Science.gov

Sample records for decarboxylase accumulate phosphatidylserine

  1. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  2. Mitochondrial Phosphatidylserine Decarboxylase from Higher Plants. Functional Complementation in Yeast, Localization in Plants, and Overexpression in Arabidopsis1

    PubMed Central

    Rontein, Denis; Wu, Wen-I; Voelker, Dennis R.; Hanson, Andrew D.

    2003-01-01

    Plants are known to synthesize ethanolamine (Etn) moieties by decarboxylation of free serine (Ser), but there is also some evidence for phosphatidyl-Ser (Ptd-Ser) decarboxylation. Database searches identified diverse plant cDNAs and an Arabidopsis gene encoding 50-kD proteins homologous to yeast (Saccharomyces cerevisiae) and mammalian mitochondrial Ptd-Ser decarboxylases (PSDs). Like the latter, the plant proteins have putative mitochondrial targeting and inner membrane sorting sequences and contain near the C terminus a Glycine-Serine-Threonine motif corresponding to the site of proteolysis and catalytic pyruvoyl residue formation. A truncated tomato (Lycopersicon esculentum) cDNA lacking the targeting sequence and a chimeric construct in which the targeting and sorting sequences were replaced by those from yeast PSD1 both complemented the Etn requirement of a yeast psd1 psd2 mutant, and PSD activity was detected in the mitochondria of the complemented cells. Immunoblot analysis of potato (Solanum tuberosum) mitochondria demonstrated that PSD is located in mitochondrial membranes, and mRNA analysis in Arabidopsis showed that the mitochondrial PSD gene is expressed at low levels throughout the plant. An Arabidopsis knockup mutant grew normally but had 6- to 13-fold more mitochondrial PSD mRNA and 9-fold more mitochondrial PSD activity. Total membrane PSD activity was, however, unchanged in the mutant, showing mitochondrial activity to be a minor part of the total. These results establish that plants can synthesize Etn moieties via a phospholipid pathway and have both mitochondrial and extramitochondrial PSDs. They also indicate that mitochondrial PSD is an important housekeeping enzyme whose expression is strongly regulated at the transcriptional level. PMID:12857846

  3. Over-expressing a yeast ornithine decarboxylase gene in transgenic roots of Nicotiana rustica can lead to enhanced nicotine accumulation.

    PubMed

    Hamill, J D; Robins, R J; Parr, A J; Evans, D M; Furze, J M; Rhodes, M J

    1990-07-01

    Transformed root cultures of Nicotiana rustica have been generated in which the gene from the yeast Saccharomyces cerevisiae coding for ornithine decarboxylase has been integrated. The gene, driven by the powerful CaMV35S promoter with an upstream duplicated enhancer sequence, shows constitutive expression throughout the growth cycle of some lines, as demonstrated by the analysis of mRNA and enzyme activity. The presence of the yeast gene and enhanced ornithine decarboxylase activity is associated with an enhanced capacity of cultures to accumulate both putrescine and the putrescine-derived alkaloid, nicotine. Even, however, with the very powerful promoter used in this work the magnitude of the changes seen is typically only in the order of 2-fold, suggesting that regulatory factors exist which limit the potential increase in metabolic flux caused by these manipulations. Nevertheless, it is demonstrated that flux through a pathway to a plant secondary product can be elevated by means of genetic manipulation. PMID:2103440

  4. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    PubMed Central

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  5. Serotonin accumulation in transgenic rice by over-expressing tryptophan decarboxylase results in a dark brown phenotype and stunted growth.

    PubMed

    Kanjanaphachoat, Parawee; Wei, Bi-Yin; Lo, Shuen-Fang; Wang, I-Wen; Wang, Chang-Sheng; Yu, Su-May; Yen, Ming-Liang; Chiu, Sheng-Hsien; Lai, Chien-Chen; Chen, Liang-Jwu

    2012-04-01

    A mutant M47286 with a stunted growth, low fertility and dark-brown phenotype was identified from a T-DNA-tagged rice mutant library. This mutant contained a copy of the T-DNA tag inserted at the location where the expression of two putative tryptophan decarboxylase genes, TDC-1 and TDC-3, were activated. Enzymatic assays of both recombinant proteins showed tryptophan decarboxylase activities that converted tryptophan to tryptamine, which could be converted to serotonin by a constitutively expressed tryptamine 5' hydroxylase (T5H) in rice plants. Over-expression of TDC-1 and TDC-3 in transgenic rice recapitulated the stunted growth, darkbrown phenotype and resulted in a low fertility similar to M47286. The degree of stunted growth and dark-brown color was proportional to the expression levels of TDC-1 and TDC-3. The levels of tryptamine and serotonin accumulation in these transgenic rice lines were also directly correlated with the expression levels of TDC-1 and TDC-3. A mass spectrometry assay demonstrated that the darkbrown leaves and hulls in the TDC-overexpressing transgenic rice were caused by the accumulation of serotonin dimer and that the stunted growth and low fertility were also caused by the accumulation of serotonin and serotonin dimer, but not tryptamine. These results represent the first evidence that over-expression of TDC results in stunted growth, low fertility and the accumulation of serotonin, which when converted to serotonin dimer, leads to a dark brown plant color.

  6. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts.

    PubMed

    Nitta, Yoko; Yasukata, Fumiko; Kitamoto, Noritoshi; Ito, Mikiko; Sakaue, Motoyoshi; Kikuzaki, Hiroe; Ueno, Hiroshi

    2016-03-01

    Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.

  7. Histidine Decarboxylases and Their Role in Accumulation of Histamine in Tuna and Dried Saury▿

    PubMed Central

    Kanki, Masashi; Yoda, Tomoko; Tsukamoto, Teizo; Baba, Eiichiroh

    2007-01-01

    Histamine-producing bacteria (HPB) such as Photobacterium phosphoreum and Raoultella planticola possess histidine decarboxylase (HDC), which converts histidine into histamine. Histamine fish poisoning (HFP) is attributable to the ingestion of fish containing high levels of histamine produced by HPB. Because freezing greatly decreases the histamine-producing ability of HPB, especially of P. phosphoreum, it has been speculated that HFP is caused by HDC itself from HPB cells autolyzing during frozen storage, even when HPB survive frozen storage. Here we constructed recombinant HDCs of P. phosphoreum, Photobacterium damselae, R. planticola, and Morganella morganii and investigated the ability of HDCs to produce sufficient histamine to cause HFP. To elucidate the character of these HDCs, we examined the specific activity of each recombinant HDC at various temperatures, pH levels, and NaCl concentrations. Further, we also investigated the stability of each HDC under different conditions (in reaction buffer, tuna, and dried saury) at various temperatures. P. damselae HDC readily produced sufficient histamine to cause HFP in fish samples. We consider that if HDC is implicated as an independent cause of HFP in frozen-thawed fish, the most likely causative agent is HDC of P. damselae. PMID:17220267

  8. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis.

    PubMed

    Wi, Soo Jin; Kim, Soo Jin; Kim, Woo Taek; Park, Ky Young

    2014-05-01

    Using subtractive hybridization analysis, the S-adenosylmethionine decarboxylase (SAMDC) gene from Capsicum annuum was isolated and renamed CaSAMDC. We generated independent transgenic Arabidopsis (Arabidopsis thaliana) lines constitutively expressing a 35S::CaSAMDC construct. Drought tolerance was significantly enhanced in Arabidopsis T4 transgenic homozygous lines as compared to wild-type (WT) plants. The levels of main polyamines (PAs) were more significantly increased in CaSAMDC-overexpressing transgenic plants after 6 h of drought stress as compared to stressed WT plants. Basal transcription of polyamine oxidase (PAO) showed at a much higher level in unstressed-transgenic plants as compared to unstressed WT plants. However, the difference in PAO transcription level between WT and transgenic plants was reduced after drought stress. Cellular accumulation of reactive oxygen species (ROS) was significantly reduced following drought stress in transgenic Arabidopsis plants as compared to WT plants. These results were in agreement with additional observations that stress-induced ROS generation, as determined by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), was significantly suppressed while transcription of ROS-detoxifying enzymes was notably elevated in transgenic lines in response to drought stress. Further, ROS-induced transcription of the metacaspase II gene was remarkably inhibited in transgenic plants. Collectively, these results suggest that drought stress tolerance due to reduction of ROS production and enhancement of ROS detoxification can be attributed to elevation of PAs.

  9. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  10. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  11. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  12. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  13. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  14. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    PubMed Central

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-01-01

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions. PMID:27331813

  15. An examination of aspartate decarboxylase and glutamate decarboxylase activity in mosquitoes

    PubMed Central

    Richardson, Graham; Ding, Haizhen; Rocheleau, Tom; Mayhew, George; Reddy, Erin; Han, Qian; Christensen, Bruce M.; Li, Jianyong

    2010-01-01

    A major pathway of beta-alanine synthesis in insects is through the alpha-decarboxylation of aspartate, but the enzyme involved in the decarboxylation of aspartate has not been clearly defined in mosquitoes and characterized in any insect species. In this study, we expressed two putative mosquito glutamate decarboxylase-like enzymes of mosquitoes and critically analyzed their substrate specificity and biochemical properties. Our results provide clear biochemical evidence establishing that one of them is an aspartate decarboxylase and the other is a glutamate decarboxylase. The mosquito aspartate decarboxylase functions exclusively on the production of beta-alanine with no activity with glutamate. Likewise the mosquito glutamate decarboxylase is highly specific to glutamate with essentially no activity with aspartate. Although insect aspartate decarboxylase shares high sequence identity with glutamate decarboxylase, we are able to closely predict aspartate decarboxylase from glutamate decarboxylase based on the difference of their active site residues. PMID:19842059

  16. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  17. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair.

    PubMed

    Middel, Volker; Zhou, Lu; Takamiya, Masanari; Beil, Tanja; Shahid, Maryam; Roostalu, Urmas; Grabher, Clemens; Rastegar, Sepand; Reischl, Markus; Nienhaus, Gerd Ulrich; Strähle, Uwe

    2016-01-01

    Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions. PMID:27641898

  18. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair.

    PubMed

    Middel, Volker; Zhou, Lu; Takamiya, Masanari; Beil, Tanja; Shahid, Maryam; Roostalu, Urmas; Grabher, Clemens; Rastegar, Sepand; Reischl, Markus; Nienhaus, Gerd Ulrich; Strähle, Uwe

    2016-09-19

    Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an 'eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions.

  19. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair

    PubMed Central

    Middel, Volker; Zhou, Lu; Takamiya, Masanari; Beil, Tanja; Shahid, Maryam; Roostalu, Urmas; Grabher, Clemens; Rastegar, Sepand; Reischl, Markus; Nienhaus, Gerd Ulrich; Strähle, Uwe

    2016-01-01

    Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an ‘eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions. PMID:27641898

  20. Phosphatidylserine: an antidepressive or a cognitive enhancer?

    PubMed

    Castilho, João C; Perry, Juliana C; Andreatini, Roberto; Vital, Maria A B F

    2004-07-01

    The aim of the present study was to evaluate the putative antidepressive and cognitive enhancer effects of phosphatidylserine (BC-PS). The antidepressive effect of BC-PS (50, 100 or 200 mg/kg), compared to saline or imipramine (IMI; 25 mg/kg), was studied in the forced swimming test in rats. These drugs were administered 1 and 8 h after training and 1 h before the test. BC-PS (50, 100 and 200 mg/kg)-treated rats exhibited a significant decrease in immobility time (IT) in the test session (performed 24 h after training) when compared to control rats. Moreover, the IMI-treated group showed a significant reduction in IT in comparison to control rats. The cognitive enhancer effect of BC-PS (50, 100 and 200 mg/kg) was studied in the three versions of the water maze task: spatial working memory version, spatial reference memory version, and cued version. There was no significant difference between the BC-PS-treated groups and control animals in these memory tasks. Taken together, the present results are suggestive of an antidepressive effect of BC-PS in the forced swimming test in rats but not of a cognitive enhancer effect of the drug in the water maze test.

  1. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... aromatic l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... PDF Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  2. Erythrocyte membrane phosphatidylserine exposure in obesity.

    PubMed

    Solá, Eva; Vayá, Amparo; Martínez, Marcial; Moscardó, Antonio; Corella, Dolores; Santaolaria, Maria-Luisa; España, Francisco; Hernández-Mijares, Antonio

    2009-02-01

    It has been suggested that increased erythrocyte membrane phosphatidylserine (PS) exposure could contribute to hypercoagulability and hemorheological disturbances in obesity. The aim of our study was to evaluate PS exposure in obese patients and in a control group and to correlate this with hemorheological properties, i.e., erythrocyte aggregability (EA) and deformability, and to evaluate the effect of weight loss on these parameters. An anthropometric and analytical evaluation was performed at baseline and after 3 months on a diet (very low-calorie diet for 4 weeks and low-calorie diet for 2 months) on 49 severe or morbid obese patients (37 women, 12 men) and 55 healthy volunteers (39 women, 16 men). PS exposure on erythrocyte membrane was performed by flow cytometry. Erythrocyte aggregation was measured using the Myrenne MA(1) and the Sefam aggregometer. Erythrocyte deformability was determined in a stress diffractometer. Prothrombin fragment F1+2 (F1+2) was determined as a marker of the hypercoagulable state, and plasma malondialdehyde (MDA) as an indicator of oxidative stress. Obese patients had a higher EA index, higher PS exposure on erythrocyte membranes and higher levels of MDA and F1+2. The differences in erythrocyte aggregation and F1+2 between obese patients and the control group were maintained after adjusting for PS exposure. After 3 months of diet, a significant reduction in PS exposure on erythrocyte membrane was observed. Obese patients show increased PS exposure on erythrocyte membrane, with no effect on rheological properties. Increased PS exposure could contribute to hypercoagulability in these patients. Weight loss obtained with diet treatment reduces PS exposure on erythrocyte membrane.

  3. Brain glutamate decarboxylase and pyrroloquinoline quinone.

    PubMed

    Choi, S Y; Khemlani, L S; Churchich, J E

    1992-01-01

    Porcine brain glutamate decarboxylase was examined for the presence of covalently bound pyrroloquinoline quinone (PQQ). HPLC analysis of pure glutamate decarboxylase subjected to the hexanol extraction procedure gave negative results when monitored at 320 nm, the maximum of absorbance of 4-hydroxy-5-hexoxy-PQQ. Resolved glutamate decarboxylase exhibits a structureless absorption band at wavelengths longer than 300 nm which cannot be attributed to PQQ. The holoenzyme is not a pyridoxal-quinoprotein; its catalytic mechanism involves the participation of only one cofactor, i.e. pyridoxal-5-P. Free PQQ is a strong inhibitor of the decarboxylase (Ki = 13 microM) and the reaction with the protein results in spectral changes resembling those of polylysine treated with PQQ. If the concentration of free PQQ in some regions of the brain reaches the micromolar level, then PQQ might play a role in the regulation of glutamate decarboxylase activity.

  4. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    PubMed

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts.

  5. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  6. Role of Calcium in Phosphatidylserine Externalisation in Red Blood Cells from Sickle Cell Patients

    PubMed Central

    Weiss, Erwin; Rees, David Charles; Gibson, John Stanley

    2011-01-01

    Phosphatidylserine exposure occurs in red blood cells (RBCs) from sickle cell disease (SCD) patients and is increased by deoxygenation. The mechanisms responsible remain unclear. RBCs from SCD patients also have elevated cation permeability, and, in particular, a deoxygenation-induced cation conductance which mediates Ca2+ entry, providing an obvious link with phosphatidylserine exposure. The role of Ca2+ was investigated using FITC-labelled annexin. Results confirmed high phosphatidylserine exposure in RBCs from SCD patients increasing upon deoxygenation. When deoxygenated, phosphatidylserine exposure was further elevated as extracellular [Ca2+] was increased. This effect was inhibited by dipyridamole, intracellular Ca2+ chelation, and Gardos channel inhibition. Phosphatidylserine exposure was reduced in high K+ saline. Ca2+ levels required to elicit phosphatidylserine exposure were in the low micromolar range. Findings are consistent with Ca2+ entry through the deoxygenation-induced pathway (Psickle), activating the Gardos channel. [Ca2+] required for phosphatidylserine scrambling are in the range achievable in vivo. PMID:21490763

  7. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  8. Putrescine and spermidine control degradation and synthesis of ornithine decarboxylase in Neurospora crassa

    SciTech Connect

    Barnett, G.R.; Seyfzadeh, M.; Davis, R.H.

    1988-07-15

    Neurospora crassa mycelia, when starved for polyamines, have 50-70-fold more ornithine decarboxylase activity and enzyme protein than unstarved mycelia. Using isotopic labeling and immunoprecipitation, we determined the half-life and the synthetic rate of the enzyme in mycelia differing in the rates of synthesis of putrescine, the product of ornithine decarboxylase, and spermidine, the main end-product of the polyamine pathway. When the pathway was blocked between putrescine and spermidine, ornithine decarboxylase synthesis rose 4-5-fold, regardless of the accumulation of putrescine. This indicates that spermidine is a specific signal for the repression of enzyme synthesis. When both putrescine and spermidine synthesis were reduced, the half-life of the enzyme rapidly increased 10-fold. The presence of either putrescine or spermidine restored the normal enzyme half-life of 55 min. Tests for an ornithine decarboxylase inhibitory protein (antizyme) were negative. The regulatory mechanisms activated by putrescine and spermidine account for most or all of the regulatory amplitude of this enzyme in N. crassa.

  9. Antibodies to phosphatidylserine/prothrombin complex and the antiphospholipid syndrome.

    PubMed

    Sciascia, S; Bertolaccini, M L

    2014-10-01

    Antibodies to prothrombin can be detected by ELISA using prothrombin coated onto irradiated plates (aPT) or the phosphatidylserine/prothrombin complex as antigen (aPS/PT) and they have been both related with the clinical manifestation of APS. Current evidence supports the concept that they belong to distinct populations of autoantibodies. Nevertheless, they can both be detected simultaneously in one patient. This mini-review will focus on data available on aPS/PT antibodies and their clinical utility in the diagnosis of APS. PMID:25228735

  10. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  11. Glycine decarboxylase controls photosynthesis and plant growth.

    PubMed

    Timm, Stefan; Florian, Alexandra; Arrivault, Stephanie; Stitt, Mark; Fernie, Alisdair R; Bauwe, Hermann

    2012-10-19

    Photorespiration makes oxygenic photosynthesis possible by scavenging 2-phosphoglycolate. Hence, compromising photorespiration impairs photosynthesis. We examined whether facilitating photorespiratory carbon flow in turn accelerates photosynthesis and found that overexpression of the H-protein of glycine decarboxylase indeed considerably enhanced net-photosynthesis and growth of Arabidopsis thaliana. At the molecular level, lower glycine levels confirmed elevated GDC activity in vivo, and lower levels of the CO(2) acceptor ribulose 1,5-bisphosphate indicated higher drain from CO(2) fixation. Thus, the photorespiratory enzyme glycine decarboxylase appears as an important feed-back signaller that contributes to the control of the Calvin-Benson cycle and hence carbon flow through both photosynthesis and photorespiration.

  12. Biosynthetic arginine decarboxylase in phytopathogenic fungi.

    PubMed

    Khan, A J; Minocha, S C

    1989-01-01

    It has been reported that while bacteria and higher plants possess two different pathways for the biosynthesis of putrescine, via ornithine decarboxylase (ODC) and arginine decarboxylase (ADC); the fungi, like animals, only use the former pathway. We found that contrary to the earlier reports, two of the phytopathogenic fungi (Ceratocystis minor and Verticillium dahliae) contain significant levels of ADC activity with very little ODC. The ADC in these fungi has high pH optimum (8.4) and low Km (0.237 mM for C. minor, 0.103 mM for V. dahliae), and is strongly inhibited by alpha-difluoromethylarginine (DFMA), putrescine and spermidine, further showing that this enzyme is probably involved in the biosynthesis of polyamines and not in the catabolism of arginine as in Escherichia coli. The growth of these fungi is strongly inhibited by DFMA while alpha-difluoromethylornithine (DFMO) has little effect.

  13. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    SciTech Connect

    F Forouhar; S Lew; J Seetharaman; R Xiao; T Acton; G Montelione; L Tong

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. The TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.

  14. Structural perspective on the direct inhibition mechanism of EGCG on mammalian histidine decarboxylase and DOPA decarboxylase.

    PubMed

    Ruiz-Pérez, M Victoria; Pino-Ángeles, Almudena; Medina, Miguel A; Sánchez-Jiménez, Francisca; Moya-García, Aurelio A

    2012-01-23

    Histidine decarboxylase (HDC) and l-aromatic amino acid decarboxylase (DDC) are homologous enzymes that are responsible for the synthesis of important neuroactive amines related to inflammatory, neurodegenerative, and neoplastic diseases. Epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, has been shown to target histamine-producing cells and to promote anti-inflammatory, antitumor, and antiangiogenic effects. Previous experimental work has demonstrated that EGCG has a direct inhibitory effect on both HDC and DDC. In this study, we investigated the binding modes of EGCG to HDC and DDC as a first step for designing new polyphenol-based HDC/DDC-specific inhibitors. PMID:22107329

  15. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    SciTech Connect

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian . E-mail: florian.lang@uni-tuebingen.de

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.

  16. Ethylene-Induced Polyamine Accumulation in Rice (Oryza sativa L.) Coleoptiles 1

    PubMed Central

    Lee, Tse-Min; Chu, Chun

    1992-01-01

    Effects of ethylene on free polyamine biosynthesis in rice (Oryza sativa L. cv Taichung Native 1) coleoptiles were investigated in sealed and aerobic conditions. In sealed conditions, putrescine increased significantly and coincided with ethylene accumulation. Application of ethylene in sealed containers promoted putrescine accumulation over that in sealed controls. This ethylene-enhanced putrescine accumulation was inhibited by the ethylene action inhibitor 2,5-norbornadiene at 4000 μL/L. In aerobic conditions, ethylene and 1-aminocyclopropane-1-carboxylic acid also induced putrescine accumulation. Activity of arginine decarboxylase (EC 4.1.1.19) and S-adenosylmethionine decarboxylase (EC 4.1.1.50) increased on exposure to ethylene in aerobic conditions. Ornithine decarboxylase (EC 4.1.1.17) activity, however, remained unchanged. The ethylene-induced putrescine accumulation was inhibited by 5 × 10−4m α-difluromethylarginine, but not by 5 × 10−4m α-difluromethylornithine. Apparently, arginine decarboxylase, not ornithine decarboxylase, mediates the ethylene-induced putrescine accumulation. The increased S-adenosylmethioinine decarboxylase activity, however, did not result in a significant spermidine/spermine accumulation. In ethylene-treated coleoptiles, the accumulation of putrescine paralleled the increase of coleoptile length in both sealed and aerobic conditions. α-difluromethylarginine inhibited ethylene induced putrescine accumulation and coleoptile elongation. It seems that putrescine biosynthesis might be involved in the ethylene-induced elongation of rice coleoptiles. PMID:16652953

  17. Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases.

    PubMed Central

    De Luca, V; Marineau, C; Brisson, N

    1989-01-01

    The sequence of a cDNA clone that includes the complete coding region of tryptophan decarboxylase (EC 4.1.1.28, formerly EC 4.1.1.27) from periwinkle (Catharanthus roseus) is reported. The cDNA clone (1747 base pairs) was isolated by antibody screening of a cDNA expression library produced from poly(A)+ RNA found in developing seedlings of C. roseus. The clone hybridized to a 1.8-kilobase mRNA from developing seedlings and from young leaves of mature plants. The identity of the clone was confirmed when extracts of transformed Escherichia coli expressed a protein containing tryptophan decarboxylase enzyme activity. The tryptophan decarboxylase cDNA clone encodes a protein of 500 amino acids with a calculated molecular mass of 56,142 Da. The amino acid sequence shows a high degree of similarity with the aromatic L-amino acid decarboxylase (dopa decarboxylase) and the alpha-methyldopa-hypersensitive protein of Drosophila melanogaster. The tryptophan decarboxylase sequence also showed significant similarity to feline glutamate decarboxylase and mouse ornithine decarboxylase, suggesting a possible evolutionary link between these amino acid decarboxylases. Images PMID:2704736

  18. Phosphatidylserine-binding protein lactadherin inhibits protein translocation across the ER membrane.

    PubMed

    Yamamoto, Hitoshi; Kida, Yuichiro; Sakaguchi, Masao

    2013-05-10

    Secretory and membrane proteins are translocated across and inserted into the endoplasmic reticulum membrane via translocon channels. To investigate the effect of the negatively-charged phospholipid phosphatidylserine on the translocation of nascent polypeptide chains through the translocon, we used the phosphatidylserine-binding protein lactadherin C2-domain. Lactadherin inhibited targeting of nascent chain to the translocon by signal sequence and the initiation of translocation. Moreover, lactadherin inhibited the movement of the translocating polypeptide chain regardless of the presence or absence of positively-charged residues. Phosphatidylserine might be critically involved in translocon function, but it is not a major determinant for translocation arrest of positively-charged residues. PMID:23583395

  19. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2742363

  20. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  1. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-11-01

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process. PMID:26516916

  2. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles

    PubMed Central

    Hankins, Hannah M.; Sere, Yves Y.; Diab, Nicholas S.; Menon, Anant K.; Graham, Todd R.

    2015-01-01

    Sorting of plasma membrane proteins into exocytic vesicles at the yeast trans-Golgi network (TGN) is believed to be mediated by their coalescence with specific lipids, but how these membrane-remodeling events are regulated is poorly understood. Here we show that the ATP-dependent phospholipid flippase Drs2 is required for efficient segregation of cargo into exocytic vesicles. The plasma membrane proteins Pma1 and Can1 are missorted from the TGN to the vacuole in drs2∆ cells. We also used a combination of flippase mutants that either gain or lose the ability to flip phosphatidylserine (PS) to determine that PS flip by Drs2 is its critical function in this sorting event. The primary role of PS flip at the TGN appears to be to control the oxysterol-binding protein homologue Kes1/Osh4 and regulate ergosterol subcellular distribution. Deletion of KES1 suppresses plasma membrane–missorting defects and the accumulation of intracellular ergosterol in drs2 mutants. We propose that PS flip is part of a homeostatic mechanism that controls sterol loading and lateral segregation of protein and lipid domains at the TGN. PMID:26466678

  3. Mercury Induces the Externalization of Phosphatidyl-Serine in Human Renal Proximal Tubule (HK-2) Cells

    PubMed Central

    Sutton, Dwayne J.; Tchounwou, Paul B.

    2007-01-01

    The underlying mechanism for the biological activity of inorganic mercury is believed to be the high affinity binding of divalent mercuric cations to thiols of sulfhydryl groups of proteins. A comprehensive analysis of published data indicates that inorganic mercury is one of the most environmentally abundant toxic metals, is a potent and selective nephrotoxicant that preferentially accumulates in the kidneys, and is known to produce cellular injury in the kidneys. Binding sites are present in the proximal tubules, and it is in the epithelial cells of these tubules that toxicants such as inorganic mercury are reabsorbed. This can affect the enzymatic activity and the structure of various proteins. Mercury may alter protein and membrane structure and function in the epithelial cells and this alteration may result in long term residual effects. This research was therefore designed to evaluate the dose-response relationship in human renal proximal tubule (HK-2) cells following exposure to inorganic mercury. Cytotoxicity was evaluated using the MTT assay for cell viability. The Annexin-V assay was performed by flow cytometry to determine the extent of phosphatidylserine externalization. Cells were exposed to mercury for 24 hours at doses of 0, 1, 2, 3, 4, 5, and 6 μg/mL. Cytotoxicity experiments yielded a LD50 value of 4.65 ± 0.6 μg/mL indicating that mercury is highly toxic. The percentages of cells undergoing early apoptosis were 0.70 ± 0.03%, 10.0 ± 0.02%, 11.70 ± 0.03%, 15.20 ± 0.02%, 16.70 ± 0.03%, 24.20 ±0.02%, and 25.60 ± 0.04% at treatments of 0, 1, 2, 3, 4, 5, and 6 μg/mL of mercury respectively. This indicates a dose-response relationship with regard to mercury-induced cytotoxicity and the externalization of phosphatidylserine in HK-2 cells. PMID:17617677

  4. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  5. Characterization of a membrane-associated cytidine diphosphate-diacylglycerol-dependent phosphatidylserine synthase in bacilli.

    PubMed Central

    Dutt, A; Dowhan, W

    1981-01-01

    The synthesis of phosphatidylserine in two gram-positive aerobic bacteria has been partially characterized. We have located a cytidine 5'-diphospho-diacylglycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase) activity in the membrane fraction of Bacillus licheniformis and Bacillus subtilis. The activity was demonstrated to be membrane associated by differential centrifugation, sucrose gradient centrifugation, and detergent solubilization. The direct involvement of cytidine 5'-diphospho-diacylglycerol in the reaction was demonstrated by the conversion of the liponucleotide phosphatidyl moiety to phosphatidylserine. This activity is dependent on divalent metal ion (manganese being optimal) and is stimulated by nonionic detergent and its product phosphatidylserine. Based on studies with various combinations of products and substrates, the reaction appears to follow a sequential BiBi kinetic mechanism. PMID:6267011

  6. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    PubMed

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia.

  7. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis.

    PubMed

    Bouché, Nicolas; Fait, Aaron; Zik, Moriyah; Fromm, Hillel

    2004-05-01

    In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e. GAD1 ) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.

  8. Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes

    PubMed Central

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes

  9. Effective Binding of a Phosphatidylserine-Targeting Antibody to Ebola Virus Infected Cells and Purified Virions

    PubMed Central

    Dowall, S. D.; Graham, V. A.; Corbin-Lickfett, K.; Empig, C.; Schlunegger, K.; Bruce, C. B.; Easterbrook, L.; Hewson, R.

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus. PMID:25815346

  10. Interaction of dicaproyl phosphatidylserine with recombinant factor VIII and its impact on immunogenicity.

    PubMed

    Purohit, Vivek S; Balasubramanian, Sathyamangalam V

    2006-01-01

    Replacement therapy with exogenous recombinant factor VIII (rFVIII) to control bleeding episodes results in the development of inhibitory antibodies in 15% to 30% of hemophilia A patients. The inhibitory antibodies are mainly directed against specific and universal immunodominant epitopes located in the C2 domain. Previously we have shown that complexation of O-phospho-L-serine (phosphatidylserine head group) with the phospholipid binding region of the C2 domain can lead to an overall reduction in the immunogenicity of rFVIII. Here, we have investigated the hypothesis that dicaproyl phosphatidylserine, a short-chain water-soluble phospholipid, can reduce the immunogenicity of rFVIII. Circular dichroism and fluorescence spectroscopy studies suggest that dicaproyl phosphatidylserine interacts with rFVIII, causing subtle changes in the tertiary and secondary structure of the protein. Sandwich enzyme-linked immunosorbent assay studies indicate that dicaproyl phosphatidylserine probably interacts with the phospholipid binding region of the C2 domain. The immunogenicity of FVIII-dicaproyl phosphatidylserine complexes prepared at concentrations above and below the critical micellar concentrations of the lipid were evaluated in hemophilia A mice. Our results suggest that micellar dicaproyl phosphatidylserine may be useful to reduce the immunogenicity of rFVIII preparations.

  11. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  12. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  13. Imaging of Brain Tumors With Paramagnetic Vesicles Targeted to Phosphatidylserine

    PubMed Central

    Winter, Patrick M.; Pearce, John; Chu, Zhengtao; McPherson, Christopher M.; Takigiku, Ray; Lee, Jing-Huei; Qi, Xiaoyang

    2014-01-01

    Purpose To investigate paramagnetic saposin C and dioleylphosphatidylserine (SapC-DOPS) vesicles as a targeted contrast agent for imaging phosphatidylserine (PS) expressed by glioblastoma multiforme (GBM) tumors. Materials and Methods Gd-DTPA-BSA/SapC-DOPS vesicles were formulated, and the vesicle diameter and relaxivity were measured. Targeting of Gd-DTPA-BSA/ SapC-DOPS vesicles to tumor cells in vitro and in vivo was compared with nontargeted paramagnetic vesicles (lacking SapC). Mice with GBM brain tumors were imaged at 3, 10, 20, and 24 h postinjection to measure the relaxation rate (R1) in the tumor and the normal brain. Results The mean diameter of vesicles was 175 nm, and the relaxivity at 7 Tesla was 3.32 (s*mM)−1 relative to the gadolinium concentration. Gd-DTPA-BSA/SapC-DOPS vesicles targeted cultured cancer cells, leading to an increased R1 and gadolinium level in the cells. In vivo, Gd-DTPA-BSA/SapC-DOPS vesicles produced a 9% increase in the R1 of GBM brain tumors in mice 10 h postinjection, but only minimal changes (1.2% increase) in the normal brain. Nontargeted paramagnetic vesicles yielded minimal change in the tumor R1 at 10 h postinjection (1.3%). Conclusion These experiments demonstrate that Gd-DTPA-BSA/SapC-DOPS vesicles can selectively target implanted brain tumors in vivo, providing noninvasive mapping of the cancer biomarker PS. PMID:24797437

  14. Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells

    PubMed Central

    Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.

    2008-01-01

    While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065

  15. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  16. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection

    PubMed Central

    Moller-Tank, Sven; Maury, Wendy

    2014-01-01

    A variety of both RNA and DNA viruses envelop their capsids in a lipid bilayer. One of the more recently appreciated benefits this envelope is incorporation of phosphatidylserine (PtdSer). Surface exposure of PtdSer disguises viruses as apoptotic bodies; tricking cells into engulfing virions. This mechanism is termed apoptotic mimicry. Several PtdSer receptors have been identified to enhance virus entry and we have termed this group of proteins PtdSer-mediated virus entry enhancing receptors or PVEERs. These receptors enhance entry of a broad range of enveloped viruses. Internalization of virions by PVEERs provides a broad mechanism of entry with little investment by the virus itself and may allow some viruses to attach to cells, thereby making viral glycoprotein/cellular receptor interactions more probable. Alternatively, other viruses may rely entirely on PVEERs for internalization into endosomes. This review provides an overview of PtdSer receptors that serve as PVEERs and the biology behind virion/PVEER interaction. PMID:25277499

  17. Characterization of the phosphatidylserine-exposing subpopulation of sickle cells.

    PubMed

    de Jong, K; Larkin, S K; Styles, L A; Bookchin, R M; Kuypers, F A

    2001-08-01

    Phosphatidylserine (PS), exclusively present in the inner monolayer of the normal red blood cell (RBC) membrane, is exposed in subpopulations of sickle cells. PS-exposing RBCs were found predominantly among the densest and the very light sickle cells. Within the light RBC fraction, PS exposure was found on reticulocytes, transferrin receptor-expressing reticulocytes, and mature RBCs. The last subset contained low-density valinomycin-resistant RBCs, previously shown to have high Na(+) and low K(+) content. This subpopulation contained the highest percentage of PS-exposing cells. The PS-exposing sickle cells did not show the sustained high cytosolic Ca(++) levels that have been shown to activate scramblase activity. Data from this study indicate that PS exposure can occur at different stages in the life of the sickle RBC and that it correlates with the loss of aminophospholipid translocase activity, the only common denominator of the PS-exposing cells. The additional requirement of scramblase activation may occur during transient increases in cytosolic Ca(++). (Blood. 2001;98:860-867)

  18. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  19. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism. PMID:24241535

  20. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1

    PubMed Central

    Legaz, María Estrella; Vicente, Carlos

    1983-01-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  1. Crenarchaeal Arginine Decarboxylase Evolved from an S-Adenosylmethionine Decarboxylase Enzyme*S⃞

    PubMed Central

    Giles, Teresa N.; Graham, David E.

    2008-01-01

    The crenarchaeon Sulfolobus solfataricus uses arginine to produce putrescine for polyamine biosynthesis. However, genome sequences from S. solfataricus and most crenarchaea have no known homologs of the previously characterized pyridoxal 5′-phosphate or pyruvoyl-dependent arginine decarboxylases that catalyze the first step in this pathway. Instead they have two paralogs of the S-adenosylmethionine decarboxylase (AdoMetDC). The gene at locus SSO0585 produces an AdoMetDC enzyme, whereas the gene at locus SSO0536 produces a novel arginine decarboxylase (ArgDC). Both thermostable enzymes self-cleave at conserved serine residues to form amino-terminal β-domains and carboxyl-terminal α-domains with reactive pyruvoyl cofactors. The ArgDC enzyme specifically catalyzed arginine decarboxylation more efficiently than previously studied pyruvoyl enzymes. α-Difluoromethylarginine significantly reduced the ArgDC activity of purified enzyme, and treating growing S. solfataricus cells with this inhibitor reduced the cells' ratio of spermidine to norspermine by decreasing the putrescine pool. The crenarchaeal ArgDC had no AdoMetDC activity, whereas its AdoMetDC paralog had no ArgDC activity. A chimeric protein containing the β-subunit of SSO0536 and the α-subunit of SSO0585 had ArgDC activity, implicating residues responsible for substrate specificity in the amino-terminal domain. This crenarchaeal ArgDC is the first example of alternative substrate specificity in the AdoMetDC family. ArgDC activity has evolved through convergent evolution at least five times, demonstrating the utility of this enzyme and the plasticity of amino acid decarboxylases. PMID:18650422

  2. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  3. Fertilization Induces a Transient Exposure of Phosphatidylserine in Mouse Eggs

    PubMed Central

    Curia, Claudio A.; Ernesto, Juan I.; Stein, Paula; Busso, Dolores; Schultz, Richard M.; Cuasnicu, Patricia S.; Cohen, Débora J.

    2013-01-01

    Phosphatidylserine (PS) is normally localized to the inner leaflet of the plasma membrane and the requirement of PS translocation to the outer leaflet in cellular processes other than apoptosis has been demonstrated recently. In this work we investigated the occurrence of PS mobilization in mouse eggs, which express flippase Atp8a1 and scramblases Plscr1 and 3, as determined by RT-PCR; these enzyme are responsible for PS distribution in cell membranes. We find a dramatic increase in binding of flouresceinated-Annexin-V, which specifically binds to PS, following fertilization or parthenogenetic activation induced by SrCl2 treatment. This increase was not observed when eggs were first treated with BAPTA-AM, indicating that an increase in intracellular Ca2+ concentration was required for PS exposure. Fluorescence was observed over the entire egg surface with the exception of the regions overlying the meiotic spindle and sperm entry site. PS exposure was also observed in activated eggs obtained from CaMKIIγ null females, which are unable to exit metaphase II arrest despite displaying Ca2+ spikes. In contrast, PS exposure was not observed in TPEN-activated eggs, which exit metaphase II arrest in the absence of Ca2+ release. PS exposure was also observed when eggs were activated with ethanol but not with a Ca2+ ionophore, suggesting that the Ca2+ source and concentration are relevant for PS exposure. Last, treatment with cytochalasin D, which disrupts microfilaments, or jasplakinolide, which stabilizes microfilaments, prior to egg activation showed that PS externalization is an actin-dependent process. Thus, the Ca2+ rise during egg activation results in a transient exposure of PS in fertilized eggs that is not associated with apoptosis. PMID:23951277

  4. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  5. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  6. Attenuated total reflection (ATR) Fourier transform infrared spectroscopy of dimyristoyl phosphatidylserine-cholesterol mixtures.

    PubMed

    Bach, D; Miller, I R

    2001-10-01

    Mixtures of cholesterol with dimyristoyl phosphatidylserine or deuterated dimyristoyl phosphatidylserine were investigated by polarized and non polarized attenuated total reflection (ATR) Fourier transform infrared (FTIR) Spectroscopy. From polarized spectra the dichroic ratios of various vibrations as a function of cholesterol were calculated. Dichroic ratios of methylene vibration (CH(2)) 2934 cm(-1) of cholesterol decreases with increase of cholesterol concentration leveling off in the region where cholesterol phase separation takes place. The orientation of deuterated methylene (CD(2)) symmetric and asymmetric bands of the deuterated dimyristoyl phosphatidylserine is influenced little by cholesterol. In the polar region of dimyristoyl phosphatidylserine no effect of cholesterol on the dichroic ratios of carbonyl (C==O) and asymmetric phosphate (PO(2)(-)) vibrations were detected. For nonpolarized spectra the broad bands in the polar region of the phospholipid were deconvoluted. The carbonyl band (C==O) in pure dimyristoyl phosphatidylserine is composed of five bands; in the presence of increasing concentrations of cholesterol conformational change of these vibrations takes place evolving into one predominant band. Similar conformational change takes place in the presence of 75 molecules water/molecule DMPS. For the asymmetric phosphate band very small shifts due to interaction with cholesterol were detected.

  7. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  8. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis.

    PubMed

    Flannagan, Ronald S; Canton, Johnathan; Furuya, Wendy; Glogauer, Michael; Grinstein, Sergio

    2014-05-01

    T-cell immunoglobulin mucin protein 4 (TIM4), a phosphatidylserine (PtdSer)-binding receptor, mediates the phagocytosis of apoptotic cells. How TIM4 exerts its function is unclear, and conflicting data have emerged. To define the mode of action of TIM4, we used two distinct but complementary approaches: 1) we compared bone marrow-derived macrophages from wild-type and TIM4(-/-) mice, and 2) we heterologously expressed TIM4 in epithelioid AD293 cells, which rendered them competent for engulfment of PtdSer-bearing targets. Using these systems, we demonstrate that rather than serving merely as a tether, as proposed earlier by others, TIM4 is an active participant in the phagocytic process. Furthermore, we find that TIM4 operates independently of lactadherin, which had been proposed to act as a bridging molecule. Of interest, TIM4-driven phagocytosis depends on the activation of integrins and involves stimulation of Src-family kinases and focal adhesion kinase, as well as the localized accumulation of phosphatidylinositol 3,4,5-trisphosphate. These mediators promote recruitment of the nucleotide-exchange factor Vav3, which in turn activates small Rho-family GTPases. Gene silencing or ablation experiments demonstrated that RhoA, Rac1, and Rac2 act synergistically to drive the remodeling of actin that underlies phagocytosis. Single-particle detection experiments demonstrated that TIM4 and β1 integrins associate upon receptor clustering. These findings support a model in which TIM4 engages integrins as coreceptors to evoke the signal transduction needed to internalize PtdSer-bearing targets such as apoptotic cells.

  9. A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site.

    PubMed

    Gallego, P P; Whotton, L; Picton, S; Grierson, D; Gray, J E

    1995-03-01

    A tomato fruit cDNA library was differentially screened to identify mRNAs present at higher levels in fruit of the tomato ripening mutant rin (ripening inhibitor). Complete sequencing of a unique clone ERT D1 revealed an open reading frame with homology to several glutamate decarboxylases. The deduced polypeptide sequence has 80% overall amino acid sequence similarity to a Petunia hybrida glutamate decarboxylase (petGAD) which carries a calmodulin-binding site at its carboxyl terminus and ERT D1 appears to have a similar domain. ERT D1 mRNA levels peaked at the first visible sign of fruit colour change during normal tomato ripening and then declined, whereas in fruit of the ripening impaired mutant, rin, accumulation of this mRNA continued until at least 14 days after the onset of ripening. This mRNA was present at much lower levels in other tissues, such as leaves, roots and stem, and was not increased by wounding. Possible roles for GAD, and its product gamma-aminobutyric acid (GABA) in fruit, are discussed.

  10. Characterization of osseointegrative phosphatidylserine and cholesterol orthopaedic implant coatings

    NASA Astrophysics Data System (ADS)

    Rodgers, William Paul, III

    Total joint arthroplasties are one of the most successful surgeries available today for improving patients' quality of life. Increasing demand is driven largely by an ageing population and an increased occurrence of obesity. Current patient options have significant shortcomings. Nearly a third of patients require a revision surgery before the implant is 15 years old, and those who have revision surgeries are at an increased risk of requiring additional reoperations. A recent implant technology that has shown to be effective at improving bone to implant integration is the use of phosphatidylserine (DOPS) coatings. These coatings are challenging to analyze and measure due to their highly dynamic, soft, rough, thick, and optically diffractive properties. Previous work had difficulty investigating pertinent parameters for these coating's development due in large part to a lack of available analytical techniques and a dearth of understanding of the micro- and nano-structural configuration of the coatings. This work addresses the lack of techniques available for use with DOPS coatings through the development of original methods of measurement, including the use of scanning white light interferometry and nanoindentation. These techniques were then applied for the characterization of DOPS coatings and the study of effects from several factors: 1. influence of adding calcium and cholesterol to the coatings, 2. effects of composition and roughness on aqueous contact angles, and 3. impact of ageing and storage environment on the coatings. Using these newly developed, highly repeatable quantitative analysis methods, this study sheds light on the microstructural configuration of the DOPS coatings and elucidates previously unexplained phenomena of the coatings. Cholesterol was found to supersaturate in the coatings at high concentration and phase separate into an anhydrous crystalline form, while lower concentrations were found to significantly harden the coatings. Morphological

  11. Ornithine decarboxylase and S-adenosyl methionine decarboxylase in skin fibroblasts of normal and cystic fibrosis patients.

    PubMed

    Buehler, B; Wright, R; Schott, S; Darby, B; Rennert, O M

    1977-03-01

    The key enzymes in the synthesis of the naturally occurring polyamines, ornithine decarboxylase (ODC) and S-adenosyl methionine (SAM) decarboxylase, were investigated during cell growth and aging in fibroblast cultures from normal patients and patients with cystic fibrosis. A linear correlation between increased S-adenosyl methionine activity and putrescine concentration was apparent in all cell lines. A putrescine concentration of 0.8 mM was optimal for enhancement of SAM decarboxylase activity. The passage number of the cell line correlated inversely with maximal putrescine-stimulated SAM decarboxylase activity, earlier passage numbers having the highest specific activity (Fig. 1). No significant differences in basal or putrescine-stimulated SAM decarboxylase activity were noted between normal fibroblast cultures and cells from patients with cystic fibrosis (Fig. 2). SAM decarboxylase activity increased as the cell lines approached confluence. Activity was lowest during exponential growth (Fig. 3). ODC activity was increased during early exponential growth and fell as cells reached confluence (Fig. 4). No differences in ODC activity and putrescine inhibition between the normal and cystic fibrosis cell cultures at equivalent points of exponential growth were noted.

  12. Properties of oxaloacetate decarboxylase from Veillonella parvula.

    PubMed Central

    Ng, S K; Wong, M; Hamilton, I R

    1982-01-01

    Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe. PMID:7076619

  13. Cysteinesulfinate decarboxylase: Characterization, inhibition, and metabolic role in taurine formation

    SciTech Connect

    Weinstein, C.L.

    1988-01-01

    Cysteinesulfinate decarboxylase, an enzyme that plays a major role in the formation of taurine from cysteine, has been purified from rat liver to homogeneity and characterized. The physical properties of the enzyme were studied, along with its substrate specificity. Multiple forms of the enzyme were found in rat liver, kidney, and brain with isoelectric points ranging from pH 5.6 to 4.9. These multiple forms did not differ in their substrate specificity. It was found by using gel electrofocusing and polyclonal antibodies raised to the liver enzyme that the different forms of cysteinesulfinate decarboxylase are identical in the various rat tissues studied. Various inhibitors of the enzyme were tested both in vitro and in vivo in order to evaluate the role of cysteinesulfinate decarboxylase in taurine formation in mammalian tissues. In in vitro studies, cysteinesulfinate decarboxylase was irreversibly inhibited by {beta}-ethylidene-DL-aspartate (Ki = 10 mM), and competitive inhibition was found using mercaptomethylsuccinate (Ki = 0.1 mM) and D-cysteinesulfinate (Ki = 0.32 mM) when L-cysteinesulfinate was used as a substrate. In order to be able to test these inhibitors in vivo, L-(1-{sup 14}C)cysteinesulfonate was evaluated as a probe for the in vivo measurement of cysteinesulfinate decarboxylase activity. The metabolism of cysteinesulfonate and the product of its transamination, {beta}-sulfopyruvate, was studied, and it was found that L-(1-{sup 14}C)cysteinesulfonate is an accurate and convenient probe for cysteinesulfinate decarboxylase activity. Using L-(1-{sup 14}C)cysteinesulfonate, it was found that D-cysteinesulfinate inhibits cysteinesulfinate decarboxylase activity by greater than 90% in the intact mouse and that inhibition lasts for up to fifteen hours.

  14. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  15. Glycine decarboxylase in Rhodopseudomonas spheroides and in rat liver mitochondria

    PubMed Central

    Tait, G. H.

    1970-01-01

    1. Glycine decarboxylase and glycine–bicarbonate exchange activities were detected in extracts of Rhodopseudomonas spheroides and in rat liver mitochondria and their properties were studied. 2. The glycine decarboxylase activity from both sources is stimulated when glyoxylate is added to the assay system. 3. Several proteins participate in these reactions and a heat-stable low-molecular-weight protein was purified from both sources. 4. These enzyme activities increase markedly when R. spheroides is grown in the presence of glycine, glyoxylate, glycollate, oxalate or serine. 5. All the enzymes required to catalyse the conversion of glycine into acetyl-CoA via serine and pyruvate were detected in extracts of R. spheroides; of these glycine decarboxylase has the lowest activity. 6. The increase in the activity of glycine decarboxylase on illumination of R. spheroides in a medium containing glycine, and the greater increase when ATP is also present in the medium, probably accounts for the increased incorporation of the methylene carbon atom of glycine into fatty acids found previously under these conditions (Gajdos, Gajdos-Török, Gorchein, Neuberger & Tait, 1968). 7. The results are compared with those obtained by other workers on the glycine decarboxylase and glycine–bicarbonate exchange activities in other systems. PMID:5476725

  16. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  17. Expression of arginine decarboxylase and ornithine decarboxylase genes in apple cells and stressed shoots.

    PubMed

    Hao, Yu-Jin; Kitashiba, Hiroyasu; Honda, Chikako; Nada, Kazuyoshi; Moriguchi, Takaya

    2005-04-01

    Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are two important enzymes responsible for putrescine biosynthesis. In this study, a full-length ADC cDNA (MdADC) was isolated from apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.]. Meanwhile, a partial ODC (pMdODC) could be amplified only by a second RCR from the RT-PCR products, whereas a full-length ODC could not be obtained by either cDNA library screening or 5'- and 3'-RACEs, suggesting quite low expression. Moreover, D-arginine, an ADC inhibitor, caused a decrease in ADC activity and severely inhibited the growth of apple callus, which could be partially resumed by exogenous addition of putrescine, whereas alpha-difluoromethylornithine (DFMO), an inhibitor for ODC, caused the incomplete repression of callus growth without changing ODC activity. RNA gel blot showed that the expression level of MdADC was high in young tissues/organs with rapid cell division and was positively induced by chilling, salt, and dehydration, implying its involvement in both cell growth and these stress responses. By contrast, the transcript of ODC could not be detected by RNA gel blot analysis. Based on the present study, it is possible to conclude that (i) the ODC pathway is active in apple, although the expression level of the pMdODC gene homologous with its counterparts found in other plant species is quite low; and (ii) MdADC expression correlates with cell growth and stress responses to chilling, salt, and dehydration, suggesting that ADC is a primary biosynthetic pathway for putrescine biosynthesis in apple.

  18. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal

    PubMed Central

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-01-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an “eat-me” signal, we propose that PS-Stab2 binding is required for sensing of a “fuse-me” signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304] PMID:27174501

  19. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.

    PubMed

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-06-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2- deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304].

  20. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  1. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  2. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  3. Suppression of ornithine decarboxylase promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    PubMed

    Tsai, Yo-Hsian; Lin, Kuan-Lian; Huang, Yuan-Pin; Hsu, Yi-Chiang; Chen, Chung-Hwan; Chen, Yuhsin; Sie, Min-Hua; Wang, Gwo-Jaw; Lee, Mon-Juan

    2015-07-22

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme for polyamine biosynthesis. Suppression of ODC by its irreversible inhibitor, α-difluoromethylornithine (DFMO), or by RNA interference through siRNA, enhanced osteogenic gene expression and alkaline phosphatase activity, and accelerated matrix mineralization of human bone marrow-derived mesenchymal stem cells (hBMSCs). Besides, adipogenic gene expression and lipid accumulation was attenuated, indicating that the enhanced osteogenesis was accompanied by down-regulation of adipogenesis when ODC was suppressed. A decrease in the intracellular polyamine content of hBMSCs during osteogenic induction was observed, suggesting that the level of endogenous polyamines is regulated during differentiation of hBMSCs. This study elucidates the role of polyamine metabolism in the lineage commitment of stem cells and provides a potential new indication for DFMO as bone-stimulating drug. PMID:26140984

  4. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  5. Cerebellar Ataxia and Glutamic Acid Decarboxylase Antibodies

    PubMed Central

    Ariño, Helena; Gresa-Arribas, Nuria; Blanco, Yolanda; Martínez-Hernández, Eugenia; Sabater, Lidia; Petit-Pedrol, Mar; Rouco, Idoia; Bataller, Luis; Dalmau, Josep O.; Saiz, Albert; Graus, Francesc

    2016-01-01

    IMPORTANCE Current clinical and immunologic knowledge on cerebellar ataxia (CA) with glutamic acid decarboxylase 65 antibodies (GAD65-Abs) is based on case reports and small series with short-term follow-up data. OBJECTIVE To report the symptoms, additional antibodies, prognostic factors, and long-term outcomes in a cohort of patients with CA and GAD65-Abs. DESIGN, SETTING, AND PARTICIPANTS Retrospective cohort study and laboratory investigations at a center for autoimmune neurologic disorders among 34 patients with CA and GAD65-Abs, including 25 with long-term follow-up data (median, 5.4 years; interquartile range, 3.1-10.3 years). MAIN OUTCOMES AND MEASURES Analysis of clinicoimmunologic features and predictors of response to immunotherapy. Immunochemistry on rat brain, cultured neurons, and human embryonic kidney cells expressing GAD65, GAD67, α1-subunit of the glycine receptor, and a repertoire of known cell surface autoantigens were used to identify additional antibodies. Twenty-eight patients with stiff person syndrome and GAD65-Abs served as controls. RESULTS The median age of patients was 58 years (range, 33-80 years); 28 of 34 patients (82%) were women. Nine patients (26%) reported episodes of brainstem and cerebellar dysfunction or persistent vertigo several months before developing CA. The clinical presentation was subacute during a period of weeks in 13 patients (38%). Nine patients (26%) had coexisting stiff person syndrome symptoms. Systemic organ-specific autoimmunities (type 1 diabetes mellitus and others) were present in 29 patients (85%). Twenty of 25 patients with long-term follow-up data received immunotherapy (intravenous immunoglobulin in 10 and corticosteroids and intravenous immunoglobulin or other immunosuppressors in 10), and 7 of them (35%) improved. Predictors of clinical response included subacute onset of CA (odds ratio [OR], 0.50; 95% CI, 0.25-0.99; P = .047) and prompt immunotherapy (OR, 0.98; 95% CI, 0.96-0.99; P = .01). Similar

  6. Molecular and Functional Analyses of Amino Acid Decarboxylases Involved in Cuticle Tanning in Tribolium castaneum*

    PubMed Central

    Arakane, Yasuyuki; Lomakin, Joseph; Beeman, Richard W.; Muthukrishnan, Subbaratnam; Gehrke, Stevin H.; Kanost, Michael R.; Kramer, Karl J.

    2009-01-01

    Aspartate 1-decarboxylase (ADC) and 3,4-dihydroxyphenylalanine decarboxylase (DDC) provide β-alanine and dopamine used in insect cuticle tanning. β-Alanine is conjugated with dopamine to yield N-β-alanyldopamine (NBAD), a substrate for the phenol oxidase laccase that catalyzes the synthesis of cuticle protein cross-linking agents and pigment precursors. We identified ADC and DDC genes in the red flour beetle, Tribolium castaneum (Tc), and investigated their functions. TcADC mRNA was most abundant prior to the pupal-adult molt. Injection of TcADC double-stranded (ds) RNA (dsTcADC) into mature larvae resulted in depletion of NBAD in pharate adults, accumulation of dopamine, and abnormally dark pigmentation of the adult cuticle. Injection of β-alanine, the expected product of ADC, into dsTcADC-treated pupae rescued the pigmentation phenotype, resulting in normal rust-red color. A similar pattern of catechol content consisting of elevated dopamine and depressed NBAD was observed in the genetic black mutants of Tribolium, in which levels of TcADC mRNA were drastically reduced. Furthermore, from the Tribolium black mutant and dsTcADC-injected insects both exhibited similar changes in material properties. Dynamic mechanical analysis of elytral cuticle from beetles with depleted TcADC transcripts revealed diminished cross-linking of cuticular components, further confirming the important role of oxidation products of NBAD as cross-linking agents during cuticle tanning. Injection of dsTcDDC into larvae produced a lethal pupal phenotype, and the resulting grayish pupal cuticle exhibited many small patches of black pigmentation. When dsTcDDC was injected into young pupae, the resulting adults had abnormally dark brown body color, but there was little mortality. Injection of dsTcDDC resulted in more than a 5-fold increase in levels of DOPA, indicating that lack of TcDDC led to accumulation of its substrate, DOPA. PMID:19366687

  7. A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells

    PubMed Central

    Yang, Hengwen; Chen, Yu-Zen; Zhang, Yi; Wang, Xiaohui; Zhao, Xiang; Godfroy, James I.; Liang, Qian; Zhang, Man; Zhang, Tianying; Yuan, Quan; Royal, Mary Ann; Driscoll, Monica; Xia, Ning-Shao; Yin, Hang; Xue, Ding

    2014-01-01

    The conserved phosphatidylserine receptor (PSR) was first identified as a receptor for phosphatidylserine, an "eat-me" signal exposed by apoptotic cells. However, several studies suggest that PSR may also act as an arginine demethylase, a lysyl hydroxylase, or an RNA binding protein through its N-terminal JmjC domain. How PSR might execute drastically different biochemical activities, and whether they are physiologically significant, remain unclear. Here we report that a lysine-rich motif in the extracellular domain of PSR-1, the Caenorhabditis elegans PSR, mediates specific phosphatidylserine binding in vitro and clearance of apoptotic cells in vivo. This motif also mediates phosphatidylserine-induced oligomerization of PSR-1, suggesting a mechanism by which PSR-1 activates phagocytosis. Mutations in the phosphatidylserine-binding motif, but not in its Fe(II) binding site critical for the JmjC activity, abolish PSR-1 phagocytic function. Moreover, PSR-1 enriches and clusters around apoptotic cells during apoptosis. These results establish that PSR-1 is a conserved, phosphatidylserine-recognizing phagocyte receptor. PMID:25564762

  8. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  9. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    SciTech Connect

    Blanton, M.P.; Wang, H.H. )

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.

  10. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  11. Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores.

    PubMed

    Gill, Rishi I S; Ellis, Brian E; Isman, Murray B

    2003-04-01

    The presence of amines and their derivatives in plant tissues is known to influence insect feeding and reproduction. The enzyme tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine, which is both a bioactive amine and a precursor of other indole derivatives. Transgenic poplar and tobacco plants ectopically expressing TDC1 accumulated elevated levels of tryptamine without affecting plant growth and development. This accumulation was consistently associated with adverse effects on feeding behavior and physiology of Malacosoma disstria Hub. (forest tent caterpillar, FTC) and Manduca sexta L. (tobacco hornworm, THW). Behavior studies with FTC and THW larvae showed that acceptability of the leaf tissue to larvae was inversely related to foliar tryptamine levels. Physiological studies with FTC and THW larvae showed that consumption of leaf tissue from the transgenic lines is deleterious to larvae growth, apparently due to a postingestive mechanism. Thus, ectopic expression of TDC1 can allow sufficient tryptamine to accumulate in poplar and tobacco leaf tissue to suppress significantly the growth of insect pests that normally feed on these plants.

  12. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  13. Wound-Inducible Biosynthesis of Phytoalexin Hydroxycinnamic Acid Amides of Tyramine in Tryptophan and Tyrosine Decarboxylase Transgenic Tobacco Lines1

    PubMed Central

    Guillet, Gabriel; De Luca, Vincenzo

    2005-01-01

    The wound-activated biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine was compared in untransformed and transgenic tobacco (Nicotiana tabacum) lines that express tryptophan decarboxylase (TDC), tyrosine decarboxylase (TYDC), or both activities. Transgenic in vitro-grown tobacco lines expressing TDC activity accumulated high levels of tryptamine but not hydroxycinnamic amides of tryptamine. In contrast, transgenic tobacco lines expressing TYDC accumulated tyramine as well as p-coumaroyltyramine and feruloyltyramine. The MeOH-soluble and cell wall fractions showed higher concentrations of wound-inducible p-coumaroyltyramine and feruloyltyramine, especially at and around wound sites, in TYDC and TDC ×TYDC tobacco lines compared to wild-type or TDC lines. All the enzymes involved in the biosynthesis of hydroxycinnamic acid amides of tyramine were found to be similarly wound inducible in all tobacco genotypes investigated. These results provide experimental evidence that, under some circumstances, TYDC activity can exert a rate-limiting control over the carbon flux allocated to the biosynthesis of hydroxycinnamic acid amides of tyramine. PMID:15665252

  14. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

    PubMed

    Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming

    2016-06-01

    Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.

  15. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    PubMed

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease. PMID:27388114

  16. Cofactor-free detection of phosphatidylserine with cyclic peptides mimicking lactadherin.

    PubMed

    Zheng, Hong; Wang, Fang; Wang, Qin; Gao, Jianmin

    2011-10-01

    Cyclic peptides (cLacs) are designed to mimic the natural phosphatidylserine (PS) binding protein lactadherin. Unlike annexin V or its small molecule mimics, the cLac peptides selectively target PS-presenting membranes with no need for metal cofactors. We further show that a fluorophore-labeled cLac effectively stains early apoptotic cells. The small size and facile conjugation with a variety of imaging tracers make the cLac design promising for imaging cell death in vitro as well as in living organisms.

  17. Chemically-induced formation of an inhibitor of hepatic uroporphyrinogen decarboxylase in inbred mice with iron overload.

    PubMed Central

    Smith, A G; Francis, J E

    1987-01-01

    An inhibitor of hepatic uroporphyrinogen decarboxylase (EC 4.1.1.37) was demonstrated in heat-treated extracts of livers from C57BL/10ScSn mice with iron overload after a single dose (100 mg/kg; 350 mumol/kg) of hexachlorobenzene (HCB). Inhibition was not due to accumulated uroporphyrin since this could be removed by a SEP-PAK C18 cartridge without affecting inhibitor activity. The presence of the inhibitor could be first demonstrated 2 weeks after mice received HCB and before major elevation of hepatic porphyrin levels. Maximum inhibitory potential was reached at about 8 weeks and was still detected 25 weeks after the chemical, thus paralleling the depression of enzyme activity reported previously [Smith, Francis, Kay, Greig & Stewart (1986) Biochem. J. 238, 871-878]. The inhibitor was not detected following treatment of mice with either iron or HCB alone or after the decarboxylase activity was destroyed in vitro by the combination of uroporphyrin and light. The formation of the inhibitor by inbred mouse strains nominally Ah-responsive (C57BL/6J, C57BL/10ScSn, BALB/c, C3H/HeJ, CBA/J and A/J) and Ah-nonresponsive (SWR, AKR, 129, SJL, LP and DBA/2) did not correlate fully with their reported Ah-phenotype. There was a correlation amongst the Ah-responsive strains only, with hepatic ethoxyphenoxazone de-ethylase activity induced in parallel experiments by treatment with beta-naphthoflavone. De-ethylase activity induced by HCB, however, was considerably less than that with beta-naphthoflavone, which has not been reported as porphyrogenic. Other polyhalogenated chemicals, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,4,2',3',4'-hexachlorobiphenyl and hexabromobenzene, also caused the formation of the inhibitor of uroporphyrinogen decarboxylase. PMID:3675556

  18. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.

    PubMed

    van Zwieten, Rob; Bochem, Andrea E; Hilarius, Petra M; van Bruggen, Robin; Bergkamp, Ferry; Hovingh, G Kees; Verhoeven, Arthur J

    2012-12-01

    Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP-dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.

  19. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. PMID:25663704

  20. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  1. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles.

  2. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

    PubMed Central

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-01-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation. PMID:26906404

  3. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis

    PubMed Central

    Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  4. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  5. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  6. Retinoic acid modulation of ultraviolet light-induced epidermal ornithine decarboxylase activity

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1982-02-01

    Irradiation of skin with ultraviolet light of sunburn range (UVB) leads to a large and rapid induction of the polyamine biosynthetic enzyme ornithine decarboxylase in the epidermis. Induction of epidermal ornithine decarboxylase also occurs following application of the tumor promoting agent 12-0-tetradecanoylphorbol-13 acetate and topical retinoic acid is able to block both this ornithine decarboxylase induction and skin tumor promotion. In the studies described below, topical application of retinoic acid to hairless mouse skin leads to a significant inhibition of UVB-induced epidermal ornithine decarboxylase activity. The degree of this inhibition was dependent on the dose, timing, and frequency of the application of retinoic acid. To show significant inhibition of UVB-induced ornithine decarboxylase the retinoic acid had to be applied within 5 hr of UVB irradiation. If retinoic acid treatment was delayed beyond 7 hr following UVB, then no inhibition of UVB-induced ornithine decarboxylase was observed. The quantities of retinoic acid used (1.7 nmol and 3.4 nmol) have been shown effective at inhibiting 12-0-tetradecanoyl phorbol-13 acetate induced ornithine decarboxylase. The results show that these concentrations of topical retinoic acid applied either before or immediately following UVB irradiation reduces the UVB induction of epidermal ornithine decarboxylase. The effect of retinoic acid in these regimens on UVB-induced skin carcinogenesis is currently under study.

  7. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  8. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes.

    PubMed

    Kuo, D J; Dikdan, G; Jordan, F

    1986-03-01

    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC 4.1.1.1) that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  9. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes.

    PubMed

    Eom, Jeong Seon; Seo, Bo Young; Choi, Hye Sun

    2015-09-01

    Biogenic amines in some food products present considerable toxicological risks as potential human carcinogens when consumed in excess concentrations. In this study, we investigated the degradation of the biogenic amines histamine and tyramine and the presence of genes encoding histidine and tyrosine decarboxylases and amine oxidase in Bacillus species isolated from fermented soybean food. No expression of histidine and tyrosine decarboxylase genes (hdc and tydc) were detected in the Bacillus species isolated (B. subtilis HJ0-6, B. subtilis D'J53-4, and B. idriensis RD13-10), although substantial levels of amine oxidase gene (yobN) expression were observed. We also found that the three selected strains, as non-biogenic amineproducing bacteria, were significantly able to degrade the biogenic amines histamine and tyramine. These results indicated that the selected Bacillus species could be used as a starter culture for the control of biogenic amine accumulation and degradation in food. Our study findings also provided the basis for the development of potential biological control agents against these biogenic amines for use in the food preservation and food safety sectors.

  10. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide.

    PubMed

    Hillary, Rebecca A; Pegg, Anthony E

    2003-04-11

    Polyamines are ubiquitous cellular components that are involved in normal and neoplastic growth. Polyamine biosynthesis is very highly regulated in mammalian cells by the activities of two key decarboxylases acting on ornithine and S-adenosylmethionine. Recent studies, which include crystallographic analysis of the recombinant human proteins, have provided a detailed knowledge of their structure and function. Ornithine decarboxylase is a PLP-requiring decarboxylase, whereas S-adenosylmethionine decarboxylase (AdoMetDC) contains a covalently bound pyruvate prosthetic group. Both enzymes have a key cysteine residue, which is involved in protonation of the Schiff base intermediate C(alpha) to form the product. These residues, Cys360 in ornithine decarboxylase (ODC) and Cys82 in AdoMetDC, react readily with nitric oxide (NO), which is therefore a potent inactivator of polyamine synthesis. The inactivation of these enzymes may mediate some of the antiproliferative actions of NO.

  11. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  12. The Saccharomyces cerevisiae mevalonate diphosphate decarboxylase is essential for viability, and a single Leu-to-Pro mutation in a conserved sequence leads to thermosensitivity.

    PubMed Central

    Bergès, T; Guyonnet, D; Karst, F

    1997-01-01

    The mevalonate diphosphate decarboxylase is an enzyme which converts mevalonate diphosphate to isopentenyl diphosphate, the building block of isoprenoids. We used the Saccharomyces cerevisiae temperature-sensitive mutant defective for mevalonate diphosphate decarboxylase previously described (C. Chambon, V. Ladeveve, M. Servouse, L. Blanchard, C. Javelot, B. Vladescu, and F. Karst, Lipids 26:633-636, 1991) to characterize the mutated allele. We showed that a single change in a conserved amino acid accounts for the temperature-sensitive phenotype of the mutant. Complementation experiments were done both in the erg19-mutated background and in a strain in which the ERG19 gene, which was shown to be an essential gene for yeast, was disrupted. Epitope tagging of the wild-type mevalonate diphosphate decarboxylase allowed us to isolate the enzyme in an active form by a versatile one-step immunoprecipitation procedure. Furthermore, during the course of this study, we observed that a high level of expression of the wild-type ERG19 gene led to a lower sterol steady-state accumulation compared to that of a wild-type strain, suggesting that this enzyme may be a key enzyme in mevalonate pathway regulation. PMID:9244250

  13. Crystal structure of pyruvate decarboxylase from Zymobacter palmae.

    PubMed

    Buddrus, Lisa; Andrews, Emma S V; Leak, David J; Danson, Michael J; Arcus, Vickery L; Crennell, Susan J

    2016-09-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg(2+) ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and Rr.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were Rwork = 0.186 (0.271 in the highest resolution bin) and Rfree = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  14. Mammalian Dopa decarboxylase: structure, catalytic activity and inhibition.

    PubMed

    Bertoldi, Mariarita

    2014-03-15

    Mammalian Dopa decarboxylase catalyzes the conversion of L-Dopa and L-5-hydroxytryptophan to dopamine and serotonin, respectively. Both of them are biologically active neurotransmitters whose levels should be finely tuned. In fact, an altered concentration of dopamine is the cause of neurodegenerative diseases, such as Parkinson's disease. The chemistry of the enzyme is based on the features of its coenzyme pyridoxal 5'-phosphate (PLP). The cofactor is highly reactive and able to perform multiple reactions, besides decarboxylation, such as oxidative deamination, half-transamination and Pictet-Spengler cyclization. The structure resolution shows that the enzyme has a dimeric arrangement and provides a molecular basis to identify the residues involved in each catalytic activity. This information has been combined with kinetic studies under steady-state and pre-steady-state conditions as a function of pH to shed light on residues important for catalysis. A great effort in DDC research is devoted to design efficient and specific inhibitors in addition to those already used in therapy that are not highly specific and are responsible for the side effects exerted by clinical approach to either Parkinson's disease or aromatic amino acid decarboxylase deficiency. PMID:24407024

  15. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  16. Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine

    PubMed Central

    Zhu, Meng-Yang; Iyo, Abiye; Piletz, John E.; Regunathan, Soundar

    2011-01-01

    Agmatine, an amine formed by decarboxylation of L-arginine by arginine decarboxylase (ADC), has been recently discovered in mammalian brain and other tissues. While the cloning and sequencing of ADC from plant and bacteria have been reported extensively, the structure of mammalian enzyme is not known. Using homology screening approach, we have identified a human cDNA clone that exhibits ADC activity when expressed in COS-7 cells. The cDNA and deduced amino acid sequence of this human ADC clone is distinct from ADC of other forms. Human ADC is a 460-amino acid protein that shows about 48% identity to mammalian ornithine decarboxylase (ODC) but has no ODC activity. While naive COS-7 cells do not make agmatine, these cells are able to produce agmatine, as measured by HPLC, when transfected with ADC cDNA. Northern blot analysis using the cDNA probe indicated the expression of ADC message in selective human brain regions and other human tissues. PMID:14738999

  17. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    PubMed

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy. PMID:26909491

  18. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  19. Suppression of atopic dermatitis in mice model by reducing inflammation utilizing phosphatidylserine-coated biodegradable microparticles.

    PubMed

    Kumar, Purnima; Hosain, Md Zahangir; Kang, Jeong-Hun; Takeo, Masafumi; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Controlling inflammatory response is important to avoid chronic inflammation in many diseases including atopic dermatitis (AD). In this research, we tried using a phosphatidylserine (PS)-coated microparticles in the AD mouse model for achieving the modulation of the macrophage phenotype to an anti-inflammatory state. Here, we prepared poly (D,L-lactic acid) microparticle coated with PS on the outside shell. We confirmed the cellular uptake of the PS-coated microparticle, which leads to the significant downregulation of the inflammatory cytokine production. In the mouse model of AD, the PS-coated microparticle was injected subcutaneously for a period of 12 days. The mice showed significant reduction in the development of AD symptoms comparing with the mice treated with the PC-coated microparticle. PMID:26414796

  20. Detection of phosphatidylserine exposure on leukocytes following treatment with human galectins.

    PubMed

    Arthur, Connie M; Rodrigues, Lilian Cataldi; Baruffi, Marcelo Dias; Sullivan, Harold C; Cummings, Richard D; Stowell, Sean R

    2015-01-01

    Cellular turnover represents a fundamental aspect of immunological homeostasis. While many factors appear to regulate leukocyte removal during inflammatory resolution, recent studies suggest that members of the galectin family play a unique role in orchestrating this process. Unlike cellular removal through apoptotic cell death, several members of the galectin family induce surface expression of phosphatidylserine (PS), a phagocytic marker on cells undergoing apoptosis, in the absence of cell death. However, similar to PS on cells undergoing apoptosis, galectin-induced PS exposure sensitizes cells to phagocytic removal. As galectins appear to prepare cells for phagocytic removal without actually inducing apoptotic cell death, this process has recently been coined preaparesis. Given the unique characteristics of galectin-induced PS exposure in the context of preaparesis, we will examine important considerations when evaluating the potential impact of different galectin family members on PS exposure and cell viability.

  1. Involvement of VAT-1 in Phosphatidylserine Transfer from the Endoplasmic Reticulum to Mitochondria.

    PubMed

    Junker, Mirco; Rapoport, Tom A

    2015-12-01

    Mitochondria receive phosphatidylserine (PS) from the endoplasmic reticulum (ER), but how PS is moved from the ER to mitochondria is unclear. Current models postulate a physical link between the organelles, but no involvement of cytosolic proteins. Here, we have reconstituted PS transport from the ER to mitochondria in vitro using Xenopus egg components. Transport is independent of ER proteins, but is dependent on a cytosolic factor that has a preferential affinity for PS. Crosslinking with a photoactivatable PS analog identified VAT-1 as a candidate for a cytosolic PS transport protein. Recombinant, purified VAT-1 stimulated PS transport into mitochondria and depletion of VAT-1 from Xenopus cytosol with specific antibodies led to a reduction of transport. Our results suggest that cytosolic factors have a role in PS transport from the ER to mitochondria, implicate VAT-1 in the transport process, and indicate that physical contact between the organelles is not essential.

  2. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential. PMID:25568918

  3. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase.

  4. TIM-4 structures identify a Metal Ion-dependent Ligand Binding Site where phosphatidylserine binds

    PubMed Central

    Santiago, Cesar; Ballesteros, Angela; Martinez-Muñoz, Laura; Mellado, Mario; Kaplan, Gerardo G.; Freeman, Gordon J.; Casasnovas, José M.

    2008-01-01

    The T-cell immunoglobulin and mucin domain (TIM) proteins are important regulators of T cell responses. They have been linked to autoimmunity and cancer. Structures of the murine TIM-4 identified a Metal Ion-dependent Ligand Binding Site (MILIBS) in the immunoglobulin (Ig) domain of the TIM family. The characteristic CC’ loop of the TIM domain and the hydrophobic FG loop shaped a narrow cavity where acidic compounds penetrate and coordinate to a metal ion bound to conserved residues in the TIM proteins. The structure of phosphatidylserine bound to the Ig domain showed that the hydrophilic head penetrates into the MILIBS and coordinates with the metal ion, while the aromatic residues on the tip of the FG loop interacted with the fatty acid chains and could insert into the lipid bilayer. Our results also revealed a significant role of the MILIBS in trafficking of TIM-1 to the cell surface. PMID:18083575

  5. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  6. Antibodies to phosphatidylserine/prothrombin complex as an additional diagnostic marker of APS?

    PubMed

    Žigon, P; Čučnik, S; Ambrožič, A; Sodin Šemrl, S; Kveder, T; Božič, B

    2012-06-01

    Antiprothrombin antibodies can be measured by ELISA using either a prothrombin/phosphatidylserine complex (aPS/PT) or prothrombin alone (aPT) as antigen. We aimed to compare the clinical features of autoimmune patients with avidity of aPS/PT and determine the diagnostic efficiency of aPS/PT and aPT for assessing antiphospholipid syndrome (APS). aPS/PT were of low (n = 9), heterogeneous (n = 31) and high (n = 8) avidity out of 48 cases. None of the samples with low avidity were positive in aPT ELISA. Among patients with heterogeneous or high avidity aPS/PT, there was a significantly greater number of patients with APS as compared to patients with low avidity (38/39 vs. 7/9; p < 0.05). No SLE patients had high avidity antiprothrombin antibodies.

  7. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers.

    PubMed Central

    Tsui, F C; Ojcius, D M; Hubbell, W L

    1986-01-01

    Potentiometric titrations and surface potential measurements have been used to determine the intrinsic pKa values of both the carboxyl and amino groups of phosphatidylserine (PS) in mixed vesicles of PS and phosphatidylcholine (PC), and also of the amino group of phosphatidylethanolamine (PE) in mixed PE-PC vesicles. The pKa of the carboxyl group of PS in liposomes with different PS/PC lipid ratios measured by the two different methods is 3.6 +/- 0.1, and the pKa of its amino group is 9.8 +/- 0.1. The pKa of the amino group of PE in PE-PC vesicles, determined solely by surface potential measurements, is 9.6 +/- 0.1. These pKa values are independent of the aqueous phase ionic strength and of the effect of the liposome's surface potential due to the presence of these partially charged lipids. PMID:3955180

  8. Reactive oxygen species and phosphatidylserine externalization in murine sickle red cells.

    PubMed

    Banerjee, Tinku; Kuypers, Frans A

    2004-02-01

    Due to their role in oxygen transport and the presence of redox active haemoglobin molecules, red blood cells (RBC) generate relatively high levels of reactive oxygen species (ROS). To counteract the potential deleterious effects of ROS, RBCs have a well-integrated network of anti-oxidant mechanisms to combat this oxidative stress. ROS formation is increased in sickle-cell disease (SCD) and our studies in a murine SCD model showed a significant increase in the generation of ROS when compared with normal mice. Our data also indicated that murine sickle RBCs exhibit a significantly increased ATP catabolism, partly due to the increased activity of glucose-6-phosphate dehydrogenase and glutathione reductase to regenerate intracellular glutathione (GSH) levels to neutralize the adverse milieu of oxidative stress. Higher ATP consumption by the murine sickle RBCs, together with the increased ROS formation and impairment of the aminophospholipid translocase or flipase may underlie the exposure of phosphatidylserine on the surface of these cells.

  9. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  10. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  11. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  12. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae.

    PubMed

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-04-01

    The pyruvate-acetaldehyde-acetate (PAA) pathway has diverse roles in eukaryotes. Our previous study on acetyl-coenzyme A synthetase 1 (ACS1) in Gibberella zeae suggested that the PAA pathway is important for lipid production, which is required for perithecia maturation. In this study, we deleted all three pyruvate decarboxylase (PDC) genes, which encode enzymes that function upstream of ACS1 in the PAA pathway. Results suggest PDC1 is required for lipid accumulation in the aerial mycelia, and deletion of PDC1 resulted in highly wettable mycelia. However, the total amount of lipids in the PDC1 deletion mutants was similar to that of the wild-type strain, likely due to compensatory lipid production processes in the embedded mycelia. PDC1 was expressed both in the aerial and embedded mycelia, whereas ACS1 was observed only in the aerial mycelia in a PDC1-dependent manner. PDC1 is also involved in vegetative growth of embedded mycelia in G. zeae, possibly through initiating the ethanol fermentation pathway. Thus, PDC1 may function as a key metabolic enzyme crucial for lipid production in the aerial mycelia, but play a different role in the embedded mycelia, where it might be involved in energy generation by ethanol fermentation.

  13. Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans.

    PubMed

    Peters, Björn; Junker, Anja; Brauer, Katharina; Mühlthaler, Bernadette; Kostner, David; Mientus, Markus; Liebl, Wolfgang; Ehrenreich, Armin

    2013-03-01

    Gluconobacter oxydans, a biotechnologically relevant species which incompletely oxidizes a large variety of carbohydrates, alcohols, and related compounds, contains a gene for pyruvate decarboxylase (PDC). This enzyme is found only in very few species of bacteria where it is normally involved in anaerobic ethanol formation via acetaldehyde. In order to clarify the role of PDC in the strictly oxidative metabolism of acetic acid bacteria, we developed a markerless in-frame deletion system for strain G. oxydans 621H which uses 5-fluorouracil together with a plasmid-encoded uracil phosphoribosyltransferase as counter selection method and used this technique to delete the PDC gene (GOX1081) of G. oxydans 621H. The PDC deletion mutant accumulated large amounts of pyruvate but almost no acetate during growth on D-mannitol, D-fructose or in the presence of L-lactate. This suggested that in G. oxydans acetate formation occurs by decarboxylation of pyruvate and subsequent oxidation of acetaldehyde to acetate. This observation and the efficiency of the markerless deletion system were confirmed by constructing deletion mutants of two acetaldehyde dehydrogenases (GOX1122 and GOX2018) and of the acetyl-CoA-synthetase (GOX0412). Acetate formation during growth of these mutants on mannitol did not differ significantly from the wild-type strain.

  14. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  15. Structural basis of Ornithine Decarboxylase inactivation and accelerated degradation by polyamine sensor Antizyme1

    PubMed Central

    Wu, Donghui; Kaan, Hung Yi Kristal; Zheng, Xiaoxia; Tang, Xuhua; He, Yang; Vanessa Tan, Qianmin; Zhang, Neng; Song, Haiwei

    2015-01-01

    Ornithine decarboxylase (ODC) catalyzes the first and rate-limiting step of polyamine biosynthesis in humans. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Excessive accumulation of polyamines has a cytotoxic effect on cells and elevated level of ODC activity is associated with cancer development. To maintain normal cellular proliferation, regulation of polyamine synthesis is imposed by Antizyme1 (AZ1). The expression of AZ1 is induced by a ribosomal frameshifting mechanism in response to increased intracellular polyamines. AZ1 regulates polyamine homeostasis by inactivating ODC activity and enhancing its degradation. Here, we report the structure of human ODC in complex with N-terminally truncated AZ1 (cAZ1). The structure shows cAZ1 binding to ODC, which occludes the binding of a second molecule of ODC to form the active homodimer. Consequently, the substrate binding site is disrupted and ODC is inactivated. Structural comparison shows that the binding of cAZ1 to ODC causes a global conformational change of ODC and renders its C-terminal region flexible, therefore exposing this region for degradation by the 26S proteasome. Our structure provides the molecular basis for the inactivation of ODC by AZ1 and sheds light on how AZ1 promotes its degradation. PMID:26443277

  16. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  17. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  18. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-06-16

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.

  19. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase.

    PubMed

    Tiburcio, A F; Kaur-Sawhney, R; Galston, A W

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  20. Quantitative Analysis of Histidine Decarboxylase Gene (hdcA) Transcription and Histamine Production by Streptococcus thermophilus PRI60 under Conditions Relevant to Cheese Making▿†

    PubMed Central

    Rossi, Franca; Gardini, Fausto; Rizzotti, Lucia; La Gioia, Federica; Tabanelli, Giulia; Torriani, Sandra

    2011-01-01

    This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese. PMID:21378060

  1. Quantitative analysis of histidine decarboxylase gene (hdcA) transcription and histamine production by Streptococcus thermophilus PRI60 under conditions relevant to cheese making.

    PubMed

    Rossi, Franca; Gardini, Fausto; Rizzotti, Lucia; La Gioia, Federica; Tabanelli, Giulia; Torriani, Sandra

    2011-04-01

    This study evaluated the influence of parameters relevant for cheese making on histamine formation by Streptococcus thermophilus. Strains possessing a histidine decarboxylase (hdcA) gene represented 6% of the dairy isolates screened. The most histaminogenic, S. thermophilus PRI60, exhibited in skim milk a high basal level of expression of hdcA, upregulation in the presence of free histidine and salt, and repression after thermization. HdcA activity persisted in cell extracts, indicating that histamine might accumulate after cell lysis in cheese.

  2. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation.

    PubMed

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de Las Rivas, Blanca; Muñoz, Rosario

    2013-07-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases.

  3. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  4. Engineering Salidroside Biosynthetic Pathway in Hairy Root Cultures of Rhodiola crenulata Based on Metabolic Characterization of Tyrosine Decarboxylase

    PubMed Central

    Zeng, Lingjiang; Liu, Xiaoqiang; Qiu, Fei; Zheng, Weilie; Quan, Hong; Liao, Zhihua; Chen, Min; Huang, Wenlin; Liu, Wanhong; Wang, Qiang

    2013-01-01

    Tyrosine decarboxylase initializes salidroside biosynthesis. Metabolic characterization of tyrosine decarboxylase gene from Rhodiola crenulata (RcTYDC) revealed that it played an important role in salidroside biosynthesis. Recombinant 53 kDa RcTYDC converted tyrosine into tyramine. RcTYDC gene expression was induced coordinately with the expression of RcUDPGT (the last gene involved in salidroside biosynthesis) in SA/MeJA treatment; the expression of RcTYDC and RcUDPGT was dramatically upregulated by SA, respectively 49 folds and 36 folds compared with control. MeJA also significantly increased the expression of RcTYDC and RcUDPGT in hairy root cultures. The tissue profile of RcTYDC and RcUDPGT was highly similar: highest expression levels found in stems, higher expression levels in leaves than in flowers and roots. The gene expressing levels were consistent with the salidroside accumulation levels. This strongly suggested that RcTYDC played an important role in salidroside biosynthesis in R. crenulata. Finally, RcTYDC was used to engineering salidroside biosynthetic pathway in R. crenulata hairy roots via metabolic engineering strategy of overexpression. All the transgenic lines showed much higher expression levels of RcTYDC than non-transgenic one. The transgenic lines produced tyramine, tyrosol and salidroside at higher levels, which were respectively 3.21–6.84, 1.50–2.19 and 1.27–3.47 folds compared with the corresponding compound in non-transgenic lines. In conclusion, RcTYDC overexpression promoted tyramine biosynthesis that facilitated more metabolic flux flowing toward the downstream pathway and as a result, the intermediate tyrosol was accumulated more that led to the increased production of the end-product salidroside. PMID:24124492

  5. Antiinflammatory drug effects on ultraviolet light-induced epidermal ornithine decarboxylase and DNA synthesis

    SciTech Connect

    Lowe, N.J.; Breeding, J.

    1980-06-01

    Epidermal ornithine decarboxylase activity is greatly elevated in response to tumor promoting agents and ultraviolet light. The purpose of this paper is to report modification of ultraviolet-induced epidermal ornithine decarboxylase activity by antiinflammatory agents. Topical triamoinolone acetonide and indomethacin were found to significantly inhibit the UV-B induction of epidermal ornithine decarboxylase in hairless mice when applied following ultraviolet light irradiation. The corticosteroid also showed inhibition of ultraviolet light increased epidermal DNA synthesis. Indomethacin failed to show any inhibition of DNA synthesis.

  6. Structural features of mammalian histidine decarboxylase reveal the basis for specific inhibition

    PubMed Central

    Moya-García, AA; Pino-Ángeles, A; Gil-Redondo, R; Morreale, A; Sánchez-Jiménez, F

    2009-01-01

    For a long time the structural and molecular features of mammalian histidine decarboxylase (EC 4.1.1.22), the enzyme that produces histamine, have evaded characterization. We overcome the experimental problems for the study of this enzyme by using a computer-based modelling and simulation approach, and have now the conditions to use histidine decarboxylase as a target in histamine pharmacology. In this review, we present the recent (last 5 years) advances in the structure–function relationship of histidine decarboxylase and the strategy for the discovery of new drugs. PMID:19413567

  7. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  8. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    SciTech Connect

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado . E-mail: motta@biof.ufrj.br

    2006-05-05

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.

  9. In vitro inhibition of lysine decarboxylase activity by organophosphate esters.

    PubMed

    Wang, Sufang; Wan, Bin; Zhang, Lianying; Yang, Yu; Guo, Liang-Hong

    2014-12-01

    Organophosphate esters (OPEs), a major group of organophosphorus flame retardants, are regarded as emerging environmental contaminants of health concern. Amino acid decarboxylases catalyze the conversion of amino acids into polyamines that are essential for cell proliferation, hypertrophy and tissue growth. In this paper, inhibitory effect of twelve OPEs with aromatic, alkyl or chlorinated alkyl substituents on the activity of lysine decarboxylase (LDC) was assessed quantitatively with an economic and label-free fluorescence sensor and cell assay. The sensor comprises a macrocyclic host (cucurbit[7]uril) and a fluorescent dye (acridine orange) reporter. The twelve OPEs were found to vary in their capacity to inhibit LDC activity. Alkyl group substituted OPEs had no inhibitory effect. By contrast, six OPEs substituted with aromatic or chlorinated alkyl groups inhibited LDC activity significantly with IC50 ranging from 1.32 μM to 9.07 μM. Among them, the inhibitory effect of tri-m-cresyl phosphate (TCrP) was even more effective as an inhibitor than guanosine 5'-diphosphate-3'-diphosphate (ppGpp) (1.60 μM), an LDC natural inhibitor in vivo. Moreover, at non-cytotoxic concentrations, these six OPEs showed perceptible inhibitory effects on LDC activity in PC12 living cells, and led to a marked loss in the cadaverine content. Molecular docking analysis of the LDC/OPE complexes revealed that different binding modes contribute to the difference in their inhibitory effect. Our finding suggested that LDC, as a new potential biological target of OPEs, might be implicated in toxicological and pathogenic mechanism of OPEs. PMID:25264276

  10. The electrochemical investigation of the catalytic power of pyruvate decarboxylase and its coenzyme.

    PubMed

    Bell, Patrick; Hoyt, Kathryn; Shabangi, Masangu

    2006-05-01

    The change in the energy barriers for the heterogeneous reduction of pyruvate decarboxylase (PDC) relative to its coenzyme, thiamin pyrophosphate (ThPP), was determined experimentally using square wave voltammetry (SWV) to be 5.3 kcal/mol. These results are in agreement with those of reaction rate acceleration provided by thiamin-dependent decarboxylases relative to their coenzyme as determined kinetically based on the pK(a) suppression by the enzyme environment.

  11. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  12. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  13. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection

    PubMed Central

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier

    2015-01-01

    ABSTRACT Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a

  14. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  15. Atomic View of Calcium-Induced Clustering of Phosphatidylserine in Mixed Lipid Bilayers†

    PubMed Central

    Boettcher, John M.; Davis-Harrison, Rebecca L.; Clay, Mary C.; Nieuwkoop, Andrew J.; Ohkubo, Y. Zenmei; Tajkhorshid, Emad; Morrissey, James H.; Rienstra, Chad M.

    2011-01-01

    Membranes play key regulatory roles in biological processes, with bilayer composition exerting marked effects on binding affinities and catalytic activities of a number of membrane-associated proteins. In particular, proteins involved in diverse processes such as vesicle fusion, intracellular signaling cascades, and blood coagulation interact specifically with anionic lipids such as phosphatidylserine (PS) in the presence of Ca2+ ions. While Ca2+ is suspected to induce PS clustering in mixed phospholipid bilayers, the detailed structural effects of this ion on anionic lipids are not established. In this study, combining magic angle spinning (MAS) solid-state NMR (SSNMR) measurements of isotopically labeled serine headgroups in mixed lipid bilayers with molecular dynamics (MD) simulations of PS lipid bilayers in the presence of different counterions, we provide site-resolved insights into the effects of Ca2+ on the structure and dynamics of lipid bilayers. Ca2+-induced conformational changes of PS in mixed bilayers are observed in both liposomes and Nanodiscs, a nanoscale membrane-mimetic of bilayer patches. Site-resolved multidimensional correlation SSNMR spectra of bilayers containing 13C, 15N-labeled PS demonstrate that Ca2+ ions promote two major PS headgroup conformations, which are well resolved in two-dimensional 13C-13C, 15N-13C and 31P-13C spectra. The results of MD simulations performed on PS lipid bilayers in the presence or absence of Ca2+ provide an atomic view of the conformational effects underlying the observed spectra. PMID:21294564

  16. Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats.

    PubMed

    Lee, Bombi; Sur, Bong-Jun; Han, Jeong-Jun; Shim, Insop; Her, Song; Lee, Yang-Seok; Lee, Hye-Jung; Hahm, Dae-Hyun

    2015-01-01

    Recently, lecithin-derived phosphatidylserine (PS), which originates from marine life, has received much attention as a viable alternative to bovine cerebral cortex PS. In this study, the use of squid phosphatidylcholine-transphosphatidylated PS (SQ-PS) was evaluated through examination of its ameliorating effects on age-associated learning and memory deficits in rats. Aged rats were orally administered SQ-PS (10, 20, or 50 mg/kg per day) once a day for seven days 30 min prior to behavioral assessment in a Morris water maze. SQ-PS administration produced significant dose-dependent improvements in escape latency for finding the platform in the Morris water maze in the aged rats even though Soy-PS administration also exhibited comparable improvements with SQ-PS. Biochemical alterations in the hippocampal cholinergic system, including changes in choline acetyltransferase and acetylcholinesterase immunoreactivity, were consistent with the behavioral results. In addition, SQ-PS treatment significantly restored age-associated decreases of choline transporter and muscarinic acetylcholine receptor type 1 mRNA expression in the hippocampus. These results demonstrate that orally administered SQ-PS dose-dependently aids in the improvement of memory deficits that occur during normal aging in rats. This suggests that SQ-PS may be a useful therapeutic agent in the treatment of diminished memory function in elderly people.

  17. Calcium transport in vesicles from carrot cells: Stimulation by calmodulin and phosphatidylserine. [Daucus carota cv. Danvers

    SciTech Connect

    Wenling Hsieh; Sze, Heven )

    1991-05-01

    The transport properties of Ca-pumping ATPases from carrot (Daucus carota cv. Danvers) tissue culture cells were studied. ATP dependent Ca transport in vesicles that comigrated with an ER marker, was stimulated 3-4 fold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca-ATPase) partially inhibited oxalate-stimulated Ca transport activity; however, it had little or not effect on calmodulin-stimulated Ca uptake. The results suggested the presence of two types of Ca ATPases, and ER- and a plasma membrane-type. Incubation of membranes with (gamma{sup 32}P)ATP resulted in the formation of a single acyl ({sup 32}P) phosphoprotein of 120 kDa. Formation of this phosphoprotein was dependent on Ca, and enhanced by La {sup 3+}, characteristic of the plasma membrane CaATPase. Acidic phospholipids, like phosphatidylserine, stimulated Ca transport, similar to their effect on the erythrocyte plasma membrane CaATPase. These results would indicate that the calmodulin-stimulated Ca transport originated in large part from a plasma membrane-type Ca pump of 120 kDa.

  18. T cell Immunoglobulin Mucin Protein (TIM)-4 binds phosphatidylserine and mediates uptake of apoptotic cells

    PubMed Central

    Kobayashi, Norimoto; Karisola, Piia; Peña-Cruz, Victor; Dorfman, David M.; Jinushi, Masahisa; Umetsu, Sarah E.; Butte, Manish J.; Nagumo, Haruo; Chernova, Irene; Zhu, Baogong; Sharpe, Arlene H.; Ito, Susumu; Dranoff, Glenn; Kaplan, Gerardo G.; Casasnovas, Jose M.; Umetsu, Dale T.; DeKruyff, Rosemarie H.; Freeman, Gordon J.

    2009-01-01

    Summary The T cell immunoglobulin mucin (TIM) proteins regulate T cell activation and tolerance. Both TIM-4, expressed on human and mouse macrophages and dendritic cells, and TIM-1 specifically bind to phosphatidylserine (PS) on the surface of apoptotic cells and do not bind to any other phospholipid tested. TIM-4+ peritoneal macrophages, TIM-1+ kidney cells, as well as TIM-4 or TIM-1 transfected cells efficiently phagocytose apoptotic cells and phagocytosis can be blocked by TIM-4 or TIM-1 mAbs. TIM proteins have a unique binding cavity made by an unusual conformation of the CC′ and FG loops of the TIM IgV domain and mutations in this cavity eliminated PS binding and phagocytosis. TIM-4 mAbs that block PS binding and phagocytosis map to epitopes in this binding cavity. These results show that TIM-4 and TIM-1 are immunologically restricted members of the group of receptors that recognize PS, critical for the efficient clearance of apoptotic cells and prevention of autoimmunity. PMID:18082433

  19. The influence of soy-derived phosphatidylserine on cognition in age-associated memory impairment.

    PubMed

    Jorissen, B L; Brouns, F; Van Boxtel, M P; Ponds, R W; Verhey, F R; Jolles, J; Riedel, W J

    2001-01-01

    Phosphatidylserine (PS) is a phospholipid widely sold as a nutritional supplement. PS has been claimed to enhance neuronal membrane function and hence cognitive function, especially in the elderly. We report the results of a clinical trial of soybean-derived PS (S-PS) in aging subjects with memory complaints. Subjects were 120 elderly (> 57 years) of both sexes who fulfilled the more stringent criteria for age-associated memory impairment (AAMI); some also fulfilled the criteria for age-associated cognitive decline. Subjects were allocated at random to one of the three treatment groups: placebo, 300mg S-PS daily, or 600mg S-PS daily. Assessments were carried out at baseline, after 6 and 12 weeks of treatment, and after a wash-out period of 3 weeks. Tests of learning and memory, choice reaction time, planning and attentional functions were administered at each assessment. Delayed recall and recognition of a previously learned word list comprised the primary outcome measures. No significant differences were found in any of the outcome variables between the treatment groups. There were also no significant interactions between treatment and 'severity of memory complaints'. In conclusion, a daily supplement of S-PS does not affect memory or other cognitive functions in older individuals with memory complaints. PMID:11842880

  20. Phosphatidylserine treatment relieves the block to retrovirus infection of cells expressing glycosylated virus receptors

    PubMed Central

    Coil, David A; Miller, A Dusty

    2005-01-01

    Background A major determinant of retrovirus host range is the presence or absence of appropriate cell-surface receptors required for virus entry. Often orthologs of functional receptors are present in a wide range of species, but amino acid differences can render these receptors non-functional. In some cases amino acid differences result in additional N-linked glycosylation that blocks virus infection. The latter block to retrovirus infection can be overcome by treatment of cells with compounds such as tunicamycin, which prevent the addition of N-linked oligosaccharides. Results We have discovered that treatment of cells with liposomes composed of phosphatidylserine (PS) can also overcome the block to infection mediated by N-linked glycosylation. Importantly, this effect occurs without apparent change in the glycosylation state of the receptors for these viruses. This effect occurs with delayed kinetics compared to previous results showing enhancement of virus infection by PS treatment of cells expressing functional virus receptors. Conclusion We have demonstrated that PS treatment can relieve the block to retrovirus infection of cells expressing retroviral receptors that have been rendered non-functional by glycosylation. These findings have important implications for the current model describing inhibition of virus entry by receptor glycosylation. PMID:16091143

  1. Structural and Biological Interaction of hsc-70 Protein with Phosphatidylserine in Endosomal Microautophagy.

    PubMed

    Morozova, Kateryna; Clement, Cristina C; Kaushik, Susmita; Stiller, Barbara; Arias, Esperanza; Ahmad, Atta; Rauch, Jennifer N; Chatterjee, Victor; Melis, Chiara; Scharf, Brian; Gestwicki, Jason E; Cuervo, Ana-Maria; Zuiderweg, Erik R P; Santambrogio, Laura

    2016-08-26

    hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 μm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes. PMID:27405763

  2. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    PubMed

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume

    2015-07-24

    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  3. A homogeneous time-resolved fluorescence resonance energy transfer assay for phosphatidylserine exposure on apoptotic cells.

    PubMed

    Gasser, Jean-Philippe; Hehl, Michaela; Millward, Thomas A

    2009-01-01

    A simple, "mix-and-measure" microplate assay for phosphatidylserine (PtdSer) exposure on the surface of apoptotic cells is described. The assay exploits the fact that annexin V, a protein with high affinity and specificity for PtdSer, forms trimers and higher order oligomers on binding to membranes containing PtdSer. The transition from soluble monomer to cell-bound oligomer is detected using time-resolved fluorescence resonance energy transfer from europium chelate-labeled annexin V to Cy5-labeled annexin V. PtdSer detection is achieved by a single addition of a reagent mix containing labeled annexins and calcium ions directly to cell cultures in a 96-well plate, followed by a brief incubation before fluorescence measurement. The assay can be used to quantify PtdSer exposure on both suspension cells and adherent cells in situ. This method is simpler and faster than existing annexin V binding assays based on flow cytometry or microscopy, and it yields precise data with Z' values of 0.6-0.7. PMID:18835236

  4. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer

    PubMed Central

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-01-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics. PMID:26915293

  5. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    PubMed

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts.

  6. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium

    PubMed Central

    Vallabhapurapu, Subrahmanya D.; Blanco, Víctor M.; Sulaiman, Mahaboob K.; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S.; Qi, Xiaoyang

    2015-01-01

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS. PMID:26462157

  7. SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice.

    PubMed

    Yin, Hengfu; Gao, Peng; Liu, Chengwu; Yang, Jun; Liu, Zhongchi; Luo, Da

    2013-01-01

    In vascular plants, the regulation of stem cell niche determines development of aerial shoot which consists of stems and lateral organs. Intercalary meristem (IM) controls internode elongation in rice and other grasses, however little attention has been paid to the underlying mechanism of stem cell maintenance. Here, we investigated the stem development in rice and showed that the Shortened Uppermost Internode 1 (SUI1) family of genes are pivotal for development of rice stems. We demonstrated that SUI-family genes regulate the development of IM for internode elongation and also the cell expansion of the panicle stem rachis in rice. The SUI-family genes encoded base-exchange types of phosphatidylserine synthases (PSSs), which possessed enzymatic activity in a yeast complementary assay. Overexpression of SUI1 and SUI2 caused outgrowths of internodes during vegetative development, and we showed that expression patterns of Oryza Sativa Homeobox 15 (OSH15) and Histone4 were impaired. Furthermore, genome-wide gene expression analysis revealed that overexpression and RNA knockdown of SUI-family genes affected downstream gene expression related to phospholipid metabolic pathways. Moreover, using Ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry, we analyzed PS contents in different genetic backgrounds of rice and showed that the quantity of very long chain fatty acids PS is affected by transgene of SUI-family genes. Our study reveals a new mechanism conveyed by the SUI1 pathway and provides evidence to link lipid metabolism with plant stem cell maintenance.

  8. Leishmania amazonensis exhibits phosphatidylserine-dependent procoagulant activity, a process that is counteracted by sandfly saliva.

    PubMed

    Rochael, Natalia Cadaxo; Lima, Luize Gonçalves; Oliveira, Sandra Maria Pereira de; Barcinski, Marcello André; Saraiva, Elvira Maria; Monteiro, Robson Queiroz; Pinto-da-Silva, Lucia Helena

    2013-09-01

    Leishmania parasites expose phosphatidylserine (PS) on their surface, a process that has been associated with regulation of host's immune responses. In this study we demonstrate that PS exposure by metacyclic promastigotes of Leishmania amazonensis favours blood coagulation. L. amazonensis accelerates in vitro coagulation of human plasma. In addition, L. amazonensis supports the assembly of the prothrombinase complex, thus promoting thrombin formation. This process was reversed by annexin V which blocks PS binding sites. During blood meal, Lutzomyia longipalpis sandfly inject saliva in the bite site, which has a series of pharmacologically active compounds that inhibit blood coagulation. Since saliva and parasites are co-injected in the host during natural transmission, we evaluated the anticoagulant properties of sandfly saliva in counteracting the procoagulant activity of L. amazonensis . Lu. longipalpis saliva reverses plasma clotting promoted by promastigotes. It also inhibits thrombin formation by the prothrombinase complex assembled either in phosphatidylcholine (PC)/PS vesicles or in L. amazonensis . Sandfly saliva inhibits factor X activation by the intrinsic tenase complex assembled on PC/PS vesicles and blocks factor Xa catalytic activity. Altogether our results show that metacyclic promastigotes of L. amazonensis are procoagulant due to PS exposure. Notably, this effect is efficiently counteracted by sandfly saliva.

  9. Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase

    PubMed Central

    Lee, Shoken; Uchida, Yasunori; Wang, Jiao; Matsudaira, Tatsuyuki; Nakagawa, Takatoshi; Kishimoto, Takuma; Mukai, Kojiro; Inaba, Takehiko; Kobayashi, Toshihide; Molday, Robert S; Taguchi, Tomohiko; Arai, Hiroyuki

    2015-01-01

    P4-ATPases translocate aminophospholipids, such as phosphatidylserine (PS), to the cytosolic leaflet of membranes. PS is highly enriched in recycling endosomes (REs) and is essential for endosomal membrane traffic. Here, we show that PS flipping by an RE-localized P4-ATPase is required for the recruitment of the membrane fission protein EHD1. Depletion of ATP8A1 impaired the asymmetric transbilayer distribution of PS in REs, dissociated EHD1 from REs, and generated aberrant endosomal tubules that appear resistant to fission. EHD1 did not show membrane localization in cells defective in PS synthesis. ATP8A2, a tissue-specific ATP8A1 paralogue, is associated with a neurodegenerative disease (CAMRQ). ATP8A2, but not the disease-causative ATP8A2 mutant, rescued the endosomal defects in ATP8A1-depleted cells. Primary neurons from Atp8a2−/− mice showed a reduced level of transferrin receptors at the cell surface compared to Atp8a2+/+ mice. These findings demonstrate the role of P4-ATPase in membrane fission and give insight into the molecular basis of CAMRQ. PMID:25595798

  10. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport

    PubMed Central

    Xu, Peng; Baldridge, Ryan D.; Chi, Richard J.; Burd, Christopher G.

    2013-01-01

    Vesicle-mediated protein transport between organelles of the secretory and endocytic pathways is strongly influenced by the composition and organization of membrane lipids. In budding yeast, protein transport between the trans-Golgi network (TGN) and early endosome (EE) requires Drs2, a phospholipid translocase in the type IV P-type ATPase family. However, downstream effectors of Drs2 and specific phospholipid substrate requirements for protein transport in this pathway are unknown. Here, we show that the Arf GTPase-activating protein (ArfGAP) Gcs1 is a Drs2 effector that requires a variant of the ArfGAP lipid packing sensor (+ALPS) motif for localization to TGN/EE membranes. Drs2 increases membrane curvature and anionic phospholipid composition of the cytosolic leaflet, both of which are sensed by the +ALPS motif. Using mutant forms of Drs2 and the related protein Dnf1, which alter their ability to recognize phosphatidylserine, we show that translocation of this substrate to the cytosolic leaflet is essential for +ALPS binding and vesicular transport between the EE and the TGN. PMID:24019533

  11. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity

    PubMed Central

    Freeman, Gordon J.; Casasnovas, Jose M.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2010-01-01

    Summary The TIM (T cell/transmembrane, immunoglobulin, and mucin) gene family plays a critical role in regulating immune responses, including allergy, asthma, transplant tolerance, autoimmunity, and the response to viral infections. The unique structure of TIM immunoglobulin variable region domains allows highly specific recognition of phosphatidylserine (PtdSer), exposed on the surface of apoptotic cells. TIM-1, TIM-3, and TIM-4 all recognize PtdSer but differ in expression, suggesting that they have distinct functions in regulating immune responses. TIM-1, an important susceptibility gene for asthma and allergy, is preferentially expressed on T-helper 2 (Th2) cells and functions as a potent costimulatory molecule for T-cell activation. TIM-3 is preferentially expressed on Th1 and Tc1 cells, and generates an inhibitory signal resulting in apoptosis of Th1 and Tc1 cells. TIM-3 is also expressed on some dendritic cells and can mediate phagocytosis of apoptotic cells and cross-presentation of antigen. In contrast, TIM-4 is exclusively expressed on antigen-presenting cells, where it mediates phagocytosis of apoptotic cells and plays an important role in maintaining tolerance. TIM molecules thus provide a functional repertoire for recognition of apoptotic cells, which determines whether apoptotic cell recognition leads to immune activation or tolerance, depending on the TIM molecule engaged and the cell type on which it is expressed. PMID:20536563

  12. Phosphatidylserine Targets Single-Walled Carbon Nanotubes to Professional Phagocytes In Vitro and In Vivo

    PubMed Central

    Konduru, Nagarjun V.; Tyurina, Yulia Y.; Feng, Weihong; Basova, Liana V.; Belikova, Natalia A.; Bayir, Hülya; Clark, Katherine; Rubin, Marc; Stolz, Donna; Vallhov, Helen; Scheynius, Annika; Witasp, Erika; Fadeel, Bengt; Kichambare, Padmakar D.; Star, Alexander; Kisin, Elena R.; Murray, Ashley R.; Shvedova, Anna A.; Kagan, Valerian E.

    2009-01-01

    Broad applications of single-walled carbon nanotubes (SWCNT) dictate the necessity to better understand their health effects. Poor recognition of non-functionalized SWCNT by phagocytes is prohibitive towards controlling their biological action. We report that SWCNT coating with a phospholipid “eat-me” signal, phosphatidylserine (PS), makes them recognizable in vitro by different phagocytic cells - murine RAW264.7 macrophages, primary monocyte-derived human macrophages, dendritic cells, and rat brain microglia. Macrophage uptake of PS-coated nanotubes was suppressed by the PS-binding protein, Annexin V, and endocytosis inhibitors, and changed the pattern of pro- and anti-inflammatory cytokine secretion. Loading of PS-coated SWCNT with pro-apoptotic cargo (cytochrome c) allowed for the targeted killing of RAW264.7 macrophages. In vivo aspiration of PS-coated SWCNT stimulated their uptake by lung alveolar macrophages in mice. Thus, PS-coating can be utilized for targeted delivery of SWCNT with specified cargoes into professional phagocytes, hence for therapeutic regulation of specific populations of immune-competent cells. PMID:19198650

  13. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3.

    PubMed

    McPherson, R A; Harding, A; Roy, S; Lane, A; Hancock, J F

    1999-07-01

    Activation of Raf-1 occurs at the plasma membrane. We recently showed that 14-3-3 must be complexed with Raf-1 for efficient recruitment to the plasma membrane and activation by Ras, but that 14-3-3 is completely displaced from Raf-1 following plasma membrane binding. We show here that the Raf-1 zinc finger is not absolutely required for 14-3-3 binding but is required to stabilize the interaction between Raf-1 and 14-3-3. Incubation of Raf-1 with phosphatidylserine, an inner plasma membrane phospholipid, results in removal of 14-3-3 and an increase in Raf-1 kinase activity, whereas removal of 14-3-3 from Raf-1 using specific phosphopeptides substantially reduces Raf-1 basal kinase activity. Displacement of 14-3-3 from activated Raf-1 by phosphopeptides has no effect on kinase activity if Raf-1 is first removed from solution, but completely eradicates kinase activity of soluble activated Raf-1. These results suggest a mechanism for the removal of 14-3-3 from Raf-1 at the plasma membrane and show that removal of 14-3-3 from Raf-1 has markedly different effects depending on experimental conditions.

  14. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome. PMID:26417084

  15. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine.

    PubMed

    Gilbert, Gary E; Novakovic, Valerie A; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W

    2015-09-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  16. Phosphatidylserine increases IKBKAP levels in a humanized knock-in IKBKAP mouse model.

    PubMed

    Bochner, Ron; Ziv, Yael; Zeevi, David; Donyo, Maya; Abraham, Lital; Ashery-Padan, Ruth; Ast, Gil

    2013-07-15

    Familial dysautonomia (FD) is a severe neurodegenerative genetic disorder restricted to the Ashkenazi Jewish population. The most common mutation in FD patients is a T-to-C transition at position 6 of intron 20 of the IKBKAP gene. This mutation causes aberrant skipping of exon 20 in a tissue-specific manner, leading to reduction of the IκB kinase complex-associated protein (IKAP) protein in the nervous system. We established a homozygous humanized mouse strain carrying human exon 20 and its two flanking introns; the 3' intron has the transition observed in the IKBKAP gene of FD patients. Although our FD humanized mouse does not display FD symptoms, the unique, tissue-specific splicing pattern of the IKBKAP in these mice allowed us to evaluate the effect of therapies on gene expression and exon 20 splicing. The FD mice were supplemented with phosphatidylserine (PS), a safe food supplement that increases mRNA and protein levels of IKBKAP in cell lines generated from FD patients. Here we demonstrated that PS treatment increases IKBAKP mRNA and IKAP protein levels in various tissues of FD mice without affecting exon 20 inclusion levels. We also observed that genes associated with transcription regulation and developmental processes were up-regulated in the cerebrum of PS-treated mice. Thus, PS holds promise for the treatment of FD.

  17. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease.

    PubMed

    Mankelow, Tosti J; Griffiths, Rebecca E; Trompeter, Sara; Flatt, Joanna F; Cogan, Nicola M; Massey, Edwin J; Anstee, David J

    2015-10-01

    During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.

  18. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin.

    PubMed

    Qadri, Syed M; Donkor, David A; Bhakta, Varsha; Eltringham-Smith, Louise J; Dwivedi, Dhruva J; Moore, Jane C; Pepler, Laura; Ivetic, Nikola; Nazi, Ishac; Fox-Robichaud, Alison E; Liaw, Patricia C; Sheffield, William P

    2016-04-01

    The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis-like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin-elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca(2+) activity as well as Ca(2+) -dependent proteolytic processing of μ-calpain. Pyocyanin further up-regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin-induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl-ester labelling, pyocyanin-treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis-inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection. PMID:26781477

  19. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets

    PubMed Central

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-01-01

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca2+ ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca2+-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome. PMID:26417084

  20. Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine-cholesterol bilayer membranes.

    PubMed

    Bach, D; Borochov, N; Wachtel, E

    2002-02-01

    Thermotropic and structural effects of ethanol on phosphatidylserine (PS) membranes containing up to 0.4 mol fraction cholesterol were investigated by differential scanning calorimetry, X-ray diffraction and fluorescence spectroscopy. It was found that in the presence of cholesterol, 10% (v/v) added ethanol depresses the melting temperature of the phospholipid by approximately 2 degrees C, similar to what was observed in the absence of cholesterol. Below the melting temperature the progressive disordering effect of added cholesterol is weakly enhanced by the presence of ethanol. In the liquid crystalline state, the marked decrease in the thickness of the bilayer which ethanol causes in the absence of cholesterol (Chem. Phys. Lipids 92 (1998) 127), is also observed in its presence. We conclude that, in contrast to what has been observed for zwitterionic phospholipids, high concentrations of cholesterol do not diminish the interaction of ethanol with PS membranes. With addition of 10% (v/v) ethanol, crystalline cholesterol diffraction, an indication of phase separation of the sterol, appears at mol fraction cholesterol 0.34, as compared to 0.3 in the absence of ethanol (Chem. Phys. Lipids 92 (1998) 71).

  1. Interaction of an annexin V homodimer (Diannexin) with phosphatidylserine on cell surfaces and consequent antithrombotic activity.

    PubMed

    Kuypers, Frans A; Larkin, Sandra K; Emeis, Jef J; Allison, Anthony C

    2007-03-01

    Annexin V (AV), a protein with anticoagulant activity, exerts antithrombotic activity by binding to phosphatidylserine (PS), inhibiting activation of serine proteases important in blood coagulation. The potential use of this protein as an anticoagulant is limited as it rapidly passes from the blood into the kidneys due to its relatively small size (36 kDa). We used recombinant DNA technology to produce a homodimer of human AV (DAV, 73 kDa), which exceeds the renal filtration threshold, and has a 6.5-hour half-life in the rat circulation. Human red blood cells with externalized PS were used to show that DAV had a higher affinity for PS-exposing cells than AV. DAV labeling sensitively identifies PS-exposing cells, was found to be a potent inhibitor of the activity of the prothombinase complexes and inhibits the ability of secretory phospholipaseA(2) to hydrolyze phospholipids of PS-exposing cells, reducing the formation of mediators of blood coagulation and reperfusion injury. DAV exerts dose-dependent antithrombotic activity in rat veins. This combination of activities suggests that DAV is a valuable probe to measure PS exposure and may be efficacious as a novel drug in a wide range of clinical situations.

  2. Light-dependent and tissue-specific expression of the H-protein of the glycine decarboxylase complex.

    PubMed Central

    Srinivasan, R; Oliver, D J

    1995-01-01

    Glycine decarboxylase is a mitochondrial enzyme complex, which is the site of photorespiratory CO2 and NH3 release. Although the proteins that constitute the complex are located within the mitochondria, because of their intimate association with photosynthesis their expression is controlled by light. Comparisons of the kinetics of mRNA accumulation between the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase and the H-protein of glycine decarboxylase during the greening of etiolated Arabidopsis thaliana suggest that their expression is controlled in parallel. A genomic clone for the H-protein (gdcH) was isolated from Arabidopsis and sequenced. The upstream region from -856 to +62 was fused to the beta-glucuronidase (GUS) reporter gene, and this construct was transformed into tobacco. This 5' upstream regulatory region appears to control GUS expression in a manner very similar to that of the endogenous H-protein gene. Constructs with deletions in the 5' upstream region were transformed into tobacco. These deletions revealed that light-dependent and tissue-specific expression was largely controlled by a 259-bp region between -376 and -117 bp. This region contains several putative GT boxes with the GGTTAA consensus core sequence. Once these strong light-dependent elements were removed, a second level of control was revealed. In constructs in which the gdcH 5' regulatory region was shortened to -117 bp or less, there was more GUS activity in the roots than in the leaves, and in dark-grown plants than in light-grown plants. This suggests that more proximal control elements may be responsible for the constitutive low levels of gene expression noted in all nonphotosynthetic tissues. PMID:7480320

  3. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong

    2015-12-15

    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.

  4. Long-Time Cooling before Cryopreservation Decreased Translocation of Phosphatidylserine (Ptd-L-Ser) in Human Ovarian Tissue

    PubMed Central

    2015-01-01

    Objectives To translocation (externalization) of phosphatidylserine lead at least the five negative effects observed during cells cryopreservation: hypoxia, increasing of intracellular Ca2+, osmotic disruption of cellular membranes, generation of reactive oxygen species (ROS) and lipid peroxidation. The aim of this study was to test the intensiveness of the phosphatidylserine translocation immediately after thawing and after 45 d xenografting of human ovarian tissue, which was either frozen just after operative removal from patient or cooled before cryopreservation to 5°C for 24 h and then frozen. Materials and Methods Ovarian fragments from twelve patients were divided into small pieces in form of cortex with medulla, and randomly divided into the following four groups. Pieces of Group 1 (n=30) were frozen immediately after operation, thawed and just after thawing their quality was analyzed. Group 2 pieces (n=30) after operation were cooled to 5°C for 24 h, then frozen after 24 h pre-cooling to 5°C, thawed and just after thawing their quality was analyzed. Group 3 pieces (n=30) were frozen immediately after operation without pre-cooling, thawed, transplanted to SCID mice and then, after 45 d of culture their quality was analyzed. Group 4 pieces (n=30) were frozen after 24 h pre-cooling to 5°C, thawed, transplanted to SCID mice and then, after 45 d their quality was analyzed. The effectiveness of the pre-freezing cooling of tissuewas evaluated by the development of follicles (histology) and by intensiveness of translocation of phosphatidylserine (FACS with FITC-Annexin V and Propidium Iodide). Results For groups 1, 2, 3 and 4 the mean densities of follicles per 1 mm3 was 19.0, 20.2, 12.9, and 12.2, respectively (P1-2, 3-4 >0.1). For these groups, 99%, 98%, 88% and 90% preantral follicles, respectively were morphologically normal (P1-2, 3-4 >0.1). The FACS analysis showed significantly decreased intensiveness of translocation of phosphatidylserine after pre

  5. Nitrogen isotope effects on glutamate decarboxylase from Escherichia coli

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-05-03

    The nitrogen isotope effect on the decarboxylation of glutamic acid by glutamate decarboxylase from Escherichia coli has been measured by comparison of the isotopic composition of the amino nitrogen of the product ..gamma..-aminobutyric acid isolated after 10-20% reaction with that of the starting glutamic acid. At pH 4.7, 37 /sup 0/C, the isotope effect is k/sup 14//k/sup 15/ = 0.9855 +/- 0.0006 when compared to unprotonated glutamic acid. Interpretation of this result requires knowledge of the equilibrium nitrogen isotope effect for Schiff base formation. This equilibrium isotope effect is K/sup 14//K/sup 15/ - 0.9824 for the formation of the unprotonated Schiff base between unprotonated valine and salicylaldehyde. Analysis of the nitrogen isotope effect on decarboxylation of glutamic acid and of the previously measured carbon isotope effect on this same reaction shows that decarboxylation and Schiff base formation are jointly rate limiting. The enzyme-bound Schiff base between glutamate and pyridoxal 5'-phosphate partitions approximately 2:1 between decarboxylation and return to the starting state. The nitrogen isotope effect also reveals that the Schiff base nitrogen is protonated in this intermediate.

  6. The DOPA decarboxylase (DDC) gene is associated with alerting attention.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Moyzis, Robert K; Dong, Qi; Chen, Chunhui; He, Qinghua; Li, Jin; Li, Jun; Lei, Xuemei; Lin, Chongde

    2013-06-01

    DOPA decarboxylase (DDC) is involved in the synthesis of dopamine, norepinephrine and serotonin. It has been suggested that genes involved in the dopamine, norepinephrine, and cholinergic systems play an essential role in the efficiency of human attention networks. Attention refers to the cognitive process of obtaining and maintaining the alert state, orienting to sensory events, and regulating the conflicts of thoughts and behavior. The present study tested seven single nucleotide polymorphisms (SNPs) within the DDC gene for association with attention, which was assessed by the Attention Network Test to detect three networks of attention, including alerting, orienting, and executive attention, in a healthy Han Chinese sample (N=451). Association analysis for individual SNPs indicated that four of the seven SNPs (rs3887825, rs7786398, rs10499695, and rs6969081) were significantly associated with alerting attention. Haplotype-based association analysis revealed that alerting was associated with the haplotype G-A-T for SNPs rs7786398-rs10499695-rs6969081. These associations remained significant after correcting for multiple testing by max(T) permutation. No association was found for orienting and executive attention. This study provides the first evidence for the involvement of the DDC gene in alerting attention. A better understanding of the genetic basis of distinct attention networks would allow us to develop more effective diagnosis, treatment, and prevention of deficient or underdeveloped alerting attention as well as its related prevalent neuropsychiatric disorders.

  7. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  8. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  9. Amiloride inhibits rat mucosal ornithine decarboxylase activity and DNA synthesis

    SciTech Connect

    Ulrich-Baker, M.G.; Wang, P.; Fitzpatrick, L.; Johnson, L.R. )

    1988-03-01

    Refeeding fasted rats induces a dramatic trophic response in gastrointestinal mucosa and is associated with elevations in both rate of DNA synthesis and ornithine decarboxylase (ODC) activity. The signal for these increases is unknown. Amiloride prevents cell alkalinization by blocking Na{sup +}-H{sup +} exchange at apical epithelial cell membranes. In study 1, rats were fasted 48 h, treated with amiloride (0.5 to 500 mg/kg), and refed for 4 h. Refeeding increased ODC activities in the jejunal mucosa (X8) and liver (X19) but not in the oxyntic gland mucosa. In the jejunum, but not the liver, the activation of ODC was completely abolished by 100 mg/kg amiloride. In study 2, the rate of DNA synthesis was determine by measuring the rate of ({sup 3}H)thymidine incorporation 16 h after refeeding. Refeeding resulted in significantly increased rates of DNA synthesis over fasted levels, and amiloride at 100 mg/kg significantly reduced the elevations in the jejenum and liver. In conclusion, amiloride inhibits the postprandial increases in jejunal ODC activity and DNA synthesis in the jejunum and liver. The results indicate that (1) the Na{sup +}-H{sup +} antiport is essential to the increased ODC activity in the jejunum and liver after a meal and (2) increases in DNA synthesis and their suppression by amiloride are not necessary linked to ODC activity.

  10. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  11. Characterization of a second ornithine decarboxylase isolated from Morganella morganii.

    PubMed

    De Las Rivas, Blanca; González, Ramón; Landete, José María; Muñoz, Rosario

    2008-03-01

    The genes involved in the putrescine formation by Morganella morganii were investigated because putrescine is an indicator of food process deterioration. We report here on the existence of a new gene for ornithine decarboxylase (ODC) in M. morganii. The sequenced 5,311-bp DNA region showed the presence of four complete and one partial open reading frame. Putative functions have been assigned to several gene products by sequence comparison with the proteins included in the databases. The third open reading frame (speC) encoded a 722-amino acid protein showing 70.9% identity to the M. morganii ODC previously characterized (SpeF). The speC gene has been expressed in Escherichia coli, resulting in ODC activity. The presence of a functional promoter (PspeC) located upstream of speC has been demonstrated. Quantitative real-time reverse transcription PCR assay was used to quantify expression of both M. morganii ODC-encoding genes, speC and speF, under different growth conditions. This assay allows us to identify SpeF as the inducible M. morganii ODC, since it was highly expressed in the presence of ornithine.

  12. Anti-glutamic acid decarboxylase antibody positive neurological syndromes.

    PubMed

    Tohid, Hassaan

    2016-07-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were calledhyperexcitability disorders. However, collectively, these syndromes should be known as "anti-GAD positive neurological syndromes." An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  13. Localization of histidine decarboxylase mRNA in rat brain.

    PubMed

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  14. Chloroform induction of ornithine decarboxylase activity in rats.

    PubMed Central

    Savage, R E; Westrich, C; Guion, C; Pereira, M A

    1982-01-01

    Chloroform is a drinking water contaminant that has been demonstrated to be carcinogenic to mice and rats resulting in an increased incidence of liver and kidney tumors, respectively. The mechanism of chloroform carcinogenicity might be by tumor initiation and/or promotion. Since induction of ornithine decarboxylase (ODC) activity has been proposed as a molecular marker for tumor promoters, we have investigated the effect of chloroform on ODC activity in rats. Chloroform induced a dose-dependent increase of hepatic ODC with an apparent threshold at 100 mg/kg body weight. Female rats were two to four times more susceptible to to chloroform. Upon daily dosing of chloroform for 7 days the liver became less susceptible, with the last dose of chloroform resulting in only 10% of the activity observed after a single dose. Nuclear RNA polymerase I activity was also induced by chloroform. Chloroform, rather than increasing the activity of renal ODC, resulted in a 35% reduction. The induction by chloroform of hepatic ODC activity might be associated with regenerative hyperplasia while the renal carcinogenicity of chloroform could not be demonstrated to be associated with ODC induction. PMID:7151757

  15. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    PubMed

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  16. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica).

    PubMed

    Liu, Ji Hong; Ban, Yusuke; Wen, Xiao-Peng; Nakajima, Ikuko; Moriguchi, Takaya

    2009-01-15

    Arginine decarboxylase (ADC), one of the enzymes responsible for putrescine (Put) biosynthesis, has been shown to be implicated in stress response. In the current paper attempts were made to clone and characterize a gene encoding ADC from peach (Prunus persica (L.) Batsch, 'Akatsuki'). Rapid amplification of cDNA ends (RACE) gave rise to a full-length ADC cDNA (PpADC) with a complete open reading frame of 2178 bp, encoding a 725 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced PpADC protein sequence shared a high identity with ADCs from other plants, including several highly conservative motifs and amino acids. Southern blotting indicated that PpADC existed in peach genome as a single gene. Expression levels of PpADC in different tissues of peach (P. persica 'Akatsuki') were spatially and developmentally regulated. Treatment of peach shoots from 'Mochizuki' with exogenous 5 mM Put, an indirect product of ADC, remarkably induced accumulation of PpADC mRNA. Transcripts of PpADC in peach leaves from 'Mochizuki' were quickly induced, either transiently or continuously, in response to dehydration, high salinity (200 mM NaCl), low temperature (4 degrees C) and heavy metal (150 microM CdCl(2)), but repressed by high temperature 37 degrees C) during a 2-day treatment, which changed in an opposite direction when the stresses were otherwise removed with the exception of CdCl(2) treatment. In addition, steady-state of PpADC mRNA could be also transiently up-regulated by abscisic acid (ABA) in 'Mochizuki' leaves. All of these, taken together, suggest that PpADC is a stress-responsive gene and can be considered as a potential target that is genetically manipulated so as to create novel germplasms with enhanced stress tolerance in the future.

  17. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity.

    PubMed

    Sengupta, Tanusree; Manoj, Narayanan

    2016-01-01

    Protein Z (PZ) is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI) and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa) by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS) and phosphatidylethanolamine (PE) with equal affinity (Kd~48 μM); further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process. PMID:27584039

  18. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-01

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  19. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles

    PubMed Central

    Arraud, N; Gounou, C; Linares, R; Brisson, A R

    2015-01-01

    Background Plasma contains cell-derived extracellular vesicles (EVs), which participate in physiopathological processes and have potential applications as disease biomarker. However, the enumeration of EVs faces major problems, due to their sub-micrometer size and to intrinsic limitations in methods of characterization, mainly flow cytometry (FCM). Objectives Our objective is to enumerate EVs in plasma, by taking as the prototype the population of phosphatidylserine (PS)-exposing EVs, which constitute one of the major EV populations and are responsible for thrombotic disorders. Methods The concentration of PS-exposing EVs in platelet-free plasma (PFP) of healthy subjects was measured by FCM using either light scattering or fluorescence as the trigger and fluorescent Annexin-5 (Anx5) as the specific label. In addition, PS-exposing EVs were enumerated by electron microscopy (EM) after labeling with Anx5 gold nanoparticles and sedimentation on EM grids. Results We show that about 50× more Anx5-positive EVs are detected by FCM when detection is triggered on fluorescence as compared with light scattering. By fluorescence triggering, concentrations of 22 000–30 000 Anx5-positive EVs per μL PFP were determined, using two different flow cytometers. The limit of detection of the fluorescence triggering method was estimated at about 1000–2500 Anx5 molecules. Results from EM suggest that EVs down to 100–150 nm diameter are detected by fluorescence triggering. Conclusion This study presents a simple method for enumerating EVs. We believe that this method is applicable in a general context and will improve our understanding of the roles of EVs in pathophysiological situations, which will open avenues for the development of EV-based diagnosis assays. PMID:25348269

  20. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  1. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide.

    PubMed

    Tarafdar, Pradip K; Chakraborty, Hirak; Bruno, Michael J; Lentz, Barry R

    2015-11-01

    Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state.

  2. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    SciTech Connect

    Voelker, D.R. )

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({sup 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.

  3. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach

    PubMed Central

    Chen, Liao Y

    2015-01-01

    In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we develop a hybrid steered molecular dynamics (hSMD) method that involves (1) simultaneously steering two centers of mass of two selected segments of the ligand and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first study vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agrees with the experimental value. Knowing the accuracy of this hSMD method, we apply it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5’s physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5’s central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We find, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 is a factor of 3 million weaker than “binding” it in the lipid bilayer. This suggests that AQP5’s central pore will not be inhibited by PS6 or a similar lipid in a physiological environment. PMID:25955791

  4. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia

    PubMed Central

    Boas, Franz Edward; Forman, Linda; Beutler, Ernest

    1998-01-01

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells. PMID:9501218

  5. Aminoglycoside-induced phosphatidylserine externalisation in sensory hair cells is regionally restricted, rapid and reversible

    PubMed Central

    Goodyear, R.J.; Gale, J.E.; Ranatunga, K.M.; Kros, C.J.; Richardson, G.P.

    2012-01-01

    The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasmalemma. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labelled with externally-applied annexin-V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin-V labelling reveals the aminoglycoside antibiotic neomycin induces rapid PS externalisation, specifically on the apical surface of hair cells. PS externalisation is observed within ~75 seconds of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application indicating blebbing is accompanied by membrane addition to the hair-cell surface. PS-externalisation and membrane blebbing can, nonetheless, occur independently. Pre-treating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a PIP2-binding pleckstrin-homology domain, can reduce neomycin-induced PS externalisation, suggesting neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. Following neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear and surface-bound annexin-V is internalised, distributing throughout the supra-nuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalised annexin-V, however, remains below the apical surface thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the hair cell’s periphery. PMID:18829952

  6. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide.

    PubMed

    Tarafdar, Pradip K; Chakraborty, Hirak; Bruno, Michael J; Lentz, Barry R

    2015-11-01

    Although the importance of a SNARE complex in neurotransmitter release is widely accepted, there exist different views on how the complex promotes fusion. One hypothesis is that the SNARE complex's ability to bring membranes into contact is sufficient for fusion, another points to possible roles of juxtamembrane regions (JMRs) and transmembrane domains (TMDs) in catalyzing lipid rearrangement, and another notes the complex's presumed ability to bend membranes near the point of contact. Here, we performed experiments with highly curved vesicles brought into contact using low concentrations of polyethylene glycol (PEG) to investigate the influence of the synaptobrevin (SB) TMD with an attached JMR (SB-JMR-TMD) on the rates of stalk and pore formation during vesicle fusion. SB-JMR-TMD enhanced the rates of stalk and fusion pore (FP) formation in a sharply sigmoidal fashion. We observed an optimal influence at an average of three peptides per vesicle, but only with phosphatidylserine (PS)-containing vesicles. Approximately three SB-JMR-TMDs per vesicle optimally ordered the bilayer interior and excluded water in a similar sigmoidal fashion. The catalytic influences of hexadecane and SB-JMR-TMD on fusion kinetics showed little in common, suggesting different mechanisms. Both kinetic and membrane structure measurements support the hypotheses that SB-JMR-TMD 1) catalyzes initial intermediate formation as a result of its basic JMR disrupting ordered interbilayer water and permitting closer interbilayer approach, and 2) catalyzes pore formation by forming a membrane-spanning complex that increases curvature stress at the circumference of the hemifused diaphragm of the prepore intermediate state. PMID:26536263

  7. Synergies of phosphatidylserine and protein disulfide isomerase in tissue factor activation

    PubMed Central

    Langer, Florian; Ruf, Wolfram

    2014-01-01

    Summary Tissue factor (TF), the cellular receptor and cofactor for factor VII/VIIa, initiates haemostasis and thrombosis. Initial tissue distribution studies suggested that TF was sequestered from the circulation and only present at perivascular sites. However, there is now clear evidence that TF also exists as a blood-borne form with critical contributions not only to arterial thrombosis following plaque rupture and to venous thrombosis following endothelial perturbation, but also to various other clotting abnormalities associated with trauma, infection, or cancer. Because thrombin generation, fibrin deposition, and platelet aggregation in the contexts of haemostasis, thrombosis, and pathogen defence frequently occur without TF de novo synthesis, considerable efforts are still directed to understanding the molecular events underlying the conversion of predominantly non-coagulant or cryptic TF on the surface of haematopoietic cells to a highly procoagulant molecule following cellular injury or stimulation. This article will review some of the still controversial mechanisms implicated in cellular TF activation or decryption with particular focus on the coordinated effects of outer leaflet phosphatidylserine exposure and thiol-disulfide exchange pathways involving protein disulfide isomerase (PDI). In this regard, our recent findings of ATP-triggered stimulation of the purinergic P2X7 receptor on myeloid and smooth muscle cells resulting in potent TF activation and shedding of procoagulant microparticles as well as of rapid monocyte TF decryption following antithymocyte globulin-dependent membrane complement fixation have delineated specific PDI-dependent pathways of cellular TF activation and thus illustrated additional and novel links in the coupling of inflammation and coagulation. PMID:24452853

  8. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-01

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  9. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  10. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity

    PubMed Central

    Sengupta, Tanusree; Manoj, Narayanan

    2016-01-01

    Protein Z (PZ) is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI) and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa) by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS) and phosphatidylethanolamine (PE) with equal affinity (Kd~48 μM); further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process. PMID:27584039

  11. Anti-phosphatidylserine/prothrombin antibodies: an additional diagnostic marker for APS?

    PubMed

    Pregnolato, Francesca; Chighizola, Cecilia B; Encabo, Susan; Shums, Zakera; Norman, Gary L; Tripodi, Armando; Chantarangkul, Veena; Bertero, Tiziana; De Micheli, Valeria; Borghi, Maria Orietta; Meroni, Pier Luigi

    2013-07-01

    Among the diagnostic assays for anti-phospholipid syndrome (APS), lupus anticoagulant (LA) is the strongest predictor of thrombosis; however, it presents several limitations as interference with anticoagulant therapy and poor inter-laboratory agreement. Two-thirds of LA activity is apparently due to antibodies against prothrombin (PT), usually detectable by ELISA. Binding of PT to phosphatidylserine (PS) has been shown to enhance solid-phase anti-PT assay sensitivity. To determine the prevalence of antibodies against PS/PT (aPS/PT) in APS, we tested the semiquantitative QUANTA Lite(®) aPS/PT ELISA in a cohort of 80 APS patients. The prevalence of aPS/PT was 81.3%, rising to 87.6% when considering LA-positive subjects only. We observed a strong correlation between aPS/PT and LA (p = 0.006). To note, APS patients with thrombotic manifestations displayed significantly higher IgG aPS/PT titers compared to 20 aPL asymptomatic carriers (p = 0.012). To rule out a possible cross-reactivity of anti-β2 glycoprotein I antibodies (aβ2GPI) with PS/PT complex, we tested two monoclonal aβ2GPI antibodies and an affinity-purified (AP) polyclonal aβ2GPI IgG obtained from the serum of a patient reacting against both β2GPI and PS/PT. The two monoclonal antibodies did not show any reactivity against PS/PT complex, similarly the AP IgGs did not react toward PS/PT antigen while preserved their aβ2GPI activity. Our findings suggest that aPS/PT are a definite antibody population in APS. Moreover, the good correlation between aPS/PT ELISA and LA may support its use as a surrogate test for LA, particularly useful to overcome the technical limitations of the functional assay.

  12. La3+-induced fusion of phosphatidylserine liposomes. Close approach, intermembrane intermediates, and the electrostatic surface potential.

    PubMed Central

    Bentz, J; Alford, D; Cohen, J; Düzgüneş, N

    1988-01-01

    The fusion of large unilamellar phosphatidylserine liposomes (PS LUV) induced by La3+ has been monitored using the 1-aminoapthalene-3,6,8-trisulfonic acid/p-xylenebis(pyridinium bromide) (ANTS/DPX) fluorescence assay for the mixing of aqueous contents. The fusion event is extensive and nonleaky, with up to 95% mixing of contents in the fused liposomes. However, addition of excess EDTA leads to disruption of the fusion products in a way that implies the existence of metastable intermembrane contact sites. The maximal fusion activity occurs between 10 and 100 microM La3+ and fusion can be terminated rapidly, without loss of contents, by the addition of excess La3+, e.g., 1 mM La3+ at pH 7.4. This observation is explained by the very large intrinsic binding constant (approximately 10(5) M-1) of La3+ to the PS headgroup, as measured by microelectrophoresis. Addition of 1 mM La3+ causes charge reversal of the membrane and a large positive surface potential. La3+ binding to PS causes the release of a proton. These data can be explained if La3+ can chelate to PS at two sites, with one of the sites being the primary amino group. This binding model successfully predicts that at pH 4.5 fusion occurs up to 2 mM La3+, due to reduced La3+ binding at low pH. We conclude that the general mechanism of membrane fusion includes three kinetic steps. In addition to (a) aggregation, there is (b) the close approach of the surfaces, or thinning of the hydration layer, and (c) the formation of intermembrane intermediates which determine the extent to which membrane destabilization leads to fusion (mixing of aqueous contents), as opposed to lysis. The lifetime of these intermembrane intermediates appears to depend upon La3+ binding to both PS sites. PMID:3382713

  13. Protein kinase C activation induces phosphatidylserine exposure on red blood cells.

    PubMed

    de Jong, Kitty; Rettig, Michael P; Low, Philip S; Kuypers, Frans A

    2002-10-15

    We have shown previously that red blood cells (RBCs) can be induced to influx Ca(2+) when treated with lipid mediators, such as lysophosphatidic acid and prostaglandin E(2), that are released during clot formation. Since calcium loading of RBCs can lead to both protein kinase C (PKC) activation and phosphatidylserine (PS) exposure, we decided to investigate the possible linkage between PKC activation and membrane PS scrambling using phorbol 12-myristate-13-acetate (PMA), a commonly used activator of PKC. Treatment of RBCs with PMA in a calcium-containing buffer caused immediate PS exposure in an RBC subpopulation. The size of the subpopulation did not change upon further incubation, indicating that not all RBCs are equally susceptible to this treatment. Using a fluorescent indicator, we found a subpopulation of RBCs with elevated intracellular calcium levels. In the absence of extracellular calcium, no PS exposure was found. However, we did find cells with high levels of calcium that did not expose PS, and a variable percentage of PS-exposing cells that did not show elevated calcium concentrations. Inhibition of PKC with either calphostin C, a blocker of the PMA binding site, or chelerythrine chloride, an inhibitor of the active site, diminished the level of formation of PS-exposing cells. However, the inhibitors had different effects on calcium internalization, indicating that a high calcium concentration alone was not responsible for inducing PS exposure in the absence of PKC activity. Moreover, PKC inhibition could prevent PS exposure induced by calcium and ionophore treatment of RBCs. We conclude that PKC is implicated in the mechanism of membrane phospholipid scrambling.

  14. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.

    PubMed

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui

    2010-09-01

    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  15. Identification of the Enterococcus faecalis Tyrosine Decarboxylase Operon Involved in Tyramine Production

    PubMed Central

    Connil, Nathalie; Le Breton, Yoann; Dousset, Xavier; Auffray, Yanick; Rincé, Alain; Prévost, Hervé

    2002-01-01

    Screening of a library of Enterococcus faecalis insertional mutants allowed isolation of a mutant affected in tyramine production. The growth of this mutant was similar to that of the wild-type E. faecalis JH2-2 strain in Maijala broth, whereas high-performance liquid chromatography analyses showed that tyramine production, which reached 1,000 μg ml−1 for the wild-type strain, was completely abolished. Genetic analysis of the insertion locus revealed a gene encoding a decarboxylase with similarity to eukaryotic tyrosine decarboxylases. Sequence analysis revealed a pyridoxal phosphate binding site, indicating that this enzyme belongs to the family of amino acid decarboxylases using this cofactor. Reverse transcription-PCR analyses demonstrated that the gene (tdc) encoding the putative tyrosine decarboxylase of E. faecalis JH2-2 is cotranscribed with the downstream gene encoding a putative tyrosine-tyramine antiporter and with the upstream tyrosyl-tRNA synthetase gene. This study is the first description of a tyrosine decarboxylase gene in prokaryotes. PMID:12089039

  16. DL-a-Monofluoromethylputrescine is a potent irreversible inhibitor of Escherichia coli ornithine decarboxylase.

    PubMed Central

    Kallio, A; McCann, P P; Bey, P

    1982-01-01

    DL-alpha-Monofluoromethylputrescine (compound R.M.I. 71864) is an enzyme-activated irreversible inhibitor of the biosynthetic enzyme ornithine decarboxylase from Escherichia coli. This compound, however, has much less effect in vitro on ornithine decarboxylase obtained from Pseudomonas aeruginosa. These findings are in contrast with those previously found with the substrate analogue DL-alpha-difluoromethylornithine (compound R.M.I. 71782). The K1 of the DL-alpha-monofluoromethylputrescine for the E. coli ornithine decarboxylase is 110 microM, and the half-life (t1/2) calculated for an infinite concentration of inhibitor is 2.1 min. When DL-alpha-monofluoromethylputrescine is used in combination with DL-alpha-difluoromethylarginine (R.M.I. 71897), an irreversible inhibitor of arginine decarboxylase, in vivo in E. coli, both decarboxylase activities are inhibited (greater than 95%) but putrescine levels are only decreased to about one-third of control values and spermidine levels are slightly increased. PMID:6812566

  17. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  18. Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes

    SciTech Connect

    Rosen, C.F.; Gajic, D.; Drucker, D.J. )

    1990-05-01

    UV radiation plays an important role in the induction of cutaneous malignancy, including basal cell and squamous cell carcinomas and malignant melanoma. In addition to its effects on DNA damage and repair mechanisms, UV radiation has been shown to modulate the expression of specific genes, altering the levels of their mRNAs and the synthesis of their corresponding proteins. In order to gain further information about the molecular effects of UV radiation, we have studied the regulation of ornithine decarboxylase (ODC) gene expression in response to UVB radiation. ODC is the rate-limiting enzyme in polyamine biosynthesis, is involved in growth and differentiation, and has been implicated in carcinogenesis. Keratinocytes grown in culture were either sham-irradiated or exposed to increasing doses of UVB (1-5 mJ/cm2). Northern blot analysis of keratinocyte RNA under basal conditions demonstrated the presence of two ODC mRNA transcripts. Increasing exposure to UVB resulted in a dose-dependent increase in the levels of both ODC mRNA transcripts. The induction of ODC gene expression following UVB was noted 2 h after UVB exposure, and ODC mRNA levels continued to increase up to 24 h after UVB exposure. The UVB-induced increase in ODC gene expression was not serum dependent, despite the ability of serum alone to induce ODC gene expression. The mRNA transcripts for actin and hexosaminidase A were not induced after UVB exposure. These studies show that the UVB-induced increase in ODC activity is due, at least in part, to an increase in ODC gene expression and they provide a useful model for the analysis of the molecular effects of UVB radiation.

  19. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).

  20. Catalysis of acetoin formation by brewers' yeast pyruvate decarboxylase isozymes.

    PubMed

    Stivers, J T; Washabaugh, M W

    1993-12-14

    Catalysis of C(alpha)-proton transfer from 2-(1-hydroxyethyl)thiamin diphosphate (HETDP) by pyruvate decarboxylase isozymes (PDC; EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determining the steady-state kinetics of the reaction of [1-L]acetaldehyde (L = H, D, or T) to form acetoin and the primary kinetic isotope effects on the reaction. The PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) have different steady-state kinetic parameters and isotope effects for acetoin formation in the presence and absence of the nonsubstrate allosteric effector pyruvamide: pyruvamide activation occurs by stabilization of the acetaldehyde/PDC ternary complex. The magnitudes of primary L(V/K)-type (L = D or T) isotope effects on C(alpha)-proton transfer from alpha 4-PDC-bound HETDP provide no evidence for significant breakdown of the Swain-Schaad relationship that would indicate partitioning of the putative C(alpha)-carbanion/enamine intermediate between HETDP and products. The substrate concentration dependence of the deuterium primary kinetic isotope effects provides evidence for an intrinsic isotope effect of 4.1 for C(alpha)-proton transfer from alpha 4-PDC-bound HETDP. A 1.10 +/- 0.02-fold 14C isotope discrimination against [1,2-14C]acetaldehyde in acetoin formation is inconsistent with a stepwise mechanism, in which the addition step occurs after rate-limiting formation of the C(alpha)-carbanion/enamine as a discrete enzyme-bound intermediate, and provides evidence for a concerted reaction mechanism with an important component of carbon-carbon bond formation in the transition state.

  1. Localization, Purification, and Functional Reconstitution of the P4-ATPase Atp8a2, a Phosphatidylserine Flippase in Photoreceptor Disc Membranes*

    PubMed Central

    Coleman, Jonathan A.; Kwok, Michael C. M.; Molday, Robert S.

    2009-01-01

    P4-ATPases comprise a relatively new subfamily of P-type ATPases implicated in the energy-dependent translocation of aminophospholipids across cell membranes. In this study, we report on the localization and functional properties of Atp8a2, a member of the P4-ATPase subfamily that has not been studied previously. Reverse transcription-PCR revealed high expression of atp8a2 mRNA in the retina and testis. Within the retina, immunofluorescence microscopy and subcellular fractionation studies localized Atp8a2 to outer segment disc membranes of rod and cone photoreceptor cells. Atp8a2 purified from photoreceptor outer segments by immunoaffinity chromatography exhibited ATPase activity that was stimulated by phosphatidylserine and to a lesser degree phosphatidylethanolamine but not by phosphatidylcholine or other membrane lipids. Purified Atp8a2 was reconstituted into liposomes containing fluorescent-labeled phosphatidylserine to measure the ability of Atp8a2 to flip phosphatidylserine across the lipid bilayer. Fluorescence measurements showed that Atp8a2 flipped fluorescent-labeled phosphatidylserine from the inner leaflet of liposomes (equivalent to the exocytoplasmic leaflet of cell membranes) to the outer leaflet (equivalent to cytoplasmic leaflet) in an ATP-dependent manner. Our studies provide the first direct biochemical evidence that purified P4-ATPases can translocate aminophospholipids across membranes and further implicates Atp8a2 in the generation and maintenance of phosphatidylserine asymmetry in photoreceptor disc membranes. PMID:19778899

  2. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    PubMed

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  3. Retina maturation following administration of thyroxine in developing rats: effects on polyamine metabolism and glutamate decarboxylase.

    PubMed

    Macaione, S; Di Giorgio, R M; Nicotina, P A; Ientile, R

    1984-08-01

    The effects of subcutaneous daily treatment with thyroxine on cell proliferation, differentiation, polyamines, and gamma-aminobutyric acid metabolism in the rat retina were studied during the first 20 postnatal days. The retinal layers of the treated rats displayed an enhanced cell differentiation which reached its maximum 9-12 days from birth; but this effect stopped very quickly and was finished by the 20th postnatal day. Primarily there was an increase in ornithine decarboxylase activity which was accompanied by an increase in putrescine, spermidine, and spermine levels. S-Adenosylmethionine decarboxylase was induced later than ODC; corresponding with the enhanced synaptogenesis, glutamate decarboxylase increased 15-fold between the fourth and 15th days. Our data are consistent with the hypothesis that thyroxine may exert some of its effects by inducing the enzymes which regulate polyamine metabolism and synaptogenesis.

  4. Inhibition of Ornithine Decarboxylase and Growth of the Fungus Helminthosporium maydis1

    PubMed Central

    Birecka, Helena; Garraway, Michael O.; Baumann, Russell J.; McCann, Peter P.

    1986-01-01

    α-dl-Difluoromethylornithine (DFMO), a specific enzyme-activated inhibitor of ornithine decarboxylase, at 0.5 to 2.0 millimolar significantly inhibited mycelial growth and especially sporulation of Helminthosporium maydis in the dark; its inhibitory effect on sporulation was greatly increased under light conditions. Putrescine at 0.25 millimolar fully prevented the inhibitory effects of DFMO; the inhibition caused by the latter could not be prevented by cadaverine or CaCl2. α-dl-Difluoromethylarginine, a specific enzyme-activated inhibitor of arginine decarboxylase, at 0.1 to 2.0 millimolar had a weak inhibitory effect on the fungus. The effect was not dependent on the inhibitor concentration and there was no detectable arginine decarboxylase activity in the fungus. PMID:16664707

  5. Arginine Decarboxylase and Putrescine Oxidase in Ovaries of Pisum sativum L. (Changes during Ovary Senescence and Early Stages of Fruit Development).

    PubMed Central

    Perez-Amador, M. A.; Carbonell, J.

    1995-01-01

    Enzymatic activities involved in putrescine metabolism in ovaries of Pisum sativum L. during ovary senescence and fruit set were investigated. Accumulation of putrescine was observed during incubation of extracts from gibberellic acid-treated unpollinated ovaries (young developing fruits) but not in extracts from untreated ovaries (senescent ovaries). Extracts from pea ovaries showed arginine decarboxylase (ADC) activity, but ornithine decarboxylase and arginase activity were not detected. ADC activity decreased in presenescent ovaries and increased markedly after induction of fruit set with gibberellic acid. Increases in ADC activity were also observed with application of other plant growth substances (benzy-ladenine and 2,4-dichlorophenoxyacetic acid), after pollination, and in the slender (la crys) pea mutant. By contrast, putrescine oxidase activity increased in presenescent ovaries but did not increase during early fruit development. All of these results suggest that ADC and putrescine oxidase are involved in the control of putrescine metabolism. Ovary senescence is characterized by the absence of putrescine biosynthesis enzymes and increased levels of putrescine oxidase and fruit development by an increase in ADC and a constant level of putrescine oxidase. PMID:12228409

  6. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate.

    PubMed

    Gamat, Melissa; Malinowski, Rita L; Parkhurst, Linnea J; Steinke, Laura M; Marker, Paul C

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  7. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  8. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  9. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  10. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  11. Antibodies against Native and Oxidized Cardiolipin and Phosphatidylserine and Phosphorylcholine in Atherosclerosis Development

    PubMed Central

    Frostegård, Anna G.; Su, Jun; Hua, Xiang; Vikström, Max; de Faire, Ulf; Frostegård, Johan

    2014-01-01

    Background Antibodies against cardiolipin and phosphatidylserine (anti-CL and anti-PS) are associated with thrombosis. In contrast, we determined that IgM antibodies against oxidized CL and PS (OxCL and OxPS) and phosphorylcholine (anti-PC) could be protection markers for cardiovascular disease (CVD). Methods 226 individuals with established hypertension (diastolic pressure>95 mmHg) from the European Lacidipine Study on Atherosclerosis. Antibodies were tested by ELISA. As a surrogate measure of atherosclerosis, the mean of the maximum intima-media thicknesses (IMT) in the far walls of common carotids and bifurcations was determined by ultrasonography at the time of inclusion and 4 years following inclusion. Results Increases in IMT measures at follow-up were significantly less common in subjects which at baseline had high IgM anti-OxPS and anti-PC at above 75th percentile: OR 0,45, CI (0,23–0,86) and OR 0.37, CI (0,19–0,71), p = 0.0137 respectively and above 90th percentile: OR 0.32, CI (0,12–0,84) and OR 0.39, CI (0,15–1.00), p = 0.050 and OR 0,22, CI (0,08–0,59) p = 0,0029. IgM anti-OxCL was negatively associated with IMT increases (OR, 0.32, CI (0,12–0,84), p = 0231). There were no associations for IgM anti-PS or anti-CL. Anti-PC, as determined herein by a commercial ELISA, was strongly associated with data from our previously published in house ELISA (R = 0,87; p<0,0001).) Anti-PC was also a risk marker at low levels (below 25th percentile; OR = 2,37 (1,16–4,82), p = 0,0177). Conclusions High levels of IgM anti-OxPS and anti-OxCL, but not traditional anti-phospholipid antibodies (anti-PS and anti-CL), are associated with protection against atherosclerosis development. In addition, low IgM anti-PC was a risk marker but high a protection marker. PMID:25473948

  12. Heat accumulator

    SciTech Connect

    Bracht, A.

    1981-09-29

    A heat accumulator comprises a thermally-insulated reservoir full of paraffin wax mixture or other flowable or meltable heat storage mass, heat-exchangers immersed in the mass, a heat-trap connected to one of the heat-exchangers, and a heat user connected to the other heat-exchanger. Pumps circulate fluids through the heat-trap and the heat-using means and the respective heat-exchangers, and a stirrer agitates and circulates the mass, and the pumps and the stirrer and electric motors driving these devices are all immersed in the mass.

  13. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Putrescine and spermidine accumulate in cereal cells and protoplasts exposed to various osmotica (sorbitol, mannitol, proline, betaine, or sucrose). The response is fast (1-2 hour lag), massive (50- to 60-fold increase in putrescine), and is not due to release of putrescine from a bound form or to conversion from spermidine. It rather involves the activation of the biosynthetic pathway mediated by arginine decarboxylase (ADC; EC 4.1.1.19) (Flores and Galston 1982 Science 217: 1259). Polyamine accumulation and the rise in ADC activity in osmotically stressed tissue are prevented by ADC inhibitors (α-difluoromethylarginine, d-arginine, and l-canavanine) but are not affected by α-difluoromethylornithine and methylornithine, inhibitors of the alternative putrescine biosynthetic enzyme ornithine decarboxylase (EC 4.1.1.17). Putrescine accumulation by oat and corn leaves is maximal in solutions only slightly hyperosmotic (0.4 molar). The stress response, which declines with leaf age, is completely prevented by cycloheximide (10 to 50 micrograms per milliliter) when added during the first hour of exposure to osmoticum, and partially by transcription inhibitors (cordycepin, Actinomycin D, 5 to 20 micrograms per milliliter). Oat seedlings allowed to wilt by withholding water also show a rise in polyamine titer and ADC activity. This response is not readily reversible upon rewatering. PMID:16663551

  14. Isofunctional enzymes PAD1 and UbiX catalyze formation of a novel cofactor required by ferulic acid decarboxylase and 4-hydroxy-3-polyprenylbenzoic acid decarboxylase.

    PubMed

    Lin, Fengming; Ferguson, Kyle L; Boyer, David R; Lin, Xiaoxia Nina; Marsh, E Neil G

    2015-04-17

    The decarboxylation of antimicrobial aromatic acids such as phenylacrylic acid (cinnamic acid) and ferulic acid by yeast requires two enzymes described as phenylacrylic acid decarboxylase (PAD1) and ferulic acid decarboxylase (FDC). These enzymes are of interest for various biotechnological applications, such as the production of chemical feedstocks from lignin under mild conditions. However, the specific role of each protein in catalyzing the decarboxylation reaction remains unknown. To examine this, we have overexpressed and purified both PAD1 and FDC from E. coli. We demonstrate that PAD1 is a flavin mononucleotide (FMN)-containing protein. However, it does not function as a decarboxylase. Rather, PAD1 catalyzes the formation of a novel, diffusible cofactor required by FDC for decarboxylase activity. Coexpression of FDC and PAD1 results in the production of FDC with high levels cofactor bound. Holo-FDC catalyzes the decarboxylation of phenylacrylic acid, coumaric acid and ferulic acid with apparent kcat ranging from 1.4-4.6 s(-1). The UV-visible and mass spectra of the cofactor indicate that it appears to be a novel, modified form of reduced FMN; however, its instability precluded determination of its structure. The E. coli enzymes UbiX and UbiD are related by sequence to PAD1 and FDC respectively and are involved in the decarboxylation of 4-hydroxy-3-octaprenylbenzoic acid, an intermediate in ubiquinone biosynthesis. We found that endogenous UbiX can also activate FDC. This implies that the same cofactor is required for decarboxylation of 4-hydroxy-3-polyprenylbenzoic acid by UbiD and suggests a wider role for this cofactor in metabolism.

  15. TIM-4, a Receptor for Phosphatidylserine, Controls Adaptive Immunity by Regulating the Removal of Antigen-Specific T Cells

    PubMed Central

    Albacker, Lee A.; Karisola, Piia; Chang, Ya-Jen; Umetsu, Sarah E.; Zhou, Meixia; Akbari, Omid; Kobayashi, Norimoto; Baumgarth, Nicole; Freeman, Gordon J.; Umetsu, Dale T.; DeKruyff, Rosemarie H.

    2010-01-01

    Adaptive immunity is characterized by the expansion of an Ag-specific T cell population following Ag exposure. The precise mechanisms, however, that control the expansion and subsequent contraction in the number of Ag-specific T cells are not fully understood. We show that T cell/transmembrane, Ig, and mucin (TIM)-4, a receptor for phosphatidylserine, a marker of apoptotic cells, regulates adaptive immunity in part by mediating the removal of Ag-specific T cells during the contraction phase of the response. During Ag immunization or during infection with influenza A virus, blockade of TIM-4 on APCs increased the expansion of Ag-specific T cells, resulting in an increase in secondary immune responses. Conversely, overexpression of TIM-4 on APCs in transgenic mice reduced the number of Ag-specific T cells that remained after immunization, resulting in reduced secondary T cell responses. There was no change in the total number of cell divisions that T cells completed, no change in the per cell proliferative capacity of the remaining Ag-specific T cells, and no increase in the development of Ag-specific regulatory T cells in TIM-4 transgenic mice. Thus, TIM-4–expressing cells regulate adaptive immunity by mediating the removal of phosphatidylserine-expressing apoptotic, Ag-specific T cells, thereby controlling the number of Ag-specific T cells that remain after the clearance of Ag or infection. PMID:21037090

  16. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy.

    PubMed

    Facchini, P. J.; De Luca, V.

    1995-11-01

    Tyrosine/dopa decarboxylase (TYDC) catalyzes the formation of tyramine and dopamine and represents the first steps in the biosynthesis of the large and diverse group of tetrahydroisoquinoline alkaloids. Opium poppy accumulates morphine in aerial organs and roots, whereas sanguinarine, which is derived from a distinct branch pathway, accumulates only in roots. Expression of the TYDC gene family in opium poppy was investigated in relation to the organ-specific biosynthesis of these different types of alkaloids. Members of the TYDC gene family are classified into two groups (represented by TYDC1 and TYDC2) and are differentially expressed. In the mature plant, TYDC2-like transcripts are predominant in stems and are also present in roots, whereas TYDC1-like transcripts are abundant only in roots. In situ hybridization analysis revealed that the expression of TYDC genes is developmentally regulated. TYDC transcripts are associated with vascular tissue in mature roots and stems but are also expressed in cortical tissues at earlier stages of development. Expression of TYDC genes is restricted to metaphloem and to protoxylem in the vascular bundles of mature aerial organs. Localization of TYDC transcripts in the phloem is consistent with the expected developmental origin of laticifers, which are specialized internal secretory cells that accompany vascular tissues in all organs of select species and that contain the alkaloid-rich latex in aerial organs. The differential expression of TYDC genes and the organ-dependent accumulation of different alkaloids suggest a coordinated regulation of specific alkaloid biosynthetic genes that are ultimately controlled by specific developmental programs.

  17. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  18. A novel approach to inhibit intracellular vitamin B6-dependent enzymes: proof of principle with human and plasmodium ornithine decarboxylase and human histidine decarboxylase.

    PubMed

    Wu, Fang; Christen, Philipp; Gehring, Heinz

    2011-07-01

    Pyridoxal-5'-phosphate (vitamin B(6))-dependent enzymes play central roles in the metabolism of amino acids. Moreover, the synthesis of polyamines, which are essential for cell growth, and of biogenic amines, such as histamine and other signal transmitters, relies on these enzymes. Certain B(6) enzymes thus are prime targets for pharmacotherapeutic intervention. We have devised a novel, in principle generally applicable strategy for obtaining small-molecule cell-permeant inhibitors of specific B(6) enzymes. The imine adduct of pyridoxal-5'-phosphate and the specific amino acid substrate, the first intermediate in all pyridoxal-5'-phosphate-dependent reactions of amino acids, was reduced to a stable secondary amine. This coenzyme-substrate-conjugate was modified further to make it membrane-permeant and, guided by structure-based modeling, to boost its affinity to the apoform of the target enzyme. Inhibitors of this type effectively decreased the respective intracellular enzymatic activity (IC(50) in low micromolar range), providing lead compounds for inhibitors of human ornithine decarboxylase (hODC), plasmodium ornithine decarboxylase, and human histidine decarboxylase. The inhibitors of hODC interfere with the metabolism of polyamines and efficiently prevent the proliferation of tumor cell lines (IC(50)∼ 25 μM). This approach to specific inhibition of intracellular B(6) enzymes might be applied in a straightforward manner to other B(6) enzymes of emerging medicinal interest. PMID:21454364

  19. Pyruvate decarboxylase from Pisum sativum. Properties, nucleotide and amino acid sequences.

    PubMed

    Mücke, U; Wohlfarth, T; Fiedler, U; Bäumlein, H; Rücknagel, K P; König, S

    1996-04-15

    To study the molecular structure and function of pyruvate decarboxylase (PDC) from plants the protein was isolated from pea seeds and partially characterised. The active enzyme which occurs in the form of higher oligomers consists of two different subunits appearing in SDS/PAGE and mass spectroscopy experiments. For further experiments, like X-ray crystallography, it was necessary to elucidate the protein sequence. Partial cDNA clones encoding pyruvate decarboxylase from seeds of Pisum sativum cv. Miko have been obtained by means of polymerase chain reaction techniques. The first sequences were found using degenerate oligonucleotide primers designated according to conserved amino acid sequences of known pyruvate decarboxylases. The missing parts of one cDNA were amplified applying the 3'- and 5'-rapid amplification of cDNA ends systems. The amino acid sequence deduced from the entire cDNA sequence displays strong similarity to pyruvate decarboxylases from other organisms, especially from plants. A molecular mass of 64 kDa was calculated for this protein correlating with estimations for the smaller subunit of the oligomeric enzyme. The PCR experiments led to at least three different clones representing the middle part of the PDC cDNA indicating the existence of three isozymes. Two of these isoforms could be confirmed on the protein level by sequencing tryptic peptides. Only anaerobically treated roots showed a positive signal for PDC mRNA in Northern analysis although the cDNA from imbibed seeds was successfully used for PCR.

  20. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  1. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature. PMID:25953178

  2. Aerobically incubated medium for decarboxylase testing of Enterobacteriaceae by replica-plating methods.

    PubMed

    Maccani, J E

    1979-12-01

    An aerobically incubated, agar-based medium was developed for amino acid decarboxylase testing of Enterobacteriaceae family members by replica-plating methods. Results with the new medium agreed 97 to 99% with the reference broth method of Moeller, and no false-positive reactions were encountered.

  3. The Ornithine Decarboxylase Gene of Caenorhabditis Elegans: Cloning, Mapping and Mutagenesis

    PubMed Central

    Macrae, M.; Plasterk, RHA.; Coffino, P.

    1995-01-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 422 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5' RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved stage 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. PMID:7498733

  4. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  5. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  6. The ornithine decarboxylase gene of Caenorhabditis elegans: Cloning, mapping and mutagenesis

    SciTech Connect

    Macrae, M.; Coffino, P.; Plasterk, R.H.A.

    1995-06-01

    The gene (odc-1) encoding ornithine decarboxylase, a key enzyme in polyamine biosynthesis, was cloned and characterized. Two introns interrupt the coding sequence of the gene. The deduced protein contains 442 amino acids and is homologous to ornithine decarboxylases of other eukaryotic species. In vitro translation of a transcript of the cDNA yielded an enzymatically active product. The mRNA is 1.5 kb in size and is formed by trans-splicing to SL1, a common 5{prime} RNA segment. odc-1 maps to the middle of LG V, between dpy-11 and unc-42 and near a breakpoint of the nDf32 deficiency strain. Enzymatic activity is low in starved 1 (L1) larva and, after feeding, rises progressively as the worms develop. Targeted gene disruption was used to create a null allele. Homozygous mutants are normally viable and show no apparent defects, with the exception of a somewhat reduced brood size. In vitro assays for ornithine decarboxylase activity, however, show no detectable enzymatic activity, suggesting that ornithine decarboxylase is dispensible for nematode growth in the laboratory. 37 refs., 6 figs., 1 tab.

  7. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  8. Draft Genome Sequence of Bordetella bronchiseptica KU1201, the First Isolation Source of Arylmalonate Decarboxylase.

    PubMed

    Yoshida, Shosuke; Enoki, Junichi; Hemmi, Risa; Kourist, Robert; Kawakami, Norifumi; Miyamoto, Kenji

    2015-01-01

    The analysis of the 6.8-Mbp draft genome sequence of the phenylmalonate-assimilating bacterium Bordetella bronchiseptica KU1201 identified 6,358 protein-coding sequences. This will give us an insight into the catabolic variability of this strain for aromatic compounds, along with the roles of arylmalonate decarboxylases in nature.

  9. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH. PMID:21957966

  10. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  11. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  12. Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase1[W

    PubMed Central

    Chakraborty, Niranjan; Ghosh, Rajgourab; Ghosh, Sudip; Narula, Kanika; Tayal, Rajul; Datta, Asis; Chakraborty, Subhra

    2013-01-01

    The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value. PMID:23482874

  13. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase

    PubMed Central

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-01-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix–loop–helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 –, was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  14. ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase.

    PubMed

    Huang, Xiao-San; Zhang, Qinghua; Zhu, Dexin; Fu, Xingzheng; Wang, Min; Zhang, Qian; Moriguchi, Takaya; Liu, Ji-Hong

    2015-06-01

    ICE1 (Inducer of CBF Expression 1) encodes a MYC-like basic helix-loop-helix transcription factor that acts as a central regulator of cold response. In this study, we elucidated the function and underlying mechanisms of PtrICE1 from trifoliate orange [Poncirus trifoliata (L.) Raf.]. PtrICE1 was upregulated by cold, dehydration, and salt, with the greatest induction under cold conditions. PtrICE1 was localized in the nucleus and could bind to a MYC-recognizing sequence. Ectopic expression of PtrICE1 in tobacco and lemon conferred enhanced tolerance to cold stresses at either chilling or freezing temperatures. Yeast two-hybrid screening revealed that 21 proteins belonged to the PtrICE1 interactome, in which PtADC (arginine decarboxylase) was confirmed as a bona fide protein interacting with PtrICE1. Transcript levels of ADC genes in the transgenic lines were slightly elevated under normal growth condition but substantially increased under cold conditions, consistent with changes in free polyamine levels. By contrast, accumulation of the reactive oxygen species, H2O2 and O2 (-), was appreciably alleviated in the transgenic lines under cold stress. Higher activities of antioxidant enzymes, such as superoxide dismutase and catalase, were detected in the transgenic lines under cold conditions. Taken together, these results demonstrated that PtrICE1 plays a positive role in cold tolerance, which may be due to modulation of polyamine levels through interacting with the ADC gene. PMID:25873670

  15. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  16. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  17. 4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins

    PubMed Central

    Jeremy, Kris P.; Plummer, Zoe E.; Head, David J.; Madgett, Tracey E.; Sanders, Kelly L.; Wallington, Amanda; Storry, Jill R.; Gilsanz, Florinda; Delaunay, Jean; Avent, Neil D.

    2009-01-01

    Background Protein 4.1R is an important component of the red cell membrane skeleton. It imparts structural integrity and has transmembrane signaling roles by direct interactions with transmembrane proteins and other membrane skeletal components, notably p55 and calmodulin. Design and Methods Spontaneous and ligation-induced phosphatidylserine exposure on erythrocytes from two patients with 4.1R deficiency were studied, using CD47 glycoprotein and glycophorin C as ligands. We also looked for protein abnormalities in the 4.1R - based multiprotein complex. Results Phosphatidylserine exposure was significantly increased in 4.1R-deficient erythrocytes obtained from the two different individuals when ligands to CD47 glycoprotein were bound. Spontaneous phosphatidylserine exposure was normal. 4.1R, glycophorin C and p55 were missing or sharply reduced. Furthermore there was an alteration or deficiency of CD47 glycoprotein and a lack of CD44 glycoprotein. Based on a recent study in 4.1R-deficient mice, we found that there are clear functional differences between interactions of human red cell 4.1R and its murine counterpart. Conclusions Glycophorin C is known to bind 4.1R, and we have defined previously that it also binds CD47. From our evidence, we suggest that 4.1R plays a role in the phosphatidylserine exposure signaling pathway that is of fundamental importance in red cell turnover. The linkage of CD44 to 4.1R may be relevant to this process. PMID:19794081

  18. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves 1

    PubMed Central

    Flores, Hector E.; Galston, Arthur W.

    1984-01-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [14C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as α-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells. PMID:16663552

  19. Targeting Tryptophan Decarboxylase to Selected Subcellular Compartments of Tobacco Plants Affects Enzyme Stability and in Vivo Function and Leads to a Lesion-Mimic Phenotype1

    PubMed Central

    Di Fiore, Stefano; Li, Qiurong; Leech, Mark James; Schuster, Flora; Emans, Neil; Fischer, Rainer; Schillberg, Stefan

    2002-01-01

    Tryptophan decarboxylase (TDC) is a cytosolic enzyme that catalyzes an early step of the terpenoid indole alkaloid biosynthetic pathway by decarboxylation of l-tryptophan to produce the protoalkaloid tryptamine. In the present study, recombinant TDC was targeted to the chloroplast, cytosol, and endoplasmic reticulum (ER) of tobacco (Nicotiana tabacum) plants to evaluate the effects of subcellular compartmentation on the accumulation of functional enzyme and its corresponding enzymatic product. TDC accumulation and in vivo function was significantly affected by the subcellular localization. Immunoblot analysis demonstrated that chloroplast-targeted TDC had improved accumulation and/or stability when compared with the cytosolic enzyme. Because ER-targeted TDC was not detectable by immunoblot analysis and tryptamine levels found in transient expression studies and in transgenic plants were low, it was concluded that the recombinant TDC was most likely unstable if ER retained. Targeting TDC to the chloroplast stroma resulted in the highest accumulation level of tryptamine so far reported in the literature for studies on heterologous TDC expression in tobacco. However, plants accumulating high levels of functional TDC in the chloroplast developed a lesion-mimic phenotype that was probably triggered by the relatively high accumulation of tryptamine in this compartment. We demonstrate that subcellular targeting may provide a useful strategy for enhancing accumulation and/or stability of enzymes involved in secondary metabolism and to divert metabolic flux toward desired end products. However, metabolic engineering of plants is a very demanding task because unexpected, and possibly unwanted, effects may be observed on plant metabolism and/or phenotype. PMID:12114570

  20. INTRACELLULAR TRANSPORT. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts.

    PubMed

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B; Narayanaswamy, Pradeep; Wenk, Markus R; Nakatsu, Fubito; De Camilli, Pietro

    2015-07-24

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)-related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS countertransport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM.

  1. New tests to detect antiphospholipid antibodies: antiprothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies.

    PubMed

    Sciascia, Savino; Khamashta, Munther A; Bertolaccini, Maria Laura

    2014-05-01

    Antiprothrombin antibodies have been proposed as potential new biomarkers for thrombosis and/or pregnancy morbidity in the setting of the antiphospholipid syndrome (APS). Antiprothrombin antibodies are commonly detected by ELISA, using prothrombin coated onto irradiated plates (aPT), or prothrombin in complex with phosphatidylserine (aPS/PT), as antigen. Although these antibodies can co-exist in the same patient, aPT and aPS/PT seem to belong to different populations of autoantibodies. Early research explored the role of antibodies to prothrombin as potential antigenic targets for the lupus anticoagulant (LA). To date their clinical significance is being investigated and their potential role in identifying patients at higher risk of developing thrombotic events or pregnancy morbidity is being probed.

  2. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse.

    PubMed

    Hu, Q; Joshi, R P; Schoenbach, K H

    2005-09-01

    A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100 kV/cm), ultrashort (10 ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5 ns. These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.

  3. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Joshi, R. P.; Schoenbach, K. H.

    2005-09-01

    A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV/cm) , ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns . These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.

  4. Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    PubMed Central

    Castaño, E; Dalmau, M; Barragán, M; Pueyo, G; Bartrons, R; Gil, J

    1999-01-01

    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaign PMID:10496355

  5. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  6. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    SciTech Connect

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.; Vinogradov, V.A.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  7. Histidine decarboxylase deficiency causes tourette syndrome: parallel findings in humans and mice.

    PubMed

    Castellan Baldan, Lissandra; Williams, Kyle A; Gallezot, Jean-Dominique; Pogorelov, Vladimir; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E; Ercan-Sencicek, A Gulhan; Krusong, Kuakarun; Leventhal, Bennett L; Ohtsu, Hiroshi; Bloch, Michael H; Hughes, Zoë A; Krystal, John H; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W; Pittenger, Christopher

    2014-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine (DA) D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal DA levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. DA D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm histidine decarboxylase deficiency as a rare cause of TS and identify HA-DA interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  8. Evidence for PQQ as cofactor in 3,4-dihydroxyphenylalanine (dopa) decarboxylase of pig kidney.

    PubMed

    Groen, B W; van der Meer, R A; Duine, J A

    1988-09-12

    Pig kidney 3,4-dihydroxyphenylalanine (dopa) decarboxylase (EC 4.1.1.28) was purified to homogeneity. Treatment of the enzyme with phenylhydrazine (PH) according to a procedure developed for analysis of quinoproteins gave products which were identified as the hydrazone of pyridoxal phosphate (PLP) and the C(5)-hydrazone of pyrroloquinoline quinone (PQQ). This method failed, however, in quantifying the amounts of cofactor. Direct hydrolysis of the enzyme by refluxing with hexanol and concentrated HCl led to detachment of PQQ from the protein in a quantity of 1 PQQ per enzyme molecule. In view of the reactivity of PQQ towards amines and amino acids, we postulate that it participates as a covalently bound cofactor in the catalytic cycle of the enzyme, in interplay with PLP. Since several other enzymes have been reported to show the atypical behaviour of dopa decarboxylase, it seems that the PLP-containing group of enzymes can be subdivided into pyridoxoproteins and pyridoxo-quinoproteins.

  9. Volatile Organic Compounds Derived from 2-Keto-Acid Decarboxylase in Microcystis aeruginosa

    PubMed Central

    Hasegawa, Masateru; Nishizawa, Akito; Tsuji, Kiyomi; Kimura, Shigenobu; Harada, Ken-ichi

    2012-01-01

    Volatile organic compounds (VOCs), 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol, were detected together with β-cyclocitral from the cyanobacterium Microcystis aeruginosa NIES-843. These alcohols were optimally produced after 35 d of culture, during which nitrate nitrogen in the cultured broth became exhausted. Additionally, these alcohols were definitely produced using the 2-keto-acid decarboxylase (MaKDC) in Microcystis strains. These results suggested that these VOCs from Microcystis are significant for their lifecycle, because these compounds are not produced by any other genus of cyanobacteria. This is the first report of 2-keto-acid decarboxylase producing 3-methyl-1-butanol and 2-phenylethanol by an oxygenic photosynthetic microorganism. PMID:23047148

  10. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  11. Unusual space-group pseudo symmetry in crystals of human phosphopantothenoylcysteine decarboxylase

    SciTech Connect

    Manoj, N.; Ealick, S.E.

    2010-12-01

    Phosphopantothenoylcysteine (PPC) decarboxylase is an essential enzyme in the biosynthesis of coenzyme A and catalyzes the decarboxylation of PPC to phosphopantetheine. Human PPC decarboxylase has been expressed in Escherichia coli, purified and crystallized. The Laue class of the diffraction data appears to be {bar 3}m, suggesting space group R32 with two monomers per asymmetric unit. However, the crystals belong to the space group R3 and the asymmetric unit contains four monomers. The structure has been solved using molecular replacement and refined to a current R factor of 29%. The crystal packing can be considered as two interlaced lattices, each consistent with space group R32 and with the corresponding twofold axes parallel to each other but separated along the threefold axis. Thus, the true space group is R3 with four monomers per asymmetric unit.

  12. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  13. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  14. Observation of superoxide production during catalysis of Bacillus subtilis oxalate decarboxylase at pH 4.

    PubMed

    Twahir, Umar T; Stedwell, Corey N; Lee, Cory T; Richards, Nigel G J; Polfer, Nicolas C; Angerhofer, Alexander

    2015-03-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin-trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion, both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping are similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  15. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  16. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  17. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development. PMID:22718265

  18. Autoradiographic measurement of relative changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons

    SciTech Connect

    Wells, M.R.

    1986-05-01

    An autoradiographic method is described for detecting changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons of rats using (3H)difluoromethylornithine. An increase in binding to neurons was seen at 12 h and 1 day after crushing the postganglionic nerves. Binding returned to control values between 3 and 5 days postoperation. The patterns found using this method were in general agreement with prior reports of enzymatic changes in whole ganglia.

  19. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    SciTech Connect

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J.

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  20. A defect in pyruvate decarboxylase in a child with an intermittent movement disorder

    PubMed Central

    Blass, John P.; Avigan, Joel; Uhlendorf, B. William

    1970-01-01

    A patient with an intermittent movement disorder has been found to have an inherited defect in pyruvate decarboxylase ((2-oxo-acid carboxy-lyase, E.C. 4.1.1.1.). The patient is a 9 yr old boy who since infancy has had repeated episodes of a combined cerebellar and choreoathetoid movement disorder. He has an elevated level of pyruvic acid in his blood, an elevated urinary alanine content, and less marked elevations in blood alanine and lactate. Methods were developed to study his metabolic abnormality in dilute suspensions of white blood cells and cultured skin fibroblasts, as well as in cell-free sonicates of fibroblasts. Oxidation of pyruvic acid-1-14C and pyruvic acid-2-14C by his cells and pyruvate decarboxylase activity in sonicates of his cells were less than 20% of those in cells from control subjects. Oxidation of glutamic acid-U-14C, acetate-1-14C, and palmitate-1-14C was normal, as was incorporation of alanine-U-14C into protein. The rate of oxidation of pyruvic acid by the father's cells and the activity of pyruvate decarboxylase in the father's sonicated fibroblasts were intermediate between those of the patient and those of controls. Values for the mother were at or just below the lower limits of the ranges in controls. Kinetic data suggested the posibility of several forms of pyruvate decarboxylase in this family. Possible mechanisms relating the chemical abnormality and the clinical symptoms in this patient are discussed. PMID:4313434

  1. Mechanism of cysteine-dependent inactivation of aspartate/glutamate/cysteine sulfinic acid α-decarboxylases.

    PubMed

    Liu, Pingyang; Torrens-Spence, Michael P; Ding, Haizhen; Christensen, Bruce M; Li, Jianyong

    2013-02-01

    Animal aspartate decarboxylase (ADC), glutamate decarboxylase (GDC) and cysteine sulfinic acid decarboxylase (CSADC) catalyze the decarboxylation of aspartate, glutamate and cysteine sulfinic acid to β-alanine, γ-aminobutyric acid and hypotaurine, respectively. Each enzymatic product has been implicated in different physiological functions. These decarboxylases use pyridoxal 5-phosphate (PLP) as cofactor and share high sequence homology. Analysis of the activity of ADC in the presence of different amino determined that beta-alanine production from aspartate was diminished in the presence of cysteine. Comparative analysis established that cysteine also inhibited GDC and CSADC in a concentration-dependent manner. Spectral comparisons of free PLP and cysteine, together with ADC and cysteine, result in comparable spectral shifts. Such spectral shifts indicate that cysteine is able to enter the active site of the enzyme, interact with the PLP-lysine internal aldimine, form a cysteine-PLP aldimine and undergo intramolecular nucleophilic cyclization through its sulfhydryl group, leading to irreversible ADC inactivation. Cysteine is the building block for protein synthesis and a precursor of cysteine sulfinic acid that is the substrate of CSADC and therefore is present in many cells, but the presence of cysteine (at comparable concentrations to their natural substrates) apparently could severely inhibit ADC, CSADC and GDC activity. This raises an essential question as to how animal species prevent these enzymes from cysteine-mediated inactivation. Disorders of cysteine metabolism have been implicated in several neurodegenerative diseases. The results of our study should promote research in terms of mechanism by which animals maintain their cysteine homeostasis and possible relationship of cysteine-mediated GDC and CSADC inhibition in neurodegenerative disease development.

  2. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  3. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    SciTech Connect

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  4. Tissue and regional distribution of cysteic acid decarboxylase. A new assay method.

    PubMed

    Wu, J Y; Moss, L G; Chen, M S

    1979-04-01

    A sensitive and rapid assay method method for cysteic acid decarboxylase was develped which combined the selectivity of ion exchange resin (a complete retention of the substrate, cysteic acid, and exclusion of the product, taurine) with the speed of a vacuum filtration. The synthesis and purification of 35S-labeled cysteic acid were described. The validity of the assay was established by the identification of the reaction product as taurine. With this new method, the decarboxylase activity was measured in discrete regions of bovine brain. Putamen had the highest activity, 172 pmol taurine formed/min/mg protein (100%), followed by caudate nucleus, 90%; cerebral cortex, 82%; hypothalamus, 81%; cerebellar cortex, 79%; cerebellar peduncle, 59%; thalamus, 42%; brain stem, 25%; pons, 10%; and corpus callosum, 3%. The decarboxylase activity in various mouse tissues was also determined as follows: liver, 403; brain, 145; kidney, 143; spinal cord, 59; lung, 21; and spleen, 10 pmol taurine formed/min/mg. No activity could be detected in skeleton muscle and heart, suggesting a different biosynthetic pathway for taurine synthesis in these tissues. The advantages and disadvantages of the new assay method are also discussed.

  5. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of Escherichia coli.

    PubMed Central

    Canellakis, E S; Paterakis, A A; Huang, S C; Panagiotidis, C A; Kyriakidis, D A

    1993-01-01

    The ornithine decarboxylase antizyme gene of Escherichia coli was identified by immunological screening of an E. coli genomic library. A 6.4-kilobase fragment containing the antizyme gene was subcloned and sequenced. The open reading frame encoding the antizyme was identified on the basis of its ability to direct the synthesis of immunoreactive antizyme. Antizyme shares significant homology with bacterial transcriptional activators of the two-component regulatory system family; these systems consist of a "sensor" kinase and a transcriptional regulator. The open reading frame next to antizyme is homologous to sensor kinases. Antizyme overproduction inhibits the activities of both ornithine and arginine decarboxylases without affecting their protein levels. Extracts from E. coli bearing an antizyme gene-containing plasmid exhibit increased antizyme activity. These data strongly suggest that (i) the cloned gene encodes the ornithine decarboxylase antizyme and (ii) antizyme is a bifunctional protein serving as both an inhibitor of polyamine biosynthesis as well as a transcriptional regulator of an as yet unknown set of genes. Images Fig. 2 Fig. 4 Fig. 6 PMID:8346225

  6. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    PubMed

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  7. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  8. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA.

    PubMed Central

    Michael, A J; Furze, J M; Rhodes, M J; Burtin, D

    1996-01-01

    A cDNA for a plant ornithine decarboxylase (ODC), a key enzyme in putrescine and polyamine biosynthesis, has been isolated from root cultures of the solanaceous plant Datura stramonium. Reverse transcription-PCR employing degenerate oligonucleotide primers representing conserved motifs from other eukaryotic ODCs was used to isolate the cDNA. The longest open reading frame potentially encodes a peptide of 431 amino acids and exhibits similarity to other eukaryotic ODCs, prokaryotic and eukaryotic arginine decarboxylases (ADCs), prokaryotic meso-diaminopimelate decarboxylases and the product of the tabA gene of Pseudomonas syringae cv. tabaci. Residues involved at the active site of the mouse ODC are conserved in the plant enzyme. The plant ODC does not possess the C-terminal extension found in the mammalian enzyme, implicated in rapid turnover of the protein, suggesting that the plant ODC may have a longer half-life. Expression of the plant ODC in Escherichia coli and demonstration of ODC activity confirmed that the cDNA encodes an active ODC enzyme. This is the first description of the primary structure of a eukaryotic ODC isolated from an organism where the alternative ADC routine to putrescine is present. PMID:8660289

  9. The influence of dipalmitoyl phosphatidylserine on phase behaviour of and cellular response to lyotropic liquid crystalline dispersions.

    PubMed

    Shen, Hsin-Hui; Crowston, Jonathan G; Huber, Florian; Saubern, Simon; McLean, Keith M; Hartley, Patrick G

    2010-12-01

    Lyotropic liquid crystalline nanoparticles (cubosomes) have the potential to act as amphiphilic scaffolds for the presentation of lipids and subsequent application in, for example, bioseparations and therapeutic delivery. In this work we have formulated lyotropic liquid crystalline systems based on the synthetic amphiphile 1,2,3-trihydroxy-3,7,11,15-tetramethylhexadecane (phytantriol) and containing the lipid dipalmitoyl phosphatidylserine (DPPS). We have prepared a range of DPPS-containing phytantriol cubosome formulations and characterized them using Small Angle X-ray Scattering and Cryo-transmission electron microscopy. These techniques show that increased DPPS content induces marked changes in lyotropic liquid crystalline phase behaviour, characterized by changes in crystallographic dimensions and increases in vesicle content. Furthermore, in vitro cell culture studies indicate that these changes correlate with lipid/surfactant cellular uptake and cytotoxicity. A model cell membrane based on a surface supported phospholipid bilayer was used to gain insights into cubosome-bilayer interactions using Quartz Crystal Microgravimetry. The data show that mass uptake at the supported bilayer increased with DPPS content. We propose that the cytotoxicity of the DPPS-containing dispersions results from changes in lipid/surfactant phase behaviour and the preferential attachment and fusion of vesicles at the cell membrane.

  10. Phosphatidylserine (PS) Is Exposed in Choroidal Neovascular Endothelium: PS-Targeting Antibodies Inhibit Choroidal Angiogenesis In Vivo and Ex Vivo

    PubMed Central

    Li, Tao; Aredo, Bogale; Zhang, Kaiyan; Zhong, Xin; Pulido, Jose S.; Wang, Shusheng; He, Yu-Guang; Huang, Xianming; Brekken, Rolf A.; Ufret-Vincenty, Rafael L.

    2015-01-01

    Purpose Choroidal neovascularization (CNV) accounts for 90% of cases of severe vision loss in patients with advanced age-related macular degeneration. Identifying new therapeutic targets for CNV may lead to novel combination therapies to improve outcomes and reduce treatment burden. Our goal was to test whether phosphatidylserine (PS) becomes exposed in the outer membrane of choroidal neovascular endothelium, and whether this could provide a new therapeutic target for CNV. Methods Choroidal neovascularization was induced in C57BL/6J mice using laser photocoagulation. Choroidal neovascularization lesions costained for exposed PS and for intercellular adhesion molecule 2 (or isolectin B4) were imaged in flat mounts and in cross sections. The laser CNV model and a choroidal sprouting assay were used to test the effect of PS-targeting antibodies on choroidal angiogenesis. Choroidal neovascularization lesion size was determined by intercellular adhesion molecule 2 (ICAM-2) staining of flat mounts. Results We found that PS was exposed in CNV lesions and colocalized with vascular endothelial staining. Treatment with PS-targeting antibodies led to a 40% to 80% reduction in CNV lesion area when compared to treatment with a control antibody. The effect was the same as that seen using an equal dose of an anti-VEGF antibody. Results were confirmed using the choroid sprouting assay, an ex vivo model of choroidal angiogenesis. Conclusions We demonstrated that PS is exposed in choroidal neovascular endothelium. Furthermore, targeting this exposed PS with antibodies may be of therapeutic value in CNV. PMID:26529048

  11. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1

    PubMed Central

    Desai, Tanvi J.; Toombs, Jason E.; Minna, John D.; Brekken, Rolf A.; Udugamasooriya, Damith Gomika

    2016-01-01

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents. PMID:27120792

  12. Distinct Modes of Macrophage Recognition for Apoptotic and Necrotic Cells Are Not Specified Exclusively by Phosphatidylserine Exposure

    PubMed Central

    Cocco, Regina E.; Ucker, David S.

    2001-01-01

    The distinction between physiological (apoptotic) and pathological (necrotic) cell deaths reflects mechanistic differences in cellular disintegration and is of functional significance with respect to the outcomes that are triggered by the cell corpses. Mechanistically, apoptotic cells die via an active and ordered pathway; necrotic deaths, conversely, are chaotic and passive. Macrophages and other phagocytic cells recognize and engulf these dead cells. This clearance is believed to reveal an innate immunity, associated with inflammation in cases of pathological but not physiological cell deaths. Using objective and quantitative measures to assess these processes, we find that macrophages bind and engulf native apoptotic and necrotic cells to similar extents and with similar kinetics. However, recognition of these two classes of dying cells occurs via distinct and noncompeting mechanisms. Phosphatidylserine, which is externalized on both apoptotic and necrotic cells, is not a specific ligand for the recognition of either one. The distinct modes of recognition for these different corpses are linked to opposing responses from engulfing macrophages. Necrotic cells, when recognized, enhance proinflammatory responses of activated macrophages, although they are not sufficient to trigger macrophage activation. In marked contrast, apoptotic cells profoundly inhibit phlogistic macrophage responses; this represents a cell-associated, dominant-acting anti-inflammatory signaling activity acquired posttranslationally during the process of physiological cell death. PMID:11294896

  13. Targeted detection of phosphatidylserine in biomimetic membranes and in vitro cell systems using annexin V-containing cubosomes.

    PubMed

    Shen, Hsin-Hui; Lake, Vanessa; Le Brun, Anton P; James, Michael; Duff, Anthony P; Peng, Yong; McLean, Keith M; Hartley, Patrick G

    2013-11-01

    In this work we have formulated Annexin V (ANX) decorated phosphatidylserine containing phytantriol (PSPhy) cubosomes to act as probes for the enhanced detection of apoptotic membranes in both model and in vitro cell systems. Small angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (Cryo-TEM) indicated that ANX-containing PSPhy (ANX-PSPhy) cubosomes retain the Pn3m cubic symmetry and cubic phase nanoparticle characteristics of PSPhy cubosomes. The interaction of ANX-PSPhy cubosomes with apoptotic model and cellular membranes was also investigated using both quartz crystal microbalance with dissipation and confocal microscopy which confirmed that ANX-PSPhy cubosomes can selectively bind to apoptotic cells and model membranes. Neutron reflectometry has also been used to show strong binding of ANX-PSPhy cubosomes to a model apoptotic membrane, and in addition reveals changes in both the bilayer structure and in the internal structure of the cubosome in a region adjacent to the membrane as a result of material exchange. This material exchange between cubosome and apoptotic model bilayer was further demonstrated using Cryo-TEM. We have demonstrated that lipid bound protein, in this case Annexin V, can be used to target cubosome systems to biological surfaces in vitro.

  14. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients.

    PubMed Central

    Wang, R H; Phillips, G; Medof, M E; Mold, C

    1993-01-01

    Deoxygenation of erythrocytes from sickle cell anemia (SCA) patients alters membrane phospholipid distribution with increased exposure of phosphatidylethanolamine (PE) and phosphatidylserine (PS) on the outer leaflet. This study investigated whether altered membrane phospholipid exposure on sickle erythrocytes results in complement activation. In vitro deoxygenation of sickle but not normal erythrocytes resulted in complement activation measured by C3 binding. Additional evidence indicated that this activation was the result of the alterations in membrane phospholipids. First, complement was activated by normal erythrocytes after incubation with sodium tetrathionate, which produces similar phospholipid changes. Second, antibody was not required for complement activation by sickle or tetrathionate-treated erythrocytes. Third, the membrane regulatory proteins, decay-accelerating factor (CD55) and the C3b/C4b receptor (CD35), were normal on sickle and tetrathionate-treated erythrocytes. Finally, insertion of PE or PS into normal erythrocytes induced alternative pathway activation. SCA patients in crisis exhibited increased plasma factor Bb levels compared with baseline, and erythrocytes isolated from hospitalized SCA patients had increased levels of bound C3, indicating that alternative pathway activation occurs in vivo. Activation of complement may be a contributing factor in sickle crisis episodes, shortening the life span of erythrocytes and decreasing host defense against infections. Images PMID:7690777

  15. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes.

    PubMed

    Balasubramanian, K; Schroit, A J

    1998-10-30

    The binding and uptake of phosphatidylserine (PS)-expressing cells appears to involve multiple receptor-mediated systems that recognize the lipid either directly or indirectly through intermediate proteins that form a molecular bridge between the cells. Here we show that beta2-glycoprotein I (beta2GPI), a 50-kDa serum glycoprotein, binds PS-containing vesicles and serves as an intermediate for the interaction of these vesicles with macrophages. Chemical modification of lysines and cysteines abolished beta2GPI-dependent PS uptake by inhibiting the binding of PS to beta2GPI and the binding of PS.beta2GPI complex to macrophages, respectively. Recognition was mediated by beta2GPI and not by the lipid because antibodies to beta2GPI inhibited binding of the complex to macrophages. These results indicate that human (THP-1-derived) macrophages bind beta2GPI only after it is bound to its lipid ligand. Competition experiments with monosaccharides that inhibit lectin-dependent interactions, and PS.beta2GPI binding experiments using deglycosylated beta2GPI, suggested that carbohydrate residues were not required for macrophage recognition of the complex. Antibodies to putative macrophage PS receptors (CD36, CD68, and CD14) did not inhibit uptake of the complex. These data suggest that beta2GPI can bind cells that fail to maintain membrane lipid asymmetry and generate a specific bridging moiety that is recognized for clearance by a phagocyte receptor that is distinct from CD36, CD68, and CD14.

  16. Targeted detection of phosphatidylserine in biomimetic membranes and in vitro cell systems using annexin V-containing cubosomes.

    PubMed

    Shen, Hsin-Hui; Lake, Vanessa; Le Brun, Anton P; James, Michael; Duff, Anthony P; Peng, Yong; McLean, Keith M; Hartley, Patrick G

    2013-11-01

    In this work we have formulated Annexin V (ANX) decorated phosphatidylserine containing phytantriol (PSPhy) cubosomes to act as probes for the enhanced detection of apoptotic membranes in both model and in vitro cell systems. Small angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (Cryo-TEM) indicated that ANX-containing PSPhy (ANX-PSPhy) cubosomes retain the Pn3m cubic symmetry and cubic phase nanoparticle characteristics of PSPhy cubosomes. The interaction of ANX-PSPhy cubosomes with apoptotic model and cellular membranes was also investigated using both quartz crystal microbalance with dissipation and confocal microscopy which confirmed that ANX-PSPhy cubosomes can selectively bind to apoptotic cells and model membranes. Neutron reflectometry has also been used to show strong binding of ANX-PSPhy cubosomes to a model apoptotic membrane, and in addition reveals changes in both the bilayer structure and in the internal structure of the cubosome in a region adjacent to the membrane as a result of material exchange. This material exchange between cubosome and apoptotic model bilayer was further demonstrated using Cryo-TEM. We have demonstrated that lipid bound protein, in this case Annexin V, can be used to target cubosome systems to biological surfaces in vitro. PMID:23899446

  17. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  18. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts

    PubMed Central

    Chung, Jeeyun; Torta, Federico; Masai, Kaori; Lucast, Louise; Czapla, Heather; Tanner, Lukas B.; Narayanaswamy, Pradeep; Wenk, Markus R.

    2015-01-01

    Lipid transfer between cell membrane bilayers at contacts between the endoplasmic reticulum (ER) and other membranes help to maintain membrane lipid homeostasis. We found that two similar ER integral membrane proteins, oxysterol-binding protein (OSBP)–related protein 5 (ORP5) and ORP8, tethered the ER to the plasma membrane (PM) via the interaction of their pleckstrin homology domains with phosphatidylinositol 4-phosphate (PI4P) in this membrane. Their OSBP-related domains (ORDs) harbored either PI4P or phosphatidylserine (PS) and exchanged these lipids between bilayers. Gain- and loss-of-function experiments showed that ORP5 and ORP8 could mediate PI4P/PS counter transport between the ER and the PM, thus delivering PI4P to the ER-localized PI4P phosphatase Sac1 for degradation and PS from the ER to the PM. This exchange helps to control plasma membrane PI4P levels and selectively enrich PS in the PM. PMID:26206935

  19. Phosphatidylserine Converts Immunogenic Recombinant Human Acid Alpha-Glucosidase to a Tolerogenic Form in a Mouse Model of Pompe Disease.

    PubMed

    Schneider, Jennifer L; Balu-Iyer, Sathy V

    2016-10-01

    Development of unwanted immune responses against therapeutic proteins is a major clinical complication. Recently, we have shown that exposure of Factor VIII in the presence of phosphatidylserine (PS) induces antigen-specific hyporesponsiveness to Factor VIII rechallenge, suggesting that PS is not immune suppressive, but rather immune regulatory in that PS converts an immunogen to a tolerogen. Since PS is exposed in the outer leaflet during apoptosis, we hypothesize that PS imparts tolerogenic activity to this natural process. Thus, immunization with PS containing liposomes would mimic this natural process. Here, we investigate the immune regulatory effects of PS in inducing tolerance toward recombinant human acid alpha-glucosidase (rhGAA). rhGAA was found to complex with PS liposomes through hydrophobic interactions, and incubation PS-rhGAA with dendritic cells resulted in the increased secretion of transforming growth factor-β. Immunization with PS-rhGAA or O-phospho-L-serine-rhGAA led to a reduction in anti-rhGAA antibody response which persisted despite rechallenge with free rhGAA. Importantly, the titer levels in a majority of these animals remained unchanged after rechallenge and can be considered nonresponders. These data provide evidence that PS liposomes can be used to induce tolerance toward therapeutic proteins, in general. PMID:27488899

  20. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide.

    PubMed

    Nagasaki, Toshihiro; Hongo, Yuki; Koito, Tomoko; Nakamura-Kusakabe, Ikumi; Shimamura, Shigeru; Takaki, Yoshihiro; Yoshida, Takao; Maruyama, Tadashi; Inoue, Koji

    2015-03-01

    It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide. PMID:25501502

  1. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide.

    PubMed

    Nagasaki, Toshihiro; Hongo, Yuki; Koito, Tomoko; Nakamura-Kusakabe, Ikumi; Shimamura, Shigeru; Takaki, Yoshihiro; Yoshida, Takao; Maruyama, Tadashi; Inoue, Koji

    2015-03-01

    It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.

  2. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  3. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.

    PubMed

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-03-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.

  4. Kinetic, mutational, and structural analysis of malonate semialdehyde decarboxylase from Coryneform bacterium strain FG41: mechanistic implications for the decarboxylase and hydratase activities.

    PubMed

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J; Johnson, William H; Hackert, Marvin L; Whitman, Christian P

    2013-07-16

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal ion-independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide and a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. In terms of pairwise sequence, MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) is 38% identical with the Pseudomonas enzyme, including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. To determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of the enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for Pp MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily.

  5. Crystal structures of the wild-type, P1A mutant, and inactivated malonate semialdehyde decarboxylase: a structural basis for the decarboxylase and hydratase activities.

    PubMed

    Almrud, Jeffrey J; Poelarends, Gerrit J; Johnson, William H; Serrano, Hector; Hackert, Marvin L; Whitman, Christian P

    2005-11-15

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 is a tautomerase superfamily member that converts malonate semialdehyde to acetaldehyde by a mechanism utilizing Pro-1 and Arg-75. Pro-1 and Arg-75 have also been implicated in the hydratase activity of MSAD in which 2-oxo-3-pentynoate is processed to acetopyruvate. Crystal structures of MSAD (1.8 A resolution), the P1A mutant of MSAD (2.7 A resolution), and MSAD inactivated by 3-chloropropiolate (1.6 A resolution), a mechanism-based inhibitor activated by the hydratase activity of MSAD, have been determined. A comparison of the P1A-MSAD and MSAD structures reveals little geometric alteration, indicating that Pro-1 plays an important catalytic role but not a critical structural role. The structures of wild-type MSAD and MSAD covalently modified at Pro-1 by 3-oxopropanoate, the adduct resulting from the incubation of MSAD and 3-chloropropiolate, implicate Asp-37 as the residue that activates a water molecule for attack at C-3 of 3-chloropropiolate to initiate a Michael addition of water. The interactions of Arg-73 and Arg-75 with the C-1 carboxylate group of the adduct suggest these residues polarize the alpha,beta-unsaturated acid and facilitate the addition of water. On the basis of these structures, a mechanism for the inactivation of MSAD by 3-chloropropiolate can be formulated along with mechanisms for the decarboxylase and hydratase activities. The results also provide additional evidence supporting the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, a tautomerase superfamily member preceding MSAD in the trans-1,3-dichloropropene degradation pathway, diverged from a common ancestor but retained the key elements for the conjugate addition of water.

  6. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  7. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase

  8. Combination treatment for allergic conjunctivitis - Plant derived histidine decarboxylase inhibitor and H1 antihistaminic drug.

    PubMed

    Bakrania, Anita K; Patel, Snehal S

    2015-08-01

    Aim of present investigation was to study the effect of catechin and the combination of catechin and cetirizine in ovalbumin induced animal model of allergic conjunctivitis. Guinea pigs were divided into 5 groups: normal control, disease control, disease treated with catechin 100 mg/kg, disease treated with cetirizine 10 mg/kg, disease treated with combination of catechin and cetirizine, 50 mg/kg & 5 mg/kg respectively. Sensitization was carried out by intraperitoneal injection of ovalbumin for the period of 14 day. Simultaneously, catechin was administered orally for 14 days while, cetirizine was administered at the day of experiment. Determination of clinical scoring, mast cell and blood histamine content, histidine decarboxylase activity from stomach was carried out. Vascular permeability was measured by dye leakage after secondary challenge of allergen and conjunctival tissues were subjected for histopathological examinations. Treatment with catechin, cetirizine and combination showed significant (P < 0.05) decrease in clinical scoring and vascular permeability. While, catechin 100 mg/kg and catechin 50 mg/kg showed significant (P < 0.05) decrease in histamine content in mast and blood. The treatment also showed significant (P < 0.05) decrease in the histidine decarboxylase enzyme activity. However, cetirizine group did not show any difference in enzyme activity as well as histamine content. Histopathological examination also showed improvement in ulceration and decrease in edema and inflammation in all treatment groups. From the present study, we can conclude that catechin exhibits potent anti-allergic activity by histidine decarboxylase enzyme inhibition and combination shown significant anti-allergic activity at reduced dose by both enzyme inhibition as well as inhibition of histamine receptors.

  9. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli.

    PubMed

    Le Vo, Tam Dinh; Kim, Tae Wan; Hong, Soon Ho

    2012-05-01

    Gamma-aminobutyric acid (GABA) is a non-essential amino acid and a precursor of pyrrolidone, a monomer of nylon 4. GABA can be biosynthesized through the decarboxylation of L: -glutamate by glutamate decarboxylase. In this study, the effects of glutamate decarboxylase (gadA, gadB), glutamate/GABA antiporter (gadC) and GABA aminotransferase (gabT) on GABA production were investigated in Escherichia coli. Glutamate decarboxylase was overexpressed alone or with the glutamate/GABA antiporter to enhance GABA synthesis. GABA aminotransferase, which redirects GABA into the TCA cycle, was knock-out mutated. When gadB and gadC were co-overexpressed in the gabT mutant strain, a final GABA concentration of 5.46 g/l was obtained from 10 g/l of monosodium glutamate (MSG), which corresponded to a GABA yield of 89.5%.

  10. Cloning, expression and characterization of the ornithine decarboxylase gene from Dictyostelium discoideum.

    PubMed

    Kumar, Rishikesh; Rafia, Sheikh; Saran, Shweta

    2014-01-01

    Ornithine decarboxylase (ODC) is a rate limiting enzyme in polyamine synthesis that decarboxylates ornithine to form the diamine putrescine. We report here the isolation, expression and characterization of a homolog of ODC from Dictyostelium discoideum. DdODC is conserved and shows sequence and structural homology with that from human. Both ODC transcript and protein are expressed at all stages of development and show high expression in prestalk/stalk cells. It is cytosolic and predominantly perinuclear in localization. Both overexpression of DdODC and putrescine treatment resulted in inhibition of cell proliferation. PMID:25896203

  11. Fusion of pyruvate decarboxylase and alcohol dehydrogenase increases ethanol production in Escherichia coli.

    PubMed

    Lewicka, Aleksandra J; Lyczakowski, Jan J; Blackhurst, Gavin; Pashkuleva, Christiana; Rothschild-Mancinelli, Kyle; Tautvaišas, Dainius; Thornton, Harry; Villanueva, Hugo; Xiao, Weike; Slikas, Justinas; Horsfall, Louise; Elfick, Alistair; French, Christopher

    2014-12-19

    Ethanol is an important biofuel. Heterologous expression of Zymomonas mobilis pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) increases ethanol production in Escherichia coli. A fusion of PDC and ADH was generated and expressed in E. coli. The fusion enzyme was demonstrated to possess both activities. AdhB activity was significantly lower when fused to PDC than when the two enzymes were expressed separately. However, cells expressing the fusion protein generated ethanol more rapidly and to higher levels than cells coexpressing Pdc and AdhB, suggesting a specific rate enhancement due to the fusion of the two enzymes.

  12. Alternating skew deviation in association with anti-glutamic acid decarboxylase antibodies

    PubMed Central

    Farooq, Asim V.; Soin, Ketki; Moss, Heather E.

    2015-01-01

    The presence of an elevated anti-glutamic acid decarboxylase (GAD) antibody level has been associated with a number of eye movement abnormalities, as well as other findings including cerebellar ataxia and insulin dependent diabetes mellitus. Skew deviation in association with anti-GAD antibodies has not been previously reported. Here we report a case of alternating skew deviation along with cerebellar-brainstem signs in a patient with an elevated anti-GAD antibody titer. Follow-up neurologic evaluation after treatment with intravenous immunoglobulin revealed improvement in cerebellar-brainstem signs, while ophthalmic evaluation was stable. PMID:26594078

  13. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  14. Role of the lysine-rich cluster of the C2 domain in the phosphatidylserine-dependent activation of PKCalpha.

    PubMed

    Rodríguez-Alfaro, Jose A; Gomez-Fernandez, Juan C; Corbalan-Garcia, Senena

    2004-01-23

    The C2 domain of PKCalpha is a Ca(2+)-dependent membrane-targeting module involved in the plasma membrane localization of the enzyme. Recent findings have shown an additional area located in the beta3-beta4 strands, named the lysine-rich cluster, which has been demonstrated to be involved in the PtdIns(4,5)P(2)-dependent activation of the enzyme. Nevertheless, whether other anionic phospholipids can bind to this region and contribute to the regulation of the enzyme's function is not clear. To study other possible roles for this cluster, we generated double and triple mutants that substituted the lysine by alanine residues, and studied their binding and activation properties in a Ca(2+)/phosphatidylserine-dependent manner and compared them with the wild-type protein. It was found that some of the mutants exerted a constitutive activation independently of membrane binding. Furthermore, the constructs were fused to green fluorescent protein and were expressed in fibroblast cells. It was shown that none of the mutants was able to translocate to the plasma membrane, even in saturating conditions of Ca(2+) and diacylglycerol, suggesting that the interactions performed by this lysine-rich cluster are a key event in the subcellular localization of PKCalpha. Taken together, the results obtained showed that these lysine residues might be involved in two functions: one to establish an intramolecular interaction that keeps the enzyme in an inactive conformation; and the second, once the enzyme has been partially activated, to establish further interactions with diacylglycerol and/or acidic phospholipids, leading to the full activation of PKCalpha.

  15. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  16. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    PubMed

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  17. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    SciTech Connect

    Bae, Ok-Nam; Lim, Kyung-Min; Chung, Jin-Ho

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resulted in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.

  18. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  19. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes.

    PubMed Central

    Moncelli, M R; Becucci, L; Guidelli, R

    1994-01-01

    The intrinsic pKa values of the phosphate groups of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) and of the phosphate and carboxyl groups of phosphatidylserine (PS) in self-organized monolayers deposited on a hanging mercury drop electrode were determined by a novel procedure based on measurements of the differential capacity C of this lipid-coated electrode. In view of the Gouy-Chapman theory, plots of 1/C at constant bulk pH and variable KCl concentration against the reciprocal of the calculated diffuse-layer capacity Cd,0 at zero charge exhibit slopes that decrease from an almost unit value to vanishingly low values as the absolute value of the charge density on the lipid increases from zero to approximately 2 microC cm-2. The intrinsic pKa values so determined are 0.5 for PE and 0.8 for PC. The plots of 1/C against 1/Cd,0 for pure PS exhibit slopes that pass from zero to a maximum value and then back to zero as pH is varied from 7.5 to 3, indicating that the charge density of the lipid film passes from slight negative to slight positive values over this pH range. An explanation for this anomalous behavior, which is ascribed to the phosphate group of PS, is provided. Interdispersion of PS and PC molecules in the film decreases the "formal" pKa value of the latter group by about three orders of magnitude. PMID:8075331

  20. T Cell/Transmembrane, Ig, and Mucin-3 Allelic Variants Differentially Recognize Phosphatidylserine and Mediate Phagocytosis of Apoptotic Cells

    PubMed Central

    DeKruyff, Rosemarie H.; Bu, Xia; Ballesteros, Angela; Santiago, César; Chim, Yee-Ling E.; Lee, Hyun-Hee; Karisola, Piia; Pichavant, Muriel; Kaplan, Gerardo G.; Umetsu, Dale T.; Freeman, Gordon J.; Casasnovas, José M.

    2011-01-01

    T cell/transmembrane, Ig, and mucin (TIM) proteins, identified using a congenic mouse model of asthma, critically regulate innate and adaptive immunity. TIM-1 and TIM-4 are receptors for phosphatidylserine (PtdSer), exposed on the surfaces of apoptotic cells. Herein, we show with structural and biological studies that TIM-3 is also a receptor for PtdSer that binds in a pocket on the N-terminal IgV domain in coordination with a calcium ion. The TIM-3/PtdSer structure is similar to that of TIM-4/PtdSer, reflecting a conserved PtdSer binding mode by TIM family members. Fibroblastic cells expressing mouse or human TIM-3 bound and phagocytosed apoptotic cells, with the BALB/c allelic variant of mouse TIM-3 showing a higher capacity than the congenic C.D2 Es-Hba–allelic variant. These functional differences were due to structural differences in the BC loop of the IgV domain of the TIM-3 polymorphic variants. In contrast to fibroblastic cells, T or B cells expressing TIM-3 formed conjugates with but failed to engulf apoptotic cells. Together these findings indicate that TIM-3–expressing cells can respond to apoptotic cells, but the consequence of TIM-3 engagement of PtdSer depends on the polymorphic variants of and type of cell expressing TIM-3. These findings establish a new paradigm for TIM proteins as PtdSer receptors and unify the function of the TIM gene family, which has been associated with asthma and autoimmunity and shown to modulate peripheral tolerance. PMID:20083673

  1. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.

    PubMed

    Improta-Brears, T; Ghosh, S; Bell, R M

    1999-08-01

    Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.

  2. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  3. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-01

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  4. The effective molarity of the substrate phosphoryl group in the transition state for yeast OMP decarboxylase.

    PubMed

    Sievers, Annette; Wolfenden, Richard

    2005-02-01

    The second order rate constant (k(cat)/K(m)) for decarboxylation of orotidine by yeast OMP decarboxylase (ODCase), measured by trapping (14)CO(2) released during the reaction, is 2 x 10(-4)M(-1)s(-1). This very low activity may be compared with a value of 3 x 10(7)M(-1)s(-1) for the action of yeast OMP decarboxylase on the normal substrate OMP. Both activities are strongly inhibited by 6-hydroxy UMP (BMP), and abrogated by mutation of Asp-96 to alanine. These results, in conjunction with the binding affinity of inorganic phosphate as a competitive inhibitor (K(i)=7 x 10(-4)M), imply an effective concentration of 1.1 x 10(9)M for the substrate phosphoryl group in stabilizing the transition state for enzymatic decarboxylation of OMP. The observed difference in rate (1.5 x 10(11)-fold) is the largest effect of a simple substituent that appears to have been reported for an enzyme reaction.

  5. Isobutanol production in engineered Saccharomyces cerevisiae by overexpression of 2-ketoisovalerate decarboxylase and valine biosynthetic enzymes.

    PubMed

    Lee, Won-Heong; Seo, Seung-Oh; Bae, Yi-Hyun; Nan, Hong; Jin, Yong-Su; Seo, Jin-Ho

    2012-11-01

    Engineering of Saccharomyces cerevisiae to produce advanced biofuels such as isobutanol has received much attention because this yeast has a natural capacity to produce higher alcohols. In this study, construction of isobutanol production systems was attempted by overexpression of effective 2-keto acid decarboxylase (KDC) and combinatorial overexpression of valine biosynthetic enzymes in S. cerevisiae D452-2. Among the six putative KDC enzymes from various microorganisms, 2-ketoisovalerate decarboxylase (Kivd) from L. lactis subsp. lactis KACC 13877 was identified as the most suitable KDC for isobutanol production in the yeast. Isobutanol production by the engineered S. cerevisiae was assessed in micro-aerobic batch fermentations using glucose as a sole carbon source. 93 mg/L isobutanol was produced in the Kivd overexpressing strain, which corresponds to a fourfold improvement as compared with the control strain. Isobutanol production was further enhanced to 151 mg/L by additional overexpression of acetolactate synthase (Ilv2p), acetohydroxyacid reductoisomerase (Ilv5p), and dihydroxyacid dehydratase (Ilv3p) in the cytosol.

  6. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  7. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  8. A glutamic acid decarboxylase (CgGAD) highly expressed in hemocytes of Pacific oyster Crassostrea gigas.

    PubMed

    Li, Meijia; Wang, Lingling; Qiu, Limei; Wang, Weilin; Xin, Lusheng; Xu, Jiachao; Wang, Hao; Song, Linsheng

    2016-10-01

    Glutamic acid decarboxylase (GAD), a rate-limiting enzyme to catalyze the reaction converting the excitatory neurotransmitter glutamate to inhibitory neurotransmitter γ-aminobutyric acid (GABA), not only functions in nervous system, but also plays important roles in immunomodulation in vertebrates. However, GAD has rarely been reported in invertebrates, and never in molluscs. In the present study, one GAD homologue (designed as CgGAD) was identified from Pacific oyster Crassostrea gigas. The full length cDNA of CgGAD was 1689 bp encoding a polypeptide of 562 amino acids containing a conserved pyridoxal-dependent decarboxylase domain. CgGAD mRNA and protein could be detected in ganglion and hemocytes of oysters, and their abundance in hemocytes was unexpectedly much higher than those in ganglion. More importantly, CgGAD was mostly located in those granulocytes without phagocytic capacity in oysters, and could dynamically respond to LPS stimulation. Further, after being transfected into HEK293 cells, CgGAD could promote the production of GABA. Collectively, these findings suggested that CgGAD, as a GABA synthase and molecular marker of GABAergic system, was mainly distributed in hemocytes and ganglion and involved in neuroendocrine-immune regulation network in oysters, which also provided a novel insight to the co-evolution between nervous system and immune system. PMID:27208883

  9. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases

    PubMed Central

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-01-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  10. The hydratase activity of malonate semialdehyde decarboxylase: mechanistic and evolutionary implications.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Hoffman, David W; Whitman, Christian P

    2004-12-01

    Malonate semialdehyde decarboxylase (MSAD) is a member of the tautomerase superfamily, a group of structurally homologous proteins that have a characteristic beta-alpha-beta-fold and a catalytic amino-terminal proline. In addition to its physiological decarboxylase activity, the conversion of malonate semialdehyde to acetaldehyde and carbon dioxide, the enzyme has now been found to display a promiscuous hydratase activity, converting 2-oxo-3-pentynoate to acetopyruvate, with a kcat/Km value of 6.0 x 102 M-1 s-1. Pro-1 and Arg-75 are critical for both activities, and the pKa of Pro-1 was determined to be approximately 9.2 by a direct 15N NMR titration. These observations implicate a decarboxylation mechanism in which Pro-1 polarizes the carbonyl oxygen of substrate by hydrogen bonding and/or an electrostatic interaction. Arg-75 may position the carboxylate group into a favorable orientation for decarboxylation. Both the hydratase activity and the pKa value of Pro-1 are shared with trans-3-chloroacrylic acid dehalogenase, another tautomerase superfamily member that precedes MSAD in a bacterial degradation pathway for trans-1,3-dichloropropene. Hence, MSAD and CaaD could have evolved by divergent evolution from a common ancestral protein, retaining the necessary catalytic components for the conjugate addition of water.

  11. Structural analysis of mevalonate-3-kinase provides insight into the mechanisms of isoprenoid pathway decarboxylases.

    PubMed

    Vinokur, Jeffrey M; Korman, Tyler P; Sawaya, Michael R; Collazo, Michael; Cascio, Duillio; Bowie, James U

    2015-02-01

    In animals, cholesterol is made from 5-carbon building blocks produced by the mevalonate pathway. Drugs that inhibit the mevalonate pathway such as atorvastatin (lipitor) have led to successful treatments for high cholesterol in humans. Another potential target for the inhibition of cholesterol synthesis is mevalonate diphosphate decarboxylase (MDD), which catalyzes the phosphorylation of (R)-mevalonate diphosphate, followed by decarboxylation to yield isopentenyl pyrophosphate. We recently discovered an MDD homolog, mevalonate-3-kinase (M3K) from Thermoplasma acidophilum, which catalyzes the identical phosphorylation of (R)-mevalonate, but without concomitant decarboxylation. Thus, M3K catalyzes half the reaction of the decarboxylase, allowing us to separate features of the active site that are required for decarboxylation from features required for phosphorylation. Here we determine the crystal structure of M3K in the apo form, and with bound substrates, and compare it to MDD structures. Structural and mutagenic analysis reveals modifications that allow M3K to bind mevalonate rather than mevalonate diphosphate. Comparison to homologous MDD structures show that both enzymes employ analogous Arg or Lys residues to catalyze phosphate transfer. However, an invariant active site Asp/Lys pair of MDD previously thought to play a role in phosphorylation is missing in M3K with no functional replacement. Thus, we suggest that the invariant Asp/Lys pair in MDD may be critical for decarboxylation rather than phosphorylation. PMID:25422158

  12. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  13. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  14. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  15. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    PubMed Central

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  16. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  17. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    SciTech Connect

    Byres, Emma; Martin, David M. A.; Hunter, William N.

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in space group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.

  18. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-02-15

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed.

  19. Catalytic irreversible inhibition of bacterial and plant arginine decarboxylase activities by novel substrate and product analogues.

    PubMed Central

    Bitonti, A J; Casara, P J; McCann, P P; Bey, P

    1987-01-01

    Arginine decarboxylase (ADC) activity from Escherichia coli and two plant species (oats and barley) was inhibited by five new substrate (arginine) and product (agmatine) analogues. The five compounds, (E)-alpha-monofluoromethyldehydroarginine (delta-MFMA), alpha-monofluoromethylarginine (MFMA), alpha-monofluoromethylagatine (FMA), alpha-ethynylagmatine (EA) and alpha-allenylagmatine (AA), were all more potent inhibitors of ADC activity than was alpha-difluoromethylarginine (DFMA), the only irreversible inhibitor of this enzyme described previously. The inhibition caused by the five compounds was apparently enzyme-activated and irreversible, since the loss of enzyme activity followed pseudo-first-order kinetics, was time-dependent, the natural substrate of ADC (arginine) blocked the effects of the inhibitors, and the inhibition remained after chromatography of inhibited ADC on Sephadex G-25 or on overnight dialysis of the enzyme. DFMA, FMA, delta-MFMA and MFMA were effective at very low concentrations (10 nM-10 microM) at inhibiting ADC activity in growing E. coli. FMA was also shown to deplete putrescine effectively in E. coli, particularly when combined with an inhibitor of ornithine decarboxylase, alpha-monofluoromethyl-putrescine. The potential uses of the compounds for the study of the role of polyamine biosynthesis in bacteria and plants is discussed. PMID:3297044

  20. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  1. Stereochemistry of 4-carboxymuconolactone decarboxylase and muconolactone isomerase in the. beta. -ketoadipate pathway

    SciTech Connect

    Whitman, C.P.; Chari, R.V.J.; Ngai, K.L.; Kozarich, J.W.

    1986-05-01

    The protocatechuate and catechol pathways, two separate and parallel branches of the ..beta..-ketoadipate pathway in Pseudomonas putida, converge at a common intermediate - ..beta..-ketoadipate enol-lactone. The enol-lactone is generated by 4-carboxymuconolactone decarboxylase in the protocatechuate pathway while muconolactone isomerase produces it in the catechol pathway. The presence of these enzymes as well as ..beta..-carboxymuconate cycloisomerase and its substrate, ..beta..-carboxy-cis,cis-muconate, in a NMR tube, leads to the following sequence of events. Lactonization of ..beta..-carboxy-cis,cis-muconate produces 4-carboxymuconolactone which decarboxylates enzymatically with deuteration by D/sub 2/O to afford 2-(/sup 2/H)-4-ketoadipate enol-lactone - the substrate for muconolactone isomerase. Further conversion of the monodeuterated enol-lactone by muconolactone isomerase affords muconolactone which is nearly completely deuterated at the 4 position. The proton ricochets between the 2 and 4 positions with concurrent washout while in the 2 position. Based on the known absolute stereochemistry of 4-carboxymuconolactone and muconolactone, these results suggest that both the decarboxylase and isomerase proceed by syn mechanisms, but operate on opposite faces of the common enol-lactone substrate.

  2. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  3. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  4. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) and 1 CFR part 51. Copies may be obtained from the National Academy Press, 2101 Constitution Ave. NW... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115...

  5. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  6. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  7. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from the National... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations...

  8. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  9. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  10. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  11. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be safely used in accordance with the following conditions: (a) The food additive is the enzyme...

  12. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  13. Insulin and phorbol myristic acetate induce ornithine decarboxylase in Reuber H35 rat hepatoma cells by different mechanisms.

    PubMed

    Goodman, S A; Esau, B; Koontz, J W

    1988-11-01

    Reuber H35 rat hepatoma cells respond to insulin or to tumor promoting phorbol esters with an increase in ornithine decarboxylase enzyme activity. This occurs in a time- and dose-dependent manner with both types of agonist. We report here that the increase in ornithine decarboxylase activity with optimal concentrations of both agonists is additive. Furthermore, the initial increase is dependent on continued RNA and protein synthesis. We also find that both of these agonists cause an increase in mRNA coding for ornithine decarboxylase in a time- and dose-dependent manner which suggests that the increase in enzyme activity can be accounted for by the increase in transcript levels. The difference in the time course of induction by the agonists, the additivity of induction by the two agonists, the differential sensitivity of induction to cycloheximide and RNA synthesis inhibitors, and the observation that phorbol myristic acetate causes a further increase in ornithine decarboxylase activity and transcript levels in cells already maximally induced by insulin suggest that these two agonists act through separate mechanisms.

  14. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    PubMed Central

    Zargar, K.; Saville, R.; Phelan, R. M.; Tringe, S. G.; Petzold, C. J.; Keasling, J. D.; Beller, H. R.

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  15. Control by Ethylene of Arginine Decarboxylase Activity in Pea Seedlings and Its Implication for Hormonal Regulation of Plant Growth 1

    PubMed Central

    Apelbaum, Akiva; Goldlust, Arie; Icekson, Isaac

    1985-01-01

    Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed. PMID:16664464

  16. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin.

    PubMed Central

    Brickman, T J; Armstrong, S K

    1996-01-01

    Chromosomal insertions defining Bordetella bronchiseptica siderophore phenotypic complementation group III mutants BRM3 and BRM5 were found to reside approximately 200 to 300 bp apart by restriction mapping of cloned genomic regions associated with the insertion markers. DNA hybridization analysis using B. bronchiseptica genomic DNA sequences flanking the cloned BRM3 insertion marker identified homologous Bordetella pertussis UT25 cosmids that complemented the siderophore biosynthesis defect of the group III B. bronchiseptica mutants. Subcloning and complementation analysis localized the complementing activity to a 2.8-kb B. pertussis genomic DNA region. Nucleotide sequencing identified an open reading frame predicted to encode a polypeptide exhibiting strong similarity at the primary amino acid level with several pyridoxal phosphate-dependent amino acid decarboxylases. Alcaligin production was fully restored to group III mutants by supplementation of iron-depleted culture media with putrescine (1,4-diaminobutane), consistent with defects in an ornithine decarboxylase activity required for alcaligin siderophore biosynthesis. Concordantly, the alcaligin biosynthesis defect of BRM3 was functionally complemented by the heterologous Escherichia coli speC gene encoding an ornithine decarboxylase activity. Enzyme assays confirmed that group III B. bronchiseptica siderophore-deficient mutants lack an ornithine decarboxylase activity required for the biosynthesis of alcaligin. Siderophore production by an analogous mutant of B. pertussis constructed by allelic exchange was undetectable. We propose the designation odc for the gene defined by these mutations that abrogate alcaligin siderophore production. Putrescine is an essential precursor of alcaligin in Bordetella spp. PMID:8550442

  17. The Response of Dopa Decarboxylase Activity to Variations in Gene Dosage in Drosophila: A Possible Location of the Structural Gene

    PubMed Central

    Hodgetts, Ross B.

    1975-01-01

    A location of the structural gene(s) for dopa decarboxylase (EC 4.1.1.26) is proposed on the basis of enzyme determinations in a set of duplication-bearing aneuploids, which revealed only one dosage-sensitive region in the Drosophila genome. This region lies between 36EF and 37D on the left arm of chromosome 2. PMID:1126620

  18. 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis.

    PubMed Central

    Prabhu, V; Chatson, K B; Abrams, G D; King, J

    1996-01-01

    In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis by these two pathways in Arabidopsis thaliana (L.) Heynh. Columbia wild type. We confirmed the tight coupling of the GDC/ SHMT system and observed directly in a higher plant the flux of formate through the C1-THF synthase/SHMT system. The accumulation of 13C-enriched serine over 24 h from the GDC/SHMT activities was 4-fold greater than that from C1-THF synthase/SHMT activities. Our experiments strongly suggest that the two pathways operate independently in Arabidopsis. Plants exposed to methotrexate and sulfanilamide, powerful inhibitors of THF biosynthesis, reduced serine synthesis by both pathways. The results suggest that continuous supply of THF is essential to maintain high rates of serine metabolism. Nuclear magnetic resonance is a powerful tool for the examination of THF-mediated metabolism in its natural cellular environment. PMID:8819325

  19. Bacterial-injection-induced syntheses of N-beta-alanyldopamine and Dopa decarboxylase in the hemolymph of coleopteran insect, Tenebrio molitor larvae.

    PubMed

    Kim, M H; Joo, C H; Cho, M Y; Kwon, T H; Lee, K M; Natori, S; Lee, T H; Lee, B L

    2000-05-01

    Injection of Escherichia coli into larvae of the coleopteran Tenebrio molitor resulted in the appearance of a dopamine-like substance on the electrochemical detector. To characterize this dopamine-like substance, we purified it to homogeneity from the immunized hemolymph and determined its molecular structure to be N-beta-alanyldopamine using the liquid chromatographic/tandem mass spectrometric method. Chemically synthesized N-beta-alanyldopamine showed the same retention time on HPLC as the purified N-beta-alanyldopamine from immunized larvae. To elucidate the molecular mechanism of N-beta-alanyldopamine synthesis in vivo, we examined the enzyme activity of Dopa decarboxylase against E. coli-injected hemolymph of T. molitor larvae. The enzyme activity of Dopa decarboxylase increased dramatically approximately 8 h after injection; Dopa decarboxylase activity of injected larvae being 10-times higher than naive larvae after 24 h. To evaluate the extent of quantitative changes of Dopa decarboxylase in response to bacterial challenge, Tenebrio Dopa decarboxylase was purified to homogeneity from the whole larvae and a cDNA clone for Tenebrio Dopa decarboxylase was isolated. RNA blot hybridization revealed that expression of the Dopa decarboxylase gene was activated transiently 3-8 h after E. coli challenge. Immunoprecipitation experiments showed that Tenebrio Dopa decarboxylase was detected from 8 to 24 h in E. coli-injected larval extract. Thus, bacterial injection into T. molitor larvae might induce transcriptional activation of a Dopa decarboxylase gene, and then synthesis of N-beta-alanyldopamine. The synthesized N-beta-alanyldopamine might be used as a substrate by phenoloxidase during melanin synthesis in the humoral defense response or the melanotic encapsulation reaction of the cellular defense response.

  20. Effect of Phosphatidylserine on Unitary Conductance and Ba2+ Block of the BK Ca2+–activated K+ Channel

    PubMed Central

    Park, Jin Bong; Kim, Hee Jeong; Ryu, Pan Dong; Moczydlowski, Edward

    2003-01-01

    Incorporation of BK Ca2+–activated K+ channels into planar bilayers composed of negatively charged phospholipids such as phosphatidylserine (PS) or phosphatidylinositol (PI) results in a large enhancement of unitary conductance (gch) in comparison to BK channels in bilayers formed from the neutral zwitterionic lipid, phospatidylethanolamine (PE). Enhancement of gch by PS or PI is inversely dependent on KCl concentration, decreasing from 70% at 10 mM KCl to 8% at 1,000 mM KCl. This effect was explained previously by a surface charge hypothesis (Moczydlowski, E., O. Alvarez, C. Vergara, and R. Latorre. 1985. J. Membr. Biol. 83:273–282), which attributed the conductance enhancement to an increase in local K+ concentration near the entryways of the channel. To test this hypothesis, we measured the kinetics of block by external and internal Ba2+, a divalent cation that is expected to respond strongly to changes in surface electrostatics. We observed little or no effect of PS on discrete blocking kinetics by external and internal Ba2+ at 100 mM KCl and only a small enhancement of discrete and fast block by external Ba2+ in PS-containing membranes at 20 mM KCl. Model calculations of effective surface potential sensed by the K+ conduction and Ba2+-blocking reactions using the Gouy-Chapman-Stern theory of lipid surface charge do not lend support to a simple electrostatic mechanism that predicts valence-dependent increase of local cation concentration. The results imply that the conduction pore of the BK channel is electrostatically insulated from the lipid surface, presumably by a lateral distance of separation (>20 Å) from the lipid head groups. The lack of effect of PS on apparent association and dissociation rates of Ba2+ suggest that lipid modulation of K+ conductance is preferentially coupled through conformational changes of the selectivity filter region that determine the high K+ flux rate of this channel relative to other cations. We discuss possible mechanisms

  1. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice

    PubMed Central

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher

    2013-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  2. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  3. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGES

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  4. GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.

    PubMed

    Fenalti, Gustavo; Law, Ruby H P; Buckle, Ashley M; Langendorf, Christopher; Tuck, Kellie; Rosado, Carlos J; Faux, Noel G; Mahmood, Khalid; Hampe, Christiane S; Banga, J Paul; Wilce, Matthew; Schmidberger, Jason; Rossjohn, Jamie; El-Kabbani, Ossama; Pike, Robert N; Smith, A Ian; Mackay, Ian R; Rowley, Merrill J; Whisstock, James C

    2007-04-01

    Gamma-aminobutyric acid (GABA) is synthesized by two isoforms of the pyridoxal 5'-phosphate-dependent enzyme glutamic acid decarboxylase (GAD65 and GAD67). GAD67 is constitutively active and is responsible for basal GABA production. In contrast, GAD65, an autoantigen in type I diabetes, is transiently activated in response to the demand for extra GABA in neurotransmission, and cycles between an active holo form and an inactive apo form. We have determined the crystal structures of N-terminal truncations of both GAD isoforms. The structure of GAD67 shows a tethered loop covering the active site, providing a catalytic environment that sustains GABA production. In contrast, the same catalytic loop is inherently mobile in GAD65. Kinetic studies suggest that mobility in the catalytic loop promotes a side reaction that results in cofactor release and GAD65 autoinactivation. These data reveal the molecular basis for regulation of GABA homeostasis.

  5. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine

    PubMed Central

    Williams, Brianna B.; Van Benschoten, Andrew H.; Cimermancic, Peter; Donia, Mohamed S.; Zimmermann, Michael; Taketani, Mao; Ishihara, Atsushi; Kashyap, Purna C.; Fraser, James S.; Fischbach, Michael A.

    2014-01-01

    Summary Several recent studies describe the influence of the gut microbiota on host brain and behavior. However, the mechanisms responsible for microbiota-nervous system interactions are unknown. Using a combination of genetics, biochemistry, and crystallography, we identify and characterize two phylogenetically distinct enzymes found in the human microbiome that decarboxylate tryptophan to form the β-arylamine neurotransmitter tryptamine. Although this enzymatic activity is exceedingly rare among bacteria more broadly, analysis of the Human Microbiome Project data demonstrates that at least 10% of the human population harbors at least one bacterium encoding a tryptophan decarboxylase in their gut community. Our results uncover a previously unrecognized enzymatic activity that can give rise to host-modulatory compounds and suggests a potential direct mechanism by which gut microbiota can influence host physiology, including behavior. PMID:25263219

  6. [Simultaneous demonstration of glutamate decarboxylase and synaptophysin in paraffin sections of rat cerebellum].

    PubMed

    Korzhevskiy, D E; Gilerovich, Ye G; Kirik, O V; Alekseyeva, O S; Grigoriyev, I P

    2015-01-01

    The article presents highly reproducible and inexpensive protocol for simultaneous demonstration of glutamate decarboxylase (GAD67), the key enzyme of gamma-aminobutyric acid (GABA) synthesis and synaptophysin (SYP), a marker protein of synaptic vesicles using confocal laser microscopy. In the cerebellar cortex, GAD labels Purkinje cells and pinceaux in their basal parts and is unevenly distributed in the neuropil of molecular and granular layers. SYP clearly marks the contours of large dendrites of Purkinje cells in molecular layer, while in the granular layers it labels parts of cerebellar glomeruli--the terminals of the mossy fibers. GAD-immunopositive structures (GABA-ergic axons of stellate cells--Golgi cells) are often located at periphery of the glomeruli. In the peripheral zone of the glomeruli, colocalization of GAD- and SYP-immunopositive structures was observed, suggesting the presence of GABA-ergic synapses in this zone.

  7. Oral putrescine restores virulence of ornithine decarboxylase-deficient Leishmania donovani in mice

    PubMed Central

    Olenyik, Tamara; Gilroy, Caslin; Ullman, Buddy

    2011-01-01

    Administration of putrescine as a 1% solution in the drinking water ameliorated the profound loss of virulence exhibited by ornithine decarboxylase (ODC) deficient Leishmania donovani in mice. Furthermore, supplying α-difluoromethylornithine, an ODC inhibitor, at 2% in the drinking water reduced but did not eliminate infection with wild type L. donovani in the mouse model. Taken collectively, these findings: 1) demonstrate that oral putrescine can access the phagolysosome of macrophages in which the parasite resides in mice; 2) establish that the loss of virulence due to the Δodc lesion is a consequence of the inability of the mutant parasite to synthesize sufficient polyamines de novo; 3) imply that the L. donovani amastigote cannot access host polyamines in sufficient amounts for survival and growth; 4) and validate ODC as a drug target, although oral administration of DFMO is an unlikely therapeutic paradigm for visceral leishmaniasis. PMID:21182873

  8. Immunotherapy-responsive limbic encephalitis with antibodies to glutamic acid decarboxylase.

    PubMed

    Markakis, Ioannis; Alexopoulos, Harry; Poulopoulou, Cornelia; Akrivou, Sofia; Papathanasiou, Athanasios; Katsiva, Vassiliki; Lyrakos, Georgios; Gekas, Georgios; Dalakas, Marinos C

    2014-08-15

    Glutamic acid decarboxylase (GAD) has been recently identified as a target of humoral autoimmunity in a small subgroup of patients with non-paraneoplastic limbic encephalitis (NPLE). We present a patient with NPLE and positive anti-GAD antibodies who showed significant improvement after long-term immunotherapy. A 48-year old female was admitted with a two-year history of anterograde amnesia and seizures. Brain MRI revealed bilateral lesions of medial temporal lobes. Screening for anti-neuronal antibodies showed high anti-GAD titers in both serum and cerebrospinal fluid (CSF) with strong evidence of intrathecal production. The patient received treatment with prednisolone and long-term plasma exchange. During a 12-month follow-up, she exhibited complete seizure remission and an improvement in memory and visuo-spatial skills. Anti-GAD antibodies may serve as a useful marker to identify a subset of NPLE patients that respond to immunoregulatory treatment.

  9. Glycine decarboxylase in C3, C4 and C3-C4 intermediate species.

    PubMed

    Schulze, Stefanie; Westhoff, Peter; Gowik, Udo

    2016-06-01

    The glycine decarboxylase complex (GDC) plays a central role in photorespiration. GDC is localized in the mitochondria and together with serine hydroxymethyltransferase it converts two molecules of glycine to one molecule of serine, CO2 and NH3. Overexpression of GDC subunits in the C3 species Arabidopsis thaliana can increase the metabolic flux through the photorespiratory pathway leading to enhanced photosynthetic efficiency and consequently to an enhanced biomass production of the transgenic plants. Changing the spatial expression patterns of GDC subunits was an important step during the evolution of C3-C4 intermediate and likely also C4 plants. Restriction of the GDC activity to the bundle sheath cells led to the establishment of a photorespiratory CO2 pump. PMID:27038285

  10. Intrathecal-specific glutamic acid decarboxylase antibodies at low titers in autoimmune neurological disorders.

    PubMed

    Sunwoo, Jun-Sang; Chu, Kon; Byun, Jung-Ick; Moon, Jangsup; Lim, Jung-Ah; Kim, Tae-Joon; Lee, Soon-Tae; Jung, Keun-Hwa; Park, Kyung-Il; Jeon, Daejong; Jung, Ki-Young; Kim, Manho; Lee, Sang Kun

    2016-01-15

    Autoantibodies to glutamic acid decarboxylase (Gad-Abs) are implicated in various neurological syndromes. The present study aims to identify intrathecal-specific GAD-Abs and to determine clinical manifestations and treatment outcomes. Nineteen patients had GAD-Abs in cerebrospinal fluid but not in paired serum samples. Neurological syndromes included limbic encephalitis, temporal lobe epilepsy, cerebellar ataxia, autonomic dysfunction, and stiff-person syndrome. Immunotherapy had beneficial effects in 57.1% of patients, and the patients with limbic encephalitis responded especially well to immunotherapy. Intrathecal-specific antibodies to GAD at low titers may appear as nonspecific markers of immune activation within the central nervous system rather than pathogenic antibodies causing neuronal dysfunction. PMID:26711563

  11. Heterologous expression of a plant arginine decarboxylase gene in Trypanosoma cruzi.

    PubMed

    Carrillo, Carolina; Serra, María P; Pereira, Claudio A; Huber, Alejandra; González, Nélida S; Algranati, Israel D

    2004-11-01

    Wild-type Trypanosoma cruzi epimastigotes lack arginine decarboxylase (ADC) enzymatic activity. However, the transformation of these parasites with a recombinant plasmid containing the oat ADC cDNA coding region gave rise to the transient heterologous expression of the enzyme, suggesting the absence of endogenous mechanisms that could inhibit the expression of a hypothetical own ADC gene or the assay used to measure its enzymatic activity. The foreign ADC enzyme expressed in the transgenic T. cruzi was characterized by identification of the products, the stoichiometry of the catalysed reaction, the specific inhibition by alpha-difluoromethylarginine (DFMA) and the study of its metabolic turnover. The half-life of the heterologous ADC activity in T. cruzi was about 150 min. Bioinformatics studies and polymerase chain reaction (PCR) analyses seem to indicate the absence of ADC-like DNA sequences in the wild-type T. cruzi genome.

  12. Preliminary crystallographic data for the thiamin diphosphate-dependent enzyme pyruvate decarboxylase from brewers' yeast.

    PubMed

    Dyda, F; Furey, W; Swaminathan, S; Sax, M; Farrenkopf, B; Jordan, F

    1990-10-15

    Single crystals of the thiamin diphosphate (the vitamin B1 coenzyme)-dependent enzyme pyruvate decarboxylase (EC 4.1.1.1) from brewers' yeast have been grown using polyethylene glycol as a precipitating agent. Crystals of the homotetrameric version alpha 4 of the holoenzyme are triclinic, space group P1, with cell constants a = 81.0, b = 82.4, c = 116.6 A, alpha = 69.5 beta = 72.6, gamma = 62.4 degrees. The crystals are reasonably stable in a rotating anode x-ray beam and diffract to at least 2.5 A resolution. The Vm value of 2.55 A/dalton is consistent with a unit cell containing four subunits with mass of approximately 60 kDa each. Rotation function results with native data indicate strong non-crystallographic 222 symmetry relating the four identical subunits, thus density averaging methods are likely to play a role in the structure determination.

  13. Structure and Mechanism of Ferulic Acid Decarboxylase (FDC1) from Saccharomyces cerevisiae

    PubMed Central

    Bhuiya, Mohammad Wadud; Lee, Soon Goo

    2015-01-01

    The nonoxidative decarboxylation of aromatic acids occurs in a range of microbes and is of interest for bioprocessing and metabolic engineering. Although phenolic acid decarboxylases provide useful tools for bioindustrial applications, the molecular bases for how these enzymes function are only beginning to be examined. Here we present the 2.35-Å-resolution X-ray crystal structure of the ferulic acid decarboxylase (FDC1; UbiD) from Saccharomyces cerevisiae. FDC1 shares structural similarity with the UbiD family of enzymes that are involved in ubiquinone biosynthesis. The position of 4-vinylphenol, the product of p-coumaric acid decarboxylation, in the structure identifies a large hydrophobic cavity as the active site. Differences in the β2e-α5 loop of chains in the crystal structure suggest that the conformational flexibility of this loop allows access to the active site. The structure also implicates Glu285 as the general base in the nonoxidative decarboxylation reaction catalyzed by FDC1. Biochemical analysis showed a loss of enzymatic activity in the E285A mutant. Modeling of 3-methoxy-4-hydroxy-5-decaprenylbenzoate, a partial structure of the physiological UbiD substrate, in the binding site suggests that an ∼30-Å-long pocket adjacent to the catalytic site may accommodate the isoprenoid tail of the substrate needed for ubiquinone biosynthesis in yeast. The three-dimensional structure of yeast FDC1 provides a template for guiding protein engineering studies aimed at optimizing the efficiency of aromatic acid decarboxylation reactions in bioindustrial applications. PMID:25862228

  14. Inactivation of malonate semialdehyde decarboxylase by 3-halopropiolates: evidence for hydratase activity.

    PubMed

    Poelarends, Gerrit J; Serrano, Hector; Johnson, William H; Whitman, Christian P

    2005-07-01

    Malonate semialdehyde decarboxylase (MSAD) from Pseudomonas pavonaceae 170 catalyzes the metal ion-independent decarboxylation of malonate semialdehyde and represents one of three known enzymatic activities in the tautomerase superfamily. The characterized members of this superfamily are structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. Sequence analysis, chemical labeling studies, site-directed mutagenesis, and NMR studies of MSAD identified Pro-1 as a key active site residue in which the amino group has a pKa value of 9.2. The available evidence suggests a mechanism involving polarization of the C-3 carbonyl group of malonate semialdehyde by the cationic Pro-1. A second critical active site residue, Arg-75, could assist in the reaction by placing the substrate's carboxylate group in a favorable conformation for decarboxylation. In addition to the decarboxylase activity, MSAD has a hydratase activity as demonstrated by the MSAD-catalyzed conversion of 2-oxo-3-pentynoate to acetopyruvate. In view of this activity, MSAD was incubated with 3-bromo- and 3-chloropropiolate, and the subsequent reactions were characterized. Both compounds result in the irreversible inactivation of MSAD, making them the first identified inhibitors of MSAD. Inactivation by 3-chloropropiolate occurs in a time- and concentration-dependent manner and is due to the covalent modification of Pro-1. The proposed mechanism for inactivation involves the initial hydration of the 3-halopropiolate followed by a rearrangement to an alkylating agent, either an acyl halide or a ketene. The results provide additional evidence for the hydratase activity of MSAD and further support for the hypothesis that MSAD and trans-3-chloroacrylic acid dehalogenase, the preceding enzyme in the trans-1,3-dichloropropene catabolic pathway, diverged from a common ancestor but conserved the necessary catalytic machinery for the conjugate addition of water.

  15. Effect of methionine deprivation on S-adenosylmethionine decarboxylase of tumour cells.

    PubMed

    Tisdale, M J

    1981-07-17

    Transference of Walker carcinoma and TLX5 lymphoma from normal L-methionine-containing medium to medium containing limiting amounts of L-methionine, or L-homocysteine only, caused a 2-fold increase of S-adenosylmethionine decarboxylase activity. Kinetic analysis showed an increase in the V value of the enzyme from 22 to 53 pmol/min per mg protein in media containing only 0.1 mM L-homocysteine, without any alteration in the Km value (0.1 mM). The increase in enzyme activity does not result from (a) a reduction of the intracellular level of S-adenosylmethionine, since cycloleucine, an inhibitor of methionine adenosyltransferase, had no effect on enzyme activity; (b) an increase in intracellular adenosine 3',5' monophosphate (cyclic AMP), since high extracellular concentrations of N6-monobutyryl cyclic AMP had no effect on enzyme activity; (c) an alteration of polyamine levels, since addition of micromolar concentrations of exogenous putrescine, spermidine and spermine did not prevent the induction of S-adenosylmethionine decarboxylase activity in methionine-free media containing 0.1 mM L-homocysteine. The increased enzyme activity appears to be mainly due to enhanced stabilization, since the half-life was increased from 2.45 to 5.0 h in media containing only 0.1 mM L-homocysteine. Induction of enzyme activity is specific to the removal of L-methionine, since no increase occurred in the absence of L-serine or L-glycine, or both, or by reduction of the serum concentrations in the medium.

  16. Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum).

    PubMed

    Takayama, Mariko; Koike, Satoshi; Kusano, Miyako; Matsukura, Chiaki; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2015-08-01

    Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits. In this study, we generated transgenic tomato plants in which each SlGAD was suppressed and those in which all three SlGADs were simultaneously suppressed. A significant decrease in GABA levels, i.e. 50-81% compared with wild-type (WT) levels, was observed in mature green (MG) fruits of the SlGAD2-suppressed lines, while a more drastic reduction (up to <10% of WT levels) was observed in the SlGAD3- and triple SlGAD-suppressed lines. These findings suggest that both SlGAD2 and SlGAD3 expression are crucial for GABA biosynthesis in tomato fruits. The importance of SlGAD3 expression was also confirmed by generating transgenic tomato plants that over-expressed SlGAD3. The MG and red fruits of the over-expressing transgenic lines contained higher levels of GABA (2.7- to 5.2-fold) than those of the WT. We also determined that strong down-regulation of the SlGADs had little effect on overall plant growth, fruit development or primary fruit metabolism under normal growth conditions.

  17. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    PubMed

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  18. Polyamine Accumulation and Near Loss of Morphogenesis in Long-Term Callus Cultures of Rice (Restoration of Plant Regeneration by Manipulation of Cellular Polyamine Levels).

    PubMed Central

    Bajaj, S.; Rajam, M. V.

    1996-01-01

    We have shown (S. Bajaj and M.V. Rajam [1995] Plant Cell Rep 14: 717-720) that a significant reduction in morphogenetic potential occurs in callus cultures of rice (Oryza sativa L. cv TN-1) (up to 1 year old), and that plant regeneration could be improved in such cultures with spermidine treatment. We now show a near loss in plant regeneration capacity, concomitant with massive polyamine accumulation (primarily the diamine putrescine), due to the increase in arginine decarboxylase activity and an altered putrescine-to-spermidine ratio in 20- and 36-month-old rice callus cultures. The blockage of polyamine accumulation due to the reduction in arginine decarboxylase activity by a putrescine synthesis inhibitor, [alpha]-difluoromethylarginine, completely restored plant regeneration capacity in these long-term cultures. Additionally, spermidine treatment of long-term cultures caused an increase in cellular spermidine content and a reduction in putrescine content and arginine decarboxylase activity, leading to an adjustment in putrescine-to-spermidine ratio and the restoration of plant regeneration ability. PMID:12226449

  19. The Genetics of Dopa Decarboxylase in DROSOPHILA MELANOGASTER I. Isolation and Characterization of Deficiencies That Delete the Dopa-Decarboxylase-Dosage-Sensitive Region and the α-Methyl-Dopa-Hypersensitive Locus

    PubMed Central

    Wright, Theodore R. F.; Hodgetts, Ross B.; Sherald, Allen F.

    1976-01-01

    A detailed cytogenetic investigation of 16 overlapping deficiencies in the 36C-40A region on the left arm of the second chromosome (2L) in Drosophila melanogaster is reported. These deficiencies permit a localization of both the dopa-decarboxylase-dosage-sensitive region and the α-methyl-dopa-hypersensitive locus, l(2)amd, to the same region, 37B10-37C7. PMID:826447

  20. Selective loss of Purkinje cells in a patient with anti‐glutamic acid decarboxylase antibody‐associated cerebellar ataxia

    PubMed Central

    Ishida, Kazuyuki; Mitoma, Hiroshi; Wada, Yoshiaki; Oka, Teruaki; Shibahara, Junji; Saito, Yuko; Murayama, Shigeo; Mizusawa, Hidehiro

    2007-01-01

    Anti‐glutamic acid decarboxylase antibody is associated with the development of progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus. Previously, the neurophysiological characteristics of IgG in the cerebrospinal fluid of a patient with anti‐glutamic acid decarboxylase antibody‐associated progressive cerebellar ataxia and slowly progressive insulin‐dependent diabetes mellitus were reported. Using a voltage‐gated whole‐cell recording technique, it was observed that the IgG in the cerebrospinal fluid of the patient selectively suppressed the inhibitory postsynaptic currents in the Purkinje cells. The patient died from aspiration pneumonia. Postmortem examination showed almost complete depletion of the Purkinje cells with Bergmann gliosis. Therefore, the main cause of cerebellar ataxia observed in this case may be attributed to the near‐complete depletion of the Purkinje cells. In this paper, the pathomechanisms underlying Purkinje cell damage are discussed. PMID:17119008

  1. Increase in S-adenosyl-L-methionine decarboxylase activity during the transformation of chick embroy fibroblasts by Rous sarcoma virus.

    PubMed

    Bachrach, U; Weiner, H

    1980-07-15

    The increase in S-adenosyl-L-methionine decarboxylase activity in chick embryo fibroblasts after infection with Rous sarcoma virus has been studied. It has been shown that enzyme levels in transformed cells were two or three times higher than those of the non-infected controls. The activity of this enzyme was not elevated in chick embryo fibroblasts infected with a temperature sensitive mutant of Rous sarcoma virus (RSV-T5) at 42 degrees C, the non-permissive temperature. When the temperature of these infected cultures was shifted from 42 degrees C to 37 degrees C a two- or three-fold increase in decarboxlase activity was detected after 10 to 12 h. The half-live of S-adenosyl-L-methionine decarboxylase was practically identical in normal and RSV-transformed fibroblasts.

  2. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  3. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  4. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

  5. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells.

    PubMed Central

    Kierszenbaum, F; Wirth, J J; McCann, P P; Sjoerdsma, A

    1987-01-01

    The capacity of blood (trypomastigote) forms of Trypanosoma cruzi to infect mouse peritoneal macrophages or rat heart myoblasts in vitro was inhibited by treatment of the trypomastigotes with DL-alpha-difluoromethylarginine (F2Me Arg), monofluoromethylagmatine, or (E)-alpha-monofluoromethyl-3-4-dehydroarginine--all irreversible inhibitors of arginine decarboxylase. Similar results were obtained when F2MeArg-treated parasites were incubated with rat heart myoblasts. The inhibitory effects were characterized by marked reductions in both the proportion of infected cells and the number of parasites per 100 host cells. The concentrations of the arginine decarboxylase inhibitors that affected infectivity had no detectable effect on either the concentration or motility of the parasite and, therefore, could not have affected the collision frequency. F2MeArg appeared to inhibit the ability of T. cruzi to penetrate the host cells since the drug had no significant effect on the extent of parasite binding to the surface of the host cells. The inhibitory effect of F2MeArg was markedly reduced or abrogated in the presence of either agmatine or putrescine, as would have been expected if F2MeArg acted by inhibiting arginine decarboxylase. Addition of F2MeArg to macrophage or myoblast cultures immediately after infection or at a time when virtually all of the intracellular parasites had transformed into the multiplicative amastigote form, resulted in a markedly reduced parasite growth rate. This effect was also prevented by exogenous agmatine. These results indicate the importance of polyamines and polyamine biosynthesis in the following two important functions of T. cruzi: invasion of host cells and intracellular multiplication. Furthermore, concentrations of the inhibitors tested that affected the parasite did not alter the viability of the host cells, the cellular density of the cultures, or the ability of uninfected myoblasts to grow. Thus, arginine decarboxylase inhibitors may

  6. Analysis of Mammalian Histidine Decarboxylase Dimerization Interface Reveals an Electrostatic Hotspot Important for Catalytic Site Topology and Function.

    PubMed

    Moya-García, Aurelio A; Rodríguez-Agudo, Daniel; Hayashi, Hideyuki; Medina, Miguel Angel; Urdiales, José Luis; Sánchez-Jiménez, Francisca

    2011-06-14

    Selective intervention of mammalian histidine decarboxylase (EC 4.1.1.22) could provide a useful antihistaminic strategy against many different pathologies. It is known that global conformational changes must occur during reaction that involves the monomer-monomer interface of the enzyme. Thus, the dimerization surface is a promising target for histidine decarboxylase inhibition. In this work, a rat apoenzyme structural model is used to analyze the interface of the dimeric active HDC. The dimerization surface mainly involves the fragments 1-213 and 308-371 from both subunits. Part of the overlapping surfaces conforms each catalytic site entrance and the substrate-binding sites. In addition, a cluster of charged residues is located in each overlapping surface, so that both electrostatic hotspots mediate in the interaction between the catalytic sites of the dimeric enzyme. It is experimentally demonstrated that the carboxyl group of aspartate 315 is critical for the proper conformation of the holoenzyme and the progression of the reaction. Comparison to the available information on other evolutionary related enzymes also provides new insights for characterization and intervention of homologous l-amino acid decarboxylases. PMID:26596454

  7. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    PubMed

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs.

  8. Increased Putrescine Biosynthesis through Transfer of Mouse Ornithine Decarboxylase cDNA in Carrot Promotes Somatic Embryogenesis.

    PubMed Central

    Bastola, D. R.; Minocha, S. C.

    1995-01-01

    Carrot (Daucus carota L.) cells were transformed with Agrobacterium tumefaciens strains containing 3[prime]-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of a cauliflower mosaic virus 35S promoter. A neomycin phosphotransferase gene linked with a nopaline synthase promoter was used to select transformed cell lines on kanamycin. Although the nontransformed cells contained no ODC, high amounts of mouse-specific ODC activity were observed in the transformed cells. Transgenic cells showed a significant increase in the cellular content of putrescine compared to control cells. Spermidine, however, remained unaffected. Not only did the transformed cells exhibit improved somatic embryogenesis in the auxin-free medium, they also regenerated some embryos in the presence of inhibitory concentrations of 2,4-dichlorophenoxyacetic acid. These cells acquired tolerance to [alpha]-difluoromethylarginine (a potent inhibitor of arginine decarboxylase) at concentrations that inhibit growth as well as embryogenesis in nontransformed carrot cells, showing that the mouse ODC can replace the carrot arginine decarboxylase for putrescine biosynthesis in the transgenic cells. PMID:12228581

  9. Cloning and expression of pig kidney dopa decarboxylase: comparison of the naturally occurring and recombinant enzymes.

    PubMed Central

    Moore, P S; Dominici, P; Borri Voltattorni, C

    1996-01-01

    L-Aromatic amino acid decarboxylase (dopa decarboxylase; DDC) is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyses the decarboxylation of L-dopa and other L-aromatic amino acids. To advance structure-function studies with the enzyme, a cDNA that codes for the protein from pig kidney has been cloned by joining a partial cDNA obtained by library screening with a synthetic portion constructed by the annealing and extension of long oligonucleotides. The hybrid cDNA was then expressed in Escherichia coli to produce recombinant protein. During characterization of the recombinant enzyme it was unexpectedly observed that it possesses certain differences from the enzyme purified from pig kidney. Whereas the later protein binds 1 molecule of PLP per dimer, the recombinant enzyme was found to bind two molecules of coenzyme per dimer. Moreover, the Vmax was twice that of the protein purified from tissue. On addition of substrate, the absorbance changes accompanying transaldimination were likewise 2-fold greater in the recombinant enzyme. Examination of the respective apoenzymes by absorbance, CD and fluorescence spectroscopy revealed distinct differences. The recombinant apoprotein has no significant absorbance at 335 nm, unlike the pig kidney apoenzyme; in the latter case this residual absorbance is associated with a positive dichroic signal. When excited at 335 nm the pig kidney apoenzyme has a pronounced emission maximum at 385 nm, in contrast with its recombinant counterpart, which shows a weak broad emission at about 400 nm. However, the holoenzyme-apoenzyme transition did not markedly alter the respective fluorescence properties of either recombinant or pig kidney DDC when excited at 335 nm. Taken together, these findings indicate that recombinant pig kidney DDC has two active-site PLP molecules and therefore displays structural characteristics typical of PLP-dependent homodimeric enzymes. The natural enzyme contains one active-site PLP molecule

  10. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential

    PubMed Central

    de Vantéry Arrighi, Corinne; Lucas, Hervé; Chardonnens, Didier; de Agostini, Ariane

    2009-01-01

    Background Externalization of phosphatidylserine (EPS) occurs in apoptotic-like spermatozoa and could be used to remove them from sperm preparations to enhance sperm quality for assisted medical procreation. We first characterized EPS in sperms from infertile patients in terms of frequency of EPS spermatozoa as well as localization of phosphatidylserine (PS) on spermatozoa. Subsequently, we determined the impact of depleting EPS spermatozoa on sperm quality. Methods EPS were visualized by fluorescently-labeled annexin V binding assay. Double staining with annexin V and Hoechst differentiates apoptotic from necrotic spermatozoa. We used magnetic-activated cell sorting using annexin V-conjugated microbeads (MACS-ANMB) technique to remove EPS spermatozoa from sperm prepared by density gradient centrifugation (DGC). The impact of this technique on sperm quality was evaluated by measuring progressive motility, viability, and the integrity of the mitochondrial membrane potential (MMP) by Rhodamine 123. Results Mean percentages of EPS spermatozoa were 14% in DGC sperm. Four subpopulations of spermatozoa were identified: 70% alive, 3% early apoptotic, 16% necrotic and 11% late apoptotic or necrotic. PS were localized on head and/or midpiece or on the whole spermatozoa. MACS efficiently eliminates EPS spermatozoa. MACS combined with DGC allows a mean reduction of 70% in EPS and of 60% in MMP-disrupted spermatozoa with a mean increase of 50% in sperm survival at 24 h. Conclusion Human ejaculates contain EPS spermatozoa which can mostly be eliminated by DGC plus MACS resulting in improved sperm long term viability, motility and MMP integrity. EPS may be used as an indicator of sperm quality and removal of EPS spermatozoa may enhance fertility potential in assisted medical procreation. PMID:19133142

  11. Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts.

    PubMed

    Hekman, Mirko; Hamm, Heike; Villar, Ana V; Bader, Benjamin; Kuhlmann, Jurgen; Nickel, Joachim; Rapp, Ulf R

    2002-07-01

    The serine/threonine kinase C-Raf is a key mediator in cellular signaling. Translocation of Raf to membranes has been proposed to be facilitated by Ras proteins in their GTP-bound state. In this study we provide evidence that both purified B- and C-Raf kinases possess lipophilic properties and associate with phospholipid membranes. In the presence of phosphatidylserine and lipid second messengers such as phosphatidic acid and ceramides these associations were very specific with affinity constants (K(D)) in the range of 0.5-50 nm. Raf association with liposomes was accompanied by displacement of 14-3-3 proteins and inhibition of Raf kinase activities. Interactions of Raf with cholesterol are of particular interest, since cholesterol has been shown to be involved, together with sphingomyelin and glycerophospholipids in the formation of specialized lipid microdomains called rafts. We demonstrate here that purified Raf proteins have moderate binding affinity for cholesterol. However, under conditions of lipid raft formation, Raf association with cholesterol (or rafts) increased dramatically. Since ceramides also support formation of rafts and interact with Raf we propose that Raf may be present at the plasma membrane in two distinct microdomains: in raft regions via association with cholesterol and ceramides and in non-raft regions due to interaction with phosphatidylserine and phosphatidic acid. At either location Raf kinase activity was inhibited by lipid binding in the absence or presence of Ras. Ras-Raf interactions with full-length C-Raf were studied both in solution and in phospholipid environment. Ras association with Raf was GTP dependent as previously demonstrated for C-Raf-RBD fragments. In the presence of liposomes the recruitment of C-Raf by reconstituted Ras-farnesyl was only marginal, since almost 70% of added C-Raf was bound by the lipids alone. Thus Ras-Raf binding in response to activation of Ras-coupled receptors may utilize Raf protein that is

  12. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    SciTech Connect

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capable of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.

  13. Characterization of Glutamate Decarboxylase (GAD) from Lactobacillus sakei A156 Isolated from Jeot-gal.

    PubMed

    Sa, Hyun Deok; Park, Ji Yeong; Jeong, Seon-Ju; Lee, Kang Wook; Kim, Jeong Hwan

    2015-05-01

    A gamma-aminobutyric acid (GABA)-producing microorganism was isolated from jeot-gal (anchovy), a Korean fermented seafood. The isolate, A156, produced GABA profusely when incubated in MRS broth with monosodium glutamate (3% (w/v)) at 37°C for 48 h. A156 was identified as Lactobacillus sakei by 16S rRNA gene sequencing. The GABA conversion yield was 86% as determined by GABase enzyme assay. The gadB gene encoding glutamate decarboxylase (GAD) was cloned by PCR. gadC encoding a glutamate/GABA antiporter was located immediately upstream of gadB. The operon structure of gadCB was confirmed by RT-PCR. gadB was overexpressed in Escherichia coli BL21(DE3) and recombinant GAD was purified. The purified GAD was 54.4 kDa in size by SDS-PAGE. Maximum GAD activity was observed at pH 5.0 and 55°C and the activity was dependent on pyridoxal 5'-phosphate. The Km and Vmax of GAD were 0.045 mM and 0.011 mM/min, respectively, when glutamate was used as the substrate.

  14. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    SciTech Connect

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.

    2010-06-25

    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  15. Effects of feeding, fasting, and caerulein treatment on ornithine decarboxylase in rat pancreas.

    PubMed

    Langlois, A; Morisset, J

    1991-09-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme in polyamine biosynthesis. We examined circadian variations in pancreatic ODC activity and time-course effects of caerulein in fed and fasted rats. Significant circadian variations in amount of ODC activity were observed. The highest values were obtained during the dark period (1855 +/- 406 pmoles CO2/h), and the lowest during the light period (359 +/- 84 pmoles CO2/h). Caerulein treatment induced hypertrophy and hyperplasia of the pancreas in fed rats; increases in pancreatic ODC activity preceded the rise in protein and DNA contents (447 +/- 44 pmoles CO2/h and 5573 +/- 893 pmoles CO2/h, 6 and 12 h after the first injection of caerulein, respectively). In fasted rats, pancreatic ODC activity was very low (149 +/- 37 pmoles CO2/h) and caerulein treatment induced a transient increase in this activity 12 h after the first injection; hypertrophy but not hyperplasia of the pancreas was observed. In caerulein-treated fasted rats, refeeding during the night following a 48 h fasting period was not enough to increase either ODC activity or DNA content. These findings demonstrate that nutritional status is an important factor in the regulation of ODC activity and, thereby, in caerulein-induced pancreatic growth.

  16. Mutational Analysis of Substrate Interactions with the Active Site of Dialkylglycine Decarboxylase

    PubMed Central

    Fogle, Emily J.; Toney, Michael D.

    2010-01-01

    Pyridoxal phosphate (PLP) dependent enzymes catalyze many different types of reactions at the α-, β-, and γ-carbons of amine and amino acid substrates. Dialkylglycine decarboxylase (DGD) is an unusual PLP dependent enzyme that catalyzes two reaction types, decarboxylation and transamination, in the same active site. A structurally-based, functional model has been proposed for the DGD active site, which maintains that R406 is important in determining substrate specificity through interactions with the substrate carboxylate while W138 provides specificity for short-chain alkyl groups. The mechanistic roles of R406 and W138 were investigated using site directed mutagenesis, alternate substrates, and analysis of steady-state and half-reaction kinetics. Experiments on the R406M and R406K mutants confirm the importance of R406 in substrate binding. Surprisingly, this work also shows that the positive charge of R406 facilitates catalysis of decarboxylation. The W138F mutant demonstrates that W138 indeed acts to limit the size of the subsite C binding pocket, determining specificity for 2,2-dialkylglycines with small side chains as predicted by the model. Finally, work with the double mutant W138F/M141R shows that these mutations expand substrate specificity to include L-glutamate and lead to an increase in specificity for L-glutamate over 2-aminoisobutyrate of approximately eight orders of magnitude compared to WT DGD. PMID:20540501

  17. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  18. Expression and localization of cysteine sulfinate decarboxylase in major salivary glands of male mice.

    PubMed

    Liu, Shengnan; Liu, Ying; Ma, Qiwang; Cui, Sheng; Liu, Jiali

    2015-04-01

    Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in mammalian cells. It plays a significant role in cell development, nutrition, and survival, such as in the regulation of ion transport and osmoregulation. Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine. Recently, the synthesis of taurine has been observed in the central nervous system, kidney, liver, and muscle. However, the synthesis of taurine in the salivary glands has still not been described in detail. We have detected CSD expression in the major salivary glands of adult male mice by real-time polymerase chain reaction (RT-PCR), Western blot, and immunofluorescence. In addition, we determined the content of taurine by high-performance liquid chromatography (HPLC). The results show that taurine is present in high concentrations in the major salivary glands of male mice. CSD messenger RNA (mRNA) and protein are expressed in the major salivary glands of male mice. The relative levels of CSD mRNA increase from the submandibular gland (SMG) to the sublingual gland (SLG) and parotid gland (PG), but the levels of the CSD protein are the opposite. The immunofluorescence results indicate that CSD is mainly located in the excretory ducts (EDs) and interlobular duct (IL) of SMG and ED in SLG, respectively. These results suggest that the major salivary glands of male mice produce taurine through the CSD pathway, and the synthesis of taurine might be related to sodium reabsorption in the salivary glands. PMID:25645459

  19. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed. PMID:16663805

  20. Herbacetin Is a Novel Allosteric Inhibitor of Ornithine Decarboxylase with Antitumor Activity.

    PubMed

    Kim, Dong Joon; Roh, Eunmiri; Lee, Mee-Hyun; Oi, Naomi; Lim, Do Young; Kim, Myoung Ok; Cho, Yong-Yeon; Pugliese, Angelo; Shim, Jung-Hyun; Chen, Hanyong; Cho, Eun Jin; Kim, Jong-Eun; Kang, Sun Chul; Paul, Souren; Kang, Hee Eun; Jung, Ji Won; Lee, Sung-Young; Kim, Sung-Hyun; Reddy, Kanamata; Yeom, Young Il; Bode, Ann M; Dong, Zigang

    2016-03-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well-established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials. PMID:26676750

  1. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  2. Aromatic L-amino acid decarboxylase deficiency diagnosed by clinical metabolomic profiling of plasma.

    PubMed

    Atwal, Paldeep S; Donti, Taraka R; Cardon, Aaron L; Bacino, C A; Sun, Qin; Emrick, L; Reid Sutton, V; Elsea, Sarah H

    2015-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is an inborn error of metabolism affecting the biosynthesis of serotonin, dopamine, and catecholamines. We report a case of AADC deficiency that was detected using the Global MAPS platform. This is a novel platform that allows for parallel clinical testing of hundreds of metabolites in a single plasma specimen. It uses a state-of-the-art mass spectrometry platform, and the resulting spectra are compared against a library of ~2500 metabolites. Our patient is now a 4 year old boy initially seen at 11 months of age for developmental delay and hypotonia. Multiple tests had not yielded a diagnosis until exome sequencing revealed compound heterozygous variants of uncertain significance (VUS), c.286G>A (p.G96R) and c.260C>T (p.P87L) in the DDC gene, causal for AADC deficiency. CSF neurotransmitter analysis confirmed the diagnosis with elevated 3-methoxytyrosine (3-O-methyldopa). Metabolomic profiling was performed on plasma and revealed marked elevation in 3-methoxytyrosine (Z-score +6.1) consistent with the diagnosis of AADC deficiency. These results demonstrate that the Global MAPS platform is able to diagnose AADC deficiency from plasma. In summary, we report a novel and less invasive approach to diagnose AADC deficiency using plasma metabolomic profiling.

  3. Relation of polymorphism of the histidine decarboxylase gene to chronic heart failure in Han Chinese.

    PubMed

    He, Gong-Hao; Cai, Wen-Ke; Meng, Jing-Ru; Ma, Xue; Zhang, Fan; Lu, Jun; Xu, Gui-Li

    2015-06-01

    Histidine decarboxylase (HDC) is a key determinant of the levels of endogenous histamine that has long been recognized to play important pathophysiological roles during development of chronic heart failure (CHF). Meanwhile, certain genetic variants in HDC gene were reported to affect the function of HDC and associated with histamine-related diseases. However, the relation between polymorphisms of HDC gene and CHF risk remains unclear. This study aims to investigate the associations between 2 nonsynonymous HDC polymorphisms (rs17740607 and rs2073440) and CHF. We designed a 2-stage case-control study, in which we genotyped 439 patients with CHF and 467 healthy controls recruited in Xi'an, China, and replicated this study in 413 patients with CHF and 452 healthy subjects in Kunming, China. We also performed in vitro experiments to further validate the functional consequences of variants positively associated with CHF. The rs17740607 polymorphism showed replicated associations with all-cause CHF according to genotype and allele distribution and also under a dominant and additive genetic model after adjusted for traditional cardiovascular-related factors. Functional experiments further demonstrated that rs17740607 polymorphism decreased the HDC activity. In conclusion, HDC rs17740607 polymorphism is at least a partial loss-of-function variant and acts as a protective factor against CHF, which provides novel highlights for investigating the contribution of CHF.

  4. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO.

  5. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  6. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  7. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  8. Regulation of human ornithine decarboxylase expression by the c-Myc.Max protein complex.

    PubMed

    Peña, A; Reddy, C D; Wu, S; Hickok, N J; Reddy, E P; Yumet, G; Soprano, D R; Soprano, K J

    1993-12-25

    The presence of a CACGTG element within a region of the human ornithine decarboxylase (ODC) promoter located at -491 to -474 base pairs 5' to the start site of transcription suggested that the c-Myc.Max protein complex may play a role in the regulation of ODC expression during growth. Electrophoretic mobility shift assays and methylation interference analysis showed that the nuclei of WI-38 cells expressing ODC contained proteins that bound to this region of the ODC gene in a manner that correlated with growth-associated ODC expression. Also, use of antibodies against c-Myc and Max and purified recombinant c-Myc and Max protein in the electrophoretic mobility shift assay confirmed that these proteins can specifically bind this portion of the human ODC promoter. Transient transfection studies showed that increase in the level of c-Myc and/or Max led to a significant enhancement of expression of a human ODC promoter-CAT reporter construct. Moreover, treatment of actively growing WI-38 cells with an antisense oligomer to c-Myc reduced the amount of endogenous protein complex formed and the amount of endogenous ODC mRNA expressed. These studies show that the c-Myc.Max protein complex plays a role in the transcriptional regulation of human ODC in vivo.

  9. Design of inhibitors of orotidine monophosphate decarboxylase using bioisosteric replacement and determination of inhibition kinetics.

    PubMed

    Poduch, Ewa; Bello, Angelica M; Tang, Sishi; Fujihashi, Masahiro; Pai, Emil F; Kotra, Lakshmi P

    2006-08-10

    Inhibitors of orotidine monophosphate decarboxylase (ODCase) have applications in RNA viral, parasitic, and other infectious diseases. ODCase catalyzes the decarboxylation of orotidine monophosphate (OMP), producing uridine monophosphate (UMP). Novel inhibitors 6-amino-UMP and 6-cyano-UMP were designed on the basis of the substructure volumes in the substrate OMP and in an inhibitor of ODCase, barbituric acid monophosphate, BMP. A new enzyme assay method using isothermal titration calorimetry (ITC) was developed to investigate the inhibition kinetics of ODCase. The reaction rates were measured by monitoring the heat generated during the decarboxylation reaction of orotidine monophosphate. Kinetic parameters (k(cat) = 21 s(-1) and KM = 5 microM) and the molar enthalpy (DeltaH(app) = 5 kcal/mol) were determined for the decarboxylation of the substrate by ODCase. Competitive inhibition of the enzyme was observed and the inhibition constants (Ki) were determined to be 12.4 microM and 29 microM for 6-aza-UMP and 6-cyano-UMP, respectively. 6-Amino-UMP was found to be among the potent inhibitors of ODCase, having an inhibition constant of 840 nM. We reveal here the first inhibitors of ODCase designed by the principles of bioisosterism and a novel method of using isothermal calorimetry for enzyme inhibition studies.

  10. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  11. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  12. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.

  13. Conversion of levulinic acid to 2-butanone by acetoacetate decarboxylase from Clostridium acetobutylicum.

    PubMed

    Min, Kyoungseon; Kim, Seil; Yum, Taewoo; Kim, Yunje; Sang, Byoung-In; Um, Youngsoon

    2013-06-01

    In this study, a novel system for synthesis of 2-butanone from levulinic acid (γ-keto-acid) via an enzymatic reaction was developed. Acetoacetate decarboxylase (AADC; E.C. 4.1.1.4) from Clostridium acetobutylicum was selected as a biocatalyst for decarboxylation of levulinic acid. The purified recombinant AADC from Escherichia coli successfully converted levulinic acid to 2-butanone with a conversion yield of 8.4-90.3 % depending on the amount of AADC under optimum conditions (30 °C and pH 5.0) despite that acetoacetate, a β-keto-acid, is a natural substrate of AADC. In order to improve the catalytic efficiency, an AADC-mediator system was tested using methyl viologen, methylene blue, azure B, zinc ion, and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) as mediators. Among them, methyl viologen showed the best performance, increasing the conversion yield up to 6.7-fold in comparison to that without methyl viologen. The results in this study are significant in the development of a renewable method for the synthesis of 2-butanone from biomass-derived chemical, levulinic acid, through enzymatic decarboxylation. PMID:23624707

  14. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes

    PubMed Central

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-01-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  15. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    PubMed

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos. PMID:22907836

  16. Glutamate Decarboxylase 67 Deficiency in a Subset of GABAergic Neurons Induces Schizophrenia-Related Phenotypes.

    PubMed

    Fujihara, Kazuyuki; Miwa, Hideki; Kakizaki, Toshikazu; Kaneko, Ryosuke; Mikuni, Masahiko; Tanahira, Chiyoko; Tamamaki, Nobuaki; Yanagawa, Yuchio

    2015-09-01

    Decreased expression of the GABA synthetic enzyme glutamate decarboxylase 67 (GAD67) in a subset of GABAergic neurons, including parvalbumin (PV)-expressing neurons, has been observed in postmortem brain studies of schizophrenics and in animal models of schizophrenia. However, it is unclear whether and how the perturbations of GAD67-mediated GABA synthesis and signaling contribute to the pathogenesis of schizophrenia. To address this issue, we generated the mice lacking GAD67 primarily in PV neurons and characterized them with focus on schizophrenia-related parameters. We found that heterozygous mutant mice exhibited schizophrenia-related behavioral abnormalities such as deficits in prepulse inhibition, MK-801 sensitivity, and social memory. Furthermore, we observed reduced inhibitory synaptic transmission, altered properties of NMDA receptor-mediated synaptic responses in pyramidal neurons, and increased spine density in hippocampal CA1 apical dendrites, suggesting a possible link between GAD67 deficiency and disturbed glutamatergic excitatory synaptic functions in schizophrenia. Thus, our results indicate that the mice heterozygous for GAD67 deficiency primarily in PV neurons share several neurochemical and behavioral abnormalities with schizophrenia, offering a novel tool for addressing the underlying pathophysiology of schizophrenia. PMID:25904362

  17. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks. PMID:24993302

  18. Linkage between the bacterial acid stress and stringent responses: the structure of the inducible lysine decarboxylase.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Alexopoulos, Eftichia; Zhao, Boyu; El Bakkouri, Majida; Thibault, Guillaume; Liu, Kaiyin; Ramachandran, Shaliny; Snider, Jamie; Pai, Emil F; Houry, Walid A

    2011-03-01

    The Escherichia coli inducible lysine decarboxylase, LdcI/CadA, together with the inner-membrane lysine-cadaverine antiporter, CadB, provide cells with protection against mild acidic conditions (pH∼5). To gain a better understanding of the molecular processes underlying the acid stress response, the X-ray crystal structure of LdcI was determined. The structure revealed that the protein is an oligomer of five dimers that associate to form a decamer. Surprisingly, LdcI was found to co-crystallize with the stringent response effector molecule ppGpp, also known as the alarmone, with 10 ppGpp molecules in the decamer. ppGpp is known to mediate the stringent response, which occurs in response to nutrient deprivation. The alarmone strongly inhibited LdcI enzymatic activity. This inhibition is important for modulating the consumption of lysine in cells during acid stress under nutrient limiting conditions. Hence, our data provide direct evidence for a link between the bacterial acid stress and stringent responses. PMID:21278708

  19. Molecular characterization of Mtb-OMP decarboxylase by modeling, docking and dynamic studies.

    PubMed

    Madhusudana, P; Babajan, B; Chaitanya, M; Anuradha, C M; Shobharani, C; Chikati, Rajasekar; Kumar, Chitta Suresh; Rao, K R S Sambasiva; Poda, Sudhakar

    2012-06-01

    Tuberculosis (TB), the second most deadly disease in the world is caused by Mycobacterium tuberculosis (Mtb). In the present work a unique enzyme of Mtb orotidine 5' monophosphate decarboxylase (Mtb-OMP Decase) is selected as drug target due to its indispensible role in biosynthesis of pyrimidines. The present work is focused on understanding the structural and functional aspects of Mtb-OMP Decase at molecular level. Due to absence of crystal structure, the 3D structure of Mtb-OMP Decase was predicted by MODELLER9V7 using a known structural template 3L52. Energy minimization and refinement of the developed 3D model was carried out with Gromacs 3.2.1 and the optimized homology model was validated by PROCHECK,WHAT-IF and PROSA2003. Further, the surface active site amino acids were quantified by WHAT-IF pocket. The exact binding interactions of the ligands, 6-idiouridine 5' monophosphate and its designed analogues with the receptor Mtb-OMP Decase were predicted by docking analysis with AUTODOCK 4.0. This would be helpful in understanding the blockade mechanism of OMP Decase and provide a candidate lead for the discovery of Mtb-OMP Decase inhibitors, which may bring insights into outcome new therapy to treat drug resistant Mtb.

  20. Hepatoerythropoietic Porphyria Caused by a Novel Homoallelic Mutation in Uroporphyrinogen Decarboxylase Gene in Egyptian Patients.

    PubMed

    Farrag, M S; Mikula, I; Richard, E; Saudek, V; De Verneuil, H; Martásek, P

    2015-01-01

    Porphyrias are metabolic disorders resulting from mutations in haem biosynthetic pathway genes. Hepatoerythropoietic porphyria (HEP) is a rare type of porphyria caused by the deficiency of the fifth enzyme (uroporphyrinogen decarboxylase, UROD) in this pathway. The defect in the enzymatic activity is due to biallelic mutations in the UROD gene. Currently, 109 UROD mutations are known. The human disease has an early onset, manifesting in infancy or early childhood with red urine, skin photosensitivity in sun-exposed areas, and hypertrichosis. Similar defects and links to photosensitivity and hepatopathy exist in several animal models, including zebrafish and mice. In the present study, we report a new mutation in the UROD gene in Egyptian patients with HEP. We show that the homozygous c.T163A missense mutation leads to a substitution of a conserved phenylalanine (amino acid 55) for isoleucine in the enzyme active site, causing a dramatic decrease in the enzyme activity (19 % of activity of wild-type enzyme). Inspection of the UROD crystal structure shows that Phe-55 contacts the substrate and is located in the loop that connects helices 2 and 3. Phe-55 is strictly conserved in both prokaryotic and eukaryotic UROD. The F55I substitution likely interferes with the enzyme-substrate interaction.

  1. Role of OsHAL3 protein, a putative 4'-phosphopantothenoylcysteine decarboxylase in rice.

    PubMed

    Zhang, Ning; Wang, Xuechen; Chen, Jia

    2009-01-01

    In this study, we cloned the OsHAL3 gene from rice Oryza sativa. Alignment analysis revealed that OsHAL3 has a high sequence identity to Dfp protein in Escherichia coli and AtHAL3a protein in Arabidopsis thaliana, which have 4'-phosphopantothenoylcysteine decarboxylase (PPC-DC) activity. OsHAL3 can complement mutation in the E. coli dfp gene encoding PPC-DC, so that the mutant strains with OsHAL3 can grow on rich media at 42 degrees C and on VB minimal media at 30 degrees C. Complementation tests with point mutations of OsHAL3 suggested that the conserved Cys176 residue of OsHAL3 is a key active-site residue. The mutant OsHAL3 G180A has a partly reduced activity. Related mRNA-level analysis showed that the OsHAL3 gene is induced by calcium pantothenate in rice. PMID:19232050

  2. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan.

  3. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis.

    PubMed

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I; Rodríguez-Hernández, Aída A; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  4. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear

    PubMed Central

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-01-01

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant D-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifest by freezing during the presentation of a tone 48 hours after it had been paired with a shock. During the 30 minutes following tone presentation they showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. PMID:25841792

  5. Identification of malic and soluble oxaloacetate decarboxylase enzymes in Enterococcus faecalis.

    PubMed

    Espariz, Martín; Repizo, Guillermo; Blancato, Víctor; Mortera, Pablo; Alarcón, Sergio; Magni, Christian

    2011-06-01

    Two paralogous genes, maeE and citM, that encode putative malic enzyme family members were identified in the Enterococcus faecalis genome. MaeE (41 kDa) and CitM (42 kDa) share a high degree of homology between them (47% identities and 68% conservative substitutions). However, the genetic context of each gene suggested that maeE is associated with malate utilization whereas citM is linked to the citrate fermentation pathway. In the present work, we focus on the biochemical characterization and physiological contribution of these enzymes in E. faecalis. With this aim, the recombinant versions of the two proteins were expressed in Escherichia coli, affinity purified and finally their kinetic parameters were determined. This approach allowed us to establish that MaeE is a malate oxidative decarboxylating enzyme and CitM is a soluble oxaloacetate decarboxylase. Moreover, our genetic studies in E. faecalis showed that the citrate fermentation phenotype is not affected by citM deletion. On the other hand, maeE gene disruption resulted in a malate fermentation deficient strain indicating that MaeE is responsible for malate metabolism in E. faecalis. Lastly, it was demonstrated that malate fermentation in E. faecalis is associated with cytoplasmic and extracellular alkalinization which clearly contributes to pH homeostasis in neutral or mild acidic conditions. PMID:21518252

  6. Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua

    PubMed Central

    Liu, Sisi; Wang, Mo; Li, Xianchun

    2015-01-01

    Melanism has been found in a wide range of species, but the molecular mechanisms involved remain largely elusive. In this study, we studied the molecular mechanisms of the pupal melanism in Spodoptera exigua. The full length cDNA sequences of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), two key enzymes in the biosynthesis pathway of melanin, were cloned, and their temporal expression patterns in the integument were compared during the larval-pupal metamorphosis process of the S. exigua wild type (SEW) and melanic mutant (SEM) strains. No amino acid change in the protein sequence of TH and DDC was found between the two strains. Both DDC and TH were significantly over-expressed in the integument of the SEM strain at late-prepupa and 0 h pupa, respectively, compared with those of the SEW strain. Feeding 5th instar larvae of SEM with diets incorporated with 1 mg/g of the DDC inhibitor L-α-Methyl-DOPA and 0.75 mg/g of the TH inhibitor 3-iodo-tyrosine (3-IT) resulted in 20% pupae with partially-rescued phenotype and 68.2% of pupae with partially- or fully-rescued phenotype, respectively. These results indicate that overexpressions of TH and DDC are involved in the pupal melanization of S. exigua. PMID:26084938

  7. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    PubMed

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  8. Role of the Sulfonium Center in Determining the Ligand Specificity of Human S-Adenosylmethionine Decarboxylase

    SciTech Connect

    Bale, Shridhar; Brooks, Wesley; Hanes, Jeremiah W.; Mahesan, Arnold M.; Guida, Wayne C.; Ealick, Steven E.

    2009-08-13

    S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the polyamine biosynthetic pathway. Inhibition of this pathway and subsequent depletion of polyamine levels is a viable strategy for cancer chemotherapy and for the treatment of parasitic diseases. Substrate analogue inhibitors display an absolute requirement for a positive charge at the position equivalent to the sulfonium of S-adenosylmethionine. We investigated the ligand specificity of AdoMetDC through crystallography, quantum chemical calculations, and stopped-flow experiments. We determined crystal structures of the enzyme cocrystallized with 5{prime}-deoxy-5{prime}-dimethylthioadenosine and 5{prime}-deoxy-5{prime}-(N-dimethyl)amino-8-methyladenosine. The crystal structures revealed a favorable cation-{pi} interaction between the ligand and the aromatic side chains of Phe7 and Phe223. The estimated stabilization from this interaction is 4.5 kcal/mol as determined by quantum chemical calculations. Stopped-flow kinetic experiments showed that the rate of the substrate binding to the enzyme greatly depends on Phe7 and Phe223, thus supporting the importance of the cation-{pi} interaction.

  9. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress.

  10. Purification and characterisation of pyruvate decarboxylase from pea seeds (Pisum sativum cv. Miko).

    PubMed

    Mücke, U; König, S; Hübner, G

    1995-02-01

    Pyruvate decarboxylase (PDC) was purified from pea seeds. The catalytically active holoenzyme is an oligomer of two types of subunits with molecular masses of about 65 kDa and 68 kDa, respectively. The active enzyme is a mixture of tetramers, octamers and even higher oligomers. These differences in the quaternary structure compared with PDC from yeast (tetramer) do not result in a different kinetic behaviour. The activity of pea PDC as well as that of yeast PDC is regulated by its substrate pyruvate resulting in a sigmoid shape of the v/S-plot. At the optimum pH of 6.0 a S0.5-value of 1 mM pyruvate is found that increases with rising pH and increasing concentrations of phosphate. The substrate analogue activator pyruvamide activates the enzyme resulting in a hyperbolic v/S-plot. The stability of PDC from pea seeds in solution is about one order of magnitude higher than that of yeast PDC. Despite the described similarities of the two enzymes no significant cross reactivity of the anti-pea PDC antibody with the enzyme from yeast occurs. PMID:7794525

  11. Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier.

    PubMed

    Peper, Stephanie; Kara, Selin; Long, Wei Sing; Liese, Andreas; Niemeyer, Bernd

    2011-08-01

    If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

  12. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity. PMID:27443004

  13. Biochemical and Genetic Characterization of the Enterococcus faecalis Oxaloacetate Decarboxylase Complex

    PubMed Central

    Repizo, Guillermo D.; Blancato, Víctor S.; Mortera, Pablo; Lolkema, Juke S.

    2013-01-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation. PMID:23435880

  14. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    PubMed

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  15. Novel interactions of fluorinated nucleotide derivatives targeting orotidine-5′-monophosphate decarboxylase

    PubMed Central

    Lewis, Melissa; Avina, Maria Elena Meza; Wei, Lianhu; Crandall, Ian E.; Bello, Angelica Mara; Poduch, Ewa; Liu, Yan; Paige, Christopher J.; Kain, Kevin C.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists due to their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2′-deoxy-2′-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine-5′-monophosphate decarboxylase (ODCase). These compounds were synthesized from the key intermediate, fully-protected 2′-deoxy-2′-fluorouridine. Among the synthesized compounds, 2′-deoxy-2′-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M−1sec−1. Interestingly, the 6-cyano-2′-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2′-fluoro moiety influences the chemistry at the C6 position of the nucleotides, thus interactions in the active site of ODCase. Molecular interactions of the 2′-fluorinated nucleotides are compared to those with the 3′-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations. PMID:21417464

  16. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase

    PubMed Central

    Fujihashi, Masahiro; Ishida, Toyokazu; Kuroda, Shingo; Kotra, Lakshmi P.; Pai, Emil F.; Miki, Kunio

    2014-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) accelerates the decarboxylation of orotidine 5'-monophosphate (OMP) to uridine 5'-monophosphate (UMP) by 17 orders of magnitude. Eight new crystal structures with ligand analogues combined with computational analyses of the enzyme’s short-lived intermediates and the intrinsic electronic energies to distort the substrate and other ligands improve our understanding of the still controversially discussed reaction mechanism. In their respective complexes, 6-methyl-UMP displays significant distortion of its methyl substituent bond, 6-amino-UMP shows the competition between the K72 and C6 substituents for a position close to D70, and the methyl- and ethyl-ester of OMP both induce rotation of the carboxylate group substituent out of the plane of the pyrimidine ring. MD and QM/MM computations of the enzyme-substrate (ES) complex also show the bond between the carboxylate group and the pyrimidine ring to be distorted with the distortion contributing a 10–15% decrease of the ΔΔG‡ value. These results are consistent with ODCase using both substrate distortion as well as transition state stabilization, primarily exerted by K72, in its catalysis of the OMP decarboxylation reaction. PMID:24151964

  17. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  18. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  19. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress. PMID:27191596

  20. The role of arginine decarboxylase in modulating the sensitivity of barley to ozone.

    PubMed

    Rowland-Bamford, A J; Borland, A M; Lea, P J; Mansfield, T A

    1989-01-01

    Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.

  1. Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes

    PubMed Central

    Thomson, Scott C.; Deng, Aihua; Bao, Dingjiu; Satriano, Joseph; Blantz, Roland C.; Vallon, Volker

    2001-01-01

    In early diabetes, the kidney grows and the glomerular filtration rate (GFR) increases. This growth is linked to ornithine decarboxylase (ODC). The study of hyperfiltration has focused on microvascular abnormalities, but hyperfiltration may actually result from a prior increase in capacity for proximal reabsorption which reduces the signal for tubuloglomerular feedback (TGF). Experiments were performed in Wistar rats after 1 week of streptozotocin diabetes. Kidney weight, ODC activity, and GFR were correlated in diabetic and control rats given difluoromethylornithine (DFMO; Marion Merrell Dow, Cincinnati, Ohio, USA) to inhibit ODC. We assessed proximal reabsorption by micropuncture, using TGF as a tool for manipulating single-nephron GFR (SNGFR), then plotting proximal reabsorption versus SNGFR. ODC activity was elevated 15-fold in diabetic kidneys and normalized by DFMO, which also attenuated hyperfiltration and hypertrophy. Micropuncture data revealed an overall increase in proximal reabsorption in diabetic rats too great to be accounted for by glomerulotubular balance. DFMO prevented the overall increase in proximal reabsorption. These data confirm that ODC is required for the full effect of diabetes on kidney size and proximal reabsorption in early streptozotocin diabetes and are consistent with the hypothesis that diabetic hyperfiltration results from normal physiologic actions of TGF operating in a larger kidney, independent of any primary malfunction of the glomerular microvasculature. PMID:11160138

  2. Identification of the Enterobacteriaceae in Montasio cheese and assessment of their amino acid decarboxylase activity.

    PubMed

    Maifreni, Michela; Frigo, Francesca; Bartolomeoli, Ingrid; Innocente, Nadia; Biasutti, Marialuisa; Marino, Marilena

    2013-02-01

    The aim of the study was to identify the species of Enterobacteriaceae present in Montasio cheese and to assess their potential to produce biogenic amines. Plate count methods and an Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) approach, combined with 16S rDNA sequencing, were used to investigate the Enterobacteriaceae community present during the cheesemaking and ripening of 6 batches of Montasio cheese. Additionally, the potential decarboxylation abilities of selected bacterial isolates were qualitatively and quantitatively assessed against tyrosine, histidine, ornithine and lysine. The most predominant species detected during cheese manufacturing and ripening were Enterobacter cloacae, Escherichia coli and Hafnia alvei. The non-limiting physico-chemical conditions (pH, NaCl% and a(w)) during ripening were probably the cause of the presence of detectable levels of Enterobacteriaceae up to 120 d of ripening. The HPLC test showed that cadaverine and putrescine were the amines produced in higher amounts by almost all isolates, indicating that the presence of these amines in cheese can be linked to the presence of high counts of Enterobacteriaceae. 44 isolates produced low amounts of histamine (<300 ppm), and four isolates produced more than 1000 ppm of this amine. Only 9 isolates, belonging to the species Citrobacter freundii, Esch. coli and Raoultella ornithinolytica, appeared to produce tyramine. These data provided new information regarding the decarboxylase activity of some Enterobacteriaceae species, including Pantoea agglomerans, Esch. fergusonii and R. ornithinolytica. PMID:23298547

  3. Biochemical and genetic characterization of the Enterococcus faecalis oxaloacetate decarboxylase complex.

    PubMed

    Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian

    2013-05-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.

  4. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis.

    PubMed

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I; Rodríguez-Hernández, Aída A; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

  5. The Bifunctional Pyruvate Decarboxylase/Pyruvate Ferredoxin Oxidoreductase from Thermococcus guaymasensis

    PubMed Central

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg−1 and 20.2 ± 1.8 U mg−1, with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β-keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β-keto acids. PMID:24982594

  6. Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens.

    PubMed

    Bliven, Kimberly A; Fisher, Derek J; Maurelli, Anthony T

    2012-12-01

    Chlamydia pneumoniae encodes a functional arginine decarboxylase (ArgDC), AaxB, that activates upon self-cleavage and converts l-arginine to agmatine. In contrast, most Chlamydia trachomatis serovars carry a missense or nonsense mutation in aaxB abrogating activity. The G115R missense mutation was not predicted to impact AaxB functionality, making it unclear whether AaxB variations in other Chlamydia species also result in enzyme inactivation. To address the impact of gene polymorphism on functionality, we investigated the activity and production of the Chlamydia AaxB variants. Because ArgDC plays a critical role in the Escherichia coli acid stress response, we studied the ability of these Chlamydia variants to complement an E. coli ArgDC mutant in an acid shock assay. Active AaxB was detected in four additional species: Chlamydia caviae, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia muridarum. Of the C. trachomatis serovars, only E appears to encode active enzyme. To determine when functional enzyme is present during the chlamydial developmental cycle, we utilized an anti-AaxB antibody to detect both uncleaved and cleaved enzyme throughout infection. Uncleaved enzyme production peaked around 20 h postinfection, with optimal cleavage around 44 h. While the role ArgDC plays in Chlamydia survival or virulence is unclear, our data suggest a niche-specific function.

  7. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.

  8. Neurodegeneration with Brain Iron Accumulation

    MedlinePlus

    ... Diversity Find People About NINDS NINDS Neurodegeneration with Brain Iron Accumulation Information Page Synonym(s): Hallervorden-Spatz Disease, ... done? Clinical Trials Organizations What is Neurodegeneration with Brain Iron Accumulation? Neurodegeneration with brain iron accumulation (NBIA) ...

  9. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants. PMID:27485226

  10. Plastids and Carotenoid Accumulation.

    PubMed

    Li, Li; Yuan, Hui; Zeng, Yunliu; Xu, Qiang

    2016-01-01

    Plastids are ubiquitously present in plants and are the organelles for carotenoid biosynthesis and storage. Based on their morphology and function, plastids are classified into various types, i.e. proplastids, etioplasts, chloroplasts, amyloplasts, and chromoplasts. All plastids, except proplastids, can synthesize carotenoids. However, plastid types have a profound effect on carotenoid accumulation and stability. In this chapter, we discuss carotenoid biosynthesis and regulation in various plastids with a focus on carotenoids in chromoplasts. Plastid transition related to carotenoid biosynthesis and the different capacity of various plastids to sequester carotenoids and the associated effect on carotenoid stability are described in light of carotenoid accumulation in plants.

  11. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway.

    PubMed

    Vannice, John C; Skaff, D Andrew; Keightley, Andrew; Addo, James K; Wyckoff, Gerald J; Miziorko, Henry M

    2014-03-01

    Mevalonate (MVA) metabolism provides the isoprenoids used in archaeal lipid biosynthesis. In synthesis of isopentenyl diphosphate, the classical MVA pathway involves decarboxylation of mevalonate diphosphate, while an alternate pathway has been proposed to involve decarboxylation of mevalonate monophosphate. To identify the enzymes responsible for metabolism of mevalonate 5-phosphate to isopentenyl diphosphate in Haloferax volcanii, two open reading frames (HVO_2762 and HVO_1412) were selected for expression and characterization. Characterization of these proteins indicated that one enzyme is an isopentenyl phosphate kinase that forms isopentenyl diphosphate (in a reaction analogous to that of Methanococcus jannaschii MJ0044). The second enzyme exhibits a decarboxylase activity that has never been directly attributed to this protein or any homologous protein. It catalyzes the synthesis of isopentenyl phosphate from mevalonate monophosphate, a reaction that has been proposed but never demonstrated by direct experimental proof, which is provided in this account. This enzyme, phosphomevalonate decarboxylase (PMD), exhibits strong inhibition by 6-fluoromevalonate monophosphate but negligible inhibition by 6-fluoromevalonate diphosphate (a potent inhibitor of the classical mevalonate pathway), reinforcing its selectivity for monophosphorylated ligands. Inhibition by the fluorinated analog also suggests that the PMD utilizes a reaction mechanism similar to that demonstrated for the classical MVA pathway decarboxylase. These observations represent the first experimental demonstration in H. volcanii of both the phosphomevalonate decarboxylase and isopentenyl phosphate kinase reactions that are required for an alternate mevalonate pathway in an archaeon. These results also represent, to our knowledge, the first identification and characterization of any phosphomevalonate decarboxylase. PMID:24375100

  12. Effect of end-of-day irradiations on polyamine accumulation in petal cultures of Araujia sericifera.

    PubMed

    Moysset, Luisa; Trull, Olga; Santos, M. Asunción; Simón, Esther; Torné, Josep M

    2002-01-01

    We have studied photoperiodic control and the effect of phytochrome photoconversion at the end-of-day (EOD) on polyamine (PA) accumulation in petal explants of Araujia sericifera. Petals from immature flowers were cultured under long (LD) and short (SD) days. Light was provided by Gro-lux fluorescent lamps (90-100 &mgr;mol m-2 s-1). Red (R), far red (FR), red followed by far-red (R-FR) and far-red followed by red (FR-R) light treatments were applied daily at the end of the photoperiod. The free and bound putrescine (Put), spermidine (Spd) and spermine (Spm) fractions in petal explants were determined 40 days after the beginning of the culture. We also aimed to clarify the involvement of PA changes by using two inhibitors of PA biosynthesis: D-l-alpha-difluoromethylarginine (DFMA) and methylglyoxal bis(guanylhydrazone) (MGBG). We found PA accumulation to be under photoperiodic control, and the inhibitory effect of DFMA on this accumulation suggests that arginine decarboxylase (ADC) is the major pathway for Put biosynthesis. Polyamine levels were higher under LD, mainly as a result of the accumulation of free and bound Put. FR-EOD treatment, which dramatically reduced the R : FR ratio after LD, increased the accumulation of PA, mainly as free Put and free and bound Spd. Sequential R-FR and FR-R-EOD treatments strongly increased bound Spd. The concentration of MGBG used increased total PA accumulation, mainly as Put. However, all EOD light treatments dramatically reduced Put accumulation in the presence of MGBG. This may be due to a dual role of FR light in PA accumulation: (1) FR per se stimulates PA production, probably via ADC, and (2) in the presence of MGBG, FR inhibits Put accumulation, probably via ethylene production.

  13. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena. PMID:2760634

  14. Treatment of idiopathic parkinsonism with L-dopa in the absence and presence of decarboxylase inhibitors: effects on plasma levels of L-dopa, dopa decarboxylase, catecholamines and 3-O-methyl-dopa.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-05-01

    The effect of levodopa (L-dopa), alone or in combination with a peripheral decarboxylase inhibitor (PDI), on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD, = dopa decarboxylase), L-dopa, 3-O-methyl-dopa (3-OMD), dopamine (DA), noradrenaline, adrenaline and dopamine beta-hydroxylase has been studied. In healthy subjects and in patients with parkinsonism plasma ALAAD level fell after administration of L-dopa + benserazide, but returned to previous levels within 90 min. In a cross-sectional study blood was obtained, 2 h after dosing, from 104 patients with idiopathic parkinsonism, divided into four groups: no L-dopa treatment (group 1), L-dopa alone (group 2), L-dopa + benserazide (Madopar) (group 3) and L-dopa + carbidopa (Sinemet) (group 4). Plasma ALAAD, which was normal in groups 1 and 2, was increased 3-fold in groups 3 and 4, indicating that there was induction of ALAAD by the co-administration of PDI. Despite this induction of ALAAD, in groups 3 and 4, with half the daily L-dopa dose compared with group 2, plasma L-dopa and 3-OMD levels were 5 times higher, while plasma DA levels were not different. The DA/L-dopa ratio was decreased 5-fold in group 2 and 16-fold in groups 3 and 4 as compared with group 1. Neither 3-OMD levels nor 3-OMD/L-dopa ratios correlated with the occurrence of on-off fluctuations. In a longitudinal study of three patients started on Madopar treatment the induction of plasma ALAAD was found to occur gradually over 3-4 weeks. Further detailed pharmacokinetic studies in plasma and cerebrospinal fluid are required in order to elucidate whether the ALAAD induction by PDI may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  15. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites.

  16. Chimpanzee accumulative stone throwing

    PubMed Central

    Kühl, Hjalmar S.; Kalan, Ammie K.; Arandjelovic, Mimi; Aubert, Floris; D’Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E.; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J.; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M.; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  17. Chimpanzee accumulative stone throwing.

    PubMed

    Kühl, Hjalmar S; Kalan, Ammie K; Arandjelovic, Mimi; Aubert, Floris; D'Auvergne, Lucy; Goedmakers, Annemarie; Jones, Sorrel; Kehoe, Laura; Regnaut, Sebastien; Tickle, Alexander; Ton, Els; van Schijndel, Joost; Abwe, Ekwoge E; Angedakin, Samuel; Agbor, Anthony; Ayimisin, Emmanuel Ayuk; Bailey, Emma; Bessone, Mattia; Bonnet, Matthieu; Brazolla, Gregory; Buh, Valentine Ebua; Chancellor, Rebecca; Cipoletta, Chloe; Cohen, Heather; Corogenes, Katherine; Coupland, Charlotte; Curran, Bryan; Deschner, Tobias; Dierks, Karsten; Dieguez, Paula; Dilambaka, Emmanuel; Diotoh, Orume; Dowd, Dervla; Dunn, Andrew; Eshuis, Henk; Fernandez, Rumen; Ginath, Yisa; Hart, John; Hedwig, Daniela; Ter Heegde, Martijn; Hicks, Thurston Cleveland; Imong, Inaoyom; Jeffery, Kathryn J; Junker, Jessica; Kadam, Parag; Kambi, Mohamed; Kienast, Ivonne; Kujirakwinja, Deo; Langergraber, Kevin; Lapeyre, Vincent; Lapuente, Juan; Lee, Kevin; Leinert, Vera; Meier, Amelia; Maretti, Giovanna; Marrocoli, Sergio; Mbi, Tanyi Julius; Mihindou, Vianet; Moebius, Yasmin; Morgan, David; Morgan, Bethan; Mulindahabi, Felix; Murai, Mizuki; Niyigabae, Protais; Normand, Emma; Ntare, Nicolas; Ormsby, Lucy Jayne; Piel, Alex; Pruetz, Jill; Rundus, Aaron; Sanz, Crickette; Sommer, Volker; Stewart, Fiona; Tagg, Nikki; Vanleeuwe, Hilde; Vergnes, Virginie; Willie, Jacob; Wittig, Roman M; Zuberbuehler, Klaus; Boesch, Christophe

    2016-01-01

    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites. PMID:26923684

  18. Effects of immunization with natural and recombinant lysine decarboxylase on canine gingivitis development.

    PubMed

    Peters, Jennifer L; DeMars, Paul L; Collins, Lindsay M; Stoner, Julie A; Matsumoto, Hiroyuki; Komori, Naoka; Singh, Anil; Feasley, Christa L; Haddock, James A; Levine, Martin

    2012-10-19

    Periodontal disease, gingival inflammation (gingivitis) and periodontal attachment loss (periodontitis), causes tooth loss and susceptibility to chronic inflammation. Professionally scaling and cleaning the teeth regularly controls the disease, but is expensive in companion animals. Eikenella corrodens is common in canine oral cavities where it is a source of lysine decarboxylase (LDC). In human dental biofilms (plaques), LDC converts lysine to cadaverine and impairs the gingival epithelial barrier to bacteria. LDC vaccination may therefore retard gingivitis development. Year-old beagle dogs provided blood samples, and had weight and clinical measurements (biofilm and gingivitis) recorded. After scaling and cleaning, two dogs were immunized subcutaneously with 0.2mg native LDC from E. corrodens and 2 sets of four dogs with 0.2mg recombinant LDC purified from Escherichia coli. A third set of 4 dogs was immunized intranasally. Rehydragel(®), Emulsigen(®), Polygen™ or Carbigen™ were used as adjuvant. Four additional pairs of dogs were sham-immunized with each adjuvant alone (controls). Immunizations were repeated twice, 3 weeks apart, and clinical measurements were obtained after another 2 weeks, when the teeth were scaled and cleaned again. Tooth brushing was then stopped and the diet was changed from hard to soft chow. Clinical measurements were repeated after 1, 2, 3, 4, 6 and 8 weeks. Compared with sham-immunized dogs, gingivitis was reduced over all 8 weeks of soft diet after subcutaneous immunization with native LDC, or after intranasal immunization with recombinant LDC in Carbigen™, but for only 6 of the 8 weeks after subcutaneous immunization with recombinant LDC in Emulsigen(®) (repeated measures ANOVA). Subcutaneous vaccination induced a strong serum IgG antibody response that decreased during the soft diet period, whereas intranasal immunization induced a weak serum IgA antibody response that did not decrease. Immunization with recombinant LDC may

  19. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease. PMID:26830512

  20. Characterization and translational regulation of the arginine decarboxylase gene in carnation (Dianthus caryophyllus L.).

    PubMed

    Chang, K S; Lee, S H; Hwang, S B; Park, K Y

    2000-10-01

    Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We characterized a carnation genomic clone, gDcADC8, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 77.7 kDa. The unusually long 5'-UTR that contained a short upstream open reading frame (uORF) of seven amino acids (MQKSLHI) was predicted to form an extensive secondary structure (free energy of approximately -117 kcal mol-1) using the Zuker m-fold algorithm. The result that an ADC antibody detected two bands of 45 and 33 kDa in a petal extract suggested the full length of the 78 kDa polypeptide precursor converted into two polypeptides in the processing reaction. To investigate the role of the transcript leader in translation, in vitro transcription/translation reactions with various constructs of deletion and mutation were performed using wheat germ extract. The ADC transcript leader affected positively downstream translation in both wheatgerm extract and primary transformant overexpressing ADC gene. It was demonstrated that heptapeptide (8.6 kDa) encoded by the ADC uORF was synthesized in vitro. Both uORF peptide, and the synthetic heptapeptide MQKSLHI of the uORF, repressed the translation of downstream ORF. Mutation of the uORF ATG codon alleviated the inhibitory effect. ORF translation was not affected by either a frame-shift mutation in uORF or a random peptide. To our knowledge, this is the first report to provide evidence that a uORF may inhibit the translation of a downstream ORF, not only in cis but also in trans, and that the leader sequence of the ADC gene is important for efficient translation.

  1. Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines

    PubMed Central

    Izzo, Emanuela; Auta, James; Impagnatiello, Francesco; Pesold, Christine; Guidotti, Alessandro; Costa, Erminio

    2001-01-01

    Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72–96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABAA (γ-aminobutyric acid type A) receptor subunits (decrease in γ2 and α1; increase in α5) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD67. In contrast, dl-α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal. PMID:11248104

  2. Structural Basis for Nucleotide Binding and Reaction Catalysis in Mevalonate Diphosphate Decarboxylase

    SciTech Connect

    Barta, Michael L.; McWhorter, William J.; Miziorko, Henry M.; Geisbrecht, Brian V.

    2012-09-17

    Mevalonate diphosphate decarboxylase (MDD) catalyzes the final step of the mevalonate pathway, the Mg{sup 2+}-ATP dependent decarboxylation of mevalonate 5-diphosphate (MVAPP), producing isopentenyl diphosphate (IPP). Synthesis of IPP, an isoprenoid precursor molecule that is a critical intermediate in peptidoglycan and polyisoprenoid biosynthesis, is essential in Gram-positive bacteria (e.g., Staphylococcus, Streptococcus, and Enterococcus spp.), and thus the enzymes of the mevalonate pathway are ideal antimicrobial targets. MDD belongs to the GHMP superfamily of metabolite kinases that have been extensively studied for the past 50 years, yet the crystallization of GHMP kinase ternary complexes has proven to be difficult. To further our understanding of the catalytic mechanism of GHMP kinases with the purpose of developing broad spectrum antimicrobial agents that target the substrate and nucleotide binding sites, we report the crystal structures of wild-type and mutant (S192A and D283A) ternary complexes of Staphylococcus epidermidis MDD. Comparison of apo, MVAPP-bound, and ternary complex wild-type MDD provides structural information about the mode of substrate binding and the catalytic mechanism. Structural characterization of ternary complexes of catalytically deficient MDD S192A and D283A (k{sub cat} decreased 10{sup 3}- and 10{sup 5}-fold, respectively) provides insight into MDD function. The carboxylate side chain of invariant Asp{sup 283} functions as a catalytic base and is essential for the proper orientation of the MVAPP C3-hydroxyl group within the active site funnel. Several MDD amino acids within the conserved phosphate binding loop ('P-loop') provide key interactions, stabilizing the nucleotide triphosphoryl moiety. The crystal structures presented here provide a useful foundation for structure-based drug design.

  3. Overexpression of ornithine decarboxylase decreases ventricular systolic function during induction of cardiac hypertrophy.

    PubMed

    Giordano, Emanuele; Hillary, Rebecca A; Vary, Thomas C; Pegg, Anthony E; Sumner, Andrew D; Caldarera, Claudio M; Zhang, Xue-Qian; Song, Jianliang; Wang, JuFang; Cheung, Joseph Y; Shantz, Lisa M

    2012-02-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.

  4. Epigenetic signature of panic disorder: a role of glutamate decarboxylase 1 (GAD1) DNA hypomethylation?

    PubMed

    Domschke, Katharina; Tidow, Nicola; Schrempf, Marie; Schwarte, Kathrin; Klauke, Benedikt; Reif, Andreas; Kersting, Anette; Arolt, Volker; Zwanzger, Peter; Deckert, Jürgen

    2013-10-01

    Glutamate decarboxylases (GAD67/65; GAD1/GAD2) are crucially involved in gamma-aminobutyric acid (GABA) synthesis and thus were repeatedly suggested to play an important role in the pathogenesis of anxiety disorders. In the present study, DNA methylation patterns in the GAD1 and GAD2 promoter and GAD1 intron 2 regions were investigated for association with panic disorder, with particular attention to possible effects of environmental factors. Sixty-five patients with panic disorder (f=44, m=21) and 65 matched healthy controls were analyzed for DNA methylation status at 38 GAD1 promoter/intron2 and 10 GAD2 promoter CpG sites via direct sequencing of sodium bisulfate treated DNA extracted from blood cells. Recent positive and negative life events were ascertained. Patients and controls were genotyped for GAD1 rs3762556, rs3791878 and rs3762555, all of which are located in the analyzed promoter region. Patients with panic disorder exhibited significantly lower average GAD1 methylation than healthy controls (p<0.001), particularly at three CpG sites in the promoter as well as in intron 2. The occurrence of negative life events was correlated with relatively decreased average methylation mainly in the female subsample (p=0.01). GAD1 SNP rs3762555 conferred a significantly lower methylation at three GAD1 intron 2 CpG sites (p<0.001). No differential methylation was observed in the GAD2 gene. The present pilot data suggest a potentially compensatory role of GAD1 gene hypomethylation in panic disorder possibly mediating the influence of negative life events and depending on genetic variation. Future studies are warranted to replicate the present finding in independent samples, preferably in a longitudinal design.

  5. Inhibition of histidine decarboxylase ablates the autocrine tumorigenic effects of histamine in human cholangiocarcinoma

    PubMed Central

    Francis, Heather; DeMorrow, Sharon; Venter, Julie; Onori, Paolo; White, Mellanie; Gaudio, Eugenio; Francis, Taylor; Greene, John F; Tran, Steve; Meininger, Cynthia J; Alpini, Gianfranco

    2011-01-01

    Background In several tumours the endogenous activity of histidine decarboxylase (HDC), the enzyme stimulating histamine synthesis, sustains the autocrine trophic effect of histamine on cancer progression. Cholangiocarcinoma is a biliary cancer with limited treatment options. Histamine interacts with four G-protein coupled receptors, H1–H4 histamine receptors (HRs). Objective To determine the effects of histamine stimulation and inhibition of histamine synthesis (by modulation of HDC) on cholangiocarcinoma growth. Methods In vitro studies were performed using multiple human cholangiocarcinoma lines. The expression levels of the histamine synthetic machinery and HRs were evaluated along with the effects of histamine stimulation and inhibition on cholangiocarcinoma proliferation. A xenograft tumour model was used to measure tumour volume after treatment with histamine or inhibition of histamine synthesis by manipulation of HDC. Vascular endothelial growth factor (VEGF) expression was measured in cholangiocarcinoma cells concomitant with the evaluation of the expression of CD31 in endothelial cells in the tumour microenvironment. Results Cholangiocarcinoma cells display (1) enhanced HDC and decreased monoamine oxidase B expression resulting in increased histamine secretion; and (2) increased expression of H1–H4 HRs. Inhibition of HDC and antagonising H1HR decreased histamine secretion in Mz-ChA-1 cells. Long-term treatment with histamine increased proliferation and VEGF expression in cholangiocarcinoma that was blocked by HDC inhibitor and the H1HR antagonist. In nude mice, histamine increased tumour growth (up to 25%) and VEGF expression whereas inhibition of histamine synthesis (by reduction of HDC) ablated the autocrine stimulation of histamine on tumour growth (~80%) and VEGF expression. No changes in angiogenesis (evaluated by changes in CD31 immunoreactivity) were detected in the in vivo treatment groups. Conclusion The novel concept that an autocrine loop

  6. A tyrosine decarboxylase catalyzes the initial reaction of the salidroside biosynthesis pathway in Rhodiola sachalinensis.

    PubMed

    Zhang, Ji-Xing; Ma, Lan-Qing; Yu, Han-Song; Zhang, Hong; Wang, Hao-Tian; Qin, Yun-Fei; Shi, Guang-Lu; Wang, You-Nian

    2011-08-01

    Salidroside, the 8-O-β-D-glucoside of tyrosol, is the main bioactive component of Rhodiola species and is found mainly in the plant roots. It is well known that glucosylation of tyrosol is the final step in the biosynthesis of salidroside; however, the biosynthetic pathway of tyrosol and its regulation are less well understood. A summary of the results of related studies revealed that the precursor of tyrosol might be tyramine, which is synthesized from tyrosine. In this study, a cDNA clone encoding tyrosine decarboxylase (TyrDC) was isolated from Rhodiola sachalinensis A. Bor using rapid amplification of cDNA ends. The resulting cDNA was designated RsTyrDC. RNA gel-blot analysis revealed that the predominant sites of expression in plants are the roots and high levels of transcripts are also found in callus tissue culture. Functional analysis revealed that tyrosine was best substrate of recombinant RsTyrDC. The over-expression of the sense-RsTyrDC resulted in a marked increase of tyrosol and salidroside content, but the levels of tyrosol and salidroside were 274 and 412%, respectively, lower in the antisense-RsTyrDC transformed lines than those in the controls. The data presented here provide in vitro and in vivo evidence that the RsTyrDC can regulate the tyrosol and salidroside biosynthesis, and the RsTyrDC is most likely to have an important function in the initial reaction of the salidroside biosynthesis pathway in R. sachalinensis.

  7. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.

    PubMed

    Ren, Li-Qun; Wienecke, Jacob; Hultborn, Hans; Zhang, Mengliang

    2016-06-15

    Aromatic l-amino acid decarboxylase (AADC) cells are widely distributed in the spinal cord, and their functions are largely unknown. We have previously found that AADC cells in the spinal cord could increase their ability to produce serotonin (5-hydroxytryptamine) from 5-hydroxytryptophan after spinal cord injury (SCI). Because AADC is a common enzyme catalyzing 5-hydroxytryptophan to serotonin and l-3,4-dihydroxyphenylalanine (l-dopa) to dopamine (DA), it seems likely that the ability of AADC cells using l-dopa to synthesize DA is also increased. To prove whether or not this is the case, a similar rat sacral SCI model and a similar experimental paradigm were adopted as that which we had used previously. In the chronic SCI rats (> 45 days), no AADC cells expressed DA if there was no exogenous l-dopa application. However, following administration of a peripheral AADC inhibitor (carbidopa) with or without a monoamine oxidase inhibitor (pargyline) co-application, systemic administration of l-dopa resulted in ∼94% of AADC cells becoming DA-immunopositive in the spinal cord below the lesion, whereas in normal or sham-operated rats none or very few of AADC cells became DA-immunopositive with the same treatment. Using tail electromyography, spontaneous tail muscle activity was increased nearly fivefold over the baseline level. When pretreated with a central AADC inhibitor (NSD-1015), further application of l-dopa failed to increase the motoneuron activity although the expression of DA in the AADC cells was not completely inhibited. These findings demonstrate that AADC cells in the spinal cord below the lesion gain the ability to produce DA from its precursor in response to SCI. This ability also enables the AADC cells to produce 5-HT and trace amines, and likely contributes to the development of hyperexcitability. These results might also be implicated for revealing the pathological mechanisms underlying l-dopa-induced dyskinesia in Parkinson's disease.

  8. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities. PMID:27698909

  9. Spinal cord injury enables aromatic L-amino acid decarboxylase cells to synthesize monoamines.

    PubMed

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans; Chen, Meng; Møller, Morten; Zhang, Yifan; Zhang, Mengliang

    2014-09-01

    Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been suggested, but not proven, that this residual 5-HT is produced by intraspinal 5-HT neurons. Here, we show by immunohistochemical techniques that cells containing the enzyme aromatic l-amino acid decarboxylase (AADC) occur not only near the central canal, as reported by others, but also in the intermediate zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from a loss of inhibition by descending 5-HT neurons and to be mediated by 5-HT1B receptors expressed by AADC cells. These findings indicate that AADC cells are a potential source of 5-HT at spinal levels below an SCI. The production of 5-HT by AADC cells, together with an upregulation of 5-HT2 receptors, offers a partial explanation of hyperreflexia below a chronic SCI. PMID:25186745

  10. Insect ornithine decarboxylase (ODC) complements SPE1 knock-out of yeast Saccharomyces cerevisiae.

    PubMed

    Choi, Soon-Yong; Park, Hee Yun; Paek, Aron; Kim, Gil Seob; Jeong, Seong Eun

    2009-12-31

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are essential for cell growth, differentiation, and proliferation. This report presents the characterization of an ODC-encoding cDNA (SlitODC) isolated from a moth species, the tobacco cutworm, Spodoptera litura (Lepidoptera); its expression in a polyamine-deficient strain of yeast, S. cerevisiae; and the recovery in polyamine levels and proliferation rate with the introduction of the insect enzyme. SlitODC encodes 448 amino acid residues, 4 amino acids longer than B. Mori ODC that has 71% identity, and has a longer C-terminus, consistent with B. mori ODC, than the reported dipteran enzymes. The null mutant yeast strain in the ODC gene, SPE1, showed remarkably depleted polyamine levels; in putrescine, spermidine, and spermine, the levels were > 7, > 1, and > 4%, respectively, of the levels in the wild-type strain. This consequently caused a significant arrest in cell proliferation of > 4% of the wild-type strain in polyaminefree media. The transformed strain, with the substituted SlitODC for the deleted endogenous ODC, grew and proliferated rapidly at even a higher rate than the wild-type strain. Furthermore, its polyamine content was significantly higher than even that in the wild-type strain as well as the spe1-null mutant, particularly with a very continuously enhanced putrescine level, reflecting no inhibition mechanism operating in the putrescine synthesis step by any corresponding insect ODC antizymes to SlitODC in this yeast system. PMID:19937472

  11. Down-regulation of hypusine biosynthesis in Plasmodium by inhibition of S-adenosyl-methionine-decarboxylase.

    PubMed

    Blavid, Robert; Kusch, Peter; Hauber, Joachim; Eschweiler, Ute; Sarite, Salem Ramadan; Specht, Sabine; Deininger, Susanne; Hoerauf, Achim; Kaiser, Annette

    2010-02-01

    An important issue facing global health today is the need for new, effective and affordable drugs against malaria, particularly in resource-poor countries. Moreover, the currently available antimalarials are limited by factors ranging from parasite resistance to safety, compliance, cost and the current lack of innovations in medicinal chemistry. Depletion of polyamines in the intraerythrocytic phase of P. falciparum is a promising strategy for the development of new antimalarials since intracellular levels of putrescine, spermidine and spermine are increased during cell proliferation. S-adenosyl-methionine-decarboxylase (AdoMETDC) is a key enzyme in the biosynthesis of spermidine. The AdoMETDC inhibitor CGP 48664A, known as SAM486A, inhibited the separately expressed plasmodial AdoMETDC domain with a Km( i ) of 3 microM resulting in depletion of spermidine. Spermidine is an important precursor in the biosynthesis of hypusine. This prompted us to investigate a downstream effect on hypusine biosynthesis after inhibition of AdoMETDC. Extracts from P. falciparum in vitro cultures that were treated with 10 microM SAM 486A showed suppression of eukaryotic initiation factor 5A (eIF-5A) in comparison to the untreated control in two-dimensional gel electrophoresis. Depletion of eIF-5A was also observed in Western blot analysis with crude protein extracts from the parasite after treatment with 10 microM SAM486A. A determination of the intracellular polyamine levels revealed an approximately 27% reduction of spemidine and a 75% decrease of spermine while putrescine levels increased to 36%. These data suggest that inhibition of AdoMetDc provides a novel strategy for eIF-5A suppression and the design of new antimalarials. PMID:19949824

  12. Amino acids regulate expression of antizyme-1 to modulate ornithine decarboxylase activity.

    PubMed

    Ray, Ramesh M; Viar, Mary Jane; Johnson, Leonard R

    2012-02-01

    In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity. Asn reduced antizyme-1 (AZ1) mRNA and protein. Among the amino acids tested, Asn and glutamine (Gln) effectively inhibited AZ1 expression, suggesting a differential role for amino acids in the regulation of ODC activity. Asn decreased the putrescine-induced AZ1 translation. The absence of amino acids increased the binding of eukaryotic initiation factor 4E-binding protein (4EBP1) to 5'-mRNA cap and thereby inhibited global protein synthesis. Asn failed to prevent the binding of 4EBP1 to mRNA, and the bound 4EBP1 was unphosphorylated, suggesting the involvement of the mammalian target of rapamycin (mTOR) in the regulation of AZ1 synthesis. Rapamycin treatment (4 h) failed to alter the expression of AZ1. However, extending the treatment (24 h) allowed expression in the presence of amino acids, indicating that AZ1 is expressed when TORC1 signaling is decreased. This suggests the involvement of cap-independent translation. However, transient inhibition of mTORC2 by PP242 completely abolished the phosphorylation of 4EBP1 and decreased basal as well as putrescine-induced AZ1 expression. Asn decreased the phosphorylation of mTOR-Ser(2448) and AKT-Ser(473), suggesting the inhibition of mTORC2. In the absence of amino acids, mTORC1 is inhibited, whereas mTORC2 is activated, leading to the inhibition of global protein synthesis and increased AZ1 synthesis via a cap-independent mechanism. PMID:22157018

  13. Single amino-acid replacement is responsible for the stabilization of ornithine decarboxylase in HMOA cells.

    PubMed

    Miyazaki, Y; Matsufuji, S; Murakami, Y; Hayashi, S

    1993-06-15

    The half-life of ornithine decarboxylase (ODC) in HMOA cells, a variant cell line derived from hepatoma tissue culture (HTC) cells, is markedly increased compared with that in the parental cell line. In the present study, we examined which of the three relevant factors is responsible for the ODC stabilization in HMOA cells, namely ODC itself, a regulatory protein antizyme and an ODC-degrading activity. SDS/PAGE analysis of radiolabeled ODC revealed that ODC from HMOA cells migrated somewhat faster than that from HTC cells, suggesting that HMOA ODC was structurally altered. Direct sequencing of reverse-transcription/polymerase-chain-reaction (RT-PCR) products of ODC mRNA from HMOA cells revealed a T to G replacement, causing a Cys441-->Trp replacement near the C-terminus. No alteration was found in the whole coding region of antizyme mRNA. An authentic mutant ODC cDNA with the same replacement was transfected and expressed in C55.7 ODC-deficient Chinese hamster ovary cells. Upon cycloheximide treatment, the mutant ODC activity did not decrease appreciably for at least 3 h, whereas wild-type ODC activity decreased with a half-life of 1 h. In-vitro-synthesized mutant ODC with the Cys441-->Trp (or Ala) replacement was also stable in a reticulocyte-lysate ODC-degradation system. Metabolically labeled and purified mouse ODC was degraded in HMOA cell extracts in the presence of ATP and antizyme as rapidly as in HTC cell extracts, indicating that HMOA cells have a normal ODC degrading activity. These results indicated that the single amino acid replacement, Cys441-->Trp, is responsible for the stabilization of ODC in HMOA cells and that Cys441 is important for rapid ODC turnover.

  14. Glutamate Decarboxylase 1 Overexpression as a Poor Prognostic Factor in Patients with Nasopharyngeal Carcinoma

    PubMed Central

    Lee, Yi-Ying; Chao, Tung-Bo; Sheu, Ming-Jen; Tian, Yu-Feng; Chen, Tzu-Ju; Lee, Sung-Wei; He, Hong-Lin; Chang, I-Wei; Hsing, Chung-Hsi; Lin, Ching-Yih; Li, Chien-Feng

    2016-01-01

    Background: Glutamate decarboxylase 1 (GAD1) which serves as a rate-limiting enzyme involving in the production of γ-aminobutyric acid (GABA), exists in the GABAergic neurons in the central nervous system (CNS). Little is known about the relevance of GAD1 to nasopharyngeal carcinoma (NPC). Through data mining on a data set derived from a published transcriptome database, this study first identified GAD1 as a differentially upregulated gene in NPC. We aimed to evaluate GAD1 expression and its prognostic effect on patients with early and locoregionally advanced NPC. Methods: We evaluated GAD1 immunohistochemistry and performed an H-score analysis on biopsy specimens from 124 patients with nonmetastasized NPC receiving treatment. GAD1 overexpression was defined as an H score higher than the median value. The findings of such an analysis are correlated with clinicopathological behaviors and survival rates, namely disease-specific survival (DSS), distant-metastasis-free survival (DMeFS), and local recurrence-free survival (LRFS) rates. Results: GAD1 overexpression was significantly associated with an increase in the primary tumor status (p < 0.001) and American Joint Committee on Cancer (AJCC) stages III-IV (p = 0.002) and was a univariate predictor of adverse outcomes of DSS (p = 0.002), DMeFS (p < 0.0001), and LRFS (p = 0.001). In the multivariate comparison, in addition to advanced AJCC stages III-IV, GAD1 overexpression remained an independent prognosticator of short DSS (p = 0.004, hazard ratio = 2.234), DMeFS (p < 0.001, hazard ratio = 4.218), and LRFS (p = 0.013, hazard ratio = 2.441) rates. Conclusions: Our data reveal that GAD1 overexpression was correlated with advanced disease status and may thus be a critical prognostic indicator of poor outcomes in NPC and a potential therapeutic target to facilitate the development of effective treatment modalities.

  15. Snapshot of a Reaction Intermediate: Analysis of Benzoylformate Decarboxylase in Complex with a Benzoylphosphonate Inhibitor

    SciTech Connect

    Brandt, Gabriel S.; Kneen, Malea M.; Chakraborty, Sumit; Baykal, Ahmet T.; Nemeria, Natalia; Yep, Alejandra; Ruby, David I.; Petsko, Gregory A.; Kenyon, George L.; McLeish, Michael J.; Jordan, Frank; Ringe, Dagmar

    2009-04-22

    Benzoylformate decarboxylase (BFDC) is a thiamin diphosphate- (ThDP-) dependent enzyme acting on aromatic substrates. In addition to its metabolic role in the mandelate pathway, BFDC shows broad substrate specificity coupled with tight stereo control in the carbon-carbon bond-forming reverse reaction, making it a useful biocatalyst for the production of chiral-hydroxy ketones. The reaction of methyl benzoylphosphonate (MBP), an analogue of the natural substrate benzoylformate, with BFDC results in the formation of a stable analogue (C2{alpha}-phosphonomandelyl-ThDP) of the covalent ThDP-substrate adduct C2{alpha}-mandelyl-ThDP. Formation of the stable adduct is confirmed both by formation of a circular dichroism band characteristic of the 1',4'-iminopyrimidine tautomeric form of ThDP (commonly observed when ThDP forms tetrahedral complexes with its substrates) and by high-resolution mass spectrometry of the reaction mixture. In addition, the structure of BFDC with the MBP inhibitor was solved by X-ray crystallography to a spatial resolution of 1.37 {angstrom} (PDB ID 3FSJ). The electron density clearly shows formation of a tetrahedral adduct between the C2 atom of ThDP and the carbonyl carbon atom of the MBP. This adduct resembles the intermediate from the penultimate step of the carboligation reaction between benzaldehyde and acetaldehyde. The combination of real-time kinetic information via stopped-flow circular dichroism with steady-state data from equilibrium circular dichroism measurements and X-ray crystallography reveals details of the first step of the reaction catalyzed by BFDC. The MBP-ThDP adduct on BFDC is compared to the recently solved structure of the same adduct on benzaldehyde lyase, another ThDP-dependent enzyme capable of catalyzing aldehyde condensation with high stereospecificity.

  16. The Arginine Decarboxylase Pathways of Host and Pathogen Interact to Impact Inflammatory Pathways in the Lung

    PubMed Central

    Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.

    2014-01-01

    The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753

  17. Uroporphyrinogen decarboxylase: Complete human gene sequence and molecular study of three families with hepatoerythropoietic porphyria

    SciTech Connect

    Moran-Jimenez, M.J.; Ged, C.; Verneuil, H. de

    1996-04-01

    A deficiency in uroporphyrinogen decarboxylase (UROD) enzyme activity, the fifth enzyme of the heme biosynthetic pathway, is found in patients with sporadic porphyria cutanea tarda (s-PCT), familial porphyria cutanea tarda (f-PCT), and hepatoerythropoietic porphyria (HEP). Subnormal UROD activity is due to mutations of the UROD gene in both f-PCT and HEP, but no mutations have been found in s-PCT. Genetic analysis has determined that f-PCT is transmitted as an autosomal dominant trait. In contrast, HEP, a severe form of cutaneous porphyria, is transmitted as an autosomal recessive trait. HEP is characterized by a profound deficiency of UROD activity, and the disease is usually manifest in childhood. In this study, a strategy was designed to identify alleles responsible for the HEP phenotype in three unrelated families. Mutations of UROD were identified by direct sequencing of four amplified fragments that contained the entire coding sequence of the UROD gene. Two new missense mutations were observed at the homoallelic state: P62L (proline-to-leucine substitution at codon 62) in a Portuguese family and Y311C (tyrosine-to-cysteine substitution at codon 311) in an Italian family. A third mutation, G281E, was observed in a Spanish family. This mutation has been previously described in three families from Spain and one from Tunisia. In the Spanish family described in this report, a paternal uncle of the proband developed clinically overt PCT as an adult and proved to be heterozygous for the G281E mutation. Mutant cDNAs corresponding to the P62L and Y311C changes detected in these families were created by site-directed mutagenesis. Recombinant proteins proved to have subnormal enzyme activity, and the Y311C mutant was thermolabile. 24 refs., 7 figs., 4 tabs.

  18. Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia

    PubMed Central

    Moyer, Caitlin E.; Delevich, Kristen M.; Fish, Kenneth N.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Dorph-Petersen, Karl-Anton; Lewis, David A.; Sweet, Robert A.

    2012-01-01

    Background Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. Methods We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. Results GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Conclusions Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex. PMID:22624794

  19. Multiple mechanisms are responsible for altered expression of ornithine decarboxylase in overproducing variant cells.

    PubMed Central

    McConlogue, L; Dana, S L; Coffino, P

    1986-01-01

    We selected and characterized a series of mouse S49 cell variants that overproduce ornithine decarboxylase (ODC). Previously, we described variants that have an amplified ODC gene and produce about 500-fold more ODC than the wild-type cells of origin (L. McConlogue and P. Coffino, J. Biol. Chem. 258:12083-12086, 1983). We examined a series of independent variants that overproduce ODC to a lesser degree and found that a number of mechanisms other than gene amplification are responsible for the increased ODC activity. Variants were selected for resistance to 0.1 mM difluoromethylornithine, an inhibitor of ODC, by either a single or a multistep process. All showed increased ODC activity and increased ODC mRNA steady-state levels. The half-life of the enzyme was not increased in any of the variants. In one class of variant the increase of ODC mRNA was sufficient to account for ODC overproduction. In a second class, the rate of synthesis of ODC polypeptide per ODC mRNA was at least four- to eightfold higher than that in wild-type cells. Therefore, these variants were altered in the translatability of ODC mRNA. Southern analysis showed that gene amplification does not account for the increased ODC mRNA levels in any of the variants. In both variant and wild-type cells, ODC activity was responsive to changes in polyamine pools; activity was reduced following augmentation of pool size. This change in activity was associated with modification of the rate of synthesis and degradation of ODC but no change in the level of ODC mRNA. Images PMID:3023951

  20. Engineering pyruvate decarboxylase-mediated ethanol production in the thermophilic host Geobacillus thermoglucosidasius.

    PubMed

    Van Zyl, L J; Taylor, M P; Eley, K; Tuffin, M; Cowan, D A

    2014-02-01

    This study reports the expression, purification, and kinetic characterization of a pyruvate decarboxylase (PDC) from Gluconobacter oxydans. Kinetic analyses showed the enzyme to have high affinity for pyruvate (120 μM at pH 5), high catalytic efficiency (4.75 × 10(5) M(-1) s(-1) at pH 5), a pHopt of approximately 4.5 and an in vitro temperature optimum at approximately 55 °C. Due to in vitro thermostablity (approximately 40 % enzyme activity retained after 30 min at 65 °C), this PDC was considered to be a suitable candidate for heterologous expression in the thermophile Geobacillus thermoglucosidasius for ethanol production. Initial studies using a variety of methods failed to detect activity at any growth temperature (45-55 °C). However, the application of codon harmonization (i.e., mimicry of the heterogeneous host's transcription and translational rhythm) yielded a protein that was fully functional in the thermophilic strain at 45 °C (as determined by enzyme activity, Western blot, mRNA detection, and ethanol productivity). Here, we describe the first successful expression of PDC in a true thermophile. Yields as high as 0.35 ± 0.04 g/g ethanol per gram of glucose consumed were detected, highly competitive to those reported in ethanologenic thermophilic mutants. Although activities could not be detected at temperatures approaching the growth optimum for the strain, this study highlights the possibility that previously unsuccessful expression of pdcs in Geobacillus spp. may be the result of ineffective transcription/translation coupling.

  1. Cysteine Sulfinic Acid Decarboxylase Regulation: A Role for FXR and SHP in Murine Hepatic Taurine Metabolism

    PubMed Central

    Kerr, Thomas A.; Matsumoto, Yuri; Matsumoto, Hitoshi; Xie, Yan; Hirschberger, Lawrence L.; Stipanuk, Martha H.; Anakk, Sayeepriyadarshini; Moore, David D.; Watanabe, Mitsuhiro; Kennedy, Susan

    2014-01-01

    Background Bile acid synthesis is regulated by nuclear receptors including farnesoid X receptor (FXR) and small heterodimer partner (SHP), and by fibroblast growth factor15/19 (FGF15/19). Because bile acid synthesis involves amino acid conjugation, we hypothesized that hepatic cysteine sulfinic acid decarboxylase (CSAD) (a key enzyme in taurine synthesis) is regulated by bile acids. Aims To investigate CSAD regulation by bile acids and CSAD regulatory mechanisms. Methods Mice were fed a control diet or a diet supplemented with either 0.5% cholate or 2% cholestyramine. To gain mechanistic insight into CSAD regulation, we utilized GW4064 (FXR agonist), FGF19, or T-0901317 (LXR agonist) and Shp−/− mice. Tissue mRNA expression was determined by qRT-PCR. Amino acids were measured by HPLC. Results Mice supplemented with dietary cholate exhibited reduced hepatic CSAD mRNA expression while those receiving cholestyramine exhibited increased hepatic CSAD mRNA expression. Activation of FXR suppressed CSAD mRNA expression whereas hepatic CSAD mRNA expression was increased in Shp−/− mice. Hepatic hypotaurine concentration (the product of CSAD) was higher in Shp−/− mice with a corresponding increase in serum (but not hepatic) taurine-conjugated bile acids. FGF19 administration suppressed hepatic CYP7A1 mRNA but did not change CSAD mRNA expression. LXR activation induced CYP7A1 mRNA yet failed to induce CSAD mRNA expression. Conclusion CSAD mRNA expression is physiologically regulated by bile acids in a feedback fashion via mechanisms involving SHP and FXR but not FGF15/19 or LXR. These novel findings implicate bile acids as regulators of CSAD mRNA via mechanisms shared in part with CYP7A1. PMID:24033844

  2. Structural Basis for Putrescine Activation of Human S-Adenosylmethionine Decarboxylase

    SciTech Connect

    Bale, Shridhar; Lopez, Maria M.; Makhatadze, George I.; Fang, Qingming; Pegg, Anthony E.; Ealick, Steven E.

    2009-01-23

    Putrescine (1,4-diaminobutane) activates the autoprocessing and decarboxylation reactions of human S-adenosylmethionine decarboxylase (AdoMetDC), a critical enzyme in the polyamine biosynthetic pathway. In human AdoMetDC, putrescine binds in a buried pocket containing acidic residues Asp174, Glu178, and Glu256. The pocket is away from the active site but near the dimer interface; however, a series of hydrophilic residues connect the putrescine binding site and the active site. Mutation of these acidic residues modulates the effects of putrescine. D174N, E178Q, and E256Q mutants were expressed and dialyzed to remove putrescine and studied biochemically using X-ray crystallography, UV-CD spectroscopy, analytical ultracentrifugation, and ITC binding studies. The results show that the binding of putrescine to the wild type dimeric protein is cooperative. The D174N mutant does not bind putrescine, and the E178Q and E256Q mutants bind putrescine weakly with no cooperativity. The crystal structure of the mutants with and without putrescine and their complexes with S-adenosylmethionine methyl ester were obtained. Binding of putrescine results in a reorganization of four aromatic residues (Phe285, Phe315, Tyr318, and Phe320) and a conformational change in the loop 312-320. The loop shields putrescine from the external solvent, enhancing its electrostatic and hydrogen bonding effects. The E256Q mutant with putrescine added shows an alternate conformation of His243, Glu11, Lys80, and Ser229, the residues that link the active site and the putrescine binding site, suggesting that putrescine activates the enzyme through electrostatic effects and acts as a switch to correctly orient key catalytic residues.

  3. Glutamic acid decarboxylase and glutamate receptor changes during tolerance and dependence to benzodiazepines.

    PubMed

    Izzo, E; Auta, J; Impagnatiello, F; Pesold, C; Guidotti, A; Costa, E

    2001-03-13

    Protracted administration of diazepam elicits tolerance, whereas discontinuation of treatment results in signs of dependence. Tolerance to the anticonvulsant action of diazepam is present in an early phase (6, 24, and 36 h) but disappears in a late phase (72-96 h) of withdrawal. In contrast, signs of dependence such as decrease in open-arm entries on an elevated plus-maze and increased susceptibility to pentylenetetrazol-induced seizures were apparent 96 h (but not 12, 24, or 48 h) after diazepam withdrawal. During the first 72 h of withdrawal, tolerance is associated with changes in the expression of GABA(A) (gamma-aminobutyric acid type A) receptor subunits (decrease in gamma(2) and alpha(1); increase in alpha(5)) and with an increase of mRNA expression of the most abundant form of glutamic acid decarboxylase (GAD), GAD(67). In contrast, dl-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor GluR1 subunit mRNA and cognate protein, which are normal during the early phase of diazepam withdrawal, increase by approximately 30% in cortex and hippocampus in association with the appearance of signs of dependence 96 h after diazepam withdrawal. Immunohistochemical studies of GluR1 subunit expression with gold-immunolabeling technique reveal that the increase of GluR1 subunit protein is localized to layer V pyramidal neurons and their apical dendrites in the cortex, and to pyramidal neurons and in their dendritic fields in hippocampus. The results suggest an involvement of GABA-mediated processes in the development and maintenance of tolerance to diazepam, whereas excitatory amino acid-related processes (presumably via AMPA receptors) may be involved in the expression of signs of dependence after withdrawal.

  4. Mechanism of reconstitution of brewers' yeast pyruvate decarboxylase with thiamin diphosphate and magnesium.

    PubMed

    Vaccaro, J A; Crane, E J; Harris, T K; Washabaugh, M W

    1995-10-01

    Reconstitution of apo-pyruvate decarboxylase isozymes (PDC, EC 4.1.1.1) from Saccharomyces carlsbergensis was investigated by determination of the steady-state kinetics of the reaction with thiamin diphosphate (TDP) and Mg2+ in the presence and absence of substrate (pyruvate) or allosteric effector (pyruvamide). Reconstitution of the PDC isozyme mixture and alpha 4 isozyme (alpha 4-PDC) exhibits biphasic kinetics with 52 +/- 11% of the PDC reacting with k1 = (1.0 +/- 0.3) x 10(-2) s-1 and 48 +/- 12% of the PDC reacting with k2 = (1.1 +/- 0.6) x 10(-1) s-1 when TDP (KTDP = 0.5 +/- 0.2 mM) is added to apo-PDC equilibrated with saturating Mg2+. PDC reconstitution exhibits first-order kinetics with k1 = (1.6 +/- 0.5) x 10(-2) s-1 upon addition of Mg2+ (KMg2+ = 0.2 +/- 0.1 mM) to apo-PDC equilibrated with saturating TDP. Biphasic kinetics for the PDC isozymes provides evidence that apo-PDC reconstitution with TDP and Mg2+ involves two pathways, TDP binding followed by Mg2+ (k1) or Mg2+ binding followed by TDP (k2). This is supported by a change in reconstitution pathway with the order of cofactor addition and is inconsistent with a single pathway involving ordered binding of the metal ion followed by TDP. The presence of pyruvamide has no significant effect on the rate constants for apo-PDC reconstitution and favors the k2 pathway; pyruvate decreases the value of k2 < or = 3-fold and has no effect on the value of k1.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Substrate activation of brewers' yeast pyruvate decarboxylase is abolished by mutation of cysteine 221 to serine.

    PubMed

    Baburina, I; Gao, Y; Hu, Z; Jordan, F; Hohmann, S; Furey, W

    1994-05-10

    Brewers' yeast pyruvate decarboxylase (EC 4.1.1.1), a thiamin diphosphate and Mg(II)-dependent enzyme, isolated from Saccharomyces cerevisiae possesses four cysteines/subunit at positions 69, 152, 221, and 222. Earlier studies conducted on a variant of the enzyme with a single Cys at position 221 (derived from a gene that was the product of spontaneous fusion) showed that this enzyme is still subject to substrate activation [Zeng, X., Farrenkopf, B., Hohmann, S., Jordan, F., Dyda, F., & Furey, W. (1993) Biochemistry 32, 2704-2709], indicating that if Cys was responsible for this activation, it had to be C221. To further test the hypothesis, the C221S and C222S single and the C221S-C222S double mutants were constructed. It is clearly shown that the mutation at C221, but not at C222, leads to abolished substrate activation according to a number of kinetic criteria, both steady state and pre steady state. On the basis of the three-dimensional structure of the enzyme [Dyda, F., Furey, W., Swaminathan, S., Sax, M., Farrenkopf, B., Jordan, F. (1993) Biochemistry 32, 6165-6170], it is obvious that while C221 is located on the beta domain, whereas thiamin diphosphate is wedged at the interface of the alpha and gamma domains, addition of pyruvate or pyruvamide as a hemiketal adduct to the sulfur of C221 can easily bridge the gap between the beta and alpha domains. In fact, residues in one or both domains must be dislocated by this adduct formation. It is very likely that regulation as expressed in substrate activation is transmitted via this direct contact made between the two domains in the presence of the activator.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Enzyme architecture: deconstruction of the enzyme-activating phosphodianion interactions of orotidine 5'-monophosphate decarboxylase.

    PubMed

    Goldman, Lawrence M; Amyes, Tina L; Goryanova, Bogdana; Gerlt, John A; Richard, John P

    2014-07-16

    The mechanism for activation of orotidine 5'-monophosphate decarboxylase (OMPDC) by interactions of side chains from Gln215 and Try217 at a gripper loop and R235, adjacent to this loop, with the phosphodianion of OMP was probed by determining the kinetic parameters k(cat) and K(m) for all combinations of single, double, and triple Q215A, Y217F, and R235A mutations. The 12 kcal/mol intrinsic binding energy of the phosphodianion is shown to be equal to the sum of the binding energies of the side chains of R235 (6 kcal/mol), Q215 (2 kcal/mol), Y217 (2 kcal/mol), and hydrogen bonds to the G234 and R235 backbone amides (2 kcal/mol). Analysis of a triple mutant cube shows small (ca. 1 kcal/mol) interactions between phosphodianion gripper side chains, which are consistent with steric crowding of the side chains around the phosphodianion at wild-type OMPDC. These mutations result in the same change in the activation barrier to the OMPDC-catalyzed reactions of the whole substrate OMP and the substrate pieces (1-β-D-erythrofuranosyl)orotic acid (EO) and phosphite dianion. This shows that the transition states for these reactions are stabilized by similar interactions with the protein catalyst. The 12 kcal/mol intrinsic phosphodianion binding energy of OMP is divided between the 8 kcal/mol of binding energy, which is utilized to drive a thermodynamically unfavorable conformational change of the free enzyme, resulting in an increase in (k(cat))(obs) for OMPDC-catalyzed decarboxylation of OMP, and the 4 kcal/mol of binding energy, which is utilized to stabilize the Michaelis complex, resulting in a decrease in (K(m))(obs).

  7. [Ornithine decarboxylase in mammalian organs and tissues at hibernation and artificial hypobiosis].

    PubMed

    Logvinovich, O S; Aksenova, G E

    2013-01-01

    Ornithine decarboxylase (ODC, EC 4.1.1.17.) is a short-lived and dynamically regulated enzyme of polyamines biosynthesis. Regulation of functional, metabolic and proliferative state of organs and tissues involves the modifications of the ODC enzymatic activity. The organ-specific changes in ODC activity were revealed in organs and tissues (liver, spleen, bone marrow, kidney, and intestinal mucosa) of hibernating mammals - squirrels Spermophilus undulates - during the hibernating season. At that, a positive correlation was detected between the decline and recovery of the specialized functions of organs and tissues and the respective modifications of ODC activity during hibernation bouts. Investigation of changes in ODC activity in organs and tissues of non-hibernating mammals under artificial hypobiosis showed that in Wistar rats immediately after exposure to hypothermia-hypoxia-hypercapnia (hypobiosis) the level of ODC activity was low in thymus, spleen, small intestine mucosa, neocortex, and liver. The most marked reduction in enzyme activity was observed in actively proliferating tissues: thymus, spleen, small intestine mucosa. In bone marrow of squirrels, while in a state of torpor, as well as in thymus of rats after exposure to hypothermia-hypoxia-hypercapnia, changes in the ODC activity correlated with changes in the rate of cell proliferation (by the criterion of cells distribution over cell cycle). The results obtained, along with the critical analysis of published data, indicate that the ODC enzyme is involved in biochemical adaptation of mammals to natural and artificial hypobiosis. A decline in the ODC enzymatic activity indicates a decline in proliferative, functional, and metabolic activity of organs and tissues of mammals (bone marrow, mucosa of small intestine, thymus, spleen, neocortex, liver, kidneys) when entering the state of hypobiosis.

  8. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  9. A known and a novel mutation in the glycine decarboxylase gene in a newborn with classic nonketotic hyperglycinemia.

    PubMed

    Beijer, P; Lichtenbelt, K D; Hofstede, F C; Nikkels, P G J; Lemmers, P; de Vries, L S

    2012-06-01

    A term neonate displayed typical features of nonketotic hyperglycinemia (NKH). Conventional magnetic resonance imaging showed corpus callosum hypoplasia and increased signal intensity of the white matter. Magnetic resonance proton spectroscopy revealed high cerebral glycine levels. The liquor/plasma glycine ratio was increased. Genetic testing detected a known and a novel mutation in the glycine decarboxylase gene, leading to the classic form of glycine encephalopathy. Prenatal genetic testing in the subsequent pregnancy showed that this fetus was not affected. As features of neonatal NKH may not be very specific, recognition of the disease may be difficult. An overview of clinical, electroencephalography, and neuroimaging findings is given in this article. PMID:22610665

  10. Aromatic L-amino acid decarboxylase deficiency with hyperdopaminuria. Clinical and laboratory findings in response to different therapies.

    PubMed

    Fiumara, A; Bräutigam, C; Hyland, K; Sharma, R; Lagae, L; Stoltenborg, B; Hoffmann, G F; Jaeken, J; Wevers, R A

    2002-08-01

    Aromatic L-amino acid decarboxylase (AADC - E.C. 4.1.1.28) converts L-dopa to dopamine and 5-hydroxytryptophan to serotonin. Inherited deficiency of this enzyme leads to decreased brain levels of these neurotransmitters. Clinically this results in the development of a progressive neurometabolic disorder characterized by severe hypotonia, dystonic and choreoathetoid movements, oculogyric crises, and hypothermia from infancy. Here we describe the clinical, biochemical and molecular details of two affected brothers, one of whom, despite the lack of AADC, presented with hyperdopaminuria. In addition, we detail his reactions to treatment with dopaminergic agonists, monoamine oxidase inhibitors and pyridoxine.

  11. Accumulator with preclosing preventer

    SciTech Connect

    Murthy, R.R.; Rice, B.J.

    1981-11-24

    A guided-float accumulator suitable for use with a hydraulic system for an oil well blowout preventer is provided with a wing shut-