pieces larger than 10 cm in diameter and 1 m in length, both in the active channel and in the adjacent active floodplain. Pieces forming log jams were all measured and the geometrical dimensions of jams were taken. Jam type was defined based on Abbe and Montgomery (2003) classification. Sediment stored behind log-steps and valley jams was evaluated approximating the sediment accumulated to a solid wedge whose geometrical dimensions were measured. Additional information relative to each LWD piece were recorded during the field survey: type (log, rootwad, log with rootwads attached), orientation to flow, origin (floated, bank erosion, landslide, natural mortality, harvest residuals) and position (log-step, in-channel, channel-bridging, channel margins, bankfull edge). In the Tres Arroyos, the average LWD volume stored within the bankfull channel is 710 m3 ha-1. The average number of pieces is 1,004 per hectare of bankfull channel area. Log-steps represent about 22% of all steps, whereas the elevation loss due to LWD (log-steps and valley jams) results in 27% loss of the total stream potential energy. About 1,600 m3 of sediment (assuming a porosity of 20%) is stored in the main channel behind LWD structures approximately, i.e. 1,000 m3 per km of channel length, corresponding to approximately 150% of the annual sediment yield. In the Rio Toro, the average LWD volume and number of elements stored are much less, respectively 117 m3 ha-1 and 215 pieces ha-1. Neither log-steps or valley jams were observed and the longitudinal profile appear not affected by LWD, and no sediment storage can be attributed to woody debris. The low LWD storage and impact in this channel is likely due to the general stability of its hillslopes, in contrast to the Tres Arroyos where extensive landslides and debris flows convey a great deal of wood into the stream. Finally, in the Buena Esperanza, the average LWD volume stored in the active channel is quite low (120 m3 ha-1, but the average number of pieces is the highest with 1,397 pieces ha-1. This is due to the smaller dimensions of LWD elements delivered by trees growing in a colder climate as that characterizing the Tierra del Fuego. The morphological influence of wood in this channel is however very important, with the presence of large valley jams and high log-steps imparting the channel a macro-scale stepped profile with a total energy dissipation due to LWD (log-steps and valley jams) of about 24 % of the stream potential energy. The sediment stored behind log-steps and valley jams results to be about 1,290 m3, i.e. 700 m3 km-1, but unfortunately no values of sediment yields are available for this basin.
A study of methods to estimate debris flow velocity
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Debris flow velocities are commonly back-calculated from superelevation events which require subjective estimates of radii of curvature of bends in the debris flow channel or predicted using flow equations that require the selection of appropriate rheological models and material property inputs. This research investigated difficulties associated with the use of these conventional velocity estimation methods. Radii of curvature estimates were found to vary with the extent of the channel investigated and with the scale of the media used, and back-calculated velocities varied among different investigated locations along a channel. Distinct populations of Bingham properties were found to exist between those measured by laboratory tests and those back-calculated from field data; thus, laboratory-obtained values would not be representative of field-scale debris flow behavior. To avoid these difficulties with conventional methods, a new preliminary velocity estimation method is presented that statistically relates flow velocity to the channel slope and the flow depth. This method presents ranges of reasonable velocity predictions based on 30 previously measured velocities. ?? 2008 Springer-Verlag.
Supply of large woody debris in a stream channel
Diehl, Timothy H.; Bryan, Bradley A.
1993-01-01
The amount of large woody debris that potentially could be transported to bridge sites was assessed in the basin of the West Harpeth River in Tennessee in the fall of 1992. The assessment was based on inspections of study sites at 12 bridges and examination of channel reaches between bridges. It involved estimating the amount of woody material at least 1.5 meters long, stored in the channel, and not rooted in soil. Study of multiple sites allowed estimation of the amount, characteristics, and sources of debris stored in the channel, and identification of geomorphic features of the channel associated with debris production. Woody debris is plentiful in the channel network, and much of the debris could be transported by a large flood. Tree trunks with attached root masses are the dominant large debris type. Death of these trees is primarily the result of bank erosion. Bank instability seems to be the basin characteristic most useful in identifying basins with a high potential for abundant production of debris.
Design of Installing Check Dam Using RAMMS Model in Seorak National Park of South Korea
NASA Astrophysics Data System (ADS)
Jun, K.; Tak, W.; JUN, B. H.; Lee, H. J.; KIM, S. D.
2016-12-01
Design of Installing Check Dam Using RAMMS Model in Seorak National Park of South Korea Kye-Won Jun*, Won-Jun Tak*, Byong-Hee Jun**, Ho-Jin Lee***, Soung-Doug Kim* *Graduate School of Disaster Prevention, Kangwon National University, 346 Joogang-ro, Samcheok-si, Gangwon-do, Korea **School of Fire and Disaster Protection, Kangwon National University, 346 Joogang-ro, Samcheok-si, Gangwon-do, Korea ***School of Civil Engineering, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Korea Abstract As more than 64% of the land in South Korea is mountainous area, so many regions in South Korea are exposed to the danger of landslide and debris flow. So it is important to understand the behavior of debris flow in mountainous terrains, the various methods and models are being presented and developed based on the mathematical concept. The purpose of this study is to investigate the regions that experienced the debris flow due to typhoon called Ewiniar and to perform numerical modeling to design and layout of the Check dam for reducing the damage by the debris flow. For the performance of numerical modeling, on-site measurement of the research area was conducted including: topographic investigation, research on bridges in the downstream, and precision LiDAR 3D scanning for composed basic data of numerical modeling. The numerical simulation of this study was performed using RAMMS (Rapid Mass Movements Simulation) model for the analysis of the debris flow. This model applied to the conditions of the Check dam which was installed in the upstream, midstream, and downstream. Considering the reduction effect of debris flow, the expansion of debris flow, and the influence on the bridges in the downstream, proper location of the Check dam was designated. The result of present numerical model showed that when the Check dam was installed in the downstream section, 50 m above the bridge, the reduction effect of the debris flow was higher compared to when the Check dam were installed in other sections. Key words: Debris flow, LiDAR, Check dam, RAMMSAcknowledgementsThis research was supported by a grant [MPSS-NH-2014-74] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government
NASA Astrophysics Data System (ADS)
Spänhoff, Bernd; Riss, Wolfgang; Jäkel, Paul; Dakkak, Nadja; Meyer, Elisabeth I.
2006-02-01
A straightened stream stretch with poor habitat heterogeneity was divided into a “control” section with a low amount of submerged woody debris and an experimentally “wood-enriched” downstream section to study the effect of enhanced habitat diversity on the benthic invertebrate community. The downstream section was enriched by fixing 25 wood packages constructed from 9-10 branches on the stream bottom. Succession processes occurring in the two stream sections were compared by chironomid exuviae drift from July to November 2000 and from April to August 2001. During the first sampling period, more drifting chironomid exuviae (medians of control vs. wood-enriched: 446 vs. 331, no significant difference) and total number of taxa (44 vs. 36, Wilcoxon signed-rank test P = 0.019) were recorded for the control section. Although species compositions of both stream sections were highly similar (Sørensen index: 0.83) the diversity in the wood-enriched section was distinctly lower compared to the control section (Shannon-Weaver index: 1.19 vs. 1.50). During the second sampling period, exuviae numbers remained higher in the control section (median: 326 vs. 166), but total numbers of taxa were nearly equal (51 vs. 49), as well as species diversity (Shannon-Weaver index: 1.67 vs. 1.64). The lower chironomid diversity observed during the first sampling period coincided with a gradual but significant change of the streambed morphology in the wood-enriched section. There, the initially more U-shaped profile (V/U = 0.81 ± 0.37) had turned into a pronounced V shape (V/U = 1.14 ± 0.21), whereas the control section retained its unaltered U shape (V/U = 0.62-0.75). This small-scale study on experimental of woody debris in sandy lowland streams showed that the negative impact of increased hydraulic disturbance of the existing streambed more than outweighed any positive impact resulting from the increase in woody debris.
Denlinger, Roger P.
2012-01-01
The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.
Tillery, Anne C.; Haas, Jessica R.
2016-08-11
Wildfire can substantially increase the probability of debris flows, a potentially hazardous and destructive form of mass wasting, in landscapes that have otherwise been stable throughout recent history. Although the exact location, extent, and severity of wildfire or subsequent rainfall intensity and duration cannot be known, probabilities of fire and debris‑flow occurrence for given locations can be estimated with geospatial analysis and modeling. The purpose of this report is to provide information on which watersheds might constitute the most serious potential debris-flow hazards in the event of a large-scale wildfire and subsequent rainfall in the Jemez Mountains. Potential probabilities and estimated volumes of postwildfire debris flows in both the unburned and previously burned areas of the Jemez Mountains and surrounding areas were estimated using empirical debris-flow models developed by the U.S. Geological Survey in combination with fire behavior and burn probability models developed by the U.S. Forest Service.Of the 4,998 subbasins modeled for this study, computed debris-flow probabilities in 671 subbasins were greater than 80 percent in response to the 100-year recurrence interval, 30-minute duration rainfall event. These subbasins ranged in size from 0.01 to 6.57 square kilometers (km2), with an average area of 0.29 km2, and were mostly steep, upstream tributaries to larger channels in the area. Modeled debris-flow volumes in 465 subbasins were greater than 10,000 cubic meters (m3), and 14 of those subbasins had modeled debris‑flow volumes greater than 100,000 m3.The rankings of integrated relative debris-flow hazard indexes for each subbasin were generated by multiplying the individual subbasin values for debris-flow volume, debris‑flow probability, and average burn probability. The subbasins with integrated hazard index values in the top 2 percent typically are large, upland tributaries to canyons and channels primarily in the Upper Rio Grande and Rio Grande-Santa Fe watershed areas. No subbasins in this group have basin areas less than 1.0 km2. Many of these areas already had significant mass‑wasting episodes following the Las Conchas Fire in 2011. Other subbasins with integrated hazard index values in the top 2 percent are scattered throughout the Jemez River watershed area, including some subbasins in the interior of the Valles Caldera. Only a few subbasins in the top integrated hazard index group are in the Rio Chama watershed area.This prewildfire assessment approach is valuable to resource managers because the analysis of the debris-flow threat is made before a wildfire occurs, which facilitates prewildfire management, planning, and mitigation. In north‑central New Mexico, widespread watershed restoration efforts are being done to safeguard vital watersheds against the threat of catastrophic wildfire. This study was designed to help select ideal locations for the restoration efforts that could have the best return on investment.
Conditions for generation of fire-related debris flows, Capulin Canyon, New Mexico
Cannon, S.H.; Reneau, Steven L.
2000-01-01
Comparison of the responses of three drainage basins burned by the Dome fire of 1996 in New Mexico is used to identify the hillslope, channel and fire characteristics that indicate a susceptibility specifically to wildfire-related debris flow. Summer thunderstorms generated three distinct erosive responses from each of three basins. The Capulin Canyon basin showed widespread erosive sheetwash and rilling from hillslopes, and severe flooding occurred in the channel; the North Tributary basin exhibited extensive erosion of the mineral soil to a depth of 5 cm and downslope movement of up to boulder-sized material, and at least one debris flow occurred in the channel; negligible surface runoff was observed in the South Tributary basin. The negligible surface runoff observed in the South Tributary basin is attributed to the limited extent and severity of the fire in that basin. The factors that best distinguish between debris-flow producing and flood-producing drainages are drainage basin morphology and lithology. A rugged drainage basin morphology, an average 12 per cent channel gradient, and steep, rough hillslopes coupled with colluvium and soil weathered from volcaniclastic and volcanic rocks promoted the generation of debris flows. A less rugged basin morphology, an average gradient of 5 per cent, and long, smooth slopes mantled with pumice promoted flooding. Flood and debris-flow responses were produced without the presence of water-repellent soils. The continuity and severity of the burn mosaic, the condition of the riparian vegetation, the condition of the fibrous root mat, accumulations of dry ravel and colluvial material in the channel and on hillslopes, and past debris-flow activity, appeared to have little bearing on the distinctive responses of the basins. Published in 2000 by John Wiley and Sons, Ltd.
Assessing Landslide Mobility Using GIS: Application to Kosrae, Micronesia
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.; Godt, J.; Schmitt, R. G.; Harp, E. L.
2015-12-01
Deadly landslides are often mobile landslides, as exemplified by the disastrous landslide that occurred near Oso, Washington in 2014 killing 43. Despite this association, many landslide susceptibility maps do not identify runout areas. We developed a simple, GIS-based method for identifying areas potentially overrun by mobile slides and debris flows. Our method links three processes within a DEM landscape: landslide initiation, transport, and debris-flow inundation (from very mobile slides). Given spatially distributed shear strengths, we first identify initiation areas using an infinite-slope stability analysis. We then delineate transport zones, or regions of potential entrainment and/or deposition, using a height/length runout envelope. Finally, where these transport zones intersect the channel network, we start debris-flow inundation zones. The extent of inundation is computed using the USGS model Laharz, modified to include many debris-flow locations throughout a DEM. Potential debris-flow volumes are computed from upslope initiation areas and typical slide thicknesses. We applied this approach to the main island of Kosrae State, Federated States of Micronesia (FSM). In 2002, typhoon Chata'an triggered numerous landslides on the neighboring islands of Chuuk State, FSM, resulting in 43 fatalities. Using an infinite-slope stability model calibrated to the Chuuk event, we identified potential landslide initiation areas on Kosrae. We then delineated potential transport zones using a 20º runout envelope, based on runout observations from Chuuk. Potential debris-flow inundation zones were then determined using Laharz. Field inspections on Kosrae revealed that our resulting susceptibility map correctly classified areas covered by previous debris-flow deposits and did not include areas covered by fluvial deposits. Our map has the advantage of providing a visual tool to portray initiation, transport, and runout zones from mobile landslides.
Debris-flow runout predictions based on the average channel slope (ACS)
Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H.
2008-01-01
Prediction of the runout distance of a debris flow is an important element in the delineation of potentially hazardous areas on alluvial fans and for the siting of mitigation structures. Existing runout estimation methods rely on input parameters that are often difficult to estimate, including volume, velocity, and frictional factors. In order to provide a simple method for preliminary estimates of debris-flow runout distances, we developed a model that provides runout predictions based on the average channel slope (ACS model) for non-volcanic debris flows that emanate from confined channels and deposit on well-defined alluvial fans. This model was developed from 20 debris-flow events in the western United States and British Columbia. Based on a runout estimation method developed for snow avalanches, this model predicts debris-flow runout as an angle of reach from a fixed point in the drainage channel to the end of the runout zone. The best fixed point was found to be the mid-point elevation of the drainage channel, measured from the apex of the alluvial fan to the top of the drainage basin. Predicted runout lengths were more consistent than those obtained from existing angle-of-reach estimation methods. Results of the model compared well with those of laboratory flume tests performed using the same range of channel slopes. The robustness of this model was tested by applying it to three debris-flow events not used in its development: predicted runout ranged from 82 to 131% of the actual runout for these three events. Prediction interval multipliers were also developed so that the user may calculate predicted runout within specified confidence limits. ?? 2008 Elsevier B.V. All rights reserved.
Development of the Assessment Items of Debris Flow Using the Delphi Method
NASA Astrophysics Data System (ADS)
Byun, Yosep; Seong, Joohyun; Kim, Mingi; Park, Kyunghan; Yoon, Hyungkoo
2016-04-01
In recent years in Korea, Typhoon and the localized extreme rainfall caused by the abnormal climate has increased. Accordingly, debris flow is becoming one of the most dangerous natural disaster. This study aimed to develop the assessment items which can be used for conducting damage investigation of debris flow. Delphi method was applied to classify the realms of assessment items. As a result, 29 assessment items which can be classified into 6 groups were determined.
Staley, Dennis M.; Negri, Jacquelyn; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.
2017-01-01
Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity–duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity–duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity–duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity–duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity–duration thresholds do not currently exist.
NASA Astrophysics Data System (ADS)
Staley, Dennis M.; Negri, Jacquelyn A.; Kean, Jason W.; Laber, Jayme L.; Tillery, Anne C.; Youberg, Ann M.
2017-02-01
Early warning of post-fire debris-flow occurrence during intense rainfall has traditionally relied upon a library of regionally specific empirical rainfall intensity-duration thresholds. Development of this library and the calculation of rainfall intensity-duration thresholds often require several years of monitoring local rainfall and hydrologic response to rainstorms, a time-consuming approach where results are often only applicable to the specific region where data were collected. Here, we present a new, fully predictive approach that utilizes rainfall, hydrologic response, and readily available geospatial data to predict rainfall intensity-duration thresholds for debris-flow generation in recently burned locations in the western United States. Unlike the traditional approach to defining regional thresholds from historical data, the proposed methodology permits the direct calculation of rainfall intensity-duration thresholds for areas where no such data exist. The thresholds calculated by this method are demonstrated to provide predictions that are of similar accuracy, and in some cases outperform, previously published regional intensity-duration thresholds. The method also provides improved predictions of debris-flow likelihood, which can be incorporated into existing approaches for post-fire debris-flow hazard assessment. Our results also provide guidance for the operational expansion of post-fire debris-flow early warning systems in areas where empirically defined regional rainfall intensity-duration thresholds do not currently exist.
Dense Granular Avalanches: Mathematical Description and Experimental Validation
NASA Astrophysics Data System (ADS)
Tai, Y.-C.; Hutter, K.; Gray, J. M. N. T.
Snow avalanches, landslides, rock falls and debris flows are extremely dangerous and destructive natural phenomena. The frequency of occurrence and amplitudes of these disastrous events appear to have increased in recent years perhaps due to recent climate warming. The events endanger the personal property and infra-structure in mountainous regions. For example, from the winters 1940/41 to 1987/88 more than 7000 snow avalanches occurred in Switzerland with damaged property leading to a total of 1269 deaths. In February 1999, 36 people were buried by a single avalanche in Galtür, Austria. In August 1996, a very large debris flow in middle Taiwan resulted in 51 deaths, 22 lost and an approximate property damage of more than 19 billion NT dollars (ca. 600 million US dollars) [18]. In Europe, a suddenly released debris flow in North Italy in August 1998 buried 5 German tourists on the Superhighway "Brenner-Autobahn". The topic has gained so much significance that in 1990 the United Nations declared the International Decade for Natural Disasters Reduction (IDNDR); Germany has its own Deutsches IDNDR-Komitee für Katastrophenvorbeugung e.V. Special conferences are devoted to the theme, e.g., the CALAR conference on Avalanches, Landslides, Rock Falls and Debris Flows (Vienna, January 2000), INTERPRAEVENT, annual conferences on the protection of habitants from floods, debris flows and avalanches, special conferences on debris flow hazard mi tigation and those exclusively on Avalanches.
Flood of October 1986 at Seward, Alaska
Jones, S.H.; Zenone, Chester
1988-01-01
Broad areas along the lower Resurrection River and Salmon Creek as well as the surfaces of several adjacent alluvial fans in the Seward area were flooded as a result of the intensive rainstorm of October 9-11, 1986. Severe erosion took place through the steep gradient, mountain canyons and near the apex of the fans, while rock and debris were deposited on the distal parts of the fans. In Godwin, Lost, Box Canyon, Japanese, and Spruce Creek basins, and perhaps others, landslides or debris avalanches dammed the streams temporarily. Subsequent failure or overtopping of these dams led to ' surge-release ' flooding; peak discharge of such a flood at Spruce Creek was 13,600 cu ft/sec, four times as great as any previously known maximum discharge from the basin and 2.5 times as great as the runoff rate from the debris dam. Flood discharges were determined indirectly--using the slope-area method--at ten high-gradient reaches on nine streams. Computed peak discharges for several small basins were the largest since records began in 1963. The largest rainfall-runoff rate unaffected by surge-release was 1 ,020 cu ft per sec per sq mi at Rudolph Creek, which has a drainage area of 1.00 sq mi. The 15.05 inches of rain that fell in one 24-hour period during the storm was assigned a recurrence interval of 100 years or greater. The length of the streamflow record available for most Seward area streams-25 years or less-is inadequate to reliably define flood frequency relations for recurrence intervals as great as 100 years. However, the slope-area determined discharge of Spruce Creek above the debris avalanche indicates a recurrence interval of a 100 years or greater. In addition, conventional flood-frequency analysis techniques are not applicable to peak discharges that are affected by surge-release phenomena. Large, damaging floods have repeatedly caused major damage in the Seward area, and the potential for catastrophic, debris-laden floods is an ever-present threat to areas bordering the many steep mountain streams. (Author 's abstract)
Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.
2010-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2009 La Brea and Jesusita fires in Santa Barbara County, the Guiberson fire in Ventura County, the Morris fire in Los Angeles County, the Sheep, Oak Glen, and Pendleton fires in San Bernardino County, and the Cottonwood fire in Riverside County, southern California. Statistical-empirical models developed to analyze postfire debris flows are used to estimate the probability and volume of debris-flows produced from drainage basins within each of the burned areas. Debris-flow probabilities and volumes are estimated as functions of different measures of basin burned extent, gradient, and material properties in response to both a 3-hour-duration, 2-year-recurrence thunderstorm and to a widespread, 12-hour-duration, 2-year-recurrence winter storm. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two winters following the fire.
Secondary Crater-Initiated Debris Flow on the Moon
NASA Technical Reports Server (NTRS)
Martin-Wells, K. S.; Campbell, D. B.; Campbell, B. A.; Carter, L. M.; Fox, Q.
2016-01-01
In recent work, radar circular polarization echo properties have been used to identify "secondary" craters without distinctive secondary morphologies. Because of the potential for this method to improve our knowledge of secondary crater population-in particular the effect of secondary populations on crater- derived ages based on small craters-it is important to understand the origin of radar polarization signatures associated with secondary impacts. In this paper, we utilize Lunar Reconnaissance Orbiter Camera photographs to examine the geomorphology of secondary craters with radar circular polarization ratio enhancements. Our investigation reveals evidence of dry debris flow with an impact melt component at such secondary craters. We hypothesize that these debris flows were initiated by the secondary impacts themselves, and that they have entrained blocky material ejected from the secondaries. By transporting this blocky material downrange, we propose that these debris flows (rather than solely ballistic emplacement) are responsible for the tail-like geometries of enhanced radar circular polarization ratio associated with the secondary craters investigated in this work. Evidence of debris flow was observed at both clustered and isolated secondary craters, suggesting that such flow may be a widespread occurrence, with important implications for the mixing of primary and local material in crater rays.
Leopold, Luna Bergere; Wolman, M. Gordon
1960-01-01
Most river curves have nearly the same value of the ratio of curvature radius to channel width, in the range of 2 to 3. Meanders formed by meltwater on the surface of glaciers, and by the main current of the Gulf Stream, have a relation of meander length to channel width similar to rivers. Because such meanders carry no sediment, the shapes of curves in rivers are evidently determined primarily by the dynamics of flow rather than by relation to debris load.Velocity distributions along river curves provide a generalized picture of flow characteristics. Evidence on flow resistance in curved channels suggests that a basic aspect of meander mechanics may be related to the distribution of energy loss provided by a particular configuration or curvature. No general theory of meanders is as yet satisfactory, however; in fact, present evidence suggests that no single theory will explain the formation and characteristics of all meanders and that few of the physical principles involved have yet been clearly identified.
Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy me...
Debris-flow deposits and watershed erosion rates near southern Death Valley, CA, United States
Schmidt, K.M.; Menges, C.M.; ,
2003-01-01
Debris flows from the steep, granitic hillslopes of the Kingston Range, CA are commensurate in age with nearby fluvial deposits. Quaternary chronostratigraphic differentiation of debris-flow deposits is based upon time-dependent characteristics such as relative boulder strength, derived from Schmidt Hammer measurements, degree of surface desert varnish, pedogenesis, and vertical separation. Rock strength is highest for Holocene-aged boulders and decreases for Pleistocene-aged boulders weathering to grus. Volumes of age-stratified debris-flow deposits, constrained by deposit thickness above bedrock, GPS surveys, and geologic mapping, are greatest for Pleistocene deposits. Shallow landslide susceptibility, derived from a topographically based GIS model, in conjunction with deposit volumes produces watershed-scale erosion rates of ???2-47 mm ka-1, with time-averaged Holocene rates exceeding Pleistocene rates. ?? 2003 Millpress.
Cannon, Susan H.; Michael, John A.
2011-01-01
This report presents an emergency assessment of potential debris-flow hazards from basins burned by the 2011 Motor fire in the Sierra and Stanislaus National Forests, Calif. Statistical-empirical models are used to estimate the probability and volume of debris flows that may be produced from burned drainage basins as a function of different measures of basin burned extent, gradient, and soil physical properties, and in response to a 30-minute-duration, 10-year-recurrence rainstorm. Debris-flow probability and volume estimates are then combined to form a relative hazard ranking for each basin. This assessment provides critical information for issuing warnings, locating and designing mitigation measures, and planning evacuation timing and routes within the first two years following the fire.
Uhrich, Mark A.
2010-01-01
A debris flow and sediment torrent occurred on the flanks of Mt Jefferson in Oregon on November 6, 2006, inundating 150 acres of forest. The massive debris flow was triggered by a rock and snow avalanche from the Milk Creek glaciers and snowfields during the early onset of an intense storm originating near the Hawaiian Islands. The debris flow consisted of a heavy conglomerate of large boulders, cobbles, and coarse-grained sediment that was deposited at depths of up to 15 ft and within 3 mi of the glaciers, and a viscous slurry that deposited finer-grained sediments at depths of 0.5 to 3 ft. The muddy slurry coated standing trees within the lower reaches of Milk Creek as it moved downslope.
NASA Astrophysics Data System (ADS)
Kokelj, S. V.; Tunnicliffe, J.; Lacelle, D.; Lantz, T. C.; Chin, K. S.; Fraser, R.
2015-06-01
It is anticipated that an increase in rainfall will have significant impacts on the geomorphology of permafrost landscapes. Field observations, remote sensing and historical climate data were used to investigate the drivers, processes and feedbacks that perpetuate the growth of large retrogressive thaw slumps. These "mega slumps" (5-40 ha) are now common in formerly glaciated, fluvially incised, ice-cored terrain of the Peel Plateau, NW Canada. Individual thaw slumps can persist for decades and their enlargement due to ground ice thaw can displace up to 106 m3 of materials from slopes to valley bottoms reconfiguring slope morphology and drainage networks. Analysis of Landsat images (1985-2011) indicate that the number and size of active slumps and debris tongue deposits has increased significantly with the recent intensification of rainfall. The analyses of high resolution climatic and photographic time-series for summers 2010 and 2012 shows strong linkages amongst temperature, precipitation and the downslope sediment flux from active slumps. Ground ice thaw supplies meltwater and sediments to the slump scar zone and drives diurnal pulses of surficial flow. Coherence in the timing of down valley debris tongue deposition and fine-scaled observations of sediment flux indicate that heavy rainfall stimulates major mass flow events. Evacuation of sediments from the slump scar zone can help to maintain a headwall of exposed ground ice, perpetuating slump growth and leading to larger disturbances. The development of debris tongue deposits divert streams and increase thermoerosion to initiate adjacent slumps. We conclude that higher rainfall can intensify thaw slump activity and rapidly alter the slope-sediment cascade in regions of ice-cored glaciogenic deposits.
Debris flow hazard assessment for the Oregon Caves National Monument
Friday, John
1983-01-01
After experiencing a devastating debris flow in the Oregon Caves National Monument, the National Park Service needs an evaluation of the hazard of additional flows. Soil properties at six random sites were compared with those at the source of the debris flow. Although all sites had soils that could become unstable with sufficient moisture, soil at one site had properties similar to those at the scar and the potential for another flow was confirmed. The report suggests that winter weather conditions be closely monitored and compared to the antecedent conditions prior to the known failure. When the threshold for additional mass wasting is believed imminent, appropriate action can be taken to insure the safety of work personnel and the public. The peak streamflow that preceded the 5,200 cu yds of debris is estimated to have a 0.5 percent chance of being equaled or exceeded in any given year. (USGS)
Simulations of Magnetic Fields in Tidally Disrupted Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillochon, James; McCourt, Michael, E-mail: jguillochon@cfa.harvard.edu
2017-01-10
We perform the first magnetohydrodynamical simulations of tidal disruptions of stars by supermassive black holes. We consider stars with both tangled and ordered magnetic fields, for both grazing and deeply disruptive encounters. When the star survives disruption, we find its magnetic field amplifies by a factor of up to 20, but see no evidence for a self-sustaining dynamo that would yield arbitrary field growth. For stars that do not survive, and within the tidal debris streams produced in partial disruptions, we find that the component of the magnetic field parallel to the direction of stretching along the debris stream onlymore » decreases slightly with time, eventually resulting in a stream where the magnetic pressure is in equipartition with the gas. Our results suggest that the returning gas in most (if not all) stellar tidal disruptions is already highly magnetized by the time it returns to the black hole.« less
NASA Astrophysics Data System (ADS)
Jeong, Sueng-Won; Fukuoka, Hiroshi; Im, Sang-June
2013-04-01
Landslides in Korea are mainly triggered by localized summer heavy rainfall. The water infiltration, wetting and fluidization process are the key roles in slope instability. Mechanically, a loss in soil strength of the soil at weakend layer takes place as a result of water infiltration. The transition from slides to flows can be defined by the variation in strength parameters. In the flowing stage with large volume of sediments, debris flow impact may be governed by the rheology of the failed mass. We performed the rheological tests using the ball-measuring and vane-inserted rheometer and examined a possible threshold of landslides on mudstone, weathered granitic and gneissic soils in the mountainous region of Korea. The materials examined exhibited the shear-thinning behavior, which is the viscosity decreases with increasing shear rates. There are positive relationships between liquidity index and rheological values (i.e., yield stress and viscosities). However, the difference in rheological properties is of significance for given shear rates. The effect of wall-slip in different geometries is emphasized. This work is also concerned with post-failure characteristics of rainfall-induced landslides that occur in Chuncheon, Miryang and Seoul debris flow occurrence in 2011. They are mainly composed of gneissic, sedimentary and gneissic weathered soils. The rheological properties is helpful to predict the mobilization of fine-laden debris flows. In the relationship between shear stress and shear rate, one of simplest rheological models, i.e., the ideal Bingham fluid model, is selected to examine the flow pattern and depositional features of debris flows. A comparison will be made for the debris flow occurence on weahtered soils in Korea.
2003-09-11
KENNEDY SPACE CENTER, FLA. - The media listen to Scott Thurston, NASA vehicle flow manager, talk about efforts to pack the debris stored in the Columbia Debris Hangar. More than 83,000 pieces of debris were shipped to KSC during search and recovery efforts in East Texas. That represents about 38 percent of the dry weight of Columbia, equaling almost 85,000 pounds. An area of the Vehicle Assembly Building is being prepared to store the debris permanently.
A 100-year average recurrence interval for the San Andreas fault at Wrightwood, California
Fumal, T.E.; Pezzopane, S.K.; Weldon, R.J.; Schwartz, D.P.
1993-01-01
Evidence for five large earthquakes during the past five centuries along the San Andreas fault zone 70 kilometers northeast of Los Angeles, California, indicates that the average recurrence interval and the temporal variability are significantly smaller than previously thought. Rapid sedimentation during the past 5000 years in a 150-meter-wide structural depression has produced a greater than 21-meter-thick sequence of debris flow and stream deposits interbedded with more than 50 datable peat layers. Fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits above listric faults provide evidence for large earthquakes that occurred in A.D. 1857, 1812, and about 1700, 1610, and 1470.
Trout use of woody debris and habitat in Wine Spring Creek, North Carolina
Patricia A. Flebbe
1999-01-01
Wine Spring Creek basin, in the mountains of North Carolina's Nantahala National Forest, is an ecosystem management demonstration site, in which ecological concepts for management and restoration are tested. Large woody debris (LWD) is an important link between streams and the adjacent riparian forest, but evidence for the connection between LWD and trout in the...
Modeling large woody debris recruitment for small streams of the Central Rocky Mountains
Don C. Bragg; Jeffrey L. Kershner; David W. Roberts
2000-01-01
As our understanding of the importance of large woody debris (LWD) evolves, planning for its production in riparian forest management is becoming more widely recognized. This report details the development of a model (CWD, version 1.4) that predicts LWD inputs, including descriptions of the field sampling used to parameterize parts of the model, the theoretical and...
Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.
2007-01-01
Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.
Book Review: Dangerous Neighbors: Volcanoes and Cities
Caporuscio, Florie Andre
2013-01-01
Here, Grant Heiken, a world-renowned volcanologist, has written a book based on his long history investigating volcanic hazards that is absolutely riveting. Eight of the ten chapters focus on the interplay between major metropolises and destructive volcanoes. The introductory chapter sets the stage for the remainder of the book. This chapter touches on various types of volcanic events; from Nyiragongo lava flows that disrupted the city of Goma, DRC, to debris flows from Nevado del Ruiz that killed 23,000 residents in Armero, Columbia, to the Eyjafjallajokull volcano in Iceland which spewed an ash column into the jet stream and disruptedmore » air travel to 32 European countries for 6 days. Other issues weaved into the introduction are the social and political fallout when a predicted eruption does not occur (Soufriere de Guadeloupe), how hazard evaluation processes change, and why do major populations reside near high risk volcanoes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporuscio, Florie Andre
Here, Grant Heiken, a world-renowned volcanologist, has written a book based on his long history investigating volcanic hazards that is absolutely riveting. Eight of the ten chapters focus on the interplay between major metropolises and destructive volcanoes. The introductory chapter sets the stage for the remainder of the book. This chapter touches on various types of volcanic events; from Nyiragongo lava flows that disrupted the city of Goma, DRC, to debris flows from Nevado del Ruiz that killed 23,000 residents in Armero, Columbia, to the Eyjafjallajokull volcano in Iceland which spewed an ash column into the jet stream and disruptedmore » air travel to 32 European countries for 6 days. Other issues weaved into the introduction are the social and political fallout when a predicted eruption does not occur (Soufriere de Guadeloupe), how hazard evaluation processes change, and why do major populations reside near high risk volcanoes.« less
NASA Astrophysics Data System (ADS)
Griffiths, P. G.; Webb, W. H.; Magirl, C. S.; Pytlak, E.
2008-12-01
An extreme, multi-day rainfall event over southeastern Arizona during 27-31 July 2006 culminated in an historically unprecedented spate of 435 slope failures and associated debris flows in the Santa Catalina Mountains north of Tucson. Previous to this occurrence, only twenty small debris flows had been observed in this region over the past 100 years. Although intense orographic precipitation is routinely delivered by single- cell thunderstorms to the Santa Catalinas during the North American monsoon, in this case repeated nocturnal mesoscale convective systems were induced over southeastern Arizona by an upper-level low- pressure system centered over the Four Corners region for five continuous days, generating five-day rainfall totals up to 360 mm. Calibrating weather radar data with point rainfall data collected at 31 rain gages, mean-area storms totals for the southern Santa Catalina Mountains were calculated for 754 radar grid cells at a resolution of approximately 1 km2 to provide a detailed picture of the spatial and temporal distribution of rainfall during the event. Precipitation intensity for the 31 July storms was typical for monsoonal precipitation in this region, with peak 15-minute rainfall averaging 17 mm/hr for a recurrence interval (RI) < 1 yr. However, RI > 50 yrs for four-day rainfall totals overall, RI > 100 yrs where slope failures occurred, and RI > 1000 yrs for individual grid cells in the heart of the slope failure zone. A comparison of rainfall at locations where debris-flows did and did not occur suggests an intensity (I)-duration (D) threshold for debris flow occurrence for the Santa Catalina Mountains of I = 14.82D-0.39(I in mm/hr). This threshold falls slightly higher than the 1000-year rainfall predicted for this area. The relatively large exponent reflects the high frequency of short-duration, high-intensity rainfall and the relative rarity of the long-duration rainfall that triggered these debris flows. Analysis of the rainfall/runoff ratio in the drainage basin at the heart of the debris flows confirms that sediments were nearly saturated before debris flows were initiated on July 31.