Science.gov

Sample records for decarboxylase accumulate phosphatidylserine

  1. Cell biology, physiology and enzymology of phosphatidylserine decarboxylase.

    PubMed

    Di Bartolomeo, Francesca; Wagner, Ariane; Daum, Günther

    2017-01-01

    Phosphatidylethanolamine is one of the most abundant phospholipids whose major amounts are formed by phosphatidylserine decarboxylases (PSD). Here we provide a comprehensive description of different types of PSDs in the different kingdoms of life. In eukaryotes, type I PSDs are mitochondrial enzymes, whereas other PSDs are localized to other cellular compartments. We describe the role of mitochondrial Psd1 proteins, their function, enzymology, biogenesis, assembly into mitochondria and their contribution to phospholipid homeostasis in much detail. We also discuss briefly the cellular physiology and the enzymology of Psd2. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.

  2. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes.

  3. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening.

    PubMed

    Choi, Jae-Yeon; Kumar, Vidya; Pachikara, Niseema; Garg, Aprajita; Lawres, Lauren; Toh, Justin Y; Voelker, Dennis R; Ben Mamoun, Choukri

    2016-03-01

    Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity.

  4. Characterization of Plasmodium phosphatidylserine decarboxylase expressed in yeast and application for inhibitor screening

    PubMed Central

    Choi, Jae-Yeon; Lawres, Lauren; Toh, Justin Y.; Voelker, Dennis R.; Ben Mamoun, Choukri

    2016-01-01

    Summary Phospholipid biosynthesis is critical for the development, differentiation and pathogenesis of several eukaryotic pathogens. Genetic studies have validated the pathway for phosphatidylethanolamine synthesis from phosphatidylserine catalyzed by phosphatidylserine decarboxylase enzymes (PSD) as a suitable target for development of antimicrobials; however no inhibitors of this class of enzymes have been discovered. We show that the Plasmodium falciparum PSD can restore the essential function of the yeast gene in strains requiring PSD for growth. Genetic, biochemical and metabolic analyses demonstrate that amino acids between positions 40 and 70 of the parasite enzyme are critical for proenzyme processing and decarboxylase activity. We used the essential role of Plasmodium PSD in yeast as a tool for screening a library of anti-malarials. One of these compounds is 7-chloro-N-(4-ethoxyphenyl)-4-quinolinamine, an inhibitor with potent activity against P. falciparum, and low toxicity toward mammalian cells. We synthesized an analog of this compound and showed that it inhibits PfPSD activity and eliminates Plasmodium yoelii infection in mice. These results highlight the importance of 4-quinolinamines as a novel class of drugs targeting membrane biogenesis via inhibition of PSD activity PMID:26585333

  5. An assembly of proteins and lipid domains regulates transport of phosphatidylserine to phosphatidylserine decarboxylase 2 in Saccharomyces cerevisiae.

    PubMed

    Riekhof, Wayne R; Wu, Wen-I; Jones, Jennifer L; Nikrad, Mrinalini; Chan, Mallory M; Loewen, Christopher J R; Voelker, Dennis R

    2014-02-28

    Saccharomyces cerevisiae uses multiple biosynthetic pathways for the synthesis of phosphatidylethanolamine. One route involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), the transport of this lipid to endosomes, and decarboxylation by PtdSer decarboxylase 2 (Psd2p) to produce phosphatidylethanolamine. Several proteins and protein motifs are known to be required for PtdSer transport to occur, namely the Sec14p homolog PstB2p/Pdr17p; a PtdIns 4-kinase, Stt4p; and a C2 domain of Psd2p. The focus of this work is on defining the protein-protein and protein-lipid interactions of these components. PstB2p interacts with a protein encoded by the uncharacterized gene YPL272C, which we name Pbi1p (PstB2p-interacting 1). PstB2p, Psd2, and Pbi1p were shown to be lipid-binding proteins specific for phosphatidic acid. Pbi1p also interacts with the ER-localized Scs2p, a binding determinant for several peripheral ER proteins. A complex between Psd2p and PstB2p was also detected, and this interaction was facilitated by a cryptic C2 domain at the extreme N terminus of Psd2p (C2-1) as well the previously characterized C2 domain of Psd2p (C2-2). The predicted N-terminal helical region of PstB2p was necessary and sufficient for promoting the interaction with both Psd2p and Pbi1p. Taken together, these results support a model for PtdSer transport involving the docking of a PtdSer donor membrane with an acceptor via specific protein-protein and protein-lipid interactions. Specifically, our model predicts that this process involves an acceptor membrane complex containing the C2 domains of Psd2p, PstB2p, and Pbi1p that ligate to Scs2p and phosphatidic acid present in the donor membrane, forming a zone of apposition that facilitates PtdSer transfer.

  6. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. III. Genetic evidence for utilization of phosphatidylcholine and phosphatidylethanolamine as precursors

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    We reported that Chinese hamster ovary (CHO) cells contain two different serine-exchange enzymes (I and II) which catalyze the base-exchange reaction of phospholipid(s) with serine and that a phosphatidylserine-requiring mutant (strain PSA-3) of CHO cells is defective in serine-exchange enzyme I and lacks the ability to synthesize phosphatidylserine. In this study, we examined precursor phospholipids for phosphatidylserine biosynthesis in CHO cells. When mutant PSA-3 and parent (CHO-K1) cells were cultured with (/sup 32/P)phosphatidylcholine, phosphatidylserine in the parent accumulated radioactivity while that in the mutant was not labeled significantly. On the contrary, when cultured with (/sup 32/P)phosphatidylethanolamine, the mutant incorporated the label into phosphatidylserine more efficiently than the parent. Furthermore, we found that mutant PSA-3 grew normally in growth medium supplemented with 30 microM phosphatidylethanolamine as well as phosphatidylserine and that the biosynthesis of phosphatidylserine in the mutant was normal when cells were cultured in the presence of exogenous phosphatidylethanolamine. The simplest interpretation of these findings is that phosphatidylserine in CHO cells is biosynthesized through the following sequential reactions: phosphatidylcholine----phosphatidylserine----phosphatidylethanolamine--- - phosphatidylserine. The three reactions are catalyzed by serine-exchange enzyme I, phosphatidylserine decarboxylase, and serine-exchange enzyme II, respectively.

  7. Effect of membrane-associated f1 bacteriophage coat protein upon the activity of Escherichia coli phosphatidylserine synthetase.

    PubMed Central

    Chamberlain, B K; Webster, R E

    1978-01-01

    The effects of insertion of the major coat protein of f1 bacteriophage into Escherichia coli membranes were investigated under conditions allowing in vivo analysis of phosphatidylserine synthesis. An E. coli strain possessing a temperature-sensitive phosphatidylserine decarboxylase was utilized under conditions in which the decarboxylase activity was reduced but nonlethal. The presence of the coat protein in the host membranes inhibits the activity of the phosphatidylserine synthetase and perhaps affects the activity of the phosphatidylserine decarboxylase. PMID:211116

  8. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts.

    PubMed

    Nitta, Yoko; Yasukata, Fumiko; Kitamoto, Noritoshi; Ito, Mikiko; Sakaue, Motoyoshi; Kikuzaki, Hiroe; Ueno, Hiroshi

    2016-03-01

    Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.

  9. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  10. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  11. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression.

    PubMed

    Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra

    2015-01-01

    The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

  12. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression

    PubMed Central

    Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra

    2015-01-01

    The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety. PMID:25914676

  13. Sensing phosphatidylserine in cellular membranes.

    PubMed

    Kay, Jason G; Grinstein, Sergio

    2011-01-01

    Phosphatidylserine, a phospholipid with a negatively charged head-group, is an important constituent of eukaryotic cellular membranes. On the plasma membrane, rather than being evenly distributed, phosphatidylserine is found preferentially in the inner leaflet. Disruption of this asymmetry, leading to the appearance of phosphatidylserine on the surface of the cell, is known to play a central role in both apoptosis and blood clotting. Despite its importance, comparatively little is known about phosphatidylserine in cells: its precise subcellular localization, transmembrane topology and intracellular dynamics are poorly characterized. The recent development of new, genetically-encoded probes able to detect phosphatidylserine within live cells, however, is leading to a more in-depth understanding of the biology of this phospholipid. This review aims to give an overview of the current methods for phosphatidylserine detection within cells, and some of the recent realizations derived from their use.

  14. Phosphatidylserine in the brain: metabolism and function.

    PubMed

    Kim, Hee-Yong; Huang, Bill X; Spector, Arthur A

    2014-10-01

    Phosphatidylserine (PS) is the major anionic phospholipid class particularly enriched in the inner leaflet of the plasma membrane in neural tissues. PS is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by phosphatidylserine synthase 1 and phosphatidylserine synthase 2 located in the endoplasmic reticulum. Activation of Akt, Raf-1 and protein kinase C signaling, which supports neuronal survival and differentiation, requires interaction of these proteins with PS localized in the cytoplasmic leaflet of the plasma membrane. Furthermore, neurotransmitter release by exocytosis and a number of synaptic receptors and proteins are modulated by PS present in the neuronal membranes. Brain is highly enriched with docosahexaenoic acid (DHA), and brain PS has a high DHA content. By promoting PS synthesis, DHA can uniquely expand the PS pool in neuronal membranes and thereby influence PS-dependent signaling and protein function. Ethanol decreases DHA-promoted PS synthesis and accumulation in neurons, which may contribute to the deleterious effects of ethanol intake. Improvement of some memory functions has been observed in cognitively impaired subjects as a result of PS supplementation, but the mechanism is unclear.

  15. Knockdown of ornithine decarboxylase antizyme 1 causes loss of uptake regulation leading to increased N1, N11-bis(ethyl)norspermine (BENSpm) accumulation and toxicity in NCI H157 lung cancer cells.

    PubMed

    Fraser, Alison V; Goodwin, Andrew C; Hacker-Prietz, Amy; Sugar, Elizabeth; Woster, Patrick M; Casero, Robert A

    2012-02-01

    Ornithine decarboxylase antizyme 1 (AZ1) is a major regulatory protein responsible for the regulation and degradation of ornithine decarboxylase (ODC). To better understand the role of AZ1 in polyamine metabolism and in modulating the response to anticancer polyamine analogues, a small interfering RNA strategy was used to create a series of stable clones in human H157 non-small cell lung cancer cells that expressed less than 5-10% of basal AZ1 levels. Antizyme 1 knockdown clones accumulated greater amounts of the polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) and were more sensitive to analogue treatment. The possibility of a loss of polyamine uptake regulation in the knockdown clones was confirmed by polyamine uptake analysis. These results are consistent with the hypothesis that AZ1 knockdown leads to dysregulation of polyamine uptake, resulting in increased analogue accumulation and toxicity. Importantly, there appears to be little difference between AZ1 knockdown cells and cells with normal levels of AZ1 with respect to ODC regulation, suggesting that another regulatory protein, potentially AZ2, compensates for the loss of AZ1. The results of these studies are important for the understanding of both the regulation of polyamine homeostasis and in understanding the factors that regulate tumor cell sensitivity to the anti-tumor polyamine analogues.

  16. Involvement of Sac1 phosphoinositide phosphatase in the metabolism of phosphatidylserine in the yeast Saccharomyces cerevisiae.

    PubMed

    Tani, Motohiro; Kuge, Osamu

    2014-04-01

    Sac1 is a phosphoinositide phosphatase that preferentially dephosphorylates phosphatidylinositol 4-phosphate. Mutation of SAC1 causes not only the accumulation of phosphoinositides but also reduction of the phosphatidylserine (PS) level in the yeast Saccharomyces cerevisiae. In this study, we characterized the mechanism underlying the PS reduction in SAC1-deleted cells. Incorporation of (32) P into PS was significantly delayed in sac1∆ cells. Such a delay was also observed in SAC1- and PS decarboxylase gene-deleted cells, suggesting that the reduction in the PS level is caused by a reduction in the rate of biosynthesis of PS. A reduction in the PS level was also observed with repression of STT4 encoding phosphatidylinositol 4-kinase or deletion of VPS34 encoding phophatidylinositol 3-kinase. However, the combination of mutations of SAC1 and STT4 or VPS34 did not restore the reduced PS level, suggesting that both the synthesis and degradation of phosphoinositides are important for maintenance of the PS level. Finally, we observed an abnormal PS distribution in sac1∆ cells when a specific probe for PS was expressed. Collectively, these results suggested that Sac1 is involved in the maintenance of a normal rate of biosynthesis and distribution of PS.

  17. Staurosporines decrease ORMDL proteins and enhance sphingomyelin synthesis resulting in depletion of plasmalemmal phosphatidylserine

    PubMed Central

    Maekawa, Masashi; Lee, Minhyoung; Wei, Kuiru; Ridgway, Neale D.; Fairn, Gregory D.

    2016-01-01

    Accumulation of phosphatidylserine in the inner leaflet of the plasma membrane is a hallmark of eukaryotes. Sublethal levels of staurosporine and related compounds deplete phosphatidylserine from the plasma membrane and abrogate K-Ras signaling. Here, we report that low-dose staurosporine and related compounds increase sphingomyelin mass. Mass-spectrometry and metabolic tracer analysis revealed an increase in both the levels and rate of synthesis of sphingomyelin in response to sublethal staurosporine. Mechanistically, it was determined that the abundance of the ORMDL proteins, which negatively regulate serine-palmitoyltransferase, are decreased by low-dose staurosporine. Finally, inhibition of ceramide synthesis, and thus sphingomyelin, prevented the displacement of phosphatidylserine and cholesterol from the inner leaflet of the plasma membrane. The results establish that an optimal level of sphingomyelin is required to maintain the distribution of phosphatidylserine and cholesterol in the plasma membrane and further demonstrate a complex relationship between the trafficking of phosphatidylserine and sphingomyelin. PMID:27805006

  18. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages.

    PubMed

    Wang, Ji; Kang, Yu-Xia; Pan, Wen; Lei, Wan; Feng, Bin; Wang, Xiao-Juan

    2016-06-20

    Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%-8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  19. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity.

    PubMed

    Fairn, Gregory D; Hermansson, Martin; Somerharju, Pentti; Grinstein, Sergio

    2011-10-02

    Polarity is key to the function of eukaryotic cells. On the establishment of a polarity axis, cells can vectorially target secretion, generating an asymmetric distribution of plasma membrane proteins. From Saccharomyces cerevisiae to mammals, the small GTPase Cdc42 is a pivotal regulator of polarity. We used a fluorescent probe to visualize the distribution of phosphatidylserine in live S. cerevisiae. Remarkably, phosphatidylserine was polarized in the plasma membrane, accumulating in bud necks, the bud cortex and the tips of mating projections. Polarization required vectorial delivery of phosphatidylserine-containing secretory vesicles, and phosphatidylserine was largely excluded from endocytic vesicles, contributing to its polarized retention. Mutants lacking phosphatidylserine synthase had impaired polarization of the Cdc42 complex, leading to a delay in bud emergence, and defective mating. The addition of lysophosphatidylserine resulted in resynthesis and polarization of phosphatidylserine, as well as repolarization of Cdc42. The results indicate that phosphatidylserine--and presumably its polarization--are required for optimal Cdc42 targeting and activation during cell division and mating.

  20. Enhancement of menadione stress tolerance in yeast by accumulation of hypotaurine and taurine: co-expression of cDNA clones, from Cyprinus carpio, for cysteine dioxygenase and cysteine sulfinate decarboxylase in Saccharomyces cerevisiae.

    PubMed

    Honjoh, Ken-ichi; Matsuura, Kanae; Machida, Takeshi; Nishi, Koutarou; Nakao, Miki; Yano, Tomoki; Miyamoto, Takahisa; Iio, Masayoshi

    2010-04-01

    Taurine is known to function as a protectant against various stresses in animal cells. In order to utilize taurine as a compatible solute for stress tolerance of yeast, isolation of cDNA clones for genes encoding enzymes involved in biosynthesis of taurine was attempted. Two types of cDNA clones corresponding to genes encoding cysteine dioxygenase (CDO1 and CDO2) and a cDNA clone for cysteine sulfinate decarboxylase (CSD) were isolated from Cyprinus carpio. Deduced amino acid sequences of the two CDOs and that of CSD showed high similarity to those of CDOs and those of CSDs from other organisms, respectively. The coding regions of CDO1, CDO2, and CSD were subcloned into an expression vector, pESC-TRP, for Saccharomyces cerevisiae. Furthermore, to enhance the efficiency of synthesis of taurine in S. cerevisiae, a CDO-CSD fusion was designed and expressed. Expression of CDO and CSD proteins, or the CDO-CSD fusion protein was confirmed by Western blot analysis. HPLC analysis showed that the expression of the proteins led to enhancement of the accumulation level of hypotaurine, a precursor of taurine, rather than taurine. The yeast cells expressing corresponding genes showed tolerance to oxidative stress induced by menadione, but not to freezing-thawing stress.

  1. Phosphatidylserine dynamics in cellular membranes.

    PubMed

    Kay, Jason G; Koivusalo, Mirkka; Ma, Xiaoxiao; Wohland, Thorsten; Grinstein, Sergio

    2012-06-01

    Much has been learned about the role of exofacial phosphatidylserine (PS) in apoptosis and blood clotting using annexin V. However, because annexins are impermeant and unable to bind PS at low calcium concentration, they are unsuitable for intracellular use. Thus little is known about the topology and dynamics of PS in the endomembranes of normal cells. We used two new probes-green fluorescent protein (GFP)-LactC2, a genetically encoded fluorescent PS biosensor, and 1-palmitoyl-2-(dipyrrometheneboron difluoride)undecanoyl-sn-glycero-3-phospho-L-serine (TopFluor-PS), a synthetic fluorescent PS analogue-to examine PS distribution and dynamics inside live cells. The mobility of PS was assessed by a combination of advanced optical methods, including single-particle tracking and fluorescence correlation spectroscopy. Our results reveal the existence of a sizable fraction of PS with limited mobility, with cortical actin contributing to the confinement of PS in the plasma membrane. We were also able to measure the dynamics of PS in endomembrane organelles. By targeting GFP-LactC2 to the secretory pathway, we detected the presence of PS in the luminal leaflet of the endoplasmic reticulum. Our data provide new insights into properties of PS inside cells and suggest mechanisms to account for the subcellular distribution and function of this phospholipid.

  2. Beta2-microglobulin causes abnormal phosphatidylserine exposure in human red blood cells.

    PubMed

    Pavone, Barbara; Bucci, Sonia; Sirolli, Vittorio; Merlini, Giampaolo; Del Boccio, Piero; Di Rienzo, Marianna; Felaco, Paolo; Amoroso, Luigi; Sacchetta, Paolo; Di Ilio, Carmine; Federici, Giorgio; Urbani, Andrea; Bonomini, Mario

    2011-03-01

    The exposure of the aminophospholipid phosphatidylserine on the external leaflet of red blood cell plasma membrane can have several pathophysiological consequences with particular regard to the processes of cell phagocytosis, haemostasis and cell-cell interaction. A significant increase in phosphatidylserine-exposing erythrocytes has been reported in chronic haemodialysis patients and found to be strongly influenced by the uraemic milieu. To identify uraemic compound(s) enhancing phosphatidylserine externalization in erythrocytes, we fractionated by chromatographic methods the ultrafiltrate obtained during dialysis, and examined by flow cytometry the effect of the resulting fractions on phosphatidylserine exposure in human red cells. Chromatographic procedures disclosed a homogeneous fraction able to increase erythrocyte phosphatidylserine exposure. The inducer of such externalization was identified by monodimensional gel electrophoresis and mass spectrometry investigations as beta2-microglobulin. To confirm the beta2-microglobulin effect and to examine the influence of protein glycation (as it occurs in uraemia) on phosphatidylserine erythrocyte exposure, erythrocytes from normal subjects were incubated with recombinant beta2-microglobulin (showing no glycation sites at mass analysis), commercial beta2-microglobulin (8 glycation sites), or with in vitro glycated recombinant beta2-microglobulin (showing multiple glycation sites). Elevated concentrations of beta2-microglobulin (corresponding to plasma levels reached in dialysis patients) increased slightly but significantly the protein's ability to externalize phosphatidylserine on human erythrocytes. Such an effect was markedly enhanced by glycated forms of the protein. Beta2-microglobulin is recognized as a surrogate marker of middle-molecule uraemic toxins and represents a key component of dialysis-associated amyloidosis. Our study adds further evidence to the potential pathophysiologic consequences of beta2

  3. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. I. Inhibition of de novo phosphatidylserine biosynthesis by exogenous phosphatidylserine and its efficient incorporation

    SciTech Connect

    Nishijima, M.; Kuge, O.; Akamatsu, Y.

    1986-05-05

    The effect of phosphatidylserine exogenously added to the medium on de novo biosynthesis of phosphatidylserine was investigated in cultured Chinese hamster ovary cells. When cells were cultured for several generations in medium supplemented with phosphatidylserine and /sup 32/Pi, the incorporation of /sup 32/Pi into cellular phosphatidylserine was remarkably inhibited, the degree of inhibition being dependent upon the concentration of added phosphatidylserine. /sup 32/Pi uptake into cellular phosphatidylethanolamine was also partly reduced by the addition of exogenous phosphatidylserine, consistent with the idea that phosphatidylethanolamine is biosynthesized via decarboxylation of phosphatidylserine. However, incorporation of /sup 32/Pi into phosphatidylcholine, sphingomyelin, and phosphatidylinositol was not significantly affected. In contrast, the addition of either phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or phosphatidylinositol to the medium did not inhibit endogenous biosynthesis of the corresponding phospholipid. Radiochemical and chemical analyses of the cellular phospholipid composition revealed that phosphatidylserine in cells grown with 80 microM phosphatidylserine was almost entirely derived from the added phospholipid. Phosphatidylserine uptake was also directly determined by using (/sup 3/H)serine-labeled phospholipid. Pulse and pulse-chase experiments with L-(U-/sup 14/C) serine showed that when cells were cultured with 80 microM phosphatidylserine, the rate of synthesis of phosphatidylserine was reduced 3-5-fold. Enzyme assaying of extracts prepared from cells grown with and without phosphatidylserine indicated that the inhibition of de novo phosphatidylserine biosynthesis by the added phosphatidylserine appeared not to be caused by a reduction in the level of the enzyme involved in the base-exchange reaction between phospholipids and serine.

  4. Accumulator

    NASA Technical Reports Server (NTRS)

    Fenwick, J. R.; Karigan, G. H. (Inventor)

    1977-01-01

    An accumulator particularly adapted for use in controlling the pressure of a stream of fluid in its liquid phase utilizing the fluid in its gaseous phase was designed. The accumulator is characterized by a shell defining a pressure chamber having an entry throat for a liquid and adapted to be connected in contiguous relation with a selected conduit having a stream of fluid flowing through the conduit in its liquid phase. A pressure and volume stabilization tube, including an array of pressure relief perforations is projected into the chamber with the perforations disposed adjacent to the entry throat for accommodating a discharge of the fluid in either gaseous or liquid phases, while a gas inlet and liquid to gas conversion system is provided, the chamber is connected with a source of the fluid for continuously pressuring the chamber for controlling the pressure of the stream of liquid.

  5. Efficient synthesis of phosphatidylserine in 2-methyltetrahydrofuran.

    PubMed

    Duan, Zhang-Qun; Hu, Fei

    2013-01-10

    2-Methyltetrahydrofuran has recently been described as a promising and green solvent. Herein, it was successfully used as the reaction medium for enzyme-mediated transphosphatidylation of phosphatidylcholine with L-serine with the aim of phosphatidylserine synthesis for the first time. Our results indicated that as high as 90% yield of phosphatidylserine could be achieved after 12 h combined with no byproduct (phosphatidic acid) forming. The present work accommodated a facilely and efficiently enzymatic strategy for preparing phosphatidylserine, which possessed obvious advantages over the reported processes in terms of high efficiency and environmental friendliness. This work is also a proof-of-concept opening the use of 2-methyltetrahydrofuran in biosynthesis as well.

  6. Specific stabilization of CFTR by phosphatidylserine.

    PubMed

    Hildebrandt, Ellen; Khazanov, Netaly; Kappes, John C; Dai, Qun; Senderowitz, Hanoch; Urbatsch, Ina L

    2017-02-01

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, ABCC7) is a plasma membrane chloride ion channel in the ABC transporter superfamily. CFTR is a key target for cystic fibrosis drug development, and its structural elucidation would advance those efforts. However, the limited in vivo and in vitro stability of the protein, particularly its nucleotide binding domains, has made structural studies challenging. Here we demonstrate that phosphatidylserine uniquely stimulates and thermally stabilizes the ATP hydrolysis function of purified human CFTR. Among several lipids tested, the greatest stabilization was observed with brain phosphatidylserine, which shifted the Tm for ATPase activity from 22.7±0.8°C to 35.0±0.2°C in wild-type CFTR, and from 26.6±0.7°C to 42.1±0.2°C in a more stable mutant CFTR having deleted regulatory insertion and S492P/A534P/I539T mutations. When ATPase activity was measured at 37°C in the presence of brain phosphatidylserine, Vmax for wild-type CFTR was 240±60nmol/min/mg, a rate higher than previously reported and consistent with rates for other purified ABC transporters. The significant thermal stabilization of CFTR by phosphatidylserine may be advantageous in future structural and biophysical studies of CFTR.

  7. Respiratory Deficiency Mediates the Regulation of CHO1-encoded Phosphatidylserine Synthase by mRNA Stability in Saccharomyces cerevisiae*

    PubMed Central

    Choi, Hyeon-Son; Carman, George M.

    2007-01-01

    The CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) is one of the most highly regulated phospholipid biosynthetic enzymes in the yeast Saccharomyces cerevisiae. CHO1 expression is regulated by nutrient availability through a regulatory circuit involving a UASINO cis-acting element in the CHO1 promoter, the positive transcription factors Ino2p and Ino4p, and the transcriptional repressor Opi1p. In this work, we examined the posttranscriptional regulation of CHO1 by mRNA stability. CHO1 mRNA was stabilized in mutants defective in deadenylation (ccr4Δ), mRNA decapping (dcp1), and the 5’-3’ exonuclease (xrn1) indicating that the CHO1 transcript is primarily degraded through the general 5’-3’ mRNA decay pathway. In respiratory sufficient cells, the CHO1 transcript was moderately stable with a half-life of 12 min. However, the CHO1 transcript was stabilized to a half-life of greater than 45 min in respiratory deficient (rho− and rho°) cells, the cox4Δ mutant defective in the cytochrome c oxidase, and wild type cells treated with KCN (a cytochorome c oxidase inhibitor). The increased CHO1 mRNA stability in response to respiratory deficiency caused increases in CHO1 mRNA abundance, phosphatidylserine synthase protein and activity, and the synthesis of phosphatidylserine in vivo. Respiratory deficiency also caused increases in the activities of CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, and the phospholipid methyltransferases. Phosphatidylinositol synthase and choline kinase activities were not affected by respiratory deficiency. This work advances our understanding of phosphatidylserine synthase regulation and underscores the importance of mitochondrial respiration to the regulation of phospholipid synthesis in S. cerevisiae. PMID:17761681

  8. Phosphatidylserine biosynthesis in cultured Chinese hamster ovary cells. II. Isolation and characterization of phosphatidylserine auxotrophs

    SciTech Connect

    Kuge, O.; Nishijima, M.; Akamatsu, Y.

    1986-05-05

    Chinese hamster ovary (CHO) cell mutants that required exogenously added phosphatidylserine for cell growth were isolated by using the replica technique with polyester cloth, and three such mutants were characterized. Labeling experiments on intact cells with /sup 32/Pi and L-(U-/sup 14/C)serine revealed that a phosphatidylserine auxotroph, designated as PSA-3, was strikingly defective in phosphatidylserine biosynthesis. When cells were grown for 2 days without phosphatidylserine, the phosphatidylserine content of PSA-3 was about one-third of that of the parent. In extracts of the mutant, the enzymatic activity of the base-exchange reaction of phospholipids with serine producing phosphatidylserine was reduced to 33% of that in the parent; in addition, the activities of base-exchange reactions of phospholipids with choline and ethanolamine in the mutant were also reduced to 1 and 45% of those in the parent, respectively. Furthermore, it was demonstrated that the serine-exchange activity in the parent was inhibited approximately 60% when choline was added to the reaction mixture whereas that in the mutant was not significantly affected. From the results presented here, we conclude the following. There are at least two kinds of serine-exchange enzymes in CHO cells; one (serine-exchange enzyme I) can catalyze the base-exchange reactions of phospholipids with serine, choline, and ethanolamine while the other (serine-exchange enzyme II) does not use the choline as a substrate. Serine-exchange enzyme I, in which mutant PSA-3 is defective, plays a major role in phosphatidylserine biosynthesis in CHO cells. Serine-exchange enzyme I is essential for the growth of CHO cells.

  9. Lotus hairy roots expressing inducible arginine decarboxylase activity.

    PubMed

    Chiesa, María A; Ruiz, Oscar A; Sánchez, Diego H

    2004-05-01

    Biotechnological uses of plant cell-tissue culture usually rely on constitutive transgene expression. However, such expression of transgenes may not always be desirable. In those cases, the use of an inducible promoter could be an alternative approach. To test this hypothesis, we developed two binary vectors harboring a stress-inducible promoter from Arabidopsis thaliana, driving the beta-glucuronidase reporter gene and the oat arginine decarboxylase. Transgenic hairy roots of Lotus corniculatus were obtained with osmotic- and cold-inducible beta-glucuronidase and arginine decarboxylase activities. The increase in the activity of the latter was accompanied by a significant rise in total free polyamines level. Through an organogenesis process, we obtained L. corniculatus transgenic plants avoiding deleterious phenotypes frequently associated with the constitutive over-expression of arginine decarboxylation and putrescine accumulation.

  10. Erythrocyte phosphatidylserine exposure in β-thalassemia.

    PubMed

    Ibrahim, Hamdy A; Fouda, Manal I; Yahya, Raida S; Abousamra, Nashwa K; Abd Elazim, Rania A

    2014-06-01

    [ABS]Phospholipid asymmetry is well maintained in erythrocyte (RBC) membranes with phosphatidylserine (PS) exclusively present in the inner leaflet. Eryptosis, the suicidal death of RBCs, is characterized by cell shrinkage, membrane blebbing, and cell membrane phospholipids scrambling with PS exposure at the cell surface. Erythrocytes exposing PS are recognized, bound, engulfed, and degraded by macrophages. Eryptosis thus fosters clearance of affected RBCs from circulating blood, which may aggravate anemia in pathological conditions. Thalassemia patients are more sensitive to the eryptotic depletion and osmotic shock which may affect RBC membrane phospholipid asymmetry. We aimed in this work to determine the RBC PS exposure in splenectomized and nonsplenectomized β-thalassemia major (β-TM) patients and correlate it with the clinical presentation and laboratory data. RBCs were stained for annexin V to detect phosphatidylserine (PS) exposure in 46 β-TM patients (27 splenectomized and 19 nonsplenectomized) compared to 17 healthy subjects as a control group. We observed a significant increase in RBC PS exposure in β-TM patients compared to control group (P = .0001). Erythrocyte PS exposure was significantly higher in splenectomized β-TM patients compared with nonsplenectomized β-TM patients (P = .001). No correlation was found between RBC PS exposure and clinical or hematological data of β-TM patients, but there was a positive correlation between RBC PS exposure and ferritin level in β-TM patients have higher levels of RBC PS exposure, and splenectomy was shown to aggravate RBC PS exposure without aggravation of anemia.

  11. Genetics Home Reference: malonyl-CoA decarboxylase deficiency

    MedlinePlus

    ... deficiency of malonyl-CoA decarboxylase malonic aciduria malonyl-coenzyme A decarboxylase deficiency MCD deficiency Related Information How ... molecular characterization of nine new patients with malonyl-coenzyme A decarboxylase deficiency. J Inherit Metab Dis. 2007 ...

  12. Genetics Home Reference: aromatic l-amino acid decarboxylase deficiency

    MedlinePlus

    ... l-amino acid decarboxylase deficiency aromatic l-amino acid decarboxylase deficiency Enable Javascript to view the expand/ ... Open All Close All Description Aromatic l-amino acid decarboxylase (AADC) deficiency is an inherited disorder that ...

  13. Post-transcriptional regulation of ornithine decarboxylase in Xenopus laevis oocytes.

    PubMed

    Bassez, T; Paris, J; Omilli, F; Dorel, C; Osborne, H B

    1990-11-01

    The level at which ornithine decarboxylase expression is regulated in growing oocytes has been investigated. Immunoprecipitation of the in vivo labelled proteins showed that ornithine decarboxylase accumulated less rapidly in stage IV oocytes than in previtellogenic stage I + II oocytes. Quantitative Northern analysis showed that ornithine decarboxylase mRNA is abundant in oocytes (about 8 x 10(8) transcripts/cell) and this number does not significantly change during oogenesis. Polysome analysis showed that this mRNA is present in polysomes in stage I + II oocytes but has passed into puromycin-insensitive mRNP particles by stage IV of oogenesis. Therefore, during the growth phase of oogenesis, ornithine decarboxylase expression is regulated at a translational level. These results are discussed relative to the temporal expression of ornithine decarboxylase and of other proteins whose expression also decreases during oogenesis. In order to perform these experiments, the cDNA (XLODC1) corresponding to Xenopus laevis ornithine decarboxylase mRNA was cloned and sequenced.

  14. Regulation of phosphatidylserine synthase from Saccharomyces cerevisiae by phospholipid precursors.

    PubMed Central

    Poole, M A; Homann, M J; Bae-Lee, M S; Carman, G M

    1986-01-01

    The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis. Images PMID:3023284

  15. An Apoptotic 'Eat Me' Signal: Phosphatidylserine Exposure.

    PubMed

    Segawa, Katsumori; Nagata, Shigekazu

    2015-11-01

    Apoptosis and the clearance of apoptotic cells are essential processes in animal development and homeostasis. For apoptotic cells to be cleared, they must display an 'eat me' signal, most likely phosphatidylserine (PtdSer) exposure, which prompts phagocytes to engulf the cells. PtdSer, which is recognized by several different systems, is normally confined to the cytoplasmic leaflet of the plasma membrane by a 'flippase'; apoptosis activates a 'scramblase' that quickly exposes PtdSer on the cell surface. The molecules that flip and scramble phospholipids at the plasma membrane have recently been identified. Here we discuss recent findings regarding the molecular mechanisms of apoptotic PtdSer exposure and the clearance of apoptotic cells.

  16. Apical phosphatidylserine externalization in auditory hair cells.

    PubMed

    Shi, Xiaorui; Gillespie, Peter G; Nuttall, Alfred L

    2007-01-01

    In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.

  17. Dysferlin-mediated phosphatidylserine sorting engages macrophages in sarcolemma repair

    PubMed Central

    Middel, Volker; Zhou, Lu; Takamiya, Masanari; Beil, Tanja; Shahid, Maryam; Roostalu, Urmas; Grabher, Clemens; Rastegar, Sepand; Reischl, Markus; Nienhaus, Gerd Ulrich; Strähle, Uwe

    2016-01-01

    Failure to repair the sarcolemma leads to muscle cell death, depletion of stem cells and myopathy. Hence, membrane lesions are instantly sealed by a repair patch consisting of lipids and proteins. It has remained elusive how this patch is removed to restore cell membrane integrity. Here we examine sarcolemmal repair in live zebrafish embryos by real-time imaging. Macrophages remove the patch. Phosphatidylserine (PS), an ‘eat-me' signal for macrophages, is rapidly sorted from adjacent sarcolemma to the repair patch in a Dysferlin (Dysf) dependent process in zebrafish and human cells. A previously unrecognized arginine-rich motif in Dysf is crucial for PS accumulation. It carries mutations in patients presenting with limb-girdle muscular dystrophy 2B. This underscores the relevance of this sequence and uncovers a novel pathophysiological mechanism underlying this class of myopathies. Our data show that membrane repair is a multi-tiered process involving immediate, cell-intrinsic mechanisms as well as myofiber/macrophage interactions. PMID:27641898

  18. Post-transcriptional regulation of ornithine decarboxylase

    PubMed Central

    Nowotarski, Shannon L.; Origanti, Sofia; Shantz, Lisa M.

    2013-01-01

    Activity of the polyamine biosynthetic enzyme ornithine decarboxylase (ODC), and intracellular levels of ODC protein are controlled very tightly. Numerous studies have described ODC regulation at the levels of transcription, translation and protein degradation in normal cells, and dysregulation of these processes in response to oncogenic stimuli. Although post-transcriptional regulation of ODC has been well-documented, the RNA binding proteins (RBPs) that interact with ODC mRNA and control synthesis of the ODC protein have not been defined. Using Ras-transformed rat intestinal epithelial cells (Ras12V cells) as a model, we have begun identifying the RBPs that associate with the ODC transcript. Binding of RBPs could potentially regulate ODC synthesis by either changing mRNA stability or rate of mRNA translation. Techniques for measuring RBP binding and translation initiation are described here. Targeting control of ODC translation or mRNA decay could be a valuable method of limiting polyamine accumulation and subsequent tumor development in a variety of cancers. PMID:21318880

  19. Detection of intracellular phosphatidylserine in living cells.

    PubMed

    Calderon, Frances; Kim, Hee-Yong

    2008-03-01

    To demonstrate the intracellular phosphatidylserine (PS) distribution in neuronal cells, neuroblastoma cells and hippocampal neurons expressing green fluorescence protein (GFP)-AnnexinV were stimulated with a calcium ionophore and localization of GFP-AnnexinV was monitored by fluorescence microscopy. Initially, GFP-AnnexinV distributed evenly in the cytosol and nucleus. Raising the intracellular calcium level with ionomycin-induced translocation of cytoplasmic GFP-AnnexinV to the plasma membrane but not to the nuclear membrane, indicating that PS distributes in the cytoplasmic side of the plasma membrane. Nuclear GFP-AnnexinV subsequently translocated to the nuclear membrane, indicating PS localization in the nuclear envelope. GFP-AnnexinV also localized in a juxtanuclear organelle that was identified as the recycling endosome. However, minimal fluorescence was detected in any other subcellular organelles including mitochondria, endoplasmic reticulum, Golgi complex, and lysosomes, strongly suggesting that PS distribution in the cytoplasmic face in these organelles is negligible. Similarly, in hippocampal primary neurons PS distributed in the inner leaflet of plasma membranes of cell body and dendrites, and in the nuclear envelope. To our knowledge, this is the first demonstration of intracellular PS localization in living cells, providing an insight for specific sites of PS interaction with soluble proteins involved in signaling processes.

  20. Zymographic detection of cinnamic acid decarboxylase activity.

    PubMed

    Prim, Núria; Pastor, F I Javier; Diaz, Pilar

    2002-11-01

    The manuscript includes a concise description of a new, fast and simple method for detection of cinnamic acid decarboxylase activity. The method is based on a color shift caused a by pH change and may be an excellent procedure for large screenings of samples from natural sources, as it involves no complex sample processing or purification. The method developed can be used in preliminary approaches to biotransformation processes involving detection of hydroxycinnamic acid decarboxylase activity.

  1. Ribavirin-induced externalization of phosphatidylserine in erythrocytes is predominantly caused by inhibition of aminophospholipid translocase activity.

    PubMed

    Kleinegris, Marie-Claire; Koek, Ger H; Mast, Kelly; Mestrom, Eveline H C; Wolfs, Jef L N; Bevers, Edouard M

    2012-10-15

    Ribavirin in combination with interferon-α is the standard treatment for chronic hepatitis C, but often induces severe anemia forcing discontinuation of the therapy. Whereas suppression of bone marrow by interferon may impact on the production of erythrocytes, it has been suggested that accumulation of ribavirin in erythrocytes induces alterations causing an early removal of these cells by the mononuclear phagocytic system. Externalization of phosphatidylserine, which is exclusively present in the cytoplasmic leaflet of the plasma membrane, is a recognition signal for phagocytosis in particular of apoptotic cells. Here, we demonstrate that surface exposure of phosphatidylserine upon prolonged treatment of erythrocytes with ribavirin results mainly from inactivation of the aminophospholipid translocase, an ATP-dependent lipid pump, which specifically transports phosphatidylserine from the outer to the inner leaflet of the plasma membrane. Inactivation is due to severe ATP depletion, although competitive inhibition by ribavirin or its phosphorylated derivatives cannot be excluded. Phospholipid scramblase, responsible for collapse of lipid asymmetry, appears to be of minor importance as erythrocytes of patients with the Scott syndrome, lacking Ca(2+)-induced lipid scrambling, are equally sensitive to ribavirin treatment. Neither the antioxidant N-acetylcysteine nor the pan-caspase inhibitor Q-VD-OPH did affect ribavirin-induced phosphatidylserine exposure, suggesting that oxidative stress or apoptotic-related mechanisms are not involved in this process. In conclusion, we propose that spontaneous loss of lipid asymmetry, not corrected by aminophospholipid translocase activity, is the mechanism for ribavirin-induced phosphatidylserine exposure that may contribute to ribavirin-induced anemia.

  2. Staurosporines disrupt phosphatidylserine trafficking and mislocalize Ras proteins.

    PubMed

    Cho, Kwang-jin; Park, Jin-Hee; Piggott, Andrew M; Salim, Angela A; Gorfe, Alemaheyu A; Parton, Robert G; Capon, Robert J; Lacey, Ernest; Hancock, John F

    2012-12-21

    Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.

  3. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    SciTech Connect

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; Smith, Holly; Peterson, Darren J.; Beckham, Gregg T.

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCA decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.

  4. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  5. Gradients of phosphatidylserine contribute to plasma membrane charge localization and cell polarity in fission yeast

    PubMed Central

    Haupt, Armin; Minc, Nicolas

    2017-01-01

    Surface charges at the inner leaflet of the plasma membrane may contribute to regulate the surface recruitment of key signaling factors. Phosphatidylserine (PS) is an abundant charged lipid that may regulate charge distribution in different cell types. Here we characterize the subcellular distribution and function of PS in the rod-shaped, polarized fission yeast. We find that PS preferably accumulates at cell tips and defines a gradient of negative charges along the cell surface. This polarization depends on actin-mediated endocytosis and contributes to the subcellular partitioning of charged polarity-regulating Rho GTPases like Rho1 or Cdc42 in a protein charge–dependent manner. Cells depleted of PS have altered cell dimensions and fail to properly regulate growth from the second end, suggesting a role for PS and membrane charge in polarized cell growth. PMID:27852900

  6. Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis

    DTIC Science & Technology

    2015-12-01

    INVESTIGATOR: Rolf A. Brekken CONTRACTING ORGANIZATION: U niveristy of Texas Southwestern Medical Center Dallas, TX 75390-9105 REPORT DATE: December...COVERED (From - To) 30 Sep 2012 - 29 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Phosphatidylserine for Radioimmunotherapy of Breast...antibody, PGN635, a fully human monoclonal antibody, was used to target exposed PS in the brain metastases. Our data show that PGN635 binds specifically

  7. Phosphatidylserine metabolism modification precedes manganese-induced apoptosis and phosphatidylserine exposure in PC12 cells.

    PubMed

    Ferrara, G; Gambelunghe, A; Mozzi, R; Marchetti, M C; Migliorati, G; Muzi, G; Buratta, S

    2013-12-01

    Long-term exposure to high manganese (Mn) levels can lead to Parkinson-like neurological disorders. Molecular mechanisms underlying Mn cytotoxicity have been not defined. It is known that Mn induces apoptosis in PC12 cells and that this involves the activation of some signal transduction pathways. Although the role of phospholipids in apoptosis and signal transduction is well-known, the membrane phospholipid component in Mn-related damage has not yet been investigated. Phosphatidylserine (PS) facilitates protein translocation from cytosol to plasma membrane and PS exposure on the cell surface allows macrophage recognition of apoptotic cells. This study investigates the effects of MnCl2 on PS metabolism in PC12 cells, relating them to those on cell apoptosis. Apoptosis induction decreased PS radioactivity of PC12 cells incubated with radioactive serine. MnCl2 reduced PS radioactivity even under conditions that did not affect cell viability or PS exposure, suggesting that the effects on PS metabolism may represent an early event in cell apoptosis. Thus the latter conditions that also induced a greater PS decarboxylation were utilized for further investigating on the effects on PS synthesis, by measuring the activity and expression of PS-synthesizing enzymes, in cell lysates and in total cellular membranes (TM). Compared with corresponding controls, enzyme activity of MnCl2-treated cells was lower in cell lysates and greater in TM. Evaluating the expression of two isoforms of PS-synthesizing enzyme (PSS), PSSII was increased both in cell lysate and TM, while PSSI was unchanged. MnCl2 addition to control cell lysate reduced enzyme activity. These results suggest Mn plays a dual role on PS synthesis. Once inside the cell, Mn inhibits the enzyme/s, thus accounting for reduced PS synthesis in lysates and intact cells. On the other hand, it increases PSSII expression in cell membranes. The possibility that this occurs to counteract the direct effects of Mn ions on enzyme

  8. Induction of aromatic-L-amino acid decarboxylase by decarboxylase inhibitors in idiopathic parkinsonism.

    PubMed

    Boomsma, F; Meerwaldt, J D; Man in 't Veld, A J; Hovestadt, A; Schalekamp, M A

    1989-06-01

    We evaluated the effect of administration of L-dopa, alone or in combination with a peripheral decarboxylase inhibitor, on plasma levels of aromatic-L-amino acid decarboxylase (ALAAD). After single-dose administration of L-dopa plus benserazide (Madopar) in healthy subjects and in chronically treated patients with parkinsonism, plasma ALAAD followed for 2 to 3 hours fell, but returned to predosing levels within 90 minutes. Four groups of patients with idiopathic parkinsonism were studied during chronic treatment: Group I, no L-dopa treatment (n = 31); Group II, L-dopa alone (n = 15); Group III, L-dopa plus benserazide (n = 28); and Group IV, L-dopa plus carbidopa (Sinemet, n = 30). Plasma ALAAD 2 hours after dosing was normal in Groups I and II. ALAAD was increased threefold in Groups III and IV, suggesting induction of ALAAD by the coadministration of a peripheral decarboxylase inhibitor. In a study of 3 patients in whom L-dopa/benserazide was started, plasma ALAAD rose gradually over 3 to 4 weeks. Further detailed pharmacokinetic studies of L-dopa, dopamine, and ALAAD in plasma and cerebrospinal fluid are required to determine if the apparent ALAAD induction by a peripheral decarboxylase inhibitor may be related to the loss of clinical efficacy of combination therapy in some patients and how it is related to end-of-dose deterioration and on-off phenomena.

  9. Phosphatidylserine recognition and induction of apoptotic cell clearance by Drosophila engulfment receptor Draper.

    PubMed

    Tung, Tran Thanh; Nagaosa, Kaz; Fujita, Yu; Kita, Asana; Mori, Hiroki; Okada, Ryo; Nonaka, Saori; Nakanishi, Yoshinobu

    2013-05-01

    The membrane phospholipid phosphatidylserine is exposed on the cell surface during apoptosis and acts as an eat-me signal in the phagocytosis of apoptotic cells in mammals and nematodes. However, whether this is also true in insects was unclear. When milk fat globule-epidermal growth factor 8, a phosphatidylserine-binding protein of mammals, was ectopically expressed in Drosophila, the level of phagocytosis was reduced, whereas this was not the case for the same protein lacking a domain responsible for the binding to phosphatidylserine. We found that the extracellular region of Draper, an engulfment receptor of Drosophila, binds to phosphatidylserine in an enzyme-linked immunosorbent assay-like solid-phase assay and in an assay for surface plasmon resonance. A portion of Draper containing domains EMI and NIM located close to the N-terminus was required for binding to phosphatidylserine, and a Draper protein lacking this region was not active in Drosophila. Finally, the level of tyrosine-phosphorylated Draper, indicative of the activation of Draper, in a hemocyte-derived cell line was increased after treatment with phosphatidylserine-containing liposome. These results indicated that phosphatidylserine serves as an eat-me signal in the phagocytic removal of apoptotic cells in Drosophila and that Draper is a phosphatidylserine-binding receptor for phagocytosis.

  10. Ethanol increases affinity of protein kinase C for phosphatidylserine

    SciTech Connect

    Chin, J.H.

    1986-03-01

    Protein kinase C is a calcium-dependent enzyme that requires phospholipid for its activation. It is present in relatively high concentration in the brain and may be involved in neuronal function. The present experiments test whether the membrane disorder induced by ethanol affects the activity of kinase C by changing its interaction with membrane lipid. Fractions rich in kinase C were purified from rat brain cytosol by DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Enzyme activity was assayed by measuring the phosphorylation of histone H1. As expected, phosphatidylserine activated the enzyme, and the stimulation was further increased by the addition of calcium and/or diacylglycerol. At low concentration of free calcium (0.5-1..mu..M), ethanol (800 mM0 enhanced kinase C activity if the presence of phospholipid. similar results were observed in the absence of calcium. Double reciprocal plots of the data showed that ethanol increased the affinity of the enzyme for phosphatidylserine without affecting the V/sub max. The stimulation of kinase C activity by ethanol was not observed at high calcium concentrations. These experiments suggest that ethanol may activated protein kinase C at physiological levels of calcium by facilitating its transfer into the hydrophobic membrane environment.

  11. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  12. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus 1

    PubMed Central

    Legaz, María Estrella; Vicente, Carlos

    1983-01-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation. PMID:16662821

  13. Endogenous Inactivators of Arginase, l-Arginine Decarboxylase, and Agmatine Amidinohydrolase in Evernia prunastri Thallus.

    PubMed

    Legaz, M E; Vicente, C

    1983-02-01

    Arginase (EC 3.5.3.1), l-arginine decarboxylase (EC 4.1.1.19), and agmatine amidinohydrolase (EC 3.5.3.11) activities spontaneously decay in Evernia prunastri thalli incubated on 40 millimolar l-arginine used as inducer of the three enzymes if dithiothreitol is not added to the media. Lichen thalli accumulate both chloroatranorin and evernic acid in parallel to the loss of activity. These substances behave as inactivators of the enzymes at a range of concentrations between 2 and 20 micromolar, whereas several concentrations of dithiothreitol reverse, to some extent, the in vitro inactivation.

  14. Dopa decarboxylase activity of the living human brain

    SciTech Connect

    Gjedde, A.; Reith, J.; Dyve, S.; Leger, G.; Guttman, M.; Diksic, M.; Evans, A.; Kuwabara, H. )

    1991-04-01

    Monoaminergic neurons use dopa decarboxylase to form dopamine from L-3,4-dihydroxyphenylalanine (L-dopa). We measured regional dopa decarboxylase activity in brains of six healthy volunteers with 6-({sup 18}F)fluoro-L-dopa and positron emission tomography. We calculated the enzyme activity, relative to its Km, with a kinetic model that yielded the relative rate of conversion of 6-({sup 18}F)fluoro-L-dopa to ({sup 18}F)fluorodopamine. Regional values of relative dopa decarboxylase activity ranged from nil in occipital cortex to 1.9 h-1 in caudate nucleus and putamen, in agreement with values obtained in vitro.

  15. Three Distinct Glutamate Decarboxylase Genes in Vertebrates

    PubMed Central

    Grone, Brian P.; Maruska, Karen P.

    2016-01-01

    Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems. PMID:27461130

  16. Effect of Ion Binding in Palmitoyl-Oleoyl Phosphatidylserine Monolayers

    NASA Astrophysics Data System (ADS)

    Eckler, Matthew; Matysiak, Silvina

    2013-03-01

    Molecular dynamics simulations of palmitoyl-oleoyl phosphatidylserine (POPS) monolayers at the air-water interface were performed with different ionic strengths with the aim of determining the specific organization and dynamics of counterion binding events. Na + ions penetrated the monolayers into both the ester carbonyl and carboxylate regions of the phospholipids. The binding events increase with the addition of salt. Differences in lipid order parameter, headgroup orientation, and prevalence of inter- and intramolecular hydrogen bonding events between the amine group of the lipid and oxygen groups are observed depending on whether the Na + is binding near the carboxylate or ester region of the lipid. The observed changes are explained in terms of the salting-out effect.

  17. Can phosphatidylserine enhance atheroprotective activities of high-density lipoprotein?

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-01-01

    Although high-density lipoprotein (HDL) is well known to be protective against atherosclerotic cardiovascular disease, therapeutic interventions to raise HDL-cholesterol levels do not translate into reduction in cardiovascular risk. Due to the compositional complexity of HDL particles, molecular determinants of their atheroprotective function still remain to be clarified. Recent structural and functional data identify phospholipid as a major bioactive component of HDL. Such a role has recently been specifically evidenced for phosphatidylserine (PS); indeed, HDL content of PS displayed positive correlations with all metrics of HDL functionality assessed. This review summarizes current knowledge about HDL-associated PS; possible mechanisms for its atheroprotective role are discussed and potential applications of PS to HDL-based therapies are highlighted.

  18. Efficient thrombin generation requires molecular phosphatidylserine, not a membrane surface.

    PubMed

    Majumder, Rinku; Weinreb, Gabriel; Lentz, Barry R

    2005-12-27

    Activation of prothrombin to thrombin is catalyzed by a "prothrombinase" complex, traditionally viewed as factor X(a) (FX(a)) in complex with factor V(a) (FV(a)) on a phosphatidylserine (PS)-containing membrane surface, which is widely regarded as required for efficient activation. Activation involves cleavage of two peptide bonds and proceeds via one of two released intermediates or through "channeling" (activation without the release of an intermediate). We ask here whether the PS molecule itself and not the membrane surface is sufficient to produce the fully active human "prothrombinase" complex in solution. Both FX(a) and FV(a) bind soluble dicaproyl-phosphatidylserine (C6PS). In the presence of sufficient C6PS to saturate both FX(a) and FV(a2) (light isoform of FV(a)), these proteins form a tight (Kd = 0.6 +/- 0.09 nM at 37 degrees C) soluble complex. Complex assembly occurs well below the critical micelle concentration of C6PS, as established in the presence of the proteins by quasi-elastic light scattering and pyrene fluorescence. Ferguson analysis of native gels shows that the complex migrates with an apparent molecular mass only slightly larger than that expected for one FX(a) and one FV(a2), further ruling out complex assembly on C6PS micelles. Human prothrombin activation by this complex occurs at nearly the same overall rate (2.2 x 10(8) M(-1) s(-1)) and via the same reaction pathway (50-60% channeling, with the rest via the meizothrombin intermediate) as the activation catalyzed by a complex assembled on PS-containing membranes (4.4 x 10(8) M(-1) s(-1)). These results question the accepted role of PS membranes as providing "dimensionality reduction" and favor a regulatory role for platelet-membrane-exposed PS.

  19. Stimulation of erythrocyte phosphatidylserine exposure by mercury ions

    SciTech Connect

    Eisele, Kerstin; Lang, Philipp A.; Kempe, Daniela S.; Klarl, Barbara A.; Niemoeller, Olivier; Wieder, Thomas; Huber, Stephan M.; Duranton, Christophe; Lang, Florian . E-mail: florian.lang@uni-tuebingen.de

    2006-01-15

    The sequelae of mercury intoxication include induction of apoptosis. In nucleated cells, Hg{sup 2+}-induced apoptosis involves mitochondrial damage. The present study has been performed to elucidate effects of Hg{sup 2+} in erythrocytes which lack mitochondria but are able to undergo apoptosis-like alterations of the cell membrane. Previous studies have documented that activation of a Ca{sup 2+}-sensitive erythrocyte scramblase leads to exposure of phosphatidylserine at the erythrocyte surface, a typical feature of apoptotic cells. The erythrocyte scramblase is activated by osmotic shock, oxidative stress and/or energy depletion which increase cytosolic Ca{sup 2+} activity and/or activate a sphingomyelinase leading to formation of ceramide. Ceramide sensitizes the scramblase to Ca{sup 2+}. The present experiments explored the effect of Hg{sup 2+} ions on erythrocytes. Phosphatidylserine exposure after mercury treatment was estimated from annexin binding as determined in FACS analysis. Exposure to Hg{sup 2+} (1 {mu}M) indeed significantly increased annexin binding from 2.3 {+-} 0.5% (control condition) to 23 {+-} 6% (n = 6). This effect was paralleled by activation of a clotrimazole-sensitive K{sup +}-selective conductance as measured by patch-clamp recordings and by transient cell shrinkage. Further experiments revealed also an increase of ceramide formation by {approx}66% (n = 7) after challenge with mercury (1 {mu}M). In conclusion, mercury ions activate a clotrimazole-sensitive K{sup +}-selective conductance leading to transient cell shrinkage. Moreover, Hg{sup 2+} increases ceramide formation. The observed mechanisms could similarly participate in the triggering of apoptosis in nucleated cells by Hg{sup 2+}.

  20. Phospholipids chiral at phosphorus. Steric course of the reactions catalyzed by phosphatidylserine synthase from Escherichia coli and yeast

    SciTech Connect

    Raetz, C.R.H.; Carman, G.M.; Dowhan, W.; Jiang, R.T.; Waszkuc, W.; Loffredo, W.; Tsai, M.D.

    1987-06-30

    The steric courses of the reactions catalyzed by phosphatidylserine (PS) synthase from Escherichia coli and yeast were elucidated by the following procedure. R/sub P/ and S/sub P/ isomers of 1,2-dipalmitoyl-sn-glycero-3-(/sup 17/O, /sup 18/O)phosphoethanolamine ((/sup 17/O, /sup 18/O)DPPE) were synthesized and converted to (R/sub P/)- and (S/sub P/)-1,2-dipalmitoyl-sn-glycero-3-(/sup 16/O, /sup 17/O, /sup 18/O)DPPA), respectively, by incubating with phospholipase D. Condensation of (/sup 16/O, /sup 17/O, /sup 18/O)DPPA with cytidine 5'-monophosphomorpholidate in pyridine gave the desired substrate for PS synthase, (/sup 17/O, /sup 18/O)cytidine 5'-diphospho-1,2-dipalmitoyl-sn-glycerol ((/sup 17/O,/sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O)CDP-DPG), as a mixture of several isotopic and configurational isomers. Incubation of (/sup 17/O, /sup 18/O) CDP-DPG with a mixture of L-serine, PS synthase and PS decarboxylase gave (/sup 17/O, /sup 18/O)DPPE. The configuration and isotopic enrichments of the starting (/sup 17/O, /sup 18/O)DPPE and the product were analyzed by /sup 31/P NMR following trimethylsilylation of the DPPE. The results indicate that the reaction of E. coli PS synthase proceeds with retention of configuration at phosphorus, which suggests a two-step mechanism involving a phosphatidyl-enzyme intermediate, while the yeast PS synthase catalyzes the reaction with inversion of configuration, which suggests a single-displacement mechanism. Such results lend strong support to the ping-pong mechanism proposed for the E. coli enzyme and the sequential Bi-Bi mechanism proposed for the yeast enzyme, both based on previous isotopic exchange experiments.

  1. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow.

    PubMed

    Whyte, Claire S; Swieringa, Frauke; Mastenbroek, Tom G; Lionikiene, Ausra S; Lancé, Marcus D; van der Meijden, Paola E J; Heemskerk, Johan W M; Mutch, Nicola J

    2015-04-16

    The interaction of plasminogen with platelets and their localization during thrombus formation and fibrinolysis under flow are not defined. Using a novel model of whole blood thrombi, formed under flow, we examine dose-dependent fibrinolysis using fluorescence microscopy. Fibrinolysis was dependent upon flow and the balance between fibrin formation and plasminogen activation, with tissue plasminogen activator-mediated lysis being more efficient than urokinase plasminogen activator-mediated lysis. Fluorescently labeled plasminogen radiates from platelet aggregates at the base of thrombi, primarily in association with fibrin. Hirudin attenuates, but does not abolish plasminogen binding, denoting the importance of fibrin. Flow cytometry revealed that stimulation of platelets with thrombin/convulxin significantly increased the plasminogen signal associated with phosphatidylserine (PS)-exposing platelets. Binding was attenuated by tirofiban and Gly-Pro-Arg-Pro amide, confirming a role for fibrin in amplifying plasminogen binding to PS-exposing platelets. Confocal microscopy revealed direct binding of plasminogen and fibrinogen to different platelet subpopulations. Binding of plasminogen and fibrinogen co-localized with PAC-1 in the center of spread platelets. In contrast, PS-exposing platelets were PAC-1 negative, and bound plasminogen and fibrinogen in a protruding "cap." These data show that different subpopulations of platelets harbor plasminogen by diverse mechanisms and provide an essential scaffold for the accumulation of fibrinolytic proteins that mediate fibrinolysis under flow.

  2. Indolic uremic solutes enhance procoagulant activity of red blood cells through phosphatidylserine exposure and microparticle release.

    PubMed

    Gao, Chunyan; Ji, Shuting; Dong, Weijun; Qi, Yushan; Song, Wen; Cui, Debin; Shi, Jialan

    2015-10-28

    Increased accumulation of indolic uremic solutes in the blood of uremic patients contributes to the risk of thrombotic events. Red blood cells (RBCs), the most abundant blood cells in circulation, may be a privileged target of these solutes. However, the effect of uremic solutes indoxyl sulfate (IS) and indole-3-acetic acid (IAA) on procoagulant activity (PCA) of erythrocyte is unclear. Here, RBCs from healthy adults were treated with IS and IAA (mean and maximal concentrations reported in uremic patients). Phosphatidylserine (PS) exposure of RBCs and their microparticles (MPs) release were labeled with Alexa Fluor 488-lactadherin and detected by flow cytometer. Cytosolic Ca(2+) ([Ca(2+)]) with Fluo 3/AM was analyzed by flow cytometer. PCA was assessed by clotting time and purified coagulation complex assays. We found that PS exposure, MPs generation, and consequent PCA of RBCs at mean concentrations of IS and IAA enhanced and peaked in maximal uremic concentrations. Moreover, 128 nM lactadherin, a PS inhibitor, inhibited over 90% PCA of RBCs and RMPs. Eryptosis or damage, by indolic uremic solutes was due to, at least partially, the increase of cytosolic [Ca(2+)]. Our results suggest that RBC eryptosis in uremic solutes IS and IAA plays an important role in thrombus formation through releasing RMPs and exposing PS. Lactadherin acts as an efficient anticoagulant in this process.

  3. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  4. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  5. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia.

    PubMed

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-02-10

    Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce, resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a "do-not-eat-me" signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late postmalarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia.

  6. Beyond apoptosis: the mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells.

    PubMed

    Rysavy, Noel M; Shimoda, Lori M N; Dixon, Alyssa M; Speck, Mark; Stokes, Alexander J; Turner, Helen; Umemoto, Eric Y

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation.

  7. Interaction of dipalmitoyl phosphatidylserine with ethanol: induction of an ordered gel phase at room temperature.

    PubMed

    Wachtel, E; Bach, D; Miller, I R; Borochov, N

    2007-05-01

    Using differential scanning calorimetry and small and wide-angle X-ray diffraction, we show that, unlike the saturated phosphatidylcholines, for which ethanol induces chain interdigitation in the gel state, and unlike natural phosphatidylserine in which the gel state is almost unaffected by the addition of ethanol, dipalmitoyl phosphatidylserine (DPPS) assumes an ordered structure after incubation at room temperature in the presence of as little as 5% (v/v) ethanol. In the liquid crystalline state, a progressive decrease in the interbilayer spacing is observed as a function of ethanol concentration, similar to what is found for natural phosphatidylserine (PS) and 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS). The 0.37 molar fraction of cholesterol in the DPPS dispersion in the presence of 10% (v/v) ethanol, does not prevent the formation of the ordered gel.

  8. Beyond apoptosis: The mechanism and function of phosphatidylserine asymmetry in the membrane of activating mast cells

    PubMed Central

    Rysavy, Noel M.; Shimoda, Lori M. N.; Dixon, Alyssa M.; Speck, Mark; Stokes, Alexander J.; Turner, Helen; Umemoto, Eric Y.

    2014-01-01

    Loss of plasma membrane asymmetry is a hallmark of apoptosis, but lipid bilayer asymmetry and loss of asymmetry can contribute to numerous cellular functions and responses that are independent of programmed cell death. Exofacial exposure of phosphatidylserine occurs in lymphocytes and mast cells after antigenic stimulation and in the absence of apoptosis, suggesting that there is a functional requirement for phosphatidylserine exposure in immunocytes. In this review we examine current ideas as to the nature of this functional role in mast cell activation. Mechanistically, there is controversy as to the candidate proteins responsible for phosphatidylserine translocation from the internal to external leaflet, and here we review the candidacies of mast cell PLSCR1 and TMEM16F. Finally we examine the potential relationship between functionally important mast cell membrane perturbations and phosphatidylserine exposure during activation. PMID:25759911

  9. Use of Autoantigen-Loaded Phosphatidylserine-Liposomes to Arrest Autoimmunity in Type 1 Diabetes

    PubMed Central

    Pujol-Autonell, Irma; Serracant-Prat, Arnau; Cano-Sarabia, Mary; Ampudia, Rosa M.; Rodriguez-Fernandez, Silvia; Sanchez, Alex; Izquierdo, Cristina; Stratmann, Thomas; Puig-Domingo, Manuel; Maspoch, Daniel; Verdaguer, Joan; Vives-Pi, Marta

    2015-01-01

    Introduction The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes. Objective To generate a synthetic antigen-specific immunotherapy based on apoptosis features to specifically reestablish tolerance to β-cells in type 1 diabetes. Methods A central event on the surface of apoptotic cells is the exposure of phosphatidylserine, which provides the main signal for efferocytosis. Therefore, phosphatidylserine-liposomes loaded with insulin peptides were generated to simulate apoptotic cells recognition by antigen presenting cells. The effect of antigen-specific phosphatidylserine-liposomes in the reestablishment of peripheral tolerance was assessed in NOD mice, the spontaneous model of autoimmune diabetes. MHC class II-peptide tetramers were used to analyze the T cell specific response after treatment with phosphatidylserine-liposomes loaded with peptides. Results We have shown that phosphatidylserine-liposomes loaded with insulin peptides induce tolerogenic dendritic cells and impair autoreactive T cell proliferation. When administered to NOD mice, liposome signal was detected in the pancreas and draining lymph nodes. This immunotherapy arrests the autoimmune aggression, reduces the severity of insulitis and prevents type 1 diabetes by apoptotic mimicry. MHC class II tetramer analysis showed that peptide-loaded phosphatidylserine-liposomes expand antigen-specific CD4+ T cells in vivo. The administration of phosphatidylserine-free liposomes emphasizes the importance of phosphatidylserine in the modulation of antigen-specific CD4+ T cell expansion. Conclusions We conclude that this innovative immunotherapy based on the use of liposomes

  10. Effective binding of a phosphatidylserine-targeting antibody to Ebola virus infected cells and purified virions.

    PubMed

    Dowall, S D; Graham, V A; Corbin-Lickfett, K; Empig, C; Schlunegger, K; Bruce, C B; Easterbrook, L; Hewson, R

    2015-01-01

    Ebola virus is responsible for causing severe hemorrhagic fevers, with case fatality rates of up to 90%. Currently, no antiviral or vaccine is licensed against Ebola virus. A phosphatidylserine-targeting antibody (PGN401, bavituximab) has previously been shown to have broad-spectrum antiviral activity. Here, we demonstrate that PGN401 specifically binds to Ebola virus and recognizes infected cells. Our study provides the first evidence of phosphatidylserine-targeting antibody reactivity against Ebola virus.

  11. Isolation and characterization of a Chinese hamster ovary cell mutant with altered regulation of phosphatidylserine biosynthesis

    SciTech Connect

    Hasegawa, K.; Kuge, O.; Nishijima, M.; Akamatsu, Y. )

    1989-11-25

    We have screened approximately 10,000 colonies of Chinese hamster ovary (CHO) cells immobilized on polyester cloth for mutants defective in (14C)ethanolamine incorporation into trichloroacetic acid-precipitable phospholipids. In mutant 29, discovered in this way, the activities of enzymes involved in the CDP-ethanolamine pathway were normal; however, the intracellular pool of phosphorylethanolamine was elevated, being more than 10-fold that in the parental CHO-K1 cells. These results suggested that the reduced incorporation of (14C)ethanolamine into phosphatidylethanolamine in mutant 29 was due to dilution of phosphoryl-(14C)ethanolamine with the increased amount of cellular phosphorylethanolamine. Interestingly, the rate of incorporation of serine into phosphatidylserine and the content of phosphatidylserine in mutant 29 cells were increased 3-fold and 1.5-fold, respectively, compared with the parent cells. The overproduction of phosphorylethanolamine in mutant 29 cells was ascribed to the elevated level of phosphatidylserine biosynthesis, because ethanolamine is produced as a reaction product on the conversion of phosphatidylethanolamine to phosphatidylserine, which is catalyzed by phospholipid-serine base-exchange enzymes. Using both intact cells and the particulate fraction of a cell extract, phosphatidylserine biosynthesis in CHO-K1 cells was shown to be inhibited by phosphatidylserine itself, whereas that in mutant 29 cells was greatly resistant to the inhibition, compared with the parental cells. As a conclusion, it may be assumed that mutant 29 cells have a lesion in the regulation of phosphatidylserine biosynthesis by serine-exchange enzyme activity, which results in the overproduction of phosphatidylserine and phosphorylethanolamine as well.

  12. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors.

    PubMed

    Walker, Britta; Towhid, Syeda T; Schmid, Evi; Hoffmann, Sascha M; Abed, Majed; Münzer, Patrick; Vogel, Sebastian; Neis, Felix; Brucker, Sara; Gawaz, Meinrad; Borst, Oliver; Lang, Florian

    2014-02-01

    Glucose depletion of erythrocytes triggers suicidal erythrocyte death or eryptosis, which leads to cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptotic erythrocytes adhere to endothelial cells by a mechanism involving phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 at the endothelial cell membrane. Nothing has hitherto been known about an interaction between eryptotic erythrocytes and platelets, the decisive cells in primary hemostasis and major players in thrombotic vascular occlusion. The present study thus explored whether and how glucose-depleted erythrocytes adhere to platelets. To this end, adhesion of phosphatidylserine-exposing erythrocytes to platelets under flow conditions was examined in a flow chamber model at arterial shear rates. Platelets were immobilized on collagen and further stimulated with adenosine diphosphate (ADP, 10 μM) or thrombin (0.1 U/ml). As a result, a 48-h glucose depletion triggered phosphatidylserine translocation to the erythrocyte surface and augmented the adhesion of erythrocytes to immobilized platelets, an effect significantly increased upon platelet stimulation. Adherence of erythrocytes to platelets was blunted by coating of erythrocytic phosphatidylserine with annexin V or by neutralization of platelet phosphatidylserine receptors CXCL16 and CD36 with respective antibodies. In conclusion, glucose-depleted erythrocytes adhere to platelets. The adhesive properties of platelets are augmented by platelet activation. Erythrocyte adhesion to immobilized platelets requires phosphatidylserine at the erythrocyte surface and CXCL16 as well as CD36 expression on platelets. Thus platelet-mediated erythrocyte adhesion may foster thromboocclusive complications in diseases with stimulated phosphatidylserine exposure of erythrocytes.

  13. Mapping of glutamic acid decarboxylase (GAD) genes

    SciTech Connect

    Edelhoff, S.; Adler, D.A.; Disteche, C.M.; Grubin, C.E.; Karlsen, A.E.; Lernmark, A.; Foster, D. )

    1993-07-01

    Glutamic acid decarboxylase (GAD) catalyzes the synthesis of [gamma]-aminobutyric acid (GABA), which is known as a major inhibitory neurotransmitter in the central nervous system (CNS), but is also present outside the CNS. Recent studies showed that GAD is the major target of autoantibodies associated with the development of insulin-dependent diabetes mellitus and of the rare stiff man syndrome. Studies of GAD expression have demonstrated multiple transcripts, suggesting several isoforms of GAD. In this study, three different genes were mapped by in situ hybridization to both human and mouse chromosomes. The GAD1 gene was mapped to human chromosome 2q31 and to mouse chromosome 2D in a known region of conservation between human and mouse. GAD2, previously mapped to human chromosome 10p11.2-p12, was mapped to mouse chromosome 2A2-B, which identifies a new region of conservation between human and mouse chromosomes. A potential GAD3 transcript was mapped to human chromosome 22q13 and to mouse chromosome 15E in a known region of conservation between human and mouse. It is concluded that the GAD genes may form a family with as many as three related members. 30 refs., 5 figs.

  14. Localization of arginine decarboxylase in tobacco plants.

    PubMed

    Bortolotti, Cristina; Cordeiro, Alexandra; Alcázar, Rubén; Borrell, Antoni; Culiañez-Macià, Francisco A.; Tiburcio, Antonio F.; Altabella, Teresa

    2004-01-01

    The lack of knowledge about the tissue and subcellular distribution of polyamines (PAs) and the enzymes involved in their metabolism remains one of the main obstacles in our understanding of the biological role of PAs in plants. Arginine decarboxylase (ADC; EC 4.1.1.9) is a key enzyme in polyamine biosynthesis in plants. We have characterized a cDNA coding for ADC from Nicotiana tabacum L. cv. Petit Havana SR1. The deduced ADC polypeptide had 721 amino acids and a molecular mass of 77 kDa. The ADC cDNA was overexpressed in Escherichia coli, and the ADC fusion protein obtained was used to produce polyclonal antibodies. Using immunological methods, we demonstrate the presence of the ADC protein in all plant organs analysed: flowers, seeds, stems, leaves and roots. Moreover, depending on the tissue, the protein is localized in two different subcellular compartments, the nucleus and the chloroplast. In photosynthetic tissues, ADC is located mainly in chloroplasts, whereas in non-photosynthetic tissues the protein appears to be located in nuclei. The different compartmentation of ADC may be related to distinct functions of the protein in different cell types.

  15. A Porphodimethene Chemical Inhibitor of Uroporphyrinogen Decarboxylase

    PubMed Central

    Yip, Kenneth W.; Zhang, Zhan; Sakemura-Nakatsugawa, Noriko; Huang, Jui-Wen; Vu, Nhu Mai; Chiang, Yi-Kun; Lin, Chih-Lung; Kwan, Jennifer Y. Y.; Yue, Shijun; Jitkova, Yulia; To, Terence; Zahedi, Payam; Pai, Emil F.; Schimmer, Aaron D.; Lovell, Jonathan F.; Sessler, Jonathan L.; Liu, Fei-Fei

    2014-01-01

    Uroporphyrinogen decarboxylase (UROD) catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16), was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM), but did not affect porphobilinogen deaminase (at 62.5 µM), thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE) cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1). This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors. PMID:24587102

  16. Properties of oxaloacetate decarboxylase from Veillonella parvula.

    PubMed Central

    Ng, S K; Wong, M; Hamilton, I R

    1982-01-01

    Oxaloacetate decarboxylase was purified to 136-fold from the oral anaerobe Veillonella parvula. The purified enzyme was substantially free of contaminating enzymes or proteins. Maximum activity of the enzyme was exhibited at pH 7.0 for both carboxylation and decarboxylation. At this pH, the Km values for oxaloacetate and Mg2+ were at 0.06 and 0.17 mM, respectively, whereas the Km values for pyruvate, CO2, and Mg2+ were 3.3, 1.74, and 1.85 mM, respectively. Hyperbolic kinetics were observed with all of the aforementioned compounds. The Keq' was 2.13 X 10(-3) mM-1 favoring the decarboxylation of oxaloacetate. In the carboxylation step, avidin, acetyl coenzyme A, biotin, and coenzyme A were not required. ADP and NADH had no effect on either the carboxylation or decarboxylation step, but ATP inhibited the carboxylation step competitively and the decarboxylation step noncompetitively. These types of inhibition fitted well with the overall lactate metabolism of the non-carbohydrate-fermenting anaerobe. PMID:7076619

  17. Some Aspects of Yeast Anaerobic Metabolism Examined by the Inhibition of Pyruvate Decarboxylase

    NASA Astrophysics Data System (ADS)

    Martin, Earl V.

    1998-10-01

    Incubation of yeast cells with various sugars in aqueous alkaline phosphate solutions under anaerobic conditions results in the accumulation of pyruvate in the cell medium after short periods of up to 15 minutes. This accumulation of pyruvate as the end product of glycolysis results from the inhibition of pyruvate decarboxylase under the conditions. This pyruvate production can be readily measured in the cell-free medium by a spectrophotometric assay using lactic dehydrogenase and NADH. The production of pyruvate can be directly related to the ability of the yeast cells to metabolize particular carbon sources provided. Comparison of pyruvate production by yeast from a variety of common sugars, for example, provides students with a means to assess what sugars are readily utilized by this organism. An additional advantage for student laboratory studies is the availability of Sacchromyces cerevisiae at minimal cost as dry granules which are easily weighed and quickly activated.

  18. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  19. Xkr8 phospholipid scrambling complex in apoptotic phosphatidylserine exposure

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2016-01-01

    Xk-related protein (Xkr) 8, a protein carrying 10 transmembrane regions, is essential for scrambling phospholipids during apoptosis. Here, we found Xkr8 as a complex with basigin (BSG) or neuroplastin (NPTN), type I membrane proteins in the Ig superfamily. In BSG−/−NPTN−/− cells, Xkr8 localized intracellularly, and the apoptosis stimuli failed to expose phosphatidylserine, indicating that BSG and NPTN chaperone Xkr8 to the plasma membrane to execute its scrambling activity. Mutational analyses of BSG showed that the atypical glutamic acid in the transmembrane region is required for BSG’s association with Xkr8. In cells exposed to apoptotic signals, Xkr8 was cleaved at the C terminus and the Xkr8/BSG complex formed a higher-order complex, likely to be a heterotetramer consisting of two molecules of Xkr8 and two molecules of BSG or NPTN, suggesting that this cleavage causes the formation of a larger complex of Xkr8-BSG/NPTN for phospholipid scrambling. PMID:27503893

  20. Internalization of paramagnetic phosphatidylserine-containing liposomes by macrophages

    PubMed Central

    2012-01-01

    Background Inflammation plays an important role in many pathologies, including cardiovascular diseases, neurological conditions and oncology, and is considered an important predictor for disease progression and outcome. In vivo imaging of inflammatory cells will improve diagnosis and provide a read-out for therapy efficacy. Paramagnetic phosphatidylserine (PS)-containing liposomes were developed for magnetic resonance imaging (MRI) and confocal microscopy imaging of macrophages. These nanoparticles also provide a platform to combine imaging with targeted drug delivery. Results Incorporation of PS into liposomes did not affect liposomal size and morphology up to 12 mol% of PS. Liposomes containing 6 mol% of PS showed the highest uptake by murine macrophages, while only minor uptake was observed in endothelial cells. Uptake of liposomes containing 6 mol% of PS was dependent on the presence of Ca2+ and Mg2+. Furthermore, these 6 mol% PS-containing liposomes were mainly internalized into macrophages, whereas liposomes without PS only bound to the macrophage cell membrane. Conclusions Paramagnetic liposomes containing 6 mol% of PS for MR imaging of macrophages have been developed. In vitro these liposomes showed specific internalization by macrophages. Therefore, these liposomes might be suitable for in vivo visualization of macrophage content and for (visualization of) targeted drug delivery to inflammatory cells. PMID:22929153

  1. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection

    PubMed Central

    Moller-Tank, Sven; Maury, Wendy

    2014-01-01

    A variety of both RNA and DNA viruses envelop their capsids in a lipid bilayer. One of the more recently appreciated benefits this envelope is incorporation of phosphatidylserine (PtdSer). Surface exposure of PtdSer disguises viruses as apoptotic bodies; tricking cells into engulfing virions. This mechanism is termed apoptotic mimicry. Several PtdSer receptors have been identified to enhance virus entry and we have termed this group of proteins PtdSer-mediated virus entry enhancing receptors or PVEERs. These receptors enhance entry of a broad range of enveloped viruses. Internalization of virions by PVEERs provides a broad mechanism of entry with little investment by the virus itself and may allow some viruses to attach to cells, thereby making viral glycoprotein/cellular receptor interactions more probable. Alternatively, other viruses may rely entirely on PVEERs for internalization into endosomes. This review provides an overview of PtdSer receptors that serve as PVEERs and the biology behind virion/PVEER interaction. PMID:25277499

  2. Towards programming immune tolerance through geometric manipulation of phosphatidylserine.

    PubMed

    Roberts, Reid A; Eitas, Timothy K; Byrne, James D; Johnson, Brandon M; Short, Patrick J; McKinnon, Karen P; Reisdorf, Shannon; Luft, J Christopher; DeSimone, Joseph M; Ting, Jenny P

    2015-12-01

    The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research.

  3. Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine.

    PubMed Central

    Li, X; Schick, M

    2000-01-01

    We introduce a microscopic model of a lipid with a charged headgroup and flexible hydrophobic tails, a neutral solvent, and counter ions. Short-ranged interactions between hydrophilic and hydrophobic moieties are included as are the Coulomb interactions between charges. Further, we include a short-ranged interaction between charges and neutral solvent, which mimics the short-ranged, thermally averaged interaction between charges and water dipoles. We show that the model of the uncharged lipid displays the usual lyotropic phases as a function of the relative volume fraction of the headgroup. Choosing model parameters appropriate to dioleoylphosphatidylethanolamine in water, we obtain phase behavior that agrees well with experiment. Finally we choose a solvent concentration and temperature at which the uncharged lipid exhibits an inverted hexagonal phase and turn on the headgroup charge. The lipid system makes a transition from the inverted hexagonal to the lamellar phase, which is related to the increased waters of hydration correlated with the increased headgroup charge via the charge-solvent interaction. The polymorphism displayed upon variation of pH mimics that of the behavior of phosphatidylserine. PMID:10620271

  4. Phosphatidylserine is a critical modulator for Akt activation

    PubMed Central

    Huang, Bill X.; Akbar, Mohammed; Kevala, Karl

    2011-01-01

    Akt activation relies on the binding of Akt to phosphatidylinositol-3,4,5-trisphosphate (PIP3) in the membrane. Here, we demonstrate that Akt activation requires not only PIP3 but also membrane phosphatidylserine (PS). The extent of insulin-like growth factor–induced Akt activation and downstream signaling as well as cell survival under serum starvation conditions positively correlates with plasma membrane PS levels in living cells. PS promotes Akt-PIP3 binding, participates in PIP3-induced Akt interdomain conformational changes for T308 phosphorylation, and causes an open conformation that allows for S473 phosphorylation by mTORC2. PS interacts with specific residues in the pleckstrin homology (PH) and regulatory (RD) domains of Akt. Disruption of PS–Akt interaction by mutation impairs Akt signaling and increases susceptibility to cell death. These data identify a critical function of PS for Akt activation and cell survival, particularly in conditions with limited PIP3 availability. The novel molecular interaction mechanism for Akt activation suggests potential new targets for controlling Akt-dependent cell survival and proliferation. PMID:21402788

  5. Towards programming immune tolerance through geometric manipulation of phosphatidylserine

    PubMed Central

    Johnson, Brandon M.; Short, Patrick J.; McKinnon, Karen P.; Reisdorf, Shannon; Luft, J. Christopher; DeSimone, Joseph M.

    2016-01-01

    The possibility of engineering the immune system in a targeted fashion using biomaterials such as nanoparticles has made considerable headway in recent years. However, little is known as to how modulating the spatial presentation of a ligand augments downstream immune responses. In this report we show that geometric manipulation of phosphatidylserine (PS) through fabrication on rod-shaped PLGA nanoparticles robustly dampens inflammatory responses from innate immune cells while promoting T regulatory cell abundance by impeding effector T cell expansion. This response depends on the geometry of PS presentation as both PS liposomes and 1 micron cylindrical PS-PLGA particles are less potent signal inducers than 80 × 320 nm rod-shaped PS-PLGA particles for an equivalent dose of PS. We show that this immune tolerizing effect can be co-opted for therapeutic benefit in a mouse model of multiple sclerosis and an assay of organ rejection using a mixed lymphocyte reaction with primary human immune cells. These data provide evidence that geometric manipulation of a ligand via biomaterials may enable more efficient and tunable programming of cellular signaling networks for therapeutic benefit in a variety of disease states, including autoimmunity and organ rejection, and thus should be an active area of further research. PMID:26325217

  6. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity

    PubMed Central

    Monson, Christopher F.; Cong, Xiao; Robison, Aaron; Pace, Hudson P.; Liu, Chunming; Poyton, Matthew F.; Cremer, Paul S.

    2012-01-01

    Phosphatidylserine (PS) embedded within supported lipid bilayers (SLBs) was found to bind Cu2+ from solution with extraordinarily high affinity. In fact, the equilibrium dissociation constant was in the femtomolar range. The resulting complex formed in a 1:2 Cu2+ to PS ratio and quenches a broad spectrum of lipid-bound fluorophores in a reversible and pH-dependent fashion. At acidic pH values, the fluorophores were almost completely unquenched, while at basic pH values significant quenching (85–90%) was observed. The pH at which the transition occurred was dependent on the PS concentration and ranged from approximately pH 5 to 8. The quenching kinetics was slow at low Cu2+ concentrations and basic values pH (up to several hours), while the unquenching reaction was orders of magnitude more rapid upon lowering the pH. This was consistent with diffusion limited complex formation at basic pH, but rapid dissociation under acidic conditions. The tight binding of Cu2+ to PS may have physiological consequences under certain circumstances. PMID:22548290

  7. Phosphatidylserine immobilization of lentivirus for localized gene transfer

    PubMed Central

    Shin, Seungjin; Tuinstra, Hannah M.; Salvay, David M.; Shea, Lonnie D.

    2010-01-01

    Localized and efficient gene transfer can be promoted by exploiting the interaction between the vector and biomaterial. Regulation of the vector-material interaction was investigated by capitalizing on the binding between lentivirus and phosphatidylserine (PS), a component of the plasma membrane. PS was incorporated into microspheres composed of the copolymers of lactide and glycolide (PLG) using an emulsion process. Increasing the weight ratio of PS to PLG led to a greater incorporation of PS. Lentivirus, but not adenovirus, associated with PS-PLG microspheres, and binding was specific to PS relative to PLG alone or PLG modified with phosphatidylcholine. Immobilized lentivirus produced large numbers of transduced cells, and increased transgene expression relative to virus alone. Microspheres were subsequently formed into porous tissue engineering scaffolds, with retention of lentivirus binding. Lentivirus immobilization resulted in long-term and localized expression within a subcutaneously implanted scaffold. Microspheres were also formed into multiple channel bridges for implantation into the spinal cord. Lentivirus delivery from the bridge produced maximal expression at the implant and a gradient of expression rostrally and caudally. This specific binding of lentiviral vectors to biomaterial scaffolds may provide a versatile tool for numerous applications in regenerative medicine or within model systems that investigate tissue development. PMID:20206382

  8. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  9. Characterization of a second lysine decarboxylase isolated from Escherichia coli.

    PubMed Central

    Kikuchi, Y; Kojima, H; Tanaka, T; Takatsuka, Y; Kamio, Y

    1997-01-01

    We report here on the existence of a new gene for lysine decarboxylase in Escherichia coli K-12. The hybridization experiments with a cadA probe at low stringency showed that the homologous region of cadA was located in lambda Kohara phage clone 6F5 at 4.7 min on the E. coli chromosome. We cloned the 5.0-kb HindIII fragment of this phage clone and sequenced the homologous region of cadA. This region contained a 2,139-nucleotide open reading frame encoding a 713-amino-acid protein with a calculated molecular weight of 80,589. Overexpression of the protein and determination of its N-terminal amino acid sequence defined the translational start site of this gene. The deduced amino acid sequence showed 69.4% identity to that of lysine decarboxylase encoded by cadA at 93.7 min on the E. coli chromosome. In addition, the level of lysine decarboxylase activity increased in strains carrying multiple copies of the gene. Therefore, the gene encoding this lysine decarboxylase was designated Idc. Analysis of the lysine decarboxylase activity of strains containing cadA, ldc, or cadA ldc mutations indicated that ldc was weakly expressed under various conditions but is a functional gene in E. coli. PMID:9226257

  10. Role of phosphatidylserine in phospholipid flippase-mediated vesicle transport in Saccharomyces cerevisiae.

    PubMed

    Takeda, Miyoko; Yamagami, Kanako; Tanaka, Kazuma

    2014-03-01

    Phospholipid flippases translocate phospholipids from the exoplasmic to the cytoplasmic leaflet of cell membranes to generate and maintain phospholipid asymmetry. The genome of budding yeast encodes four heteromeric flippases (Drs2p, Dnf1p, Dnf2p, and Dnf3p), which associate with the Cdc50 family noncatalytic subunit, and one monomeric flippase Neo1p. Flippases have been implicated in the formation of transport vesicles, but the underlying mechanisms are largely unknown. We show here that overexpression of the phosphatidylserine synthase gene CHO1 suppresses defects in the endocytic recycling pathway in flippase mutants. This suppression seems to be mediated by increased cellular phosphatidylserine. Two models can be envisioned for the suppression mechanism: (i) phosphatidylserine in the cytoplasmic leaflet recruits proteins for vesicle formation with its negative charge, and (ii) phosphatidylserine flipping to the cytoplasmic leaflet induces membrane curvature that supports vesicle formation. In a mutant depleted for flippases, a phosphatidylserine probe GFP-Lact-C2 was still localized to endosomal membranes, suggesting that the mere presence of phosphatidylserine in the cytoplasmic leaflet is not enough for vesicle formation. The CHO1 overexpression did not suppress the growth defect in a mutant depleted or mutated for all flippases, suggesting that the suppression was dependent on flippase-mediated phospholipid flipping. Endocytic recycling was not blocked in a mutant lacking phosphatidylserine or depleted in phosphatidylethanolamine, suggesting that a specific phospholipid is not required for vesicle formation. These results suggest that flippase-dependent vesicle formation is mediated by phospholipid flipping, not by flipped phospholipids.

  11. Effect of phosphatidylserine on the basal and GABA-activated Cl- permeation across single nerve membranes from rabbit Deiters' neurons

    SciTech Connect

    Rapallino, M.V.; Cupello, A.; Mainardi, P.; Besio, G.; Loeb, C.W. )

    1990-06-01

    The permeation of labeled Cl- ions across single plasma membranes from Deiters' neurons has been studied in the presence of various concentrations of phosphatidylserine (PS) on their extracellular side. PS reduces significantly basal Cl- permeation only at 10(-5) M on the membrane exterior. No effect was found at other concentrations. GABA activable 36Cl- permeation is heavily reduced and almost abolished at 10(-11) - 10(-5) M phosphatidylserine. This exogenous phosphatidylserine effect is difficult to interpret in relation to the function of the endogenous phospholipid. However, it may be involved in the epileptogenic effect in vivo of exogenous phosphatidylserine administration to rats.

  12. Phosphatidylserine directly and positively regulates fusion of myoblasts into myotubes

    SciTech Connect

    Jeong, Jaemin; Conboy, Irina M.

    2011-10-14

    Highlights: {yields} PS broadly and persistently trans-locates to the outer leaflet of plasma membrane during myoblast fusion into myotubes. {yields} Robust myotubes are formed when PS liposomes are added exogenously. {yields} PS increases the width of de novo myotubes and the numbers of myonuclei, but not the myotube length. {yields} Annexin V or PS antibody inhibits myotube formation by masking exposed PS. -- Abstract: Cell membrane consists of various lipids such as phosphatidylserine (PS), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Among them, PS is a molecular marker of apoptosis, because it is located to the inner leaflet of plasma membrane generally but it is moved to the outer leaflet during programmed cell death. The process of apoptosis has been implicated in the fusion of muscle progenitor cells, myoblasts, into myotubes. However, it remained unclear whether PS regulates muscle cell differentiation directly. In this paper, localization of PS to the outer leaflet of plasma membrane in proliferating primary myoblasts and during fusion of these myoblasts into myotubes is validated using Annexin V. Moreover, we show the presence of PS clusters at the cell-cell contact points, suggesting the importance of membrane ruffling and PS exposure for the myogenic cell fusion. Confirming this conclusion, experimentally constructed PS, but not PC liposomes dramatically enhance the formation of myotubes from myoblasts, thus demonstrating a direct positive effect of PS on the muscle cell fusion. In contrast, myoblasts exposed to PC liposomes produce long myotubes with low numbers of myonuclei. Moreover, pharmacological masking of PS on the myoblast surface inhibits fusion of these cells into myotubes in a dose-dependent manner.

  13. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins.

    PubMed

    Maeda, Kenji; Anand, Kanchan; Chiapparino, Antonella; Kumar, Arun; Poletto, Mattia; Kaksonen, Marko; Gavin, Anne-Claude

    2013-09-12

    The internal organization of eukaryotic cells into functionally specialized, membrane-delimited organelles of unique composition implies a need for active, regulated lipid transport. Phosphatidylserine (PS), for example, is synthesized in the endoplasmic reticulum and then preferentially associates--through mechanisms not fully elucidated--with the inner leaflet of the plasma membrane. Lipids can travel via transport vesicles. Alternatively, several protein families known as lipid-transfer proteins (LTPs) can extract a variety of specific lipids from biological membranes and transport them, within a hydrophobic pocket, through aqueous phases. Here we report the development of an integrated approach that combines protein fractionation and lipidomics to characterize the LTP-lipid complexes formed in vivo. We applied the procedure to 13 LTPs in the yeast Saccharomyces cerevisiae: the six Sec14 homology (Sfh) proteins and the seven oxysterol-binding homology (Osh) proteins. We found that Osh6 and Osh7 have an unexpected specificity for PS. In vivo, they participate in PS homeostasis and the transport of this lipid to the plasma membrane. The structure of Osh6 bound to PS reveals unique features that are conserved among other metazoan oxysterol-binding proteins (OSBPs) and are required for PS recognition. Our findings represent the first direct evidence, to our knowledge, for the non-vesicular transfer of PS from its site of biosynthesis (the endoplasmic reticulum) to its site of biological activity (the plasma membrane). We describe a new subfamily of OSBPs, including human ORP5 and ORP10, that transfer PS and propose new mechanisms of action for a protein family that is involved in several human pathologies such as cancer, dyslipidaemia and metabolic syndrome.

  14. Phosphatidylserine liposomes can be tethered by caldesmon to actin filaments.

    PubMed Central

    Makuch, R; Zasada, A; Mabuchi, K; Krauze, K; Wang, C L; Dabrowska, R

    1997-01-01

    Rotary shadowing electron microscopy revealed that attachment of caldesmon to phosphatidylserine (PS) liposomes was mainly through its C-terminal end. To determine the PS-binding sites of caldesmon, we have made use of synthetic peptides covering the two C-terminal calmodulin binding sites and a recombinant fragment corresponding to the N-terminal end of the C-terminal domain that contains an amphipathic helix. Interactions of these peptides with the PS liposomes were studied by nondenaturing gel electrophoresis and fluorescence spectroscopy. The results showed that both calmodulin-binding sites of caldesmon were able to interact with PS. The affinity (Kd) of PS for these sites was in the range of 1.8-14.3 x 10(-5) M, compared to 0.69 x 10(-5) M for the whole caldesmon molecule. Fragments located outside of calmodulin-binding sites bound PS weakly (3.85 x 10(-4) M) and thus may contain a second class of lipid-binding sites. Binding of PS induced conformational changes in regions other than the C-terminal PS-binding sites, as evidenced by the changes in the susceptibility to proteolytic cleavages. Most significantly, the presence of caldesmon greatly increased binding of PS to F-actin, suggesting that caldesmon may tether PS liposomes to actin filaments. These results raise the possibility that caldesmon-lipid interactions could play a functionally important role in the assembly of contractile filaments near the membranes. Images FIGURE 2 FIGURE 4 FIGURE 6 PMID:9284327

  15. Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum.

    PubMed

    Shi, Liang; Qin, Lei; Xu, Yingjie; Ren, Ang; Fang, Xing; Mu, Dashuai; Tan, Qi; Zhao, Mingwen

    2012-05-01

    This study investigated the role of the mevalonate pyrophosphate decarboxylase gene in the triterpene biosynthetic pathway of Ganoderma lucidum. The mevalonate pyrophosphate decarboxylase gene (mvd) was isolated using a degenerate primer-PCR technique. An analysis of the Gl-mvd transcription profile revealed a positive correlation between the expression of the Gl-mvd gene and triterpene content changes in G. lucidum during development. Furthermore, a promoter deletion analysis was conducted in G. lucidum to investigate the promoter activity and the role of methyl jasmonate (MeJA) responsive elements in the mvd promoter under the MeJA elicitor. The overexpression of Gl-mvd increased triterpene accumulation compared with the wild-type strain and increased the expression of several genes involved in the triterpene biosynthetic pathway. The findings of this study suggest that mvd may play an important role in triterpene biosynthesis regulation. Moreover, there may be the interactions among the genes involved in the triterpene biosynthetic pathway in the G. lucidum. Additionally, this study provides an approach for improving triterpene content through the overexpression of a key gene.

  16. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis.

    PubMed

    Neale, A D; Scopes, R K; Wettenhall, R E; Hoogenraad, N J

    1987-02-25

    Pyruvate decarboxylase (EC 4.1.1.1), the penultimate enzyme in the alcoholic fermentation pathway of Zymomonas mobilis, converts pyruvate to acetaldehyde and carbon dioxide. The complete nucleotide sequence of the structural gene encoding pyruvate decarboxylase from Zymomonas mobilis has been determined. The coding region is 1704 nucleotides long and encodes a polypeptide of 567 amino acids with a calculated subunit mass of 60,790 daltons. The amino acid sequence was confirmed by comparison with the amino acid sequence of a selection of tryptic fragments of the enzyme. The amino acid composition obtained from the nucleotide sequence is in good agreement with that obtained experimentally.

  17. Comparison between activation of ornithine decarboxylase and histidine decarboxylase in rat stomach.

    PubMed

    Ding, X Q; Chen, D; Rosengren, E; Persson, L; Hakanson, R

    1996-03-01

    We compared the responses of rat stomach ornithine decarboxylase (ODC) and histidine decarboxylase (HDC) to food intake, oral treatment with antisecretagogues, NaHCO3, and hypertonic NaCl, antrectomy, intravenous infusion of gastrin-17, the selective cholecystokinin (CCK)-B/gastrin receptor antagonist L-365,260, and the somatostatin analogue RC-160. The serum gastrin concentration and oxyntic mucosal ODC and HDC activities were higher in freely fed rats than in fasted rats. Food intake in fasted rats raised the serum gastrin concentration and the ODC and HDC activities. Ranitidine, omeprazole, and NaHCO3 raised the serum gastrin concentration and activated ODC and HDC. Hypertonic NaCl raised the ODC activity 200-fold, whereas circulating gastrin and HDC activity were increased only moderately. Infusion of gastrin-17 activated HDC but not ODC. L-365,260 prevented the activation of HDC but not of ODC in response to food intake and treatment with omeprazole, NaHCO3, or hypertonic NaCl. Antrectomy prevented the food- and omeprazole-evoked rise in oxyntic mucosal HDC activity but not the rise in ODC activity. RC-160 suppressed HDC activity after food intake and treatment with omeprazole, NaHCO3, or NaCl. In contrast, RC-160 suppressed omeprazole- and NaHCO3-evoked ODC activation but not that evoked by food intake or NaCl. The results support the view that HDC in the oxyntic mucosa is activated by gastrin and suppressed by somatostatin. The induction of ODC is not mediated by gastrin; ODC activation appears to be related to acid inhibition per se or to mucosal maintenance and repair; somatostatin, or rather the lack of it, might contribute to the induction of ODC after acid blockade. The mechanism behind the activation of rat stomach ODC seems to differ depending on the type of stimulus.

  18. The dissimilar effect of diacylglycerols on Ca(2+)-induced phosphatidylserine vesicle fusion.

    PubMed Central

    Sánchez-Migallón, M P; Aranda, F J; Gómez-Fernández, J C

    1995-01-01

    We have studied the effect of physiological concentrations of different diacylglycerols on Ca(2+)-induced fusion between phosphatidylserine vesicles. We monitored vesicle fusion as mixing of membrane lipids under conditions where the limiting factor was the aggregation and also in conditions where this aggregation was not the limiting factor. We found that diacylglycerols have a different modulating effect on the Ca(2+)-induced fusion: i) depending on their interfacial conformation, so that 1,2-isomers of diacylglycerols containing unsaturated or short saturated acyl chains stimulated fusion and their 1,3-isomers did not, and ii) depending on their specific type of bilayer interior perturbation, so that diacylglycerols containing unsaturated or short chain saturated acyl chains stimulated fusion but those containing long-chain saturated acyl chains did not. These requirements resembled those required for the diacylglycerol activation of protein kinase C, suggesting that diacylglycerol acts in both the specific activation of this enzyme and the induction of membrane fusion through the same perturbation of lipid structure. We found that polylysine affected the stimulatory role of 1,2-dioleoylglycerol differently, depending on whether aggregation was the limiting factor of fusion. When we studied the effect of very low concentrations of diacylglycerols on the bulk structural properties of phosphatidylserine, we found that they neither significantly perturbed the thermotropic transitions of phosphatidylserine nor affected the interaction of Ca2+ with the phosphate group of phosphatidylserine. The underlying mechanism of fusion between phosphatidylserine vesicles is discussed. PMID:7696508

  19. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    PubMed

    Wever, Kimberley E; Wagener, Frank A D T G; Frielink, Cathelijne; Boerman, Otto C; Scheffer, Gert J; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  20. Differential roles of tissue factor and phosphatidylserine in activation of coagulation.

    PubMed

    Spronk, Henri M H; ten Cate, Hugo; van der Meijden, Paola E J

    2014-05-01

    It has been suggested that the main physiological trigger of coagulation, tissue factor, possesses limited procoagulant activity and occurs in an inactive or so-called encrypted state. For the conversion of encrypted into decrypted tissue factor with sufficient procoagulant activity, four distinct models have been proposed: 1; dimer formation, 2; lipid rafts, 3; disulfide bonds, and 4; phosphatidylserine exposure. Pro and cons can be given for each of these mechanisms of tissue factor encryption/decryption, however, it seems most likely that two or more mechanisms act together in activating the procoagulant activity. The exposure of phosphatidylserine in the outer layer of cell membranes supports coagulation through enhanced formation of the tenase (factors IXa, VIIIa and X) and prothrombinase (factors Xa, Va and prothrombin) complexes. The proposed role for phosphatidylserine in decryption of tissue factor could contribute to the correct orientation of the tissue factor - factor VII complex. Overall, the contribution of both tissue factor and phosphatidylserine to coagulation seems distinct with tissue factor being the physiological activator and phosphatidylserine the driving force of propagation of coagulation.

  1. Chloride channels are necessary for full platelet phosphatidylserine exposure and procoagulant activity.

    PubMed

    Harper, M T; Poole, A W

    2013-12-19

    Platelets enhance thrombin generation at sites of vascular injury by exposing phosphatidylserine during necrosis-like cell death. Anoctamin 6 (Ano6) is required for Ca(2+)-dependent phosphatidylserine exposure and is defective in patients with Scott syndrome, a rare bleeding disorder. Ano6 may also form Cl(-) channels, though the role of Cl(-) fluxes in platelet procoagulant activity has not been explored. We found that Cl(-) channel blockers or removal of extracellular Cl(-) inhibited agonist-induced phosphatidylserine exposure. However, this was not due to direct inhibition of Ca(2+)-dependent scrambling since Ca(2+) ionophore-induced phosphatidylserine exposure was normal. This implies that the role of Ano6 in Ca(2+-)dependent PS exposure is likely to differ from any putative function of Ano6 as a Cl(-) channel. Instead, Cl(-) channel blockade inhibited agonist-induced Ca(2+) entry. Importantly, Cl(-) channel blockers also prevented agonist-induced membrane hyperpolarization, resulting in depolarization. We propose that Cl(-) entry through Cl(-) channels is required for this hyperpolarization, maintaining the driving force for Ca(2+) entry and triggering full phosphatidylserine exposure. This demonstrates a novel role for Cl(-) channels in controlling platelet death and procoagulant activity.

  2. Accumulate repeat accumulate codes

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.

  3. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes.

    PubMed

    Fadok, V A; Bratton, D L; Frasch, S C; Warner, M L; Henson, P M

    1998-07-01

    Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.

  4. Introducing biobased ionic liquids as the nonaqueous media for enzymatic synthesis of phosphatidylserine.

    PubMed

    Bi, Yan-Hong; Duan, Zhang-Qun; Li, Xiang-Qian; Wang, Zhao-Yu; Zhao, Xi-Rong

    2015-02-11

    Biobased ionic liquids with cholinium as the cation and amino acids as the anions, which could be prepared from renewable biomaterials by simple neutralization reactions, have recently been described as promising and green solvents. Herein, they were successfully used as the reaction media for enzyme-mediated transphosphatidylation of phosphatidylcholine with l-serine for phosphatidylserine synthesis for the first time. Our results indicated that the highest phosphatidylserine yield of 86.5% was achieved. Moreover, 75% original activity of the enzyme was maintained after being used for 10 batches. The present work could be considered an alternative enzymatic strategy for preparing phosphatidylserine. Additionally, the excellent results make the biobased ionic liquids more promising candidates for use as environmentally friendly solvents in biocatalysis fields.

  5. Characterization of osseointegrative phosphatidylserine and cholesterol orthopaedic implant coatings

    NASA Astrophysics Data System (ADS)

    Rodgers, William Paul, III

    Total joint arthroplasties are one of the most successful surgeries available today for improving patients' quality of life. Increasing demand is driven largely by an ageing population and an increased occurrence of obesity. Current patient options have significant shortcomings. Nearly a third of patients require a revision surgery before the implant is 15 years old, and those who have revision surgeries are at an increased risk of requiring additional reoperations. A recent implant technology that has shown to be effective at improving bone to implant integration is the use of phosphatidylserine (DOPS) coatings. These coatings are challenging to analyze and measure due to their highly dynamic, soft, rough, thick, and optically diffractive properties. Previous work had difficulty investigating pertinent parameters for these coating's development due in large part to a lack of available analytical techniques and a dearth of understanding of the micro- and nano-structural configuration of the coatings. This work addresses the lack of techniques available for use with DOPS coatings through the development of original methods of measurement, including the use of scanning white light interferometry and nanoindentation. These techniques were then applied for the characterization of DOPS coatings and the study of effects from several factors: 1. influence of adding calcium and cholesterol to the coatings, 2. effects of composition and roughness on aqueous contact angles, and 3. impact of ageing and storage environment on the coatings. Using these newly developed, highly repeatable quantitative analysis methods, this study sheds light on the microstructural configuration of the DOPS coatings and elucidates previously unexplained phenomena of the coatings. Cholesterol was found to supersaturate in the coatings at high concentration and phase separate into an anhydrous crystalline form, while lower concentrations were found to significantly harden the coatings. Morphological

  6. Temperature dependence of calcium-induced fusion of sonicated phosphatidylserine vesicles.

    PubMed Central

    Sun, S T; Day, E P; Ho, J T

    1978-01-01

    We have measured the temperature dependence calcium-induced fusion of sonicated phosphatidylserine vesicles. The vesicles were incubated in the presence of calcium at a specified temperature until the resulting aggregation or fusion process had gone to completion. EDTA was then added and the resulting final size of the vesicle population was measured by using dynamic light scattering. This final size was plotted against incubation temperature to show the temperature dependence of calcium-induced fusion. This curve has a peak near 11 degrees C which may be associated with the phase transition of the sonicated phosphatidylserine vesicles in the presence of calcium prior to the aggregation or fusion process. PMID:279918

  7. A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine.

    PubMed Central

    Epand, R M; Bach, D; Epand, R F; Borochov, N; Wachtel, E

    2001-01-01

    Phosphatidylserine and cholesterol are two major components of the cytoplasmic leaflet of the plasma membrane. The arrangement of cholesterol is markedly affected by the presence of phosphatidylserine in model membranes. At relatively low mol fractions of cholesterol in phosphatidylserine, compared with other phospholipids, cholesterol crystallites are formed that exhibit both thermotropic phase transitions as well as diffraction of x-rays. In the present study we have observed and characterized a novel thermotropic transition occurring in mixtures of phosphatidylserine and cholesterol. This new transition is observed at 96 degrees C by differential scanning calorimetry (DSC), using a heating scan rate of 2 degrees C/min. Observation of the transition requires that the hydrated lipid mixture be incubated for several days, depending on the temperature of incubation. The rate of formation of the material exhibiting a transition at 96 degrees C is more rapid at higher incubation temperatures. At 37 degrees C the half-time of conversion is approximately 7 days. Concomitant with the appearance of the 96 degrees C peak the previously known transitions of cholesterol, occurring at approximately 38 degrees C and 75 degrees C on heating scans of freshly prepared suspensions, disappear. These two transitions correspond to the polymorphic transition of anhydrous cholesterol and to the dehydration of cholesterol monohydrate, respectively. The loss of the 75 degrees C peak takes a longer time than that of the 38 degrees C peak, indicating that anhydrous cholesterol first gets hydrated to the monohydrate form exhibiting a transition at 75 degrees C and subsequently is converted by additional time of incubation to an altered form of the monohydrate, showing a phase transition at 96 degrees C. After several weeks of incubation at 37 degrees C, only the form with a phase transition at 96 degrees C remains. If such a sample undergoes several successive heating and cooling cycles

  8. Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia

    PubMed Central

    Fernandez-Arias, Cristina; Rivera-Correa, Juan; Gallego-Delgado, Julio; Rudlaff, Rachel; Fernandez, Clemente; Roussel, Camille; Götz, Anton; Gonzalez, Sandra; Mohanty, Akshaya; Mohanty, Sanjib; Wassmer, Samuel; Buffet, Pierre; Ndour, Papa Alioune; Rodriguez, Ana

    2016-01-01

    Summary Plasmodium species, the parasitic agents of malaria, invade erythrocytes to reproduce resulting in erythrocyte loss. However, a greater loss is caused by the elimination of uninfected erythrocytes, sometimes long after infection has been cleared. Using a mouse model, we found that Plasmodium infection induces the generation of anti-self antibodies that bind to the surface of uninfected erythrocytes from infected, but not uninfected, mice. These antibodies recognize phosphatidylserine, which is exposed on the surface of a fraction of uninfected erythrocytes during malaria. We find that phosphatidylserine-exposing erythrocytes are reticulocytes expressing high levels of CD47, a ‘do-not-eat-me’ signal, but the binding of anti-phosphatidylserine antibodies mediates their phagocytosis, contributing to anemia. In human patients with late post-malarial anemia, we found a strong inverse correlation between the levels of anti-phosphatidylserine antibodies and plasma hemoglobin, suggesting a similar role in humans. Inhibition of this pathway may be exploited for treating malarial anemia. PMID:26867178

  9. Transient receptor potential channels function as a coincidence signal detector mediating phosphatidylserine exposure.

    PubMed

    Harper, Matthew T; Londoño, Juan E Camacho; Quick, Kathryn; Londoño, Julia Camacho; Flockerzi, Veit; Philipp, Stephan E; Birnbaumer, Lutz; Freichel, Marc; Poole, Alastair W

    2013-06-25

    Blood platelet aggregation must be tightly controlled to promote clotting at injury sites but avoid inappropriate occlusion of blood vessels. Thrombin, which cleaves and activates Gq-coupled protease-activated receptors, and collagen-related peptide, which activates the receptor glycoprotein VI, stimulate platelets to aggregate and form thrombi. Coincident activation by these two agonists synergizes, causing the exposure of phosphatidylserine on the cell surface, which is a marker of cell death in many cell types. Phosphatidylserine exposure is also essential to produce additional thrombin on platelet surfaces, which contributes to thrombosis. We found that activation of either thrombin receptors or glycoprotein VI alone produced a calcium signal that was largely dependent only on store-operated Ca(2+) entry. In contrast, experiments with platelets from knockout mice showed that the presence of both ligands activated nonselective cation channels of the transient receptor potential C (TRPC) family, TRPC3 and TRPC6. These channels principally allowed entry of Na(+), which coupled to reverse-mode Na(+)/Ca(2+) exchange to allow calcium influx and thereby contribute to Ca(2+) signaling and phosphatidylserine exposure. Thus, TRPC channels act as coincidence detectors to coordinate responses to multiple signals in cells, thereby indirectly mediating in platelets an increase in intracellular calcium concentrations and exposure of prothrombotic phosphatidylserine.

  10. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor

    SciTech Connect

    Nakahashi-Oda, Chigusa; Tahara-Hanaoka, Satoko; Honda, Shin-ichiro; Shibuya, Kazuko; Shibuya, Akira

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer CD300a is a new phosphatidylserine receptor expressed on myeloid cells. Black-Right-Pointing-Pointer Phosphatidylserine delivers a signal for recruitment of SHP-1 by CD300a in mast cells. Black-Right-Pointing-Pointer The CD300a/phosphatidylserine interaction is blocked by MFG-E8 or anti-CD300a antibody. -- Abstract: CD300a is a member of CD300 family molecules consisting of seven genes on human chromosome 17 and nine genes in mouse chromosome 11. CD300a has a long cytoplasmic region containing the consensus immunoreceptor tyrosine-based inhibitory motif (ITIM) sequence. Upon crosslinking with antibodies against CD300a, CD300a mediates an inhibitory signal in myeloid cells. However, the ligand for CD300a has not been identified and the physiological role of CD300a remained unclear. Here, we demonstrate that the chimeric fusion protein of CD300a extracellular domain with the Fc portion of human IgG specifically bound phosphatidylserine (PS), which is exposed on the outer leaflet of the plasma membrane of apoptotic cells. PS binding to CD300a induced SHP-1 recruitment by CD300a in mast cells in response to LPS. These results indicated that CD300a is a new PS receptor.

  11. In vitro uptake of apoptotic body mimicking phosphatidylserine-quantum dot micelles by monocytic cell line

    NASA Astrophysics Data System (ADS)

    Maiseyeu, Andrei; Bagalkot, Vaishali

    2014-04-01

    A new quantum dot (QD) PEGylated micelle laced with phosphatidylserine (PS) for specific scavenger receptor-mediated uptake by macrophages is reported. The size and surface chemistry of PS-QD micelles were characterized by standard methods and the effects of their physicochemical properties on specific targeting and uptake were comprehensively studied in a monocytic cell line (J774A.1).

  12. Peptidic targeting of phosphatidylserine for the MRI detection of apoptosis in atherosclerotic plaques.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Lancelot, Eric; Ballet, Sébastien; Murariu, Oltea; Rousseaux, Olivier; Port, Marc; Vander Elst, Luce; Corot, Claire; Muller, Robert N

    2009-01-01

    Molecular and cellular imaging of atherosclerosis has garnered more interest at the beginning of the 21st century, with aims to image in vivo biological properties of plaque lesions. Apoptosis seems an attractive target for the diagnosis of vulnerable atherosclerotic plaques prone to a thrombotic event. The aim of the present work was to screen for apoptosis peptide binders by phage display with the final purpose to detect apoptotic cells in atherosclerotic plaques by magnetic resonance imaging (MRI). A phosphatidylserine-specific peptide identified by phage display was thus used to design an MRI contrast agent (CA), which was evaluated as a potential in vivo reporter of apoptotic cells. A library of linear 6-mer random peptides was screened in vitro against immobilized phosphatidylserine. Phage DNA was isolated and sequenced, and the affinity of peptides for phosphatidylserine was evaluated by enzyme-linked immunosorbent assay. The phosphatidylserine-specific peptide and its scrambled homologue were attached to a linker and conjugated to DTPA-isothiocyanate. The products were purified by dialysis and by column chromatography and complexed with gadolinium chloride. After their evaluation using apoptotic cells and a mouse model of liver apoptosis, the phosphatidylserine-targeted CA was used to image atherosclerotic lesions on ApoE(-/-) transgenic mice. Apoptotic cells were detected on liver and aorta specimens by the immunostaining of phosphatidylserine and of active caspase-3. Sequencing of the phage genome highlighted nine different peptides. Their alignment with amino acid sequences of relevant proteins revealed a frequent homology with Ca2+ channels, reminiscent of the function of annexins. Alignment with molecules involved in apoptosis provides a direct correlation between peptide selection and utility. The in vivo MRI studies performed at 4.7 T provide proof of concept that apoptosis-related pathologies could be diagnosed by MRI with a low molecular weight

  13. Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores.

    PubMed

    Gill, Rishi I S; Ellis, Brian E; Isman, Murray B

    2003-04-01

    The presence of amines and their derivatives in plant tissues is known to influence insect feeding and reproduction. The enzyme tryptophan decarboxylase (TDC) catalyzes the decarboxylation of tryptophan to tryptamine, which is both a bioactive amine and a precursor of other indole derivatives. Transgenic poplar and tobacco plants ectopically expressing TDC1 accumulated elevated levels of tryptamine without affecting plant growth and development. This accumulation was consistently associated with adverse effects on feeding behavior and physiology of Malacosoma disstria Hub. (forest tent caterpillar, FTC) and Manduca sexta L. (tobacco hornworm, THW). Behavior studies with FTC and THW larvae showed that acceptability of the leaf tissue to larvae was inversely related to foliar tryptamine levels. Physiological studies with FTC and THW larvae showed that consumption of leaf tissue from the transgenic lines is deleterious to larvae growth, apparently due to a postingestive mechanism. Thus, ectopic expression of TDC1 can allow sufficient tryptamine to accumulate in poplar and tobacco leaf tissue to suppress significantly the growth of insect pests that normally feed on these plants.

  14. Specific membrane binding of factor VIII is mediated by O-phospho-L-serine, a moiety of phosphatidylserine.

    PubMed

    Gilbert, G E; Drinkwater, D

    1993-09-21

    Phosphatidylserine, a negatively charged lipid, is exposed on the platelet membrane following cell stimulation, correlating with the expression of factor VIII receptors. We have explored the importance of the negative electrostatic potential of phosphatidylserine vs chemical moieties of phosphatidylserine for specific membrane binding of factor VIII. Fluorescein-labeled factor VIII bound to membranes containing 15% phosphatidic acid, a negatively charged phospholipid, with low affinity compared to phosphatidylserine-containing membranes. Binding was not specific as it was inhibited by other proteins in plasma. Factor VIII bound to membranes containing 10% phosphatidylserine in spite of a varying net charge provided by 0-15% stearylamine, a positively charged lipid. The soluble phosphatidylserine moiety, O-phospho-L-serine, inhibited factor VIII binding to phosphatidylserine-containing membranes with a Ki of 20 mM, but the stereoisomer, O-phospho-D-serine, was 5-fold less effective. Furthermore, binding of factor VIII to membranes containing synthetic phosphatidyl-D-serine was 5-fold less than binding to membranes containing phosphatidyl-L-serine. Membranes containing synthetic phosphatidyl-L-homoserine, differing from phosphatidylserine by a single methylene, supported high-affinity binding, but it was not specific as factor VIII was displaced by other plasma proteins. O-Phospho-L-serine also inhibited the binding of factor VIII to platelet-derived microparticles with a Ki of 20 mM, and the stereoisomer was 4-fold less effective. These results indicate that membrane binding of factor VIII is mediated by a stereoselective recognition O-phospho-L-serine of phosphatidylserine and that negative electrostatic potential is of lesser importance.

  15. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  16. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    NASA Astrophysics Data System (ADS)

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C., III; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E.

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis.

  17. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a “fuse-me” signal

    PubMed Central

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-01-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2-deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an “eat-me” signal, we propose that PS-Stab2 binding is required for sensing of a “fuse-me” signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304] PMID:27174501

  18. Novel function of stabilin-2 in myoblast fusion: the recognition of extracellular phosphatidylserine as a "fuse-me" signal.

    PubMed

    Kim, Go-Woon; Park, Seung-Yoon; Kim, In-San

    2016-06-01

    Myoblast fusion is important for skeletal muscle formation. Even though the knowledge of myoblast fusion mechanism has accumulated over the years, the initial signal of fusion is yet to be elucidated. Our study reveals the novel function of a phosphatidylserine (PS) receptor, stabilin-2 (Stab2), in the modulation of myoblast fusion, through the recognition of PS exposed on myoblasts. During differentiation of myoblasts, Stab2 expression is higher than other PS receptors and is controlled by calcineurin/NFAT signaling on myoblasts. The forced expression of Stab2 results in an increase in myoblast fusion; genetic ablation of Stab2 in mice causes a reduction in muscle size, as a result of impaired myoblast fusion. After muscle injury, muscle regeneration is impaired in Stab2- deficient mice, resulting in small myofibers with fewer nuclei, which is due to reduction of fusion rather than defection of myoblast differentiation. The fusion-promoting role of Stab2 is dependent on its PS-binding motif, and the blocking of PS-Stab2 binding impairs cell-cell fusion on myoblasts. Given our previous finding that Stab2 recognizes PS exposed on apoptotic cells for sensing as an "eat-me" signal, we propose that PS-Stab2 binding is required for sensing of a "fuse-me" signal as the initial signal of myoblast fusion. [BMB Reports 2016; 49(6): 303-304].

  19. p85α recruitment by the CD300f phosphatidylserine receptor mediates apoptotic cell clearance required for autoimmunity suppression

    PubMed Central

    Tian, Linjie; Choi, Seung-Chul; Murakami, Yousuke; Allen, Joselyn; Morse, Herbert C.; Qi, Chen-Feng; Krzewski, Konrad; Coligan, John E

    2014-01-01

    Apoptotic cell (AC) clearance is essential for immune homeostasis. Here we show that mouse CD300f (CLM-1) recognizes outer membrane-exposed phosphatidylserine, and regulates the phagocytosis of ACs. CD300f accumulates in phagocytic cups at AC contact sites. Phosphorylation within CD300f cytoplasmic tail tyrosine-based motifs initiates signals that positively or negatively regulate AC phagocytosis. Y276 phosphorylation is necessary for enhanced CD300f-mediated phagocytosis through the recruitment of the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K). CD300f-PI3K association leads to activation of downstream Rac/Cdc42 GTPase and mediates changes of F-actin that drive AC engulfment. Importantly, primary macrophages from CD300f-deficient mice have impaired phagocytosis of ACs. The biological consequence of CD300f deficiency is predisposition to autoimmune disease development, as FcγRIIB-deficient mice develop a systemic lupus erythematosus-like disease at a markedly accelerated rate if CD300f is absent. In this report we identify the mechanism and role of CD300f in AC phagocytosis and maintenance of immune homeostasis. PMID:24477292

  20. Ornithine decarboxylase activity and: [125I]iododeoxyuridine incorporation in rat prostate.

    PubMed Central

    Fuller, D J; Donaldson, L J; Thomas, G H

    1975-01-01

    The relationship between ornithine decarboxylase activity and [125I]iododexyuridine incorporation was studied in prostates from castrated rats (aged 5, 26 and 80 weeks) injected daily with testosterone for up to 10 days. The results suggest that ornithine decarboxylase activity is a parameter of secretory activity, rather than growth, in the ventral prostate. In the dorsolateral prostate, ornithine decarboxylase activity tends to parallel [125I]iododeoxyuridine incorporation. PMID:1212206

  1. Accumulate-Repeat-Accumulate-Accumulate-Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Sam; Thorpe, Jeremy

    2004-01-01

    Inspired by recently proposed Accumulate-Repeat-Accumulate (ARA) codes [15], in this paper we propose a channel coding scheme called Accumulate-Repeat-Accumulate-Accumulate (ARAA) codes. These codes can be seen as serial turbo-like codes or as a subclass of Low Density Parity Check (LDPC) codes, and they have a projected graph or protograph representation; this allows for a high-speed iterative decoder implementation using belief propagation. An ARAA code can be viewed as a precoded Repeat-and-Accumulate (RA) code with puncturing in concatenation with another accumulator, where simply an accumulator is chosen as the precoder; thus ARAA codes have a very fast encoder structure. Using density evolution on their associated protographs, we find examples of rate-lJ2 ARAA codes with maximum variable node degree 4 for which a minimum bit-SNR as low as 0.21 dB from the channel capacity limit can be achieved as the block size goes to infinity. Such a low threshold cannot be achieved by RA or Irregular RA (IRA) or unstructured irregular LDPC codes with the same constraint on the maximum variable node degree. Furthermore by puncturing the accumulators we can construct families of higher rate ARAA codes with thresholds that stay close to their respective channel capacity thresholds uniformly. Iterative decoding simulation results show comparable performance with the best-known LDPC codes but with very low error floor even at moderate block sizes.

  2. Identification of novel binding partners (annexins) for the cell death signal phosphatidylserine and definition of their recognition motif.

    PubMed

    Rosenbaum, Sabrina; Kreft, Sandra; Etich, Julia; Frie, Christian; Stermann, Jacek; Grskovic, Ivan; Frey, Benjamin; Mielenz, Dirk; Pöschl, Ernst; Gaipl, Udo; Paulsson, Mats; Brachvogel, Bent

    2011-02-18

    Identification and clearance of apoptotic cells prevents the release of harmful cell contents thereby suppressing inflammation and autoimmune reactions. Highly conserved annexins may modulate the phagocytic cell removal by acting as bridging molecules to phosphatidylserine, a characteristic phagocytosis signal of dying cells. In this study five members of the structurally and functionally related annexin family were characterized for their capacity to interact with phosphatidylserine and dying cells. The results showed that AnxA3, AnxA4, AnxA13, and the already described interaction partner AnxA5 can bind to phosphatidylserine and apoptotic cells, whereas AnxA8 lacks this ability. Sequence alignment experiments located the essential amino residues for the recognition of surface exposed phosphatidylserine within the calcium binding motifs common to all annexins. These amino acid residues were missing in the evolutionary young AnxA8 and when they were reintroduced by site directed mutagenesis AnxA8 gains the capability to interact with phosphatidylserine containing liposomes and apoptotic cells. By defining the evolutionary conserved amino acid residues mediating phosphatidylserine binding of annexins we show that the recognition of dying cells represent a common feature of most annexins. Hence, the individual annexin repertoire bound to the cell surface of dying cells may fulfil opsonin-like function in cell death recognition.

  3. Effects of diacylglycerols and Ca2+ on structure of phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1994-01-01

    The combined effects of the diacylglycerols (DAGs) with the various acyl chains and Ca2+ on the structure of phosphatidylcholine/phosphatidylserine (4:1 mole/mole) bilayers were studied using 2H- and 31P NMR. The following DAG- and Ca(2+)-induced bilayer perturbations were identified. 1) Increased tendency to form nonbilayer lipid phases was induced by diolein or stearoylarachidonoylglycerol, and was synergistically enhanced by the addition of Ca2+. 2) "Transverse" bilayer perturbation was induced by dioctanoylglycerol. The addition of this DAG caused increased ordering of the phospholipid acyl side chains in the region adjacent to the headgroup, with the concomitant decrease of the order toward the bilayer interior. 3) Separation of the phosphatidylcholine and phosphatidylserine bilayer components was induced by combinations of relatively high (1:5 mole/mole to phosphatidylserine) Ca2+ and 25 mol% (to the phospholipids) of diolein, stearoylarachidonoylglycerol, or oleoylacetylglycerol. 4) Lateral phase separation of the bilayers on the regions of different fluidities was induced by dipalmitin. These physicochemical effects were correlated with the effects of these DAGs and Ca2+ on the activity of protein kinase C. The increased tendency to form nonbilayer lipid phases and the transverse bilayer perturbations correlated with the increased protein kinase C activity, whereas the actual presence of the nonbilayer lipid phases, as well as the separation of the phosphatidylcholine and phosphatidylserine components, was associated with the decrease in the protein kinase C activity. The lateral phase separation of the bilayer on gel-like and liquid crystalline regions did not have an effect on the activity of the enzyme. These results demonstrate the importance of the physicochemical properties of the membranes in the process of activation of protein kinase C. PMID:8161692

  4. Accumulate-Repeat-Accumulate-Accumulate Codes

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Dolinar, Samuel; Thorpe, Jeremy

    2007-01-01

    Accumulate-repeat-accumulate-accumulate (ARAA) codes have been proposed, inspired by the recently proposed accumulate-repeat-accumulate (ARA) codes. These are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. ARAA codes can be regarded as serial turbolike codes or as a subclass of low-density parity-check (LDPC) codes, and, like ARA codes they have projected graph or protograph representations; these characteristics make it possible to design high-speed iterative decoders that utilize belief-propagation algorithms. The objective in proposing ARAA codes as a subclass of ARA codes was to enhance the error-floor performance of ARA codes while maintaining simple encoding structures and low maximum variable node degree.

  5. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    SciTech Connect

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine and phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.

  6. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    SciTech Connect

    Blanton, M.P.; Wang, H.H. )

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.

  7. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.

  8. BNIP-2 binds phosphatidylserine, localizes to vesicles, and is transported by kinesin-1.

    PubMed

    Akamatsu, Rie; Ishida-Kitagawa, Norihiro; Aoyama, Takane; Oka, Chio; Kawaichi, Masashi

    2015-02-01

    BNIP-2 shows high homology with the Cayman ataxia protein, caytaxin, which functions as a kinesin-1 adapter bridging cargos and kinesin light chains (KLCs). BNIP-2 is known to induce cell shape changes when over-expressed in culture cells, but its physiological functions are mostly unknown. BNIP-2 interacts with KLC through the conserved WED motif in the N-terminal region of BNIP-2. Interaction with KLC and transportation by kinesin-1 are essential for over-expressed BNIP-2 to elongate cells and induce cellular processes. Endogenous BNIP-2 localizes to the Golgi apparatus, early and recycling endosomes and mitochondria, aligned with microtubules, and moves at a speed compatible with kinesin-1 transportation. The CRAL-TRIO domain of BNIP-2 specifically interacts with phosphatidylserine, and the vesicular localization of BNIP-2 requires interaction with this phospholipid. BNIP-2 mutants which do not bind phosphatidylserine do not induce morphological changes in cells. These data show that similar to caytaxin, BNIP-2 is a kinesin-1 adapter involved in vesicular transportation in the cytoplasm and that association with cargos depends on interaction of the CRAL-TRIO domain with membrane phosphatidylserine.

  9. Phosphatidylserine-selective targeting and anticancer effects of SapC-DOPS nanovesicles on brain tumors.

    PubMed

    Blanco, Víctor M; Chu, Zhengtao; Vallabhapurapu, Subrahmanya D; Sulaiman, Mahaboob K; Kendler, Ady; Rixe, Olivier; Warnick, Ronald E; Franco, Robert S; Qi, Xiaoyang

    2014-08-30

    Brain tumors, either primary (e.g., glioblastoma multiforme) or secondary (metastatic), remain among the most intractable and fatal of all cancers. We have shown that nanovesicles consisting of Saposin C (SapC) and dioleylphosphatidylserine (DOPS) are able to effectively target and kill cancer cells both in vitro and in vivo. These actions are a consequence of the affinity of SapC-DOPS for phosphatidylserine, an acidic phospholipid abundantly present in the outer membrane of a variety of tumor cells and tumor-associated vasculature. In this study, we first characterize SapC-DOPS bioavailability and antitumor effects on human glioblastoma xenografts, and confirm SapC-DOPS specificity towards phosphatidylserine by showing that glioblastoma targeting is abrogated after in vivo exposure to lactadherin, which binds phosphatidylserine with high affinity. Second, we demonstrate that SapC-DOPS selectively targets brain metastases-forming cancer cells both in vitro, in co-cultures with human astrocytes, and in vivo, in mouse models of brain metastases derived from human breast or lung cancer cells. Third, we demonstrate that SapC-DOPS have cytotoxic activity against metastatic breast cancer cells in vitro, and prolong the survival of mice harboring brain metastases. Taken together, these results support the potential of SapC-DOPS for the diagnosis and therapy of primary and metastatic brain tumors.

  10. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes

    DOE PAGES

    Rai, Durgesh K.; Qian, Shuo; Heller, William T.

    2016-08-13

    We report that membrane-active peptides (MAPs), which interact directly with the lipid bilayer of a cell and include toxins and host defense peptides, display lipid composition-dependent activity. Phosphatidylserine (PS) lipids are anionic lipids that are found throughout the cellular membranes of most eukaryotic organisms where they serve as both a functional component and as a precursor to phosphatidylethanolamine lipids. The inner leaflet of the plasma membrane contains more PS than the outer one, and the asymmetry is actively maintained. Here, the impact of the MAP melittin on the structure of lipid bilayer vesicles made of a mixture of phosphatidylcholine andmore » phosphatidylserine was studied. Small-angle neutron scattering of the MAP associated with selectively deuterium-labeled lipid bilayer vesicles revealed how the thickness and lipid composition of phosphatidylserine-containing vesicles change in response to melittin. The peptide thickens the lipid bilayer for concentrations up to P/L = 1/500, but membrane thinning results when P/L = 1/200. The thickness transition is accompanied by a large change in the distribution of DMPS between the leaflets of the bilayer. The change in composition is driven by electrostatic interactions, while the change in bilayer thickness is driven by changes in the interaction of the peptide with the headgroup region of the lipid bilayer. Lastly, the results provide new information about lipid-specific interactions that take place in mixed composition lipid bilayer membranes.« less

  11. Resolution of brewers' yeast pyruvate decarboxylase into two isozymes.

    PubMed

    Kuo, D J; Dikdan, G; Jordan, F

    1986-03-05

    A novel purification method was developed for brewers' yeast pyruvate decarboxylase (EC 4.1.1.1) that for the first time resolved the enzyme into two isozymes on DEAE-Sephadex chromatography. The isozymes were found to be distinct according to sodium dodecyl sulfate polyacrylamide gel electrophoresis: the first one to be eluted gave rise to one band, the second to two bands. The isozymes were virtually the same so far as specific activity, KM, inhibition kinetics and irreversible binding properties by the mechanism-based inhibitor (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid are concerned. This finding resolves a longstanding controversy concerning the quaternary structure of this enzyme.

  12. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  13. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  14. Biogenic Amine Degradation by Bacillus Species Isolated from Traditional Fermented Soybean Food and Detection of Decarboxylase-Related Genes.

    PubMed

    Eom, Jeong Seon; Seo, Bo Young; Choi, Hye Sun

    2015-09-01

    Biogenic amines in some food products present considerable toxicological risks as potential human carcinogens when consumed in excess concentrations. In this study, we investigated the degradation of the biogenic amines histamine and tyramine and the presence of genes encoding histidine and tyrosine decarboxylases and amine oxidase in Bacillus species isolated from fermented soybean food. No expression of histidine and tyrosine decarboxylase genes (hdc and tydc) were detected in the Bacillus species isolated (B. subtilis HJ0-6, B. subtilis D'J53-4, and B. idriensis RD13-10), although substantial levels of amine oxidase gene (yobN) expression were observed. We also found that the three selected strains, as non-biogenic amineproducing bacteria, were significantly able to degrade the biogenic amines histamine and tyramine. These results indicated that the selected Bacillus species could be used as a starter culture for the control of biogenic amine accumulation and degradation in food. Our study findings also provided the basis for the development of potential biological control agents against these biogenic amines for use in the food preservation and food safety sectors.

  15. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity.

    PubMed

    Lietzan, Adam D; St Maurice, Martin

    2014-02-15

    Biotin-dependent enzymes catalyze carboxylation, decarboxylation and transcarboxylation reactions that participate in the primary metabolism of a wide range of organisms. In all cases, the overall reaction proceeds via two half reactions that take place in physically distinct active sites. In the first half-reaction, a carboxyl group is transferred to the 1-N' of a covalently tethered biotin cofactor. The tethered carboxybiotin intermediate subsequently translocates to a second active site where the carboxyl group is either transferred to an acceptor substrate or, in some bacteria and archaea, is decarboxylated to biotin and CO2 in order to power the export of sodium ions from the cytoplasm. A homologous carboxyltransferase domain is found in three enzymes that catalyze diverse overall reactions: carbon fixation by pyruvate carboxylase, decarboxylation and sodium transport by the biotin-dependent oxaloacetate decarboxylase complex, and transcarboxylation by transcarboxylase from Propionibacterium shermanii. Over the past several years, structural data have emerged which have greatly advanced the mechanistic description of these enzymes. This review assembles a uniform description of the carboxyltransferase domain structure and catalytic mechanism from recent studies of pyruvate carboxylase, oxaloacetate decarboxylase and transcarboxylase, three enzymes that utilize an analogous carboxyltransferase domain to catalyze the biotin-dependent decarboxylation of oxaloacetate.

  16. Tyrosine decarboxylase from Lactobacillus brevis: soluble expression and characterization.

    PubMed

    Zhang, Kai; Ni, Ye

    2014-02-01

    Tyrosine decarboxylase (TDC, EC 4.1.1.25) is an enzyme that catalyzes the decarboxylation of l-tyrosine to produce tyramine and CO2. In this study, a 1881-bp tdc gene from Lactobacillus brevis was cloned and heterologously expressed in Escherichia coli BL21 (DE3). Glucose was discovered to play an important role in the soluble expression of rLbTDC. After optimization, recombinant TDC (rLbTDC) was achieved in excellent solubility and a yield of 224mg rLbTDC/L broth. The C-terminal His-Tagged rLbTDC was one-step purified with 90% recovery. Based on SDS-PAGE and gel filtration analysis, rLbTDC is a dimer composed of two identical subunits of approximately 70kDa. Using l-tyrosine as substrate, the specific activity of rLbTDC was determined to be 133.5U/mg in the presence of 0.2mM pyridoxal-5'-phosphate at 40°C and pH 5.0. The Km and Vmax values of rLbTDC were 0.59mM and 147.1μmolmin(-1)mg(-1), respectively. In addition to l-tyrosine, rLbTDC also exhibited decarboxylase activity towards l-DOPA. This study has demonstrated, for the first time, the soluble expression of tdc gene from L. brevis in heterologous host.

  17. Crystal structure of pyruvate decarboxylase from Zymobacter palmae

    PubMed Central

    Buddrus, Lisa; Andrews, Emma S. V.; Leak, David J.; Danson, Michael J.; Arcus, Vickery L.; Crennell, Susan J.

    2016-01-01

    Pyruvate decarboxylase (PDC; EC 4.1.1.1) is a thiamine pyrophosphate- and Mg2+ ion-dependent enzyme that catalyses the non-oxidative decarboxylation of pyruvate to acetaldehyde and carbon dioxide. It is rare in bacteria, but is a key enzyme in homofermentative metabolism, where ethanol is the major product. Here, the previously unreported crystal structure of the bacterial pyruvate decarboxylase from Zymobacter palmae is presented. The crystals were shown to diffract to 2.15 Å resolution. They belonged to space group P21, with unit-cell parameters a = 204.56, b = 177.39, c = 244.55 Å and R r.i.m. = 0.175 (0.714 in the highest resolution bin). The structure was solved by molecular replacement using PDB entry 2vbi as a model and the final R values were R work = 0.186 (0.271 in the highest resolution bin) and R free = 0.220 (0.300 in the highest resolution bin). Each of the six tetramers is a dimer of dimers, with each monomer sharing its thiamine pyrophosphate across the dimer interface, and some contain ethylene glycol mimicking the substrate pyruvate in the active site. Comparison with other bacterial PDCs shows a correlation of higher thermostability with greater tetramer interface area and number of interactions. PMID:27599861

  18. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  19. Identification of a novel phospholipase D with high transphosphatidylation activity and its application in synthesis of phosphatidylserine and DHA-phosphatidylserine.

    PubMed

    Mao, Xiangzhao; Liu, Qianqian; Qiu, Yongqian; Fan, Xiaoqin; Han, Qingqing; Liu, Yanjun; Zhang, Lujia; Xue, Changhu

    2017-03-25

    Phosphatidylserine (PS) and docosahexaenoic acid-phosphatidylserine (DHA-PS) have significant nutritional and biological functions, which are extensively used in functional food industries. Phospholipase D (PLD)-mediated transphosphatidylation of phosphatidylcholine (PC) or DHA-PC with l-serine, is an effective method for PS and DHA-PS preparation. However, because of the hydrolysis activity of PLD, PC and DHA-PC would be converted to the undesirable byproduct, phosphatidic acid (PA) and DHA-PA. In this study, a novel phospholipase D (PLDa2) was firstly cloned from Acinetobacter radioresistens a2 with high transphosphatidylation activity and no hydrolysis activity. In the PLD-catalyzed synthesis process (12h), both the transphosphatidylation conversion rate and selectivity of PS and DHA-PS were about 100%, which is the only PLD enzyme reported with this superiority up till now. In comparison with the majority of other known PLDs, PLDa2 exerted the highest activity at neutral pH, and it was stable from pH 4.0 to pH 9.0. In addition, PLDa2 had excellent thermal stability, with an optimum reaction temperature of 40°C and keeping more than 80% activity from 20°C to 60°C. The high catalytic selectivity mechanism of PLDa2 was explained by utilizing homology modeling, two-step docking, and binding energy and conformation analysis. PLDa2 ensured a stable supply of the biocatalyst with its most preponderant transphosphatidylation activity and PS selectivity, and had great potential in phospholipids industrial production.

  20. Contributions of phosphatidylserine-positive platelets and leukocytes and microparticles to hypercoagulable state in gastric cancer patients.

    PubMed

    Yang, Chunfa; Ma, Ruishuang; Jiang, Tao; Cao, Muhua; Zhao, Liangliang; Bi, Yayan; Kou, Junjie; Shi, Jialan; Zou, Xiaoming

    2016-06-01

    Hypercoagulability in gastric cancer is a common complication and a major contributor to poor prognosis. This study aimed to determine procoagulant activity of blood cells and microparticles (MPs) in gastric cancer patients. Phosphatidylserine-positive blood cells and MPs, and their procoagulant properties in particular, were assessed in 48 gastric cancer patients and 35 healthy controls. Phosphatidylserine-positive platelets, leukocytes, and MPs in patients with tumor-node-metastasis stage III/IV gastric cancer were significantly higher than those in stage I/II patients or healthy controls. Moreover, procoagulant activity of platelets, leukocytes, and MPs in stage III/IV patients was significantly increased compared to the controls, as indicated by shorter clotting time, higher intrinsic and extrinsic factor tenase, and prothrombinase complex activity. Interestingly, lactadherin, which competes with factors V and VIII to bind phosphatidylserine, dramatically prolonged clotting time of the cells and MPs by inhibiting factor tenase and prothrombinase complex activity. Although anti-tissue factor antibody significantly attenuated extrinsic tenase complex activity of leukocytes and MPs, it only slightly prolonged clotting times. Meanwhile, treatment with radical resection reduced phosphatidylserine-positive platelets, leukocytes, and MPs, and prolonged the clotting times of the remaining cells and MPs. Our results suggest that phosphatidylserine-positive platelets, leukocytes, and MPs contribute to hypercoagulability and represent a potential therapeutic target to prevent coagulation in patients with stage III/IV gastric cancer.

  1. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori

    PubMed Central

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-01-01

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera. PMID:26077025

  2. Identification and characterization of barley mutants lacking glycine decarboxylase and carboxyl esterase activities

    SciTech Connect

    Blackwell, R.; Lewis, K.; Lea, P. )

    1990-05-01

    A barley mutant has been isolated, from a selection of fifty air-sensitive seed-lines, using a standard gel stain technique which lacks carboxyl esterase activity, but has normal levels of carbonic anhydrase. In addition, two barley mutants lacking the ability to convert glycine to serine in the mitochondria, have been characterized. Both plants accumulate glycine in air and are unable to metabolize ({sup 14}C)glycine in the short-term. When ({sup 14}C)glycine was supplied over 2h LaPr 85/55 metabolized 90%, whereas the second mutant (LaPr 87/30) metabolized 10%. Results indicate that the mutation in LaPr 85/55 is almost certainly in the glycine transporter into the mitochondrion. The mutation in LaPr 87/30 has been shown, using western blotting, to be in both the P and H proteins, two of four proteins which comprise glycine decarboxylase (P, H, T and L).

  3. Aspartate Decarboxylase is Required for a Normal Pupa Pigmentation Pattern in the Silkworm, Bombyx mori.

    PubMed

    Dai, Fangyin; Qiao, Liang; Cao, Cun; Liu, Xiaofan; Tong, Xiaoling; He, Songzhen; Hu, Hai; Zhang, Li; Wu, Songyuan; Tan, Duan; Xiang, Zhonghuai; Lu, Cheng

    2015-06-16

    The pigmentation pattern of Lepidoptera varies greatly in different development stages. To date, the effects of key genes in the melanin metabolism pathway on larval and adult body color are distinct, yet the effects on pupal pigmentation remains unclear. In the silkworm, Bombyx mori, the black pupa (bp) mutant is only specifically melanized at the pupal stage. Using positional cloning, we found that a mutation in the Aspartate decarboxylase gene (BmADC) is causative in the bp mutant. In the bp mutant, a SINE-like transposon with a length of 493 bp was detected ~2.2 kb upstream of the transcriptional start site of BmADC. This insertion causes a sharp reduction in BmADC transcript levels in bp mutants, leading to deficiency of β-alanine and N-β-alanyl dopamine (NBAD), but accumulation of dopamine. Following injection of β-alanine into bp mutants, the color pattern was reverted that of the wild-type silkworms. Additionally, melanic pupae resulting from knock-down of BmADC in the wild-type strain were obtained. These findings show that BmADC plays a crucial role in melanin metabolism and in the pigmentation pattern of the silkworm pupal stage. Finally, this study contributes to a better understanding of pupa pigmentation patterns in Lepidoptera.

  4. Elevated production of melatonin in transgenic rice seeds expressing rice tryptophan decarboxylase.

    PubMed

    Byeon, Yeong; Park, Sangkyu; Lee, Hyoung Yool; Kim, Young-Soon; Back, Kyoungwhan

    2014-04-01

    A major goal of plant biotechnology is to improve the nutritional qualities of crop plants through metabolic engineering. Melatonin is a well-known bioactive molecule with an array of health-promoting properties, including potent antioxidant capability. To generate melatonin-rich rice plants, we first independently overexpressed three tryptophan decarboxylase isogenes in the rice genome. Melatonin levels were altered in the transgenic lines through overexpression of TDC1, TDC2, and TDC3; TDC3 transgenic seed (TDC3-1) had melatonin concentrations 31-fold higher than those of wild-type seeds. In TDC3 transgenic seedlings, however, only a doubling of melatonin content occurred over wild-type levels. Thus, a seed-specific accumulation of melatonin appears to occur in TDC3 transgenic lines. In addition to increased melatonin content, TDC3 transgenic lines also had enhanced levels of melatonin intermediates including 5-hydroxytryptophan, tryptamine, serotonin, and N-acetylserotonin. In contrast, expression levels of melatonin biosynthetic mRNA did not increase in TDC3 transgenic lines, indicating that increases in melatonin and its intermediates in these lines are attributable exclusively to overexpression of the TDC3 gene.

  5. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  6. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice

    PubMed Central

    Pai, Yun Jin; Leung, Kit-Yi; Savery, Dawn; Hutchin, Tim; Prunty, Helen; Heales, Simon; Brosnan, Margaret E.; Brosnan, John T.; Copp, Andrew J.; Greene, Nicholas D.E.

    2015-01-01

    Glycine decarboxylase (GLDC) acts in the glycine cleavage system to decarboxylate glycine and transfer a one-carbon unit into folate one-carbon metabolism. GLDC mutations cause a rare recessive disease non-ketotic hyperglycinemia (NKH). Mutations have also been identified in patients with neural tube defects (NTDs); however, the relationship between NKH and NTDs is unclear. We show that reduced expression of Gldc in mice suppresses glycine cleavage system activity and causes two distinct disease phenotypes. Mutant embryos develop partially penetrant NTDs while surviving mice exhibit post-natal features of NKH including glycine accumulation, early lethality and hydrocephalus. In addition to elevated glycine, Gldc disruption also results in abnormal tissue folate profiles, with depletion of one-carbon-carrying folates, as well as growth retardation and reduced cellular proliferation. Formate treatment normalizes the folate profile, restores embryonic growth and prevents NTDs, suggesting that Gldc deficiency causes NTDs through limiting supply of one-carbon units from mitochondrial folate metabolism. PMID:25736695

  7. Differential roles of pyruvate decarboxylase in aerial and embedded mycelia of the ascomycete Gibberella zeae.

    PubMed

    Son, Hokyoung; Min, Kyunghun; Lee, Jungkwan; Choi, Gyung Ja; Kim, Jin-Cheol; Lee, Yin-Won

    2012-04-01

    The pyruvate-acetaldehyde-acetate (PAA) pathway has diverse roles in eukaryotes. Our previous study on acetyl-coenzyme A synthetase 1 (ACS1) in Gibberella zeae suggested that the PAA pathway is important for lipid production, which is required for perithecia maturation. In this study, we deleted all three pyruvate decarboxylase (PDC) genes, which encode enzymes that function upstream of ACS1 in the PAA pathway. Results suggest PDC1 is required for lipid accumulation in the aerial mycelia, and deletion of PDC1 resulted in highly wettable mycelia. However, the total amount of lipids in the PDC1 deletion mutants was similar to that of the wild-type strain, likely due to compensatory lipid production processes in the embedded mycelia. PDC1 was expressed both in the aerial and embedded mycelia, whereas ACS1 was observed only in the aerial mycelia in a PDC1-dependent manner. PDC1 is also involved in vegetative growth of embedded mycelia in G. zeae, possibly through initiating the ethanol fermentation pathway. Thus, PDC1 may function as a key metabolic enzyme crucial for lipid production in the aerial mycelia, but play a different role in the embedded mycelia, where it might be involved in energy generation by ethanol fermentation.

  8. Splenic gene delivery system using self-assembling nano-complex with phosphatidylserine analog.

    PubMed

    Kurosaki, Tomoaki; Nakasone, Chihiro; Kodama, Yukinobu; Egashira, Kanoko; Harasawa, Hitomi; Muro, Takahiro; Nakagawa, Hiroo; Kitahara, Takashi; Higuchi, Norihide; Nakamura, Tadahiro; Sasaki, Hitoshi

    2015-01-01

    The recognition of phosphatidylserine on the erythrocyte membrane mediates erythrophagocytosis by resident spleen macrophages. The application of phosphatidylserine to a gene vector may be a novel approach for splenic drug delivery. Therefore, we chose 1,2-dioleoyl-sn-glycero-3-phospho-L-serin (DOPS) as an analogue of phosphatidylserine for splenic gene delivery of plasmid DNA (pDNA). In the present study, we successfully prepared a stable pDNA ternary complex using DOPS and polyethyleneimine (PEI) and evaluated its efficacy and safety. The pDNA/PEI complex had a positive charge and showed high transgene efficacy, although it caused cytotoxicity and agglutination. The addition of DOPS changed the ζ-potential of the pDNA/PEI complex to negative. It is known that anionic complexes are not taken up well by cells. Surprisingly, however, the pDNA/PEI/DOPS complex showed relatively high transgene efficacy in vitro. Fluorescence microscope observation revealed that the pDNA/PEI/DOPS complex internalized the cells while maintaining the complex formation. The injection of the pDNA/PEI complex killed most mice within 24 h at high doses, although all mice in the pDNA/PEI/DOPS complex group survived. The ternary complex with DOPS showed markedly better safety compared with the pDNA/PEI complex. The pDNA/PEI/DOPS complex showed high gene expression selectively in the spleen after intravenous injection into mice. Thus the ternary complex with DOPS can be used to deliver pDNA to the spleen, in which immune cells are abundant. It appears to have an excellent safety level, although further study to determine the mechanism of action is necessary.

  9. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  10. [Inhibitory effect of essential oils, food additives, peracetic acid and detergents on bacterial histidine decarboxylase].

    PubMed

    Kamii, Eri; Terada, Gaku; Akiyama, Jyunki; Isshiki, Kenji

    2011-01-01

    The aim of this study is to examine whether various essential oils, food additives, peracetic acid and detergents inhibit bacterial histidine decarboxylase. Crude extract of Morganella morganii NBRC3848 was prepared and incubated with various agents. Histidine decarboxylase activity was significantly inhibited (p<0.05) by 26 of 45 compounds tested. Among the 26 agents, sodium hypochlorite completely decomposed both histidine and histamine, while peracetic acid caused slight decomposition. Histidine and histamine were stable in the presence of the other 24 agents. These results indicated that 25 of the agents examined were inhibitors of histidine decarboxylase.

  11. Glutamic acid decarboxylase autoimmunity in Batten disease and other disorders.

    PubMed

    Pearce, David A; Atkinson, Mark; Tagle, Danilo A

    2004-12-14

    Degenerative diseases of the CNS, such as stiff-person syndrome (SPS), progressive cerebellar ataxia, and Rasmussen encephalitis, have been characterized by the presence of autoantibodies. Recent findings in individuals with Batten disease and in animal models for the disorder indicate that this condition may be associated with autoantibodies against glutamic acid decarboxylase (GAD), an enzyme that converts the excitatory neurotransmitter glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Anti-GAD autoantibodies could result in excess excitatory neurotransmitters, leading to the seizures and other symptoms observed in patients with Batten disease. The pathogenic potential of GAD autoantibodies is examined in light of what is known for other autoimmune disorders, such as multiple sclerosis, SPS, Rasmussen encephalitis, and type 1 diabetes, and may have radical implications for diagnosis and management of Batten disease.

  12. Levodopa combined with peripheral decarboxylase inhibition in Parkinson's disease

    PubMed Central

    Barbeau, André; Mars, Harold; Botez, Mihai I.; Joubert, Marie

    1972-01-01

    The authors report their experience, over a 26-month period, in the management of 60 parkinsonian patients with the combination of levodopa and an inhibitor of peripheral dopa-decarboxylase, Ro 4-4602. This approach to Parkinson's disease is useful, safe, and at least as effective as levodopa alone. To date there have been no recognizable toxic effects attributable to Ro 4-4602. This agent appears to prolong the duration of action of levodopa, smoothing out its therapeutic effects. The percentage of patients obtaining a very good and excellent response is slightly increased. There is a possible diminution in the late-occurring bradykinetic and hypotonic freezing episodes. Nausea and cardiac arrhythmias are lessened, as are the incidence and severity of hypotension. Abnormal involuntary movements remain the limiting adverse side effect. PMID:5034697

  13. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids

    SciTech Connect

    Frossard, Mariana Lins; Seabra, Sergio Henrique; Matta, Renato Augusto da; Souza, Wanderley de; Garcia de Mello, Fernando; Motta, Maria Cristina Machado . E-mail: motta@biof.ufrj.br

    2006-05-05

    Summary: Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.

  14. Altered subcellular localization of ornithine decarboxylase in Alzheimer's disease brain

    SciTech Connect

    Nilsson, Tatjana . E-mail: Tatjana.Nilsson@ki.se; Bogdanovic, Nenad; Volkman, Inga; Winblad, Bengt; Folkesson, Ronnie; Benedikz, Eirikur

    2006-06-02

    The amyloid precursor protein can through ligand-mimicking induce expression of ornithine decarboxylase (ODC), the initial and rate-limiting enzyme in polyamine biosynthesis. We report here the regional distribution and cellular localization of ODC immunoreactivity in Alzheimer's disease (AD) brains. In frontal cortex and hippocampus of control cases, the most pronounced ODC immunoreactivity was found in the nucleus. In possible and definite AD the immunoreactivity had shifted to the cytoplasm. In cerebellum of control cases, ODC staining was found in a small portion of Purkinje cells, mostly in the nucleus. In AD, both possible and definite, the number of stained Purkinje cells increased significantly and immunoreactivity was shifted to the cytoplasm, even though it was still prominent in the nucleus. In conclusion, our study reveals an early shift of the ODC immunoreactivity in AD from the nuclear compartment towards the cytoplasm.

  15. Kinetic challenges facing oxalate, malonate, acetoacetate, and oxaloacetate decarboxylases.

    PubMed

    Wolfenden, Richard; Lewis, Charles A; Yuan, Yang

    2011-04-20

    To compare the powers of the corresponding enzymes as catalysts, the rates of uncatalyzed decarboxylation of several aliphatic acids (oxalate, malonate, acetoacetate, and oxaloacetate) were determined at elevated temperatures and extrapolated to 25 °C. In the extreme case of oxalate, the rate of the uncatalyzed reaction at pH 4.2 was 1.1 × 10(-12) s(-1), implying a 2.5 × 10(13)-fold rate enhancement by oxalate decarboxylase. Whereas the enzymatic decarboxylation of oxalate requires O(2) and Mn(II), the uncatalyzed reaction is unaffected by the presence of these cofactors and appears to proceed by heterolytic elimination of CO(2).

  16. Mouse ornithine decarboxylase gene: cloning, structure, and expression.

    PubMed Central

    Brabant, M; McConlogue, L; van Daalen Wetters, T; Coffino, P

    1988-01-01

    We used molecular cloning to isolate a functional gene for mouse ornithine decarboxylase (OrnDCase; L-ornithine carboxy-lyase, EC 4.1.1.17) from a cell line in which that gene had been selectively amplified. The position of the 5' terminus of the mRNA was identified, and the coding sequence was shown to be preceded by a 312- or 313-nucleotide (nt) untranslated leader. The latter is highly G + C rich, particularly in its 5'-most portion. The leader can be anticipated to have extensive and stable secondary structure. The transcription unit of the gene is of relatively small size, approximately equal to 6.2 kilobases (kb) from the start site to the proximal site of polyadenylylation. Sequence analysis of DNA near the transcription start position demonstrated the presence of a "TATA" box, but no "CAAT" box. Functional properties of the cloned gene were tested by transfecting it into cultured cells. Expression of the putative full-length gene efficiently conferred ornithine decarboxylase activity on recipient mutant cells deficient in that activity. To assess the function and strength of the OrnDCase promoter region and to delimit its boundaries, we used a transient expression assay. Upstream of a bacterial chloramphenicol acetyltransferase gene was placed a portion of the OrnDCase gene, including the presumed promoter region, spanning a region from approximately equal to 3.0 kb 5' of the site of transcription initiation to the first 250 nt of the transcript. When expressed in mouse NIH 3T3 cells, this OrnDCase genomic element was comparable in strength to the Rous sarcoma virus long terminal repeat promoter. A similar construct, truncated so as to retain only 264 base pairs of the OrnDCase gene 5' to the site of transcription start, yielded undiminished levels of expression. Images PMID:3353375

  17. Selective peroxidation and externalization of phosphatidylserine in normal human epidermal keratinocytes during oxidative stress induced by cumene hydroperoxide.

    PubMed

    Shvedova, Anna A; Tyurina, Julia Y; Kawai, Kazuaki; Tyurin, Vladimir A; Kommineni, Choudari; Castranova, Vincent; Fabisiak, James P; Kagan, Valerian E

    2002-06-01

    Reactive oxygen species not only modulate important signal transduction pathways, but also induce DNA damage and cytotoxicity in keratinocytes. Hydrogen peroxide and organic peroxides are particularly important as these chemicals are widely used in dermally applied cosmetics and pharmaceuticals, and also represent endogenous metabolic intermediates. Lipid peroxidation is of fundamental interest in the cellular response to peroxides, as lipids are extremely sensitive to oxidation and lipid-based signaling systems have been implicated in a number of cellular processes, including apoptosis. Oxidation of specific phospholipid classes was measured in normal human epidermal keratinocytes exposed to cumene hydroperoxide after metabolic incorporation of the fluorescent oxidation-sensitive fatty acid, cis-parinaric acid, using a fluorescence high-performance liquid chromatography assay. In addition, lipid oxidation was correlated with changes in membrane phospholipid asymmetry and other markers of apoptosis. Although cumene hydroperoxide produced significant oxidation of cis-parinaric acid in all phospholipid classes, one phospholipid, phosphatidylserine, appeared to be preferentially oxidized above all other species. Using fluorescamine derivatization and annexin V binding it was observed that specific oxidation of phosphatidylserine was accompanied by phosphatidylserine translocation from the inner to the outer plasma membrane surface where it may serve as a recognition signal for interaction with phagocytic macrophages. These effects occurred much earlier than any detectable changes in other apoptotic markers such as caspase-3 activation, DNA fragmentation, or changes in nuclear morphology. Thus, normal human epidermal keratinocytes undergo profound lipid oxidation with preference for phosphatidylserine followed by phosphatidylserine externalization upon exposure to cumene hydroperoxide. It is therefore likely that normal human epidermal keratinocytes exposed to similar

  18. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    PubMed

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident.

  19. Arginine Decarboxylase expression, polyamines biosynthesis and reactive oxygen species during organogenic nodule formation in hop.

    PubMed

    Fortes, Ana M; Costa, Joana; Santos, Filipa; Seguí-Simarro, José M; Palme, Klaus; Altabella, Teresa; Tiburcio, Antonio F; Pais, Maria S

    2011-02-01

    Hop (Humulus lupulus L.) is an economically important plant species used in beer production and as a health-promoting medicine. Hop internodes develop upon stress treatments organogenic nodules which can be used for genetic transformation and micropropagation. Polyamines are involved in plant development and stress responses. Arginine decarboxylase (ADC; EC 4·1.1·19) is a key enzyme involved in the biosynthesis of putrescine in plants. Here we show that ADC protein was increasingly expressed at early stages of hop internode culture (12h). Protein continued accumulating until organogenic nodule formation after 28 days, decreasing thereafter. The same profile was observed for ADC transcript suggesting transcriptional regulation of ADC gene expression during morphogenesis. The highest transcript and protein levels observed after 28 days of culture were accompanied by a peak in putrescine levels. Reactive oxygen species accumulate in nodular tissues probably due to stress inherent to in vitro conditions and enhanced polyamine catabolism. Conjugated polyamines increased during plantlet regeneration from nodules suggesting their involvement in plantlet formation and/or in the control of free polyamine levels. Immunogold labeling revealed that ADC is located in plastids, nucleus and cytoplasm of nodular cells. In vacuolated cells, ADC immunolabelling in plastids doubled the signal of proplastids in meristematic cells. Location of ADC in different subcellular compartments may indicate its role in metabolic pathways taking place in these compartments. Altogether these data suggest that polyamines play an important role in organogenic nodule formation and represent a progress towards understanding the role played by these growth regulators in plant morphogenesis.

  20. In Vitro Induction of Erythrocyte Phosphatidylserine Translocation by the Natural Naphthoquinone Shikonin

    PubMed Central

    Lupescu, Adrian; Bissinger, Rosi; Jilani, Kashif; Lang, Florian

    2014-01-01

    Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation. PMID:24828755

  1. Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1.

    PubMed

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-12-09

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling.

  2. Endocytic Sorting and Recycling Require Membrane Phosphatidylserine Asymmetry Maintained by TAT-1/CHAT-1

    PubMed Central

    Chen, Baohui; Jiang, Yue; Zeng, Sheng; Yan, Jiacong; Li, Xin; Zhang, Yan; Zou, Wei; Wang, Xiaochen

    2010-01-01

    Endocytic sorting is achieved through the formation of morphologically and functionally distinct sub-domains within early endosomes. Cargoes destined for recycling are sorted to and transported through newly-formed tubular membranes, but the processes that regulate membrane tubulation are poorly understood. Here, we identified a novel Caenorhabditis elegans Cdc50 family protein, CHAT-1, which acts as the chaperone of the TAT-1 P4-ATPase to regulate membrane phosphatidylserine (PS) asymmetry and endocytic transport. In chat-1 and tat-1 mutants, the endocytic sorting process is disrupted, leading to defects in both cargo recycling and degradation. TAT-1 and CHAT-1 colocalize to the tubular domain of the early endosome, the tubular endocytic recycling compartment (ERC), and the recycling endosome where PS is enriched on the cytosolic surface. Loss of tat-1 and chat-1 function disrupts membrane PS asymmetry and abrogates the tubular membrane structure. Our data suggest that CHAT-1 and TAT-1 maintain membrane phosphatidylserine asymmetry, thus promoting membrane tubulation and regulating endocytic sorting and recycling. PMID:21170358

  3. Phosphatidylserine Synthase Controls Cell Elongation Especially in the Uppermost Internode in Rice by Regulation of Exocytosis

    PubMed Central

    Chen, Jun; Shen, Jinbo; Zhang, Baocai; Ren, Yulong; Ding, Yu; Zhou, Yihua; Zhang, Huan; Zhou, Kunneng; Wang, Jiu-Lin; Lei, Cailin; Zhang, Xin; Guo, Xiuping; Gao, He; Bao, Yiqun; Wan, Jian-Min

    2016-01-01

    The uppermost internode is one of the fastest elongating organs in rice, and is expected to require an adequate supply of cell-wall materials and enzymes to the cell surface to enhance mechanical strength. Although it has been reported that the phenotype of shortened uppermost internode 1 (sui1) is caused by mutations in PHOSPHATIDYLSERINE SYNTHASE (OsPSS), the underlying mechanism remains unclear. Here we show that the OsPSS-1, as a gene expressed predominantly in elongating cells, regulates post-Golgi vesicle secretion to intercellular spaces. Mutation of OsPSS-1 leads to compromised delivery of CESA4 and secGFP towards the cell surface, resulting in weakened intercellular adhesion and disorganized cell arrangement in parenchyma. The phenotype of sui1-4 is caused largely by the reduction in cellulose contents in the whole plant and detrimental delivery of pectins in the uppermost internode. We found that OsPSS-1 and its potential product PS (phosphatidylserine) localized to organelles associated with exocytosis. These results together suggest that OsPSS-1 plays a potential role in mediating cell expansion by regulating secretion of cell wall components. PMID:27055010

  4. Effect of steroidal saponins-loaded nano-bioglass/phosphatidylserine/collagen bone substitute on bone healing.

    PubMed

    Yang, Chunrong; Wu, Huazhong; Wang, Jianhua

    2016-11-10

    The objective of this study was to investigate the therapeutic potential of nano-bioglass/phosphatidylserine/collagen (nBG/PS/COL) scaffolds loaded with steroidal saponins as an inducer factor for skeletal defects. The drugs-encapsulated bone substitute was prepared by loading steroidal saponins-collagen microsphere suspension in nano-bioglass and phosphatidylserine (PS) composite. The scaffolds possess an interconnected porous structure with a porosity of about 82.3%. The pore size ranges from several micrometers up to about 400 μm. The drug release assays showed the long-term sustained release of steroidal saponins from the scaffolds with effective and safe bioactivity. Moreover, in vitro and in vivo studies showed that the involvement of steroidal saponins contributed to the secretion of nerve growth factor (NGF) in MC3T3-E1 cells, which may be the possible factor that greatly enhanced bone healing. The results suggest that the bone substitute is an effective implantable drug-delivery system for use in bone repair.

  5. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  6. The Ebola virus matrix protein VP40 selectively induces vesiculation from phosphatidylserine-enriched membranes.

    PubMed

    Soni, Smita P; Stahelin, Robert V

    2014-11-28

    Ebola virus is from the Filoviridae family of viruses and is one of the most virulent pathogens known with ∼ 60% clinical fatality. The Ebola virus negative sense RNA genome encodes seven proteins including viral matrix protein 40 (VP40), which is the most abundant protein found in the virions. Within infected cells VP40 localizes at the inner leaflet of the plasma membrane (PM), binds lipids, and regulates formation of new virus particles. Expression of VP40 in mammalian cells is sufficient to form virus-like particles that are nearly indistinguishable from the authentic virions. However, how VP40 interacts with the PM and forms virus-like particles is for the most part unknown. To investigate VP40 lipid specificity in a model of viral egress we employed giant unilamellar vesicles with different lipid compositions. The results demonstrate VP40 selectively induces vesiculation from membranes containing phosphatidylserine (PS) at concentrations of PS that are representative of the PM inner leaflet content. The formation of intraluminal vesicles was not significantly detected in the presence of other important PM lipids including cholesterol and polyvalent phosphoinositides, further demonstrating PS selectivity. Taken together, these studies suggest that PM phosphatidylserine may be an important component of Ebola virus budding and that VP40 may be able to mediate PM scission.

  7. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae

    SciTech Connect

    Letts, V.A.; Henry, S.A.

    1985-08-01

    Saccharomyces cerevisiae mutants, chol, are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. These mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). The authors exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. Coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed.

  8. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles.

  9. Phosphatidylserine Ameliorates Neurodegenerative Symptoms and Enhances Axonal Transport in a Mouse Model of Familial Dysautonomia

    PubMed Central

    Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth

    2016-01-01

    Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532

  10. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

    PubMed Central

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-01-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation. PMID:26906404

  11. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.

    PubMed Central

    Letts, V A; Henry, S A

    1985-01-01

    chol mutants of Saccharomyces cerevisiae are deficient in the synthesis of the phospholipid phosphatidylserine owing to lowered activity of the membrane-associated enzyme phosphatidylserine synthase. chol mutants are auxotrophic for ethanolamine or choline and, in the absence of these supplements, cannot synthesize phosphatidylethanolamine or phosphatidylcholine (PC). We exploited these characteristics of the chol mutants to examine the regulation of phospholipid metabolism in S. cerevisiae. Macromolecular synthesis and phospholipid metabolism were examined in chol cells starved for ethanolamine. As expected, when chol mutants were starved for ethanolamine, the rates of synthesis of the phospholipids phosphatidylethanolamine and PC declined rapidly. Surprisingly, however, coupled to the decline in PC biosynthesis was a simultaneous decrease in the overall rate of phospholipid synthesis. In particular, the rate of synthesis of phosphatidylinositol decreased in parallel with the decline in PC biosynthesis. The results obtained suggest that the slowing of PC biosynthesis in ethanolamine-starved chol cells leads to a coordinated decrease in the synthesis of all phospholipids. However, under conditions of ethanolamine deprivation in chol cells, the cytoplasmic enzyme inositol-1-phosphate synthase could not be repressed by exogenous inositol, and the endogenous synthesis of the phospholipid precursor inositol appeared to be elevated. The implications of these findings with respect to the coordinated regulation of phospholipid synthesis are discussed. Images PMID:2991194

  12. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.

    PubMed

    van Zwieten, Rob; Bochem, Andrea E; Hilarius, Petra M; van Bruggen, Robin; Bergkamp, Ferry; Hovingh, G Kees; Verhoeven, Arthur J

    2012-12-01

    Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP-dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.

  13. Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes.

    PubMed

    Stokes, C A; Kaur, R; Edwards, M R; Mondhe, M; Robinson, D; Prestwich, E C; Hume, R D; Marshall, C A; Perrie, Y; O'Donnell, V B; Harwood, J L; Sabroe, I; Parker, L C

    2016-09-01

    Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.

  14. Coenzyme A biosynthesis: steric course of 4'-phosphopantothenoyl-L-cysteine decarboxylase.

    PubMed

    Aberhart, D J; Ghoshal, P K; Cotting, J A; Russell, D J

    1985-12-03

    4'-Phosphopantothenoyl-L-cysteine decarboxylase (PPC decarboxylase) was partially purified from rat liver. 4'-Phosphopantothenoyl[2-2H1]-L-cysteine was synthesized and converted by PPC decarboxylase to 4'-phosphol[1-2H1]pantetheine. The product was degraded by reduction with Raney nickel followed by acidic hydrolysis to [1-2H1]ethylamine. The latter was converted to the (-)-camphanamide derivative, NMR studies of which revealed that the deuterium was located in the pro-1S position. Also, unlabeled 4'-phosphopantothenoyl-L-cysteine was incubated with PPC decarboxylase in D2O, giving, after degradation, the (-)-camphanamide of (1R)-[1-2H1]ethylamine. The results show that the decarboxylation takes place with retention of configuration. These results are discussed in terms of possible mechanisms for the decarboxylation.

  15. A Liquid-Based Colorimetric Assay of Lysine Decarboxylase and Its Application to Enzymatic Assay.

    PubMed

    Kim, Yong Hyun; Sathiyanarayanan, Ganesan; Kim, Hyun Joong; Bhatia, Shashi Kant; Seo, Hyung-Min; Kim, Jung-Ho; Song, Hun-Seok; Kim, Yun-Gon; Park, Kyungmoon; Yang, Yung-Hun

    2015-12-28

    A liquid-based colorimetric assay using a pH indicator was introduced for high-throughput monitoring of lysine decarboxylase activity. The assay is based on the color change of bromocresol purple, measured at 595 nm in liquid reaction mixture, due to an increase of pH by the production of cadaverine. Bromocresol purple was selected as the indicator because it has higher sensitivity than bromothymol blue and pheonol red within a broad range and shows good linearity within the applied pH. We applied this for simple determination of lysine decarboxylase reusability using 96-well plates, and optimization of conditions for enzyme overexpression with different concentrations of IPTG on lysine decarboxylase. This assay is expected to be applied for monitoring and quantifying the liquid-based enzyme reaction in biotransformation of decarboxylase in a high-throughput way.

  16. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase.

    PubMed

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian

    2017-01-01

    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5'-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase.

  17. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a Papaver somniferum Tyrosine Decarboxylase

    PubMed Central

    Guan, Huai; Song, Shuaibao; Robinson, Howard; Liang, Jing; Ding, Haizhen; Li, Jianyong; Han, Qian

    2017-01-01

    Tyrosine decarboxylase (TyDC), a type II pyridoxal 5′-phosphate decarboxylase, catalyzes the decarboxylation of tyrosine. Due to a generally high sequence identity to other aromatic amino acid decarboxylases (AAADs), primary sequence information is not enough to understand substrate specificities with structural information. In this study, we selected a typical TyDC from Papaver somniferum as a model to study the structural basis of AAAD substrate specificities. Analysis of the native P. somniferum TyDC crystal structure and subsequent molecular docking and dynamics simulation provide some structural bases that explain substrate specificity for tyrosine. The result confirmed the previous proposed mechanism for the enzyme selectivity of indolic and phenolic substrates. Additionally, this study yields the first crystal structure for a plant type II pyridoxal-5'-phosphate decarboxylase. PMID:28232911

  18. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  19. Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.

    PubMed

    Selvaraj, Brinda; Buckel, Wolfgang; Golding, Bernard T; Ullmann, G Matthias; Martins, Berta M

    2016-01-01

    4-Hydroxyphenylacetate decarboxylase (4Hpad) is the prototype of a new class of Fe-S cluster-dependent glycyl radical enzymes (Fe-S GREs) acting on aromatic compounds. The two-enzyme component system comprises a decarboxylase responsible for substrate conversion and a dedicated activating enzyme (4Hpad-AE). The decarboxylase uses a glycyl/thiyl radical dyad to convert 4-hydroxyphenylacetate into p-cresol (4-methylphenol) by a biologically unprecedented Kolbe-type decarboxylation. In addition to the radical dyad prosthetic group, the decarboxylase unit contains two [4Fe-4S] clusters coordinated by an extra small subunit of unknown function. 4Hpad-AE reductively cleaves S-adenosylmethionine (SAM or AdoMet) at a site-differentiated [4Fe-4S]2+/+ cluster (RS cluster) generating a transient 5'-deoxyadenosyl radical that produces a stable glycyl radical in the decarboxylase by the abstraction of a hydrogen atom. 4Hpad-AE binds up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert that is C-terminal to the RS cluster-binding motif. The ferredoxin-like domain with its two auxiliary clusters is not vital for SAM-dependent glycyl radical formation in the decarboxylase, but facilitates a longer lifetime for the radical. This review describes the 4Hpad and cognate AE families and focuses on the recent advances and open questions concerning the structure, function and mechanism of this novel Fe-S-dependent class of GREs.

  20. Thymosin α1 Interacts with Exposed Phosphatidylserine in Membrane Models and in Cells and Uses Serum Albumin as a Carrier.

    PubMed

    Mandaliti, Walter; Nepravishta, Ridvan; Sinibaldi Vallebona, Paola; Pica, Francesca; Garaci, Enrico; Paci, Maurizio

    2016-03-15

    Thymosin α1 is a peptidic hormone with pleiotropic activity and is used in the therapy of several diseases. It is unstructured in water solution and interacts with negative regions of vesicles by assuming two tracts of helical conformation with a structural break between them. This study reports on Thymosin α1's interaction with mixed phospholipids phosphatidylcholine and phosphatidylserine, the negative component of the membranes, by ¹H and natural abundance ¹⁵N nuclear magnetic resonance (NMR). The results indicate that interaction occurs when the membrane is negatively charged by exposing phosphatidylserine. Moreover, the direct interaction of Thymosin α1 with K562 cells with an overexposure of phosphatidylserine as a consequence of resveratrol-induced apoptosis was conducted. Thymosin α1's interaction with human serum albumin was also investigated by NMR spectroscopy. Steady-state saturation transfer, transfer nuclear Overhauser effect spectroscopy, and diffusion-ordered spectroscopy methodologies all reveal that the C-terminal region of Thymosin α1 is involved in the interaction with serum albumin. These results may shed more light on Thymosin α1's mechanism of action by its insertion in negative regions of membranes due to the exposure of phosphatidylserine. Once Thymosin α1's N-terminus has been inserted into the membrane, the rest may interact with nearby proteins and/or receptors acting as effectors and causing a biological signaling cascade, thus exerting thymosin α1's pleiotropy.

  1. Elevation of arginine decarboxylase-dependent putrescine production enhances aluminum tolerance by decreasing aluminum retention in root cell walls of wheat.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Lu, Lingli; Lin, Xianyong

    2015-12-15

    Aluminum (Al) stress induces putrescine (Put) accumulation in several plants and this response is proposed to alleviate Al toxicity. However, the mechanisms underlying this alleviation remain largely unknown. Here, we show that exposure to Al clearly increases Put accumulation in the roots of wheat plants (Triticum aestivum L. 'Xi Aimai-1') and that this was accompanied by significant increase in the activity of arginine decarboxylase (ADC), a Put producing enzyme. Application of an ADC inhibitor (d-arginine) terminated the Al-induced Put accumulation, indicating that increased ADC activity may be responsible for the increase in Put accumulation in response to Al. The d-arginine treatment also increased the Al-induced accumulation of cell wall polysaccharides and the degree of pectin demethylation in wheat roots. Thus, it elevated Al retention in cell walls and exacerbated Al accumulation in roots, both of which aggravate Al toxicity in wheat plants. The opposite effects were true for exogenous Put application. These results suggest that ADC-dependent Put accumulation plays important roles in providing protection against Al toxicity in wheat plants through decreasing cell wall polysaccharides and increasing the degree of pectin methylation, thus decreasing Al retention in the cell walls.

  2. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer.

    PubMed

    Graham, Douglas K; DeRyckere, Deborah; Davies, Kurtis D; Earp, H Shelton

    2014-12-01

    The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.

  3. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.

    PubMed

    Levine, Zachary A; Vernier, P Thomas

    2012-10-01

    Molecular dynamics simulations of electroporation of homogeneous phospholipid bilayers show that the pore creation time is strongly dependent on the magnitude of the applied electric field. Here, we investigated whether heterogeneous bilayers containing phospholipids with zwitterionic and anionic headgroups exhibit a similar dependence. To facilitate this analysis we divide the life cycle of an electropore into several stages, marking the sequence of steps for pore creation and pore annihilation (restoration of the bilayer after removal of the electric field). We also report simulations of calcium binding isotherms and the effects of calcium ions on the electroporation of heterogeneous lipid bilayers. Calcium binding simulations are consistent with experimental data using a 1:2 Langmuir binding isotherm. We find that calcium ions and phosphatidylserine increase pore creation time and decrease pore annihilation time. For all systems tested, pore creation time was inversely proportional to the bilayer internal electric field.

  4. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  5. Suppression of atopic dermatitis in mice model by reducing inflammation utilizing phosphatidylserine-coated biodegradable microparticles.

    PubMed

    Kumar, Purnima; Hosain, Md Zahangir; Kang, Jeong-Hun; Takeo, Masafumi; Kishimura, Akihiro; Mori, Takeshi; Katayama, Yoshiki

    2015-01-01

    Controlling inflammatory response is important to avoid chronic inflammation in many diseases including atopic dermatitis (AD). In this research, we tried using a phosphatidylserine (PS)-coated microparticles in the AD mouse model for achieving the modulation of the macrophage phenotype to an anti-inflammatory state. Here, we prepared poly (D,L-lactic acid) microparticle coated with PS on the outside shell. We confirmed the cellular uptake of the PS-coated microparticle, which leads to the significant downregulation of the inflammatory cytokine production. In the mouse model of AD, the PS-coated microparticle was injected subcutaneously for a period of 12 days. The mice showed significant reduction in the development of AD symptoms comparing with the mice treated with the PC-coated microparticle.

  6. Involvement of VAT-1 in Phosphatidylserine Transfer from the Endoplasmic Reticulum to Mitochondria.

    PubMed

    Junker, Mirco; Rapoport, Tom A

    2015-12-01

    Mitochondria receive phosphatidylserine (PS) from the endoplasmic reticulum (ER), but how PS is moved from the ER to mitochondria is unclear. Current models postulate a physical link between the organelles, but no involvement of cytosolic proteins. Here, we have reconstituted PS transport from the ER to mitochondria in vitro using Xenopus egg components. Transport is independent of ER proteins, but is dependent on a cytosolic factor that has a preferential affinity for PS. Crosslinking with a photoactivatable PS analog identified VAT-1 as a candidate for a cytosolic PS transport protein. Recombinant, purified VAT-1 stimulated PS transport into mitochondria and depletion of VAT-1 from Xenopus cytosol with specific antibodies led to a reduction of transport. Our results suggest that cytosolic factors have a role in PS transport from the ER to mitochondria, implicate VAT-1 in the transport process, and indicate that physical contact between the organelles is not essential.

  7. Room temperature ordering of dipalmitoyl phosphatidylserine bilayers induced by short chain alcohols.

    PubMed

    Wachtel, E; Bach, D; Miller, I R

    2013-01-01

    Using differential scanning calorimetry and small and wide angle X-ray diffraction, we show that, following extended incubation at room temperature, methanol, propanol, and three of the isomers of butanol can induce ordering in dipalmitoyl phosphatidylserine (DPPS) gel phase bilayers. The organization of the bilayers in the presence of ethanol, described previously, is now observed to be a general effect of short chain alcohols. Evidence is presented for tilting of the acyl chains with respect to the bilayer normal in the presence of ethanol or propanol. However, the different chain lengths of the alcohols, and isomeric form, influence the thermal stability of the ordered gel to different extents. This behavior is unlike that of the gel state phosphatidylcholine analog which, in the presence of short chain alcohols, undergoes hydrocarbon chain interdigitation. Dipalmitoyl phosphatidylcholine added to DPPS in the presence of 20 vol% ethanol, acts to suppress the ordered gel phase.

  8. ATP-Dependent Formation of Phosphatidylserine-Rich Vesicles from the Endoplasmic Reticulum of Leek Cells

    PubMed Central

    Sturbois-Balcerzak, Bénédicte; Vincent, Patrick; Maneta-Peyret, Lilly; Duvert, Michel; Satiat-Jeunemaitre, Béatrice; Cassagne, Claude; Moreau, Patrick

    1999-01-01

    Leek (Allium porrum) plasma membrane is enriched in phosphatidylserine (PS) by the vesicular pathway, in a way similar to that already observed in animal cells (B. Sturbois-Balcerzak, D.J. Morré, O. Loreau, J.P. Noel, P. Moreau, C. Cassagne [1995] Plant Physiol Biochem 33: 625–637). In this paper we document the formation of PS-rich small vesicles from leek endoplasmic reticulum (ER) membranes upon addition of ATP and other factors. The omission of ATP or its replacement by ATPγ-S prevents vesicle formation. These vesicles correspond to small structures (70–80 nm) and their phospholipid composition, characterized by a PS enrichment, is compatible with a role in PS transport. Moreover, the PS enrichment over phosphatidylinositol in the ER-derived vesicles is the first example, to our knowledge, of phospholipid sorting from the ER to ER-derived vesicles in plant cells. PMID:10318702

  9. Anti-glutamic acid decarboxylase antibody positive neurological syndromes

    PubMed Central

    Tohid, Hassaan

    2016-01-01

    A rare kind of antibody, known as anti-glutamic acid decarboxylase (GAD) autoantibody, is found in some patients. The antibody works against the GAD enzyme, which is essential in the formation of gamma aminobutyric acid (GABA), an inhibitory neurotransmitter found in the brain. Patients found with this antibody present with motor and cognitive problems due to low levels or lack of GABA, because in the absence or low levels of GABA patients exhibit motor and cognitive symptoms. The anti-GAD antibody is found in some neurological syndromes, including stiff-person syndrome, paraneoplastic stiff-person syndrome, Miller Fisher syndrome (MFS), limbic encephalopathy, cerebellar ataxia, eye movement disorders, and epilepsy. Previously, excluding MFS, these conditions were called ‘hyperexcitability disorders’. However, collectively, these syndromes should be known as “anti-GAD positive neurological syndromes.” An important limitation of this study is that the literature is lacking on the subject, and why patients with the above mentioned neurological problems present with different symptoms has not been studied in detail. Therefore, it is recommended that more research is conducted on this subject to obtain a better and deeper understanding of these anti-GAD antibody induced neurological syndromes. PMID:27356651

  10. Multiple roles of the active site lysine of Dopa decarboxylase.

    PubMed

    Bertoldi, Mariarita; Voltattorni, Carla Borri

    2009-08-15

    The pyridoxal 5'-phosphate dependent-enzyme Dopa decarboxylase, responsible for the irreversible conversion of l-Dopa to dopamine, is an attractive drug target. The contribution of the pyridoxal-Lys303 to the catalytic mechanisms of decarboxylation and oxidative deamination is analyzed. The K303A variant binds the coenzyme with a 100-fold decreased apparent equilibrium binding affinity with respect to the wild-type enzyme. Unlike the wild-type, K303A in the presence of l-Dopa displays a parallel progress course of formation of both dopamine and 3,4-dihydroxyphenylacetaldehyde (plus ammonia) with a burst followed by a linear phase. Moreover, the finding that the catalytic efficiencies of decarboxylation and of oxidative deamination display a decrease of 1500- and 17-fold, respectively, with respect to the wild-type, is indicative of a different impact of Lys303 mutation on these reactions. Kinetic analyses reveal that Lys303 is involved in external aldimine formation and hydrolysis as well as in product release which affects the rate-determining step of decarboxylation.

  11. Studies on uroporphyrinogen decarboxylase from Chlorella kessleri (Trebouxiophyceae, Chlorophyta).

    PubMed

    Juárez, Angela B; Aldonatti, Carmen; Vigna, María S; Ríos de Molina, María Del C

    2007-02-01

    Uroporphyrinogen decarboxylase (UroD) (EC 4.1.1.37) is an enzyme from the tetrapyrrole biosynthetic pathway, in which chlorophyll is the main final product in algae. This is the first time that a study on UroD activity has been performed in a green alga (Chlorella). We isolated and partially purified the enzyme from a Chlorella kessleri (Trebouxiophyceae, Chlorophyta) strain (Copahue, Neuquén, Argentina), and describe for the first time some of its properties. In C. kessleri, the decarboxylation of uroporphyrinogen III occurs in two stages, via 7 COOH and then 6 and 5 COOH intermediates, with the decarboxylation of the 7 COOH compound being the rate-limiting step for the reaction. Cultures in the exponential growth phase showed the highest specific activity values. The most suitable conditions to measure UroD activity in C. kessleri were as follows: 0.23-0.3 mg protein/mL, approximately 6-8 micromol/L uroporphyrinogen III, and 20 min incubation time. Gel filtration chromatography and Western blot assays indicated that UroD from C. kessleri is a dimer of approximately 90 kDa formed by species of lower molecular mass, which conserves enzymatic activity.

  12. Chemical modification of oxalate decarboxylase to improve adsorption capacity.

    PubMed

    Lin, Rihui; He, Junbin; Wu, Jia; Cai, Xinghua; Long, Han; Chen, Shengfeng; Liu, Haiqian

    2017-02-03

    In order to enhance the adsorption capacity of oxalate decarboxylase (Oxdc) on calcium oxalate monohydrate crystals and improve the application performance of Oxdc, chemical modification of Oxdc with ethylenediaminetetraacetic dianhydride (EDTAD) was investigated in this work. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography tandem mass spectrometry (LC/MS) analysis results demonstrated that Oxdc and EDTAD have been covalently bound, and suggested that the chemical modification occurred at the free amino of the side chain and the α-amine of the N-terminus of Oxdc. Fluorescene and circular dichroic measurement showed that the structure and conformation of Oxdc were tinily altered after modification by EDTAD. The optimum pH of EDTAD-modified Oxdc was shifted to the alkaline side about 1.5 unit and it has a higher thermostability. The analysis of kinetic parameters indicated that the EDTAD-modified Oxdc showed a higher affinity towards the substrate. Through modification the adsorption capacity of Oxdc onto CaOx monohydrate crystals was increased by 42.42%.

  13. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

    PubMed

    Hiraga, Kazumi; Ueno, Yoshie; Oda, Kohei

    2008-05-01

    In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity and stability was significantly dependent on the ammonium sulfate concentration, as observed in authentic GAD. Gel filtration showed that the inactive form of the GAD was a dimer. In contrast, the ammonium sulfate-activated form was a tetramer. CD spectral analyses at pH 5.5 revealed that the structures of the tetramer and the dimer were similar. Treatment of the GAD with high concentrations of ammonium sulfate and subsequent dilution with sodium glutamate was essential for tetramer formation and its activation. Thus the biochemical properties of the GAD from L. brevis IFO12005 were significantly different from those from other sources.

  14. Molecular cloning and expression of the mouse ornithine decarboxylase gene.

    PubMed Central

    McConlogue, L; Gupta, M; Wu, L; Coffino, P

    1984-01-01

    We used mRNA from a mutant S49 mouse lymphoma cell line that produces ornithine decarboxylase (OrnDCase) as its major protein product to synthesize and clone cDNA. Plasmids containing OrnDCase cDNA were identified by hybrid selection of OrnDCase mRNA and in vitro translation. The two of these with the largest inserts together span 2.05 kilobases of cDNA. Southern blot analysis of DNA from wild-type or mutant S49 cells, cleaved with EcoRI or with BamHI, revealed multiple bands homologous to OrnD-Case cDNA, only one of which was amplified in the mutant cells. RNA transfer blot analysis showed that the major OrnD-Case mRNA in the mouse lymphoma cells is 2.0 kilobases long. A similar size mRNA was found in mouse kidney and was more abundant in the kidneys of mice treated with testosterone, an inducer of OrnDCase activity in that tissue. Images PMID:6582509

  15. Expression of ornithine decarboxylase in precancerous and cancerous gastric lesions

    PubMed Central

    Miao, Xin-Pu; Li, Jian-Sheng; Li, Hui-Yan; Zeng, Shi-Ping; Zhao, Ye; Zeng, Jiang-Zheng

    2007-01-01

    AIM: To investigate the expression of ornithine decarboxylase (ODC) in precancerous and cancerous gastric lesions. METHODS: We studied the expression of ODC in gastric mucosa from patients with chronic superficial gastritis (CSG, n = 32), chronic atrophic gastritis [CAG, n = 43; 15 with and 28 without intestinal metaplasia (IM)], gastric dysplasia (DYS, n = 11) and gastric cancer (GC, n = 48) tissues using immunohistochemical staining. All 134 biopsy specimens of gastric mucosa were collected by gastroscopy. METHODS: The positive rate of ODC expression was 34.4%, 42.9%, 73.3%, 81.8% and 91.7% in cases with CSG, CAG without IM, CAG with IM, DYS and GC, respectively (P < 0.01), The positive rate of ODC expression increased in the order of CSG < CAG (without IM) < CAG (with IM) < DYS and finally, GC. In addition, ODC positive immunostaining rate was lower in well-differentiated GC than in poorly-differentiated GC (P < 0.05). CONCLUSION: The expression of ODC is positively correlated with the degree of malignity of gastric mucosa and development of gastric lesions. This finding indicates that ODC may be used as a good biomarker in the screening and diagnosis of precancerous lesions. PMID:17569126

  16. Ornithine decarboxylase as a marker for premalignancy in the stomach.

    PubMed Central

    Patchett, S E; Alstead, E M; Butruk, L; Przytulski, K; Farthing, M J

    1995-01-01

    Assessment of mucosal ornithine decarboxylase (ODC) activity in the human large bowel may be of value as a marker of potential malignant risk. Its value as a marker of premalignancy in the upper gastrointestinal tract is less clear. Using a [14C]-ornithine bioassay, gastric mucosal ODC activity was measured in 32 normal subjects and 22 patients with confirmed gastric cancer. These results were compared with 47 patients at increased risk of upper gastrointestinal malignancy, (32 patients with partial gastric resection, 15 patients with familial adenomatous polyposis). Median ODC activity in normal subjects was 371 pmol/mg protein/h, (interquartile range (IQR), 230-617). There was no variation with age or sex and no relation to Helicobacter pylori status. Normal subjects had significantly lower ODC activity than patients with a gastric resection or confirmed gastric cancer, but similar to patients with familial adenomatous polyposis. Furthermore, no difference in activity was identified between patients with a gastric resection and established gastric cancer. ODC activity was, however, significantly increased in areas of gastric atrophy or intestinal metaplasia, regardless of the clinical group from which the samples were obtained. It is concluded that measurement of mucosal ODC activity does not provide additional predictive information of malignant risk in the stomach and investigation of other potential biomarkers of malignancy is warranted. PMID:7672662

  17. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    PubMed Central

    Alkan, Manal; Machavoine, François; Rignault, Rachel; Dam, Julie; Dy, Michel; Thieblemont, Nathalie

    2015-01-01

    Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response. PMID:26090474

  18. Ornithine decarboxylase antizyme inhibitor 2 regulates intracellular vesicle trafficking

    SciTech Connect

    Kanerva, Kristiina; Maekitie, Laura T.; Baeck, Nils; Andersson, Leif C.

    2010-07-01

    Antizyme inhibitor 1 (AZIN1) and 2 (AZIN2) are proteins that activate ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis. Both AZINs release ODC from its inactive complex with antizyme (AZ), leading to formation of the catalytically active ODC. The ubiquitously expressed AZIN1 is involved in cell proliferation and transformation whereas the role of the recently found AZIN2 in cellular functions is unknown. Here we report the intracellular localization of AZIN2 and present novel evidence indicating that it acts as a regulator of vesicle trafficking. We used immunostaining to demonstrate that both endogenous and FLAG-tagged AZIN2 localize to post-Golgi vesicles of the secretory pathway. Immuno-electron microscopy revealed that the vesicles associate mainly with the trans-Golgi network (TGN). RNAi-mediated knockdown of AZIN2 or depletion of cellular polyamines caused selective fragmentation of the TGN and retarded the exocytotic release of vesicular stomatitis virus glycoprotein. Exogenous addition of polyamines normalized the morphological changes and reversed the inhibition of protein secretion. Our findings demonstrate that AZIN2 regulates the transport of secretory vesicles by locally activating ODC and polyamine biosynthesis.

  19. Interaction of NAP-22 with brain glutamic acid decarboxylase (GAD).

    PubMed

    Maekawa, Shohei; Kobayashi, Yuumi; Odagaki, Sin-Ichi; Makino, Midori; Kumanogoh, Haruko; Nakamura, Shun; Morita, Mitsuhiro; Hayashi, Fumio

    2013-03-14

    NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched protein localized mainly in the synaptic vesicles and the synaptic plasma membrane. Biochemically, it is recovered in the lipid raft fraction. In order to understand the physiological function of the neuronal lipid raft, NAP-22 binding proteins were screened with a pull-down assay. Glutamic acid decarboxylase (GAD) was detected through LC-MS/MS, and Western blotting using a specific antibody confirmed the result. Two isoforms of GAD, GAD65 and GAD67, were expressed in bacteria as GST-fusion forms and the interaction with NAP-22 was confirmed in vitro. Partial co-localization of NAP-22 with GAD65 and GAD67 was also observed in cultured neurons. The binding showed no effect on the enzymatic activity of GAD65 and GAD67. These results hence suggest that NAP-22 could participate in the transport of GAD65 and GAD67 to the presynaptic termini and their retention on the synaptic vesicles as an anchoring protein.

  20. Reactivation of substrate-inactivated brain glutamate decarboxylase.

    PubMed

    Meeley, M P; Martin, D L

    1983-03-01

    The effects of ATP and inorganic phosphate (Pi) on the reactivation of glutamate apodecarboxylase by its cofactor pyridoxal-5'-phosphate (pyridoxal-P) was studied. Apoenzyme was prepared by preincubation with glutamate. Apoenzyme prepared with glutamate alone was reactivated slowly and incompletely by adding a saturating concentration of pyridoxal-P (20 microM). Reactivation was slightly enhanced by 1-10 mM Pi. Reactivation by pyridoxal-P plus Pi was greatly enhanced by the presence of low concentrations (less than 100 microM) of ATP during the preparation of apoenzyme with glutamate. Reactivation was much lower if Pi was omitted. Enhancement of reactivation by ATP was due to its effect during apoenzyme formation, since ATP did not enhance reactivation if added only during reactivation and since the enhancing effect persisted after the removal of free ATP by chromatography on Sephadex G-25 after apoenzyme preparation and before reactivation. Reactivation was inhibited by high concentrations of ATP (greater than 100 microM), possibly by competition of ATP for the cofactor binding site. Four factors (glutamate, pyridoxal-P, ATP, and Pi) control a cycle of inactivation and reactivation that appears to be important in the regulation of brain glutamate decarboxylase.

  1. Expression of arginine decarboxylase in brain regions and neuronal cells

    PubMed Central

    Iyo, Abiye H.; Zhu, Meng-Yang; Ordway, Gregory A.; Regunathan, Soundar

    2010-01-01

    After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N-terminal regions of ADC cDNA down-regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down-regulation of ADC activity by specific siRNA leads to lower agmatine production. PMID:16445852

  2. Phosphatidylserine lipids and membrane order precisely regulate the activity of Polybia-MP1 peptide.

    PubMed

    Alvares, Dayane S; Neto, João Ruggiero; Ambroggio, Ernesto E

    2017-03-05

    Polybia-MP1 (IDWKKLLDAAKQIL-NH2) is a lytic peptide from the Brazilian wasp venom with known anti-cancer properties. Previous evidence indicates that phosphatidylserine (PS) lipids are relevant for the lytic activity of MP1. In agreement with this requirement, phosphatidylserine lipids are translocated to the outer leaflet of cells, and are available for MP1 binding, depending on the presence of liquid-ordered domains. Here, we investigated the effect of PS on MP1 activity when this lipid is reconstituted in membranes of giant or large liposomes with different lipid-phase states. By monitoring the membrane and soluble luminal content of giant unilamellar vesicles (GUVs), using fluorescence confocal microscopy, we were able to determine that MP1 has a pore-forming activity at the membrane level. Liquid-ordered domains, which were phase-separated within the membrane of GUVs, influenced the pore-forming activity of MP1. Experiments evaluating the membrane-binding and lytic activity of MP1 on large unilamellar vesicles (LUVs), with the same lipid composition as GUVs, demonstrated that there was synergy between liquid-ordered domains and PS, which enhanced both activities. Based on our findings, we propose that the physicochemical properties of cancer cell membranes, which possess a much higher concentration of PS than normal cells, renders them susceptible to MP1 binding and lytic pore formation. These results can be correlated with MP1's potent and selective anti-cancer activity and pave the way for future research to develop cancer therapies that harness and exploit the properties of MP1.

  3. Phosphatidylserine and caffeine attenuate postexercise mood disturbance and perception of fatigue in humans.

    PubMed

    Wells, Adam J; Hoffman, Jay R; Gonzalez, Adam M; Stout, Jeffrey R; Fragala, Maren S; Mangine, Gerald T; McCormack, William P; Jajtner, Adam R; Townsend, Jeremy R; Robinson, Edward H

    2013-06-01

    Phosphatidylserine (PS) may attenuate the adverse effects of physical fatigue. Therefore, we investigated the effects of a multi-ingredient supplement containing 400 mg/d PS and 100 mg/d caffeine (supplement [SUP]) for 2 weeks on measures of cognitive function (CF), reaction time (RT), and mood (MD) following an acute exercise stress. It is hypothesized that PS will maintain preexercise CF and RT scores, while attenuating postexercise fatigue. Participants completed 2 acute bouts of resistance exercise (T1 and T2) separated by 2-week ingestion of SUP or control (CON). Outcome measures were assessed pre- and postexercise. When collapsed across groups, a significant decrease in RT performance was seen in the 60-second reaction drill from pre- to postexercise at T1. All other RT tests were similar from pre- to postexercise at T1. Reaction time was not significantly changed by PS. When collapsed across groups, a significant increase in performance of the serial subtraction test was seen. A significant increase (8.9% and 7.1%) in the number of correct answers and a significant decrease (8.0% and 7.5%) in time to answer were seen from pre- to postworkout at T1 and T2, respectively. A significant increase in total MD score from pre- to postworkout was observed for CON but not for PS at T2. Phosphatidylserine significantly attenuated pre- to postexercise perception of fatigue compared to CON. Ingestion of SUP for 14 days appears to attenuate postexercise MD scores and perception of fatigue, but does not affect CF or RT, in recreationally trained individuals.

  4. Host Cell Plasma Membrane Phosphatidylserine Regulates the Assembly and Budding of Ebola Virus

    PubMed Central

    Adu-Gyamfi, Emmanuel; Johnson, Kristen A.; Fraser, Mark E.; Scott, Jordan L.; Soni, Smita P.; Jones, Keaton R.; Digman, Michelle A.; Gratton, Enrico; Tessier, Charles R.

    2015-01-01

    ABSTRACT Lipid-enveloped viruses replicate and bud from the host cell where they acquire their lipid coat. Ebola virus, which buds from the plasma membrane of the host cell, causes viral hemorrhagic fever and has a high fatality rate. To date, little has been known about how budding and egress of Ebola virus are mediated at the plasma membrane. We have found that the lipid phosphatidylserine (PS) regulates the assembly of Ebola virus matrix protein VP40. VP40 binds PS-containing membranes with nanomolar affinity, and binding of PS regulates VP40 localization and oligomerization on the plasma membrane inner leaflet. Further, alteration of PS levels in mammalian cells inhibits assembly and egress of VP40. Notably, interactions of VP40 with the plasma membrane induced exposure of PS on the outer leaflet of the plasma membrane at sites of egress, whereas PS is typically found only on the inner leaflet. Taking the data together, we present a model accounting for the role of plasma membrane PS in assembly of Ebola virus-like particles. IMPORTANCE The lipid-enveloped Ebola virus causes severe infection with a high mortality rate and currently lacks FDA-approved therapeutics or vaccines. Ebola virus harbors just seven genes in its genome, and there is a critical requirement for acquisition of its lipid envelope from the plasma membrane of the human cell that it infects during the replication process. There is, however, a dearth of information available on the required contents of this envelope for egress and subsequent attachment and entry. Here we demonstrate that plasma membrane phosphatidylserine is critical for Ebola virus budding from the host cell plasma membrane. This report, to our knowledge, is the first to highlight the role of lipids in human cell membranes in the Ebola virus replication cycle and draws a clear link between selective binding and transport of a lipid across the membrane of the human cell and use of that lipid for subsequent viral entry. PMID

  5. Accumulate Repeat Accumulate Coded Modulation

    NASA Technical Reports Server (NTRS)

    Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung

    2004-01-01

    In this paper we propose an innovative coded modulation scheme called 'Accumulate Repeat Accumulate Coded Modulation' (ARA coded modulation). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes that are combined with high level modulation. Thus at the decoder belief propagation can be used for iterative decoding of ARA coded modulation on a graph, provided a demapper transforms the received in-phase and quadrature samples to reliability of the bits.

  6. Arginase, Arginine Decarboxylase, Ornithine Decarboxylase, and Polyamines in Tomato Ovaries (Changes in Unpollinated Ovaries and Parthenocarpic Fruits Induced by Auxin or Gibberellin).

    PubMed Central

    Alabadi, D.; Aguero, M. S.; Perez-Amador, M. A.; Carbonell, J.

    1996-01-01

    Arginase (EC 3.5.3.1) activity has been found in the ovaries and Young fruits of tomato (Lycopersicon esculentum Mill. cv Rutgers).Changes in arginase, arginine decarboxylase (EC 4.1.1.19), and ornithine decarboxylase activity (EC 4.1.1.17) and levels of free and conjugated putrescine, spermidine, and spermine were determined in unpollinated ovaries and in parthenocarpic fruits during the early stages of development induced by 2,4-dichlorophenoxyacetic acid (2,4-D) or gibberellic acid (GA3). Levels of arginase, free spermine, and conjugates of the three polyamines were constant in unpollinated ovaries and characteristic of a presenescent step. A marked decrease in arginase activity, free spermine, and polyamine conjugates was associated with the initiation of fruit growth due to cell division, and when cell expansion was initiated, the absence of arginase indicated a redirection of nitrogen metabolism to the synthesis of arginine. A transient increase in arginine decarboxylase and ornithine decarboxylase was also observed in 2,4-D-induced fruits. In general, 2,4-D treatments produced faster changes than GA3, and without treatment, unpollinated ovaries developed only slightly and senescence was hardly visible. Sensitivity to 2,4-D and GA3 treatment remained for at least 2 weeks postanthesis. PMID:12226441

  7. Molecular cloning and expression analysis of an arginine decarboxylase gene from peach (Prunus persica).

    PubMed

    Liu, Ji Hong; Ban, Yusuke; Wen, Xiao-Peng; Nakajima, Ikuko; Moriguchi, Takaya

    2009-01-15

    Arginine decarboxylase (ADC), one of the enzymes responsible for putrescine (Put) biosynthesis, has been shown to be implicated in stress response. In the current paper attempts were made to clone and characterize a gene encoding ADC from peach (Prunus persica (L.) Batsch, 'Akatsuki'). Rapid amplification of cDNA ends (RACE) gave rise to a full-length ADC cDNA (PpADC) with a complete open reading frame of 2178 bp, encoding a 725 amino acid polypeptide. Homology search and sequence multi-alignment demonstrated that the deduced PpADC protein sequence shared a high identity with ADCs from other plants, including several highly conservative motifs and amino acids. Southern blotting indicated that PpADC existed in peach genome as a single gene. Expression levels of PpADC in different tissues of peach (P. persica 'Akatsuki') were spatially and developmentally regulated. Treatment of peach shoots from 'Mochizuki' with exogenous 5 mM Put, an indirect product of ADC, remarkably induced accumulation of PpADC mRNA. Transcripts of PpADC in peach leaves from 'Mochizuki' were quickly induced, either transiently or continuously, in response to dehydration, high salinity (200 mM NaCl), low temperature (4 degrees C) and heavy metal (150 microM CdCl(2)), but repressed by high temperature 37 degrees C) during a 2-day treatment, which changed in an opposite direction when the stresses were otherwise removed with the exception of CdCl(2) treatment. In addition, steady-state of PpADC mRNA could be also transiently up-regulated by abscisic acid (ABA) in 'Mochizuki' leaves. All of these, taken together, suggest that PpADC is a stress-responsive gene and can be considered as a potential target that is genetically manipulated so as to create novel germplasms with enhanced stress tolerance in the future.

  8. A role of phosphatidylserine externalization in clearance of erythrocytes exposed to stress but not in eliminating aging populations of erythrocyte in mice.

    PubMed

    Khandelwal, Sanjay; Saxena, Rajiv K

    2008-08-01

    Age dependent changes in phosphatidylserine (PS) externalization were studied in mouse erythrocytes of different age groups (range 1-55 days) by using a newly developed double in vivo biotinylation (DIB) technique. Around 3-4% of the erythrocytes freshly released in the circulation were PS(+) but this proportion fell rapidly to 1% or less and did not increase at later time points. Blocking erythrocyte clearance from the circulation by in vivo depletion of macrophages (by treatment with clodronate loaded liposomes) for up to 7 days did not result in accumulation of PS(+) erythrocytes in the circulation indicating that the low percentage of PS(+) cells within old erythrocytes (age >40 days) was not related to the clearance of PS(+) erythrocytes by macrophages. In vitro treatment with stress inducing agents like deoxyglucose or Ca(++)/calcium ionophore resulted in a marked induction of PS externalization in mouse erythrocytes and this effect was most prominent in the youngest erythrocyte population (age <10 days). Kinetics of clearance of different age groups of stress exposed erythrocytes after intravenous infusion into recipient mice indicated that the young erythrocytes were cleared at fastest rate from the circulation as compared to erythrocytes of older age groups. Within young erythrocytes exposed to stress, PS(+) erythrocytes were preferentially cleared. Taken together our results suggest that PS externalization is unlikely to have a role in the removal of old erythrocytes from blood circulation but may have a role in the clearance of stressed and damaged young erythrocytes in blood circulation.

  9. Dynamic changes in gamma-aminobutyric acid and glutamate decarboxylase activity in oats (Avena nuda L.) during steeping and germination.

    PubMed

    Xu, Jian Guo; Hu, Qing Ping; Duan, Jiang Lian; Tian, Cheng Rui

    2010-09-08

    Gamma-aminobutyric acid (GABA) is the principal inhibitory neurotransmitter in the central nervous system and provides beneficial effects for human and other animals health. To accumulate GABA, samples from two different naked oat cultivars, Baiyan II and Bayou I, were steeped and germinated in an incubator. The content of GABA and glutamic acid as well as the activity of the glutamate decarboxylase (GAD) in oats during steeping and germination were investigated with an amino acid automatic analyzer. Compared with raw groats, an increase in GABA content of oat groats during steeping and germination was continuously observed for two oat cultivars. The activity of GAD increased greatly at the end of steeping and the second stage of germination for Baiyan II and Bayou I, respectively. Glutamic acid content of treated oat groats was significantly lower than that in raw groats until the later period of germination. GABA was correlated (p<0.01) significantly and positively with the glutamic acid rather than GAD activity in the current study. The results indicates that steeping and germination process under highly controlled conditions can effectively accumulate the GABA in oat groats for Baiyan II and Bayou I, which would greatly facilitate production of nutraceuticals or food ingredients that enable consumers to gain greater access to the health benefits of oats. However, more assays need to be further performed with more oat cultivars.

  10. Nucleotide sequence and expression of the Enterobacter aerogenes alpha-acetolactate decarboxylase gene in brewer's yeast.

    PubMed Central

    Sone, H; Fujii, T; Kondo, K; Shimizu, F; Tanaka, J; Inoue, T

    1988-01-01

    The nucleotide sequence of a 1.4-kilobase DNA fragment containing the alpha-acetolactate decarboxylase gene of Enterobacter aerogenes was determined. The sequence contains an entire protein-coding region of 780 nucleotides which encodes an alpha-acetolactate decarboxylase of 260 amino acids. The DNA sequence coding for alpha-acetolactate decarboxylase was placed under the control of the alcohol dehydrogenase I promoter of the yeast Saccharomyces cerevisiae in a plasmid capable of autonomous replication in both S. cerevisiae and Escherichia coli. Brewer's yeast cells transformed by this plasmid showed alpha-acetolactate decarboxylase activity and were used in laboratory-scale fermentation experiments. These experiments revealed that the diacetyl concentration in wort fermented by the plasmid-containing yeast strain was significantly lower than that in wort fermented by the parental strain. These results indicated that the alpha-acetolactate decarboxylase activity produced by brewer's yeast cells degraded alpha-acetolactate and that this degradation caused a decrease in diacetyl production. PMID:3278689

  11. Hepatic ornithine decarboxylase induction by potato glycoalkaloids in rats.

    PubMed

    Caldwell, K A; Grosjean, O K; Henika, P R; Friedman, M

    1991-08-01

    The induction of hepatic ornithine decarboxylase (ODC) activity in rat livers by the potato glycoalkaloids alpha-solanine, alpha-chaconine, and their aglycone solanidine, has been studied. Ip administration of alpha-solanine at 7.5, 15 and 30 mg/kg body weight produced markedly elevated enzyme activity at 4 hr after treatment, with a linear dose response. The increase was four-fold at the lowest dose administered to 12-fold at the highest. ODC activity was measured at 1, 2, 3, 4, 5, 6, 8, and 24hr after alpha-solanine was given. A statistically significant increase in enzyme activity was evident at 3 hr after treatment; maximal activity occurred at 5 hr and was approximately 12 times greater than the dimethylsulphoxide (DMSO) control level. Elevated activities persisted for several hours, decreasing to about one-third of the maximal level at 8 hr. The relative effects of alpha-solanine, alpha-chaconine and solanidine on ODC activities were studied at 4 hr using an equimolar dose of 17 mM/kg body weight. ODC activity induced by alpha-chaconine was higher than that induced by alpha-solanine; the latter activity was two-thirds that of the former. The aglycone solanidine did not induce any increase in activity compared with the DMSO control. ODC activity with dexamethasone, a glucocorticoid, at 4 mg/kg body weight, followed a pattern similar to that of alpha-solanine. However, maximal activity occurred slightly earlier at 4 hr after treatment. The results show that the extent of induced ODC activity depends on the structure of the potato alkaloid.

  12. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+).

  13. Conformational stabilization of rat s-adenosylmethionine decarboxylase by putrescine.

    PubMed

    Wada, Makiko; Shirahata, Akira

    2010-01-01

    The activity and processing of mammalian S-adenosylmethionine decarboxylase (AdoMetDC) is stimulated by putrescine. To obtain new insights into the mechanism through which putrescine stimulates AdoMetDC, we investigated conformational changes in rat prostate AdoMetDC in the presence or absence of putrescine. We examined the reactivity of purified rat prostate AdoMetDC to the SH-reagent iodoacetic acid (IAA) and its susceptibility to proteolysis in the presence or absence of putrescine using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The activity of AdoMetDC treated with IAA in the absence of putrescine was reduced, but about 80% of its activity remained after treatment with IAA in the presence of putrescine. In the presence of putrescine, IAA incorporation was 1.9 mol IAA/mol of AdoMetDC α-subunit, while there was no incorporation of IAA in the β-subunit of AdoMetDC. In the absence of putrescine, 5.0 mol of IAA/mol of α-subunit and 0.9 mol of IAA/mol of β-subunit were incorporated. Only Cys292 and Cys310 were carboxymethylated by IAA in the presence of putrescine. In contrast, in the absence of putrescine all cysteines were carboxymethylated by IAA. In addition, putrescine slowed the rate of AdoMetDC degradation by trypsin. These results demonstrate that the conformation of AdoMetDC purified from rat prostate is stabilized by putrescine.

  14. Purification and properties of diaminopimelate decarboxylase from Escherichia coli

    PubMed Central

    White, P. J.; Kelly, Bridget

    1965-01-01

    1. Diaminopimelate decarboxylase from a soluble extract of Escherichia coli A.T.C.C. 9637 was purified 200-fold by precipitation of nucleic acids, fractionation with acetone and then with ammonium sulphate, adsorption on calcium phosphate gel and chromatography on DEAE-cellulose or DEAE-Sephadex. 2. The purified enzyme showed only one component in the ultracentrifuge, with a sedimentation coefficient of 5·4s. One major peak and three much smaller peaks were observed on electrophoresis of the enzyme at pH8·9. 3. The mol.wt. of the enzyme was approx. 200000. The catalytic constant was 2000mol. of meso-diaminopimelic acid decomposed/min./mol. of enzyme, at 37°. The relative rates of decarboxylation at 25°, 37° and 45° were 0·17:1·0:1·6. At 37° the Michaelis constant was 1·7mm and the optimum pH was 6·7–6·8. 4. There was an excess of acidic amino acids over basic amino acids in the enzyme, which was bound only on basic cellulose derivatives at pH6·8. 5. The enzyme had an absolute requirement for pyridoxal phosphate as a cofactor; no other derivative of pyridoxine had activity. A thiol compound (of which 2,3-dimercaptopropan-1-ol was the most effective) was also needed as an activator. 6. In the presence of 2,3-dimercaptopropan-1-ol (1mm), heavy-metal ions (Cu2+, Hg2+) did not inhibit the enzyme, but there was inhibition by several amino acids with analogous structures to diaminopimelate, generally at high concentrations relative to the substrate. Penicillamine was inhibitory at relatively low concentrations; its action was prevented by pyridoxal phosphate. PMID:14343156

  15. The YvrI Alternative σ Factor Is Essential for Acid Stress Induction of Oxalate Decarboxylase in Bacillus subtilis▿ †

    PubMed Central

    MacLellan, Shawn R.; Helmann, John D.; Antelmann, Haike

    2009-01-01

    YvrI is a recently identified alternative σ factor in Bacillus subtilis that requires the coactivator YvrHa to activate transcription. Previously, a strain engineered to overproduce YvrI was found to overproduce oxalate decarboxylase (OxdC), and further analysis identified three YvrI-activated promoters preceding the yvrI-yvrHa, yvrJ, and oxdC-yvrL operons. Independently, proteome analyses identified OxdC as a highly abundant, cell wall-associated protein that accumulated under acidic growth conditions. We show here that the accumulation of OxdC in the cell wall proteome under acidic growth conditions is absolutely dependent on YvrI and is correlated with enhanced transcription of both the yvrI-yvrHa and the oxdC-yvrL operons. Conversely, OxdC accumulates to a high level even under nonacidic growth conditions in cells lacking YvrL, a negative regulator of YvrI/YvrHa-dependent transcription. These results indicate that YvrI and its associated coregulators YvrHa and YvrL are required for the regulation of OxdC expression by acid stress. The high-level accumulation of OxdC depends, in part, on a strong oxdC promoter. A regulatory sequence with similarity to an upstream promoter element (UP) was identified upstream of the oxdC promoter and is required for high-level promoter activity. Conservation of the YvrI/YvrHa/YvrL regulatory system among related species allowed us to deduce an expanded consensus sequence for the compositionally unusual promoters recognized by this new σ factor. PMID:19047353

  16. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a.

    PubMed

    Vanderslice, P; Copeland, W C; Robertus, J D

    1986-11-15

    Prohistidine decarboxylase from Lactobacillus 30a is a protein that autoactivates to histidine decarboxylase by cleaving its peptide chain between serines 81 and 82 and converting Ser-82 to a pyruvoyl moiety. The pyruvoyl group serves as the prosthetic group for the decarboxylation reaction. We have cloned and determined the nucleotide sequence of the gene for this enzyme from a wild type strain and from a mutant with altered autoactivation properties. The nucleotide sequence modifies the previously determined amino acid sequence of the protein. A tripeptide missed in the chemical sequence is inserted, and three other amino acids show conservative changes. The activation mutant shows a single change of Gly-58 to an Asp. Sequence analysis up- and downstream from the gene suggests that histidine decarboxylase is part of a polycistronic message, and that the transcriptional promotor region is strongly homologous to those of other Gram-positive organisms.

  17. The effect of a high fat diet on pyruvate decarboxylase deficiency without central nervous system involvement.

    PubMed

    Kodama, S; Yagi, R; Ninomiya, M; Goji, K; Takahashi, T; Morishita, Y; Matsuo, T

    1983-01-01

    A nine-year-old Japanese boy with low pyruvate decarboxylase activity in fibroblasts showed no central nervous symptoms except for muscle fatigue. The pyruvate decarboxylase activities in fibroblasts of the patient and two control subjects were 0.407 +/- 0.083, 1.029 +/- 0.137 and 1.607 +/- 0.096 mumoles/g protein/30 min, respectively. The Michaelis-Menten constant (Km) was the same in the patient and controls. There was no inhibitor of pyruvate decarboxylase in the patient's fibroblasts. A high fat diet has been given to the patient for five years. At present he does not complain of any kind of muscle fatigue, except after severe exercise. Mental and physiological development of the patient are within the normal ranges. However, trials of orally administered thiamine hydrochloride or thiamine hydrochloride combined with lipoamide did not improve his muscle fatigue.

  18. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a...

  19. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus subtilis. The food additive...

  20. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a...

  1. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a...

  2. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating

  3. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  4. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study.

    PubMed

    Pessione, Enrica; Pessione, Alessandro; Lamberti, Cristina; Coïsson, Daniel Jean; Riedel, Kathrin; Mazzoli, Roberto; Bonetta, Silvia; Eberl, Leo; Giunta, Carlo

    2009-05-01

    The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2-DE and MALDI-TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and beta-phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down-regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy-supplying routes. The most interesting finding is a membrane-bound TDC highly over-expressed during amine production. This is the first evidence of a true membrane-bound TDC, longly suspected in bacteria on the basis of the gene sequence.

  5. Impact of Cell-free Supernatant of Lactic Acid Bacteria on Putrescine and Other Polyamine Formation by Foodborne Pathogens in Ornithine Decarboxylase Broth.

    PubMed

    Ozogul, Fatih; Tabanelli, Giulia; Toy, Nurten; Gardini, Fausto

    2015-06-24

    Conversion of ornithine to putrescine by Salmonella Paratyphi A, Listeria monocytogenes, Staphylococcus aureus, and Escherichia coli was investigated in ornithine decarboxylase broth (ODB) using cell-free supernatants (CFSs) obtained from Leuconostoc mesenterodies subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis, Streptococcus thermophilus. Two groups of cell-free supernatants (25 or 50%) and control (only ODB) were prepared to investigate putrescine (PUT) and other polyamine formation by foodborne pathogens (FBPs). Significant differences (p < 0.05) were observed among the species for each amine. All of the CFSs reduced the formation of PUT by ≥65%. The production of cadaverine (CAD) was scarcely affected by the presence of CFSs, with the exception of the samples inoculated with L. monocytogenes. The variation in polyamine was found with respect to the control samples. Spermidine (SPD) was produced in lower amount in many samples, especially in Gram-negative FBPs, whereas spermine (SPN) increased drastically in the major part of the samples concerning the control. Histamine (HIS) was characterized by a marked concentration decrease in all of the samples, and tyramine (TYR) was accumulated in very low concentrations in the controls. Therefore, the ability of bacteria to produce certain biogenic amines such as HIS, TYR, PUT, and CAD has been studied to assess their risk and prevent their formation in food products. The results obtained from this study concluded that the lactic acid bacteria (LAB) strains with non-decarboxylase activity are capable of avoiding or limiting biogenic amine formation by FBP.

  6. The Phosphatidylserine and Phosphatidylethanolamine Receptor CD300a Binds Dengue Virus and Enhances Infection

    PubMed Central

    Carnec, Xavier; Meertens, Laurent; Dejarnac, Ophélie; Perera-Lecoin, Manuel; Hafirassou, Mohamed Lamine; Kitaura, Jiro; Ramdasi, Rasika; Schwartz, Olivier

    2015-01-01

    ABSTRACT Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a

  7. Evaluation of Phosphatidylserine-Binding Peptides Radiolabeled with Fluorine 18 for in vivo Imaging of Apoptosis

    NASA Astrophysics Data System (ADS)

    Kapty, Janice Sarah

    We currently do not have a clinical method to directly assess apoptosis induced by cancer therapies. Phosphatidylserine (PS) is an attractive target for imaging apoptosis since it is on the exterior of the apoptotic cells and PS externalization is an early marker of apoptosis. PS-binding peptides are an attractive option for developing an imaging probe to detect apoptosis using positron emission tomography. In this study we evaluated binding characteristics of PS-binding peptides for ability to bind to PS, radiolabeled PS-binding peptides with fluorine-18, and performed in vitro and in vivo analysis of 18F radiolabeled PS-binding peptides including biodistribution analysis and dynamic PET imaging in a murine tumor model of apoptosis. Four peptides were evaluated for PS binding characteristics using a plate based assay system, a liposome mimic of cell membrane PS presentation, and a cell assay of apoptosis. The results indicate that all four peptides bind to PS and are specific to apoptotic cells. The widely used 18 F prosthetic group N-succinimidyl-4-[18F]fluorobenzoate ([18F]SFB) and the recently developed N-[6-(4-[ 18F]fluorobenzylidene) aminooxyhexyl]maleimide ([18F]FBAM) were investigated for radiolabeling of two representative phosphatidylserine-binding peptides. The prosthetic groups were compared with respect to required reaction conditions for optimum labeling, radiolabeling yield and chemoselectivity. The N-terminus labeled product produced by reaction of [18F]SFB with binding peptide LIKKPF was produced in 18% radiochemical yield while no N-terminus labeled product could be isolated following [18F]SFB reaction with PDGLSR. When the peptides were modified by addition of a cysteine residue at the N-terminus they provided almost quantitative radiochemical yields with [18F]FBAM. Results indicate that for the peptides in this study, [18F]FBAM is a more useful prosthetic group compared to [18F]SFB due to its excellent chemo-selectivity and high radiochemical

  8. Investigation into the role of phosphatidylserine in modifying the susceptibility of human lymphocytes to secretory phospholipase A(2) using cells deficient in the expression of scramblase.

    PubMed

    Nelson, Jennifer; Francom, Lyndee L; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M; Bell, John D

    2012-05-01

    Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine.

  9. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  10. Phloem-Specific Expression of Tyrosine/Dopa Decarboxylase Genes and the Biosynthesis of Isoquinoline Alkaloids in Opium Poppy.

    PubMed Central

    Facchini, P. J.; De Luca, V.

    1995-01-01

    Tyrosine/dopa decarboxylase (TYDC) catalyzes the formation of tyramine and dopamine and represents the first steps in the biosynthesis of the large and diverse group of tetrahydroisoquinoline alkaloids. Opium poppy accumulates morphine in aerial organs and roots, whereas sanguinarine, which is derived from a distinct branch pathway, accumulates only in roots. Expression of the TYDC gene family in opium poppy was investigated in relation to the organ-specific biosynthesis of these different types of alkaloids. Members of the TYDC gene family are classified into two groups (represented by TYDC1 and TYDC2) and are differentially expressed. In the mature plant, TYDC2-like transcripts are predominant in stems and are also present in roots, whereas TYDC1-like transcripts are abundant only in roots. In situ hybridization analysis revealed that the expression of TYDC genes is developmentally regulated. TYDC transcripts are associated with vascular tissue in mature roots and stems but are also expressed in cortical tissues at earlier stages of development. Expression of TYDC genes is restricted to metaphloem and to protoxylem in the vascular bundles of mature aerial organs. Localization of TYDC transcripts in the phloem is consistent with the expected developmental origin of laticifers, which are specialized internal secretory cells that accompany vascular tissues in all organs of select species and that contain the alkaloid-rich latex in aerial organs. The differential expression of TYDC genes and the organ-dependent accumulation of different alkaloids suggest a coordinated regulation of specific alkaloid biosynthetic genes that are ultimately controlled by specific developmental programs. PMID:12242361

  11. Efficient identification of phosphatidylserine-binding proteins by ORF phage display

    SciTech Connect

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela; Fan, Xianqun; Li, Wei

    2009-08-14

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressed for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.

  12. Mediated trehalose un-loading for reduced erythrocyte osmotic fragility and phosphatidylserine translocation.

    PubMed

    Lynch, A L; Slaater, N K H

    2011-01-01

    Recently, high concentrations of intracellular trehalose (>200mM) were employed to enhance the cryoprotection and desiccation protection of human erythrocytes. However, significant challenges must be overcome if this advancement is to be translated into clinical practice. It is here demonstrated that 247 ± 5 mM intracellular trehalose caused the lysis of 60 ± 2 percent of erythrocytes upon resuspension in PBS of physiological osmolality (300 mOsm) and caused surviving cells to swell up to 140 ± 2 percent of isotonic cell volume. Trehalose loaded cells also exhibited 24 ± 1 percent incidence of phosphatidylserine translocation upon resuspension in 300 mOsm PBS, likely due to loading induced cell swelling. Un-loading of trehalose from erythrocytes using the membrane-permeabilizing biopolymer PP-50 was investigated as a technique to mitigate these damaging effects. After erythrocyte un-loading from 247 ± 5 mM to 39 ± 2 mM intracellular trehalose, cell lysis at 300 mOsm PBS was reduced from 60 ± 2 percent to 17 ± 3 percent. Un-loading also reduced cellular incidence of PS translocation in resuspended cells from 24 ± 1 percent to 13 ± 1 percent.

  13. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes.

    PubMed Central

    Flach, C R; Mendelsohn, R

    1993-01-01

    Fourier transform-infrared (IR) spectroscopic and electron microscopic studies are reported for 1,2-dimyristoylphosphatidylserine (DMPS) and for DMPS/1,2-dimyristoylphosphatidylcholine mixtures in the presence and absence of Ca2+ ion. The frequency of the methyl symmetric deformation mode near 1,378 cm-1, previously assumed insensitive to changes in lipid morphology, has been found to respond to cochleate phase formation by undergoing an approximately 8 cm-1 increase. The new IR spectroscopic marker at 1,386 cm-1 has been used to identify and verify structures suggested from the phase diagram of J. R. Silvius and J. Gagné (1984. Biochemistry. 23:3241-3247) for this system. In addition, the ability of Mg2+ ion to induce cochleate formation has been demonstrated. Higher Mg2+ than Ca2+ levels are required for this process. Finally, IR spectroscopy has been used to monitor dehydration of the lipid surface through changes in the asymmetric PO2- stretching mode. Dehydration precedes cochleate phase formation (i.e., occurs at a lower Ca2+/phosphatidylserine level). Images FIGURE 3 FIGURE 3 PMID:8494975

  14. Phosphatidylserine exposure and other apoptotic-like events in Bernard-Soulier syndrome platelets.

    PubMed

    Rand, Margaret L; Wang, Hong; Bang, K W Annie; Teitel, Jerome M; Blanchette, Victor S; Freedman, John; Nurden, Alan T

    2010-08-01

    In the Bernard-Soulier syndrome (BSS), the giant platelets are said to have increased phosphatidylserine (PS) surface exposure in the resting state and shortened survival in the circulation. When normal platelets are activated, they undergo many biochemical and morphological changes, some of which are apoptotic. Herein, we investigated apoptotic-like events in BSS platelets upon activation, specifically, PS exposure, microparticle (MP) formation, cell shrinkage, and loss of mitochondrial inner membrane potential (DeltaPsi(m)). Platelets from two unrelated BSS patients were examined in whole blood; agonists used were collagen, thrombin, PAR1- or PAR4-activating peptides (APs), or combinations of collagen with thrombin, and the PAR-APs. Flow cytometry was used to measure PS exposure (annexin A5 binding), platelet-derived MPs (forward scatter; events <0.75 microm size), and DeltaPsi(m) (TMRM fluorescence). PS exposure was increased on resting and activated BSS platelets, and this was independent of the platelet size. MP formation by BSS platelets was generally enhanced. Cell shrinkage occurred on activation to form smaller, PS-exposing platelets in BSS and controls. A proportion of PS-exposing BSS and control platelets exhibited DeltaPsi(m) loss, but unlike controls, there was also loss of DeltaPsi(m) in the BSS platelets not exposing PS. Thus, BSS platelets undergo apoptotic-like events upon activation, with PS exposure and MP formation being enhanced. These events may play a role in the shortened survival in BSS, as well as affecting thrombin generation.

  15. Antibodies to Phosphatidylserine/Prothrombin Complex in Antiphospholipid Syndrome: Analytical and Clinical Perspectives.

    PubMed

    Peterson, Lisa K; Willis, Rohan; Harris, E Nigel; Branch, Ware D; Tebo, Anne E

    2016-01-01

    Antiphospholipid syndrome (APS) is an autoimmune disorder characterized by thrombosis and/or pregnancy-related morbidity accompanied by persistently positive antiphospholipid antibodies (aPL). Current laboratory criteria for APS classification recommend testing for lupus anticoagulant as well as IgG and IgM anticardiolipin, and beta-2 glycoprotein I (anti-β2GPI) antibodies. However, there appears to be a subset of patients with classical APS manifestations who test negative for the recommended criteria aPL tests. While acknowledging that such patients may have clinical features that are not of an autoimmune etiology, experts also speculate that these "seronegative" patients may test negative for relevant autoantibodies as a result of a lack of harmonization and/or standardization. Alternatively, they may have aPL that target other antigens involved in the pathogenesis of APS. In the latter, autoantibodies that recognize a phosphatidylserine/prothrombin (PS/PT) complex have been reported to be associated with APS and may have diagnostic relevance. This review highlights analytical and clinical attributes associated with PS/PT antibodies, taking into consideration the performance characteristics of criteria aPL tests in APS with specific recommendations for harmonization and standardization efforts.

  16. Exposure of Phosphatidylserine by Xk-related Protein Family Members during Apoptosis*

    PubMed Central

    Suzuki, Jun; Imanishi, Eiichi; Nagata, Shigekazu

    2014-01-01

    Apoptotic cells expose phosphatidylserine (PtdSer) on their surface as an “eat me” signal. Mammalian Xk-related (Xkr) protein 8, which is predicted to contain six transmembrane regions, and its Caenorhabditis elegans homolog CED-8 promote apoptotic PtdSer exposure. The mouse and human Xkr families consist of eight and nine members, respectively. Here, we found that mouse Xkr family members, with the exception of Xkr2, are localized to the plasma membrane. When Xkr8-deficient cells, which do not expose PtdSer during apoptosis, were transformed by Xkr family members, the transformants expressing Xkr4, Xkr8, or Xkr9 responded to apoptotic stimuli by exposing cell surface PtdSer and were efficiently engulfed by macrophages. Like Xkr8, Xkr4 and Xkr9 were found to possess a caspase recognition site in the C-terminal region and to require its direct cleavage by caspases for their function. Site-directed mutagenesis of the amino acid residues conserved among CED-8, Xkr4, Xkr8, and Xkr9 identified several essential residues in the second transmembrane and second cytoplasmic regions. Real time PCR analysis indicated that unlike Xkr8, which is ubiquitously expressed, Xkr4 and Xkr9 expression is tissue-specific. PMID:25231987

  17. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer

    PubMed Central

    Birge, R B; Boeltz, S; Kumar, S; Carlson, J; Wanderley, J; Calianese, D; Barcinski, M; Brekken, R A; Huang, X; Hutchins, J T; Freimark, B; Empig, C; Mercer, J; Schroit, A J; Schett, G; Herrmann, M

    2016-01-01

    Apoptosis is an evolutionarily conserved and tightly regulated cell death modality. It serves important roles in physiology by sculpting complex tissues during embryogenesis and by removing effete cells that have reached advanced age or whose genomes have been irreparably damaged. Apoptosis culminates in the rapid and decisive removal of cell corpses by efferocytosis, a term used to distinguish the engulfment of apoptotic cells from other phagocytic processes. Over the past decades, the molecular and cell biological events associated with efferocytosis have been rigorously studied, and many eat-me signals and receptors have been identified. The externalization of phosphatidylserine (PS) is arguably the most emblematic eat-me signal that is in turn bound by a large number of serum proteins and opsonins that facilitate efferocytosis. Under physiological conditions, externalized PS functions as a dominant and evolutionarily conserved immunosuppressive signal that promotes tolerance and prevents local and systemic immune activation. Pathologically, the innate immunosuppressive effect of externalized PS has been hijacked by numerous viruses, microorganisms, and parasites to facilitate infection, and in many cases, establish infection latency. PS is also profoundly dysregulated in the tumor microenvironment and antagonizes the development of tumor immunity. In this review, we discuss the biology of PS with respect to its role as a global immunosuppressive signal and how PS is exploited to drive diverse pathological processes such as infection and cancer. Finally, we outline the rationale that agents targeting PS could have significant value in cancer and infectious disease therapeutics. PMID:26915293

  18. Calcium transport in vesicles from carrot cells: Stimulation by calmodulin and phosphatidylserine. [Daucus carota cv. Danvers

    SciTech Connect

    Wenling Hsieh; Sze, Heven )

    1991-05-01

    The transport properties of Ca-pumping ATPases from carrot (Daucus carota cv. Danvers) tissue culture cells were studied. ATP dependent Ca transport in vesicles that comigrated with an ER marker, was stimulated 3-4 fold by calmodulin. Cyclopiazonic acid (a specific inhibitor of the sarcoplasmic/endoplasmic reticulum Ca-ATPase) partially inhibited oxalate-stimulated Ca transport activity; however, it had little or not effect on calmodulin-stimulated Ca uptake. The results suggested the presence of two types of Ca ATPases, and ER- and a plasma membrane-type. Incubation of membranes with (gamma{sup 32}P)ATP resulted in the formation of a single acyl ({sup 32}P) phosphoprotein of 120 kDa. Formation of this phosphoprotein was dependent on Ca, and enhanced by La {sup 3+}, characteristic of the plasma membrane CaATPase. Acidic phospholipids, like phosphatidylserine, stimulated Ca transport, similar to their effect on the erythrocyte plasma membrane CaATPase. These results would indicate that the calmodulin-stimulated Ca transport originated in large part from a plasma membrane-type Ca pump of 120 kDa.

  19. Poloxamer 188 reduces normal and phosphatidylserine-exposing erythrocyte adhesion to endothelial cells in dextran solutions.

    PubMed

    Koo, Stephanie; Yang, Yang; Neu, Björn

    2013-12-01

    Abnormal red blood cell (RBC) adhesion to endothelial cells (ECs) has been correlated with vascular complications in diseases such as sickle cell anemia and diabetes. Poloxamer 188 (P188) has been clinically tested to treat vaso-occlusion. However, the underlying mechanism(s) have not been clarified, making a methodical application difficult. In this study, we investigate how and to what extent P188 reduces RBC adhesion to ECs in plasma-like solutions. RBC adhesion to ECs is studied in solutions containing dextran, which is known to induce adhesion via macromolecular depletion interaction. It is demonstrated that P188 itself does not induce adhesion of normal RBCs to ECs but significantly reduces the adhesion in solutions containing high molecular mass-dextran. In addition, it is shown that P188 can reduce the adhesion of RBCs with enhanced exposure of phosphatidylserine (PS). Measurements of the electrophoretic mobility indicate that P188 increases the local viscosity inside the electric double layer of RBCs. Based on these results this study suggests that P188 reduces macromolecular depletion interaction, via penetrating into the depletion layer. Taking into consideration that dextran mimics the effects of pro-adhesive non-adsorbing plasma proteins and macromolecules, our study therefore suggests a mechanism for the adhesion reducing effect of P188 and should thus be of potential value for a detailed understanding of how cell-cell interactions in pathological conditions can be reduced.

  20. Processes involved in assisted reproduction technologies significantly increase sperm DNA fragmentation and phosphatidylserine translocation.

    PubMed

    Balasuriya, A; Serhal, P; Doshi, A; Harper, J C

    2014-03-01

    Sperm preparation techniques in assisted reproduction technologies (ART) are potential generators of exogenous stresses that cause additional DNA damage. DNA fragmentation tests, such as the sperm chromatin structure assay, involve freezing sperm samples in the absence of cryoprotectant. Thermal, oxidative stress (OS) and freezing are detrimental to sperm DNA fragmentation and phosphatidylserine (PS) translocation. The primary aim of this study was to subject mature sperm to environmental insults that normally occur during ART. We tested the hypotheses that OS, thermal stress and freeze-thawing caused sperm nuclear and membrane damage and that a positive correlation exists between PS translocation and DNA fragmentation. Sperm DNA integrity deteriorates in semen samples from men with advancing age and a sperm concentration of <15 m ml(-1) . The significant increase in sperm DNA fragmentation at 37 °C after merely 1 h is important clinically as semen liquefaction and short-term sperm storage in an ART cycle involve incubating samples at this temperature. Freezing without a cryoprotectant significantly increases the level of sperm nuclear damage, so it is important not to freeze neat semen prior to DNA fragmentation testing. This study highlights the importance of minimising the production of exogenous stresses during sperm preparation in ART.

  1. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells.

    PubMed

    Audo, Rachel; Hua, Charlotte; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells.

  2. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution.

    PubMed

    Hankins, Hannah M; Baldridge, Ryan D; Xu, Peng; Graham, Todd R

    2015-01-01

    It is well known that lipids are heterogeneously distributed throughout the cell. Most lipid species are synthesized in the endoplasmic reticulum (ER) and then distributed to different cellular locations in order to create the distinct membrane compositions observed in eukaryotes. However, the mechanisms by which specific lipid species are trafficked to and maintained in specific areas of the cell are poorly understood and constitute an active area of research. Of particular interest is the distribution of phosphatidylserine (PS), an anionic lipid that is enriched in the cytosolic leaflet of the plasma membrane. PS transport occurs by both vesicular and non-vesicular routes, with members of the oxysterol-binding protein family (Osh6 and Osh7) recently implicated in the latter route. In addition, the flippase activity of P4-ATPases helps build PS membrane asymmetry by preferentially translocating PS to the cytosolic leaflet. This asymmetric PS distribution can be used as a signaling device by the regulated activation of scramblases, which rapidly expose PS on the extracellular leaflet and play important roles in blood clotting and apoptosis. This review will discuss recent advances made in the study of phospholipid flippases, scramblases and PS-specific lipid transfer proteins, as well as how these proteins contribute to subcellular PS distribution.

  3. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    PubMed

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.

  4. TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets.

    PubMed

    Fujii, Toshihiro; Sakata, Asuka; Nishimura, Satoshi; Eto, Koji; Nagata, Shigekazu

    2015-10-13

    Phosphatidylserine (PtdSer) exposure on the surface of activated platelets requires the action of a phospholipid scramblase(s), and serves as a scaffold for the assembly of the tenase and prothrombinase complexes involved in blood coagulation. Here, we found that the activation of mouse platelets with thrombin/collagen or Ca(2+) ionophore at 20 °C induces PtdSer exposure without compromising plasma membrane integrity. Among five transmembrane protein 16 (TMEM16) members that support Ca(2+)-dependent phospholipid scrambling, TMEM16F was the only one that showed high expression in mouse platelets. Platelets from platelet-specific TMEM16F-deficient mice exhibited defects in activation-induced PtdSer exposure and microparticle shedding, although α-granule and dense granule release remained intact. The rate of tissue factor-induced thrombin generation by TMEM16F-deficient platelets was severely reduced, whereas thrombin-induced clot retraction was unaffected. The imaging of laser-induced thrombus formation in whole animals showed that PtdSer exposure on aggregated platelets was TMEM16F-dependent in vivo. The phenotypes of the platelet-specific TMEM16F-null mice resemble those of patients with Scott syndrome, a mild bleeding disorder, indicating that these mice may provide a useful model for human Scott syndrome.

  5. Oral administration of squid lecithin-transphosphatidylated phosphatidylserine improves memory impairment in aged rats.

    PubMed

    Lee, Bombi; Sur, Bong-Jun; Han, Jeong-Jun; Shim, Insop; Her, Song; Lee, Yang-Seok; Lee, Hye-Jung; Hahm, Dae-Hyun

    2015-01-02

    Recently, lecithin-derived phosphatidylserine (PS), which originates from marine life, has received much attention as a viable alternative to bovine cerebral cortex PS. In this study, the use of squid phosphatidylcholine-transphosphatidylated PS (SQ-PS) was evaluated through examination of its ameliorating effects on age-associated learning and memory deficits in rats. Aged rats were orally administered SQ-PS (10, 20, or 50 mg/kg per day) once a day for seven days 30 min prior to behavioral assessment in a Morris water maze. SQ-PS administration produced significant dose-dependent improvements in escape latency for finding the platform in the Morris water maze in the aged rats even though Soy-PS administration also exhibited comparable improvements with SQ-PS. Biochemical alterations in the hippocampal cholinergic system, including changes in choline acetyltransferase and acetylcholinesterase immunoreactivity, were consistent with the behavioral results. In addition, SQ-PS treatment significantly restored age-associated decreases of choline transporter and muscarinic acetylcholine receptor type 1 mRNA expression in the hippocampus. These results demonstrate that orally administered SQ-PS dose-dependently aids in the improvement of memory deficits that occur during normal aging in rats. This suggests that SQ-PS may be a useful therapeutic agent in the treatment of diminished memory function in elderly people.

  6. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium.

    PubMed

    Vallabhapurapu, Subrahmanya D; Blanco, Víctor M; Sulaiman, Mahaboob K; Vallabhapurapu, Swarajya Lakshmi; Chu, Zhengtao; Franco, Robert S; Qi, Xiaoyang

    2015-10-27

    Viable cancer cells expose elevated levels of phosphatidylserine (PS) on the exoplasmic face of the plasma membrane. However, the mechanisms leading to elevated PS exposure in viable cancer cells have not been defined. We previously showed that externalized PS may be used to monitor, target and kill tumor cells. In addition, PS on tumor cells is recognized by macrophages and has implications in antitumor immunity. Therefore, it is important to understand the molecular details of PS exposure on cancer cells in order to improve therapeutic targeting. Here we explored the mechanisms regulating the surface PS exposure in human cancer cells and found that differential flippase activity and intracellular calcium are the major regulators of surface PS exposure in viable human cancer cells. In general, cancer cell lines with high surface PS exhibited low flippase activity and high intracellular calcium, whereas cancer cells with low surface PS exhibited high flippase activity and low intracellular calcium. High surface PS cancer cells also had higher total cellular PS than low surface PS cells. Together, our results indicate that the amount of external PS in cancer cells is regulated by calcium dependent flippase activity and may also be influenced by total cellular PS.

  7. Phosphatidylserine index as a marker of the procoagulant phenotype of acute myelogenous leukemia cells

    NASA Astrophysics Data System (ADS)

    Tormoen, Garth W.; Recht, Olivia; Gruber, András; Levine, Ross L.; McCarty, Owen J. T.

    2013-10-01

    Patients with acute myelogenous leukemia (AML) are at risk for thrombotic complications. Risk to develop thrombosis is closely tied to leukemia subtype, and studies have shown an association between leukocytosis and thrombosis in AML M3. We evaluated the relative roles of cell count and the surface expression of tissue factor (TF) and phosphatidylserine (PS) in the procoagulant phenotype of AML cell lines. The TF-positive AML M3 cell lines, NB4 and HL60, and AML M2 cell line, AML14, exhibited both extrinsic tenase and prothrombinase activity in a purified system and promoted experimental thrombus formation. In contrast, the TF-negative AML cell line, HEL, exhibited only prothrombinase activity and did not affect the rate of occlusive thrombus formation. In plasma, NB4, HL60 and AML14 shortened clotting times in a cell-count, PS- and TF-dependent manner. Exposure of cultured NB4, HL60, and AML14 cells to the chemotherapeutic agent daunorubicin increased their extrinsic tenase activity and PS expression. Clot initiation time inversely correlated with logarithm of PS index, defined as the product of multiplying leukocyte count with cell surface PS exposure. We propose that leukemia cell PS index may serve as a biomarker for procoagulant activity.

  8. Autophagic vesicles on mature human reticulocytes explain phosphatidylserine-positive red cells in sickle cell disease.

    PubMed

    Mankelow, Tosti J; Griffiths, Rebecca E; Trompeter, Sara; Flatt, Joanna F; Cogan, Nicola M; Massey, Edwin J; Anstee, David J

    2015-10-08

    During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.

  9. INTRACELLULAR TRANSPORT. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate.

    PubMed

    Moser von Filseck, Joachim; Čopič, Alenka; Delfosse, Vanessa; Vanni, Stefano; Jackson, Catherine L; Bourguet, William; Drin, Guillaume

    2015-07-24

    In eukaryotic cells, phosphatidylserine (PS) is synthesized in the endoplasmic reticulum (ER) but is highly enriched in the plasma membrane (PM), where it contributes negative charge and to specific recruitment of signaling proteins. This distribution relies on transport mechanisms whose nature remains elusive. Here, we found that the PS transporter Osh6p extracted phosphatidylinositol 4-phosphate (PI4P) and exchanged PS for PI4P between two membranes. We solved the crystal structure of Osh6p:PI4P complex and demonstrated that the transport of PS by Osh6p depends on PI4P recognition in vivo. Finally, we showed that the PI4P-phosphatase Sac1p, by maintaining a PI4P gradient at the ER/PM interface, drove PS transport. Thus, PS transport by oxysterol-binding protein-related protein (ORP)/oxysterol-binding homology (Osh) proteins is fueled by PI4P metabolism through PS/PI4P exchange cycles.

  10. Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER.

    PubMed

    Kannan, Muthukumar; Lahiri, Sujoy; Liu, Li-Ka; Choudhary, Vineet; Prinz, William A

    2017-03-01

    Close contacts between organelles, often called membrane contact sites (MCSs), are regions where lipids are exchanged between organelles. Here, we identify a novel mechanism by which cells promote phospholipid exchange at MCSs. Previous studies have shown that phosphatidylserine (PS) synthase activity is highly enriched in portions of the endoplasmic reticulum (ER) in contact with mitochondria. The objective of this study was to determine whether this enrichment promotes PS transport out of the ER. We found that PS transport to mitochondria was more efficient when PS synthase was fused to a protein in the ER at ER-mitochondria contacts than when it was fused to a protein in all portions of the ER. Inefficient PS transport to mitochondria was corrected by increasing tethering between these organelles. PS transport to endosomes was similarly enhanced by PS production in regions of the ER in contact with endosomes. Together, these findings indicate that PS production at MCSs promotes PS transport out of the ER and suggest that phospholipid production at MCSs may be a general mechanism of channeling lipids to specific cellular compartments.

  11. Lipid flip-flop in binary membranes composed of phosphatidylserine and phosphatidylcholine.

    PubMed

    Brown, Krystal L; Conboy, John C

    2013-12-05

    The kinetics and thermodynamics of lipid flip-flop in bilayers composed of 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (DPPS) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) were studied using sum-frequency vibrational spectroscopy. The kinetics of DSPC and DPPS flip-flop were examined as a function of temperature and bilayer composition. The rate of DSPC flip-flop did not exhibit any significant dependence on bilayer composition while the rate of DPPS flip-flop was inversely dependent on the mole fraction of DPPS. The transition-state thermodynamics for DSPC and DPPS lipids in these mixed bilayers were determined in order to identify the energetic impact of the phosphatidylserine headgroup on lipid flip-flop. The thermodynamics for the DSPC component remained statistically identical to bilayers composed entirely of DSPC. The activation energy for the DPPS component showed a linear correlation with the mole fraction of DPPS for all bilayer compositions. The enthalpy and entropy for DPPS flip-flop did not increase linearly with the fraction of DPPS but did directly correlate with the molecular area. The DPPS component also exhibited enthalpy-entropy compensation which suggests that lipid hydration may play a significant role in membrane dynamics.

  12. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  13. Phosphorylation of Ser-204 and Tyr-405 in human malonyl-CoA decarboxylase expressed in silkworm Bombyx mori regulates catalytic decarboxylase activity.

    PubMed

    Hwang, In-Wook; Makishima, Yu; Suzuki, Tomohiro; Kato, Tatsuya; Park, Sungjo; Terzic, Andre; Chung, Shin-Kyo; Park, Enoch Y

    2015-11-01

    Decarboxylation of malonyl-CoA to acetyl-CoA by malonyl-CoA decarboxylase (MCD; EC 4.1.1.9) is a vital catalytic reaction of lipid metabolism. While it is established that phosphorylation of MCD modulates the enzymatic activity, the specific phosphorylation sites associated with the catalytic function have not been documented due to lack of sufficient production of MCD with proper post-translational modifications. Here, we used the silkworm-based Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system to express human MCD (hMCD) and mapped phosphorylation effects on enzymatic function. Purified MCD from silkworm displayed post-translational phosphorylation and demonstrated coherent enzymatic activity with high yield (-200 μg/silkworm). Point mutations in putative phosphorylation sites, Ser-204 or Tyr-405 of hMCD, identified by bioinformatics and proteomics analyses reduced the catalytic activity, underscoring the functional significance of phosphorylation in modulating decarboxylase-based catalysis. Identified phosphorylated residues are distinct from the decarboxylation catalytic site, implicating a phosphorylation-induced global conformational change of MCD as responsible in altering catalytic function. We conclude that phosphorylation of Ser-204 and Tyr-405 regulates the decarboxylase function of hMCD leveraging the silkworm-based BmNPV bacmid expression system that offers a fail-safe eukaryotic production platform implementing proper post-translational modification such as phosphorylation.

  14. Structural and Mechanistic Studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-11-12

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.

  15. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  16. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    Technology Transfer Automated Retrieval System (TEKTRAN)

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  17. Inhibition of pyruvate decarboxylase from Z. mobilis by novel analogues of thiamine pyrophosphate: investigating pyrophosphate mimics.

    PubMed

    Erixon, Karl M; Dabalos, Chester L; Leeper, Finian J

    2007-03-07

    Replacement of the thiazolium ring of thiamine pyrophosphate with a triazole gives extremely potent inhibitors of pyruvate decarboxylase from Z. mobilis, with K(I) values down to 20 pM; this system was used to explore pyrophosphate mimics and several effective analogues were discovered.

  18. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  19. Presentation of opsoclonus myoclonus ataxia syndrome with glutamic acid decarboxylase antibodies.

    PubMed

    Bhandari, Hanul Srinivas

    2012-08-08

    In this rare case, the patient presented with opsoclonus, myoclonus and ataxia. Serological and imaging studies revealed high glutamic acid decarboxylase antibody (GAD-Ab) levels. High-dose corticosteroids were of no benefit and subsequent intravenous immunoglobulin (IVIg) administration proved resolution of the condition. Levetiracetam proved useful in symptomatically controlling the myoclonus. Follow-up GAD-Ab levels were within normal limits.

  20. Reduction of Oxalate Levels in Tomato Fruit and Consequent Metabolic Remodeling Following Overexpression of a Fungal Oxalate Decarboxylase1[W

    PubMed Central

    Chakraborty, Niranjan; Ghosh, Rajgourab; Ghosh, Sudip; Narula, Kanika; Tayal, Rajul; Datta, Asis; Chakraborty, Subhra

    2013-01-01

    The plant metabolite oxalic acid is increasingly recognized as a food toxin with negative effects on human nutrition. Decarboxylative degradation of oxalic acid is catalyzed, in a substrate-specific reaction, by oxalate decarboxylase (OXDC), forming formic acid and carbon dioxide. Attempts to date to reduce oxalic acid levels and to understand the biological significance of OXDC in crop plants have met with little success. To investigate the role of OXDC and the metabolic consequences of oxalate down-regulation in a heterotrophic, oxalic acid-accumulating fruit, we generated transgenic tomato (Solanum lycopersicum) plants expressing an OXDC (FvOXDC) from the fungus Flammulina velutipes specifically in the fruit. These E8.2-OXDC fruit showed up to a 90% reduction in oxalate content, which correlated with concomitant increases in calcium, iron, and citrate. Expression of OXDC affected neither carbon dioxide assimilation rates nor resulted in any detectable morphological differences in the transgenic plants. Comparative proteomic analysis suggested that metabolic remodeling was associated with the decrease in oxalate content in transgenic fruit. Examination of the E8.2-OXDC fruit proteome revealed that OXDC-responsive proteins involved in metabolism and stress responses represented the most substantially up- and down-regulated categories, respectively, in the transgenic fruit, compared with those of wild-type plants. Collectively, our study provides insights into OXDC-regulated metabolic networks and may provide a widely applicable strategy for enhancing crop nutritional value. PMID:23482874

  1. The enzymatic activities of the Escherichia coli basic aliphatic amino acid decarboxylases exhibit a pH zone of inhibition.

    PubMed

    Kanjee, Usheer; Gutsche, Irina; Ramachandran, Shaliny; Houry, Walid A

    2011-11-01

    The stringent response regulator ppGpp has recently been shown by our group to inhibit the Escherichia coli inducible lysine decarboxylase, LdcI. As a follow-up to this observation, we examined the mechanisms that regulate the activities of the other four E. coli enzymes paralogous to LdcI: the constitutive lysine decarboxylase LdcC, the inducible arginine decarboxylase AdiA, the inducible ornithine decarboxylase SpeF, and the constitutive ornithine decarboxylase SpeC. LdcC and SpeC are involved in cellular polyamine biosynthesis, while LdcI, AdiA, and SpeF are involved in the acid stress response. Multiple mechanisms of regulation were found for these enzymes. In addition to LdcI, LdcC and SpeC were found to be inhibited by ppGpp; AdiA activity was found to be regulated by changes in oligomerization, while SpeF and SpeC activities were regulated by GTP. These findings indicate the presence of multiple mechanisms regulating the activity of this important family of decarboxylases. When the enzyme inhibition profiles are analyzed in parallel, a "zone of inhibition" between pH 6 and pH 8 is observed. Hence, the data suggest that E. coli utilizes multiple mechanisms to ensure that these decarboxylases remain inactive around neutral pH possibly to reduce the consumption of amino acids at this pH.

  2. Ornithine decarboxylase gene (CaODC1) is specifically induced during TMV-mediated but salicylate-independent resistant response in hot pepper.

    PubMed

    Yoo, Tae Hyoung; Park, Chang-Jin; Ham, Byung-Kook; Kim, Ki-Jeong; Paek, Kyung-Hee

    2004-10-01

    A gene encoding putative ornithine decarboxylase (ODC) has been isolated by differential screening of a cDNA library from the resistant hot pepper (Capsicum annuum L.) inoculated with avirulent tobacco mosaic virus (TMV) pathotype P0. In hot pepper plants, transcripts of the CaODC1 (C. annuum ODC1) gene started to accumulate at 24 h post-inoculation of TMV-P0 and the signal was spread systemically. The transcript level of CaODC1 was increased rapidly in a hot pepper resistant to Xanthomonas campestris pv. vesicatoria (Xcv) but not in a susceptible hot pepper after inoculation. These results suggest possible role(s) for CaODC1 in plant defense against a broad range of pathogens including viruses and bacteria.

  3. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  4. Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation.

    PubMed

    Bennett, Eric M; Ekstrom, Jennifer L; Pegg, Anthony E; Ealick, Steven E

    2002-12-10

    S-Adenosylmethionine decarboxylase has been implicated in cell growth and differentiation and is synthesized as a proenzyme, which undergoes autocatalytic cleavage to generate an active site pyruvoyl group. In mammals, S-adenosylmethionine decarboxylase is active as a dimer in which each protomer contains one alpha subunit and one beta subunit. In many higher organisms, autocatalysis and decarboxylation are stimulated by putrescine, which binds in a buried site containing numerous negatively charged residues. In contrast, plant S-adenosylmethionine decarboxylases are fully active in the absence of putrescine, with rapid autocatalysis that is not stimulated by putrescine. We have determined the structure of the S-adenosylmethionine decarboxylase from potato, Solanum tuberosum, to 2.3 A resolution. Unlike the previously determined human enzyme structure, the potato enzyme is a monomer in the crystal structure. Ultracentrifugation studies show that the potato enzyme is also a monomer under physiological conditions, with a weak self-association constant of 6.5 x 10(4) M(-)(1) for the monomer-dimer association. Although the potato enzyme contains most of the buried charged residues that make up the putrescine binding site in the human enzyme, there is no evidence for a putrescine binding site in the potato enzyme. Instead, several amino acid substitutions, including Leu13/Arg18, Phe111/Arg114, Asp174/Val181, and Phe285/His294 (human/potato), provide side chains that mimic the role of putrescine in the human enzyme. In the potato enzyme, the positively charged residues form an extensive network of hydrogen bonds bridging a cluster of highly conserved negatively charged residues and the active site, including interactions with the catalytic residues Glu16 and His249. The results explain the constitutively high activity of plant S-adenosylmethionine decarboxylases in the absence of putrescine and are consistent with previously proposed models for how putrescine together

  5. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.

    PubMed

    Romagnoli, Gabriele; Luttik, Marijke A H; Kötter, Peter; Pronk, Jack T; Daran, Jean-Marc

    2012-11-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols.

  6. Substrate Specificity of Thiamine Pyrophosphate-Dependent 2-Oxo-Acid Decarboxylases in Saccharomyces cerevisiae

    PubMed Central

    Romagnoli, Gabriele; Luttik, Marijke A. H.; Kötter, Peter; Pronk, Jack T.

    2012-01-01

    Fusel alcohols are precursors and contributors to flavor and aroma compounds in fermented beverages, and some are under investigation as biofuels. The decarboxylation of 2-oxo acids is a key step in the Ehrlich pathway for fusel alcohol production. In Saccharomyces cerevisiae, five genes share sequence similarity with genes encoding thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases (2ODCs). PDC1, PDC5, and PDC6 encode differentially regulated pyruvate decarboxylase isoenzymes; ARO10 encodes a 2-oxo-acid decarboxylase with broad substrate specificity, and THI3 has not yet been shown to encode an active decarboxylase. Despite the importance of fusel alcohol production in S. cerevisiae, the substrate specificities of these five 2ODCs have not been systematically compared. When the five 2ODCs were individually overexpressed in a pdc1Δ pdc5Δ pdc6Δ aro10Δ thi3Δ strain, only Pdc1, Pdc5, and Pdc6 catalyzed the decarboxylation of the linear-chain 2-oxo acids pyruvate, 2-oxo-butanoate, and 2-oxo-pentanoate in cell extracts. The presence of a Pdc isoenzyme was also required for the production of n-propanol and n-butanol in cultures grown on threonine and norvaline, respectively, as nitrogen sources. These results demonstrate the importance of pyruvate decarboxylases in the natural production of n-propanol and n-butanol by S. cerevisiae. No decarboxylation activity was found for Thi3 with any of the substrates tested. Only Aro10 and Pdc5 catalyzed the decarboxylation of the aromatic substrate phenylpyruvate, with Aro10 showing superior kinetic properties. Aro10, Pdc1, Pdc5, and Pdc6 exhibited activity with all branched-chain and sulfur-containing 2-oxo acids tested but with markedly different decarboxylation kinetics. The high affinity of Aro10 identified it as a key contributor to the production of branched-chain and sulfur-containing fusel alcohols. PMID:22904058

  7. Characterization and localization of phosphatidylglycerophosphate and phosphatidylserine synthases in Rhodobacter sphaeroides.

    PubMed

    Radcliffe, C W; Steiner, F X; Carman, G M; Niederman, R A

    1989-01-01

    Catalytic properties and membrane associations of the phosphatidylglycerophosphate (PGP) and phosphatidylserine (PS) synthases of Rhodobacter sphaeroides were examined to further characterize sites of phospholipid biosynthesis. In preparations of cytoplasmic membrane (CM) enriched in these activities, apparent Km values of PGP synthase were 90 microM for sn-glycerol-3-phosphate and 60 microM for CDP-diacylglycerol; the apparent Km of PS synthase for L-serine was near 165 microM. Both enzymes required Triton X-100 with optimal PS synthase activity at a detergent/CDP-diacylglycerol (mol/mol) ratio of 7.5:1.0, while for optimal PGP synthase, a range of 10-50:1.0 was observed. Unlike the enzyme in Escherichia coli and several other Gram-negative bacteria, the PS synthase activity had a specific requirement for magnesium and was tightly associated with membranes rather than ribosomes in crude cell extracts. Sedimentation studies suggested that the PGP synthase was distributed uniformly over the CM in both chemoheterotrophically and photoheterotrophically grown cells, while the PS synthase was confined mainly to a vesicular CM fraction. Solubilized PGP synthase activity migrated as a single band with a pI value near 5.5 in a chromato-focusing column and 5.8 on isoelectric focusing; in the latter procedure, the pI was shifted to 5.3 in the presence of CDP-diacylglycerol. The PGP synthase activity gave rise to a single polypeptide band in lithium dodecyl sulfate-polyacrylamide gel electrophoresis at 4 degrees C.

  8. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4.

    PubMed

    Tietjen, Gregory T; Gong, Zhiliang; Chen, Chiu-Hao; Vargas, Ernesto; Crooks, James E; Cao, Kathleen D; Heffern, Charles T R; Henderson, J Michael; Meron, Mati; Lin, Binhua; Roux, Benot; Schlossman, Mark L; Steck, Theodore L; Lee, Ka Yee C; Adams, Erin J

    2014-04-15

    Recognition of phosphatidylserine (PS) lipids exposed on the extracellular leaflet of plasma membranes is implicated in both apoptotic cell removal and immune regulation. The PS receptor T cell immunoglobulin and mucin-domain-containing molecule 4 (Tim4) regulates T-cell immunity via phagocytosis of both apoptotic (high PS exposure) and nonapoptotic (intermediate PS exposure) activated T cells. The latter population must be removed at lower efficiency to sensitively control immune tolerance and memory cell population size, but the molecular basis for how Tim4 achieves this sensitivity is unknown. Using a combination of interfacial X-ray scattering, molecular dynamics simulations, and membrane binding assays, we demonstrate how Tim4 recognizes PS in the context of a lipid bilayer. Our data reveal that in addition to the known Ca(2+)-coordinated, single-PS binding pocket, Tim4 has four weaker sites of potential ionic interactions with PS lipids. This organization makes Tim4 sensitive to PS surface concentration in a manner capable of supporting differential recognition on the basis of PS exposure level. The structurally homologous, but functionally distinct, Tim1 and Tim3 are significantly less sensitive to PS surface density, likely reflecting the differences in immunological function between the Tim proteins. These results establish the potential for lipid membrane parameters, such as PS surface density, to play a critical role in facilitating selective recognition of PS-exposing cells. Furthermore, our multidisciplinary approach overcomes the difficulties associated with characterizing dynamic protein/membrane systems to reveal the molecular mechanisms underlying Tim4's recognition properties, and thereby provides an approach capable of providing atomic-level detail to uncover the nuances of protein/membrane interactions.

  9. Aminoglycoside-induced phosphatidylserine externalisation in sensory hair cells is regionally restricted, rapid and reversible

    PubMed Central

    Goodyear, R.J.; Gale, J.E.; Ranatunga, K.M.; Kros, C.J.; Richardson, G.P.

    2012-01-01

    The aminophospholipid phosphatidylserine (PS) is normally restricted to the inner leaflet of the plasmalemma. During certain cellular processes, including apoptosis, PS translocates to the outer leaflet and can be labelled with externally-applied annexin-V, a calcium-dependent PS-binding protein. In mouse cochlear cultures, annexin-V labelling reveals the aminoglycoside antibiotic neomycin induces rapid PS externalisation, specifically on the apical surface of hair cells. PS externalisation is observed within ~75 seconds of neomycin perfusion, first on the hair bundle and then on membrane blebs forming around the apical surface. Whole-cell capacitance also increases significantly within minutes of neomycin application indicating blebbing is accompanied by membrane addition to the hair-cell surface. PS-externalisation and membrane blebbing can, nonetheless, occur independently. Pre-treating hair cells with calcium chelators, a procedure that blocks mechanotransduction, or overexpressing a PIP2-binding pleckstrin-homology domain, can reduce neomycin-induced PS externalisation, suggesting neomycin enters hair cells via transduction channels, clusters PIP2, and thereby activates lipid scrambling. The effects of short-term neomycin treatment are reversible. Following neomycin washout, PS is no longer detected on the apical surface, apical membrane blebs disappear and surface-bound annexin-V is internalised, distributing throughout the supra-nuclear cytoplasm of the hair cell. Hair cells can therefore repair, and recover from, neomycin-induced surface damage. Hair cells lacking myosin VI, a minus-end directed actin-based motor implicated in endocytosis, can also recover from brief neomycin treatment. Internalised annexin-V, however, remains below the apical surface thereby pinpointing a critical role for myosin VI in the transport of endocytosed material away from the hair cell’s periphery. PMID:18829952

  10. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane

    PubMed Central

    Cho, Kwang-jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei

    2015-01-01

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization. PMID:26572827

  11. Inhibition of Acid Sphingomyelinase Depletes Cellular Phosphatidylserine and Mislocalizes K-Ras from the Plasma Membrane.

    PubMed

    Cho, Kwang-Jin; van der Hoeven, Dharini; Zhou, Yong; Maekawa, Masashi; Ma, Xiaoping; Chen, Wei; Fairn, Gregory D; Hancock, John F

    2015-11-16

    K-Ras must localize to the plasma membrane for biological activity; thus, preventing plasma membrane interaction blocks K-Ras signal output. Here we show that inhibition of acid sphingomyelinase (ASM) mislocalizes both the K-Ras isoforms K-Ras4A and K-Ras4B from the plasma membrane to the endomembrane and inhibits their nanoclustering. We found that fendiline, a potent ASM inhibitor, reduces the phosphatidylserine (PtdSer) and cholesterol content of the inner plasma membrane. These lipid changes are causative because supplementation of fendiline-treated cells with exogenous PtdSer rapidly restores K-Ras4A and K-Ras4B plasma membrane binding, nanoclustering, and signal output. Conversely, supplementation with exogenous cholesterol restores K-Ras4A but not K-Ras4B nanoclustering. These experiments reveal different operational pools of PtdSer on the plasma membrane. Inhibition of ASM elevates cellular sphingomyelin and reduces cellular ceramide levels. Concordantly, delivery of recombinant ASM or exogenous ceramide to fendiline-treated cells rapidly relocalizes K-Ras4B and PtdSer to the plasma membrane. K-Ras4B mislocalization is also recapitulated in ASM-deficient Neimann-Pick type A and B fibroblasts. This study identifies sphingomyelin metabolism as an indirect regulator of K-Ras4A and K-Ras4B signaling through the control of PtdSer plasma membrane content. It also demonstrates the critical and selective importance of PtdSer to K-Ras4A and K-Ras4B plasma membrane binding and nanoscale spatial organization.

  12. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia

    PubMed Central

    Boas, Franz Edward; Forman, Linda; Beutler, Ernest

    1998-01-01

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells. PMID:9501218

  13. CIRCULATING MICROPARTICLES, BLOOD CELLS, AND ENDOTHELIUM INDUCE PROCOAGULANT ACTIVITY IN SEPSIS THROUGH PHOSPHATIDYLSERINE EXPOSURE.

    PubMed

    Zhang, Yan; Meng, Huan; Ma, Ruishuang; He, Zhangxiu; Wu, Xiaoming; Cao, Muhua; Yao, Zhipeng; Zhao, Lu; Li, Tao; Deng, Ruijuan; Dong, Zengxiang; Tian, Ye; Bi, Yayan; Kou, Junjie; Thatte, Hemant S; Zhou, Jin; Shi, Jialan

    2016-03-01

    Sepsis is invariably accompanied by altered coagulation cascade; however, the precise role of phosphatidylserine (PS) in inflammation-associated coagulopathy in sepsis has not been well elucidated. We explored the possibility of exposed PS on microparticles (MPs), blood cells, as well as on endothelium, and defined its role in procoagulant activity (PCA) in sepsis. PS-positive MPs and cells were detected by flow cytometry, while PCA was assessed with clotting time, purified coagulation complex, and fibrin formation assays. Plasma levels of PS MPs derived from platelets, leukocytes (including neutrophils, monocytes, and lymphocytes), erythrocytes, and endothelial cells were elevated by 1.49-, 1.60-, 2.93-, and 1.53-fold, respectively, in septic patients. Meanwhile, PS exposure on blood cells was markedly higher in septic patients than in controls. Additionally, we found that the endothelial cells (ECs) treated with septic serum in vitro exposed more PS than with healthy serum. Isolated MPs/blood cells from septic patients and cultured ECs treated with septic serum in vitro demonstrated significantly shortened coagulation time, greatly enhanced intrinsic/extrinsic FXa generation, and increased thrombin formation. Importantly, confocal imaging of MPs or septic serum-treated ECs identified binding sites for FVa and FXa to form prothrombinase, and further supported fibrin formation in the area where PS exposure was abundant. Pretreatment with lactadherin blocked PS on MPs/blood cells/ECs, prolonged coagulation time by at least 25%, reduced FXa/thrombin generation, and inhibited fibrin formation by approximately 85%. Our findings suggest a key role for PS exposed on MPs, blood cells, and endothelium in augmenting coagulation in sepsis. Therefore, therapies targeting PS may be of particular importance.

  14. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells

    PubMed Central

    Takada, Naoto; Takatsu, Hiroyuki; Miyano, Rie; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-01-01

    Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells. PMID:26420878

  15. Effect of Calcium and Magnesium on Phosphatidylserine Membranes: Experiments and All-Atomic Simulations

    PubMed Central

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-01-01

    It is known that phosphatidylserine (PS−) lipids have a very similar affinity for Ca2+ and Mg2+ cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca2+ or Mg2+ induces very different aggregation behavior for PS− liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca2+ or Mg2+ cations. These puzzling results suggest that although these two cations have a similar affinity for PS− lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS− membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca2+ and Mg2+ cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca2+ cations present a peak at a distance ∼2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg2+ cations has two different peaks, located a few angstroms before and after the Ca2+ peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca2+ and Mg2+, respectively. PMID:22824273

  16. Effects of diacylglycerols on conformation of phosphatidylcholine headgroups in phosphatidylcholine/phosphatidylserine bilayers.

    PubMed Central

    Goldberg, E M; Lester, D S; Borchardt, D B; Zidovetzki, R

    1995-01-01

    The effects of five diacylglycerols (DAGs), diolein, 1-stearoyl,2-arachidonoyl-sn-glycerol, dioctanoylglycerol, 1-oleoyl,2-sn-acetylglycerol, and dipalmitin (DP), on the structure of lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine (4:1 mol/mol) were examined by 2H nuclear magnetic resonance (NMR). Dipalmitoylphosphatidylcholine deuterated at the alpha- and beta-positions of the choline moiety was used to probe the surface region of the membranes. Addition of each DAG except DP caused a continuous decrease in the beta-deuteron quadrupole splittings and a concomitant increase in the alpha-deuteron splittings indicating that DAGs induce a conformational change in the phosphatidylcholine headgroup. Additional evidence of conformational change was found at high DAG concentrations (> or = 20 mol%) where the alpha-deuteron peaks became doublets indicating that the two alpha-deuterons were not equivalent. The changes induced by DP were consistent with the lateral phase separation of the bilayers into gel-like and fluid-like domains with the phosphatidylcholine headgroups in the latter phase being virtually unaffected by DP. The DAG-induced changes in alpha-deuteron splittings were found to correlate with DAG-enhanced protein kinase C (PK-C) activity, suggesting that the DAG-induced conformational changes of the phosphatidylcholine headgroups are either directly or indirectly related to a mechanism of PK-C activation. 2H NMR relaxation measurements showed significant increase of the spin-lattice relaxation times for the region of the phosphatidylcholine headgroups, induced by all DAGs except DP. However, this effect of DAGs did not correlate with the DAG-induced activation of PK-C. PMID:8519996

  17. Phosphatidylserine translocation to the mitochondrion is an ATP-dependent process in permeabilized animal cells

    SciTech Connect

    Voelker, D.R. )

    1989-12-01

    Chinese hamster ovary (CHO-K1) cells were pulse labeled with ({sup 3}H)serine, and the synthesis of phosphatidyl({sup 3}H)ethanolamine from phosphatidyl({sup 3}H)serine during the subsequent chase was used as a measure of lipid translocation to the mitochondria. When the CHO-K1 cells were pulse labeled and subsequently permeabilized with 50 {mu}g of saponin per ml, there was no significant turnover of nascent phosphatidyl({sup 3}H)serine to form phosphatidyl({sup 3}H)ethanolamine during an ensuring chase. Supplementation of the permeabilized cells with 2 mM ATP resulted in significant phosphatidyl({sup 3}H)ethanolamine synthesis (83% of that found in intact cells) from phosphatidyl({sup 3}H)serine during a subsequent 2-hr chase. Phosphatidyl({sup 3}H)ethanolamine synthesis essentially ceased after 2 hr in the permeabilized cells. The translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine was a saturable process with respect to ATP concentration in permeabilized cells. The conversion of phosphatidyl({sup 3}H)serine to phosphatidyl({sup 3}H)ethanolamine did not occur in saponin-treated cultures supplemented with 2 mM AMP, 2 mM 5{prime}-adenylyl imidodiphosphate, or apyrase plus 2 mM ATP. ATP was the most effective nucleotide, but the addition of GTP, CTP, UTP, and ADP also supported the translocation-dependent synthesis of phosphatidyl({sup 3}H)ethanolamine albeit to a lesser extent. These data provide evidence that the interorganelle translocation of phosphatidylserine requires ATP and is largely independent of soluble cytosolic proteins.

  18. Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins

    SciTech Connect

    Schroit, A.J.; Madsen, J.; Ruoho, A.E.

    1987-04-07

    An isotopically labeled cross-linking reagent, succinimido 3-(3-(/sup 125/I)iodo-4-azidophenyl)propionate, has been synthesized and coupled to 1-acyl-2-(aminocaproyl)phosphatidylcholine according to previously described procedures. /sup 125/I- and N/sub 3/-labeled phosphatidylserine (/sup 125/I-N/sub 3/-PS) was produced from the phosphatidylcholine (PC) analog by phospholipase D catalyzed base exchange in the presence of L-serine. These phospholipid analogues are photoactivatable, are labeled with /sup 125/I at high specific activity, completely incorporate into synthetic vesicles, and spontaneously transfer between membranes. When an excess of acceptor vesicles or red blood cells (RBC) was mixed with a population of donor vesicles containing the /sup 125/I-N/sub 3/-phospholipids, approximately 40% of the analogues transferred to the acceptor population. After transfer in the dark to RBC, all of the /sup 125/I-N/sub 3/-PC incorporated into the cells could be removed by washing with serum, whereas the /sup 125/I-N/sub 3/-PS could not. After photolabeling of intact RBC, approx.50% of the PC and 20% of the PS cross-linked to membrane proteins as determined by their insolubility in CHCl/sub 3//MeOH. Analysis of probe distribution by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that /sup 125/I-N/sub 3/-PS preferentially labeled a M/sub r/ 30,000 peptide which contained approx.30% of the protein-bound label.

  19. ATP11C mutation is responsible for the defect in phosphatidylserine uptake in UPS-1 cells.

    PubMed

    Takada, Naoto; Takatsu, Hiroyuki; Miyano, Rie; Nakayama, Kazuhisa; Shin, Hye-Won

    2015-11-01

    Type IV P-type ATPases (P4-ATPases) translocate phospholipids from the exoplasmic to the cytoplasmic leaflets of cellular membranes. We and others previously showed that ATP11C, a member of the P4-ATPases, translocates phosphatidylserine (PS) at the plasma membrane. Twenty years ago, the UPS-1 (uptake of fluorescent PS analogs) cell line was isolated from mutagenized Chinese hamster ovary (CHO)-K1 cells with a defect in nonendocytic uptake of nitrobenzoxadiazole PS. Due to its defect in PS uptake, the UPS-1 cell line has been used in an assay for PS-flipping activity; however, the gene(s) responsible for the defect have not been identified to date. Here, we found that the mRNA level of ATP11C was dramatically reduced in UPS-1 cells relative to parental CHO-K1 cells. By contrast, the level of ATP11A, another PS-flipping P4-ATPase at the plasma membrane, or CDC50A, which is essential for delivery of most P4-ATPases to the plasma membrane, was not affected in UPS-1 cells. Importantly, we identified a nonsense mutation in the ATP11C gene in UPS-1 cells, indicating that the intact ATP11C protein is not expressed. Moreover, exogenous expression of ATP11C can restore PS uptake in UPS-1 cells. These results indicate that lack of the functional ATP11C protein is responsible for the defect in PS uptake in UPS-1 cells and ATP11C is crucial for PS flipping in CHO-K1 cells.

  20. EGF domain of coagulation factor IX is conducive to exposure of phosphatidylserine.

    PubMed

    Hidai, Chiaki; Fujiwara, Yusuke; Kokubun, Shinichiro; Kitano, Hisataka

    2017-04-01

    Lipid rafts are an initiation site for many different signals. Recently, we reported that an EGF domain in activated coagulation factor IX (EGF-F9) increases lipid raft formation and accelerates cell migration. However, the detailed mechanism is not well understood. This study aimed to evaluate the effects of EGF-F9 on the cell membrane. A431 cells (derived from human squamous cell carcinoma) were treated with recombinant EGF-F9. Cells were immunocytochemically stained with probes for lipid rafts or phosphatidylserine (PS). After 3 min of treatment with EGF-F9, cholera toxin subunit B (CTxB) binding domains emerged at the adhesive tips of filopodia. Subsequently, CTxB staining was observed on the filopodial shaft. Finally, large clusters of CTxB domains were observed at the edge of cell bodies. Markers for lipid rafts, such as caveolin-1 and a GPI anchored protein, co-localized with CTxB. Staining with annexin V and XII revealed that PS was exposed at the tips of filopodia, translocated on filopodial shafts, and co-localized with CTxB at the rafts. Immunocytochemistry showed that scramblase-1 protein was present at the filopodial tips. Our data indicates that EGF-F9 accelerates PS exposure around the filopodial adhesion complex and induces clustering of lipid rafts in the cell body. PS exposure is thought to occur on cells undergoing apoptosis. Further study of the function of the EGF-F9 motif in mediating signal transduction is necessary because it is shared by a number of proteins.

  1. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly

  2. Snake Cytotoxins Bind to Membranes via Interactions with Phosphatidylserine Head Groups of Lipids

    PubMed Central

    Konshina, Anastasia G.; Boldyrev, Ivan A.; Utkin, Yuri N.; Omel'kov, Anton V.; Efremov, Roman G.

    2011-01-01

    The major representatives of Elapidae snake venom, cytotoxins (CTs), share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS), and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against different types of

  3. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes.

    PubMed

    Wu, Licia N Y; Genge, Brian R; Wuthier, Roy E

    2009-07-01

    Mg(2+) and Zn(2+) are present in the mineral of matrix vesicles (MVs) and biological apatites, and are known to influence the onset and progression of mineral formation by amorphous calcium phosphate (ACP) and hydroxyapatite (HAP). However, neither has been studied systematically for its effect on mineral formation by phosphatidylserine-Ca(2+)-Pi complexes (PS-CPLX), an important constituent of the MV nucleation core. Presented here are studies on the effects of increasing levels of Mg(2+) and Zn(2+) on the process of mineral formation, either when present in synthetic cartilage lymph (SCL), or when incorporated during the formation of PS-CPLX. Pure HAP and PS-CPLX proved to be powerful nucleators, but ACP took much longer to induce mineral formation. In SCL, Mg(2+) and Zn(2+) had significantly different inhibitory effects on the onset and amount of mineral formation; HAP and PS-CPLX were less affected than ACP. Mg(2+) and Zn(2+) caused similar reductions in the rate and length of rapid mineral formation, but Zn(2+) was a more potent inhibitor on a molar basis. When incorporated into PS-CPLX, Mg(2+) and Zn(2+) caused significantly different effects than when present in SCL. Even low, subphysiological levels of Mg(2+) altered the inherent structure of PS-CPLX and markedly reduced its ability to induce and propagate mineral formation. Incorporated Zn(2+) caused significantly less effect, low (<20 microM) levels causing almost no inhibition. Levels of Zn(2+) present in MVs do not appear to inhibit their nucleational activity.

  4. Effect of calcium and magnesium on phosphatidylserine membranes: experiments and all-atomic simulations.

    PubMed

    Martín-Molina, Alberto; Rodríguez-Beas, César; Faraudo, Jordi

    2012-05-02

    It is known that phosphatidylserine (PS(-)) lipids have a very similar affinity for Ca(2+) and Mg(2+) cations, as revealed by electrokinetic and stability experiments. However, despite this similar affinity, experimental evidence shows that the presence of Ca(2+) or Mg(2+) induces very different aggregation behavior for PS(-) liposomes as characterized by their fractal dimensions. Also, turbidity measurements confirm substantial differences in aggregation behavior depending on the presence of Ca(2+) or Mg(2+) cations. These puzzling results suggest that although these two cations have a similar affinity for PS(-) lipids, they induce substantial structural differences in lipid bilayers containing each of these cations. In other words, these cations have strong ion-specific effects on the structure of PS(-) membranes. This interpretation is supported by all-atomic molecular-dynamics simulations showing that Ca(2+) and Mg(2+) cations have different binding sites and induce different membrane hydration. We show that although both ions are incorporated deep into the hydrophilic region of the membrane, they have different positions and configurations at the membrane. Absorbed Ca(2+) cations present a peak at a distance ~2 nm from the center of the lipid bilayer, and their most probable binding configuration involves two oxygen atoms from each of the charged moieties of the PS molecule (phosphate and carboxyl groups). In contrast, the distribution of absorbed Mg(2+) cations has two different peaks, located a few angstroms before and after the Ca(2+) peak. The most probable configurations (corresponding to these two peaks) involve binding to two oxygen atoms from carboxyl groups (the most superficial binding peak) or two oxygen atoms from phosphate groups (the most internal peak). Moreover, simulations also show differences in the hydration structure of the membrane: we obtained a hydration of 7.5 and 9 water molecules per lipid in simulations with Ca(2+) and Mg(2

  5. Phosphatidylserine and Phosphatidylethanolamine Bind to Protein Z Cooperatively and with Equal Affinity

    PubMed Central

    Sengupta, Tanusree; Manoj, Narayanan

    2016-01-01

    Protein Z (PZ) is an anticoagulant that binds with high affinity to Protein Z-dependent protease inhibitor (ZPI) and accelerates the rate of ZPI-mediated inhibition of factor Xa (fXa) by more than 1000-fold in the presence of Ca2+ and phospholipids. PZ promotion of the ZPI-fXa interaction results from the anchoring of the Gla domain of PZ onto phospholipid surfaces and positioning the bound ZPI in close proximity to the Gla-anchored fXa, forming a ternary complex of PZ/ZPI/fXa. Although interaction of PZ with phospholipid membrane appears to be absolutely crucial for its cofactor activity, little is known about the binding of different phospholipids to PZ. The present study was conceived to understand the interaction of different phospholipids with PZ. Experiments with both soluble lipids and model membranes revealed that PZ binds to phosphatidylserine (PS) and phosphatidylethanolamine (PE) with equal affinity (Kd~48 μM); further, PS and PE bound to PZ synergistically. Equilibrium dialysis experiments revealed two lipid-binding sites for both PS and PE. PZ binds with weaker affinity to other phospholipids, e.g., phosphatidic acid, phosphatidylglycerol, phosphatidylcholine and binding of these lipids is not synergistic with respect to PS. Both PS and PE -containing membranes supported the formation of a fXa-PZ complex. PZ protection of fXa from antithrombin inhibition were also shown to be comparable in presence of both PS: PC and PE: PC membranes. These findings are particularly important and intriguing since they suggest a special affinity of PZ, in vivo, towards activated platelets, the primary membrane involved in blood coagulation process. PMID:27584039

  6. Nonideal mixing of phosphatidylserine and phosphatidylcholine in the fluid lamellar phase.

    PubMed Central

    Huang, J; Swanson, J E; Dibble, A R; Hinderliter, A K; Feigenson, G W

    1993-01-01

    The mixing of phosphatidylserine (PS) and phosphatidylcholine (PC) in fluid bilayer model membranes was studied by measuring binding of aqueous Ca2+ ions. The measured [Ca2+]aq was used to derive the activity coefficient for PS, gamma PS, in the lipid mixture. For (16:0, 18:1) PS in binary mixtures with either (16:0, 18:1)PC, (14:1, 14:1)PC, or (18:1, 18:1)PC, gamma PS > 1; i.e., mixing is nonideal, with PS and PC clustered rather than randomly distributed, despite the electrostatic repulsion between PS headgroups. To understand better this mixing behavior, Monte Carlo simulations of the PS/PC distributions were performed, using Kawasaki relaxation. The excess energy was divided into an electrostatic term Uel and one adjustable term including all other nonideal energy contributions, delta Em. Uel was calculated using a discrete charge theory. Kirkwood's coupling parameter method was used to calculate the excess free energy of mixing, delta GEmix, hence In gamma PS,calc. The values of In gamma PS,calc were equalized by adjusting delta Em in order to find the simulated PS/PC distribution that corresponded to the experimental results. We were thus able to compare the smeared charge calculation of [Ca2+]surf with a calculation ("masked evaluation method") that recognized clustering of the negatively charged PS: clustering was found to have a modest effect on [Ca2+]surf, relative to the smeared charge model. Even though both PS and PC tend to cluster, the long-range nature of the electrostatic repulsion reduces the extent of PS clustering at low PS mole fraction compared to PC clustering at an equivalent low PC mole fraction. PMID:8457667

  7. The Effects of Phosphatidylserine and Omega-3 Fatty Acid-Containing Supplement on Late Life Depression

    PubMed Central

    Komori, Teruhisa

    2015-01-01

    Late life depression is often associated with a poor response to antidepressants; therefore an alternative strategy for therapy is required. Although several studies have reported that phosphatidylserine (PS) may be effective for late life depression and that omega-3 fatty acids DHA and EPA have also proven beneficial for many higher mental functions, including depression, no concrete conclusion has been reached. This study was performed to clarify the effect of PS and omega-3 fatty acid-containing supplement for late life depression by not only clinical evaluation but also salivary cortisol levels. Eighteen elderly subjects with major depression were selected for the study. In all, insufficient improvement had been obtained by antidepressant therapy for at least 6 months. The exclusion criteria from prior brain magnetic resonance images (MRI) included the presence of structural MRI findings compatible with stroke or other gross brain lesions or malformations, but not white matter hypersensitivities. They took a supplement containing PS 100 mg, DHA 119 mg and EPA 70 mg three times a day for 12 weeks. The effects of the supplement were assessed using the 17-item Hamilton depression scale (HAM-D17) and the basal levels and circadian rhythm of salivary cortisol. The study adopted them as indices because: salivary cortisol levels are high in patients with depression, their circadian rhythm related to salivary cortisol is often irregular, and these symptoms are alleviated as depression improves. The mean HAM-D17 in all subjects taking the supplement was significantly improved after 12 weeks of taking the supplement. These subjects were divided into 10 non-responders and 8 responders. The basal levels and circadian rhythm of salivary cortisol were normalized in the responders while not in non-responders. PS and omega-3 fatty acids, or other elements of the supplement, may be effective for late life depression, associated with the correction of basal levels and circadian

  8. Millimeter wave induced reversible externalization of phosphatidylserine molecules in cells exposed in vitro.

    PubMed

    Szabo, Imre; Kappelmayer, Janos; Alekseev, Stanislav I; Ziskin, Marvin C

    2006-04-01

    In vitro exposure of refrigerated samples (4 degrees C) of anti-coagulated blood with millimeter waves (MMWs) at incident power densities (IPDs) between 0.55 and 1.23 W/cm2 has been found to induce clot formation. We found a small but statistically significant change in clot size with increasing IPD value. MMW exposure of blood samples starting at room temperature (22 degrees C) did not induce blood coagulation; neither did conventional heating at temperatures up to 40 degrees C. Since cell-free plasma did not clot upon MMW exposure, the role of blood cells was particularly analyzed. Experiments on various mixtures of blood cells with plasma revealed an important role of red blood cells (RBC) in the coagulation process. Plasma coagulation also developed within the MMW beam above dense keratinocyte (HaCaT) monolayers suggesting it lacked cell-type specificity. We hypothesized that alteration of the membrane surface in exposed cells might be responsible for the circumscribed coagulation. The thrombogenic role of externalized phosphatidylserine (PS) molecules is well known. Therefore, we carried out experiments for immunolabeling PS molecules with fluorescein isothiocyanate (FITC)-conjugated Annexin V on exposed cells. Fluorescence microscopy of the adherent human keratinocytes (HaCaT) and murine melanoma cells (B16F10) showed that MMW exposure at an IPD of 1.23 W/cm2 is capable of inducing reversible externalization of PS molecules in cells within the beam area without detectable membrane damage. Nonadherent Jurkat cells exposed to MMW at an IPD of 34.5 mW/cm2 also showed reversible PS externalization with flow cytometry, whether the cell temperature was held constant or permitted to rise. These results suggest that certain biological effects induced by MMWs could be initiated by membrane changes in exposed cells.

  9. Immunohistochemical evidence for the coexistence of histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities in nerve cells of the magnocellular nucleus of the posterior hypothalamus of rats.

    PubMed Central

    Takeda, N; Inagaki, S; Shiosaka, S; Taguchi, Y; Oertel, W H; Tohyama, M; Watanabe, T; Wada, H

    1984-01-01

    Immunohistochemical staining of alternate consecutive sections revealed numerous histidine decarboxylase (L-histidine carboxy-lyase, EC 4.1.1.22)-like immunoreactive neurons that also contained glutamate decarboxylase (L-glutamate 1-carboxy-lyase, EC 4.1.1.15)-like immunoreactive structures in the tuberal magnocellular nucleus, the caudal magnocellular nucleus, and the postmammillary caudal magnocellular nucleus of the posterior hypothalamus of rats. Furthermore, in immunohistochemical double-staining procedures, almost all neurons in the magnocellular nuclei had both histidine decarboxylase-like and glutamate decarboxylase-like immunoreactivities. These results suggest the coexistence of histamine and gamma-aminobutyric acid in single neurons in these nuclei. Images PMID:6594708

  10. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dai, Bingbing; Roife, David; Kang, Ya'an; Gumin, Joy; Rios Perez, Mayrim V; Li, Xinqun; Pratt, Michael; Brekken, Rolf A; Fueyo-Margareto, Juan; Lang, Frederick F; Fleming, Jason B

    2017-04-01

    Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control (P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity (P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR.

  11. Determination of phosphatidylserine in milk-based nutritional products using online derivatization high-performance liquid chromatography.

    PubMed

    Lin, Qi; Zhang, Jie; Pei, Weijie; Zhang, Chunyan; Yew, Jia Le

    2015-02-13

    Phosphatidylserine (PS) has received interest for its ability to improve cognitive abilities and behaviors. A new method for determining PS in milk-based nutritional products has been developed. The method includes a quick and simple sample preparation procedure, followed by high-performance liquid chromatography (HPLC) fluorescence detection (FLD) with an on-line 9-fluorenylmethyloxycarbonyl (FMOC) derivatization. The method allows PS to be determined in raw materials, milk powder and liquid milk products. The day-to-day (n=3 days) average recovery of over spike-in (at 100% PS content level) was 100%, and the method quantification limit is 53 mg per kg milk powder.

  12. Inhibition of Binding of β2-Glycoprotein 1 to Phosphatidylserine by Polymyxin B, a Lupus-Like Anticoagulant.

    PubMed

    Uchman, Boguslaw; Triplett, Douglas A

    2015-09-01

    Polymyxin B is a cationic peptide that inhibits phospholipid-dependent coagulation tests including activated partial thromboplastin time and to a lesser degree prothrombin time. Thrombin clotting time is insensitive to polymyxin B. β2-glycoprotein 1 (β2GP1) is a cofactor of antiphospholipid antibodies. Antiphospholipid autoantibodies also poses lupus anticoagulant activity through interactions with β2GP1. Using affinity chromatography, polymyxin B can effectively decrease the binding of β2GP1 to immobilize phosphatidylserine. Since then, anticoagulant effect of polymyxin B is most likely due to the binding to negatively charged phospholipids, preventing formation of coagulation complexes.

  13. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    SciTech Connect

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.; Vinogradov, V.A.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  14. Oxidative lipidomics of hyperoxic acute lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation

    PubMed Central

    Tyurin, Vladimir A.; Kaynar, A. Murat; Kapralova, Valentyna I.; Wasserloos, Karla; Li, Jin; Mosher, Mackenzie; Wright, Lindsay; Wipf, Peter; Watkins, Simon; Pitt, Bruce R.; Kagan, Valerian E.

    2010-01-01

    Reactive oxygen species have been shown to play a significant role in hyperoxia-induced acute lung injury, in part, by inducing apoptosis of pulmonary endothelium. However, the signaling roles of phospholipid oxidation products in pulmonary endothelial apoptosis have not been studied. Using an oxidative lipidomics approach, we identified individual molecular species of phospholipids involved in the apoptosis-associated peroxidation process in a hyperoxic lung. C57BL/6 mice were killed 72 h after exposure to hyperoxia (100% oxygen). We found that hyperoxia-induced apoptosis (documented by activation of caspase-3 and -7 and histochemical terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling staining of pulmonary endothelium) was accompanied by nonrandom oxidation of pulmonary lipids. Two anionic phospholipids, mitochondria-specific cardiolipin (CL) and extramitochondrial phosphatidylserine (PS), were the two major oxidized phospholipids in hyperoxic lung. Using electrospray ionization mass spectrometry, we identified several oxygenation products in CL and PS. Quantitative assessments revealed a significant decrease of CL and PS molecular species containing C18:2, C20:4, C22:5, and C22:6 fatty acids. Similarly, exposure of mouse pulmonary endothelial cells (MLEC) to hyperoxia (95% oxygen; 72 h) resulted in activation of caspase-3 and -7 and significantly decreased the content of CL molecular species containing C18:2 and C20:4 as well as PS molecular species containing C22:5 and C22:6. Oxygenated molecular species were found in the same two anionic phospholipids, CL and PS, in MLEC exposed to hyperoxia. Treatment of MLEC with a mitochondria-targeted radical scavenger, a conjugate of hemi-gramicidin S with nitroxide, XJB-5-131, resulted in significantly lower oxidation of both CL and PS and a decrease in hyperoxia-induced changes in caspase-3 and -7 activation. We speculate that cytochrome c driven oxidation of CL and PS is associated with the signaling

  15. Phosphatidylserine-induced factor Xa dimerization and binding to factor Va are competing processes in solution.

    PubMed

    Majumder, Rinku; Koklic, Tilen; Rezaie, Alireza R; Lentz, Barry R

    2013-01-08

    A soluble, short chain phosphatidylserine, 1,2-dicaproyl-sn-glycero-3-phospho-l-serine (C6PS), binds to discrete sites on FXa, FVa, and prothrombin to alter their conformations, to promote FXa dimerization (K(d) ~ 14 nM), and to enhance both the catalytic activity of FXa and the cofactor activity of FVa. In the presence of calcium, C6PS binds to two sites on FXa, one in the epidermal growth factor-like (EGF) domain and one in the catalytic domain; the latter interaction is sensitive to Na(+) binding and probably represents a protein recognition site. Here we ask whether dimerization of FXa and its binding to FVa in the presence of C6PS are competitive processes. We monitored FXa activity at 5, 20, and 50 nM FXa while titrating with FVa in the presence of 400 μM C6PS and 3 or 5 mM Ca(2+) to show that the apparent K(d) of FVa-FXa interaction increased with an increase in FXa concentration at 5 mM Ca(2+), but the K(d) was only slightly affected at 3 mM Ca(2+). A mixture of 50 nM FXa and 50 nM FVa in the presence of 400 μM C6PS yielded both Xa homodimers and Xa·Va heterodimers, but no FXa dimers bound to FVa. A mutant FXa (R165A) that has reduced prothrombinase activity showed both weakened dimerization (K(d) ~ 147 nM) and weakened FVa binding (apparent K(d) values of 58, 92, and 128 nM for 5, 20, and 50 nM R165A FXa, respectively). Native gel electrophoresis showed that the GLA-EGF(NC) fragment of FXa (lacking the catalytic domain) neither dimerized nor formed a complex with FVa in the presence of 400 μM C6PS and 5 mM Ca(2+). Our results demonstrate that the dimerization site and FVa-binding site are both located in the catalytic domain of FXa and that these sites are linked thermodynamically.

  16. Unusual space-group pseudo symmetry in crystals of human phosphopantothenoylcysteine decarboxylase

    SciTech Connect

    Manoj, N.; Ealick, S.E.

    2010-12-01

    Phosphopantothenoylcysteine (PPC) decarboxylase is an essential enzyme in the biosynthesis of coenzyme A and catalyzes the decarboxylation of PPC to phosphopantetheine. Human PPC decarboxylase has been expressed in Escherichia coli, purified and crystallized. The Laue class of the diffraction data appears to be {bar 3}m, suggesting space group R32 with two monomers per asymmetric unit. However, the crystals belong to the space group R3 and the asymmetric unit contains four monomers. The structure has been solved using molecular replacement and refined to a current R factor of 29%. The crystal packing can be considered as two interlaced lattices, each consistent with space group R32 and with the corresponding twofold axes parallel to each other but separated along the threefold axis. Thus, the true space group is R3 with four monomers per asymmetric unit.

  17. A coenzyme-independent decarboxylase/oxygenase cascade for the efficient synthesis of vanillin.

    PubMed

    Furuya, Toshiki; Miura, Misa; Kino, Kuniki

    2014-10-13

    Vanillin is one of the most widely used flavor compounds in the world as well as a promising versatile building block. The biotechnological production of vanillin from plant-derived ferulic acid has attracted much attention as a new alternative to chemical synthesis. One limitation of the known metabolic pathway to vanillin is its requirement for expensive coenzymes. Here, we developed a novel route to vanillin from ferulic acid that does not require any coenzymes. This artificial pathway consists of a coenzyme-independent decarboxylase and a coenzyme-independent oxygenase. When Escherichia coli cells harboring the decarboxylase/oxygenase cascade were incubated with ferulic acid, the cells efficiently synthesized vanillin (8.0 mM, 1.2 g L(-1) ) via 4-vinylguaiacol in one pot, without the generation of any detectable aromatic by-products. The efficient method described here might be applicable to the synthesis of other high-value chemicals from plant-derived aromatics.

  18. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    SciTech Connect

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.

  19. HemQ: an iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    PubMed Central

    Dailey, Harry A.; Gerdes, Svetlana

    2015-01-01

    Genes for chlorite dismutase-like proteins are found widely among hemesynthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. The heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed. Thus, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis. PMID:25711532

  20. Observation of Superoxide Production During Catalysis of Bacillus subtilis Oxalate Decarboxylase at pH4

    PubMed Central

    Twahir, Umar T.; Stedwell, Corey N.; Lee, Cory T.; Richards, Nigel G. J.; Polfer, Nicolas C.; Angerhofer, Alexander

    2015-01-01

    This contribution describes the trapping of the hydroperoxyl radical at a pH of 4 during turnover of wild-type oxalate decarboxylase and its T165V mutant using the spin trap BMPO. Radicals were detected and identified by a combination of EPR and mass spectrometry. Superoxide, or its conjugate acid, the hydroperoxyl radical, is expected as an intermediate in the decarboxylation and oxidation reactions of the oxalate monoanion both of which are promoted by oxalate decarboxylase. Another intermediate, the carbon dioxide radical anion was also observed. The quantitative yields of superoxide trapping is similar in the wild type and the mutant while it is significantly different for the trapping of the carbon dioxide radical anion. This suggests that the two radicals are released from different sites of the protein. PMID:25526893

  1. Increase of histidine decarboxylase activity in mice hypothalamus after intracerebroventricular administration of lipopolysaccharide.

    PubMed

    Niimi, M; Mochizuki, T; Cacabelos, R; Yamatodani, A

    1993-10-01

    The effect of intracerebroventricular (icv) administration of lipopolysaccharide on histidine decarboxylase activity and histamine content in the hypothalamus were investigated in male mice of ddY strain in vivo. Two-fold increase in histidine decarboxylase activity (HDC) was observed 4 h after administration of 50 mcg lipopolysaccharide, and HDC activity returned to the basal level within 12 h after injection. Furthermore, histamine contents showed a slight decrease at 1 and 2 h and a mild increase at 12 h after administration. However, changes in histamine content were not statistically significant. These results suggest that the increase of HDC activity in the hypothalamus by lipopolysaccharide may be involved in the central neuroimmune responses.

  2. Identification of FAH Domain-containing Protein 1 (FAHD1) as Oxaloacetate Decarboxylase*

    PubMed Central

    Pircher, Haymo; von Grafenstein, Susanne; Diener, Thomas; Metzger, Christina; Albertini, Eva; Taferner, Andrea; Unterluggauer, Hermann; Kramer, Christian; Liedl, Klaus R.; Jansen-Dürr, Pidder

    2015-01-01

    Fumarylacetoacetate hydrolase (FAH) domain-containing proteins occur in both prokaryotes and eukaryotes, where they carry out diverse enzymatic reactions, probably related to structural differences in their respective FAH domains; however, the precise relationship between structure of the FAH domain and the associated enzyme function remains elusive. In mammals, three FAH domain-containing proteins, FAHD1, FAHD2A, and FAHD2B, are known; however, their enzymatic function, if any, remains to be demonstrated. In bacteria, oxaloacetate is subject to enzymatic decarboxylation; however, oxaloacetate decarboxylases (ODx) were so far not identified in eukaryotes. Based on molecular modeling and subsequent biochemical investigations, we identified FAHD1 as a eukaryotic ODx enzyme. The results presented here indicate that dedicated oxaloacetate decarboxylases exist in eukaryotes. PMID:25575590

  3. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  4. Perturbation of the Monomer-Monomer Interfaces of the Benzoylformate Decarboxylase Tetramer

    SciTech Connect

    Andrews, Forest H.; Rogers, Megan P.; Paul, Lake N.; McLeish, Michael J.

    2014-08-14

    The X-ray structure of benzoylformate decarboxylase (BFDC) from Pseudomonas putida ATCC 12633 shows it to be a tetramer. This was believed to be typical of all thiamin diphosphate-dependent decarboxylases until recently when the structure of KdcA, a branched-chain 2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate this possibility in BFDC, we sought to shift the equilibrium toward dimer formation. Point mutations were made in the noncatalytic monomer–monomer interfaces, but these had a minimal effect on both tetramer formation and catalytic activity. Subsequently, the R141E/Y288A/A306F variant was shown by analytical ultracentrifugation to be partially dimeric. It was also found to be catalytically inactive. Further experiments revealed that just two mutations, R141E and A306F, were sufficient to markedly alter the dimer–tetramer equilibrium and to provide an ~450-fold decrease in kcat. Equilibrium denaturation studies suggested that the residual activity was possibly due to the presence of residual tetramer. The structures of the R141E and A306F variants, determined to <1.5 Å resolution, hinted that disruption of the monomer interfaces will be accompanied by movement of a loop containing Leu109 and Leu110. As these residues contribute to the hydrophobicity of the active site and the correct positioning of the substrate, it seems that tetramer formation may well be critical to the catalytic activity of BFDC.

  5. Cell density-correlated induction of pyruvate decarboxylase under aerobic conditions in the yeast Pichia stipitis.

    PubMed

    Mergler, M; Klinner, U

    2001-01-01

    During the aerobic batch cultivation of P. stipitis CBS 5776 with glucose, pyruvate decarboxylase was activated in a cell number-correlated manner. Activation started when a cell number between 7 x 10(7) and x 10(8) cells ml(-1) was reached and the enzyme activity increased during further cultivation. This induction might have been triggered either by an unknown quorum sensing system or by a shortage of cytoplasmic acetyl-CoA.

  6. Arginine and lysine decarboxylases and the acid tolerance response of Salmonella Typhimurium.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-01-01

    Salmonella Typhimurium CECT 443 inactivation at pH 2.5 in Mineral Medium (MM) and MM supplemented with 0.01% (w/v) arginine, lysine or glutamic acid was studied using stationary-phase cells grown in buffered BHI pH 7.0 (non-acid adapted cells) and acidified BHI up to pH 4.5 with acetic, citric, lactic and hydrochloric acids (acid adapted cells). In all cases, acid adapted cells, with D-values ranging from 23.34 to 86.90 min, showed a significantly higher acid resistance than non-acid adapted cells, with D-values between 8.90 and 10.29 min. Whereas the conditions used for acid adaptation did not exert a significant effect on the acid resistance of the S. Typhimurium CECT 443 resulting cells, the inclusion of lysine and arginine in the challenge medium protected them against acid inactivation, reaching D-values of about 2 and 3 times higher, respectively, than those found in MM or MM supplemented with glutamic acid. None of these three amino acids significantly modified the acid resistance of non-acid adapted cells. The relative expression level of adiA (encoding the arginine decarboxylase), adiY (encoding the transcriptional activator of adiA), cadA (encoding the lysine decarboxylase) and cadB (encoding the lysine/cadaverine transport protein) was examined by quantitative PCR. Acid adapted cells showed higher relative expression levels for both systems, arginine decarboxylase and lysine decarboxylase, which demonstrates that the induction of specialized pH-homeostatic systems plays an important role in S. Typhimurium CECT 443 protection against acid stress. However, the increased acid resistance showed by acid adapted cells challenged in MM arginine or lysine free suggests the existence of other microbial survival strategies.

  7. Autoradiographic measurement of relative changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons

    SciTech Connect

    Wells, M.R.

    1986-05-01

    An autoradiographic method is described for detecting changes in ornithine decarboxylase in axotomized superior cervical ganglion neurons of rats using (3H)difluoromethylornithine. An increase in binding to neurons was seen at 12 h and 1 day after crushing the postganglionic nerves. Binding returned to control values between 3 and 5 days postoperation. The patterns found using this method were in general agreement with prior reports of enzymatic changes in whole ganglia.

  8. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA.

    PubMed

    Michael, A J; Furze, J M; Rhodes, M J; Burtin, D

    1996-02-15

    A cDNA for a plant ornithine decarboxylase (ODC), a key enzyme in putrescine and polyamine biosynthesis, has been isolated from root cultures of the solanaceous plant Datura stramonium. Reverse transcription-PCR employing degenerate oligonucleotide primers representing conserved motifs from other eukaryotic ODCs was used to isolate the cDNA. The longest open reading frame potentially encodes a peptide of 431 amino acids and exhibits similarity to other eukaryotic ODCs, prokaryotic and eukaryotic arginine decarboxylases (ADCs), prokaryotic meso-diaminopimelate decarboxylases and the product of the tabA gene of Pseudomonas syringae cv. tabaci. Residues involved at the active site of the mouse ODC are conserved in the plant enzyme. The plant ODC does not possess the C-terminal extension found in the mammalian enzyme, implicated in rapid turnover of the protein, suggesting that the plant ODC may have a longer half-life. Expression of the plant ODC in Escherichia coli and demonstration of ODC activity confirmed that the cDNA encodes an active ODC enzyme. This is the first description of the primary structure of a eukaryotic ODC isolated from an organism where the alternative ADC routine to putrescine is present.

  9. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.

    PubMed

    De Masi, Luigi; Castaldo, Domenico; Pignone, Domenico; Servillo, Luigi; Facchiano, Angelo

    2017-02-11

    Plant tryptophan decarboxylase (TDC) converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N,N,N-trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus. We analyzed the genomes of both Citrus clementina and Citrus sinensis, available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus.

  10. Different mRNAs code for dopa decarboxylase in tissues of neuronal and nonneuronal origin

    SciTech Connect

    Krieger, M.; Coge, F.; Gros, F.; Thibault, J. )

    1991-03-15

    A cDNA clone for dopa decarboxylase has been isolated from a rat pheochromocytoma cDNA library and the cDNA sequence has been determined. It corresponds to an mRNA of 2094 nucleotides. The length of the mRNA was measured by primer-extension of rat pheochromocytoma RNA and the 5{prime} end of the sequence of the mRNA was confirmed by the PCR. A probe spanning the translation initiation site of the mRNA was used to hybridize with mRNAs from various organs of the rat. S1 nuclease digestion of the mRNAs annealed with this probe revealed two classes of mRNAs. The comparison of the cDNA sequence and published sequences for rat liver, human pheochromocytoma, and Droxophila dopa decarboxylase supported the conclusion that two mRNAs are produced: one is specific for tissue of neuronal origin and the other is specific for tissues of nonneuronal (mesodermal or endodermal) origin. The neuronal mRNA contains a 5{prime} untranslated sequence that is highly conserved between human and rat pheochromocytoma including a GA stretch. The coding sequence and the 3{prime} untranslated sequence of mRNAs from rat liver and pheochromocytoma are identical. The rat mRNA differs only in the 5{prime} untranslated region. Thus a unique gene codes for dopa decarboxylase and this gene gives rise to at least two transcripts presumably in response to different signals during development.

  11. EPR Spin Trapping of an Oxalate-Derived Free Radical in the Oxalate Decarboxylase Reaction

    PubMed Central

    Imaram, Witcha; Saylor, Benjamin T.; Centonze, Christopher P.; Richards, Nigel G. J.; Angerhofer, Alexander

    2011-01-01

    EPR spin trapping experiments on bacterial oxalate decarboxylase from Bacillus subtilis under turn-over conditions are described. The use of doubly 13C-labeled oxalate leads to a characteristic splitting of the observed radical adducts using the spin trap N-tert-butyl-α-phenylnitrone linking them directly to the substrate. The radical was identified as the carbon dioxide radical anion which is a key intermediate in the hypothetical reaction mechanism of both decarboxylase and oxidase activities. X-ray crystallography had identified a flexible loop, SENS161-4, which acts as a lid to the putative active site. Site directed mutagenesis of the hinge amino acids, S161 and T165 was explored and showed increased radical trapping yields compared to the wild type. In particular, T165V shows approximately ten times higher radical yields while at the same time its decarboxylase activity was reduced by about a factor of ten. This mutant lacks a critical H-bond between T165 and R92 resulting in compromised control over its radical chemistry allowing the radical intermediate to leak into the surrounding solution. PMID:21277974

  12. Novel protein–protein interaction between spermidine synthase and S-adenosylmethionine decarboxylase from Leishmania donovani

    SciTech Connect

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar; Pratap, J. Venkatesh

    2015-01-09

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethionine (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.

  13. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    SciTech Connect

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario; Mancheño, José M.

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.

  14. 3,4-Dihydroxyphenylalanine (dopa) decarboxylase activity in the arthropod nervous system.

    PubMed

    Murdock, L L; Wirtz, R A; Köhler, G

    1973-04-01

    1. When homogenates of brains from mature adult locusts (Locusta migratoria) were incubated with l-3-(3,4-dihydroxyphenyl)[3-(14)C]alanine the major radioactive metabolite was dopamine, suggesting the presence of a dopa (3,4-dihydroxyphenylalanine) decarboxylase. 2. Decarboxylation of l-dopa by this tissue, measured under optimum conditions by a radiochemical method, was 21mumol of CO(2)/h per g wet wt. Apparent decarboxylation of l-tyrosine proceeded at 0.34mumol of CO(2)/h per g wet wt. There was no detectable decarboxylation of l-tryptophan, l-histidine or l-phenylalanine. 3. Dopa decarboxylase activity was found in all major regions of the ventral nerve cord of the mature locust (range: 4-7mumol of CO(2)/h per g wet wt.) but was low or absent in thoracic peripheral nerve. 4. Marked decarboxylation of l-dopa was found in homogenates of brains of four other species of insects, and in brain and ventral nerve cord, but not in the claw nerve, of the crayfish. 5. The activity of the locust brain enzyme may be slightly lower at the time of imaginal ecdysis than during the mature period. By contrast, the dopa decarboxylase that produces dopamine as an intermediate in cuticle biosynthesis is known to be high in activity at the time of ecdysis and low in activity during the intermoult stages.

  15. Isolation and sequence of the gene encoding ornithine decarboxylase, SPE1, from Candida albicans by complementation of a spe1 delta strain of Saccharomyces cerevisiae.

    PubMed

    McNemar, M D; Gorman, J A; Buckley, H R

    1997-11-01

    The gene encoding ornithine decarboxylase, SPE1, from the pathogenic yeast Candida albicans has been isolated by complementation of an ornithine decarboxylase-negative (spe1 delta) strain of Saccharomyces cerevisiae. Four transformants, three of which contain plasmids with the SPE1 gene, were isolated by selection on polyamine-free medium. The C. albicans ornithine decarboxylase (ODC) showed high homology with other eukaryotic ODCs at both the amino acid and nucleic acid levels.

  16. Proteolytic degradation of glutamate decarboxylase mediates disinhibition of hippocampal CA3 pyramidal cells in cathepsin D-deficient mice.

    PubMed

    Shimizu, Tokiko; Hayashi, Yoshinori; Yamasaki, Ryo; Yamada, Jun; Zhang, Jian; Ukai, Kiyoharu; Koike, Masato; Mine, Kazunori; von Figura, Kurt; Peters, Christoph; Saftig, Paul; Fukuda, Takaichi; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2005-08-01

    Although of clinical importance, little is known about the mechanism of seizure in neuronal ceroid lipofuscinosis (NCL). In the present study, we have attempted to elucidate the mechanism underlying the seizure of cathepsin D-deficient (CD-/-) mice that show a novel type of lysosomal storage disease with a phenotype resembling late infantile NCL. In hippocampal slices prepared from CD-/- mice at post-natal day (P)24, spontaneous burst discharges were recorded from CA3 pyramidal cells. At P24, the mean amplitude of IPSPs after stimulation of the mossy fibres was significantly smaller than that of wild-type mice, which was substantiated by the decreased level of gamma-aminobutyric acid (GABA) contents in the hippocampus measured by high-performance liquid chromatography (HPLC). At this stage, activated microglia were found to accumulate in the pyramidal cell layer of the hippocampal CA3 subfield of CD-/- mice. However, there was no significant change in the numerical density of GABAergic interneurons in the CA3 subfield of CD-/- mice at P24, estimated by counting the number of glutamate decarboxylase (GAD) 67-immunoreactive somata. In the hippocampus and the cortex of CD-/- mice at P24, some GABAergic interneurons displayed extremely high somatic granular immunoreactivites for GAD67, suggesting the lysosomal accumulation of GAD67. GAD67 levels in axon terminals abutting on to perisomatic regions of hippocampal CA3 pyramidal cells was not significantly changed in CD-/- mice even at P24, whereas the total protein levels of GAD67 in both the hippocampus and the cortex of CD-/- mice after P24 were significantly decreased as a result of degradation. Furthermore, the recombinant human GAD65/67 was rapidly digested by the lysosomal fraction prepared from the whole brain of wild-type and CD-/- mice. These observations strongly suggest that the reduction of GABA contents, presumably because of lysosomal degradation of GAD67 and lysosomal accumulation of its degraded forms

  17. Polyamines induced by osmotic stress protect Synechocystis sp. PCC 6803 cells and arginine decarboxylase transcripts against UV-B radiation.

    PubMed

    Pothipongsa, Apiradee; Jantaro, Saowarath; Incharoensakdi, Aran

    2012-11-01

    The effect of UV-B radiation on growth and polyamines content of Synechocystis sp. PCC 6803 subjected to either NaCl or sorbitol stress was investigated. Cells could not grow in the presence of 350 mM NaCl or 500 mM sorbitol under normal white light. However, cells grown in BG11 under osmotic stress imposed by NaCl or sorbitol followed by ultraviolet-B (UV-B) irradiation for 2 h showed higher cell density than those under the same condition but no osmotic stress. The chlorophyll fluorescence parameter (F(v)/F(m)) also showed an apparent decrease upon UV-B irradiation. Intracellular polyamines increased by about 2- and 4-fold in NaCl- and sorbitol-stressed cells, respectively. When these cells were irradiated with UV-B for 1 h, a further 3-fold increase in polyamines content was detected in NaCl-stressed but not sorbitol-stressed cells. Synechocystis cells contained adc1 and adc2 genes encoding arginine decarboxylase (ADC) with only adc1 showing upregulation by NaCl or sorbitol stress. NaCl- or sorbitol-stressed cells contained about 5-fold higher level of adc1 transcript than did the unstressed cells after 1-h irradiation with UV-B, suggesting the protection of adc1 transcript by accumulated polyamines, due to NaCl or sorbitol stress, against UV-B radiation damage. ADC levels as analyzed by Western blot showed upregulation by UV-B in NaCl-stressed but not sorbitol-stressed cells.

  18. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes. Use of cobalt as a paramagnetic probe

    SciTech Connect

    McLaughlin, A.C.

    1982-01-01

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and the authors have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. They suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.

  19. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membranes: use of cobalt as a paramagnetic probe

    SciTech Connect

    McLaughlin, A.C.

    1982-09-28

    The paramagnetic divalent cation cobalt has large and well-understood effects on NMR signals from ligands bound in the first coordination sphere, i.e., inner-sphere ligands, and we have used these effects to identify divalent cation binding sites at the surface of phosphatidylserine membranes. /sup 31/P NMR results show that 13% of the bound cobalt ions are involved in inner-sphere complexes with the phosphodiester group, while /sup 13/C NMR results show that 54% of the bound cobalt ions are involved in unidentate inner sphere complexes with the carboxyl group. No evidence is found for cobalt binding to the carbonyl groups, but proton release studies suggest that 32% of the bound cobalt ions are involved in chelate complexes that contain both the carboxyl and the amine groups. All (i.e., 13% + 54% + 32% = 99%) of the bound cobalt ions can thus be accounted for in terms of inner sphere complexes with the phosphodiester group or the carboxyl group. We suggest that the unidentate inner-sphere complex between cobalt and the carboxyl group of phosphatidylserine and the inner-sphere complex between cobalt and the phosphodiester group of phosphatidylserine provide reasonable models for complexes between alkaline earth cations and phosphatidylserine membranes.

  20. 4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins

    PubMed Central

    Jeremy, Kris P.; Plummer, Zoe E.; Head, David J.; Madgett, Tracey E.; Sanders, Kelly L.; Wallington, Amanda; Storry, Jill R.; Gilsanz, Florinda; Delaunay, Jean; Avent, Neil D.

    2009-01-01

    Background Protein 4.1R is an important component of the red cell membrane skeleton. It imparts structural integrity and has transmembrane signaling roles by direct interactions with transmembrane proteins and other membrane skeletal components, notably p55 and calmodulin. Design and Methods Spontaneous and ligation-induced phosphatidylserine exposure on erythrocytes from two patients with 4.1R deficiency were studied, using CD47 glycoprotein and glycophorin C as ligands. We also looked for protein abnormalities in the 4.1R - based multiprotein complex. Results Phosphatidylserine exposure was significantly increased in 4.1R-deficient erythrocytes obtained from the two different individuals when ligands to CD47 glycoprotein were bound. Spontaneous phosphatidylserine exposure was normal. 4.1R, glycophorin C and p55 were missing or sharply reduced. Furthermore there was an alteration or deficiency of CD47 glycoprotein and a lack of CD44 glycoprotein. Based on a recent study in 4.1R-deficient mice, we found that there are clear functional differences between interactions of human red cell 4.1R and its murine counterpart. Conclusions Glycophorin C is known to bind 4.1R, and we have defined previously that it also binds CD47. From our evidence, we suggest that 4.1R plays a role in the phosphatidylserine exposure signaling pathway that is of fundamental importance in red cell turnover. The linkage of CD44 to 4.1R may be relevant to this process. PMID:19794081

  1. Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells.

    PubMed

    Siedlecka-Kroplewska, K; Jozwik, A; Boguslawski, W; Wozniak, M; Zauszkiewicz-Pawlak, A; Spodnik, J H; Rychlowski, M; Kmiec, Z

    2013-10-01

    Pterostilbene, a naturally occurring structural analog of resveratrol, has been reported to exert antiproliferative and proapoptotic effects in various cancer types. Recently, it has been demonstrated to induce both autophagy and apoptosis in human bladder and breast cancer cell lines. The aim of this study was to evaluate the effects of pterostilbene on HL60 human leukemia cells. Cell morphology was examined using confocal and electron microscopy. Cell viability was determined by MTT, neutral red uptake and trypan blue exclusion assays. LC3 processing was studied based on Western blotting and immunofluorescence analyses. Flow cytometry was used to study cell cycle distribution, phosphatidylserine externalization, caspase activation, disruption of mitochondrial membrane potential and intracellular production of reactive oxygen species. DNA degradation was examined by gel electrophoresis. We found that treatment of HL60 cells with pterostilbene at the IC90 concentration resulted in the G0/G1 cell cycle arrest. Pterostilbene induced conversion of cytosolic LC3-I to membrane-bound LC3-II and accumulation of large LC3-positive vacuolar structures. Pterostilbene also led to phosphatidylserine externalization, internucleosomal DNA fragmentation, caspase activation and disruption of mitochondrial membrane potential. Moreover, it did not induce oxidative stress. Our results suggest that pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 cells.

  2. Synergistic and antagonistic effect of lactic acid bacteria on tyramine production by food-borne pathogenic bacteria in tyrosine decarboxylase broth.

    PubMed

    Kuley, Esmeray; Ozogul, Fatih

    2011-08-01

    The effect of lactic acid bacteria (LAB) strains on tyramine (TYR) and also other biogenic amines (BA) production by eight common food-borne pathogen (FBP) in tyrosine decarboxylase broth (TDB) was investigated by using a rapid HPLC method. Significant differences were observed among the FBP strains in ammonia (AMN) and BA production apart from tryptamine, histamine (HIS) and spermine formation (p<0.05). Salmonella paratyphi A was characterised as the main amine producer. LAB had an important synergetic role in some BA production by food-borne pathogenic bacteria, although the effect of some LAB strains on BA production was strain-dependent. Lactococcus spp. and Streptococcus spp. resulted in significantly higher TYR accumulation by Aeromonas hydrophila and Enterococcus faecalis in TDB. The presence of Lactococcus and/or Lactobacillus in TDB significantly increased HIS production by A. hydrophila, Escherichia coli, Ent. faecalis, Klebsiella pneumoniae and Pseudomonas aeruginosa, whereas HIS accumulation was significantly reduced by Staphylococcus aureus, S. paratyphi A and Listeria monocytogenes.

  3. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  4. An archaeal glutamate decarboxylase homolog functions as an aspartate decarboxylase and is involved in β-alanine and coenzyme A biosynthesis.

    PubMed

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki; Atomi, Haruyuki

    2014-03-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5'-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4'-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms.

  5. An Archaeal Glutamate Decarboxylase Homolog Functions as an Aspartate Decarboxylase and Is Involved in β-Alanine and Coenzyme A Biosynthesis

    PubMed Central

    Tomita, Hiroya; Yokooji, Yuusuke; Ishibashi, Takuya; Imanaka, Tadayuki

    2014-01-01

    β-Alanine is a precursor for coenzyme A (CoA) biosynthesis and is a substrate for the bacterial/eukaryotic pantothenate synthetase and archaeal phosphopantothenate synthetase. β-Alanine is synthesized through various enzymes/pathways in bacteria and eukaryotes, including the direct decarboxylation of Asp by aspartate 1-decarboxylase (ADC), the degradation of pyrimidine, or the oxidation of polyamines. However, in most archaea, homologs of these enzymes are not present; thus, the mechanisms of β-alanine biosynthesis remain unclear. Here, we performed a biochemical and genetic study on a glutamate decarboxylase (GAD) homolog encoded by TK1814 from the hyperthermophilic archaeon Thermococcus kodakarensis. GADs are distributed in all three domains of life, generally catalyzing the decarboxylation of Glu to γ-aminobutyrate (GABA). The recombinant TK1814 protein displayed not only GAD activity but also ADC activity using pyridoxal 5′-phosphate as a cofactor. Kinetic studies revealed that the TK1814 protein prefers Asp as its substrate rather than Glu, with nearly a 20-fold difference in catalytic efficiency. Gene disruption of TK1814 resulted in a strain that could not grow in standard medium. Addition of β-alanine, 4′-phosphopantothenate, or CoA complemented the growth defect, whereas GABA could not. Our results provide genetic evidence that TK1814 functions as an ADC in T. kodakarensis, providing the β-alanine necessary for CoA biosynthesis. The results also suggest that the GAD activity of TK1814 is not necessary for growth, at least under the conditions applied in this study. TK1814 homologs are distributed in a wide range of archaea and may be responsible for β-alanine biosynthesis in these organisms. PMID:24415726

  6. Kinetic, Mutational, and Structural Analysis of Malonate Semialdehyde Decarboxylase from Coryneform bacterium strain FG41: Mechanistic Implications for the Decarboxylase and Hydratase Activities

    PubMed Central

    Guo, Youzhong; Serrano, Hector; Poelarends, Gerrit J.; Johnson, William H.; Hackert, Marvin L.; Whitman, Christian P.

    2013-01-01

    Malonate semialdehyde decarboxylase from Pseudomonas pavonaceae 170 (designated Pp MSAD) is in a bacterial catabolic pathway for the nematicide 1,3-dichloropropene. MSAD has two known activities: it catalyzes the metal-ion independent decarboxylation of malonate semialdehyde to produce acetaldehyde and carbon dioxide, as well as a low-level hydration of 2-oxo-3-pentynoate to yield acetopyruvate. The latter activity is not known to be biologically relevant. Previous studies identified Pro-1, Asp-37, and a pair of arginines (Arg-73 and Arg-75) as critical residues in these activities. MSAD from Coryneform bacterium strain FG41 (designated FG41 MSAD) shares 38% pairwise sequence identity with the Pseudomonas enzyme including Pro-1 and Asp-37. However, Gln-73 replaces Arg-73, and the second arginine is shifted to Arg-76 by the insertion of a glycine. In order to determine how these changes relate to the activities of FG41 MSAD, the gene was cloned and the enzyme expressed and characterized. The enzyme has a comparable decarboxylase activity, but a significantly reduced hydratase activity. Mutagenesis along with crystal structures of the native enzyme (2.0 Å resolution) and the enzyme modified by a 3-oxopropanoate moiety (resulting from the incubation of enzyme and 3-bromopropiolate) (2.2 Å resolution) provided a structural basis. The roles of Pro-1 and Asp-37 are likely the same as those proposed for MSAD. However, the side chains of Thr-72, Gln-73, and Tyr-123 replace those of Arg-73 and Arg-75 in the mechanism and play a role in binding and catalysis. The structures also show that Arg-76 is likely too distant to play a direct role in the mechanism. FG41 MSAD is the second functionally annotated homologue in the MSAD family of the tautomerase superfamily and could represent a new subfamily. PMID:23781927

  7. Aspirin induces cell death and caspase-dependent phosphatidylserine externalization in HT-29 human colon adenocarcinoma cells

    PubMed Central

    Castaño, E; Dalmau, M; Barragán, M; Pueyo, G; Bartrons, R; Gil, J

    1999-01-01

    The induction of cell death by aspirin was analysed in HT-29 colon carcinoma cells. Aspirin induced two hallmarks of apoptosis: nuclear chromatin condensation and increase in phosphatidylserine externalization. However, aspirin did not induce either oligonucleosomal fragmentation of DNA, decrease in DNA content or nuclear fragmentation. The effect of aspirin on Annexin V binding was inhibited by the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases in the apoptotic action of aspirin. However, aspirin did not induce proteolysis of PARP, suggesting that aspirin does not increase nuclear caspase 3-like activity in HT-29 cells. This finding may be related with the ‘atypical’ features of aspirin-induced apoptosis in HT-29 cells. © 1999 Cancer Research Campaign PMID:10496355

  8. Involvement of sodium in early phosphatidylserine exposure and phospholipid scrambling induced by P2X7 purinoceptor activation in thymocytes.

    PubMed

    Courageot, Marie-Pierre; Lépine, Sandrine; Hours, Michel; Giraud, Françoise; Sulpice, Jean-Claude

    2004-05-21

    Extracellular ATP (ATP(ec)), a possible effector in thymocyte selection, induces thymocyte death via purinoceptor activation. We show that ATP(ec) induced cell death by apoptosis, rather than lysis, and early phosphatidylserine (PS) exposure and phospholipid scrambling in a limited thymocyte population (35-40%). PS externalization resulted from the activation of the cationic channel P2X7 (formerly P2Z) receptor and was triggered in all thymocyte subsets although to different proportions in each one. Phospholipid movement was dependent on ATP(ec)-induced Ca(2+) and/or Na(+) influx. At physiological external Na(+) concentration, without external Ca(2+), PS was exposed in all ATP(ec)-responsive cells. In contrast, without external Na(+), physiological external Ca(2+) concentration promoted a submaximal response. Altogether these data show that Na(+) influx plays a major role in the rapid PS exposure induced by P2X7 receptor activation in thymocytes.

  9. Docosahexaenoic acid and phosphatidylserine improves the antioxidant activities in vitro and in vivo and cognitive functions of the developing brain.

    PubMed

    Chaung, Hso-Chi; Chang, Chin-Dong; Chen, Pi-Hang; Chang, Chia-Jung; Liu, Shyh-Hwa; Chen, Chih-Cheng

    2013-05-01

    Fish oil during early postnatal period may modulate the impact of oxidative stress in the developing brain and thus improve memory and cognitive behaviour. This study investigated the impacts of docosahexaenoic acid (DHA, C22:6, n-3) and/or phosphatidylserine (PS) on antioxidant activities in vitro, and the beneficial effects of feeding with DHA and/or PS on antioxidant activities in brain and liver tissues and on the cognitive functions of the developing brain. Results indicated that DHA and/or PS significantly enhanced antioxidant activities and increased cell viabilities in vitro. Feeding with DHA and/or PS supplementation not only significantly improved escape latency of animals, but it also improved the oxidative parameters in the brain, enhanced glutathione peroxidase activity as well as reduced nitric mono-oxide levels in the liver. DHA and PS may serve to protect cells from oxidative stress and further improve learning and memory ability in vivo.

  10. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Joshi, R. P.; Schoenbach, K. H.

    2005-09-01

    A combined MD simulator and time dependent Laplace solver are used to analyze the electrically driven phosphatidylserine externalization process in cells. Time dependent details of nanopore formation at cell membranes in response to a high-intensity (100kV/cm) , ultrashort (10ns) electric pulse are also probed. Our results show that nanosized pores could typically be formed within about 5ns . These predictions are in very good agreement with recent experimental data. It is also demonstrated that defect formation and PS externalization in membranes should begin on the anode side. Finally, the simulations confirm that PS externalization is a nanopore facilitated event, rather than the result of molecular translocation across the trans-membrane energy barrier.

  11. 31P and 19F NMR studies of glycophorin-reconstituted membranes: preferential interaction of glycophorin with phosphatidylserine

    SciTech Connect

    Ong, R.L.

    1984-01-01

    Glycophorin A, a major glycoprotein of the erythrocyte membrane, has been incorporated into small unilamellar vesicles composed of a variety of pure and mixed phospholipids. Nuclear spin labels including 31P and 19F have been used at natural abundance or have been synthetically incorporated in lipids to act as probes of lipid-protein interaction. Interactions produce broadening of resonances in several cases and it can be used to demonstrate preferential interaction of certain lipids with glycophorin. 31P and 19F probes show a strong preferential interaction of glycophorin with phosphatidylserine over phosphatidylcholine. There is some evidence that interactions are more pronounced at the inner surface of the bilayer and these results are rationalized in terms of the asymmetric distribution of protein and lipid.

  12. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  13. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity.

  14. Properties of mixtures of cholesterol with phosphatidylcholine or with phosphatidylserine studied by (13)C magic angle spinning nuclear magnetic resonance.

    PubMed Central

    Epand, Richard M; Bain, Alex D; Sayer, Brian G; Bach, Diana; Wachtel, Ellen

    2002-01-01

    The behavior of cholesterol is different in mixtures with phosphatidylcholine as compared with phosphatidylserine. In (13)C cross polarization/magic angle spinning nuclear magnetic resonance spectra, resonance peaks of the vinylic carbons of cholesterol are a doublet in samples containing 0.3 or 0.5 mol fraction cholesterol with 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) or in cholesterol monohydrate crystals, but a singlet with mixtures of cholesterol and 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC). At these molar fractions of cholesterol with POPS, resonances of the C-18 of cholesterol appear at the same chemical shifts as in pure cholesterol monohydrate crystals. These resonances do not appear in samples of POPS with 0.2 mol fraction cholesterol or with POPC up to 0.5 mol fraction cholesterol. In addition, there is another resonance from the cholesterol C18 that appears in all of the mixtures of phospholipid and cholesterol but not in pure cholesterol monohydrate crystals. Using direct polarization, the fraction of cholesterol present as crystallites in POPS with 0.5 mol fraction cholesterol is found to be 80%, whereas with the same mol fraction of cholesterol and POPC none of the cholesterol is crystalline. After many hours of incubation, cholesterol monohydrate crystals in POPS undergo a change that results in an increase in the intensity of certain resonances of cholesterol monohydrate in (13)C cross polarization/magic angle spinning nuclear magnetic resonance, indicating a rigidification of the C and D rings of cholesterol but not other regions of the molecule. PMID:12324423

  15. Live-cell imaging to detect phosphatidylserine externalization in brain endothelial cells exposed to ionizing radiation: implications for the treatment of brain arteriovenous malformations.

    PubMed

    Zhao, Zhenjun; Johnson, Michael S; Chen, Biyi; Grace, Michael; Ukath, Jaysree; Lee, Vivienne S; McRobb, Lucinda S; Sedger, Lisa M; Stoodley, Marcus A

    2016-06-01

    OBJECT Stereotactic radiosurgery (SRS) is an established intervention for brain arteriovenous malformations (AVMs). The processes of AVM vessel occlusion after SRS are poorly understood. To improve SRS efficacy, it is important to understand the cellular response of blood vessels to radiation. The molecular changes on the surface of AVM endothelial cells after irradiation may also be used for vascular targeting. This study investigates radiation-induced externalization of phosphatidylserine (PS) on endothelial cells using live-cell imaging. METHODS An immortalized cell line generated from mouse brain endothelium, bEnd.3 cells, was cultured and irradiated at different radiation doses using a linear accelerator. PS externalization in the cells was subsequently visualized using polarity-sensitive indicator of viability and apoptosis (pSIVA)-IANBD, a polarity-sensitive probe. Live-cell imaging was used to monitor PS externalization in real time. The effects of radiation on the cell cycle of bEnd.3 cells were also examined by flow cytometry. RESULTS Ionizing radiation effects are dose dependent. Reduction in the cell proliferation rate was observed after exposure to 5 Gy radiation, whereas higher radiation doses (15 Gy and 25 Gy) totally inhibited proliferation. In comparison with cells treated with sham radiation, the irradiated cells showed distinct pseudopodial elongation with little or no spreading of the cell body. The percentages of pSIVA-positive cells were significantly higher (p = 0.04) 24 hours after treatment in the cultures that received 25- and 15-Gy doses of radiation. This effect was sustained until the end of the experiment (3 days). Radiation at 5 Gy did not induce significant PS externalization compared with the sham-radiation controls at any time points (p > 0.15). Flow cytometric analysis data indicate that irradiation induced growth arrest of bEnd.3 cells, with cells accumulating in the G2 phase of the cell cycle. CONCLUSIONS Ionizing radiation

  16. Gene cloning, recombinant expression, purification and characterization of l-methionine decarboxylase from Streptomyces sp. 590.

    PubMed

    Hayashi, Masaya; Okada, Akane; Yamamoto, Kumiko; Okugochi, Tomomi; Kusaka, Chika; Kudou, Daizou; Nemoto, Michiko; Inagaki, Junko; Hirose, Yuu; Okajima, Toshihide; Tamura, Takashi; Soda, Kenji; Inagaki, Kenji

    2016-12-21

    l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time.

  17. Biochemical Evaluation of the Decarboxylation and Decarboxylation-Deamination Activities of Plant Aromatic Amino Acid Decarboxylases*

    PubMed Central

    Torrens-Spence, Michael P.; Liu, Pingyang; Ding, Haizhen; Harich, Kim; Gillaspy, Glenda; Li, Jianyong

    2013-01-01

    Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site

  18. Fluorimetric assay for ornithine decarboxylase by high-performance liquid chromatography.

    PubMed

    Haraguchi, K; Kai, M; Kohashi, K; Ohkura, Y

    1980-12-05

    A highly sensitive method for the assay of ornithine decarboxylase in sample solutions prepared from rat tissue homogenate is described which employs high-performance liquid chromatography with fluorescence detection. Putrescine formed from ornithine under the optimal conditions for the enzyme reaction is treated by Cellex P column chromatography for clean-up and converted into the fluorescamine derivative in the presence of cupric ion which inhibits the reaction of interfering amines with fluorescamine. The derivative is separated by reversed-phase chromatography on LiChrosorb RP-18 with linear gradient elution. The lower limit of detection for putrescine formed enzymatically is 5 pmol.

  19. Cloning of aldB, which encodes alpha-acetolactate decarboxylase, an exoenzyme from Bacillus brevis.

    PubMed Central

    Diderichsen, B; Wedsted, U; Hedegaard, L; Jensen, B R; Sjøholm, C

    1990-01-01

    A gene for alpha-acetolactate decarboxylase (ALDC) was cloned from Bacillus brevis in Escherichia coli and in Bacillus subtilis. The 1.3-kilobase-pair nucleotide sequence of the gene, aldB, encoding ALDC and its flanking regions was determined. An open reading frame of 285 amino acids included a typical N-terminal signal peptide of 24 or 27 amino acids. A B. subtilis strain harboring the aldB gene on a recombinant plasmid processed and secreted ALDC. In contrast, a similar enzyme from Enterobacter aerogenes is intracellular. Images PMID:2198252

  20. Apraxia in anti-glutamic acid decarboxylase-associated stiff person syndrome: link to corticobasal degeneration?

    PubMed

    Bowen, Lauren N; Subramony, S H; Heilman, Kenneth M

    2015-01-01

    Corticobasal syndrome (CBS) is associated with asymmetrical rigidity as well as asymmetrical limb-kinetic and ideomotor apraxia. Stiff person syndrome (SPS) is characterized by muscle stiffness and gait difficulties. Whereas patients with CBS have several forms of pathology, many patients with SPS have glutamic acid decarboxylase antibodies (GAD-ab), but these 2 disorders have not been reported to coexist. We report 2 patients with GAD-ab-positive SPS who also had signs suggestive of CBS, including asymmetrical limb rigidity associated with both asymmetrical limb-kinetic and ideomotor apraxia. Future studies should evaluate patients with CBS for GAD-ab and people with SPS for signs of CBS.

  1. Expression of Ornithine Decarboxylase Is Transiently Increased by Pollination, 2,4-Dichlorophenoxyacetic Acid, and Gibberellic Acid in Tomato Ovaries1

    PubMed Central

    Alabadí, David; Carbonell, Juan

    1998-01-01

    A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid. PMID:9733552

  2. Amine cations promote concurrent conversion of prohistidine decarboxylase from Lactobacillus 30a to active enzyme and a modified proenzyme.

    PubMed Central

    van Poelje, P D; Snell, E E

    1988-01-01

    Activation of prohistidine decarboxylase (pi 6) from Lactobacillus 30a proceeds by an intramolecular, pH- and monovalent cation-dependent reaction in which its constituent pi chains are cleaved nonhydrolytically between Ser-81 and Ser-82 with loss of NH3 and conversion of Ser-82 to the pyruvoyl residue of active histidine decarboxylase (alpha beta)6. Amines with pKa values more than 7.0 substitute for K+ or NH4+ in the activation of prohistidine decarboxylase, but they also catalyze its inactivation in a competing reaction, pi 6----pi'6. Sequence analysis of the appropriate tryptic peptide from amine-inactivated prohistidine decarboxylase established that inactivation results from conversion of Ser-82 of the pi chain to an aminoacrylate residue. The inactivated proenzyme (pi'6) does not form histidine decarboxylase; this fact eliminates one of two postulated mechanisms of activation and, thus, favors activation by beta-elimination of the acyl group of an intermediate ester formed between Ser-81 and Ser-82. L-Histidine is bound by the proenzyme (Kd = 1.7 x 10(-4) M) and is an effective activator; one binding site is present per pi subunit. K+, NH4+, and Na+ competitively inhibit (Ki values = 2.8-4.4 x 10(-3) M) activation by histidine. The data suggest the presence of two classes of monovalent cation binding sites on prohistidine decarboxylase: one (near Ser-82) is readily saturable and one is unsaturable even by 2.4 M K+. Images PMID:3250558

  3. Local anesthetics inhibit induction of ornithine decarboxylase by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate.

    PubMed Central

    Yuspa, S H; Lichti, U; Ben, T

    1980-01-01

    The induction of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity in mouse epidermal cells in vivo and in vitro occurs rapidly after exposure to the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). This induction has characteristics of a cell surface receptor-mediated process. Local anesthetics modify a variety of cellular responses mediated by membrane receptors. When cultured mouse epidermal cells were exposed to the local anesthetics lidocaine, tetracaine, or procaine (0.1-1 mM), induction of the decarboxylase by TPA was inhibited by more than 90%. In vivo, lidocaine essentially abolishes the decarboxylase response of mouse epidermis when applied shortly after TPA. In contrast, local anesthetics have no effect on the enzyme's activity when added directly to the assay mixture and, in concert with TPA, have only a minimal effect on overall protein synthesis relative to controls. However, lidocaine has no effect on TPA-stimulated DNA synthesis in vitro (12-fold with or without lidocaine). Local anesthetics also markedly inhibit induction of the decarboxylase by ultraviolet light, which is probably not membrane mediated. Furthermore, in culture, lidocaine has only a small inhibitory effect on ornithine decarboxylase when given before TPA but is an effective inhibitor even when given up to 4-5 hr after the promoter, a time when decarboxylase activity has already increased. These findings suggest that local anesthetics, which are tertiary amines, do not act at the site of interaction of TPA and its putative receptor but may be acting specifically on polyamine biosynthesis. These drugs could be useful agents to determine the role of the polyamine pathway in tumor promotion. PMID:6933562

  4. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  5. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    PubMed Central

    Zech, Tobias; Ejsing, Christer S; Gaus, Katharina; de Wet, Ben; Shevchenko, Andrej; Simons, Kai; Harder, Thomas

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate the accumulation of specific molecular lipid species with the specific plasma membrane condensation at sites of TCR activation and with early TCR activation responses. PMID:19177148

  6. Aromatic L-Amino Acid Decarboxylase (AADC) Is Crucial for Brain Development and Motor Functions

    PubMed Central

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  7. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae

    PubMed Central

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  8. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis.

    PubMed

    Gokulan, Kuppan; Rupp, Bernhard; Pavelka, Martin S; Jacobs, William R; Sacchettini, James C

    2003-05-16

    The Mycobacterium tuberculosis lysA gene encodes the enzyme meso-diaminopimelate decarboxylase (DAPDC), a pyridoxal-5'-phosphate (PLP)-dependent enzyme. The enzyme catalyzes the final step in the lysine biosynthetic pathway converting meso-diaminopimelic acid (DAP) to l-lysine. The lysA gene of M. tuberculosis H37Rv has been established as essential for bacterial survival in immunocompromised mice, demonstrating that de novo biosynthesis of lysine is essential for in vivo viability. Drugs targeted against DAPDC could be efficient anti-tuberculosis drugs, and the three-dimensional structure of DAPDC from M. tuberculosis complexed with reaction product lysine and the ternary complex with PLP and lysine in the active site has been determined. The first structure of a DAPDC confirms its classification as a fold type III PLP-dependent enzyme. The structure shows a stable 2-fold dimer in head-to-tail arrangement of a triose-phosphate isomerase (TIM) barrel-like alpha/beta domain and a C-terminal beta sheet domain, similar to the ornithine decarboxylase (ODC) fold family. PLP is covalently bound via an internal aldimine, and residues from both domains and both subunits contribute to the binding pocket. Comparison of the structure with eukaryotic ODCs, in particular with a di-fluoromethyl ornithine (DMFO)-bound ODC from Trypanosoma bruceii, indicates that corresponding DAP-analogues might be potential inhibitors for mycobacterial DAPDCs.

  9. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  10. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats

    PubMed Central

    Hoffman, Gloria E.; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness. PMID:27997552

  11. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine.

    PubMed

    Choi, Hyang; Kyeong, Hyun-Ho; Choi, Jung Min; Kim, Hak-Sung

    2014-09-01

    Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

  12. Decarboxylase gene expression and cadaverine and putrescine production by Serratia proteamaculans in vitro and in beef.

    PubMed

    De Filippis, Francesca; Pennacchia, Carmela; Di Pasqua, Rosangela; Fiore, Alberto; Fogliano, Vincenzo; Villani, Francesco; Ercolini, Danilo

    2013-08-01

    Studies of the molecular basis of microbial metabolic activities that are important for the changes in food quality are valuable in order to help in understanding the behavior of spoiling bacteria in food. The growth of a psychrotrophic Serratia proteamaculans strain was monitored in vitro and in artificially inoculated raw beef. Two growth temperatures (25°C and 4°C) were tested in vitro, while growth at 15°C and 4°C was monitored in beef. During growth, the expression of inducible lysine and ornithine-decarboxylase genes was evaluated by quantitative reverse transcription-PCR (qRT-PCR), while the presence of cadaverine and putrescine was quantified by LC-ESI-MS/MS. The expression of the decarboxylase genes, and the consequent production of cadaverine and putrescine were shown to be influenced by the temperature, as well as by the complexity of the growth medium. Generally, the maximum gene expression and amine production took place during the exponential and early stationary phase, respectively. In addition, lower temperatures caused slower growth and gene downregulation. Higher amounts of cadaverine compared to putrescine were found during growth in beef with the highest concentrations corresponding to microbial loads of ca. 9CFU/g. The differences found in gene expression evaluated in vitro and in beef suggested that such activities are more reliably investigated in situ in specific food matrices.

  13. NUTRITIONAL FACTORS STIMULATING THE FORMATION OF LYSINE DECARBOXYLASE IN ESCHERICHIA COLI

    PubMed Central

    Maretzki, Andrew; Mallette, M. F.

    1962-01-01

    Maretzki, Andrew (Pennsylvania State University, University Park) and M. F. Mallette. Nutritional factors stimulating the formation of lysine decarboxylase in Escherichia coli. J. Bacteriol. 83:720–726. 1962 — Inclusion of complex nitrogen sources in the induction medium was shown to be necessary for the synthesis of appreciable amounts of l-lysine decarboxylase by Escherichia coli B. Hy-case, a commercial acid hydrolyzate of casein, was especially effective in enzyme production, which was assayed manometrically after lysis of the bacteria from without by bacteriophage. Partial fractionation of the Hy-case, identification of the free amino acids, and addition of these amino acids to test media revealed stimulatory effects by methionine, threonine, proline, leucine, and tyrosine. A full complement of amino acids did not match the enzyme levels reached in the presence of Hy-case. Certain peptide fractions obtained from this mixture supplemented the effects of the amino acids in such a way as to suggest direct incorporation of peptide rather than transport or protective roles. Added purines, pyrimidines, iron, and water-soluble vitamins were without effect. Neither carbohydrates nor phosphorylated materials could be detected in the stimulatory fractions. PMID:14469751

  14. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    SciTech Connect

    Han, Q.; Ding, H; Robinson, H; Christensen, B; Li, J

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82 and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.

  15. Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase.

    PubMed

    Taylor, Nicolas L; Day, David A; Millar, A Harvey

    2002-11-08

    A cytotoxic product of lipid peroxidation, 4-hydroxy-2-nonenal (HNE), rapidly inhibited glycine, malate/pyruvate, and 2-oxoglutarate-dependent O2 consumption by pea leaf mitochondria. Dose- and time-dependence of inhibition showed that glycine oxidation was the most severely affected with a K(0.5) of 30 microm. Several mitochondrial proteins containing lipoic acid moieties differentially lost their reactivity to a lipoic acid antibody following HNE treatment. The most dramatic loss of antigenicity was seen with the 17-kDa glycine decarboxylase complex (GDC) H-protein, which was correlated with the loss of glycine-dependent O2 consumption. Paraquat treatment of pea seedlings induced lipid peroxidation, which resulted in the rapid loss of glycine-dependent respiration and loss of H-protein reactivity with lipoic acid antibodies. Pea plants exposed to chilling and water deficit responded similarly. In contrast, the damage to other lipoic acid-containing mitochondrial enzymes was minor under these conditions. The implication of the acute sensitivity of glycine decarboxylase complex H-protein to lipid peroxidation products is discussed in the context of photorespiration and potential repair mechanisms in plant mitochondria.

  16. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    PubMed Central

    Rodríguez, Héctor; de las Rivas, Blanca; Muñoz, Rosario; Mancheño, José M.

    2007-01-01

    The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His6-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belonged to the tetragonal space group P43, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å3 Da−1, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism. PMID:17401200

  17. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes

    PubMed Central

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species. PMID:27602045

  18. Arginine and Ornithine Decarboxylases, the Polyamine Biosynthetic Enzymes of Mung Bean Seedlings 1

    PubMed Central

    Altman, Arie; Friedman, Ra'Anan; Levin, Nitsa

    1982-01-01

    General properties and relative activities of l-arginine decarboxylase (ADC) (EC 4.1.1.19) and l-ornithine decarboxylase (ODC) (EC 4.1.1.17), two important enzymes in putrescine and polyamine biosynthesis, were investigated in mung bean (Vigna radiata L.) tissues. Both activities increase linearly with increasing concentrations of crude enzyme, but the increase in ADC activity is considerably greater. The decarboxylation reaction is linear for up to 30 to 60 minutes, and both enzymes have a pH optimum of 7.2. α-Difluoromethyl-ornithine inhibits ODC activity of excised roots, while increasing ADC activity. High specific activity of both enzymes is detected in terminal buds and leaves, while root and hypocotyl activity is low. Different ADC-to-ODC activity ratios are found in various tissues of mung bean plants. Substantial increase in the activity of both enzymes is detected in incubated sections as compared with intact plants. A comparison of several plant species indicates a wide range of ADC-to-ODC activity ratio. It is suggested that both ADC and ODC are active in plant tissues and that their relative contribution to putrescine biosynthesis is dependent upon the type of tissue and growth process. PMID:16662312

  19. Hypothalamic L-Histidine Decarboxylase Is Up-Regulated During Chronic REM Sleep Deprivation of Rats.

    PubMed

    Hoffman, Gloria E; Koban, Michael

    2016-01-01

    A competition of neurobehavioral drives of sleep and wakefulness occurs during sleep deprivation. When enforced chronically, subjects must remain awake. This study examines histaminergic neurons of the tuberomammillary nucleus of the posterior hypothalamus in response to enforced wakefulness in rats. We tested the hypothesis that the rate-limiting enzyme for histamine biosynthesis, L-histidine decarboxylase (HDC), would be up-regulated during chronic rapid eye movement sleep deprivation (REM-SD) because histamine plays a major role in maintaining wakefulness. Archived brain tissues of male Sprague Dawley rats from a previous study were used. Rats had been subjected to REM-SD by the flowerpot paradigm for 5, 10, or 15 days. For immunocytochemistry, rats were transcardially perfused with acrolein-paraformaldehyde for immunodetection of L-HDC; separate controls used carbodiimide-paraformaldehyde for immunodetection of histamine. Immunolocalization of histamine within the tuberomammillary nucleus was validated using carbodiimide. Because HDC antiserum has cross-reactivity with other decarboxylases at high antibody concentrations, titrations localized L-HDC to only tuberomammillary nucleus at a dilution of ≥ 1:300,000. REM-SD increased immunoreactive HDC by day 5 and it remained elevated in both dorsal and ventral aspects of the tuberomammillary complex. Our results suggest that up-regulation of L-HDC within the tuberomammillary complex during chronic REM-SD may be responsible for maintaining wakefulness.

  20. Possible involvement of aiPLA2 in the phosphatidylserine-containing liposomes induced production of PGE2 and PGD2 in microglia.

    PubMed

    Takayama, Fumiko; Wu, Zhou; Ma, Hong Mei; Okada, Ryo; Hayashi, Yoshinori; Nakanishi, Hiroshi

    2013-09-15

    Liposomes containing phosphatidylserine (PSL) produce PGE2 after being phagocytosed by microglia, but the precise underlying mechanism behind it still remains unclear. Here, we showed that liposomes consisting of phosphatidylserine and lysophosphatidylcholine, a lipolysis product of phosphatidylcholine by PLA2, were phagocytosed by microglia, but failed to induce secretion of PGE2. Furthermore, PSL-induced PGE2 secretion was significantly inhibited by MJ33, an aiPLA2 inhibitor, but not by AACOCF3, a cPLA2 inhibitor. PSL also produced PGD2 and 15d-PGJ2 in microglia. We thus hypothesize that free arachidonic acid is supplied through aiPLA2-mediated lipolysis of phagocytosed phosphatidylcholine, leading to the production of PGH2 and its downstream metabolites.

  1. Fluorescent detection of apoptotic cells using a family of zinc coordination complexes with selective affinity for membrane surfaces that are enriched with phosphatidylserine.

    SciTech Connect

    Smith, Bradley D.; Lambert, Timothy N.; Lakshmi, C.; Hanshaw, Roger, G.

    2005-03-01

    The appearance of phosphatidylserine on the membrane surface of apoptotic cells (Jurkat, CHO, HeLa) is monitored by using a family of bis(Zn{sup 2+}-2,2{prime}-dipicolylamine) coordination compounds with appended fluorescein or biotin groups as reporter elements. The phosphatidylserine affinity group is also conjugated directly to a CdSe/CdS quantum dot to produce a probe suitable for prolonged observation without photobleaching. Apoptosis can be detected under a wide variety of conditions, including variations in temperature, incubation time, and binding media. Binding of each probe appears to be restricted to the cell membrane exterior, because no staining of organelles or internal membranes is observed.

  2. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  3. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute pharmacological inhibition of cardiac malonyl coenzyme A decarboxylase (MCD) protects the heart from ischemic damage by inhibiting fatty acid oxidation and stimulating glucose oxidation. However, it is unknown whether chronic inhibition of MCD results in altered cardiac function, energy metabo...

  4. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... preparation derived from a recombinant Bacillus subtilis. 173.115 Section 173.115 Food and Drugs FOOD AND DRUG... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be... derived from a modified Bacillus subtilis strain that contains the gene coding for α-ALDC from...

  5. Molecular analysis of a new member of the opium poppy tyrosine/3,4-dihydroxyphenylalanine decarboxylase gene family.

    PubMed Central

    Maldonado-Mendoza, I E; López-Meyer, M; Galef, J R; Burnett, R J; Nessler, C L

    1996-01-01

    An aromatic amino acid decarboxylase DNA fragment was generated from opium poppy (Papaver somniferum L.) genomic DNA by the PCR using primers designed from conserved amino acid sequences of other aromatic amino acid decarboxylase genes. Using this fragment as a probe, a genomic clone was isolated that encodes a new member of the opium poppy tyrosine/3,4-dihydroxyphenylalanine decarboxylase gene family (TyDC5). The predicted TyDC5 amino acid sequence shares extensive identity with other opium poppy tyrosine/3,4-dihydroxyphenylalanine decarboxylases (84%), and when expressed in Escherichia coli, it is active against tyrosine and to a lesser extent against 3,4-dihydroxyphenylalanine. Ribonuclease protection assays indicate that TyDC5 is expressed primarily in the roots of mature poppy plants. A peak of TyDC5 expression was also observed during germination, coincident with the emergence of the radicle from the seed coat. Parallel results were obtained in transgenic tobacco using a TyDC5 promoter fragment (-2060) translationally fused to the beta-glucuronidase reporter gene (GUS). IN TyDC5::GUS tobacco, GUS activity transiently appeared in all parts of the seedling during germination, but was limited to the roots in older plants. These results indicate that TyDC5 expression is transcriptionally regulated and suggest that the TyDC5 enzyme may play an important role in providing precursors for alkaloid synthesis in the roots and germinating seedlings of opium poppy. PMID:8587993

  6. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  7. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    PubMed Central

    Zargar, K.; Saville, R.; Phelan, R. M.; Tringe, S. G.; Petzold, C. J.; Keasling, J. D.; Beller, H. R.

    2016-01-01

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene. PMID:27506494

  8. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  9. Control by Ethylene of Arginine Decarboxylase Activity in Pea Seedlings and Its Implication for Hormonal Regulation of Plant Growth 1

    PubMed Central

    Apelbaum, Akiva; Goldlust, Arie; Icekson, Isaac

    1985-01-01

    Activity of arginine decarboxylase in etiolated pea seedlings appears 24 hours after seed imbibition, reaches its highest level on the 4th day, and levels off until the 7th day. This activity was found in the apical and subapical tissue of the roots and shoots where intensive DNA synthesis occurs. Exposure of the seedlings to ethylene greatly reduced the specific activity of this enzyme. The inhibition was observed within 30 min of the hormone application, and maximal effect—90% inhibition—after 18 hours. Ethylene at physiological concentrations affected the enzyme activity; 50% inhibitory rate was recorded at 0.12 microliters per liter ethylene and maximal response at 1.2 microliters per liter. Ethylene provoked a 5-fold increase in the Kmapp of arginine decarboxylase for its substrate and reduced the Vmaxapp by 10-fold. However, the enzyme recovered from the inhibition and regained control activity 7 hours after transferral of the seedlings to ethylene-free atmosphere. Reducing the endogenous level of ethylene in the tissue by hypobaric pressure, or by exposure to light, as well as interfering with ethylene action by treatment with silver thiosulfate or 2,5-norbornadiene, caused a gradual increase in the specific activity of arginine decarboxylase in the apical tissue of the etiolated seedlings. On the basis of these findings, the possible control of arginine decarboxylase activity by endogenous ethylene, and its implication for the hormone effect on plant growth, are discussed. PMID:16664464

  10. Elevated levels of antibodies against phosphatidylserine/prothrombin complex and/or cardiolipin associated with infection and recurrent purpura in a child: a forme fruste of antiphospholipid syndrome?

    PubMed

    Kinoshita, Yuri; Mayumi, Nobuko; Inaba, Motoyuki; Igarashi, Touru; Katagiri, Ichigen; Kawana, Seiji

    2015-07-15

    Antiphospholipid syndrome is an autoimmune disorder characterized by the occurrence of venous and arterial thrombosis, as well as morbidity in pregnancy, in the presence of anti-phospholipid antibodies. The diagnosis of antiphospholipid syndrome is usually established based on clinical and laboratory findings by strictly following the 2006 Sapporo classification. However, the diagnosis remains challenging owing to the ongoing debates on the serological criteria. We report a case we describe as forme fruste antiphospholipid syndrome in which these criteria were not fulfilled. Purpura appeared repeatedly in a female infant starting from the age of 6 months and following episodes of upper respiratory infections and vaccinations. The levels of anti-cardiolipin IgG antibodies and anti-phosphatidylserine/prothrombin complex antibodies were elevated in accordance with these events. Histopathological evaluation revealed multiple small vessel thrombi in the dermis and adipose tissue. After 2 weeks of treatment with aspirin and heparin, the cutaneous symptoms subsided. Infection has long been associated with antiphospholipid syndrome, and anti-phosphatidylserine/prothrombin antibodies are considered a new marker for the diagnosis of antiphospholipid syndrome. Forme fruste antiphospholipid syndrome should be considered even if the antiphospholipid syndrome diagnostic criteria are not completely fulfilled, especially in the presence of elevated levels of anti-phosphatidylserine/prothrombin antibodies and known preceding infections.

  11. Identification and measurement of acid (specific) histidine decarboxylase activity in rabbit gastric mucosa: ending an old controversy?

    PubMed

    Neugebauer, E; Lorenz, W

    1985-04-01

    One of the main obstacles in assigning any distinct function to histamine in health and disease was the longlasting controversy on the existence of any physiological, endogenous histamine formation in man and most of the other mammals except the rat. Using a modification of Schayer's isotope dilution method, a renewed attempt was made to identify the very low activities of an acid (specific) histidine decarboxylase in rabbit gastric mucosa capable of producing endogenous histamine in physiological conditions, to develop tests for its identification in crude enzyme extracts and to demonstrate the specificity of the enzymatic assay by excluding any relevant Dopa decarboxylase activity and also nonenzymatic decarboxylation interfering with the determination of acid (specific) histidine decarboxylase. To achieve this aim five tests were developed: In the pH profile (test 1), a pH optimum was found at 7.0 in the presence of a low substrate concentration (1.6 X 10(-6)M L-[ring-2-14C]-histidine). The apparent Michaelis concentration at the pH optimum (test 2) was 1.8 X 10(-4)M, the maximum rate 12.5pmol [14C]histamine formed X min-1. To increase the specificity of inhibition experiments with alpha-methylhistidine and alpha-methyl-L-Dopa a pH profile was determined in the presence of these two enzymatic inhibitors (test 3 and 4). alpha-Methylhistidine was used for a reliable diagnostic confirmation test, alpha-methyl-L-Dopa for a reliable exclusion test. Benzene showed no influence on either blanks or recovery rates, but inhibited the enzymic activity at pH 7.0, not however that of unspecific histidine decarboxylase and hence was very valuable as an additional diagnostic exclusion test (test 5). Although these new tests identifying acid (specific) histidine decarboxylase and demonstrating the specificity of its determination were tedious, despite the use of the modified isotope dilution method, they excluded the presence of any Dopa decarboxylase activity in mixtures with

  12. FcWRKY70, a WRKY protein of Fortunella crassifolia, functions in drought tolerance and modulates putrescine synthesis by regulating arginine decarboxylase gene.

    PubMed

    Gong, Xiaoqing; Zhang, Jingyan; Hu, Jianbing; Wang, Wei; Wu, Hao; Zhang, Qinghua; Liu, Ji-Hong

    2015-11-01

    WRKY comprises a large family of transcription factors in plants, but most WRKY members are still poorly understood. In this study, we report functional characterization of a Group III WRKY gene (FcWRKY70) from Fortunella crassifolia. FcWRKY70 was greatly induced by drought and abscisic acid, but slightly or negligibly by salt and cold. Overexpression of FcWRKY70 in tobacco (Nicotiana nudicaulis) and lemon (Citrus lemon) conferred enhanced tolerance to dehydration and drought stresses. Transgenic tobacco and lemon exhibited higher expression levels of ADC (arginine decarboxylase), and accumulated larger amount of putrescine in comparison with wild type (WT). Treatment with D-arginine, an inhibitor of ADC, caused transgenic tobacco plants more sensitive to dehydration. Knock-down of FcWRKY70 in kumquat down-regulated ADC abundance and decreased putrescine level, accompanied by compromised dehydration tolerance. The promoter region of FcADC contained two W-box elements, which were shown to be interacted with FcWRKY70. Taken together, our data demonstrated that FcWRKY70 functions in drought tolerance by, at least partly, promoting production of putrescine via regulating ADC expression.

  13. Enhancement of 1,3-propanediol production by expression of pyruvate decarboxylase and aldehyde dehydrogenase from Zymomonas mobilis in the acetolactate-synthase-deficient mutant of Klebsiella pneumoniae.

    PubMed

    Lee, Sung-Mok; Hong, Won-Kyung; Heo, Sun-Yeon; Park, Jang Min; Jung, You Ree; Oh, Baek-Rock; Joe, Min-Ho; Seo, Jeong-Woo; Kim, Chul Ho

    2014-08-01

    The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.

  14. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis.

    PubMed

    Wang, Jing; Sun, Pei-Pei; Chen, Chun-Li; Wang, Yin; Fu, Xing-Zheng; Liu, Ji-Hong

    2011-05-01

    Arginine decarboxylase (ADC) is an important enzyme responsible for polyamine synthesis under stress conditions. In this study, the gene encoding ADC in Poncirus trifoliata (PtADC) was isolated and it existed as a single-copy member. Transcript levels of PtADC were up-regulated by low temperature and dehydration. Overexpression of PtADC in an Arabidopsis thaliana ADC mutant adc1-1 promoted putrescine synthesis in the transgenic line and the stomatal density was reverted to that in the wild type. The transgenic line showed enhanced resistance to high osmoticum, dehydration, long-term drought, and cold stress compared with the wild type and the mutant. The accumulation of reactive oxygen species (ROS) in the transgenic line was appreciably decreased under the stresses, but ROS scavenging capacity was compromised when the transgenic plants were treated with the ADC inhibitor D-arginine prior to stress treatment. In addition, the transgenic line had longer roots than the wild type and the mutant under both normal and stressful conditions, consistent with larger cell number and length of the root meristematic zone. Taken together, these results demonstrated that PtADC is involved in tolerance to multiple stresses, and its function may be due, at least partly, to efficient ROS elimination and to its influence on root growth conducive to drought tolerance.

  15. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase.

    PubMed

    Stanley, T M; Johnson, W H; Burks, E A; Whitman, C P; Hwang, C C; Cook, P F

    2000-02-01

    4-Oxalocrotonate decarboxylase (4-OD) and vinylpyruvate hydratase (VPH) from Pseudomonas putida mt-2 form a complex that converts 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate in the catechol meta fission pathway. To facilitate mechanistic and structural studies of the complex, the two enzymes have been coexpressed and the complex has been purified to homogeneity. In addition, Glu-106, a potential catalytic residue in VPH, has been changed to glutamine, and the resulting E106QVPH mutant has been coexpressed with 4-OD and purified to homogeneity. The 4-OD/E106QVPH complex retains full decarboxylase activity, with comparable kinetic parameters to those observed for 4-OD in the wild-type complex, but is devoid of any detectable hydratase activity. Decarboxylation of (5S)-2-oxo-3-[5-D]hexenedioate by either the 4-OD/VPH complex or the mutant complex generates 2-hydroxy-2,4E-[5-D]pentadienoate in D(2)O. Ketonization of 2-hydroxy-2,4-pentadienoate by the wild-type complex is highly stereoselective and results in the formation of 2-oxo-(3S)-[3-D]-4-pentenoate, while the mutant complex generates a racemic mixture. These results indicate that 2-hydroxy-2, 4-pentadienoate is the product of 4-OD and that 2-oxo-4-pentenoate results from a VPH-catalyzed process. On this basis, the previously proposed hypothesis for the conversion of 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate has been revised [Lian, H., and Whitman, C. P. (1994) J. Am. Chem. Soc. 116, 10403-10411]. Finally, the observed (13)C kinetic isotope effect on the decarboxylation of 2-oxo-3-hexenedioate by the 4-OD/VPH complex suggests that the decarboxylation step is nearly rate-limiting. Because the value is not sensitive to either magnesium or manganese, it is likely that the transition state for carbon-carbon bond cleavage is late and that the metal positions the substrate and polarizes the carbonyl group, analogous to its role in oxalacetate decarboxylase.

  16. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages.

    PubMed

    Wong, Kit; Valdez, Patricia A; Tan, Christine; Yeh, Sherry; Hongo, Jo-Anne; Ouyang, Wenjun

    2010-05-11

    Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4(-/-) resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-alpha in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.

  17. Unconventional apoptosis of polymorphonuclear neutrophils (PMN): staurosporine delays exposure of phosphatidylserine and prevents phagocytosis by MΦ-2 macrophages of PMN

    PubMed Central

    Franz, S; Muñoz, L E; Heyder, P; Herrmann, M; Schiller, M

    2015-01-01

    Apoptosis of polymorphonuclear neutrophils (PMN) and subsequent ‘silent’ removal represents an important check-point for the resolution of inflammation. Failure in PMN clearance resulting in secondary necrosis-driven tissue damage has been implicated in conditions of chronic inflammation and autoimmunity. Apoptotic PMN undergo profound biophysical changes that warrant their efficient recognition and uptake by phagocytes before fading to secondary necrosis. In this study, we demonstrate that staurosporine (STS), a non-selective but potent inhibitor of cyclin-dependent kinase and protein kinase C, exerts a drastic impact on PMN apoptosis. PMN treated with STS underwent an unconventional form of cell death characterized by a delayed exposure of aminophospholipids, including phosphatidylserine (PS) and phosphatidylethanolamine and an increased exposure of neo-glycans. STS caused an impaired cellular fragmentation and accelerated DNA fragmentation. Phagocytosis of STS-treated PMN lacking PS on their surfaces was decreased significantly, which highlights the importance of PS for the clearance of apoptotic PMN. Specific opsonization with immune complexes completely restored phagocytosis of STS-treated PMN, demonstrating the efficiency of back-up clearance pathways in the absence of PS exposure. PMID:24995908

  18. Identification of lipid-phosphatidylserine (PS) as the target of unbiasedly selected cancer specific peptide-peptoid hybrid PPS1

    PubMed Central

    Desai, Tanvi J.; Toombs, Jason E.; Minna, John D.; Brekken, Rolf A.; Udugamasooriya, Damith Gomika

    2016-01-01

    Phosphatidylserine (PS) is an anionic phospholipid maintained on the inner-leaflet of the cell membrane and is externalized in malignant cells. We previously launched a careful unbiased selection targeting biomolecules (e.g. protein, lipid or carbohydrate) distinct to cancer cells by exploiting HCC4017 lung cancer and HBEC30KT normal epithelial cells derived from the same patient, identifying HCC4017 specific peptide-peptoid hybrid PPS1. In this current study, we identified PS as the target of PPS1. We validated direct PPS1 binding to PS using ELISA-like assays, lipid dot blot and liposome based binding assays. In addition, PPS1 recognized other negatively charged and cancer specific lipids such as phosphatidic acid, phosphatidylinositol and phosphatidylglycerol. PPS1 did not bind to neutral lipids such as phosphatidylethanolamine found in cancer and phosphatidylcholine and sphingomyelin found in normal cells. Further we found that the dimeric version of PPS1 (PPS1D1) displayed strong cytotoxicity towards lung cancer cell lines that externalize PS, but not normal cells. PPS1D1 showed potent single agent anti-tumor activity and enhanced the efficacy of docetaxel in mice bearing H460 lung cancer xenografts. Since PS and anionic phospholipid externalization is common across many cancer types, PPS1 may be an alternative to overcome limitations of protein targeted agents. PMID:27120792

  19. Low level of lead can induce phosphatidylserine exposure and erythrophagocytosis: a new mechanism underlying lead-associated anemia.

    PubMed

    Jang, Won-Hee; Lim, Kyung-Min; Kim, Keunyoung; Noh, Ji-Yoon; Kang, Seojin; Chang, Youn-Kyeong; Chung, Jin-Ho

    2011-07-01

    Anemia is probably one of the most well-known toxic effects of lead. Previously, lead-induced anemia was considered to be from the inhibition of δ-aminolevulinic acid dehydratase participating in the heme biosynthesis. However, little is known whether lead could affect the destruction of erythrocyte, another important factor for anemia. In the present study, we demonstrated that lead could accelerate the splenic sequestration of erythrocytes through phosphatidylserine (PS) exposure and subsequently increased erythrophagocytosis. In freshly isolated human erythrocytes, Pb(2+)- induced PS exposure at relatively low concentrations (∼0.1 μM) by inhibiting flippase, a key aminophospholipid translocase for the maintenance of PS asymmetry and adenosine triphosphate depletion appeared to underlie this phenomenon. Abnormal shape changes of erythrocytes and microvesicle generation and other triggers for the erythrophagocytosis were also observed in the Pb(2+)-exposed erythrocytes. In vitro data showed that human macrophage indeed recognized and phagocytosis PS-exposed erythrocytes. In good accordance with these in vitro results, the oral administration of Pb(2+) increased PS exposure on erythrocytes in rat in vivo. In addition, reduction of hematocrit and hemoglobin and increased spleen weight were observed along with enhanced splenic sequestration of erythrocytes in the rats exposed to Pb(2+) subchronically for 4 weeks through drinking water. In conclusion, these results suggest that Pb(2+)-induced anemia may be explained at least in part by increased PS exposure on erythrocytes, erythrophagocytosis, and splenic sequestration.

  20. Highly specific PET imaging of prostate tumors in mice with an iodine-124-labeled antibody fragment that targets phosphatidylserine.

    PubMed

    Stafford, Jason H; Hao, Guiyang; Best, Anne M; Sun, Xiankai; Thorpe, Philip E

    2013-01-01

    Phosphatidylserine (PS) is an attractive target for imaging agents that identify tumors and assess their response to therapy. PS is absent from the surface of most cell types, but becomes exposed on tumor cells and tumor vasculature in response to oxidative stresses in the tumor microenvironment and increases in response to therapy. To image exposed PS, we used a fully human PS-targeting antibody fragment, PGN635 F(ab')2, that binds to complexes of PS and β2-glycoprotein I. PGN635 F(ab')2 was labeled with the positron-emitting isotope iodine-124 ((124)I) and the resulting probe was injected into nude mice bearing subcutaneous or orthotopic human PC3 prostate tumors. Biodistribution studies showed that (124)I-PGN635 F(ab')2 localized with remarkable specificity to the tumors with little uptake in other organs, including the liver and kidneys. Clear delineation of the tumors was achieved by PET 48 hours after injection. Radiation of the tumors with 15 Gy or systemic treatment of the mice with 10 mg/kg docetaxel increased localization in the tumors. Tumor-to-normal (T/N) ratios were inversely correlated with tumor growth measured over 28 days. These data indicate that (124)I-PGN635 F(ab')2 is a promising new imaging agent for predicting tumor response to therapy.

  1. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico

    NASA Astrophysics Data System (ADS)

    Vernier, P. Thomas; Ziegler, Matthew J.; Sun, Yinghua; Gundersen, Martin A.; Tieleman, D. Peter

    2006-12-01

    Nanosecond, megavolt-per-meter pulses—higher power but lower total energy than the electroporative pulses used to introduce normally excluded material into biological cells—produce large intracellular electric fields without destructively charging the plasma membrane. Nanoelectropulse perturbation of mammalian cells causes translocation of phosphatidylserine (PS) to the outer face of the cell, intracellular calcium release, and in some cell types a subsequent progression to apoptosis. Experimental observations and molecular dynamics (MD) simulations of membranes in pulsed electric fields presented here support the hypothesis that nanoelectropulse-induced PS externalization is driven by the electric potential that appears across the lipid bilayer during a pulse and is facilitated by the poration of the membrane that occurs even during pulses as brief as 3 ns. MD simulations of phospholipid bilayers in supraphysiological electric fields show a tight association between PS externalization and membrane pore formation on a nanosecond time scale that is consistent with experimental evidence for electropermeabilization and anode-directed PS translocation after nanosecond electric pulse exposure, suggesting a molecular mechanism for nanoelectroporation and nanosecond PS externalization: electrophoretic migration of the negatively charged PS head group along the surface of nanometer-diameter electropores initiated by field-driven alignment of water dipoles at the membrane interface.

  2. Melanoma cell surface-expressed phosphatidylserine as a therapeutic target for cationic anticancer peptide, temporin-1CEa.

    PubMed

    Wang, Che; Chen, Yin-Wang; Zhang, Liang; Gong, Xian-Ge; Zhou, Yang; Shang, De-Jing

    2016-01-01

    We have previously reported that temporin-1CEa, a cationic antimicrobial peptide, exerts preferential cytotoxicity toward cancer cells. However, the exact molecular mechanism for this cancer-selectivity is still largely unknown. Here, we found that the negatively charged phosphatidylserine (PS) expressed on cancer cell surface serves as a target for temporin-1CEa. Our results indicate that human A375 melanoma cells express 50-fold more PS than non-cancerous HaCaT cells. The expression of cell surface PS in various cancer cell lines closely correlated with their ability to be recognized, bound and killed by temporin-1CEa. Additionally, the cytotoxicity of temporin-1CEa against A375 cells can be ameliorated by annexin V, which binds to cell surface PS with high affinity. Moreover, the data of isothermal titration calorimetry assay further confirmed a direct binding of temporin-1CEa to PS, at a ratio of 1:5 (temporin-1CEa:PS). Interestingly, the circular dichroism spectra analysis using artificial biomembrane revealed that PS not only provides electrostatic attractive sites for temporin-1CEa but also confers the membrane-bound temporin-1CEa to form α-helical structure, therefore, enhances the affinity and membrane disrupting ability of temporin-1CEa. In summary, these findings suggested that the melanoma cells expressed PS may serve as a promising target for temporin-1CEa or other cationic anticancer peptides.

  3. Antibody-Mediated Phosphatidylserine Blockade Enhances the Antitumor Responses to CTLA-4 and PD-1 Antibodies in Melanoma.

    PubMed

    Freimark, Bruce D; Gong, Jian; Ye, Dan; Gray, Michael J; Nguyen, Van; Yin, Shen; Hatch, Michaela M S; Hughes, Christopher C W; Schroit, Alan J; Hutchins, Jeff T; Brekken, Rolf A; Huang, Xianming

    2016-06-01

    In tumor-bearing animals, the membrane phospholipid phosphatidylserine (PS) suppresses immune responses, suggesting that PS signaling could counteract the antitumor effect of antibody-driven immune checkpoint blockade. Here, we show that treating melanoma-bearing mice with a PS-targeting antibody enhances the antitumor activity of downstream checkpoint inhibition. Combining PS-targeting antibodies with CTLA-4 or PD-1 blockade resulted in significantly greater inhibition of tumor growth than did single-agent therapy. Moreover, combination therapy enhanced CD4(+) and CD8(+) tumor-infiltrating lymphocyte numbers; elevated the fraction of cells expressing the proinflammatory cytokines IL2, IFNγ, and TNFα; and increased the ratio of CD8 T cells to myeloid-derived suppressor cells and regulatory T cells in tumors. Similar changes in immune cell profiles were observed in splenocytes. Taken together, these data show that antibody-mediated PS blockade enhances the antitumor efficacy of immune checkpoint inhibition. Cancer Immunol Res; 4(6); 531-40. ©2016 AACR.

  4. Hydrophilic interaction liquid chromatography-mass spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes.

    PubMed

    Cífková, Eva; Hájek, Roman; Lísa, Miroslav; Holčapek, Michal

    2016-03-25

    The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts.

  5. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  6. Detection of phosphatidylserine with a modified polar head group in human keratinocytes exposed to the radical generator AAPH.

    PubMed

    Maciel, Elisabete; Neves, Bruno M; Santinha, Deolinda; Reis, Ana; Domingues, Pedro; Teresa Cruz, M; Pitt, Andrew R; Spickett, Corinne M; Domingues, M Rosário M

    2014-04-15

    Phosphatidylserine (PS) is preferentially located in the inner leaflet of the cell membrane, and translocation of PS oxidized in fatty acyl chains to the outside of membrane has been reported as signaling to macrophage receptors to clear apoptotic cells. It was recently shown that PS can be oxidized in serine moiety of polar head-group. In the present work, a targeted lipidomic approach was applied to detecting OxPS modified at the polar head-group in keratinocytes that were exposed to the radical generator AAPH. Glycerophosphoacetic acid derivatives (GPAA) were found to be the major oxidation products of OxPS modified at the polar head-group during oxidation induced by AAPH-generated radicals, similarly to previous observations for the oxidation induced by OH radical. The neutral loss scan of 58Da and a novel precursor ion scan of m/z 137.1 (HOPO3CH2COOH) allowed the recognition of GPAA derivatives in the total lipid extracts obtained from HaCaT cells treated with AAPH. The positive identification of serine head group oxidation products in cells under controlled oxidative conditions opens new perspectives and justifies further studies in other cellular environments in order to understand fully the role of PS polar head-group oxidation in cell homeostasis and disease.

  7. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation

    PubMed Central

    Huynh, Mai-Lan N.; Fadok, Valerie A.; Henson, Peter M.

    2002-01-01

    Ingestion of apoptotic cells in vitro by macrophages induces TGF-β1 secretion, resulting in an anti-inflammatory effect and suppression of proinflammatory mediators. Here, we show in vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation. This enhancement appeared to require phosphatidylserine (PS) on the apoptotic cells and local induction of TGF-β1. Working with thioglycollate-stimulated peritonea or LPS-stimulated lungs, we examined the effect of apoptotic cell uptake on TGF-β1 induction. Viable or opsonized apoptotic human Jurkat T cells, or apoptotic PLB-985 cells, human monomyelocytes that do not express PS during apoptosis, failed to induce TGF-β1. PS liposomes, or PS directly transferred onto the PLB-985 surface membranes, restored the TGF-β1 induction. Apoptotic cell instillation into LPS-stimulated lungs reduced proinflammatory chemokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, total inflammatory cell counts in the BALF were markedly reduced 1–5 days after apoptotic cell instillation, an effect that could be reversed by opsonization or coinstillation of TGF-β1 neutralizing antibody. This reduction resulted from early decrease in neutrophils and later decreases in lymphocytes and macrophages. In conclusion, apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-β1 secretion, resulting in accelerated resolution of inflammation. PMID:11781349

  8. Noninvasive in vivo multispectral optoacoustic imaging of apoptosis in triple negative breast cancer using indocyanine green conjugated phosphatidylserine monoclonal antibody

    NASA Astrophysics Data System (ADS)

    Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong

    2016-12-01

    Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.

  9. Deoxygenation-induced and Ca(2+) dependent phosphatidylserine externalisation in red blood cells from normal individuals and sickle cell patients.

    PubMed

    Weiss, Erwin; Cytlak, Urszula M; Rees, David C; Osei, Anna; Gibson, John S

    2012-01-01

    Phosphatidylserine (PS) is usually confined to the inner leaflet of the red blood cell (RBC) membrane. It may become externalised in various conditions, however, notably in RBCs from patients with sickle cell disease (SCD) where exposed PS may contribute to anaemic and ischaemic complications. PS externalisation requires both inhibition of the aminophospholipid translocase (or flippase) and activation of the scramblase. Both may follow from elevation of intracellular Ca(2+). Flippase inhibition occurs at low [Ca(2+)](i), about 1μM, but [Ca(2+)](i) required for scrambling is reported to be much higher (around 100μM). In this work, FITC-labelled lactadherin and FACS were used to measure externalised PS, with [Ca(2+)](i) altered using bromo-A23187 and EGTA/Ca(2+) mixtures. Two components of Ca(2+)-induced scrambling were apparent, of high (EC(50) 1.8±0.3μM) and low (306±123μM) affinity, in RBCs from normal individuals and the commonest SCD genotypes, HbSS and HbSC. The high affinity component was lost in the presence of unphysiologically high [Mg(2+)] but was unaffected by high K(+) (90mM) or vanadate (1mM). The high affinity component accounted for PS scrambling in ≥2/3rd RBCs. It is likely to be most significant in vivo and may be involved in the pathophysiology of SCD or other conditions involving eryptosis.

  10. Comparative Study of EPA-enriched Phosphatidylcholine and EPA-enriched Phosphatidylserine on Lipid Metabolism in Mice.

    PubMed

    Ding, Lin; Wang, Dan; Zhou, Miaomiao; Du, Lei; Xu, Jie; Xue, Changhu; Wang, Yuming

    2016-07-01

    Recent studies have shown that EPA enriched PLs have beneficial effects on lipid metabolism. Our previous study has demonstrated that the anti-obesity and hypolipidemic effects of EPA-PL were superior to DHA-PL. In the present study, we comparatively evaluated the effects of EPA-enriched phosphatidylcholine (EPA-PC) and EPA-enriched phosphatidylserine (EPA-PS) on lipid metabolism in mice. Both 2% dietary EPA-PC and EPA-PS significantly improved serum and hepatic lipid levels in mice. The HDL-c level in mice on EPA-PC diet was significantly higher than the other two groups. The level of DHA in hepatic TG and PL were significantly increased in both EPA-PC and EPA-PS fed groups (98.3 and 117.8%, respectively; p < 0.05). Notably, the proportion of DHA in EPA-PS group was significantly higher than the EPA-PC group. EPA-PC and EPA-PS suppressed hepatic SREBP-1c mediated lipogenesis and activated PPARα mediated fatty acid β-oxidation in the liver. These data are the first to indicate that EPA-PS has beneficial effects on lipid metabolism.

  11. A secreted salivary inositol polyphosphate 5-phosphatase from a blood-feeding insect: allosteric activation by soluble phosphoinositides and phosphatidylserine.

    PubMed

    Andersen, John F; Ribeiro, José M C

    2006-05-02

    Type II inositol polyphosphate 5-phosphatases (IPPs) act on both soluble inositol phosphate and phosphoinositide substrates. In many cases, these enzymes occur as multidomain proteins in which the IPP domain is linked to lipid-binding or additional catalytic domains. Rhodnius prolixus IPPRp exists as an isolated IPP domain which is secreted into the saliva of this blood-feeding insect. It shows selectivity for soluble and lipid substrates having a 1,4,5-trisphosphate substitution pattern while only poorly hydrolyzing substrates containing a D3 phosphate. With soluble diC8 PI(4,5)P(2) as a substrate, sigmoidal kinetics were observed, suggesting the presence of allosteric activation sites. Surprisingly, IPPRp-mediated hydrolysis of PI(4,5)P(2) and PI(3,4,5)P(3) was also stimulated up to 100-fold by diC8 PI(4)P and diC8 phosphatidylserine (PS). The activation kinetics were again sigmoidal, demonstrating that the allosteric sites recognize nonsubstrate phospholipids. Activation was positively cooperative, and analysis by the Hill equation suggests that at least three to four allosteric sites are present. In a vesicular system, hydrolysis of PI(4,5)P(2) followed a surface dilution kinetic model, and as expected, PS was found to be strongly stimulatory. If allosteric activation of type II IPPs by PI(4)P and PS is a widespread feature of the group, it may represent a novel regulatory mechanism for these important enzymes.

  12. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance.

    PubMed

    Nguyen, Tammy T; Lewandowska, Agnieszka; Choi, Jae-Yeon; Markgraf, Daniel F; Junker, Mirco; Bilgin, Mesut; Ejsing, Christer S; Voelker, Dennis R; Rapoport, Tom A; Shaw, Janet M

    2012-06-01

    In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology.

  13. 14-3-3ζ regulates the mitochondrial respiratory reserve linked to platelet phosphatidylserine exposure and procoagulant function

    PubMed Central

    Schoenwaelder, Simone M.; Darbousset, Roxane; Cranmer, Susan L.; Ramshaw, Hayley S.; Orive, Stephanie L.; Sturgeon, Sharelle; Yuan, Yuping; Yao, Yu; Krycer, James R.; Woodcock, Joanna; Maclean, Jessica; Pitson, Stuart; Zheng, Zhaohua; Henstridge, Darren C.; van der Wal, Dianne; Gardiner, Elizabeth E.; Berndt, Michael C.; Andrews, Robert K.; James, David E.; Lopez, Angel F.; Jackson, Shaun P.

    2016-01-01

    The 14-3-3 family of adaptor proteins regulate diverse cellular functions including cell proliferation, metabolism, adhesion and apoptosis. Platelets express numerous 14-3-3 isoforms, including 14-3-3ζ, which has previously been implicated in regulating GPIbα function. Here we show an important role for 14-3-3ζ in regulating arterial thrombosis. Interestingly, this thrombosis defect is not related to alterations in von Willebrand factor (VWF)–GPIb adhesive function or platelet activation, but instead associated with reduced platelet phosphatidylserine (PS) exposure and procoagulant function. Decreased PS exposure in 14-3-3ζ-deficient platelets is associated with more sustained levels of metabolic ATP and increased mitochondrial respiratory reserve, independent of alterations in cytosolic calcium flux. Reduced platelet PS exposure in 14-3-3ζ-deficient mice does not increase bleeding risk, but results in decreased thrombin generation and protection from pulmonary embolism, leading to prolonged survival. Our studies define an important role for 14-3-3ζ in regulating platelet bioenergetics, leading to decreased platelet PS exposure and procoagulant function. PMID:27670677

  14. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines.

    PubMed Central

    Lewis, R N; McElhaney, R N

    2000-01-01

    The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase

  15. Caspase-dependent and -independent induction of phosphatidylserine externalization during apoptosis in human renal carcinoma Cak(1)-1 and A-498 cells.

    PubMed

    Lock, Edward A; Reed, Celia J; Kinsey, Gilbert R; Schnellmann, Rick G

    2007-01-05

    Renal cell carcinoma is the most common neoplasm occurring in the kidney and is largely resistant to current chemotherapy. Understanding the mechanisms involved in renal carcinoma cell death may lead to novel and more effective therapies. In Cak(i)-1 renal cancer cells, using phosphatidylserine externalization as a marker of apoptosis, the anti-cancer drugs 5-fluorouracil (5-FU), and its pro-drugs, doxifluridine (Dox) and floxuridine (Flox) proceeds via a caspase-dependent mechanism. In contrast, phosphatidylserine externalization produced by staurosporine in the renal cancer cell lines Cak(i)-1 and A-498 proceeds via a caspase-independent mechanism. That is, the pan caspase inhibitor N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) did not ameliorate annexin V binding, cell shrinkage or changes in nuclear morphology. Subsequent experiments were conducted to determine mediators of phosphatidylserine externalization, using annexin V binding, when caspases were inhibited. Prior treatment of A-498 cells with cathepsin B (CA74 methyl ester), cathespsin D (pepstatin A) or calpain inhibitors (calpeptin, E64d) in the presence or absence of ZVAD did not ameliorate annexin V binding. The endonuclease inhibitor aurintricarboxylic acid (ATA), phospholipase A(2) inhibitor bromoenol lactone (BEL), protein synthesis inhibitor cycloheximide (CH) and chloride channel blockers niflumic acid (NFA) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) all had no effect on staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. We also modulated sphingomyelin and the de novo pathways of ceramide synthesis and found no amelioration of staurosporine-induced annexin V binding in A-498 cells either in the presence or absence of ZVAD. These results indicate that 5-FU, Dox and Flox induce externalization of phosphatidylserine during apoptosis in Cak(i)-1 renal cancer cells primarily through a caspase-dependent mechanism and that

  16. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan; Poduch, Ewa; Bello, Angelica M.; Mishra, Ram K.; Pai, Emil F.; Kotra, Lakshmi P.

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to design novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.

  17. Maternal immune activation alters glutamic acid decarboxylase-67 expression in the brains of adult rat offspring

    PubMed Central

    Cassella, Sarah N.; Hemmerle, Ann M.; Lundgren, Kerstin H.; Kyser, Tara L.; Ahlbrand, Rebecca; Bronson, Stefanie L.; Richtand, Neil M.; Seroogy, Kim B.

    2016-01-01

    Activation of the maternal innate immune system, termed “maternal immune activation” (MIA), represents a common environmental risk factor for schizophrenia. Whereas evidence suggests dysregulation of GABA systems may underlie the pathophysiology of schizophrenia, a role for MIA in alteration of GABAergic systems is less clear. Here, pregnant rats received either the viral mimetic polyriboinosinic-polyribocytidilic acid or vehicle injection on gestational day 14. Glutamic acid decarboxylase-67 (GAD67) mRNA expression was examined in male offspring at postnatal day (P)14, P30 and P60. At P60, GAD67 mRNA was elevated in hippocampus and thalamus and decreased in prefrontal cortex of MIA offspring. MIA-induced alterations in GAD expression could contribute to the pathophysiology of schizophrenia. PMID:26830319

  18. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    SciTech Connect

    Alexopoulos, E.; Kanjee, U.; Snider, J.; Houry, W.A.; Pai, E.F.

    2010-02-11

    The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222{sub 1}; the Ta{sub 6}Br{sub 12}{sup 2+} cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta{sub 6}Br{sub 12}{sup 2+}-derivatized structure to 5 {angstrom} resolution. Many of the Ta{sub 6}Br{sub 12}{sup 2+}-binding sites had twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006), J. Biol. Chem. 281, 1532-1546].

  19. Histidine decarboxylase deficiency causes Tourette syndrome: parallel findings in humans and mice

    PubMed Central

    Baldan, Lissandra Castellan; Rapanelli, Maximiliano; Crowley, Michael; Anderson, George M.; Loring, Erin; Gorczyca, Roxanne; Billingslea, Eileen; Wasylink, Suzanne; Panza, Kaitlyn E.; Ercan-Sencicek, A. Gulhan; Krusong, Kuakarun; Leventhal, Bennett L.; Ohtsu, Hiroshi; Bloch, Michael H.; Hughes, Zoë A.; Krystal, John H.; Mayes, Linda; de Araujo, Ivan; Ding, Yu-Shin; State, Matthew W.; Pittenger, Christopher

    2013-01-01

    Tourette syndrome (TS) is characterized by tics, sensorimotor gating deficiencies, and abnormalities of cortico-basal ganglia circuits. A mutation in histidine decarboxylase (Hdc), the key enzyme for the biosynthesis of histamine (HA), has been implicated as a rare genetic cause. Hdc knockout mice exhibited potentiated tic-like stereotypies, recapitulating core phenomenology of TS; these were mitigated by the dopamine D2 antagonist haloperidol, a proven pharmacotherapy, and by HA infusion into the brain. Prepulse inhibition was impaired in both mice and humans carrying Hdc mutations. HA infusion reduced striatal dopamine (DA) levels; in Hdc knockout mice, striatal DA was increased and the DA-regulated immediate early gene Fos was upregulated. Dopamine D2/D3 receptor binding was altered both in mice and in humans carrying the Hdc mutation. These data confirm HDC deficiency as a rare cause of TS and identify histamine-dopamine interactions in the basal ganglia as an important locus of pathology. PMID:24411733

  20. Extralimbic autoimmune encephalitis associated with glutamic acid decarboxylase antibodies: an underdiagnosed entity?

    PubMed

    Najjar, Souhel; Pearlman, Daniel; Najjar, Amanda; Ghiasian, Vahid; Zagzag, David; Devinsky, Orrin

    2011-07-01

    Nonparaneoplastic glutamic acid decarboxylase antibody (GADAb)-related autoimmune encephalitis is a syndrome characterized by refractory seizures, progressive cognitive deficits, and psychiatric manifestations. The limbic subtype is well described, has characteristic affective and memory disturbances, and typical mesial temporal MRI abnormalities. We found only one single case report of the extralimbic subtype. We report clinical, radiological, and pathological findings of two additional cases with contrast-enhancing lesions. One of our cases presented as vasculitis, and the other imitated a tumor. Pathological evidence of both vasculitis and encephalitis has never been previously reported in any inflammatory condition affecting the brain. Our cases confirm prior reports that immune therapy can better control seizures associated with GADAb autoimmune encephalitis, and support the rationale for assaying for GADAb titers in patients with etiologically unclear extralimbic lesions and refractory epilepsy, independent of seizure types.

  1. Identification and molecular cloning of glutamate decarboxylase gene from Lactobacillus casei

    PubMed Central

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Rabbani, Mohammad

    2015-01-01

    Gamma-amino butyric acid (GABA) possesses several physiological functions such as neurotransmission, induction of hypotension, diuretic and tranquilizer effects. Production of GABA-enriched products by lactic acid bacteria has been a focus of different researches in recent years because of their safety and health-promoting specifities. In this study, glutamate decarboxylase (gad) gene of a local strains Lactobacillus casei was identified and cloned. In order to clone the gad gene from this strain, the PCR was carried out using primers designed based on conserved regions. The PCR product was purified and ligated into PGEM-T vector. Comparison of obtained sequences shows that this fragment codes the pyridoxal 5′-phosphate binding region. This strain could possibly be used for the industrial GABA production and also for development of functional fermented foods. Gad gene manipulation can also either decrease or increase the activity of enzyme in bacteria. PMID:27844008

  2. Molecular mechanism of allosteric substrate activation in a thiamine diphosphate-dependent decarboxylase.

    PubMed

    Versées, Wim; Spaepen, Stijn; Wood, Martin D H; Leeper, Finian J; Vanderleyden, Jos; Steyaert, Jan

    2007-11-30

    Thiamine diphosphate-dependent enzymes are involved in a wide variety of metabolic pathways. The molecular mechanism behind active site communication and substrate activation, observed in some of these enzymes, has since long been an area of debate. Here, we report the crystal structures of a phenylpyruvate decarboxylase in complex with its substrates and a covalent reaction intermediate analogue. These structures reveal the regulatory site and unveil the mechanism of allosteric substrate activation. This signal transduction relies on quaternary structure reorganizations, domain rotations, and a pathway of local conformational changes that are relayed from the regulatory site to the active site. The current findings thus uncover the molecular mechanism by which the binding of a substrate in the regulatory site is linked to the mounting of the catalytic machinery in the active site in this thiamine diphosphate-dependent enzyme.

  3. Improvement of the Process Stability of Arylmalonate Decarboxylase by Immobilization for Biocatalytic Profen Synthesis

    PubMed Central

    Aßmann, Miriam; Mügge, Carolin; Gaßmeyer, Sarah Katharina; Enoki, Junichi; Hilterhaus, Lutz; Kourist, Robert; Liese, Andreas; Kara, Selin

    2017-01-01

    The enzyme arylmalonate decarboxylase (AMDase) enables the selective synthesis of enantiopure (S)-arylpropinates in a simple single-step decarboxylation of dicarboxylic acid precursors. However, the poor enzyme stability with a half-life time of about 1.2 h under process conditions is a serious limitation of the productivity, which results in a need for high catalyst loads. By immobilization on an amino C2 acrylate carrier the operational stability of the (S)-selective AMDase variant G74C/M159L/C188G/V43I/A125P/V156L was increased to a half-life of about 8.6 days, which represents a 158-fold improvement. Further optimization was achieved by simple immobilization of the cell lysate to eliminate the cost- and time intensive enzyme purification step. PMID:28360905

  4. Opsoclonus-myoclonus-ataxia syndrome with autoantibodies to glutamic acid decarboxylase.

    PubMed

    Markakis, Ioannis; Alexiou, Eleni; Xifaras, Michael; Gekas, Georgios; Rombos, Antonios

    2008-06-01

    Opsoclonus-myoclonus-ataxia syndrome (OMS) is a rare neurological disorder of probably autoimmune origin. Most cases are associated with a remote neoplasm or a viral infection; however in some instances no underlying aetiology can be demonstrated. We report the presence of anti-glutamic acid decarboxylase antibodies (anti-GAD Abs) in the serum and CSF of a patient with idiopathic OMS. Treatment with intravenous immunoglobulin led to a remarkable clinical improvement with parallel reduction of anti-GAD titers. Anti-GAD Abs have been associated with several neurological syndromes. They could also be responsible for the clinical triad of OMS, by impairing GABAergic transmission in specific brainstem and cerebellar circuits. We propose that testing for anti-GAD Abs should be performed in OMS, especially when no other aetiological association can be demonstrated.

  5. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki

    2016-11-01

    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis.

  6. Regioselective Enzymatic β-Carboxylation of para-Hydroxy- styrene Derivatives Catalyzed by Phenolic Acid Decarboxylases

    PubMed Central

    Wuensch, Christiane; Pavkov-Keller, Tea; Steinkellner, Georg; Gross, Johannes; Fuchs, Michael; Hromic, Altijana; Lyskowski, Andrzej; Fauland, Kerstin; Gruber, Karl; Glueck, Silvia M; Faber, Kurt

    2015-01-01

    We report on a ‘green’ method for the utilization of carbon dioxide as C1 unit for the regioselective synthesis of (E)-cinnamic acids via regioselective enzymatic carboxylation of para-hydroxystyrenes. Phenolic acid decarboxylases from bacterial sources catalyzed the β-carboxylation of para-hydroxystyrene derivatives with excellent regio- and (E/Z)-stereoselectivity by exclusively acting at the β-carbon atom of the C=C side chain to furnish the corresponding (E)-cinnamic acid derivatives in up to 40% conversion at the expense of bicarbonate as carbon dioxide source. Studies on the substrate scope of this strategy are presented and a catalytic mechanism is proposed based on molecular modelling studies supported by mutagenesis of amino acid residues in the active site. PMID:26190963

  7. Genetic Confirmation of the Role of Sulfopyruvate Decarboxylase in Coenzyme M Biosynthesis in Methanococcus maripaludis

    DOE PAGES

    Sarmiento, Felipe; Ellison, Courtney K.; Whitman, William B.

    2013-01-01

    Coenzyme M is an essential coenzyme for methanogenesis. The proposed biosynthetic pathway consists of five steps, of which the fourth step is catalyzed by sulfopyruvate decarboxylase (ComDE). Disruption of the gene comE by transposon mutagenesis resulted in a partial coenzyme M auxotroph, which grew poorly in the absence of coenzyme M and retained less than 3% of the wild type level of coenzyme M biosynthesis. Upon coenzyme M addition, normal growth of the mutant was restored. Moreover, complementation of the mutation with the wild type comE gene in trans restored full growth in the absence of coenzyme M. Thesemore » results confirm that ComE plays an important role in coenzyme M biosynthesis. The inability to yield a complete CoM auxotroph suggests that either the transposon insertion failed to completely inactivate the gene or M. maripaludis possesses a promiscuous activity that partially complemented the mutation.« less

  8. Hydroxydibenzoylmethane induces apoptosis through repressing ornithine decarboxylase in human promyelocytic leukemia HL-60 cells

    PubMed Central

    Wang, Ming-Fu; Liao, Ya-Fan; Hung, Ying-Cheng; Lin, Chih-Li; Hour, Tzyh-Chyuan; Lue, Ko-Huang; Hung, Hui-Chih

    2011-01-01

    Ornithine decarboxylase (ODC) is the rate-limiting enzyme in polyamine biosynthesis and a target for chemoprevention. Hydroxydibenzoylmethane (HDB), a derivative of dibenzoylmethane of licorice, is a promising chemopreventive agent. In this paper, we investigated whether HDB would inhibit the ODC pathway to enhance apoptosis in human promyelocytic leukemia HL-60 cells. We found ODC enzyme activity was reduced during HDB treatment. Overexpression of ODC in HL-60 parental cells could reduce HDB-induced apoptosis, which leads to loss of mitochondrial membrane potential (Δψm), through lessening intracellular ROS. Furthermore, ODC overexpression protected cytochrome c release and the activation of caspase-3 following HDB treatment. The results demonstrated HDB-induced apoptosis was through a mechanism of down-regulation of ODC and occurred along a ROS-dependent mitochondria-mediated pathway. PMID:21372632

  9. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.

    PubMed

    Monnerie, Hubert; Le Roux, Peter D

    2008-09-01

    Brain cell vulnerability to neurologic insults varies greatly, depending on their neuronal subpopulation. Among cells that survive a pathological insult such as ischemia or brain trauma, some may undergo morphological and/or biochemical changes that could compromise brain function. We previously reported that surviving cortical GABAergic neurons exposed to glutamate in vitro displayed an NMDA receptor (NMDAR)-mediated alteration in the levels of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD65/67) [Monnerie, H., Le Roux, P., 2007. Reduced dendrite growth and altered glutamic acid decarboxylase (GAD) 65- and 67-kDa isoform protein expression from mouse cortical GABAergic neurons following excitotoxic injury in vitro. Exp. Neurol. 205, 367-382]. In this study, we examined the mechanisms by which glutamate excitotoxicity caused a change in cortical GABAergic neurons' GAD protein levels. Removing extracellular calcium prevented the NMDAR-mediated decrease in GAD protein levels, measured using Western blot techniques, whereas inhibiting calcium entry through voltage-gated calcium channels had no effect. Glutamate's effect on GAD protein isoforms was significantly attenuated by preincubation with the cysteine protease inhibitor N-Acetyl-L-Leucyl-L-Leucyl-L-norleucinal (ALLN). Using class-specific protease inhibitors, we observed that ALLN's effect resulted from the blockade of calpain and cathepsin protease activities. Cell-free proteolysis assay confirmed that both proteases were involved in glutamate-induced alteration in GAD protein levels. Together these results suggest that glutamate-induced excitotoxic stimulation of NMDAR in cultured cortical neurons leads to altered GAD protein levels from GABAergic neurons through intracellular calcium increase and protease activation including calpain and cathepsin. Biochemical alterations in surviving cortical GABAergic neurons in various disease states may contribute to the altered balance between excitation

  10. [Cloning, prokaryotic expression and characterization of lysine decarboxylase gene from Huperzia serrata].

    PubMed

    Di, Ci; Li, Jing; Tang, Yuntao; Peng, Qingzhong

    2014-08-01

    Huperzine A is a promising drug to treat Alzheimer's disease (AD). To date, its biosynthetic pathway is still unknown. Lysine decarboxylase (LDC) has been proposed to catalyze the first-step of the biosynthesis of huperzine A. To identify and characterize LDCs from Huperzia serrata, we isolated two LDC fragments (LDC1 and LDC2) from leaves of H. serrata by RT-PCR and then cloned them into pMD 19-T vector. Sequence analysis showed that LDC1 and LDC2 genes shared 95.3% identity and encoded the protein of 212 and 202 amino acid residues respectively. Thus, we ligated LDC genes into pET-32a(+) to obtain recombinant expressing vectors pET-32a(+)/LDC1 and pET-32a(+)/LDC2 respectively. We further introduced two expression vectors into Escherichia coli BL21(DE3) and cultured positive colonies of E. coli in liquid LB medium. After inducing for 4 hours with 260 μg/mL IPTG at 30 degrees C, soluble recombinant Trx-LDC1 and Trx-LDC2 were obtained and isolated for purification using a Ni-NTA affinity chromatography. We incubated purified recombinant proteins with L-lysine in the enzyme reaction buffer at 37 degrees C and then derived the reaction products using dansyl chloride. It was found that both Trx-LDC1 and Trx-LDC2 had decarboxylase activity, could convert L-lysine into cadaverine by way of thin layer chromatography assay. Further, bioinformatics analysis indicated that deduced LDC1 and LDC2 had different physicochemical properties, but similar secondary and three-dimensional structures.

  11. Tomato Glutamate Decarboxylase Genes SlGAD2 and SlGAD3 Play Key Roles in Regulating γ-Aminobutyric Acid Levels in Tomato (Solanum lycopersicum).

    PubMed

    Takayama, Mariko; Koike, Satoshi; Kusano, Miyako; Matsukura, Chiaki; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi

    2015-08-01

    Tomato (Solanum lycopersicum) can accumulate relatively high levels of γ-aminobutyric acid (GABA) during fruit development. However, the molecular mechanism underlying GABA accumulation and its physiological function in tomato fruits remain elusive. We previously identified three tomato genes (SlGAD1, SlGAD2 and SlGAD3) encoding glutamate decarboxylase (GAD), likely the key enzyme for GABA biosynthesis in tomato fruits. In this study, we generated transgenic tomato plants in which each SlGAD was suppressed and those in which all three SlGADs were simultaneously suppressed. A significant decrease in GABA levels, i.e. 50-81% compared with wild-type (WT) levels, was observed in mature green (MG) fruits of the SlGAD2-suppressed lines, while a more drastic reduction (up to <10% of WT levels) was observed in the SlGAD3- and triple SlGAD-suppressed lines. These findings suggest that both SlGAD2 and SlGAD3 expression are crucial for GABA biosynthesis in tomato fruits. The importance of SlGAD3 expression was also confirmed by generating transgenic tomato plants that over-expressed SlGAD3. The MG and red fruits of the over-expressing transgenic lines contained higher levels of GABA (2.7- to 5.2-fold) than those of the WT. We also determined that strong down-regulation of the SlGADs had little effect on overall plant growth, fruit development or primary fruit metabolism under normal growth conditions.

  12. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    PubMed

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  13. Osmotic Stress-Induced Polyamine Accumulation in Cereal Leaves : II. Relation to Amino Acid Pools.

    PubMed

    Flores, H E; Galston, A W

    1984-05-01

    Arginine decarboxylase activity increases 2- to 3-fold in osmotically stressed oat leaves in both light and dark, but putrescine accumulation in the dark is only one-third to one-half of that in light-stressed leaves. If arginine or ornithine are supplied to dark-stressed leaves, putrescine rises to levels comparable to those obtained by incubation under light. Thus, precursor amino acid availability is limiting to the stress response. Amino acid levels change rapidly upon osmotic treatment; notably, glutamic acid decreases with a corresponding rise in glutamine. Difluoromethylarginine (0.01-0.1 millimolar), the enzyme-activated irreversible inhibitor of arginine decarboxylase, prevents the stress-induced putrescine rise, as well as the incorporation of label from [(14)C]arginine, with the expected accumulation of free arginine, but has no effect on the rest of the amino acid pool. The use of specific inhibitors such as alpha-difluoromethylarginine is suggested as probes for the physiological significance of stress responses by plant cells.

  14. Evaluation of phosphatidylserine-dependent antiprothrombin antibody testing for the diagnosis of antiphospholipid syndrome: results of an international multicentre study.

    PubMed

    Amengual, O; Forastiero, R; Sugiura-Ogasawara, M; Otomo, K; Oku, K; Favas, C; Delgado Alves, J; Žigon, P; Ambrožič, A; Tomšič, M; Ruiz-Arruza, I; Ruiz-Irastorza, G; Bertolaccini, M L; Norman, G L; Shums, Z; Arai, J; Murashima, A; Tebo, A E; Gerosa, M; Meroni, P L; Rodriguez-Pintó, I; Cervera, R; Swadzba, J; Musial, J; Atsumi, T

    2017-03-01

    Objective A task force of scientists at the International Congress on Antiphospholipid Antibodies recognized that phosphatidylserine-dependent antiprothrombin antibodies (aPS/PT) might contribute to a better identification of antiphospholipid syndrome (APS). Accordingly, initial and replication retrospective, cross-sectional multicentre studies were conducted to ascertain the value of aPS/PT for APS diagnosis. Methods In the initial study (eight centres, seven countries), clinical/laboratory data were retrospectively collected. Serum/plasma samples were tested for IgG aPS/PT at Inova Diagnostics (Inova) using two ELISA kits. A replication study (five centres, five countries) was carried out afterwards. Results In the initial study ( n = 247), a moderate agreement between the IgG aPS/PT Inova and MBL ELISA kits was observed ( k = 0.598). IgG aPS/PT were more prevalent in APS patients (51%) than in those without (9%), OR 10.8, 95% CI (4.0-29.3), p < 0.0001. Sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio of IgG aPS/PT for APS diagnosis were 51%, 91%, 5.9 and 0.5, respectively. In the replication study ( n = 214), a moderate/substantial agreement between the IgG aPS/PT results obtained with both ELISA kits was observed ( k = 0.630). IgG aPS/PT were more prevalent in APS patients (47%) than in those without (12%), OR 6.4, 95% CI (2.6-16), p < 0.0001. Sensitivity, specificity, LR + and LR- for APS diagnosis were 47%, 88%, 3.9 and 0.6, respectively. Conclusions IgG aPS/PT detection is an easily performed laboratory parameter that might contribute to a better and more complete identification of patients with APS.

  15. Trivalent methylated arsenical-induced phosphatidylserine exposure and apoptosis in platelets may lead to increased thrombus formation

    SciTech Connect

    Bae, Ok-Nam; Lim, Kyung-Min; Chung, Jin-Ho

    2009-09-01

    Trivalent methylated metabolites of arsenic, monomethylarsonous acid (MMA{sup III}) and dimethylarsinous acid (DMA{sup III}), have been found highly reactive and toxic in various cells and in vivo animal models, suggesting their roles in the arsenic-associated toxicity. However, their effects on cardiovascular system including blood cells, one of the most important targets for arsenic toxicity, remain poorly understood. Here we found that MMA{sup III} and DMA{sup III} could induce procoagulant activity and apoptosis in platelets, which play key roles in the development of various cardiovascular diseases (CVDs) through excessive thrombus formation. In freshly isolated human platelets, treatment of MMA{sup III} resulted in phosphatidylserine (PS) exposure, a hallmark of procoagulant activation, accompanied by distinctive apoptotic features including mitochondrial membrane potential disruption, cytochrome c release, and caspase-3 activation. These procoagulant activation and apoptotic features were found to be mediated by the depletion of protein thiol and intracellular ATP, and flippase inhibition by MMA{sup III}, while the intracellular calcium increase or reactive oxygen species generation was not involved. Importantly, increased platelet procoagulant activity by MMA{sup III} resulted in enhanced blood coagulation and excessive thrombus formation in a rat in vivo venous thrombosis model. DMA{sup III} also induced PS-exposure with apoptotic features mediated by protein thiol depletion, which resulted in enhanced thrombin generation. In summary, we believe that this study provides an important evidence for the role of trivalent methylated arsenic metabolites in arsenic-associated CVDs, giving a novel insight into the role of platelet apoptosis in toxicant-induced cardiovascular toxicity.

  16. Taxol induces concentration-dependent phosphatidylserine (PS) externalization and cell cycle arrest in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Guo, Wen-jing; Chen, Tong-sheng

    2010-02-01

    Taxol (Paclitaxel) is an important natural product for the treatment of solid tumors. Different concentrations of taxol can trigger distinct effects on both the cellular microtubule network and biochemical pathways. Apoptosis induced by low concentrations (5-30 nM) of taxol was associated with mitotic arrest, alteration of microtubule dynamics and/or G2/M cell cycle arrest, whereas high concentrations of this drug (0.2-30 μM) caused significant microtubule damage, and was found recently to induce cytoplasm vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. In present study, cell counting kit (CCK-8) assay, confocal microscope, and flow cytometry analysis were used to analyze the cell death form induced by 35 nM and 70 μM of taxol respectively in human lung adenocarcinoma (ASTC-a-1) cells. After treatment of 35 nM taxol for 48 h, the OD450 value was 0.80, and 35 nM taxol was found to induce dominantly cell death in apoptotic pathway such as phosphatidylserine (PS) externalization, G2/M phase arrest after treatment for 24 h, and nuclear fragmentation after treatment for 48 h. After 70 μM taxol treated the cell for 24 h, the OD450 value was 1.01, and 70 μM taxol induced cytoplasm vacuolization programmed cell death (PCD) and G2/M phase as well as the polyploidy phase arrest in paraptotic-like cell death. These findings imply that the regulated signaling pathway of cell death induced by taxol is dependent on taxol concentration in ASTC-a-1 cells.

  17. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    PubMed

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity.

  18. Copper-induced peroxidation of phosphatidylserine-containing liposomes is inhibited by nanomolar concentrations of specific antioxidants.

    PubMed

    Gal, S; Lichtenberg, D; Bor, A; Pinchuk, I

    2007-12-01

    Copper-induced peroxidation of liposomal palmitoyllinoleoyl-phosphatidylcholine (PLPC) is inhibited by alpha-tocopherol at micromolar concentrations. In our previous study we found that when the liposomes contain phosphatidylserine (PS), nanomolar concentrations of Toc were sufficient to inhibit peroxidation. In an attempt to gain understanding of the origin of this extreme antioxidative potency, we tested the antioxidative potency of 36 additional antioxidants and the dependence of their potency on the presence of PS in the liposomes. The results of these studies reveal that only 11 of the tested antioxidants possess similar antioxidative potency to that of Toc. These include trolox, butylated hydroxytoluene (BHT), curcumin, nordihydroguaiaretic acid (NDGA), diethylstilbestrol (DES), 2 of the 13 tested flavonoids (luteolin and 7,3',4'-trihydroxyflavone; T-414), alpha-naphthol, 1,5-, 1,6- and 1,7-dihydroxynaphthalenes (DHNs). Propyl gallate (PG), methyl syringate, rosmarinic acid, resveratrol, other flavonoids, as well as beta-naphthol, 1,2-, 1,3-, 1,4-, 2,3-, 2,6-, and 2,7-DHNs were either moderately antioxidative or pro-oxidative. For liposomes made of PLPC (250 microM) and PS (25 microM) the "lag" preceding copper-induced peroxidation (5 microM copper) was doubled upon addition of 30-130nM of the "super-active" antioxidants. We propose that the mechanism responsible for the extreme antioxidative potency against copper-induced peroxidation in PS-containing liposomes involves replenishment of the antioxidant in a ternary PS-copper-antioxidant complex. Based on structure-activity relationship of the 37 tested antioxidants, the "super-antioxidative potency" is attributed to the recycling of relatively stable semiquinone or semiquinone-like radicals.

  19. Evaluation of oxidation and glyco-oxidation of 1-palmitoyl-2-arachidonoyl-phosphatidylserine by LC-MS/MS.

    PubMed

    Maciel, Elisabete; Faria, Renata; Santinha, Deolinda; Domingues, M Rosário M; Domingues, Pedro

    2013-06-15

    Phosphatidylserine (PS) is an aminophospholipid found mainly in the plasma membranes of all mammalians cells, playing important roles in biological processes such as apoptosis and cell signaling. Due to the presence of a free amine group, under hyperglycemic conditions, PS can undergo glycation reaction, which may increase the susceptibility to oxidation. However, far too little attention has been paid to glycation and oxidation of PS. In this work we studied the oxidation, glycation and glyco-oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phospho-l-serine (PAPS). PAPS and glycated PAPS were oxidized through a Fenton reaction and the oxidation products were monitored by ESI-MS in negative mode. Also, we developed a new sensitive liquid chromatography method coupled with tandem mass spectrometry (LC-MS/MS) to provide a complete profile of oxidized and glyco-oxidized PS. We were able to separate and identify several oxidation products of PAPS and glycated PAPS with modifications in unsaturated fatty acyl chain as long chain oxidation product (hydroxy and mono to tetra-hydroperoxy derivatives), and short chain products with a shortened fatty acyl chain with C5 and C8 length and aldehyde or carboxylic terminal. We have also observed oxidation products arising from structural changes in the serine polar head, which lead to oxidation products with an acetic acid terminal (glycerophosphoacetic acid derivatives) and lysoPS species. Oxidation of glycated PAPS gave rise to several products involving oxidative cleavages of the glucose moiety, mainly between C1 and C2 of the sugar unit. These oxidation products with different polar head groups have shown distinct neutral loss fragmentation patterns. Simultaneous oxidative modifications of the polar head and the fatty acyl chains were also observed. The findings from this study contribute to an ongoing effort to detect PS oxidation and glyco-oxidation products in biological systems.

  20. The Role of Putative Phosphatidylserine-Interactive Residues of Tissue Factor on Its Coagulant Activity at the Cell Surface

    PubMed Central

    Ansari, Shabbir A.; Pendurthi, Usha R.; Sen, Prosenjit; Rao, L. Vijaya Mohan

    2016-01-01

    Exposure of phosphatidylserine (PS) on the outer leaflet of the cell membrane is thought to play a critical role in tissue factor (TF) decryption. Recent molecular dynamics simulation studies suggested that the TF ectodomain may directly interact with PS. To investigate the potential role of TF direct interaction with the cell surface phospholipids on basal TF activity and the enhanced TF activity following the decryption, one or all of the putative PS-interactive residues in the TF ectodomain were mutated and tested for their coagulant activity in cell systems. Out of the 9 selected TF mutants, five of them -TFS160A, TFS161A, TFS162A, TFK165A, and TFD180A- exhibited a similar TF coagulant activity to that of the wild-type TF. The specific activity of three mutants, TFK159A, TFS163A, and TFK166A, was reduced substantially. Mutation of the glycine residue at the position 164 markedly abrogated the TF coagulant activity, resulting in ~90% inhibition. Mutation of all nine lipid binding residues together did not further decrease the activity of TF compared to TFG164A. A similar fold increase in TF activity was observed in wild-type TF and all TF mutants following the treatment of THP-1 cells with either calcium ionomycin or HgCl2, two agents that are commonly used to decrypt TF. Overall, our data show that a few select TF residues that are implicated in interacting with PS contribute to the TF coagulant activity at the cell surface. However, our data also indicate that TF regions outside of the putative lipid binding region may also contribute to PS-dependent decryption of TF. PMID:27348126

  1. Calpain-controlled detachment of major glycoproteins from the cytoskeleton regulates adhesive properties of activated phosphatidylserine-positive platelets.

    PubMed

    Artemenko, Elena O; Yakimenko, Alena O; Pichugin, Alexey V; Ataullakhanov, Fazly I; Panteleev, Mikhail A

    2016-02-15

    In resting platelets, adhesive membrane glycoproteins are attached to the cytoskeleton. On strong activation, phosphatidylserine(PS)-positive and -negative platelet subpopulations are formed. Platelet activation is accompanied by cytoskeletal rearrangement, although the glycoprotein attachment status in these two subpopulations is not clear. We developed a new, flow cytometry-based, single-cell approach to investigate attachment of membrane glycoproteins to the cytoskeleton in cell subpopulations. In PS-negative platelets, adhesive glycoproteins integrin αIIbβ3, glycoprotein Ib and, as shown for the first time, P-selectin were associated with the cytoskeleton. In contrast, this attachment was disrupted in PS-positive platelets; it was retained to some extent only in the small convex regions or 'caps'. It correlated with the degradation of talin and filamin observed only in PS-positive platelets. Calpain inhibitors essentially prevented the disruption of membrane glycoprotein attachment in PS-positive platelets, as well as talin and filamin degradation. With the suggestion that detachment of glycoproteins from the cytoskeleton may affect platelet adhesive properties, we investigated the ability of PS-positive platelets to resist shear-induced breakaway from the immobilized fibrinogen. Shear rates of 500/s caused PS-positive platelet breakaway, but their adhesion stability increased more than 10-fold after pretreatment of the platelets with calpain inhibitor. In contrast, the ability of PS-positive platelets to adhere to immobilized von Willebrand's factor at 100/s was low, but this was not affected by the preincubation of platelets with a calpain inhibitor. Our data suggest that calpain-controlled detachment of membrane glycoproteins is a new mechanism that is responsible for the loss of ability of the procoagulant platelets to resist detachment from thrombi by high shear stress.

  2. Evaluation of the Substrate Scope of Benzoic Acid (De)carboxylases According to Chemical and Biochemical Parameters.

    PubMed

    Pesci, Lorenzo; Kara, Selin; Liese, Andreas

    2016-10-04

    The enzymatic carboxylation of phenolic compounds has been attracting increasing interest in recent years, owing to its regioselectivity and technical potential as a biocatalytic equivalent for the Kolbe-Schmitt reaction. Mechanistically the reaction was demonstrated to occur through electrophilic aromatic substitution/water elimination with bicarbonate as a cosubstrate. The effects of the substituents on the phenolic ring have not yet been elucidated in detail, but this would give detailed insight into the substrate-activity relationship and would provide predictability for the acceptance of future substrates. In this report we show how the kinetic and (apparent) thermodynamic behavior can be explained through the evaluation of linear free energy relationships based on electronic, steric, and geometric parameters and through the consideration of enzyme-ligand interactions. Moreover, the similarity between the benzoic acid decarboxylases and the amidohydrolases superfamily is investigated, and promiscuous hydrolytic activity of the decarboxylase in the context of the hydrolysis of an activated ester bond has been established.

  3. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase

    PubMed Central

    Webb, Michael E.; Yorke, Briony A.; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M. C.; Kilkenny, Mairi L.; Smith, Alison G.; Blundell, Tom L.; Pearson, Arwen R.; Abell, Chris

    2014-01-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation. PMID:24699660

  4. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase.

    PubMed

    Webb, Michael E; Yorke, Briony A; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M C; Kilkenny, Mairi L; Smith, Alison G; Blundell, Tom L; Pearson, Arwen R; Abell, Chris

    2014-04-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation.

  5. Computational, structural, and kinetic evidence that Vibrio vulnificus FrsA is not a cofactor-independent pyruvate decarboxylase.

    PubMed

    Kellett, Whitney F; Brunk, Elizabeth; Desai, Bijoy J; Fedorov, Alexander A; Almo, Steven C; Gerlt, John A; Rothlisberger, Ursula; Richards, Nigel G J

    2013-03-19

    The fermentation-respiration switch (FrsA) protein in Vibrio vulnificus was recently reported to catalyze the cofactor-independent decarboxylation of pyruvate. We now report quantum mechanical/molecular mechenical calculations that examine the energetics of C-C bond cleavage for a pyruvate molecule bound within the putative active site of FrsA. These calculations suggest that the barrier to C-C bond cleavage in the bound substrate is 28 kcal/mol, which is similar to that estimated for the uncatalyzed decarboxylation of pyruvate in water at 25 °C. In agreement with the theoretical predictions, no pyruvate decarboxylase activity was detected for recombinant FrsA protein that could be crystallized and structurally characterized. These results suggest that the functional annotation of FrsA as a cofactor-independent pyruvate decarboxylase is incorrect.

  6. Computational, Structural and Kinetic Evidence that Vibrio vulnificus FrsA is not a Cofactor-Independent Pyruvate Decarboxylase

    PubMed Central

    Kellett, Whitney F.; Brunk, Elizabeth; Desai, Bijoy J.; Fedorov, Alexander A.; Almo, Steven C.; Gerlt, John A.; Rothlisberger, Ursula; Richards, Nigel G. J.

    2013-01-01

    The fermentation-respiration switch (FrsA) protein in Vibrio vulnificus was recently reported to catalyze the cofactor-independent decarboxylation of pyruvate. We now report QM/MM calculations that examine the energetics of C-C bond cleavage for a pyruvate molecule bound within the putative active site of FrsA. These calculations suggest that the barrier to C-C bond cleavage in the bound substrate is 28 kcal/mol, which is similar to that estimated for the uncatalyzed decarboxylation of pyruvate in water at 25 °C. In agreement with the theoretical predictions, no pyruvate decarboxylase activity was detected for recombinant FrsA protein that could be crystallized and structurally characterized. These results suggest that the functional annotation of FrsA as a cofactor-independent pyruvate decarboxylase is incorrect. PMID:23452154

  7. /sup 3/H-DFMA metabolism in tobacco: non-specific, arginase mediated inhibition of ornithine decarboxylase activity

    SciTech Connect

    Slocum, R.D.; Feirer, R.L.

    1987-04-01

    ..cap alpha..-Difluoromethylarginine (DFMA) is a specific, enzyme-activated, irreversible inhibit of arginine decarboxylase (ADC) in vitro. ADC catalyzes the first step leading to putrescine biosynthesis and the activity of this enzyme is closely linked to overall polyamine (PA) biosynthesis in non-meristematic plant tissues. Consequently, ADC represents an important target enzyme for inhibitors of PA metabolism. DFMA has been shown to inhibit ADC activity in a variety of tissues in vivo but its specificity in tobacco was questioned since ornithine decarboxylase (ODC) activity was also inhibited. Further studies have shown that (/sup 3/H)-DFMA is efficiently hydrolyzed in tobacco to (/sup 3/H)-difluoromethylornithine (DFMO), an irreversible inhibitor of ODC. Tobacco and bovine arginases also catalyze the hydrolysis of DFMA in vitro, suggesting a role for this enzyme in mediating the non-specific inhibition of ODC by DFMA in tobacco flowers.

  8. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  9. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana.

  10. Quantification of phosphatidylserine, phosphatidic acid and free fatty acids in an ultrasound contrast agent by normal-phase high-performance liquid chromatography with evaporative light scattering detection.

    PubMed

    Hvattum, Erlend; Uran, Steinar; Sandbaek, Anne Gunvor; Karlsson, Anders A; Skotland, Tore

    2006-10-11

    Sonazoid is a new contrast agent for ultrasound imaging. The product is an aqueous suspension of perfluorobutane microbubbles coated with phospholipids obtained from hydrogenated egg phosphatidylserine (H-EPS). A normal-phase high-performance liquid chromatographic (HPLC) method with evaporative light scattering detection was developed for quantification of free fatty acids, phosphatidylserine and phosphatidic acid in H-EPS and Sonazoid. Separation of the lipids was carried out on an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 7.5 with ammonia. The calibration standards contained stearic acid, distearoyl-phosphatidic acid (DSPA) and distearoyl-phosphatidylserine (DSPS) in the concentration range of 0.016-1.0mg/ml (0.4-25microg injected). The method was validated with a limit of quantification of the three lipids set to 0.4microg (approximately 20-60microM). The best fit of the three calibration curves were obtained when the logarithmic transformed theoretical lipid concentration was plotted against the logarithmic transformed area under the peak and fitted to a second order polynomial equation. Stearic acid, DSPA and DSPS were analysed with an intermediate precision ranging from 4.4% to 5.3% R.S.D. and they were extracted from an aqueous suspension with a recovery ranging from 103.3% to 113.3%. The sum of total phospholipid concentration determined in H-EPS ranged from 96.4% to 103.2% of the theoretical values. The lipids in the ultrasound product were quantitated with a repeatability ranging from 6.2% to 11.7% R.S.D.

  11. Specific detection and quantification of palmitoyl-stearoyl-phosphatidylserine in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry.

    PubMed

    Hvattum, E; Larsen, A; Uran, S; Michelsen, P M; Skotland, T

    1998-09-25

    A narrow-bore normal-phase high-performance liquid chromatography (HPLC) method was developed for separation of phospholipid classes using an HPLC diol column and a gradient of chloroform and methanol with 0.2% formic acid titrated to pH 5.3 with ammonia. The HPLC system was coupled on-line with an electrospray mass spectrometry (ES-MS) or electrospray tandem mass spectrometry (ES-MS-MS) system and the separation of several major phospholipid classes was shown. The molecular species of some phospholipid classes in human blood were qualitatively determined. A method was further developed for specific determination of a molecular species from phosphatidylserine, palmitoyl-stearoyl-phosphatidylserine (PSPS), in human blood using HPLC-ES-MS. The analyses were performed by single ion monitoring of the [M-H]- molecular ions of PSPS and an internal standard, dipalmitoyl-phosphatidylserine. The limit of quantification of the method was 1.2 ng of PSPS. The calibration curve ranged from 0.12 to 5.81 microg/ml of PSPS dissolved in the mobile phase. The curve was fitted to a second-order polynomial equation and found to be highly reproducible. Analysis of control samples was found to be reproducible with a between-series precision below 9.2% R.S.D. The amount of endogenous PSPS in human blood was determined in 13 subjects and found to range from 1.73 to 3.09 microg/ml. The identity of endogenous PSPS was confirmed by HPLC-ES-MS-MS.

  12. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola.

    PubMed Central

    Brandl, M T; Lindow, S E

    1996-01-01

    Erwinia herbicola 299R synthesizes indole-3-acetic acid (IAA) primarily by the indole-3-pyruvic acid pathway. A gene involved in the biosynthesis of IAA was cloned from strain 299R. This gene (ipdC) conferred the synthesis of indole-3-acetaldehyde and tryptophol upon Escherichia coli DH5 alpha in cultures supplemented with L-tryptophan. The deduced amino acid sequence of the gene product has high similarity to that of the indolepyruvate decarboxylase of Enterobacter cloacae. Regions within pyruvate decarboxylases of various fungal and plant species also exhibited considerable homology to portions of this gene. This gene therefore presumably encodes an indolepyruvate decarboxylase (IpdC) which catalyzes the conversion of indole-3-pyruvic acid to indole-3-acetaldehyde. Insertions of Tn3-spice within ipdC abolished the ability of strain 299R to synthesize indole-3-acetaldehyde and tryptophol and reduced its IAA production in tryptophan-supplemented minimal medium by approximately 10-fold, thus providing genetic evidence for the role of the indolepyruvate pathway in IAA synthesis in this strain. An ipdC probe hybridized strongly with the genomic DNA of all E. herbicola strains tested in Southern hybridization studies, suggesting that the indolepyruvate pathway is common in this species. Maximum parsimony analysis revealed that the ipdC gene is highly conserved within this group and that strains of diverse geographic origin were very similar with respect to ipdC. PMID:8900003

  13. Lysine Decarboxylase Catalyzes the First Step of Quinolizidine Alkaloid Biosynthesis and Coevolved with Alkaloid Production in Leguminosae[W][OA

    PubMed Central

    Bunsupa, Somnuk; Katayama, Kae; Ikeura, Emi; Oikawa, Akira; Toyooka, Kiminori; Saito, Kazuki; Yamazaki, Mami

    2012-01-01

    Lysine decarboxylase (LDC) catalyzes the first-step in the biosynthetic pathway of quinolizidine alkaloids (QAs), which form a distinct, large family of plant alkaloids. A cDNA of lysine/ornithine decarboxylase (L/ODC) was isolated by differential transcript screening in QA-producing and nonproducing cultivars of Lupinus angustifolius. We also obtained L/ODC cDNAs from four other QA-producing plants, Sophora flavescens, Echinosophora koreensis, Thermopsis chinensis, and Baptisia australis. These L/ODCs form a phylogenetically distinct subclade in the family of plant ornithine decarboxylases. Recombinant L/ODCs from QA-producing plants preferentially or equally catalyzed the decarboxylation of l-lysine and l-ornithine. L. angustifolius L/ODC (La-L/ODC) was found to be localized in chloroplasts, as suggested by the transient expression of a fusion protein of La-L/ODC fused to the N terminus of green fluorescent protein in Arabidopsis thaliana. Transgenic tobacco (Nicotiana tabacum) suspension cells and hairy roots produced enhanced levels of cadaverine-derived alkaloids, and transgenic Arabidopsis plants expressing (La-L/ODC) produced enhanced levels of cadaverine, indicating the involvement of this enzyme in lysine decarboxylation to form cadaverine. Site-directed mutagenesis and protein modeling studies revealed a structural basis for preferential LDC activity, suggesting an evolutionary implication of L/ODC in the QA-producing plants. PMID:22415272

  14. Lysine decarboxylase catalyzes the first step of quinolizidine alkaloid biosynthesis and coevolved with alkaloid production in leguminosae.

    PubMed

    Bunsupa, Somnuk; Katayama, Kae; Ikeura, Emi; Oikawa, Akira; Toyooka, Kiminori; Saito, Kazuki; Yamazaki, Mami

    2012-03-01

    Lysine decarboxylase (LDC) catalyzes the first-step in the biosynthetic pathway of quinolizidine alkaloids (QAs), which form a distinct, large family of plant alkaloids. A cDNA of lysine/ornithine decarboxylase (L/ODC) was isolated by differential transcript screening in QA-producing and nonproducing cultivars of Lupinus angustifolius. We also obtained L/ODC cDNAs from four other QA-producing plants, Sophora flavescens, Echinosophora koreensis, Thermopsis chinensis, and Baptisia australis. These L/ODCs form a phylogenetically distinct subclade in the family of plant ornithine decarboxylases. Recombinant L/ODCs from QA-producing plants preferentially or equally catalyzed the decarboxylation of L-lysine and L-ornithine. L. angustifolius L/ODC (La-L/ODC) was found to be localized in chloroplasts, as suggested by the transient expression of a fusion protein of La-L/ODC fused to the N terminus of green fluorescent protein in Arabidopsis thaliana. Transgenic tobacco (Nicotiana tabacum) suspension cells and hairy roots produced enhanced levels of cadaverine-derived alkaloids, and transgenic Arabidopsis plants expressing (La-L/ODC) produced enhanced levels of cadaverine, indicating the involvement of this enzyme in lysine decarboxylation to form cadaverine. Site-directed mutagenesis and protein modeling studies revealed a structural basis for preferential LDC activity, suggesting an evolutionary implication of L/ODC in the QA-producing plants.

  15. Transbilayer movement of phosphatidylserine n erythrocytes: inhibition of transport and preferential labeling of a 31,000-dalton protein by sulfhydryl reactive reagents

    SciTech Connect

    Connor, J.; Schroit, A.J.

    1988-02-09

    A series of /sup 125/I-labeled thiolation reagents were synthesized on the basis of the parent structure pyridyldithioethylamine (PDA). These compounds specifically and reversibly inhibit the active intrabilayer transport of phosphatidylserine (PS) in human blood cells. The binding of PDA to cells can be quantified since the thiol-disulfide exchange reaction yields a chromophore. In addition, the presence of a primary amine makes it amenable to derivatization with a variety of compounds. An iodinated derivative of PDA preferentially labeled a 31,000-dalton red blood cell peptide. The labeled component, which may represent the PS transporter, comigrated with integral membrane protein band 7.

  16. Herbacetin is a novel allosteric inhibitor of ornithine decarboxylase with antitumor activity

    PubMed Central

    Lee, Mee-Hyun; Oi, Naomi; Lim, Do Young; Kim, Myoung Ok; Cho, Young-Yeon; Pugliese, Angelo; Shim, Jung-Hyun; Chen, Hanyong; Cho, Eun Jin; Kim, Jong-Eun; Kang, Sun Chul; Paul, Souren; Kang, Hee Eun; Jung, Ji Won; Lee, Sung-Young; Kim, Sung-Hyun; Reddy, Kanamata; Yeom, Young Il; Bode, Ann M; Dong, Zigang

    2015-01-01

    Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the first step of polyamine biosynthesis that is associated with cell growth and tumor formation. Existing catalytic inhibitors of ODC have lacked efficacy in clinical testing or displayed unacceptable toxicity. In this study, we report the identification of an effective and nontoxic allosteric inhibitor of ODC. Using computer docking simulation and an in vitro ODC enzyme assay, we identified herbacetin, a natural compound found in flax and other plants, as a novel ODC inhibitor. Mechanistic investigations defined aspartate 44 in ODC as critical for binding. Herbacetin exhibited potent anticancer activity in colon cancer cell lines expressing high levels of ODC. Intraperitoneal or oral administration of herbacetin effectively suppressed HCT116 xenograft tumor growth and also reduced the number and size of polyps in a mouse model of APC-driven colon cancer (ApcMin/+). Unlike the well established ODC inhibitor DFMO, herbacetin treatment was not associated with hearing loss. Taken together, our findings defined the natural product herbacetin as an allosteric inhibitor of ODC with chemopreventive and antitumor activity in preclinical models of colon cancer, prompting its further investigation in clinical trials. PMID:26676750

  17. Structural requirements for novel coenzyme-substrate derivatives to inhibit intracellular ornithine decarboxylase and cell proliferation.

    PubMed

    Wu, Fang; Gehring, Heinz

    2009-02-01

    Creating transition-state mimics has proven to be a powerful strategy in developing inhibitors to treat malignant diseases in several cases. In the present study, structurally diverse coenzyme-substrate derivatives mimicking this type for pyridoxal 5'-phosphate-dependent human ornithine decarboxylase (hODC), a potential anticancer target, were designed, synthesized, and tested to elucidate the structural requirements for optimal inhibition of intracellular ODC as well as of tumor cell proliferation. Of 23 conjugates, phosphopyridoxyl- and pyridoxyl-L-tryptophan methyl ester (pPTME, PTME) proved significantly more potent in suppression proliferation (IC(50) up to 25 microM) of glioma cells (LN229) than alpha-DL-difluoromethylornithine (DFMO), a medically used irreversible inhibitor of ODC. In agreement with molecular modeling predictions, the inhibitory action of pPTME and PTME toward intracellular ODC of LN229 cells exceeded that of the previous designed lead compound POB. The inhibitory active compounds feature hydrophobic side chain fragments and a kind of polyamine motif (-NH-(CH(X))(4)-NH-). In addition, they induce, as polyamine analogs often do, the activity of the polyamine catabolic enzymes polyamine oxidase and spermine/spermidine N(1)-acetyltransferase up to 250 and 780%, respectively. The dual-action mode of these compounds in LN229 cells affects the intracellular polyamine metabolism and might underlie the more favorable cell proliferation inhibition in comparison with DFMO.

  18. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.

    PubMed

    Torrens-Spence, Michael P; Gillaspy, Glenda; Zhao, Bingyu; Harich, Kim; White, Robert H; Li, Jianyong

    2012-02-10

    Plant aromatic amino acid decarboxylases (AAADs) are effectively indistinguishable from plant aromatic acetaldehyde syntheses (AASs) through primary sequence comparison. Spectroscopic analyses of several characterized AASs and AAADs were performed to look for absorbance spectral identifiers. Although this limited survey proved inconclusive, the resulting work enabled the reevaluation of several characterized plant AAS and AAAD enzymes. Upon completion, a previously reported parsley AAAD protein was demonstrated to have AAS activity. Substrate specificity tests demonstrate that this novel AAS enzyme has a unique substrate specificity towards tyrosine (km 0.46mM) and dopa (km 1.40mM). Metabolite analysis established the abundance of tyrosine and absence of dopa in parsley extracts. Such analysis indicates that tyrosine is likely to be the sole physiological substrate. The resulting information suggests that this gene is responsible for the in vivo production of 4-hydroxyphenylacetaldehyde (4-HPAA). This is the first reported case of an AAS enzyme utilizing tyrosine as a primary substrate and the first report of a single enzyme capable of producing 4-HPAA from tyrosine.

  19. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    PubMed

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production.

  20. Multiple promoter elements govern expression of the human ornithine decarboxylase gene in colon carcinoma cells.

    PubMed Central

    Moshier, J A; Osborne, D L; Skunca, M; Dosescu, J; Gilbert, J D; Fitzgerald, M C; Polidori, G; Wagner, R L; Friezner Degen, S J; Luk, G D

    1992-01-01

    Overexpression of the ornithine decarboxylase (ODC) gene may be important to the development and maintenance of colonic neoplasms, as well as tumors in general. In this study, we examined the promoter elements governing constitutive expression of the human ODC gene in HCT 116 human colon carcinoma cells and, for comparison, K562 human erythro-leukemia cells. It was determined by functional analysis that the promoter elements responsible reside within the 378 bp immediately upstream from the transcription start site. Within this sequence, there are at least three regions that modulate the efficiency of the ODC promoter cooperatively. Both DNA bandshift and footprint assays demonstrated all three regions to be rich in sites that bind to nuclear proteins isolated from HCT 116 and K562 cells; the protein binding pattern of non-transformed, diploid fibroblasts was found to be much less complex. Several of the protein binding sequences have little or no homology to common regulatory elements. We suggest that the constitutive activity of the ODC gene in HCT 116 colon carcinoma cells, and perhaps transformed cells in general, involves a complex interaction of multiple regulatory sequences and their associated nuclear proteins. Finally, the saturation of the promoter in these transformed cell lines suggests that high levels of protein binding in the ODC promoter may contribute to elevated constitutive expression of this gene. Images PMID:1598217

  1. Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens.

    PubMed

    Bliven, Kimberly A; Fisher, Derek J; Maurelli, Anthony T

    2012-12-01

    Chlamydia pneumoniae encodes a functional arginine decarboxylase (ArgDC), AaxB, that activates upon self-cleavage and converts l-arginine to agmatine. In contrast, most Chlamydia trachomatis serovars carry a missense or nonsense mutation in aaxB abrogating activity. The G115R missense mutation was not predicted to impact AaxB functionality, making it unclear whether AaxB variations in other Chlamydia species also result in enzyme inactivation. To address the impact of gene polymorphism on functionality, we investigated the activity and production of the Chlamydia AaxB variants. Because ArgDC plays a critical role in the Escherichia coli acid stress response, we studied the ability of these Chlamydia variants to complement an E. coli ArgDC mutant in an acid shock assay. Active AaxB was detected in four additional species: Chlamydia caviae, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia muridarum. Of the C. trachomatis serovars, only E appears to encode active enzyme. To determine when functional enzyme is present during the chlamydial developmental cycle, we utilized an anti-AaxB antibody to detect both uncleaved and cleaved enzyme throughout infection. Uncleaved enzyme production peaked around 20 h postinfection, with optimal cleavage around 44 h. While the role ArgDC plays in Chlamydia survival or virulence is unclear, our data suggest a niche-specific function.

  2. Ornithine decarboxylase or gamma-glutamylcysteine synthetase overexpression protects Leishmania (Vianna) guyanensis against antimony.

    PubMed

    Fonseca, Maisa S; Comini, Marcelo A; Resende, Bethânia V; Santi, Ana Maria M; Zoboli, Antônio P; Moreira, Douglas S; Murta, Silvane M F

    2017-04-01

    Trypanosomatids present a unique mechanism for detoxification of peroxides that is dependent on trypanothione (bisglutathionylspermidine). Ornithine decarboxylase (ODC) and γ-glutamylcysteine synthetase (GSH1) produce molecules that are direct precursors of trypanothione. In this study, Leishmania guyanensis odc and gsh1 overexpressor cell lines were generated to investigate the contribution of these genes to the trivalent antimony (Sb(III))-resistance phenotype. The ODC- or GSH1-overexpressors parasites presented an increase of two and four-fold in Sb(III)-resistance index, respectively, when compared with the wild-type line. Pharmacological inhibition of ODC and GSH1 with the specific inhibitors α-difluoromethylornithine (DFMO) and buthionine sulfoximine (BSO), respectively, increased the antileishmanial effect of Sb(III) in all cell lines. However, the ODC- and GSH1-overexpressor were still more resistant to Sb(III) than the parental cell line. Together, our data shows that modulation of ODC and GSH1 levels and activity is sufficient to affect L. guyanensis susceptibility to Sb(III), and confirms a role of these genes in the Sb(III)-resistance phenotype.

  3. Effect of cocaine, ethanol or nicotine on ornithine decarboxylase activity in early chick embryo brain.

    PubMed

    Beeker, K; Smith, C; Pennington, S

    1992-09-18

    Fetal drug exposure causes multiple deficits in the developing child. For both humans and animal models, the single most common drug-related problem is fetal growth suppression. This defect is associated with significant perinatal morbidity and mortality and may also be related to significant behavioral problems appearing later in life. Studies focussed on the molecular mechanism of fetal drug effects in placental models are complicated by multiple interactions of the drug with mother, placenta and fetus. Using early (76-168 h) chick embryos as a non-placental model, and three common drugs of abuse (nicotine, ethanol and cocaine) it was found that each drug suppressed the peak in fetal brain ornithine decarboxylase (ODC) activity that normally occurs at 120 h of development. For each drug, the decrease in ODC activity at 120 h was followed by a small but significant increase in ODC. Thus, although the drug-treated embryos were smaller in size, they appeared to be undergoing compensatory growth and, in fact, became equal in weight to the vehicle-treated animals, if allowed to hatch.

  4. Substrate shuttling between active sites of uroporphyrinogen decarboxylase is not required to generate coproporphyrinogen

    PubMed Central

    Phillips, John D.; Warby, Christy A.; Whitby, Frank G.; Kushner, James P.; Hill, Christopher P.

    2009-01-01

    Summary Uroporphyrinogen Decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of the four acetate side chains on the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer with the active site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single chain protein (scURO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposible with wild-type activity and have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of scURO-D resulted in approximately half of wild-type activity. The distribution of reaction intermediates was the same for mutant and wild-type sequences, and was unaltered in a competition experiment using the I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function, and suggest that the dimeric structure of URO-D is required to achieve conformational stability and create a large active site cleft. PMID:19362562

  5. Coexpression of pyruvate decarboxylase and alcohol dehydrogenase genes in Lactobacillus brevis.

    PubMed

    Liu, Siqing; Dien, Bruce S; Nichols, Nancy N; Bischoff, Kenneth M; Hughes, Stephen R; Cotta, Michael A

    2007-09-01

    Lactobacillus brevis ATCC367 was engineered to express pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) genes in order to increase ethanol fermentation from biomass-derived residues. First, a Gram-positive Sarcina ventriculi PDC gene (Svpdc) was introduced into L. brevis ATCC 367 to obtain L. brevis bbc03. The SvPDC was detected by immunoblot using an SvPDC oligo peptide antiserum, but no increased ethanol was detected in L. brevis bbc03. Then, an ADH gene from L. brevis (Bradh) was cloned behind the Svpdc gene that generated a pdc/adh-coupled ethanol cassette pBBC04. The pBBC04 restored anaerobic growth and conferred ethanol production of Escheirichia coli NZN111 (a fermentative defective strain incapable of growing anaerobically). Approximately 58 kDa (SvPDC) and 28 kDa (BrADH) recombinant proteins were observed in L. brevis bbc04. These results indicated that the Gram-positive ethanol production genes can be expressed in L. brevis using a Gram-positive promoter and pTRKH2 shuttle vector. This work provides evidence that expressing Gram-positive ethanol genes in pentose utilizing L. brevis will further aid manipulation of this microbe toward biomass to ethanol production.

  6. Tyrosine decarboxylase activity of Lactobacillus brevis IOEB 9809 isolated from wine and L. brevis ATCC 367.

    PubMed

    Moreno-Arribas, V; Lonvaud-Funel, A

    1999-11-01

    Tyramine, a frequent amine in wines, is produced from tyrosine by the tyrosine decarboxylase (TDC) activity of bacteria. The tyramine-producing strain Lactobacillus brevis IOEB 9809 isolated from wine and the reference strain L. brevis ATCC 367 were studied. At the optimum pH, 5.0, K(m) values of IOEB 9809 and ATCC 367 crude extracts for L-tyrosine were 0.58 mM and 0.67 mM, and V(max) was higher for the wine strain (115 U) than the ATCC 367 (66 U). TDC exhibited a preference for L-tyrosine over L-DOPA as substrate. Enzyme activity was pyridoxal-5'-phosphate (PLP)-dependent and it was stabilized by the substrate and coenzyme. In contrast, glycerol and beta-mercaptoethanol strongly inhibited TDC. Tyramine competitively inhibited TDC for both strains. Citric acid, lactic acid and ethanol had an inhibitory effect on cells and crude extracts, but none could inhibit TDC at the usual concentrations in wines.

  7. Substrate Shuttling Between Active Sites of Uroporphyrinogen Decarboxylase in Not Required to Generate Coproporphyrinogen

    SciTech Connect

    Phillips, J.; Warby, C; Whitby, F; Kushner, J; Hill, C

    2009-01-01

    Uroporphyrinogen decarboxylase (URO-D; EC 4.1.1.37), the fifth enzyme of the heme biosynthetic pathway, is required for the production of heme, vitamin B12, siroheme, and chlorophyll precursors. URO-D catalyzes the sequential decarboxylation of four acetate side chains in the pyrrole groups of uroporphyrinogen to produce coproporphyrinogen. URO-D is a stable homodimer, with the active-site clefts of the two subunits adjacent to each other. It has been hypothesized that the two catalytic centers interact functionally, perhaps by shuttling of reaction intermediates between subunits. We tested this hypothesis by construction of a single-chain protein (single-chain URO-D) in which the two subunits were connected by a flexible linker. The crystal structure of this protein was shown to be superimposable with wild-type activity and to have comparable catalytic activity. Mutations that impaired one or the other of the two active sites of single-chain URO-D resulted in approximately half of wild-type activity. The distributions of reaction intermediates were the same for mutant and wild-type sequences and were unaltered in a competition experiment using I and III isomer substrates. These observations indicate that communication between active sites is not required for enzyme function and suggest that the dimeric structure of URO-D is required to achieve conformational stability and to create a large active-site cleft.

  8. Functional and conformational transitions of mevalonate diphosphate decarboxylase from Bacopa monniera.

    PubMed

    Abbassi, Shakeel; Patel, Krunal; Khan, Bashir; Bhosale, Siddharth; Gaikwad, Sushama

    2016-02-01

    Functional and conformational transitions of mevalonate diphosphate decarboxylase (MDD), a key enzyme of mevalonate pathway in isoprenoid biosynthesis, from Bacopa monniera (BmMDD), cloned and overexpressed in Escherichia coli were studied under thermal, chemical and pH-mediated denaturation conditions using fluorescence and Circular dichroism spectroscopy. Native BmMDD is a helix dominant structure with 45% helix and 11% sheets and possesses seven tryptophan residues with two residues exposed on surface, three residues partially exposed and two situated in the interior of the protein. Thermal denaturation of BmMDD causes rapid structural transitions at and above 40°C and transient exposure of hydrophobic residues at 50°C, leading to aggregation of the protein. An acid induced molten globule like structure was observed at pH 4, exhibiting altered but compact secondary structure, distorted tertiary structure and exposed hydrophobic residues. The molten globule displayed different response at higher temperature and similar response to chemical denaturation as compared to the native protein. The surface tryptophans have predominantly positively charged amino acids around them, as indicated by higher KSV for KI as compared to that for CsCl. The native enzyme displayed two different lifetimes, τ1 (1.203±0.036 ns) and τ2 (3.473±0.12 ns) indicating two populations of tryptophan.

  9. Partial purification and characterization of a novel histidine decarboxylase from Enterobacter aerogenes DL-1.

    PubMed

    Zou, Yu; Hu, Wenzhong; Jiang, Aili; Tian, Mixia

    2015-08-18

    Histidine decarboxylase (HDC) from Enterobacter aerogenes DL-1 was purified in a three-step procedure involving ammonium sulfate precipitation, Sephadex G-100, and DEAE-Sepharose column chromatography. The partially purified enzyme showed a single protein band of 52.4 kD on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The optimum pH for HDC activity was 6.5, and the enzyme was stable between pH 4 and 8. Enterobacter aerogenes HDC had optimal activity at 40°C and retained most of its activity between 4 and 50°C. HDC activity was reduced in the presence of numerous tested compounds. Particularly with SDS, it significantly (p < 0.01) inhibited enzyme activity. Conversely, Ca(2+) and Mn(2+) showed prominent activation effects (p < 0.01) with activity increasing to 117.20% and 123.42%, respectively. The Lineweaver-Burk plot showed that K m and V max values of the enzyme for L-histidine were 0.21 mM and 71.39 µmol/min, respectively. In comparison with most HDCs from other microorganisms and animals, HDC from E. aerogenes DL-1 displayed higher affinity and greater reaction velocity toward L-histidine.

  10. Induction of histidine decarboxylase in macrophages inhibited by the novel NF-{kappa}B inhibitor (-)-DHMEQ

    SciTech Connect

    Suzuki, Eriko Ninomiya, Yoko; Umezawa, Kazuo

    2009-02-06

    Histamine often causes inflammation, and this amine is produced by histidine decarboxylase (HDC). We found that (-)-DHMEQ, an NF-{kappa}B inhibitor, inhibited lipopolysaccharide (LPS)-induced histamine production and HDC induction in mouse macrophage cell line RAW264.7. However, as there is no {kappa}B site in the HDC promoter, we studied the mechanism of inhibition. Knockdown of the transcription factor C/EBP{beta} reduced the HDC expression in LPS-treated cells. (-)-DHMEQ inhibited the C/EBP{beta} transcriptional activity in a reporter assay and in an electrophoresis mobility shift assay. But it did not inhibit the in vitro binding of C/EBP{beta} to DNA. It also did not lower the nuclear amount of C/EBP{beta}. On the other hand, the addition of recombinant p65, a component of NF-{kappa}B, enhanced the activity of C/EBP{beta} acting as a cofactor in vitro. Then, we found that (-)-DHMEQ lowered the nuclear amount of p65. Thus, inhibition of the C/EBP{beta} activity by (-)-DHMEQ would be due to a reduction in the amount of nuclear p65, which has a co-activator activity for C/EBP{beta} that is essential for the HDC induction. (-)-DHMEQ may be useful as an anti-inflammatory agent by lowering the histamine production in the body.

  11. Renal ornithine decarboxylase activity, polyamines, and compensatory renal hypertrophy in the rat

    SciTech Connect

    Humphreys, M.H.; Etheredge, S.B.; Lin, Shanyan; Ribstein, J.; Marton, L.J. Univ. of California, San Francisco )

    1988-08-01

    The authors determined the role of ornithine decarboxylase (ODC) in compensatory renal hypertrophy (CRH) by relating renal ODC activity and polyamine content to kidney size, expressed as a percent of body weight, 1 wk after unilateral nephrectomy (UN). In normal rats, renal ODC activity increased after UN; 1 wk later the remaining kidney weight had increased. Renal concentration of putrescine, the product of ODC's decarboxylation of ornithine, was increased 3, 8, and 48 h after UN, but concentrations of polyamines synthesized later in the pathway, spermidine and spermine, were not appreciably affected. Pretreatment with difluoromethylornithine (DFMO), an irreversible inhibitor of ODC inhibited both base-line renal ODC activity and putrescine concentration as well as increases stimulated by UN, although concentrations of spermidine and spermine were not decreased. In hypophysectomized rats, both increased renal ODC activity and CRH occurred as well, indicating that these two consequences of UN do not require intact pituitary function. Thus stimulation of renal ODC activity and putrescine content do not appear critical to the process of CRH after UN.

  12. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  13. Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids.

    PubMed

    Zhu, Cui Xia; Hong, Feng

    2010-01-01

    In order to improve yields and to reduce the cost of oxalate decarboxylase (OxDC, EC 4.1.1.2), the induction of OxDC in the white-rot fungus Trametes versicolor was studied in this work. OxDC was induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture media. The results showed that all the acids could enhance OxDC expression. The activity of the acid-induced OxDC rose continuously. All of the OxDC volumetric activities induced by the inorganic acids were higher than 20.0 U/L and were two times higher than that obtained with oxalic acid. OxDC productivity was around 4.0 U*L(-1)*day(-1). The highest specific activity against total protein was 3.2 U/mg protein at day 8 after induction of sulfuric acid, and the specific activity against mycelial dry weight was 10.6 U/g at day 9 after induction of hydrochloric acid. The growth of mycelia was inhibited slightly when the pH values in culture media was around 2.5-3.0, while the growth was inhibited heavily when the pH was lower than 2.5.

  14. A high-throughput colorimetric assay to measure the activity of glutamate decarboxylase.

    PubMed

    Yu, Kai; Hu, Sheng; Huang, Jun; Mei, Le-He

    2011-08-10

    A pH-sensitive colorimetric assay has been established to quantitatively measure glutamate decarboxylase (GAD) activity in bacterial cell extracts using a microplate format. GAD catalyzes the irreversible α-decarboxylation of L-glutamate to γ-aminobutyrate. The assay is based on the color change of bromocresol green due to an increase in pH as protons are consumed during the enzyme-catalyzed reaction. Bromocresol green was chosen as the indicator because it has a similar pK(a) to the acetate buffer used. The corresponding absorbance change at 620 nm was recorded with a microplate reader as the reaction proceeded. A difference in the enzyme preparation pH and optimal pH for GAD activity of 2.5 did not prevent this method from successfully allowing the determination of reaction kinetic parameters and the detection of improvements in enzymatic activity with a low coefficient of variance. Our assay is simple, rapid, requires minimal sample concentration and can be carried out in robotic high-throughput devices used as standard in directed evolution experiments. In addition, it is also applicable to other reactions that involve a change in pH.

  15. Simultaneous Silencing of Two Arginine Decarboxylase Genes Alters Development in Arabidopsis

    PubMed Central

    Sánchez-Rangel, Diana; Chávez-Martínez, Ana I.; Rodríguez-Hernández, Aída A.; Maruri-López, Israel; Urano, Kaoru; Shinozaki, Kazuo; Jiménez-Bremont, Juan F.

    2016-01-01

    Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes. PMID:27014322

  16. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.

  17. Complexes of Thermotoga maritima S-adenosylmethionine decarboxylase provide insights into substrate specificity

    SciTech Connect

    Bale, Shridhar; Baba, Kavita; McCloskey, Diane E.; Pegg, Anthony E.; Ealick, Steven E.

    2010-06-25

    The polyamines putrescine, spermidine and spermine are ubiquitous aliphatic cations and are essential for cellular growth and differentiation. S-Adenosylmethionine decarboxylase (AdoMetDC) is a critical pyruvoyl-dependent enzyme in the polyamine-biosynthetic pathway. The crystal structures of AdoMetDC from humans and plants and of the AdoMetDC proenzyme from Thermotoga maritima have been obtained previously. Here, the crystal structures of activated T. maritima AdoMetDC (TmAdoMetDC) and of its complexes with S-adenosylmethionine methyl ester and 5{prime}-deoxy-5{prime}-dimethylthioadenosine are reported. The results demonstrate for the first time that TmAdoMetDC autoprocesses without the need for additional factors and that the enzyme contains two complete active sites, both of which use residues from both chains of the homodimer. The complexes provide insights into the substrate specificity and ligand binding of AdoMetDC in prokaryotes. The conservation of the ligand-binding mode and the active-site residues between human and T. maritima AdoMetDC provides insight into the evolution of AdoMetDC.

  18. [Enhancing glutamate decarboxylase activity by site-directed mutagenesis: an insight from Ramachandran plot].

    PubMed

    Ke, Piyu; Huang, Jun; Hu, Sheng; Zhao, Weirui; Lü, Changjiang; Yu, Kai; Lei, Yinlin; Wang, Jinbo; Mei, Lehe

    2016-01-01

    Glutamate decarboxylase (GAD) can catalyze the decarboxylation of glutamate into γ-aminobutyrate (GABA) and is the only enzyme of GABA biosynthesis. Improving GAD activity and thermostability will be helpful for the highly efficient biosynthesis of GABA. According to the Ramachandran plot information of GAD 1407 three-dimensional structure from Lactobacillus brevis CGMCC No. 1306, we identified the unstable site K413 as the mutation target, constructed the mutant GAD by site-directed mutagenesis and measured the thermostability and activity of the wide type and mutant GAD. Mutant K413A led to a remarkably slower inactivation rate, and its half-life at 50 °C reached 105 min which was 2.1-fold higher than the wild type GAD1407. Moreover, mutant K413I exhibited 1.6-fold higher activity in comparison with the wide type GAD1407, although it had little improvement in thermostability of GAD. Ramachandran plot can be considered as a potential approach to increase GAD thermostability and activity.

  19. Quantitative expression analysis and prognostic significance of L-DOPA decarboxylase in colorectal adenocarcinoma

    PubMed Central

    Kontos, C K; Papadopoulos, I N; Fragoulis, E G; Scorilas, A

    2010-01-01

    Background: L-DOPA decarboxylase (DDC) is an enzyme that catalyses, mainly, the decarboxylation of L-DOPA to dopamine and was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of the DDC gene and to evaluate its clinical utility in tissues with colorectal adenocarcinoma. Methods: Total RNA was isolated from colorectal adenocarcinoma tissues of 95 patients. After having tested RNA quality, we prepared cDNA by reverse transcription. Highly sensitive quantitative real-time PCR method for DDC mRNA quantification was developed using the SYBR Green chemistry. GAPDH served as a housekeeping gene. Relative quantification analysis was performed using the comparative CT method (2−ΔΔCT). Results: DDC mRNA expression varied remarkably among colorectal tumours examined in this study. High DDC mRNA expression levels were found in well-differentiated and Dukes' stage A and B tumours. Kaplan–Meier survival curves showed that patients with DDC-positive tumours have significantly longer disease-free survival (P=0.009) and overall survival (P=0.027). In Cox regression analysis of the entire cohort of patients, negative DDC proved to be a significant predictor of reduced disease-free (P=0.021) and overall survival (P=0.047). Conclusions: The results of the study suggest that DDC mRNA expression may be regarded as a novel potential tissue biomarker in colorectal adenocarcinoma. PMID:20424616

  20. S-adenosyl-L-methionine decarboxylase activity in the rat epididymis: ontogeny and androgenic control.

    PubMed

    de las Heras, M A; Calandra, R S

    1991-01-01

    The authors describe the occurrence of high levels of S-adenosyl-L-methionine decarboxylase (SAMDC) activity in the rat epididymis, and its ontogeny and androgenic control. As early as 15 days of age, SAMDC activity exists, although a peak of activity is observed at 25 days. Bilateral orchidectomy resulted in a decline of epididymal SAMDC activity. However, an androgen-independent fraction, accounting for 34% of total activity, appears to exist in the epididymis. In 45-day-old orchidectomized rats, SAMDC activity was stimulated by testosterone treatment in a dose-dependent manner. However, treatment of 45-day-old intact animals with a high dose of the androgen failed to modify SAMDC activity, indicating that, at this age, the enzyme is maximally stimulated by endogenous androgens. The observed effect of testosterone on castrated rats was completely abolished by concomitant treatment with the antiandrogen flutamide. This compound was ineffective on the androgen-insensitive fraction. To assess the contribution of circulating and luminal androgens to the maintenance of epididymal SAMDC, rats were unilaterally orchidectomized and activity was determined in both epididymides after 7 days. The SAMDC activity was identical in epididymides from both sides, suggesting circulating androgens suffice to maintain normal levels of activity. It was concluded that androgens regulate epididymal SAMDC activity, although an androgen-independent fraction appears to exist.

  1. Acute effect of prolactin on ornithine decarboxylase activity in the rat testis.

    PubMed

    de Las Heras, M A; Calandra, R S

    1992-01-01

    A study was conducted to evaluate the effect of the acute treatment with prolactin (PRL) on ornithine decarboxylase (ODC) activity in the rat testis. Injection of a single SC dose of ovine PRL to puberal rats resulted in the activation of ODC from whole testis. This effect was maximal at 4 h after injection, and statistically significant at the dose of 500 micrograms. The effect of PRL was confined to the interstitial space; no change was observed in seminiferous tubules. PRL was unable to further increase testicular ODC activity when injected together with a stimulatory dose of human chorionic gonadotropin (hCG). The effect of PRL was mimicked by injection of a single dose of the dopamine antagonist sulpiride, which provoked a ninefold increase in serum PRL levels. In contrast, PRL did not stimulate testicular ODC activity in hypophysectomized rats, either under basal conditions or during treatment with PRL-hCG, indicating the requirement of a functional hypophysis for the expression of PRL action. These results suggest that the stimulation of testicular ODC activity by PRL is a marker of the trophic response of the testis to this hormone, different from the stimulation of steroidogenesis. This activity could be useful for the study of PRL action on the testis as well as of the interaction between PRL and LH at the testicular level.

  2. The bifunctional pyruvate decarboxylase/pyruvate ferredoxin oxidoreductase from Thermococcus guaymasensis.

    PubMed

    Eram, Mohammad S; Oduaran, Erica; Ma, Kesen

    2014-01-01

    The hyperthermophilic archaeon Thermococcus guaymasensis produces ethanol as a metabolic end product, and an alcohol dehydrogenase (ADH) catalyzing the reduction of acetaldehyde to ethanol has been purified and characterized. However, the enzyme catalyzing the formation of acetaldehyde has not been identified. In this study an enzyme catalyzing the production of acetaldehyde from pyruvate was purified and characterized from T. guaymasensis under strictly anaerobic conditions. The enzyme had both pyruvate decarboxylase (PDC) and pyruvate ferredoxin oxidoreductase (POR) activities. It was oxygen sensitive, and the optimal temperatures were 85°C and >95°C for the PDC and POR activities, respectively. The purified enzyme had activities of 3.8 ± 0.22 U mg(-1) and 20.2 ± 1.8 U mg(-1), with optimal pH-values of 9.5 and 8.4 for each activity, respectively. Coenzyme A was essential for both activities, although it did not serve as a substrate for the former. Enzyme kinetic parameters were determined separately for each activity. The purified enzyme was a heterotetramer. The sequences of the genes encoding the subunits of the bifunctional PDC/POR were determined. It is predicted that all hyperthermophilic β -keto acids ferredoxin oxidoreductases are bifunctional, catalyzing the activities of nonoxidative and oxidative decarboxylation of the corresponding β -keto acids.

  3. Differential induction of pyruvate decarboxylase subunits and transcripts in anoxic rice seedlings.

    PubMed Central

    Rivoal, J; Thind, S; Pradet, A; Ricard, B

    1997-01-01

    In 2-d-old rice (Oryza sativa L.) seedlings subjected to anoxic stress, pyruvate decarboxylase (PDC) activity increased 9-fold during a 168-h period. A polyclonal PDC antiserum that recognized alpha- and beta-subunits was used to quantify PDC protein by an enzyme-linked immunosorbant assay and showed a 5.6-fold increase, suggesting that the anoxically induced enzyme has a higher specific activity than the PDC isoform present under normoxia. Immunoblot analysis showed that levels of both PDC subunits were induced by anoxia. Immunoprecipitation of proteins labeled in vivo during anoxic treatment demonstrated that the alpha-subunit was preferentially synthesized at the onset of anoxia. Two partial cDNAs, including a novel sequence, were cloned from a cDNA library made from seedlings subjected to anoxia for 6 h. Gene-specific probes used to quantify northern blots showed that two or three PDC mRNAs are differentially induced by anoxia in rice seedlings. Immunoprecipitation of in vitro translation products of mRNAs isolated a different times of anoxic treatment confirmed this findings Our results suggest that anoxic induction of rice PDC involves transcriptional and posttranscriptional regulation of gene expression as well as differences in enzyme characteristics. PMID:9232881

  4. Partial purification and characterization of arginine decarboxylase from avocado fruit, a thermostable enzyme.

    PubMed

    Winer, L; Vinkler, C; Apelbaum, A

    1984-09-01

    A partially purified preparation of arginine decarboxylase (EC 4.1.1.19), a key enzyme in polyamine metabolism in plants, was isolated from avocado (Persea americana Mill. cv Fuerte) fruit. The preparation obtained from the crude extract after ammonium sulfate precipitation, dialysis, and heat treatment, had maximal activity between pH 8.0 and 9.0 at 60 degrees C, in the presence of 1.2 millimolar MnCl(2), 2 millimolar dithiothreitol, and 0.06 millimolar pyridoxal phosphate. The K(m), of arginine for the decarboxylation reaction was determined for enzymes prepared from the seed coat of both 4-week-old avocado fruitlet and fully developed fruit, and was found to have a value of 1.85 and 2.84 millimolar, respectively. The value of V(app) (max) of these enzymes was 1613 and 68 nanomoles of CO(2) produced per milligram of protein per hour for the fruitlet and the fully developed fruit, respectively. Spermine, an end product of polyamine metabolism, caused less than 5% inhibition of the enzyme from fully developed fruit and 65% inhibition of the enzyme from the seed coat of 4-week-old fruitlets at 1 millimolar under similar conditions. The effect of different inhibitors on the enzyme and the change in the nature of the enzyme during fruit development are discussed.

  5. Biochemical and Genetic Characterization of the Enterococcus faecalis Oxaloacetate Decarboxylase Complex

    PubMed Central

    Repizo, Guillermo D.; Blancato, Víctor S.; Mortera, Pablo; Lolkema, Juke S.

    2013-01-01

    Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation. PMID:23435880

  6. pH shift enhancement of Candida utilis pyruvate decarboxylase production.

    PubMed

    Chen, Allen Kuan-Liang; Breuer, Michael; Hauer, Bernhard; Rogers, Peter L; Rosche, Bettina

    2005-10-20

    Pyruvate decarboxylase (PDC) catalyses the synthesis of asymmetric carbinols, e.g., chiral precursors for pharmaceuticals such as ephedrine and pseudoephedrine. The production of PDC by Candida utilis in a minimal medium was improved by manipulating the pH during fermentation in a 5 L bioreactor. At an aeration rate of 0.1 vvm with a stirrer speed of 300 rpm at constant pH 6, a specific PDC activity of 141 U/g dry cell weight (DCW) was achieved (average of two fermentations +/-13%). By allowing the yeast to acidify the growth medium from pH 6 to 2.9, the final specific PDC activity increased by a factor of 2.7 to 385 U/g DCW (average from 4 fermentations +/-16%). The effect of this pH drift on PDC production was confirmed by another experiment with a manual shift of pH from 6 to 3 by addition of 5 M sulfuric acid. The final PDC activity was 392 U/g DCW (average from two fermentations +/-5%). However, experiments with constant pH of 6, 5, 4, or 3 resulted in average specific activities of only 102 to 141 U/g DCW, suggesting that a transitional pH change rather than the absolute pH value was responsible for the increased specific PDC activity.

  7. Effect of undernutrition on the regional development of transmitter enzymes: glutamate decarboxylase and choline acetyltransferase.

    PubMed

    Patel, A J; del Vecchio, M; Atkinson, D J

    1978-01-01

    The effect of undernutrition on the activity of glutamate decarboxylase (GAD) and choline acetyltransferase (ChAc) (markers for the GABA-ergic and the cholinergic transmitter system, respectively) was studied in various parts of the rat brain at the age of 10, 15 and 21 days, and at day 54 following 33 days of rehabilitation. The brain regions investigated were the olfactory bulbs, cerebellum, pons-medulla, hypothalamus, colliculi, cerebral cortex hippocampus and the residual brain. Undernutrition resulted in a marked retardation of the developmental rise of the activities of both enzymes, expressed in terms of either total brain part or unit weight or protein. The effect diminished with age even during the period of nutritional deprivation. In most brain regions the enzyme activities were restored to normal after rehabilitation. In the cerebral cortex the total activity of both enzymes was persistently reduced, although the concentration of GAD exceeded the control levels. A negative correlation was manifested between the activities of GAD and ChAc in the different brain parts (except the cerebellum) during development. The correlation became significant by day 21 in the controls, but only after postweaning rehabilitation of the undernourished rats. The results showed therefore that undernutrition caused a reversible retardation in the development of these two transmitter enzymes, and they suggested that even the balance of the GABA-ergic and cholinergic systems throughout the brain can be restored to normal by rehabilitation.

  8. Ornithine decarboxylase and extracellular polyamines regulate microvascular sprouting and actin cytoskeleton dynamics in endothelial cells

    SciTech Connect

    Kucharzewska, Paulina; Welch, Johanna E.; Svensson, Katrin J.; Belting, Mattias

    2010-10-01

    The polyamines are essential for cancer cell proliferation during tumorigenesis. Targeted inhibition of ornithine decarboxylase (ODC), i.e. a key enzyme of polyamine biosynthesis, by {alpha}-difluoromethylornithine (DFMO) has shown anti-neoplastic activity in various experimental models. This activity has mainly been attributed to the anti-proliferative effect of DFMO in cancer cells. Here, we provide evidence that unperturbed ODC activity is a requirement for proper microvessel sprouting ex vivo as well as the migration of primary human endothelial cells. DFMO-mediated ODC inhibition was reversed by extracellular polyamine supplementation, showing that anti-angiogenic effects of DFMO were specifically related to polyamine levels. ODC inhibition was associated with an abnormal morphology of the actin cytoskeleton during cell spreading and migration. Moreover, our data suggest that de-regulated actin cytoskeleton dynamics in DFMO treated endothelial cells may be related to constitutive activation of the small GTPase CDC42, i.e. a well-known regulator of cell motility and actin cytoskeleton remodeling. These insights into the potential role of polyamines in angiogenesis should stimulate further studies testing the combined anti-tumor effect of polyamine inhibition and established anti-angiogenic therapies in vivo.

  9. Expanding the active pH range of Escherichia coli glutamate decarboxylase by breaking the cooperativeness.

    PubMed

    Thu Ho, Ngoc Anh; Hou, Chen Yuan; Kim, Woo Hyun; Kang, Taek Jin

    2013-02-01

    Bacterial glutamate decarboxylase (GAD) transforms glutamate into γ-aminobutyric acid (GABA) with the consumption of a proton. The enzyme is active under acidic environments only and sharply loses its activity as pH approaches neutrality with concomitant structural deformation. In an attempt to understand better the role of this cooperative loss of activity upon pH shifts, we prepared and studied a series of GAD site-specific mutants. In this report, we show that the cooperativeness was kept intact by at least two residues, Glu89 and His465, of which Glu89 is newly identified to be involved in the cooperativity system of GAD. Double mutation on these residues not only broke the cooperativity in the activity change but also yielded a mutant GAD that retained the activity at neutral pH. The resulting mutant GAD that was active at neutral pH inhibited the cell growth in a glycerol medium by converting intracellular Glu into GABA in an uncontrolled manner, which explains in part why the cooperativeness of GAD has to be kept by several layers of safety keepers. This unexpected result might be utilized to convert a low-valued by-product of biodiesel production, glycerol, into value-added product, GABA.

  10. Hepatoerythropoietic Porphyria Caused by a Novel Homoallelic Mutation in Uroporphyrinogen Decarboxylase Gene in Egyptian Patients.

    PubMed

    Farrag, M S; Mikula, I; Richard, E; Saudek, V; De Verneuil, H; Martásek, P

    2015-01-01

    Porphyrias are metabolic disorders resulting from mutations in haem biosynthetic pathway genes. Hepatoerythropoietic porphyria (HEP) is a rare type of porphyria caused by the deficiency of the fifth enzyme (uroporphyrinogen decarboxylase, UROD) in this pathway. The defect in the enzymatic activity is due to biallelic mutations in the UROD gene. Currently, 109 UROD mutations are known. The human disease has an early onset, manifesting in infancy or early childhood with red urine, skin photosensitivity in sun-exposed areas, and hypertrichosis. Similar defects and links to photosensitivity and hepatopathy exist in several animal models, including zebrafish and mice. In the present study, we report a new mutation in the UROD gene in Egyptian patients with HEP. We show that the homozygous c.T163A missense mutation leads to a substitution of a conserved phenylalanine (amino acid 55) for isoleucine in the enzyme active site, causing a dramatic decrease in the enzyme activity (19 % of activity of wild-type enzyme). Inspection of the UROD crystal structure shows that Phe-55 contacts the substrate and is located in the loop that connects helices 2 and 3. Phe-55 is strictly conserved in both prokaryotic and eukaryotic UROD. The F55I substitution likely interferes with the enzyme-substrate interaction.

  11. Dynamic expression of a glutamate decarboxylase gene in multiple non-neural tissues during mouse development

    PubMed Central

    Maddox, Dennis M; Condie, Brian G

    2001-01-01

    Background Glutamate decarboxylase (GAD) is the biosynthetic enzyme for the neurotransmitter γ-aminobutyric acid (GABA). Mouse embryos lacking the 67-kDa isoform of GAD (encoded by the Gad1 gene) develop a complete cleft of the secondary palate. This phenotype suggests that this gene may be involved in the normal development of tissues outside of the CNS. Although Gad1 expression in adult non-CNS tissues has been noted previously, no systematic analysis of its embryonic expression outside of the nervous system has been performed. The objective of this study was to define additional structures outside of the central nervous system that express Gad1, indicating those structures that may require its function for normal development. Results Our analysis detected the localized expression of Gad1 transcripts in several developing tissues in the mouse embryo from E9.0-E14.5. Tissues expressing Gad1 included the tail bud mesenchyme, the pharyngeal pouches and arches, the ectodermal placodes of the developing vibrissae, and the apical ectodermal ridge (AER), mesenchyme and ectoderm of the limb buds. Conclusions Some of the sites of Gad1 expression are tissues that emit signals required for patterning and differentiation (AER, vibrissal placodes). Other sites correspond to proliferating stem cell populations that give rise to multiple differentiated tissues (tail bud mesenchyme, pharyngeal endoderm and mesenchyme). The dynamic expression of Gad1 in such tissues suggests a wider role for GABA signaling in development than was previously appreciated. PMID:11178105

  12. Novel interactions of fluorinated nucleotide derivatives targeting orotidine-5′-monophosphate decarboxylase

    PubMed Central

    Lewis, Melissa; Avina, Maria Elena Meza; Wei, Lianhu; Crandall, Ian E.; Bello, Angelica Mara; Poduch, Ewa; Liu, Yan; Paige, Christopher J.; Kain, Kevin C.; Pai, Emil F.; Kotra, Lakshmi P.

    2011-01-01

    Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists due to their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2′-deoxy-2′-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine-5′-monophosphate decarboxylase (ODCase). These compounds were synthesized from the key intermediate, fully-protected 2′-deoxy-2′-fluorouridine. Among the synthesized compounds, 2′-deoxy-2′-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M−1sec−1. Interestingly, the 6-cyano-2′-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2′-fluoro moiety influences the chemistry at the C6 position of the nucleotides, thus interactions in the active site of ODCase. Molecular interactions of the 2′-fluorinated nucleotides are compared to those with the 3′-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations. PMID:21417464

  13. Gene cloning, expression, and characterization of phenolic acid decarboxylase from Lactobacillus brevis RM84.

    PubMed

    Landete, José María; Rodríguez, Héctor; Curiel, José Antonio; de las Rivas, Blanca; Mancheño, José Miguel; Muñoz, Rosario

    2010-06-01

    Phenolic acid decarboxylase (PAD) catalyzes the synthesis of vinyl phenols from hydroxycinnamic acids. The gene encoding PAD from Lactobacillus brevis was cloned and expressed as a fusion protein in Escherichia coli. The recombinant PAD enzyme is a heat-labile enzyme that functions optimally at 22 degrees C and pH 6.0. The purified enzyme did not show thermostability at temperatures above 22 degrees C. L. brevis PAD is able to decarboxylate exclusively the hydroxycinnamic acids, such as p-coumaric, caffeic, and ferulic acids, with K (m) values of 0.98, 0.96, and 0.78 mM, respectively. The substrate specificity exhibited by L. brevis PAD is similar to the PAD isolated from Bacillus subtilis and B. pumilus, but different from that of L. plantarum and Pediococcus pentosaceus. As the C-terminal region may be involved in determining PAD substrate specificity and catalytic capacity, amino acid differences among these proteins could explain the differences observed. The substrate specificity shown by L. brevis PAD shows promise for the synthesis of high-added value products from plant wastes.

  14. Overexpression of Tyrosine hydroxylase and Dopa decarboxylase associated with pupal melanization in Spodoptera exigua

    PubMed Central

    Liu, Sisi; Wang, Mo; Li, Xianchun

    2015-01-01

    Melanism has been found in a wide range of species, but the molecular mechanisms involved remain largely elusive. In this study, we studied the molecular mechanisms of the pupal melanism in Spodoptera exigua. The full length cDNA sequences of tyrosine hydroxylase (TH) and dopa decarboxylase (DDC), two key enzymes in the biosynthesis pathway of melanin, were cloned, and their temporal expression patterns in the integument were compared during the larval-pupal metamorphosis process of the S. exigua wild type (SEW) and melanic mutant (SEM) strains. No amino acid change in the protein sequence of TH and DDC was found between the two strains. Both DDC and TH were significantly over-expressed in the integument of the SEM strain at late-prepupa and 0 h pupa, respectively, compared with those of the SEW strain. Feeding 5th instar larvae of SEM with diets incorporated with 1 mg/g of the DDC inhibitor L-α-Methyl-DOPA and 0.75 mg/g of the TH inhibitor 3-iodo-tyrosine (3-IT) resulted in 20% pupae with partially-rescued phenotype and 68.2% of pupae with partially- or fully-rescued phenotype, respectively. These results indicate that overexpressions of TH and DDC are involved in the pupal melanization of S. exigua. PMID:26084938

  15. Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome

    PubMed Central

    Beenukumar, R. R.; Gödderz, Daniela; Palanimurugan, R.; Dohmen, R. J.

    2015-01-01

    Ornithine decarboxylase (ODC), a ubiquitin-independent substrate of the proteasome, is a homodimeric protein with a rate-limiting function in polyamine biosynthesis. Polyamines regulate ODC levels by a feedback mechanism mediated by ODC antizyme (OAZ). Higher cellular polyamine levels trigger the synthesis of OAZ and also inhibit its ubiquitin-dependent proteasomal degradation. OAZ binds ODC monomers and targets them to the proteasome. Here, we report that polyamines, aside from their role in the control of OAZ synthesis and stability, directly enhance OAZ-mediated ODC degradation by the proteasome. Using a stable mutant of OAZ, we show that polyamines promote ODC degradation in Saccharomyces cerevisiae cells even when OAZ levels are not changed. Furthermore, polyamines stimulated the in vitro degradation of ODC by the proteasome in a reconstituted system using purified components. In these assays, spermine shows a greater effect than spermidine. By contrast, polyamines do not have any stimulatory effect on the degradation of ubiquitin-dependent substrates. PMID:28357293

  16. Characterization of an avian histidine decarboxylase and localization of histaminergic neurons in the chicken brain.

    PubMed

    Bessho, Yuki; Iwakoshi-Ukena, Eiko; Tachibana, Tetsuya; Maejima, Sho; Taniuchi, Shusuke; Masuda, Keiko; Shikano, Kenshiro; Kondo, Kunihiro; Furumitsu, Megumi; Ukena, Kazuyoshi

    2014-08-22

    In mammals, it is established that histamine is a neurotransmitter and/or neuromodulator in the central nervous system. It is produced by the enzyme histidine decarboxylase (HDC) in the tuberomammillary nucleus of the posterior hypothalamus. However, HDC as well as histaminergic neurons have not yet been characterized in the avian brain. We have cloned the cDNA for HDC from the chicken hypothalamus and demonstrated that the chicken HDC sequence is highly homologous to the mammalian counterpart, and that the expressed protein shows high enzymatic activity. The expression of HDC mRNA at various sites in the brain was investigated using quantitative RT-PCR. The results showed that the HDC mRNA was highly expressed in the hypothalamic infundibulum. In situ hybridization analyses revealed that the cells containing HDC mRNA were localized in the medial mammillary nucleus of the hypothalamic infundibulum. Intracerebroventricular injection of histamine in chicks resulted in inhibition of feeding behavior. This is the first report of the characterization of histaminergic neurons in the avian brain, and our findings indicate that neuronal histamine exerts anorexigenic effects in chicks.

  17. Catecholamines are required for testosterone induction of ornithine decarboxylase in the mouse kidney.

    PubMed

    Cremades, A; Tovar, A; Peñafiel, R

    1992-08-01

    This report presents a study on the influence of the adrenergic system on androgen-regulated ornithine decarboxylase activity (ODC) in the mouse kidney. We have found that the existing levels of renal ODC in male mice and the increase induced by testosterone in male, female, castrated male and hypophysectomized mice were dramatically impaired by catecholamine depletion produced by treatment with either alpha-methyl-p-tyrosine or reserpine. Blockade of beta-receptors by treatment of the animals with the antagonists propranolol or bisoprolol was unable to prevent the effect of testosterone on the renal enzyme. However, alpha i-blockade obtained by treatment with prazosin or phenoxybenzamine was partially effective to produce the decrease of basal ODC in control male or to diminish ODC induction produced by androgens. All these findings demonstrate that catecholamines and alpha 1-adrenergic receptors are implicated in androgen-regulated ODC activity in the mouse kidney and suggest a plausible role of sympathetic renal innervation in enzyme induction by steroid hormones in this organ.

  18. Crystal Structure and Pyridoxal 5-Phosphate Binding Property of Lysine Decarboxylase from Selenomonas ruminantium

    PubMed Central

    Sagong, Hye-Young; Son, Hyeoncheol Francis; Kim, Sunghwan; Kim, Yong-Hwan; Kim, Il-Kwon; Kim, Kyung-Jin

    2016-01-01

    Lysine decarboxylase (LDC) is a crucial enzyme for acid stress resistance and is also utilized for the biosynthesis of cadaverine, a promising building block for bio-based polyamides. We determined the crystal structure of LDC from Selenomonas ruminantium (SrLDC). SrLDC functions as a dimer and each monomer consists of two distinct domains; a PLP-binding barrel domain and a sheet domain. We also determined the structure of SrLDC in complex with PLP and cadaverine and elucidated the binding mode of cofactor and substrate. Interestingly, compared with the apo-form of SrLDC, the SrLDC in complex with PLP and cadaverine showed a remarkable structural change at the PLP binding site. The PLP binding site of SrLDC contains the highly flexible loops with high b-factors and showed an open-closed conformational change upon the binding of PLP. In fact, SrLDC showed no LDC activity without PLP supplement, and we suggest that highly flexible PLP binding site results in low PLP affinity of SrLDC. In addition, other structurally homologous enzymes also contain the flexible PLP binding site, which indicates that high flexibility at the PLP binding site and low PLP affinity seems to be a common feature of these enzyme family. PMID:27861532

  19. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  20. Overexpression of Actinidia deliciosa pyruvate decarboxylase 1 gene enhances waterlogging stress in transgenic Arabidopsis thaliana.

    PubMed

    Zhang, Ji-Yu; Huang, Sheng-Nan; Wang, Gang; Xuan, Ji-Ping; Guo, Zhong-Ren

    2016-09-01

    Ethanolic fermentation is classically associated with waterlogging tolerance when plant cells switch from respiration to anaerobic fermentation. Pyruvate decarboxylase (PDC), which catalyzes the first step in this pathway, is thought to be the main regulatory enzyme. Here, we cloned a full-length PDC cDNA sequence from kiwifruit, named AdPDC1. We determined the expression of the AdPDC1 gene in kiwifruit under different environmental stresses using qRT-PCR, and the results showed that the increase of AdPDC1 expression during waterlogging stress was much higher than that during salt, cold, heat and drought stresses. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis enhanced the resistance to waterlogging stress but could not enhance resistance to cold stress at five weeks old seedlings. Overexpression of kiwifruit AdPDC1 in transgenic Arabidopsis could not enhance resistance to NaCl and mannitol stresses at the stage of seed germination and in early seedlings. These results suggested that the kiwifruit AdPDC1 gene is required during waterlogging but might not be required during other environmental stresses. Expression of the AdPDC1 gene was down-regulated by abscisic acid (ABA) in kiwifruit, and overexpression of the AdPDC1 gene in Arabidopsis inhibited seed germination and root length under ABA treatment, indicating that ABA might negatively regulate the AdPDC1 gene under waterlogging stress.

  1. Cloning and sequence analysis of ornithine decarboxylase gene fragments from the Ascomycota.

    PubMed

    Jiménez-Bremont, Juan Francisco; Rodríguez-Kessler, Margarita; Rodríguez-Guerra, Raul; Cortes-Penagos, Carlos; Torres-Guzman, Juan Carlos; Williamson, June Simpson

    2006-06-01

    Ornithine decarboxylase (ODC; EC 4.1.1.17) catalyzes the initial step in the biosynthesis of polyamines, the conversion of ornithine to putrescine. Based on the most conserved regions of fungal ODCs, we designed and synthesized oligonucleotides to amplify homologous fragments of three important plant pathogenic Pyrenomycete fungi (Ascomycota), Magnaporthe grisea, Colletotrichum lindemuthianum and Fusarium solani, and one insect pathogenic fungus Metarhizium anisopliae. Cloning and sequencing of the amplified fragments revealed homologies of between 37 to 88% with other fungal ODCs. The predicted peptide sequences were compared by Clustal analysis and conserved sequences corresponding to the substrate and cofactor binding sites were identified. Comparative analyses of the ODC fragments isolated in this study, revealed high homology between them (68.3-81.1%) and also with other Pyrenomycetes such as Neurospora crassa (order Sordariales; 68.6-72.9%) and Fusarium graminearum (order Hypocreales; 70.8-88.1%). Data obtained in this work revealed that these fungi constitute a compact group separated from other eukaryotic ODCs.

  2. Immobilization and characterization of benzoylformate decarboxylase from Pseudomonas putida on spherical silica carrier.

    PubMed

    Peper, Stephanie; Kara, Selin; Long, Wei Sing; Liese, Andreas; Niemeyer, Bernd

    2011-08-01

    If an adequate biocatalyst is identified for a specific reaction, immobilization is one possibility to further improve its properties. The immobilization allows easy recycling, improves the enzyme performance, and it often enhances the stability of the enzyme. In this work, the immobilization of the benzoylformate decarboxylase (BFD) variant, BFD A460I-F464I, from Pseudomonas putida was accomplished on spherical silica. Silicagel is characterized by its high mechanical stability, which allows its application in different reactor types without restrictions. The covalently bound enzyme was characterized in terms of its activity, stability, and kinetics for the formation of chiral 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde. Moreover, temperature as well as pressure dependency of immobilized BFD A460I-F464I activity and enantioselectivity were analyzed. The used wide-pore silicagel shows a good accessibility of the immobilized enzyme. The activity of the immobilized BFD A460I-F464I variant was determined to be 70% related to the activity of the free enzyme. Thereby, the enantioselectivity of the enzyme was not influenced by the immobilization. In addition, a pressure-induced change in stereoselectivity was found both for the free and for the immobilized enzyme. With increasing pressure, the enantiomeric excess (ee) of (R)-2-HPP can be increased from 44% (0.1 MPa) to 76% (200 MPa) for the free enzyme and from 43% (0.1 MPa) to 66% (200 MPa) for the immobilized enzyme.

  3. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  4. A heterozygous deletion in the glutamate decarboxylase 67 gene enhances maternal and fetal stress vulnerability.

    PubMed

    Uchida, Taku; Oki, Yutaka; Yanagawa, Yuchio; Fukuda, Atsuo

    2011-04-01

    Both down-regulation of glutamate decarboxylase 67 (GAD67) and maternal exposure to severe stress during pregnancy can increase the risk of schizophrenia and related psychotic disorders in the offspring. To investigate a gene-environment interaction, we performed the restraint-and-light stress to pregnant GAD67-GFP knock-in (GAD67(+/GFP)) and wild-type (GAD67(+/+)) mice three times a day for 45 min per session during gestational day (G) 15.0-17.5. The stress hormone (corticosterone) level of pregnant GAD67(+/GFP) mice (the overall GABA content is reduced because of the destruction of one allele of the endogenous GAD67 gene) was higher than that of GAD67(+/+), even without stress. The fetal body weights (GAD67(+/+)) in the GAD67(+/GFP) mothers were lower than those in the GAD67(+/+) mothers. GAD67(+/GFP) fetuses exhibited higher corticosterone (CORT) levels than GAD67(+/+) fetuses, even in non-stressed GAD67(+/+) mothers. Fetal body weight-decreases and CORT-increases by maternal stress (GAD67(+/+) mother) were significantly more in the GAD67(+/GFP) fetuses than the GAD67(+/+) fetuses. These results indicate that a GAD67 heterozygous deletion itself enhances vulnerability by many aspects, e.g., maternal stress, maternity, and being in utero. Thus, an abnormality in GAD67 could interact with environmental risk factors of psychiatric disorders, including schizophrenia.

  5. Pathogenic Roles of Glutamic Acid Decarboxylase 65 Autoantibodies in Cerebellar Ataxias

    PubMed Central

    Hampe, Christiane S.

    2017-01-01

    Reports suggesting a pathogenic role of autoantibodies directed against glutamic acid decarboxylase 65 (GAD65Abs) in cerebellar ataxias (CAs) are reviewed, and debatable issues such as internalization of antibodies by neurons and roles of epitopes are discussed. GAD65 is one of two enzymes that catalyze the conversion of glutamate to the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). A pathogenic role of GAD65Ab in CAs is suggested by in vivo and in vitro studies. (1) Intracerebellar administration of cerebrospinal fluid (CSF) immunoglobulins (IgGs) obtained from GAD65Ab-positive CA patients impairs cerebellar modulation of motor control in rats. (2) CSF IgGs act on terminals of GABAergic neurons and decrease the release of GABA in cerebellar slices from rats and mice. (3) Absorption of GAD65Ab by recombinant GAD65 diminishes the above effects, and monoclonal human GAD65Ab (b78) mimic the effects of CSF IgGs in vivo and in vitro. Studies using GAD65-KO mice confirm that the target molecule is GAD65. (4) Notably, the effects of GAD65Ab depend on the epitope specificity of the monoclonal GAD65Ab. Taken together, these results indicate that epitope-specific GAD65Ab-induced impairment of GABA release is involved in the pathogenesis of GAD65Ab-positive CA and support the early detection of GAD65Ab-associated CA to initiate immunotherapy before irreversible neuronal death in the cerebellum. PMID:28386570

  6. Characterization of the p-coumaric acid decarboxylase from Lactobacillus plantarum CECT 748(T).

    PubMed

    Rodríguez, Héctor; Landete, José María; Curiel, José Antonio; de Las Rivas, Blanca; Mancheño, José Miguel; Muñoz, Rosario

    2008-05-14

    It was previously reported that cell cultures from Lactobacillus plantarum CECT 748 (T) were able to decarboxylate phenolic acids, such as p-coumaric, m-coumaric, caffeic, ferulic, gallic, and protocatechuic acid. The p-coumaric acid decarboxylase (PDC) from this strain has been overexpressed and purified. This PDC differs at its C-terminal end when compared to the previously reported PDC from L. plantarum LPCHL2. Because the C-terminal region of PDC is involved in enzymatic activity, especially in substrate activity, it was decided to biochemically characterize the PDC from L. plantarum CECT 748 (T). Contrarily to L. plantarum LPCHL2 PDC, the recombinant PDC from L. plantarum CECT 748 (T) is a heat-labile enzyme, showing optimal activity at 22 degrees C. This PDC is able to decarboxylate exclusively the hydroxycinnamic acids p-coumaric, caffeic, and ferulic acids. Kinetic analysis showed that the enzyme has a 14-fold higher K(M) value for p-coumaric and caffeic acids than for ferulic acid. PDC catalyzes the formation of the corresponding 4-vinyl derivatives (vinylphenol and vinylguaiacol) from p-coumaric and ferulic acids, respectively, which are valuable food additives that have been approved as flavoring agents. The biochemical characteristics showed by L. plantarum PDC should be taken into account for its potential use in the food-processing industry.

  7. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and substance P in neural areas mediating motion-induced emesis: Effects of vagal stimulation on GAD immunoreactivity

    NASA Technical Reports Server (NTRS)

    Damelio, F.; Gibbs, M. A.; Mehler, W. R.; Daunton, Nancy G.; Fox, Robert A.

    1991-01-01

    Immunocytochemical methods were employed to localize the neurotransmitter amino acid gamma-aminobutyric acid (GABA) by means of its biosynthetic enzyme glutamic acid decarboxylase (GAD) and the neuropeptide substance P in the area postrema (AP), area subpostrema (ASP), nucleus of the tractus solitarius (NTS), and gelatinous nucleus (GEL). In addition, electrical stimulation was applied to the night vagus nerve at the cervical level to assess the effects on GAD-immunoreactivity (GAR-IR). GAD-IR terminals and fibers were observed in the AP, ASP, NTS, and GEL. They showed pronounced density at the level of the ASP and gradual decrease towards the solitary complex. Nerve cells were not labelled in our preparations. Ultrastructural studies showed symmetric or asymmetric synaptic contracts between labelled terminals and non-immunoreactive dendrites, axons, or neurons. Some of the labelled terminals contained both clear- and dense-core vesicles. Our preliminary findings, after electrical stimulation of the vagus nerve, revealed a bilateral decrease of GAD-IR that was particularly evident at the level of the ASP. SP-immunoreactive (SP-IR) terminals and fibers showed varying densities in the AP, ASP, NTS, and GEL. In our preparations, the lateral sub-division of the NTS showed the greatest accumulation. The ASP showed medium density of immunoreactive varicosities and terminals and the AP and GEL displayed scattered varicose axon terminals. The electron microscopy revealed that all immunoreactive terminals contained clear-core vesicles which make symmetric or asymmetric synaptic contact with unlabelled dendrites. It is suggested that the GABAergic terminals might correspond to vagal afferent projections and that GAD/GABA and substance P might be co-localized in the same terminal allowing the possibility of a regulated release of the transmitters in relation to demands.