Sample records for decarboxylase expression profiling

  1. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation.

    PubMed

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de Las Rivas, Blanca; Muñoz, Rosario

    2017-04-01

    Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase ( lpdC , or lp_2945 ) is only 6.5 kb distant from the gene encoding inducible tannase ( L. plantarum tanB [ tanB Lp ], or lp_2956 ). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B ( lpdB , or lp_0271 ) and D ( lpdD , or lp_0272 ) of the gallate decarboxylase are cotranscribed, whereas subunit C ( lpdC , or lp_2945 ) is cotranscribed with a gene encoding a transport protein ( gacP , or lp_2943 ). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator ( lp_2942 ) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. Copyright © 2017 American Society for Microbiology.

  2. Differential Gene Expression by Lactobacillus plantarum WCFS1 in Response to Phenolic Compounds Reveals New Genes Involved in Tannin Degradation

    PubMed Central

    Reverón, Inés; Jiménez, Natalia; Curiel, José Antonio; Peñas, Elena; López de Felipe, Félix; de las Rivas, Blanca

    2017-01-01

    ABSTRACT Lactobacillus plantarum is a lactic acid bacterium that can degrade food tannins by the successive action of tannase and gallate decarboxylase enzymes. In the L. plantarum genome, the gene encoding the catalytic subunit of gallate decarboxylase (lpdC, or lp_2945) is only 6.5 kb distant from the gene encoding inducible tannase (L. plantarum tanB [tanBLp], or lp_2956). This genomic context suggests concomitant activity and regulation of both enzymatic activities. Reverse transcription analysis revealed that subunits B (lpdB, or lp_0271) and D (lpdD, or lp_0272) of the gallate decarboxylase are cotranscribed, whereas subunit C (lpdC, or lp_2945) is cotranscribed with a gene encoding a transport protein (gacP, or lp_2943). In contrast, the tannase gene is transcribed as a monocistronic mRNA. Investigation of knockout mutations of genes located in this chromosomal region indicated that only mutants of the gallate decarboxylase (subunits B and C), tannase, GacP transport protein, and TanR transcriptional regulator (lp_2942) genes exhibited altered tannin metabolism. The expression profile of genes involved in tannin metabolism was also analyzed in these mutants in the presence of methyl gallate and gallic acid. It is noteworthy that inactivation of tanR suppresses the induction of all genes overexpressed in the presence of methyl gallate and gallic acid. This transcriptional regulator was also induced in the presence of other phenolic compounds, such as kaempferol and myricetin. This study complements the catalog of L. plantarum expression profiles responsive to phenolic compounds, which enable this bacterium to adapt to a plant food environment. IMPORTANCE Lactobacillus plantarum is a bacterial species frequently found in the fermentation of vegetables when tannins are present. L. plantarum strains degrade tannins to the less-toxic pyrogallol by the successive action of tannase and gallate decarboxylase enzymes. The genes encoding these enzymes are located close to each other in the chromosome, suggesting concomitant regulation. Proteins involved in tannin metabolism and regulation, such GacP (gallic acid permease) and TanR (tannin transcriptional regulator), were identified by differential gene expression in knockout mutants with mutations in genes from this region. This study provides insights into the highly coordinated mechanisms that enable L. plantarum to adapt to plant food fermentations. PMID:28115379

  3. Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity

    DOE PAGES

    Johnson, Christopher W.; Salvachua, Davinia; Khanna, Payal; ...

    2016-04-22

    The conversion of biomass-derived sugars and aromatic molecules to cis,cis-muconic acid (referred to hereafter as muconic acid or muconate) has been of recent interest owing to its facile conversion to adipic acid, an important commodity chemical. Metabolic routes to produce muconate from both sugars and many lignin-derived aromatic compounds require the use of a decarboxylase to convert protocatechuate (PCA, 3,4-dihydroxybenzoate) to catechol (1,2-dihydroxybenzene), two central aromatic intermediates in this pathway. Several studies have identified the PCA decarboxylase as a metabolic bottleneck, causing an accumulation of PCA that subsequently reduces muconate production. A recent study showed that activity of the PCAmore » decarboxylase is enhanced by co-expression of two genetically associated proteins, one of which likely produces a flavin-derived cofactor utilized by the decarboxylase. Using entirely genome-integrated gene expression, we have engineered Pseudomonas putida KT2440-derived strains to produce muconate from either aromatic molecules or sugars and demonstrate in both cases that co-expression of these decarboxylase associated proteins reduces PCA accumulation and enhances muconate production relative to strains expressing the PCA decarboxylase alone. In bioreactor experiments, co-expression increased the specific productivity (mg/g cells/h) of muconate from the aromatic lignin monomer p-coumarate by 50% and resulted in a titer of >15 g/L. In strains engineered to produce muconate from glucose, co-expression more than tripled the titer, yield, productivity, and specific productivity, with the best strain producing 4.92+/-0.48 g/L muconate. Furthermore, this study demonstrates that overcoming the PCA decarboxylase bottleneck can increase muconate yields from biomass-derived sugars and aromatic molecules in industrially relevant strains and cultivation conditions.« less

  4. C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism.

    PubMed

    Brown, Naomi J; Palmer, Ben G; Stanley, Susan; Hajaji, Hana; Janacek, Sophie H; Astley, Holly M; Parsley, Kate; Kajala, Kaisa; Quick, W Paul; Trenkamp, Sandra; Fernie, Alisdair R; Maurino, Veronica G; Hibberd, Julian M

    2010-01-01

    Cells associated with veins of petioles of C(3) tobacco possess high activities of the decarboxylase enzymes required in C(4) photosynthesis. It is not clear whether this is the case in other C(3) species, nor whether these enzymes provide precursors for specific biosynthetic pathways. Here, we investigate the activity of C(4) acid decarboxylases in the mid-vein of Arabidopsis, identify regulatory regions sufficient for this activity, and determine the impact of removing individual isoforms of each protein on mid-vein metabolite profiles. This showed that radiolabelled malate and bicarbonate fed to the xylem stream were incorporated into soluble and insoluble material in the mid-vein of Arabidopsis leaves. Compared with the leaf lamina, mid-veins possessed high activities of NADP-dependent malic enzyme (NADP-ME), NAD-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK). Transcripts derived from both NAD-ME, one PCK and two of the four NADP-ME genes were detectable in these veinal cells. The promoters of each decarboxylase gene were sufficient for expression in mid-veins. Analysis of insertional mutants revealed that cytosolic NADP-ME2 is responsible for 80% of NADP-ME activity in mid-veins. Removing individual decarboxylases affected the abundance of amino acids derived from pyruvate and phosphoenolpyruvate. Reducing cytosolic NADP-ME activity preferentially affected the sugar content, whereas abolishing NAD-ME affected both the amino acid and the glucosamine content of mid-veins.

  5. Cloning and sequencing of pyruvate decarboxylase (PDC) genes from bacteria and uses therefor

    DOEpatents

    Maupin-Furlow, Julie A [Gainesville, FL; Talarico, Lee Ann [Gainesville, FL; Raj, Krishnan Chandra [Tamil Nadu, IN; Ingram, Lonnie O [Gainesville, FL

    2008-02-05

    The invention provides isolated nucleic acids molecules which encode pyruvate decarboxylase enzymes having improved decarboxylase activity, substrate affinity, thermostability, and activity at different pH. The nucleic acids of the invention also have a codon usage which allows for high expression in a variety of host cells. Accordingly, the invention provides recombinant expression vectors containing such nucleic acid molecules, recombinant host cells comprising the expression vectors, host cells further comprising other ethanologenic enzymes, and methods for producing useful substances, e.g., acetaldehyde and ethanol, using such host cells.

  6. L-Dopa decarboxylase expression profile in human cancer cells.

    PubMed

    Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2011-02-01

    L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.

  7. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate

    PubMed Central

    Gamat, Melissa; Malinowski, Rita L.; Parkhurst, Linnea J.; Steinke, Laura M.; Marker, Paul C.

    2015-01-01

    The prostate is a male accessory sex gland that produces secretions in seminal fluid to facilitate fertilization. Prostate secretory function is dependent on androgens, although the mechanism by which androgens exert their effects is still unclear. Polyamines are small cationic molecules that play pivotal roles in DNA transcription, translation and gene regulation. The rate-limiting enzyme in polyamine biosynthesis is ornithine decarboxylase, which is encoded by the gene Odc1. Ornithine decarboxylase mRNA decreases in the prostate upon castration and increases upon administration of androgens. Furthermore, testosterone administered to castrated male mice restores prostate secretory activity, whereas administering testosterone and the ornithine decarboxylase inhibitor D,L-α-difluromethylornithine (DFMO) to castrated males does not restore prostate secretory activity, suggesting that polyamines are required for androgens to exert their effects. To date, no one has examined polyamines in prostate development, which is also androgen dependent. In this study, we showed that ornithine decarboxylase protein was expressed in the epithelium of the ventral, dorsolateral and anterior lobes of the adult mouse prostate. Ornithine decarboxylase protein was also expressed in the urogenital sinus (UGS) epithelium of the male and female embryo prior to prostate development, and expression continued in prostatic epithelial buds as they emerged from the UGS. Inhibiting ornithine decarboxylase using DFMO in UGS organ culture blocked the induction of prostatic buds by androgens, and significantly decreased expression of key prostate transcription factor, Nkx3.1, by androgens. DFMO also significantly decreased the expression of developmental regulatory gene Notch1. Other genes implicated in prostatic development including Sox9, Wif1 and Srd5a2 were unaffected by DFMO. Together these results indicate that Odc1 and polyamines are required for androgens to exert their effect in mediating prostatic bud induction, and are required for the expression of a subset of prostatic developmental regulatory genes including Notch1 and Nkx3.1. PMID:26426536

  8. Independent evolutionary origins of functional polyamine biosynthetic enzyme fusions catalyzing de novo diamine to triamine formation

    PubMed Central

    Green, Robert; Hanfrey, Colin C.; Elliott, Katherine A.; McCloskey, Diane E.; Wang, Xiaojing; Kanugula, Sreenivas; Pegg, Anthony E.; Michael, Anthony J.

    2011-01-01

    Summary We have identified gene fusions of polyamine biosynthetic enzymes S-adenosylmethionine decarboxylase (AdoMetDC, speD) and aminopropyltransferase (speE) orthologues in diverse bacterial phyla. Both domains are functionally active and we demonstrate the novel de novo synthesis of the triamine spermidine from the diamine putrescine by fusion enzymes from β-proteobacterium Delftia acidovorans and δ-proteobacterium Syntrophus aciditrophicus, in a ΔspeDE gene deletion strain of Salmonella enterica sv. Typhimurium. Fusion proteins from marine α-proteobacterium Candidatus Pelagibacter ubique, actinobacterium Nocardia farcinica, chlorobi species Chloroherpeton thalassium, and β-proteobacterium Delftia acidovorans each produce a different profile of non-native polyamines including sym-norspermidine when expressed in Escherichia coli. The different aminopropyltransferase activities together with phylogenetic analysis confirm independent evolutionary origins for some fusions. Comparative genomic analysis strongly indicates that gene fusions arose by merger of adjacent open reading frames. Independent fusion events, and horizontal and vertical gene transfer contributed to the scattered phyletic distribution of the gene fusions. Surprisingly, expression of fusion genes in E. coli and S. Typhimurium revealed novel latent spermidine catabolic activity producing non-native 1,3-diaminopropane in these species. We have also identified fusions of polyamine biosynthetic enzymes agmatine deiminase and N-carbamoylputrescine amidohydrolase in archaea, and of S-adenosylmethionine decarboxylase and ornithine decarboxylase in the single-celled green alga Micromonas. PMID:21762220

  9. Overexpression of PAD1 and FDC1 results in significant cinnamic acid decarboxylase activity in Saccharomyces cerevisiae.

    PubMed

    Richard, Peter; Viljanen, Kaarina; Penttilä, Merja

    2015-01-01

    The S. cerevisiae PAD1 gene had been suggested to code for a cinnamic acid decarboxylase, converting trans-cinnamic acid to styrene. This was suggested for the reason that the over-expression of PAD1 resulted in increased tolerance toward cinnamic acid, up to 0.6 mM. We show that by over-expression of the PAD1 together with the FDC1 the cinnamic acid decarboxylase activity can be increased significantly. The strain over-expressing PAD1 and FDC1 tolerated cinnamic acid concentrations up to 10 mM. The cooperation of Pad1p and Fdc1p is surprising since the PAD1 has a mitochondrial targeting sequence and the FDC1 codes for a cytosolic protein. The cinnamic acid decarboxylase activity was also seen in the cell free extract. The activity was 0.019 μmol per minute and mg of extracted protein. The overexpression of PAD1 and FDC1 resulted also in increased activity with the hydroxycinnamic acids ferulic acid, p-coumaric acid and caffeinic acid. This activity was not seen when FDC1 was overexpressed alone. An efficient cinnamic acid decarboxylase is valuable for the genetic engineering of yeast strains producing styrene. Styrene can be produced from endogenously produced L-phenylalanine which is converted by a phenylalanine ammonia lyase to cinnamic acid and then by a decarboxylase to styrene.

  10. Expression of Ornithine Decarboxylase Is Transiently Increased by Pollination, 2,4-Dichlorophenoxyacetic Acid, and Gibberellic Acid in Tomato Ovaries1

    PubMed Central

    Alabadí, David; Carbonell, Juan

    1998-01-01

    A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid. PMID:9733552

  11. Regulation of S-adenosylmethionine decarboxylase by polyamines in Ehrlich ascites-carcinoma cells grown in culture

    PubMed Central

    Alhonen-Hongisto, Leena

    1980-01-01

    1. The mechanism of stimulation of S-adenosylmethionine decarboxylase (EC 4.1.1.50) activity by inhibitors of ornithine decarboxylase (EC 4.1.1.17), namely dl-α-difluoromethylornithine, 1,3-diaminopropane and 1,3-diaminopropan-2-ol, was studied in Ehrlich ascites-tumour cells grown in suspension cultures. 2. Difluoromethylornithine and diaminopropane, although decreasing the content of putrescine and spermidine, markedly stimulated adenosylmethionine decarboxylase activity after exposure of the cells to the drugs for 8h, whereas the effect of diaminopropanol only became apparent many hours later. In tumour cells exposed to any of the inhibitors, a close negative correlation existed between the activity of adenosylmethionine decarboxylase and the intracellular concentration of spermidine and/or spermidine plus spermine, suggesting that a depletion of higher polyamines triggered enhancement of adenosylmethionine decarboxylase activity. 3. The mechanism of difluoromethylornithine- and diaminopropane-induced stimulation of adenosylmethionine decarboxylase involved (a) a marked increase in the apparent half-life of the enzyme and (b) an induction of enhanced enzyme synthesis. Diaminopropanol seemed to act solely via an induction mechanism. 4. The increased adenosylmethionine decarboxylase activity elicited by difluoromethylornithine could be restored to control values by micromolar concentrations of exogenous spermidine and spermine in 4h and by putrescine in 22h. In addition to the natural polyamines, elevated adenosylmethionine decarboxylase activity could be repressed by 3,3′-iminodipropylamine, a close analogue of spermidine, but not by non-physiological diamines. 5. Addition of spermidine and actinomycin D to cultures treated with difluoromethylornithine produced a comparable decay of enhanced adenosylmethionine decarboxylase activity (with an apparent half-life of about 2.5h), whereas the effect of cycloheximide was much more rapid. The present results suggest that polyamines may regulate adenosylmethionine decarboxylase at the transcriptional level of gene expression. PMID:6781485

  12. Effect of the hexapeptide dalargin on ornithine decarboxylase activity in the duodenal mucosa of rats with experimental duodenal ulcer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarygin, K.N.; Shitin, A.G.; Polonskii, V.M.

    1987-08-01

    The authors study the effect of dalargin on ornithine decarboxylase in homogenates of the duodenal ulcer from rats with experimental duodenal ulcer induced by cysteamine. Activity of the enzyme was expressed in pmoles /sup 14/CO/sub 2//mg protein/h. Protein was determined by Lowry's method. The findings indicate that stimulation of ornithine decarboxylase and the antiulcerative effect of dalargin may be due to direct interaction of the peptide with cells of the intestinal mucosa and with enterocytes.

  13. Cloning and expression analysis of the ornithine decarboxylase gene (PbrODC) of the pathogenic fungus Paracoccidioides brasiliensis.

    PubMed

    Niño-Vega, Gustavo A; Sorais, Françoise; Calcagno, Ana-María; Ruiz-Herrera, José; Martínez-Espinoza, Alfredo D; San-Blas, Gioconda

    2004-02-01

    We describe the isolation and sequencing of PbrODC, the gene encoding ornithine decarboxylase (ODC) in Paracoccidioides brasiliensis. The gene contains a single open reading frame made of 1413 bp with a single intron (72 bp), and encodes a 447 amino acid polypeptide with a predicted molecular weight of 50.0 kDa, an isoelectric point of 4.9 and a high similarity to other fungal ornithine decarboxylases. Functionality of the gene was demonstrated by transformation into a Saccharomyces cerevisiae odc null mutant. A phylogenetic tree generated with several fungal ODCs provided additional evidence to favour a taxonomic position for P. brasiliensis as an ascomycetous fungus, belonging to the order Onygenales. Expression of the PbrODC gene was determined by Northern analyses during growth of the mycelial and yeast forms, and through the temperature-regulated dimorphic transition between these two extreme phases. Expression of PbrODC remained constant at all stages of the fungal growth, and did not correlate with a previously observed increase in the activity of ornithine decarboxylase at the onset of the budding process in both yeast growth and mycelium-to-yeast transition. Accordingly, post-transcriptional regulation for the product of PbrODC is suggested. Copyright 2004 John Wiley & Sons, Ltd.

  14. Quantification and study of the L-DOPA decarboxylase expression in gastric adenocarcinoma cells treated with chemotherapeutic substances.

    PubMed

    Korbakis, Dimitrios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2013-03-01

    3,4-Dihydroxy-L-phenylalanine decarboxylase (DDC) is an enzyme implicated in the biosynthetic pathways of the neurotransmitters dopamine and probably serotonin. DDC gene expression has been studied in numerous malignancies and the corresponding data have shown remarkable alterations in the mRNA and/or protein levels encoded by the gene. The aim of this study was to examine any modulations in the DDC mRNA levels in gastric cancer cells after their treatment with the chemotherapeutic agents 5-fluorouracil, leucovorin, irinotecan, etoposide, cisplatin, and taxol. The sensitivity of the AGS gastric adenocarcinoma cells to the antineoplastic drugs was evaluated using the MTT assay. Total RNA was extracted and reverse transcribed into cDNA. A highly sensitive quantitative real-time PCR methodology was developed for the quantification of DDC mRNA. GAPDH was used as a housekeeping gene. Relative quantification analysis was carried out using the comparative C T method ((Equation is included in full-text article.)). The treatment of AGS cells with several concentrations of various broadly used anticancer drugs resulted in significant modulations of the DDC mRNA levels compared with those in the untreated cells in a time-specific and drug-specific manner. Generally, DDC expression levels appeared to decrease after three time periods of exposure to the selected chemotherapeutic agents, suggesting a characteristic DDC mRNA expression profile that is possibly related to the mechanism of each drug. Our experimental data show that the DDC gene might serve as a new potential molecular biomarker predicting treatment response in gastric cancer cells.

  15. Uncovering the Lactobacillus plantarum WCFS1 Gallate Decarboxylase Involved in Tannin Degradation

    PubMed Central

    Jiménez, Natalia; Curiel, José Antonio; Reverón, Inés; de las Rivas, Blanca

    2013-01-01

    Lactobacillus plantarum is a lactic acid bacterium able to degrade tannins by the subsequent action of tannase and gallate decarboxylase enzymes. The gene encoding tannase had previously been identified, whereas the gene encoding gallate decarboxylase is unknown. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of gallic-acid induced L. plantarum extracts showed a 54-kDa protein which was absent in the uninduced cells. This protein was identified as Lp_2945, putatively annotated UbiD. Homology searches identified ubiD-like genes located within three-gene operons which encoded the three subunits of nonoxidative aromatic acid decarboxylases. L. plantarum is the only bacterium in which the lpdC (lp_2945) gene and the lpdB and lpdD (lp_0271 and lp_0272) genes are separated in the chromosome. Combination of extracts from recombinant Escherichia coli cells expressing the lpdB, lpdC, and lpdC genes demonstrated that LpdC is the only protein required to yield gallate decarboxylase activity. However, the disruption of these genes in L. plantarum revealed that the lpdB and lpdC gene products are essential for gallate decarboxylase activity. Similar to L. plantarum tannase, which exhibited activity only in esters derived from gallic and protocatechuic acids, purified His6-LpdC protein from E. coli showed decarboxylase activity against gallic and protocatechuic acids. In contrast to the tannase activity, gallate decarboxylase activity is widely present among lactic acid bacteria. This study constitutes the first genetic characterization of a gallate decarboxylase enzyme and provides new insights into the role of the different subunits of bacterial nonoxidative aromatic acid decarboxylases. PMID:23645198

  16. Genome-Wide Expression Profiling of Complex Regional Pain Syndrome

    PubMed Central

    Jin, Eun-Heui; Zhang, Enji; Ko, Youngkwon; Sim, Woo Seog; Moon, Dong Eon; Yoon, Keon Jung; Hong, Jang Hee; Lee, Won Hyung

    2013-01-01

    Complex regional pain syndrome (CRPS) is a chronic, progressive, and devastating pain syndrome characterized by spontaneous pain, hyperalgesia, allodynia, altered skin temperature, and motor dysfunction. Although previous gene expression profiling studies have been conducted in animal pain models, there genome-wide expression profiling in the whole blood of CRPS patients has not been reported yet. Here, we successfully identified certain pain-related genes through genome-wide expression profiling in the blood from CRPS patients. We found that 80 genes were differentially expressed between 4 CRPS patients (2 CRPS I and 2 CRPS II) and 5 controls (cut-off value: 1.5-fold change and p<0.05). Most of those genes were associated with signal transduction, developmental processes, cell structure and motility, and immunity and defense. The expression levels of major histocompatibility complex class I A subtype (HLA-A29.1), matrix metalloproteinase 9 (MMP9), alanine aminopeptidase N (ANPEP), l-histidine decarboxylase (HDC), granulocyte colony-stimulating factor 3 receptor (G-CSF3R), and signal transducer and activator of transcription 3 (STAT3) genes selected from the microarray were confirmed in 24 CRPS patients and 18 controls by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We focused on the MMP9 gene that, by qRT-PCR, showed a statistically significant difference in expression in CRPS patients compared to controls with the highest relative fold change (4.0±1.23 times and p = 1.4×10−4). The up-regulation of MMP9 gene in the blood may be related to the pain progression in CRPS patients. Our findings, which offer a valuable contribution to the understanding of the differential gene expression in CRPS may help in the understanding of the pathophysiology of CRPS pain progression. PMID:24244504

  17. Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C 4 intermediate species.

    PubMed

    Hylton, C M; Rawsthorne, S; Smith, A M; Jones, D A; Woolhouse, H W

    1988-10-01

    Immunogold labelling has been used to determine the cellular distribution of glycine decarboxylase in leaves of C3, C3-C4 intermediate and C4 species in the genera Moricandia, Panicum, Flaveria and Mollugo. In the C3 species Moricandia foleyi and Panicum laxum, glycine decarboxylase was present in the mitochondria of both mesophyll and bundle-sheath cells. However, in all the C3-C4 intermediate (M. arvensis var. garamatum, M. nitens, M. sinaica, M. spinosa, M. suffruticosa, P. milioides, Flaveria floridana, F. linearis, Mollugo verticillata) and C4 (P. prionitis, F. trinervia) species studied glycine decarboxylase was present in the mitochondria of only the bundle-sheath cells. The bundle-sheath cells of all the C3-C4 intermediate species have on their centripetal faces numerous mitochondria which are larger in profile area than those in mesophyll cells and are in close association with chloroplasts and peroxisomes. Confinement of glycine decarboxylase to the bundle-sheath cells is likely to improve the potential for recapture of photorespired CO2 via the Calvin cycle and could account for the low rate of photorespiration in all C3-C4 intermediate species.

  18. Involvement of the ornithine decarboxylase gene in acid stress response in probiotic Lactobacillus delbrueckii UFV H2b20.

    PubMed

    Ferreira, A B; Oliveira, M N V de; Freitas, F S; Paiva, A D; Alfenas-Zerbini, P; Silva, D F da; Queiroz, M V de; Borges, A C; Moraes, C A de

    2015-01-01

    Amino acid decarboxylation is important for the maintenance of intracellular pH under acid stress. This study aims to carry out phylogenetic and expression analysis by real-time PCR of two genes that encode proteins involved in ornithine decarboxylation in Lactobacillus delbrueckii UFV H2b20 exposed to acid stress. Sequencing and phylogeny analysis of genes encoding ornithine decarboxylase and amino acid permease in L. delbrueckii UFV H2b20 showed their high sequence identity (99%) and grouping with those of L. delbrueckii subsp. bulgaricus ATCC 11842. Exposure of L. delbrueckii UFV H2b20 cells in MRS pH 3.5 for 30 and 60 min caused a significant increase in expression of the gene encoding ornithine decarboxylase (up to 8.1 times higher when compared to the control treatment). Increased expression of the ornithine decarboxylase gene demonstrates its involvement in acid stress response in L. delbrueckii UFV H2b20, evidencing that the protein encoded by that gene could be involved in intracellular pH regulation. The results obtained show ornithine decarboxylation as a possible mechanism of adaptation to an acidic environmental condition, a desirable and necessary characteristic for probiotic cultures and certainly important to the survival and persistence of the L. delbrueckii UFV H2b20 in the human gastrointestinal tract.

  19. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    PubMed

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  20. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID:27126795

  1. Short-term dopaminergic regulation of GABA release in dopamine deafferented caudate-putamen is not directly associated with glutamic acid decarboxylase gene expression.

    PubMed

    O'Connor, W T; Lindefors, N; Brené, S; Herrera-Marschitz, M; Persson, H; Ungerstedt, U

    1991-07-08

    In vivo microdialysis and in situ hybridization were combined to study dopaminergic regulation of gamma-amino butyric acid (GABA) neurons in rat caudate-putamen (CPu). Potassium-stimulated GABA release in CPu was elevated following a dopamine deafferentation. Local perfusion with exogenous dopamine (50 microM) for 3 h via the microdialysis probe attenuated the potassium-stimulated increase in extracellular GABA in CPu. Expression of glutamic acid decarboxylase (GAD) mRNA was also increased in the dopamine deafferented CPu. However, local perfusion with dopamine had no significant attenuating effect on the increased GAD mRNA expression. These findings indicate that dopaminergic regulation of GABA neurons in the dopamine deafferented CPu includes both a short-term effect at the level of GABA release independent of changes in GAD mRNA expression and a long-term modulation at the level of GAD gene expression.

  2. Effects of bis(guanylhydrazones) on the activity and expression of ornithine decarboxylase.

    PubMed Central

    Nikula, P; Alhonen-Hongisto, L; Jänne, J

    1985-01-01

    Derivatives of glyoxal bis(guanylhydrazone) (GBG), such as methylglyoxal bis(guanylhydrazone) and ethylglyoxal bis(guanylhydrazone), are potent inhibitors of S-adenosylmethionine decarboxylase (EC 4.1.1.50), the key enzyme required for the synthesis of spermidine and spermine. These compounds, but not the parent compound, induce a massive accumulation of putrescine, partly by blocking the conversion of putrescine into spermidine, but also by strikingly stimulating ornithine decarboxylase (ODC; EC 4.1.1.17) activity. The mechanism of the stimulation of ODC activity and enhanced accumulation of the enzyme protein apparently involved a distinct stabilization of the enzyme against intracellular degradation. However, although the parent compound GBG also stabilized ODC, it powerfully inhibited the enzyme activity and the accumulation of immunoreactive protein in cultured L1210 leukaemia cells. Kinetic considerations indicated that, in addition to the stabilization, all three compounds, GBG in particular, inhibited the expression of ODC. It is unlikely that the decreased rate of synthesis of ODC was attributable to almost unaltered amounts of mRNA in drug-treated cells, thus supporting the view that especially GBG apparently depressed the expression of ODC at some post-transcriptional level. Images PMID:4062886

  3. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624.

    PubMed

    Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-07-01

    To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model.

    PubMed

    Maggini, Valentina; De Leo, Marinella; Mengoni, Alessio; Gallo, Eugenia Rosaria; Miceli, Elisangela; Reidel, Rose Vanessa Bandeira; Biffi, Sauro; Pistelli, Luisa; Fani, Renato; Firenzuoli, Fabio; Bogani, Patrizia

    2017-12-05

    The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.

  5. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

    PubMed

    Keckesova, Zuzana; Donaher, Joana Liu; De Cock, Jasmine; Freinkman, Elizaveta; Lingrell, Susanne; Bachovchin, Daniel A; Bierie, Brian; Tischler, Verena; Noske, Aurelia; Okondo, Marian C; Reinhardt, Ferenc; Thiru, Prathapan; Golub, Todd R; Vance, Jean E; Weinberg, Robert A

    2017-03-30

    Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  6. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger

    PubMed Central

    2014-01-01

    Background Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. Results Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5–8 times higher than previously described. Conclusions Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over twenty five-fold higher levels of itaconic acid and show a twenty-fold increase in yield compared to a strain expressing only CadA. PMID:24438100

  7. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger.

    PubMed

    van der Straat, Laura; Vernooij, Marloes; Lammers, Marieke; van den Berg, Willy; Schonewille, Tom; Cordewener, Jan; van der Meer, Ingrid; Koops, Andries; de Graaff, Leo H

    2014-01-17

    Aspergillus terreus is a natural producer of itaconic acid and is currently used to produce itaconic acid on an industrial scale. The metabolic process for itaconic acid biosynthesis is very similar to the production of citric acid in Aspergillus niger. However, a key enzyme in A. niger, cis-aconitate decarboxylase, is missing. The introduction of the A. terreus cadA gene in A. niger exploits the high level of citric acid production (over 200 g per liter) and theoretically can lead to production levels of over 135 g per liter of itaconic acid in A. niger. Given the potential for higher production levels in A. niger, production of itaconic acid in this host was investigated. Expression of Aspergillus terreus cis-aconitate decarboxylase in Aspergillus niger resulted in the production of a low concentration (0.05 g/L) of itaconic acid. Overexpression of codon-optimized genes for cis-aconitate decarboxylase, a mitochondrial transporter and a plasma membrane transporter in an oxaloacetate hydrolase and glucose oxidase deficient A. niger strain led to highly increased yields and itaconic acid production titers. At these higher production titers, the effect of the mitochondrial and plasma membrane transporters was much more pronounced, with levels being 5-8 times higher than previously described. Itaconic acid can be produced in A. niger by the introduction of the A. terreus cis-aconitate decarboxylase encoding cadA gene. This results in a low itaconic acid production level, which can be increased by codon-optimization of the cadA gene for A. niger. A second crucial requirement for efficient production of itaconic acid is the expression of the A. terreus mttA gene, encoding a putative mitochondrial transporter. Expression of this transporter results in a twenty-fold increase in the secretion of itaconic acid. Expression of the A. terreus itaconic acid cluster consisting of the cadA gene, the mttA gene and the mfsA gene results in A. niger strains that produce over twenty five-fold higher levels of itaconic acid and show a twenty-fold increase in yield compared to a strain expressing only CadA.

  8. A preliminary crystallographic analysis of the putative mevalonate diphosphate decarboxylase from Trypanosoma brucei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byres, Emma; Martin, David M. A.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk

    2005-06-01

    The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in spacemore » group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.« less

  9. uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs

    PubMed Central

    Ivanov, Ivaylo P.; Loughran, Gary; Atkins, John F.

    2008-01-01

    In a minority of eukaryotic mRNAs, a small functional upstream ORF (uORF), often performing a regulatory role, precedes the translation start site for the main product(s). Here, conserved uORFs in numerous ornithine decarboxylase homologs are identified from yeast to mammals. Most have noncanonical evolutionarily conserved start codons, the main one being AUU, which has not been known as an initiator for eukaryotic chromosomal genes. The AUG-less uORF present in mouse antizyme inhibitor, one of the ornithine decarboxylase homologs in mammals, mediates polyamine-induced repression of the downstream main ORF. This repression is part of an autoregulatory circuit, and one of its sensors is the AUU codon, which suggests that translation initiation codon identity is likely used for regulation in eukaryotes. PMID:18626014

  10. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

    PubMed

    Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo

    2016-03-12

    The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The knowledge on the important enzyme involved in higher alcohols biosynthesis by S. kudriavzevii could be of scientific as well as of applied interest.

  11. An endogenous factor enhances ferulic acid decarboxylation catalyzed by phenolic acid decarboxylase from Candida guilliermondii

    PubMed Central

    2012-01-01

    The gene for a eukaryotic phenolic acid decarboxylase of Candida guilliermondii was cloned, sequenced, and expressed in Escherichia coli for the first time. The structural gene contained an open reading frame of 504 bp, corresponding to 168 amino acids with a calculated molecular mass of 19,828 Da. The deduced amino sequence exhibited low similarity to those of functional phenolic acid decarboxylases previously reported from bacteria with 25-39% identity and to those of PAD1 and FDC1 proteins from Saccharomyces cerevisiae with less than 14% identity. The C. guilliermondii phenolic acid decarboxylase converted the main substrates ferulic acid and p-coumaric acid to the respective corresponding products. Surprisingly, the ultrafiltrate (Mr 10,000-cut-off) of the cell-free extract of C. guilliermondii remarkably activated the ferulic acid decarboxylation by the purified enzyme, whereas it was almost without effect on the p-coumaric acid decarboxylation. Gel-filtration chromatography of the ultrafiltrate suggested that an endogenous amino thiol-like compound with a molecular weight greater than Mr 1,400 was responsible for the activation. PMID:22217315

  12. [Research of expression of L-DOPA decarboxylase in laryngeal cancer].

    PubMed

    Lai, Shisheng; Wan, Zhili

    2014-12-01

    This study aimed to investigate the expression levels of L-DOPA decarboxylase (DDC) mRNA and protein in laryngeal cancer, and to determine the clinical significance of DDC in diagnosis and prognosis of laryngeal cancer. Total RNA was isolated from 106 tissue samples surgically removed from 53 laryngeal cancer patients. A quantitative real-time polymerase chain reaction (RT-PCR) methodology based on SYBR Green I fluorescent dye was developed for the quantification of mRNA levels. In addition, Western Blot analysis was performed to detect the expression level of DDC protein. DDC mRNA expression in both primary (P= 0. 000) and recurrent (P=0. 033) laryngeal cancer samples downregulated significantly compared with their nonmalignant counterparts. Moreover, expression of DDC mRNA was not associated with age and histologic grade, but the significantly decreased mRNA were correlated with early TMN stage (P=0. 021). Additionally, DDC protein was detected in both cancerous and noncancerous tissues. Expression levels of DDC may play a vital role in the progression of laryngeal cancer, which can be served as a promising biomarker for the future clinical management of laryngeal cancer patients.

  13. Pyruvate Decarboxylase Catalyzes Decarboxylation of Branched-Chain 2-Oxo Acids but Is Not Essential for Fusel Alcohol Production by Saccharomyces cerevisiae

    PubMed Central

    ter Schure, Eelko G.; Flikweert, Marcel T.; van Dijken, Johannes P.; Pronk, Jack T.; Verrips, C. Theo

    1998-01-01

    The fusel alcohols 3-methyl-1-butanol, 2-methyl-1-butanol, and 2-methyl-propanol are important flavor compounds in yeast-derived food products and beverages. The formation of these compounds from branched-chain amino acids is generally assumed to occur via the Ehrlich pathway, which involves the concerted action of a branched-chain transaminase, a decarboxylase, and an alcohol dehydrogenase. Partially purified preparations of pyruvate decarboxylase (EC 4.1.1.1) have been reported to catalyze the decarboxylation of the branched-chain 2-oxo acids formed upon transamination of leucine, isoleucine, and valine. Indeed, in a coupled enzymatic assay with horse liver alcohol dehydrogenase, cell extracts of a wild-type Saccharomyces cerevisiae strain exhibited significant decarboxylation rates with these branched-chain 2-oxo acids. Decarboxylation of branched-chain 2-oxo acids was not detectable in cell extracts of an isogenic strain in which all three PDC genes had been disrupted. Experiments with cell extracts from S. cerevisiae mutants expressing a single PDC gene demonstrated that both PDC1- and PDC5-encoded isoenzymes can decarboxylate branched-chain 2-oxo acids. To investigate whether pyruvate decarboxylase is essential for fusel alcohol production by whole cells, wild-type S. cerevisiae and an isogenic pyruvate decarboxylase-negative strain were grown on ethanol with a mixture of leucine, isoleucine, and valine as the nitrogen source. Surprisingly, the three corresponding fusel alcohols were produced in both strains. This result proves that decarboxylation of branched-chain 2-oxo acids via pyruvate decarboxylase is not an essential step in fusel alcohol production. PMID:9546164

  14. Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.

    PubMed

    Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U

    1992-01-01

    In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.

  15. Molecular characteristic and physiological role of DOPA-decarboxylase.

    PubMed

    Guenter, Joanna; Lenartowski, Robert

    2016-12-31

    The enzyme DOPA decarboxylase (aromatic-L-amino-acid decarboxylase, DDC) plays an important role in the dopaminergic system and participates in the uptake and decarboxylation of amine precursors in the peripheral tissues. Apart from catecholamines, DDC catalyses the biosynthesis of serotonin and trace amines. It has been shown that the DDC amino acid sequence is highly evolutionarily conserved across many species. The activity of holoenzyme is regulated by stimulation/blockade of membrane receptors, phosphorylation of serine residues, and DDC interaction with regulatory proteins. A single gene codes for DDC both in neuronal and non-neuronal tissue, but synthesized isoforms of mRNA differ in the 5' UTR and in the presence of alternative exons. Tissue-specific expression of the DDC gene is controlled by two spatially distinct promoters - neuronal and non-neuronal. Several consensus sequences recognized by the HNF and POU family proteins have been mapped in the neuronal DDC promoter. Since DDC is located close to the imprinted gene cluster, its expression can be subjected to tightly controlled epigenetic regulation. Perturbations in DDC expression result in a range of neurodegenerative and psychiatric disorders and correlate with neoplasia. Apart from the above issues, the role of DDC in prostate cancer, bipolar affective disorder, Parkinson's disease and DDC deficiency is discussed in our review. Moreover, novel and prospective clinical treatments based on gene therapy and stem cells for the diseases mentioned above are described.

  16. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    PubMed Central

    Suzuki, Hiromu; Takashima, Yuya; Ishiguri, Futoshi; Yoshizawa, Nobuo; Yokota, Shinso

    2014-01-01

    The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR) establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1) infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA)-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS) and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8. PMID:28250384

  17. Gene cloning, recombinant expression, purification and characterization of l-methionine decarboxylase from Streptomyces sp. 590.

    PubMed

    Hayashi, Masaya; Okada, Akane; Yamamoto, Kumiko; Okugochi, Tomomi; Kusaka, Chika; Kudou, Daizou; Nemoto, Michiko; Inagaki, Junko; Hirose, Yuu; Okajima, Toshihide; Tamura, Takashi; Soda, Kenji; Inagaki, Kenji

    2017-04-01

    l-Methionine decarboxylase (MetDC) from Streptomyces sp. 590 depends on pyridoxal 5'-phosphate and catalyzes the non-oxidative decarboxylation of l-methionine to produce 3-methylthiopropylamine and carbon dioxide. MetDC gene (mdc) was determined to consist of 1,674 bp encoding 557 amino acids, and the amino acid sequence is similar to that of l-histidine decarboxylases and l-valine decarboxylases from Streptomyces sp. strains. The mdc gene was cloned and recombinant MetDC was heterologously expressed by Escherichia coli. The purification of recombinant MetDC was carried out by DEAE-Toyopearl and Ni-NTA agarose column chromatography. The recombinant enzyme was homodimeric with a molecular mass of 61,000 Da and showed optimal activity between 45 to 55 °C and at pH 6.6, and the stability below 30 °C and between pH 4.6 to 7.0. l-Methionine and l-norleucine were good substrates for MetDC. The Michaelis constants for l-methionine and l-norleucine were 30 and 73 mM, respectively. The recombinant MetDC (0.50 U/ml) severely inhibited growth of human tumour cells A431 (epidermoid ovarian carcinoma cell line) and MDA-MB-231 (breast cancer cell line), however showed relatively low cytotoxicity for human normal cell NHDF-Neo (dermal fibroblast cell line from neonatal foreskin). This study revealed the properties of the gene and the protein sequence of MetDC for the first time. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  18. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development.

    PubMed

    Li, Wei-Dong; Huang, Min; Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan

    2015-01-01

    The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone.

  19. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development

    PubMed Central

    Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan

    2015-01-01

    The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone. PMID:26313647

  20. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice.

    PubMed

    Boosalis, Michael S; Sangerman, Jose I; White, Gary L; Wolf, Roman F; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H; Li, Biaoru; Pace, Betty S; Nouraie, Mehdi; Faller, Douglas V; Perrine, Susan P

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.

  1. Do cultural conditions induce differential protein expression: Profiling of extracellular proteome of Aspergillus terreus CM20.

    PubMed

    M, Saritha; Singh, Surender; Tiwari, Rameshwar; Goel, Renu; Nain, Lata

    2016-11-01

    The present study reports the diversity in extracellular proteins expressed by the filamentous fungus, Aspergillus terreus CM20 with respect to differential hydrolytic enzyme production profiles in submerged fermentation (SmF) and solid-state fermentation (SSF) conditions, and analysis of the extracellular proteome. The SSF method was superior in terms of increase in enzyme activities resulting in 1.5-3 fold enhancement as compared to SmF, which was explained by the difference in growth pattern of the fungus under the two culture conditions. As revealed by zymography, multiple isoforms of endo-β-glucanase, β-glucosidase and xylanase were expressed in SSF, but not in SmF. Extracellular proteome profiling of A. terreus CM20 under SSF condition using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) identified 63 proteins. Functional classification revealed the hydrolytic system to be composed of glycoside hydrolases (56%), proteases (16%), oxidases and dehydrogenases (6%), decarboxylases (3%), esterases (3%) and other proteins (16%). Twenty families of glycoside hydrolases (GH) (1, 3, 5, 7, 10, 11, 12, 15, 16, 28, 30, 32, 35, 43, 54, 62, 67, 72, 74 and 125), and one family each of auxiliary activities (AA7) and carbohydrate esterase (CE1) were detected, unveiling the vast diversity of synergistically acting biomass-cleaving enzymes expressed by the fungus. Saccharification of alkali-pretreated paddy straw with A. terreus CM20 proteins released high amounts of glucose (439.63±1.50mg/gds), xylose (121.04±1.25mg/gds) and arabinose (56.13±0.56mg/gds), thereby confirming the potential of the enzyme cocktail in bringing about considerable conversion of lignocellulosic polysaccharides to sugar monomers. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Integrating metabolomics and transcriptomics data to discover a biocatalyst that can generate the amine precursors for alkamide biosynthesis

    PubMed Central

    Rizhsky, Ludmila; Jin, Huanan; Shepard, Michael R.; Scott, Harry W.; Teitgen, Alicen M.; Perera, M. Ann; Mhaske, Vandana; Jose, Adarsh; Zheng, Xiaobin; Crispin, Matt; Wurtele, Eve S.; Jones, Dallas; Hur, Manhoi; Góngora-Castillo, Elsa; Buell, C. Robin; Minto, Robert E.; Nikolau, Basil J.

    2016-01-01

    Summary The Echinacea genus is exemplary of over 30 plant families that produce a set of bioactive amides, called alkamides. The Echinacea alkamides may be assembled from two distinct moieties, a branched-chain amine that is acylated with a novel polyunsaturated fatty acid. In this study we identified the potential enzymological source of the amine moiety as a pyridoxal phosphate dependent decarboxylating enzyme that uses branched chain amino acids as substrate. This identification was based on a correlative analysis of the transcriptomes and metabolomes of 36 different E. purpurea tissues and organs, which expressed distinct alkamide profiles. Although no correlation was found between the accumulation patterns of the alkamides and their putative metabolic precursors (i.e., fatty acids and branched chain amino acids), isotope-labeling analyses supported the transformation of valine and isoleucine to isobutylamine and 2-methylbutylamine as reactions of alkamide biosynthesis. Sequence homology identified the pyridoxal phosphate dependent decarboxylase-like proteins in the translated proteome of E. purpurea. These sequences were prioritized for direct characterization by correlating their transcript levels with alkamide accumulation patterns in different organs and tissues, and this multi-pronged approach led to the identification and characterization of a branched-chain amino acid decarboxylase, which would appear to be responsible for generating the amine moieties of naturally occurring alkamides. PMID:27497272

  3. Agdc1p – a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans

    PubMed Central

    Meier, Anna K.; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (Km −0.7 ± 0.2 mM, kcat −42.0 ± 8.2 s−1) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (Km −3.2 ± 0.2 mM, kcat −44.0 ± 3.2 s−1). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δagdc1] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis-muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway. PMID:28966611

  4. Agdc1p - a Gallic Acid Decarboxylase Involved in the Degradation of Tannic Acid in the Yeast Blastobotrys (Arxula) adeninivorans.

    PubMed

    Meier, Anna K; Worch, Sebastian; Böer, Erik; Hartmann, Anja; Mascher, Martin; Marzec, Marek; Scholz, Uwe; Riechen, Jan; Baronian, Kim; Schauer, Frieder; Bode, Rüdiger; Kunze, Gotthard

    2017-01-01

    Tannins and hydroxylated aromatic acids, such as gallic acid (3,4,5-trihydroxybenzoic acid), are plant secondary metabolites which protect plants against herbivores and plant-associated microorganisms. Some microbes, such as the yeast Arxula adeninivorans are resistant to these antimicrobial substances and are able to use tannins and gallic acid as carbon sources. In this study, the Arxula gallic acid decarboxylase (Agdc1p) which degrades gallic acid to pyrogallol was characterized and its function in tannin catabolism analyzed. The enzyme has a higher affinity for gallic acid (K m -0.7 ± 0.2 mM, k cat -42.0 ± 8.2 s -1 ) than to protocatechuic acid (3,4-dihydroxybenzoic acid) (K m -3.2 ± 0.2 mM, k cat -44.0 ± 3.2 s -1 ). Other hydroxylated aromatic acids, such as 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid are not gallic acid decarboxylase substrates. A. adeninivorans G1212/YRC102-AYNI1-AGDC1, which expresses the AGDC1 gene under the control of the strong nitrate inducible AYNI1 promoter achieved a maximum gallic acid decarboxylase activity of 1064.4 U/l and 97.5 U/g of dry cell weight in yeast grown in minimal medium with nitrate as nitrogen source and glucose as carbon source. In the same medium, gallic acid decarboxylase activity was not detected for the control strain G1212/YRC102 with AGDC1 expression under the control of the endogenous promoter. Gene expression analysis showed that AGDC1 is induced by gallic acid and protocatechuic acid. In contrast to G1212/YRC102-AYNI1-AGDC1 and G1212/YRC102, A. adeninivorans G1234 [Δ agdc1 ] is not able to grow on medium with gallic acid as carbon source but can grow in presence of protocatechuic acid. This confirms that Agdc1p plays an essential role in the tannic acid catabolism and could be useful in the production of catechol and cis,cis -muconic acid. However, the protocatechuic acid catabolism via Agdc1p to catechol seems to be not the only degradation pathway.

  5. Evolutionary Trails of Plant Group II Pyridoxal Phosphate-Dependent Decarboxylase Genes.

    PubMed

    Kumar, Rahul

    2016-01-01

    Type II pyridoxal phosphate-dependent decarboxylase (PLP_deC) enzymes play important metabolic roles during nitrogen metabolism. Recent evolutionary profiling of these genes revealed a sharp expansion of histidine decarboxylase genes in the members of Solanaceae family. In spite of the high sequence homology shared by PLP_deC orthologs, these enzymes display remarkable differences in their substrate specificities. Currently, limited information is available on the gene repertoires and substrate specificities of PLP_deCs which renders their precise annotation challenging and offers technical challenges in the immediate identification and biochemical characterization of their full gene complements in plants. Herein, we explored their evolutionary trails in a comprehensive manner by taking advantage of high-throughput data accessibility and computational approaches. We discussed the premise that has enabled an improved reconstruction of their evolutionary lineage and evaluated the factors offering constraints in their rapid functional characterization, till date. We envisage that the synthesized information herein would act as a catalyst for the rapid exploration of their biochemical specificity and physiological roles in more plant species.

  6. Expression of a Heterologous S-Adenosylmethionine Decarboxylase cDNA in Plants Demonstrates That Changes in S-Adenosyl-l-Methionine Decarboxylase Activity Determine Levels of the Higher Polyamines Spermidine and Spermine1

    PubMed Central

    Thu-Hang, Pham; Bassie, Ludovic; Safwat, Gehan; Trung-Nghia, Pham; Christou, Paul; Capell, Teresa

    2002-01-01

    We posed the question of whether steady-state levels of the higher polyamines spermidine and spermine in plants can be influenced by overexpression of a heterologous cDNA involved in the later steps of the pathway, in the absence of any further manipulation of the two synthases that are also involved in their biosynthesis. Transgenic rice (Oryza sativa) plants engineered with the heterologous Datura stramonium S-adenosylmethionine decarboxylase (samdc) cDNA exhibited accumulation of the transgene steady-state mRNA. Transgene expression did not affect expression of the orthologous samdc gene. Significant increases in SAMDC activity translated to a direct increase in the level of spermidine, but not spermine, in leaves. Seeds recovered from a number of plants exhibited significant increases in spermidine and spermine levels. We demonstrate that overexpression of the D. stramonium samdc cDNA in transgenic rice is sufficient for accumulation of spermidine in leaves and spermidine and spermine in seeds. These findings suggest that increases in enzyme activity in one of the two components of the later parts of the pathway leading to the higher polyamines is sufficient to alter their levels mostly in seeds and, to some extent, in vegetative tissue such as leaves. Implications of our results on the design of rational approaches for the modulation of the polyamine pathway in plants are discussed in the general framework of metabolic pathway engineering. PMID:12177487

  7. Overproduction of cardiac S-adenosylmethionine decarboxylase in transgenic mice

    PubMed Central

    Nisenberg, Oleg; Pegg, Anthony E.; Welsh, Patricia A.; Keefer, Kerry; Shantz, Lisa M.

    2005-01-01

    The present study was designed to provide a better understanding of the role played by AdoMetDC (S-adenosylmethionine decarboxylase), the key rate-controlling enzyme in the synthesis of spermidine and spermine, in controlling polyamine levels and the importance of polyamines in cardiac physiology. The αMHC (α-myosin heavy chain) promoter was used to generate transgenic mice with cardiac-specific expression of AdoMetDC. A founder line (αMHC/AdoMetDC) was established with a >100-fold increase in AdoMetDC activity in the heart. Transgene expression was maximal by 1 week of age and remained constant into adulthood. However, the changes in polyamine levels were most pronounced during the first week of age, with a 2-fold decrease in putrescine and spermidine and a 2-fold increase in spermine. At later times, spermine returned to near control levels, whereas putrescine and spermidine levels remained lower, suggesting that compensatory mechanisms exist to limit spermine accumulation. The αMHC/AdoMetDC mice did not display an overt cardiac phenotype, but there was an increased cardiac hypertrophy after β-adrenergic stimulation with isoprenaline (‘isoproterenol’), as well as a small increase in spermine content. Crosses of the αMHC/AdoMetDC with αMHC/ornithine decarboxylase mice that have a >1000-fold increase in cardiac ornithine decarboxylase were lethal in utero, presumably due to increase in spermine to toxic levels. These findings suggest that cardiac spermine levels are highly regulated to avoid polyamine-induced toxicity and that homoeostatic mechanisms can maintain non-toxic levels even when one enzyme of the biosynthetic pathway is greatly elevated but are unable to do so when two biosynthetic enzymes are increased. PMID:16153183

  8. Differential regulation of glutamic acid decarboxylase gene expression after extinction of a recent memory vs. intermediate memory.

    PubMed

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jörg; Pape, Hans-Christian

    2012-04-17

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65 isoform of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD). However, a detailed analysis of changes in gene expression of GAD in the subregions comprising the extinction network has not been undertaken. Here, we report changes in gene expression of the GAD65 and GAD67 isoforms of GAD, as measured by relative quantitative real-time RT-PCR, in subregions of the amygdala, hippocampus, and prefrontal cortex 24-26 h after extinction of a recent (1-d) or intermediate (14-d) fear memory. Our results show that extinction of a recent memory induces a down-regulation of Gad65 gene expression in the hippocampus (CA1, dentate gyrus) and an up-regulation of Gad67 gene expression in the infralimbic cortex. Extinguishing an intermediate memory increased Gad65 gene expression in the central amygdala. These results indicate a differential regulation of Gad gene expression after extinction of a recent memory vs. intermediate memory.

  9. The histamine-synthesizing enzyme histidine decarboxylase is upregulated by keratinocytes in atopic skin.

    PubMed

    Gutowska-Owsiak, D; Greenwald, L; Watson, C; Selvakumar, T A; Wang, X; Ogg, G S

    2014-10-01

    Histamine is an abundant mediator accumulating in the skin of atopic patients, where it is thought to be derived from immune cells. While keratinocytes express histidine decarboxylase (HDC), levels of the enzyme in normal or diseased epidermis and factors that influence its expression in human keratinocytes are not known. To assess levels of HDC in inflammatory skin diseases and factors influencing its expression. Normal and filaggrin-insufficient human keratinocytes, organotypic epidermal models and skin samples were investigated for the expression of HDC. The effect of cytokines, bacterial and allergen stimuli exposure and functional changes in differentiation were evaluated in vitro. We detected abundant expression of the HDC protein in all models studied; expression was increased in atopic skin samples. Filaggrin-insufficient keratinocytes maintained HDC levels, but exposure of keratinocytes to thymic stromal lymphopoietin, tumour necrosis factor-α, lipopolysaccharide (LPS) and house dust mite (HDM) extract increased HDC expression in vitro. Furthermore, filaggrin expression in cultured keratinocytes increased following histamine depletion. Keratinocytes express abundant HDC protein, and the levels increase in atopic skin. LPS, HDM and cytokines, which are implicated in allergic inflammation, promote the expression of the enzyme and upregulate histamine levels in keratinocytes. Actively produced histamine influences keratinocyte differentiation, suggesting functional relevance of the axis to atopic dermatitis. The findings therefore identify a new point of therapeutic intervention. © 2014 British Association of Dermatologists.

  10. Repeated immobilization stress alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Feng, Yang-Zheng; Regunathan, Soundar; Bissette, Garth

    2008-01-01

    Agmatine, an endogenous amine derived from decarboxylation of L-arginine catalyzed by arginine decarboxylase, has been proposed as a neurotransmitter or neuromodulator in the brain. In the present study we examined whether agmatine has neuroprotective effects against repeated immobilization-induced morphological changes in brain tissues and possible effects of immobilization stress on endogenous agmatine levels and arginine decarboxylase expression in rat brains. Sprague-Dawley rats were subjected to two hour immobilization stress daily for seven days. This paradigm significantly increased plasma corticosterone levels, and the glutamate efflux in the hippocampus as measured by in vivo microdialysis. Immunohistochemical staining with β-tubulin III showed that repeated immobilization caused marked morphological alterations in the hippocampus and medial prefrontal cortex that were prevented by simultaneous treatment with agmatine (50 mg/kg/day, i.p.). Likewise, endogenous agmatine levels measured by high performance liquid chromatography in the prefrontal cortex, hippocampus, striatum and hypothalamus were significantly increased by immobilization, as compared to controls. The increased endogenous agmatine levels, ranging from 92% to 265% of controls, were accompanied by a significant increase of arginine decarboxylase protein levels in the same regions. These results demonstrate that administration of exogenous agmatine protects the hippocampus and medial prefrontal cortex against neuronal insults caused by repeated immobilization. The parallel increase in endogenous brain agmatine and arginine decarboxylase protein levels triggered by repeated immobilization indicates that the endogenous agmatine system may play an important role in adaptation to stress as a potential neuronal self-protection mechanism. PMID:18832001

  11. The effects of genetic manipulation of putrescine biosynthesis on transcription and activities of the other polyamine biosynthetic enzymes

    Treesearch

    Andrew F. Page; Sridev Mohapatra; Rakesh Minocha; Subhash C. Minocha

    2007-01-01

    We have studied the effects of overproduction of putrescine (Put) via transgenic expression of a mouse ornithine decarboxylase (ODC) gene on the expression of native genes for four enzymes involved in polyamine biosynthesis in hybrid poplar (Populus nigra x maximowiczii) cells. An examination of the transcript levels of arginine...

  12. Cortical Gene Expression After a Conditional Knockout of 67 kDa Glutamic Acid Decarboxylase in Parvalbumin Neurons.

    PubMed

    Georgiev, Danko; Yoshihara, Toru; Kawabata, Rika; Matsubara, Takurou; Tsubomoto, Makoto; Minabe, Yoshio; Lewis, David A; Hashimoto, Takanori

    2016-07-01

    In the cortex of subjects with schizophrenia, expression of glutamic acid decarboxylase 67 (GAD67), the enzyme primarily responsible for cortical GABA synthesis, is reduced in the subset of GABA neurons that express parvalbumin (PV). This GAD67 deficit is accompanied by lower cortical levels of other GABA-associated transcripts, including GABA transporter-1, PV, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B, somatostatin, GABAA receptor α1 subunit, and KCNS3 potassium channel subunit mRNAs. In contrast, messenger RNA (mRNA) levels for glutamic acid decarboxylase 65 (GAD65), another enzyme for GABA synthesis, are not altered. We tested the hypothesis that this pattern of GABA-associated transcript levels is secondary to the GAD67 deficit in PV neurons by analyzing cortical levels of these GABA-associated mRNAs in mice with a PV neuron-specific GAD67 knockout. Using in situ hybridization, we found that none of the examined GABA-associated transcripts had lower cortical expression in the knockout mice. In contrast, PV, BDNF, KCNS3, and GAD65 mRNA levels were higher in the homozygous mice. In addition, our behavioral test battery failed to detect a change in sensorimotor gating or working memory, although the homozygous mice exhibited increased spontaneous activities. These findings suggest that reduced GAD67 expression in PV neurons is not an upstream cause of the lower levels of GABA-associated transcripts, or of the characteristic behaviors, in schizophrenia. In PV neuron-specific GAD67 knockout mice, increased levels of PV, BDNF, and KCNS3 mRNAs might be the consequence of increased neuronal activity secondary to lower GABA synthesis, whereas increased GAD65 mRNA might represent a compensatory response to increase GABA synthesis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice

    PubMed Central

    Boosalis, Michael S.; Sangerman, Jose I.; White, Gary L.; Wolf, Roman F.; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H.; Li, Biaoru; Pace, Betty S.; Nouraie, Mehdi; Faller, Douglas V.; Perrine, Susan P.

    2015-01-01

    High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies. PMID:26713848

  14. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasi, Maria Lauda; USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033; The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosismore » and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth suppression. • Putrescine induces AP-1, which activates MAT2A promoter to increase its expression. • Putrescine increases ornithine decarboxylase expression, which induce MAT2A promoter. • Expression of MAT2A correlates with that of ornithine decarboxylase in colon cancer.« less

  15. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose tomore » ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).« less

  16. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    PubMed

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  17. Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez, Héctor; Rivas, Blanca de las; Muñoz, Rosario

    2007-04-01

    The enzyme p-coumaric acid decarboxylase (PDC) from L. plantarum has been recombinantly expressed, purified and crystallized. The structure has been solved at 2.04 Å resolution by the molecular-replacement method. The substrate-inducible p-coumaric acid decarboxylase (PDC) from Lactobacillus plantarum has been overexpressed in Escherichia coli, purified and confirmed to possess decarboxylase activity. The recombinant His{sub 6}-tagged enzyme was crystallized using the hanging-drop vapour-diffusion method from a solution containing 20%(w/v) PEG 4000, 12%(w/v) 2-propanol, 0.2 M sodium acetate, 0.1 M Tris–HCl pH 8.0 with 0.1 M barium chloride as an additive. Diffraction data were collected in-house to 2.04 Å resolution. Crystals belongedmore » to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 43.15, c = 231.86 Å. The estimated Matthews coefficient was 2.36 Å{sup 3} Da{sup −1}, corresponding to 48% solvent content, which is consistent with the presence of two protein molecules in the asymmetric unit. The structure of PDC has been determined by the molecular-replacement method. Currently, the structure of PDC complexed with substrate analogues is in progress, with the aim of elucidating the structural basis of the catalytic mechanism.« less

  18. Evidence of Two Functionally Distinct Ornithine Decarboxylation Systems in Lactic Acid Bacteria

    PubMed Central

    Romano, Andrea; Trip, Hein; Lonvaud-Funel, Aline; Lolkema, Juke S.

    2012-01-01

    Biogenic amines are low-molecular-weight organic bases whose presence in food can result in health problems. The biosynthesis of biogenic amines in fermented foods mostly proceeds through amino acid decarboxylation carried out by lactic acid bacteria (LAB), but not all systems leading to biogenic amine production by LAB have been thoroughly characterized. Here, putative ornithine decarboxylation pathways consisting of a putative ornithine decarboxylase and an amino acid transporter were identified in LAB by strain collection screening and database searches. The decarboxylases were produced in heterologous hosts and purified and characterized in vitro, whereas transporters were heterologously expressed in Lactococcus lactis and functionally characterized in vivo. Amino acid decarboxylation by whole cells of the original hosts was determined as well. We concluded that two distinct types of ornithine decarboxylation systems exist in LAB. One is composed of an ornithine decarboxylase coupled to an ornithine/putrescine transmembrane exchanger. Their combined activities results in the extracellular release of putrescine. This typical amino acid decarboxylation system is present in only a few LAB strains and may contribute to metabolic energy production and/or pH homeostasis. The second system is widespread among LAB. It is composed of a decarboxylase active on ornithine and l-2,4-diaminobutyric acid (DABA) and a transporter that mediates unidirectional transport of ornithine into the cytoplasm. Diamines that result from this second system are retained within the cytosol. PMID:22247134

  19. Expression analysis and clinical utility of L-Dopa decarboxylase (DDC) in prostate cancer.

    PubMed

    Avgeris, Margaritis; Koutalellis, Georgios; Fragoulis, Emmanuel G; Scorilas, Andreas

    2008-10-01

    L-Dopa decarboxylase (DDC) is a pyridoxal 5'-phosphate-dependent enzyme that was found to be involved in many malignancies. The aim of this study was to investigate the mRNA expression levels of DDC in prostate tissues and to evaluate its clinical utility in prostate cancer (CaP). Total RNA was isolated from 118 tissue specimens from benign prostate hyperplasia (BPH) and CaP patients and a highly sensitive quantitative real-time RT-PCR (qRT-PCR) method for DDC mRNA quantification has been developed using the SYBR Green chemistry. LNCaP prostate cancer cell line was used as a calibrator and GAPDH as a housekeeping gene. DDC was found to be overexpressed, at the mRNA level, in the specimens from prostate cancer patients, in comparison to those from benign prostate hyperplasia patients (p<0.001). Logistic regression and ROC analysis have demonstrated that the DDC expression has significant discriminatory value between CaP and BPH (p<0.001). DDC expression status was compared with other established prognostic factors, in prostate cancer. High expression levels of DDC were found more frequently in high Gleason's score tumors (p=0.022) as well as in advanced stage patients (p=0.032). Our data reveal the potential of DDC expression, at the mRNA level, as a novel biomarker in prostate cancer.

  20. L-dopa decarboxylase (DDC) gene expression is related to outcome in patients with prostate cancer.

    PubMed

    Koutalellis, Georgios; Stravodimos, Konstantinos; Avgeris, Margaritis; Mavridis, Konstantinos; Scorilas, Andreas; Lazaris, Andreas; Constantinides, Constantinos

    2012-09-01

    What's known on the subject? and What does the study add? L-dopa decarboxylase (DDC) has been documented as a novel co-activator of androgen receptor transcriptional activity. Recently, it was shown that DDC gene expression is significantly higher in patients with PCa than in those with BPH. In the present study, there was a significant association between the DDC gene expression levels and the pathological stage and Gleason score of patients with prostate cancer (PCa). Moreover, DDC expression was shown to be an unfavourable prognostic marker of biochemical recurrence and disease-free survival in patients with PCa treated by radical prostatectomy. To determine whether L-dopa decarboxylase gene (DDC) expression levels in patients with prostate cancer (PCa) correlate to biochemical recurrence and disease prognosis after radical prostatectomy (RP). The present study consisted of 56 samples with confirmed malignancy from patients with PCa who had undergone RP at a single tertiary academic centre. Total RNA was isolated from tissue specimens and a SYBR Green fluorescence-based quantitative real-time polymerase chain reaction methodology was developed for the determination of DDC mRNA expression levels of the tested tissues. Follow-up time ranged between 1.0 and 62.0 months (mean ± SE, 28.6 ± 2.1 month; median, 31.5 months). Time to biochemical recurrence was defined as the interval between the surgery and the measurement of two consecutive values of prostate-specific antigen (PSA) ≥0.2 ng/mL. DDC expression levels were found to be positively correlated with the tumour-node-metastasis stage (P = 0.021) and Gleason score (P = 0.036) of the patients with PCa. Patients with PCa with raised DDC expression levels run a significantly higher risk of biochemical recurrence after RP, as indicated by Cox proportional regression analysis (P = 0.021). Multivariate Cox proportional regression models revealed the preoperative PSA-, age- and digital rectal examination-independent prognostic value of DDC expression for the prediction of disease-free survival (DFS) among patients with PCa (P = 0.036). Kaplan-Meier survival analysis confirms the significantly shorter DFS after RP of PCa with higher DDC expression levels (P = 0.015). This is the first study indicating the potential of DDC expression as a novel prognostic biomarker in patients with PCa who have undergone RP. For further evaluation and clinical application of the findings of the present study, a direct analysis of mRNA and/or its protein expression level in preoperative biopsy, blood serum and urine should be conducted. © 2012 BJU INTERNATIONAL.

  1. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study.

    PubMed

    Pessione, Enrica; Pessione, Alessandro; Lamberti, Cristina; Coïsson, Daniel Jean; Riedel, Kathrin; Mazzoli, Roberto; Bonetta, Silvia; Eberl, Leo; Giunta, Carlo

    2009-05-01

    The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2-DE and MALDI-TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and beta-phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down-regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy-supplying routes. The most interesting finding is a membrane-bound TDC highly over-expressed during amine production. This is the first evidence of a true membrane-bound TDC, longly suspected in bacteria on the basis of the gene sequence.

  2. An autocrine γ-aminobutyric acid signaling system exists in pancreatic β-cell progenitors of fetal and postnatal mice.

    PubMed

    Feng, Mary M; Xiang, Yun-Yan; Wang, Shuanglian; Lu, Wei-Yang

    2013-01-01

    Gamma-aminobutyric acid (GABA) is produced and secreted by adult pancreatic β-cells, which also express GABA receptors mediating autocrine signaling and regulating β-cell proliferation. However, whether the autocrine GABA signaling involves in β-cell progenitor development or maturation remains uncertain. By means of immunohistochemistry we analyzed the expression profiles of the GABA synthesizing enzyme glutamic acid decarboxylase (GAD) and the α1-subunit of type-A GABA receptor (GABAARα1) in the pancreas of mice at embryonic day 15.5 (E15.5), E18.5, postnatal day 1 (P1) and P7. Our data showed that at E15.5 the pancreatic and duodenum homeobox-1 (Pdx1) was expressed in the majority of cells in the developing pancreata. Notably, insulin immunoreactivity was identified in a subpopulation of pancreatic cells with a high level of Pdx1 expression. About 80% of the high-level Pdx-1 expressing cells in the pancreas expressed GAD and GABAARα1 at all pancreatic developmental stages. In contrast, only about 30% of the high-level Pdx-1 expressing cells in the E15.5 pancreas expressed insulin; i.e., a large number of GAD/GABAARα1-expressing cells did not express insulin at this early developmental stage. The expression level of GAD and GABAARα1 increased steadily, and progressively more GAD/GABAARα1-expressing cells expressed insulin in the course of pancreatic development. These results suggest that 1) GABA signaling proteins appear in β-cell progenitors prior to insulin expression; and 2) the increased expression of GABA signaling proteins may be involved in β-cell progenitor maturation.

  3. Characterization of the cDNA coding for rat brain cysteine sulfinate decarboxylase: brain and liver enzymes are identical proteins encoded by two distinct mRNAs.

    PubMed

    Tappaz, M; Bitoun, M; Reymond, I; Sergeant, A

    1999-09-01

    Cysteine sulfinate decarboxylase (CSD) is considered as the rate-limiting enzyme in the biosynthesis of taurine, a possible osmoregulator in brain. Through cloning and sequencing of RT-PCR and RACE-PCR products of rat brain mRNAs, a 2,396-bp cDNA sequence was obtained encoding a protein of 493 amino acids (calculated molecular mass, 55.2 kDa). The corresponding fusion protein showed a substrate specificity similar to that of the endogenous enzyme. The sequence of the encoded protein is identical to that encoded by liver CSD cDNA. Among other characterized amino acid decarboxylases, CSD shows the highest homology (54%) with either isoform of glutamic acid decarboxylase (GAD65 and GAD67). A single mRNA band, approximately 2.5 kb, was detected by northern blot in RNA extracts of brain, liver, and kidney. However, brain and liver CSD cDNA sequences differed in the 5' untranslated region. This indicates two forms of CSD mRNA. Analysis of PCR-amplified products of genomic DNA suggests that the brain form results from the use of a 3' alternative internal splicing site within an exon specifically found in liver CSD mRNA. Through selective RT-PCR the brain form was detected in brain only, whereas the liver form was found in liver and kidney. These results indicate a tissue-specific regulation of CSD genomic expression.

  4. Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae.

    PubMed

    Weber, Heike E; Gottardi, Manuela; Brückner, Christine; Oreb, Mislav; Boles, Eckhard; Tripp, Joanna

    2017-05-15

    Biotechnological production of cis , cis -muconic acid from renewable feedstocks is an environmentally sustainable alternative to conventional, petroleum-based methods. Even though a heterologous production pathway for cis , cis -muconic acid has already been established in the host organism Saccharomyces cerevisiae , the generation of industrially relevant amounts of cis , cis -muconic acid is hampered by the low activity of the bacterial protocatechuic acid (PCA) decarboxylase AroY isomeric subunit C iso (AroY-C iso ), leading to secretion of large amounts of the intermediate PCA into the medium. In the present study, we show that the activity of AroY-C iso in S. cerevisiae strongly depends on the strain background. We could demonstrate that the strain dependency is caused by the presence or absence of an intact genomic copy of PAD1 , which encodes a mitochondrial enzyme responsible for the biosynthesis of a prenylated form of the cofactor flavin mononucleotide (prFMN). The inactivity of AroY-C iso in strain CEN.PK2-1 could be overcome by plasmid-borne expression of Pad1 or its bacterial homologue AroY subunit B (AroY-B). Our data reveal that the two enzymes perform the same function in decarboxylation of PCA by AroY-C iso , although coexpression of Pad1 led to higher decarboxylase activity. Conversely, AroY-B can replace Pad1 in its function in decarboxylation of phenylacrylic acids by ferulic acid decarboxylase Fdc1. Targeting of the majority of AroY-B to mitochondria by fusion to a heterologous mitochondrial targeting signal did not improve decarboxylase activity of AroY-C iso , suggesting that mitochondrial localization has no major impact on cofactor biosynthesis. IMPORTANCE In Saccharomyces cerevisiae , the decarboxylation of protocatechuic acid (PCA) to catechol is the bottleneck reaction in the heterologous biosynthetic pathway for production of cis , cis -muconic acid, a valuable precursor for the production of bulk chemicals. In our work, we demonstrate the importance of the strain background for the activity of a bacterial PCA decarboxylase in S. cerevisiae Inactivity of the decarboxylase is due to a nonsense mutation in a gene encoding a mitochondrial enzyme involved in the biosynthesis of a cofactor required for decarboxylase function. Our study reveals functional interchangeability of Pad1 and a bacterial homologue, irrespective of their intracellular localization. Our results open up new possibilities to improve muconic acid production by engineering cofactor supply. Furthermore, the results have important implications for the choice of the production strain. Copyright © 2017 American Society for Microbiology.

  5. Immunocytochemical localization of glutamic acid decarboxylase (GAD) and glutamine synthetase (GS) in the area postrema of the cat. Light and electron microscopy

    NASA Technical Reports Server (NTRS)

    D'Amelio, Fernando E.; Mehler, William R.; Gibbs, Michael A.; Eng, Lawrence F.; Wu, Jang-Yen

    1987-01-01

    Morphological evidence is presented of the existence of the putative neurotransmitter gamma-aminobutyric acid (GABA) in axon terminals and of glutamine synthetase (GS) in ependymoglial cells and astroglial components of the area postrema (AP) of the cat. Purified antiserum directed against the GABA biosynthetic enzyme glutamic acid decarboxylase (GAD) and GS antiserum were used. The results showed that punctate structures of variable size corresponding to axon terminals exhibited GAD-immunoreactivity and were distributed in varying densities. The greatest accumulation occurred in the caudal and middle segment of the AP and particularly in the area subpostrema, where the aggregation of terminals was extremely dense. The presence of both GAD-immunoreactive profiles and GS-immunostained ependymoglial cells and astrocytes in the AP provide further evidence of the functional correlation between the two enzymes.

  6. Effects of Bisphenol-A on proliferation and expression of genes related to synthesis of polyamines, interferon tau and insulin-like growth factor 2 by ovine trophectoderm cells.

    PubMed

    Elmetwally, Mohammed A; Halawa, Amal A; Lenis, Yasser Y; Tang, Wanjin; Wu, Guoyao; Bazer, Fuller W

    2018-04-07

    This study evaluated the effects of bisphenol A (BPA) on proliferation of ovine trophectoderm (oTr1) cells, as well as expression of genes for transport of arginine and synthesis of polyamines. BPA reduced proliferation of oTr1 cells at concentrations of 1 × 10 -6 , 1 × 10 -5 , 1 × 10 -4  M compared to concentrations of 0, 1 × 10 -9 , and 1 × 10 -8  M at 24 and 96 h of culture. Lower concentrations of BPA significantly increased expression of mRNAs for agmatinase (AGMAT), arginine decarboxylase (ADC), ornithine decarboxylase (ODC1) and solute carrier family 7 member 1 (SLC7A1). Similarly, synthesis of polyamines by oTr1 cells was greatest at lower concentrations of BPA and decreased as the dose of BPA increased. Expression of mRNAs for interferon tau (IFNT) and insulin-like growth factor 2 (IGF2) by oTr1 cells was greater than for controls at 1 × 10 -9  M BPA. Overall, the effects of BPA on proliferation and gene expression by oTr1 cells were highly dose-dependent. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Suppressive effects of chlorophyllin on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promoter-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells.

    PubMed

    Okai, Y; Higashi-Okai, K; Yano, Y; Otani, S

    1996-08-01

    The potentially protective role of chlorophyllin, the sodium and copper salt of chlorophyll a against the initiation and promotion stages in carcinogenesis was studied by in vitro short-term assays. Chlorophyllin showed a dose-dependent suppressive effect on 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1)-induced umu C gene expression of Salmonella typhimurium (TA 1535/pSK 1002) in the presence of metabolizing enzyme mixture. The similar inhibitory effect of chlorophyllin was detected in mitomycin C (MMC)-dependent umu C gene expression in the absence of metabolizing enzyme mixture. Furthermore chlorophyllin also exhibited a dose-dependent inhibition on 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced ornithine decarboxylase (ODC) activity of 3T3 fibroblast cells at the same concentrations. However, when chlorophyll a isolated from Japanese tea leaves was applied on the same assay systems as a comparative experiment, chlorophyll a showed much weaker activity compared with that of chlorophyllin. The significance of this finding is discussed from the viewpoint of the protective role of chlorophyllin against carcinogenesis.

  8. Mechanism of Citrate Metabolism by an Oxaloacetate Decarboxylase-Deficient Mutant of Lactococcus lactis IL1403 ▿

    PubMed Central

    Pudlik, Agata M.; Lolkema, Juke S.

    2011-01-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706–714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of l-lactate, indicating exchange between oxaloacetate and l-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate. PMID:21665973

  9. Mechanism of citrate metabolism by an oxaloacetate decarboxylase-deficient mutant of Lactococcus lactis IL1403.

    PubMed

    Pudlik, Agata M; Lolkema, Juke S

    2011-08-01

    Citrate metabolism in resting cells of Lactococcus lactis IL1403(pFL3) results in the formation of two end products from the intermediate pyruvate, acetoin and acetate (A. M. Pudlik and J. S. Lolkema, J. Bacteriol. 193:706-714, 2011). Pyruvate is formed from citrate following uptake by the transporter CitP through the subsequent actions of citrate lyase and oxaloacetate decarboxylase. The present study describes the metabolic response of L. lactis when oxaloacetate accumulates in the cytoplasm. The oxaloacetate decarboxylase-deficient mutant ILCitM(pFL3) showed nearly identical rates of citrate consumption, but the end product profile in the presence of glucose shifted from mainly acetoin to only acetate. In addition, in contrast to the parental strain, the mutant strain did not generate proton motive force. Citrate consumption by the mutant strain was coupled to the excretion of oxaloacetate, with a yield of 80 to 85%. Following citrate consumption, oxaloacetate was slowly taken up by the cells and converted to pyruvate by a cryptic decarboxylase and, subsequently, to acetate. The transport of oxaloacetate is catalyzed by CitP. The parental strain IL1403(pFL3) containing CitP consumed oxaloacetate, while the original strain, IL1403, not containing CitP, did not. Moreover, oxaloacetate consumption was enhanced in the presence of L-lactate, indicating exchange between oxaloacetate and L-lactate catalyzed by CitP. Hence, when oxaloacetate inadvertently accumulates in the cytoplasm, the physiological response of L. lactis is to excrete oxaloacetate in exchange with citrate by an electroneutral mechanism catalyzed by CitP. Subsequently, in a second step, oxaloacetate is taken up by CitP and metabolized to pyruvate and acetate.

  10. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    PubMed

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  11. α-VINYLLYSINE AND α-VINYLARGININE ARE TIME-DEPENDENT INHIBITORS OF THEIR COGNATE DECARBOXYLASES

    PubMed Central

    Berkowitz, David B.; Jahng, Wan-Jin; Pedersen, Michelle L.

    2017-01-01

    (±)-α-Vinyllysine and (±)-α-vinylarginine display time-dependent inhibition of L-lysine decarboxylase from B. cadaveris, and L-arginine decarboxylase from E. coli, respectively. A complete Kitz-Wilson analysis has been performed using a modification of the Palcic continuous UV assay for decarboxylase activity. PMID:29123334

  12. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses

    PubMed Central

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-01-01

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage. PMID:27021285

  13. Dual mechanisms regulating glutamate decarboxylases and accumulation of gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses.

    PubMed

    Mei, Xin; Chen, Yiyong; Zhang, Lingyun; Fu, Xiumin; Wei, Qing; Grierson, Don; Zhou, Ying; Huang, Yahui; Dong, Fang; Yang, Ziyin

    2016-03-29

    γ-Aminobutyric acid (GABA) is one of the major inhibitory neurotransmitters in the central nervous system. It has multiple positive effects on mammalian physiology and is an important bioactive component of tea (Camellia sinensis). GABA generally occurs at a very low level in plants but GABA content increases substantially after exposure to a range of stresses, especially oxygen-deficiency. During processing of tea leaves, a combination of anoxic stress and mechanical damage are essential for the high accumulation of GABA. This is believed to be initiated by a change in glutamate decarboxylase activity, but the underlying mechanisms are unclear. In the present study we characterized factors regulating the expression and activity of three tea glutamate decarboxylase genes (CsGAD1, 2, and 3), and their encoded enzymes. The results suggests that, unlike the model plant Arabidopsis thaliana, there are dual mechanisms regulating the accumulation of GABA in tea leaves exposed to multiple stresses, including activation of CsGAD1 enzymatic activity by calmodulin upon the onset of the stress and accumulation of high levels of CsGAD2 mRNA induced by a combination of anoxic stress and mechanical damage.

  14. Cold generation of smoke flavour by the first phenolic acid decarboxylase from a filamentous ascomycete - Isaria farinosa.

    PubMed

    Linke, Diana; Riemer, Stephanie J L; Schimanski, Silke; Nieter, Annabel; Krings, Ulrich; Berger, Ralf G

    2017-09-01

    A decarboxylase (IfPAD) from the ascomycete Isaria farinosa converted ferulic acid to 4-vinylguaiacol (4-VG), a volatile which imparts the distinct "smoke flavor" of pyrolized wood. The activity was enhanced by adding (E)-ferulic acid to the culture medium and peaked with 3.6 U g -1 mycelium (1 μmol 4-VG min -1 ). The coding sequence of 543 bp was translated into a 25 kDa protein with a homology of 91 % to putative phenolic acid decarboxylases of its teleomorph, Cordyceps militaris, and Beauveria bassiana, the anamorph of Cordyceps bassiana. Cold shock expression in Escherichia coli yielded 411 U g -1 wet mass. Substrate conversion required a hydroxyl substituent para to a trans-unsaturated C3-side chain of the aromatic ring. K m and k cat /K m values were determined to 0.3 mM and 78.4 mM -1 s -1 for p-coumaric acid and 1.9 mM and 45.1 mM -1 s -1 for (E)-ferulic acid, respectively. The native enzyme and its recombinant counterpart showed pH-optima at pH 6.0 and pH 5.5, and low temperature optima of 19 °C and 14 °C, respectively. IfPAD produced 4-VG from destarched wheat bran and sugar beet fiber, confirming activity on complex plant biomass. This is the first report on the biochemical characterization of a phenolic acid decarboxylase from a filamentous ascomycete. Copyright © 2017 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  15. Pantothenic acid biosynthesis in zymomonas

    DOEpatents

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  16. Insights on ornithine decarboxylase silencing as a potential strategy for targeting retinoblastoma.

    PubMed

    Muthukumaran, Sivashanmugam; Bhuvanasundar, Renganathan; Umashankar, Vetrivel; Sulochana, K N

    2018-02-01

    Ornithine Decarboxylase (ODC) is a key enzyme involved in polyamine synthesis and is reported to be up regulated in several cancers. However, the effect of ODC gene silencing in retinoblastoma is to be understood for utilization in therapeutic applications. Hence, in this study, a novel siRNA (small interference RNA) targeting ODC was designed and validated in Human Y79 retinoblastoma cells for its effects on intracellular polyamine levels, Matrix Metalloproteinase 2 & 9 activity and Cell cycle. The designed siRNA showed efficient silencing of ODC mRNA expression and protein levels in Y79 cells. It also showed significant reduction of intracellular polyamine levels and altered levels of oncogenic LIN28b expression. By this study, a regulatory loop is proposed, wherein, ODC silencing in Y79 cells to result in decreased polyamine levels, thereby, leading to altered protein levels of Lin28b, MMP-2 and MMP-9, which falls in line with earlier studies in neuroblastoma. Thus, by this study, we propose ODC silencing as a prospective strategy for targeting retinoblastoma. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Increased expression of glutamic acid decarboxylase mRNA in rat substantia nigra after an ibotenic acid lesion in the caudate-putamen.

    PubMed

    Lindefors, N; Brené, S; Persson, H

    1990-04-01

    In situ hybridization histochemistry and RNA blots were used to study expression of glutamic acid decarboxylase (GAD) mRNA in rat caudate-nucleus and substantia nigra. In situ hybridization combined with computerized image analysis revealed that in the intact substantia nigra reticulata the cross-section area of GAD mRNA positive neurons were 25% larger in the dorsolateral part as compared with the ventromedial part. A unilateral ibotenic acid injection in caudate-putamen lesioned neurons, some of which project to the ipsilateral substantia nigra. An increased level of GAD mRNA was observed in substantia nigra ipsilateral to the lesion. Computerized image analysis of sections from in situ hybridization revealed an increase in the number of silver grains over GAD mRNA positive neurons in the dorsolateral substantia nigra reticulata ipsilateral to the lesion. However, no change was observed in the ventromedial part suggesting that GAD mRNA expression in this part of the nigra is less sensitive to inhibition by caudate-putamen afferents. In agreement with in situ experiments, RNA blots showed a 2-fold increased level of GAD mRNA in substantia nigra ipsilateral to the lesion. The increased GAD mRNA expression in the deafferented substantia nigra suggests a disinhibition of nigral GABA neurons, resulting in an increased utilization of GABA in these substantia nigra neurons.

  18. Expression and functional analysis of the lysine decarboxylase and copper amine oxidase genes from the endophytic fungus Colletotrichum gloeosporioides ES026.

    PubMed

    Zhang, Xiangmei; Wang, Zhangqian; Jan, Saad; Yang, Qian; Wang, Mo

    2017-06-05

    Huperzine A (HupA) isolated from Huperzia serrata is an important compound used to treat Alzheimer's disease (AD). Recently, HupA was reported in various endophytic fungi, with Colletotrichum gloeosporioides ES026 previously isolated from H. serrata shown to produce HupA. In this study, we performed next-generation sequencing and de novo RNA sequencing of C. gloeosporioides ES026 to elucidate the molecular functions, biological processes, and biochemical pathways of these unique sequences. Gene ontology and Kyoto Encyclopedia of Genes and Genomes assignments allowed annotation of lysine decarboxylase (LDC) and copper amine oxidase (CAO) for their conversion of L-lysine to 5-aminopentanal during HupA biosynthesis. Additionally, we constructed a stable, high-yielding HupA-expression system resulting from the overexpression of CgLDC and CgCAO from the HupA-producing endophytic fungus C. gloeosporioides ES026 in Escherichia coli. Quantitative reverse transcription polymerase chain reaction analysis confirmed CgLDC and CgCAO expression, and quantitative determination of HupA levels was assessed by liquid chromatography high-resolution mass spectrometry, which revealed that elevated expression of CgLDC and CgCAO produced higher yields of HupA than those derived from C. gloeosporioides ES026. These results revealed CgLDC and CgCAO involvement in HupA biosynthesis and their key role in regulating HupA content in C. gloeosporioides ES026.

  19. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    PubMed

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  20. Genetic modifications and introduction of heterologous pdc genes in Enterococcus faecalis for its use in production of bioethanol.

    PubMed

    Rana, N F; Gente, S; Rincé, A; Auffray, Y; Laplace, J M

    2012-09-01

    Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase (ldh) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase (pdc) gene (from Sarcina ventriculi or Clostridium acetobutylicum) in place ldh1. When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg(-1) of pdc specific activity, respectively. Highest activity (47 U mg(-1)) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.

  1. Common genes regulate food and ethanol intake in Drosophila.

    PubMed

    Sekhon, Morgan L; Lamina, Omoteniola; Hogan, Kerry E; Kliethermes, Christopher L

    2016-06-01

    The abuse liability of alcohol (ethanol) is believed to result in part from its actions on neurobiological substrates that underlie the motivation toward food and other natural reinforcers, and a growing body of evidence indicates that these substrates are broadly conserved among animal phyla. Understanding the extent to which the substrates regulating ethanol and food intake overlap is an important step toward developing therapeutics that selectively reduce ethanol intake. In the current experiments, we measured food and ethanol intake in Recombinant Inbred (RI) lines of Drosophila melanogaster using several assays, and then calculated genetic correlations to estimate the degree to which common genes might underlie behavior in these assays. We found that food intake and ethanol intake as measured in the capillary assay are genetically correlated traits in D. melanogaster, as well as in a panel of 11 Drosophila species that we tested subsequently. RI line differences in food intake in a dyed food assay were genetically unrelated to ethanol intake in the capillary assay or to ethanol preference measured using an olfactory trap apparatus. Using publicly available gene expression data, we found that expression profiles across the RI lines of a number of genes (including the D2-like dopamine receptor, DOPA decarboxylase, and fruitless) correlated with the RI line differences in food and ethanol intake we measured, while the expression profiles of other genes, including NPF, and the NPF and 5-HT2 receptors, correlated only with ethanol intake or preference. Our results suggest that food and ethanol intake are regulated by some common genes in Drosophila, but that other genes regulate ethanol intake independently of food intake. These results have implications toward the development of therapeutics that preferentially reduce ethanol intake. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. A field-grown transgenic tomato line expressing higher levels of polyamines reveals legume cover crop mulch-specific perturbations in fruit phenotype at the levels of metabolite profiles, gene expression, and agronomic characteristics.

    PubMed

    Neelam, Anil; Cassol, Tatiana; Mehta, Roshni A; Abdul-Baki, Aref A; Sobolev, Anatoli P; Goyal, Ravinder K; Abbott, Judith; Segre, Anna L; Handa, Avtar K; Mattoo, Autar K

    2008-01-01

    Genetic modification of crop plants to introduce desirable traits such as nutritional enhancement, disease and pest resistance, and enhanced crop productivity is increasingly seen as a promising technology for sustainable agriculture and boosting food production in the world. Independently, cultural practices that utilize alternative agriculture strategies including organic cultivation subscribe to sustainable agriculture by limiting chemical usage and reduced tillage. How the two together affect fruit metabolism or plant growth in the field or whether they are compatible has not yet been tested. Fruit-specific yeast S-adenosylmethionine decarboxylase (ySAMdc) line 579HO, and a control line 556AZ were grown in leguminous hairy vetch (Vicia villosa Roth) (HV) mulch and conventional black polyethylene (BP) mulch, and their fruit analysed. Significant genotypexmulch-dependent interactions on fruit phenotype were exemplified by differential profiles of 20 fruit metabolites such as amino acids, sugars, and organic acids. Expression patterns of the ySAMdc transgene, and tomato SAMdc, E8, PEPC, and ICDHc genes were compared between the two lines as a function of growth on either BP or HV mulch. HV mulch significantly stimulated the accumulation of asparagine, glutamate, glutamine, choline, and citrate concomitant with a decrease in glucose in the 556AZ fruits during ripening as compared to BP. It enables a metabolic system in tomato somewhat akin to the one in higher polyamine-accumulating transgenic fruit that have higher phytonutrient content. Finally, synergism was found between HV mulch and transgenic tomato in up-regulating N:C indicator genes PEPC and ICDHc in the fruit.

  3. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-09-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.

  4. Expression of the neurotransmitter-synthesizing enzyme glutamic acid decarboxylase in male germ cells.

    PubMed Central

    Persson, H; Pelto-Huikko, M; Metsis, M; Söder, O; Brene, S; Skog, S; Hökfelt, T; Ritzén, E M

    1990-01-01

    The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility. Images PMID:1697032

  5. Improving nutritional quality and fungal tolerance in soya bean and grass pea by expressing an oxalate decarboxylase.

    PubMed

    Kumar, Vinay; Chattopadhyay, Arnab; Ghosh, Sumit; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-06-01

    Soya bean (Glycine max) and grass pea (Lathyrus sativus) seeds are important sources of dietary proteins; however, they also contain antinutritional metabolite oxalic acid (OA). Excess dietary intake of OA leads to nephrolithiasis due to the formation of calcium oxalate crystals in kidneys. Besides, OA is also a known precursor of β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), a neurotoxin found in grass pea. Here, we report the reduction in OA level in soya bean (up to 73%) and grass pea (up to 75%) seeds by constitutive and/or seed-specific expression of an oxalate-degrading enzyme, oxalate decarboxylase (FvOXDC) of Flammulina velutipes. In addition, β-ODAP level of grass pea seeds was also reduced up to 73%. Reduced OA content was interrelated with the associated increase in seeds micronutrients such as calcium, iron and zinc. Moreover, constitutive expression of FvOXDC led to improved tolerance to the fungal pathogen Sclerotinia sclerotiorum that requires OA during host colonization. Importantly, FvOXDC-expressing soya bean and grass pea plants were similar to the wild type with respect to the morphology and photosynthetic rates, and seed protein pool remained unaltered as revealed by the comparative proteomic analysis. Taken together, these results demonstrated improved seed quality and tolerance to the fungal pathogen in two important legume crops, by the expression of an oxalate-degrading enzyme. © 2016 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Transplastomic expression of bacterial L-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress.

    PubMed

    Fouad, W M; Altpeter, F

    2009-10-01

    Metabolic engineering for beta-alanine over-production in plants is expected to enhance environmental stress tolerance. The Escherichia coli L-aspartate-alpha-decarboxylase (AspDC) encoded by the panD gene, catalyzes the decarboxylation of L-aspartate to generate beta-alanine and carbon dioxide. The constitutive E. coli panD expression cassette was co-introduced with the constitutive, selectable aadA expression cassette into the chloroplast genome of tobacco via biolistic gene transfer and homologous recombination. Site specific integration of the E. coli panD expression cassette into the chloroplast genome and generation of homotransplastomic plants were confirmed by PCR and Southern blot analysis, respectively, following plant regeneration and germination of seedlings on selective media. PanD expression was verified by assays based on transcript detection and in vitro enzyme activity. The AspDC activities in transplastomic plants expressing panD were drastically increased by high-temperature stress. beta-Alanine accumulated in transplastomic plants at levels four times higher than in wildtype plants. Analysis of chlorophyll fluorescence on plants subjected to severe heat stress at 45 degrees C under light verified that photosystem II (PSII) in transgenic plants had higher thermotolerance than in wildtype plants. The CO(2) assimilation of transplastomic plants expressing panD was more tolerant to high temperature stress than that of wildtype plants, resulting in the production of 30-40% more above ground biomass than wildtype control. The results presented indicate that chloroplast engineering of the beta-alanine pathway by over-expression of the E. coli panD enhances thermotolerance of photosynthesis and biomass production following high temperature stress.

  7. Disruption of pknG enhances production of gamma-aminobutyric acid by Corynebacterium glutamicum expressing glutamate decarboxylase.

    PubMed

    Okai, Naoko; Takahashi, Chihiro; Hatada, Kazuki; Ogino, Chiaki; Kondo, Akihiko

    2014-01-01

    Gamma-aminobutyric acid (GABA), a building block of the biodegradable plastic polyamide 4, is synthesized from glucose by Corynebacterium glutamicum that expresses Escherichia coli glutamate decarboxylase (GAD) B encoded by gadB. This strain was engineered to produce GABA more efficiently from biomass-derived sugars. To enhance GABA production further by increasing the intracellular concentration of its precursor glutamate, we focused on engineering pknG (encoding serine/threonine protein kinase G), which controls the activity of 2-oxoglutarate dehydrogenase (Odh) in the tricarboxylic acid cycle branch point leading to glutamate synthesis. We succeeded in expressing GadB in a C. glutamicum strain harboring a deletion of pknG. C. glutamicum strains GAD and GAD ∆pknG were cultured in GP2 medium containing 100 g L(-1) glucose and 0.1 mM pyridoxal 5'-phosphate. Strain GAD∆pknG produced 31.1 ± 0.41 g L(-1) (0.259 g L(-1) h(-1)) of GABA in 120 hours, representing a 2.29-fold higher level compared with GAD. The production yield of GABA from glucose by GAD∆pknG reached 0.893 mol mol(-1).

  8. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    PubMed

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  9. l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer.

    PubMed

    Patsis, Christos; Glyka, Vasiliki; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-08-01

    l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients.

  10. l-DOPA Decarboxylase (DDC) Expression Status as a Novel Molecular Tumor Marker for Diagnostic and Prognostic Purposes in Laryngeal Cancer1

    PubMed Central

    Patsis, Christos; Glyka, Vasiliki; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-01-01

    l-DOPA decarboxylase (DDC) plays an essential role in the enzymatic synthesis of dopamine and alterations in its gene expression have been reported in several malignancies. Our objective was to analyze DDC messenger RNA (mRNA) and protein expression in laryngeal tissues and to evaluate the clinical implication of this molecule in laryngeal cancer. In this study, total RNA was isolated from 157 tissue samples surgically removed from 100 laryngeal cancer patients. A highly sensitive real-time polymerase chain reaction methodology based on SYBR Green I fluorescent dye was developed for the quantification of DDC mRNA levels. In addition, Western blot analysis was performed for the detection of DDC protein. DDC mRNA expression was revealed to be significantly downregulated in primary laryngeal cancer samples compared with their nonmalignant counterparts (P = .001). A significant negative association was also disclosed between DDC mRNA levels and TNM staging (P = .034). Univariate analysis showed that patients bearing DDC-positive tumors had a significantly decreased risk of death (hazard ratio = 0.23, P = .012) and local recurrence (hazard ratio = 0.32, P =.006), whereas DDC expression retained its favorable prognostic significance in the multivariate analysis. Kaplan-Meier curves further demonstrated that DDC-positive patients experienced longer overall and disease-free survival periods (P = .006 and P = .004, respectively). Moreover, DDC protein was detected in both neoplastic and noncancerous tissues. Therefore, our results suggest that DDC expression status could qualify as a promising biomarker for the future clinical management of laryngeal cancer patients. PMID:22937181

  11. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes.

    PubMed Central

    Mills, D A; Flickinger, M C

    1993-01-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis. Images PMID:8215365

  12. Cloning and sequence analysis of the meso-diaminopimelate decarboxylase gene from Bacillus methanolicus MGA3 and comparison to other decarboxylase genes.

    PubMed

    Mills, D A; Flickinger, M C

    1993-09-01

    The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.

  13. The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses.

    PubMed

    Bae, Hanhong; Kim, Soo-Hyung; Kim, Moon S; Sicher, Richard C; Lary, David; Strem, Mary D; Natarajan, Savithiry; Bailey, Bryan A

    2008-02-01

    Drought can negatively impact pod production despite the fact that cacao production usually occurs in tropical areas having high rainfall. Polyamines (PAs) have been associated with the response of plants to drought in addition to their roles in responses to many other stresses. The constitutive and drought inducible expression patterns of genes encoding enzymes involved in PA biosynthesis were determined: an ornithine decarboxylase (TcODC), an arginine decarboxylase (TcADC), an S-adenosylmethionine decarboxylase (TcSAMDC), a spermidine synthase (TcSPDS), and a spermine synthase (TcSPMS). Expression analysis using quantitative real-time reverse transcription-PCR (QPCR) results showed that the PA biosynthesis genes were expressed in all plant tissues examined. Constitutive expression of PA biosynthesis genes was generally highest in mature leaves and open flowers. Expression of TcODC, TcADC, and TcSAMDC was induced with the onset of drought and correlated with changes in stomatal conductance, photosynthesis, photosystem II efficiency, leaf water potential and altered emission of blue-green fluorescence from cacao leaves. Induction of TcSAMDC in leaves was most closely correlated with changes in water potential. The earliest measured responses to drought were enhanced expression of TcADC and TcSAMDC in roots along with decreases in stomatal conductance, photosynthesis, and photosystem II efficiency. Elevated levels of putrescine, spermidine, and spermine were detected in cacao leaves 13days after the onset of drought. Expression of all five PA associated transcripts was enhanced (1.5-3-fold) in response to treatment with abscisic acid. TcODC and TcADC, were also responsive to mechanical wounding, infection by Phytophthora megakarya (a causal agent of black pod disease in cacao), the necrosis- and ethylene-inducing protein (Nep1) of Fusarium oxysporum, and flower abscission. TcSAMDC expression was responsive to all stresses except flower abscission. TcODC, although constitutively expressed at much lower levels than TcADC, TcSAMDC, TcSPDS, and TcSPMS, was highly inducible by the fungal protein Nep1 (135-fold) and the cacao pathogen Phytophthora megakarya (671-fold). The full length cDNA for ODC was cloned and characterized. Among the genes studied, TcODC, TcADC, and TcSAMDC were most sensitive to induction by drought in addition to other abiotic and biotic stresses. TcODC, TcADC, and TcSAMDC may share signal transduction pathways and/or the stress induced signal induction pathways may converge at these three genes leading to similar although not identical patterns of expression. It is possible altering PA levels in cacao will result in enhanced tolerance to multiple stresses including drought and disease as has been demonstrated in other crops.

  14. Genetics Home Reference: malonyl-CoA decarboxylase deficiency

    MedlinePlus

    ... decarboxylase malonic aciduria malonyl-coenzyme A decarboxylase deficiency MCD deficiency Related Information How are genetic conditions and ... Morrell JC, Wanders RJ, Matalon R, Gould SJ. MCD encodes peroxisomal and cytoplasmic forms of malonyl-CoA ...

  15. Genetic manipulation of the metabolism of polyamines in poplar cells. The regulation of putrescine catabolism

    Treesearch

    Pratiksha Bhatnagar; Rakesh Minocha; Subhash C. Minocha

    2002-01-01

    We investigated the catabolism of putrescine (Put) in a non-transgenic (NT) and a transgenic cell line of poplar (Populus nigra x maximowiczii) expressing a mouse (Mus musculus) ornithine (Orn) decarboxylase (odc) cDNA. The transgenic cells produce 3- to 4-fold higher amounts of Put than the NT...

  16. Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes

    DOEpatents

    Ingram, Lonnie O.; Conway, Tyrrell; Alterthum, Flavio

    1991-01-01

    A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

  17. Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products.

    PubMed

    Muñoz-Atienza, Estefanía; Landeta, Gerardo; de las Rivas, Blanca; Gómez-Sala, Beatriz; Muñoz, Rosario; Hernández, Pablo E; Cintas, Luis M; Herranz, Carmen

    2011-03-30

    In this work, biogenic amine production (histamine, tyramine and putrescine) by a collection of 74 lactic acid bacteria of aquatic origin has been investigated by means of amino acid decarboxylation by growth on decarboxylase differential medium, biogenic amine detection by thin-layer chromatography (TLC) and decarboxylase gene detection by PCR. None of the evaluated strains showed neither production of histamine and putrescine, nor presence of the genetic determinants encoding the corresponding decarboxylase activities. However, the tyrosine decarboxylase gene (tdc) was present in all the enterococcal strains, and tyramine production was detected by TLC in all of them but Enterococcus faecium BCS59 and MV5. Analysis of the tyrosine decarboxylase operon of these strains revealed the presence of an insertion sequence upstream tdc that could be responsible for their lack of tyrosine decarboxylase activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Polyamines are not required for aerobic growth of Escherichia coli: preparation of a strain with deletions in all of the genes for polyamine biosynthesis.

    PubMed

    Chattopadhyay, Manas K; Tabor, Celia White; Tabor, Herbert

    2009-09-01

    A strain of Escherichia coli was constructed in which all of the genes involved in polyamine biosynthesis--speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), spe D (adenosylmethionine decarboxylase), speE (spermidine synthase), speF (inducible ornithine decarboxylase), cadA (lysine decarboxylase), and ldcC (lysine decarboxylase)--had been deleted. Despite the complete absence of all of the polyamines, the strain grew indefinitely in air in amine-free medium, albeit at a slightly (ca. 40 to 50%) reduced growth rate. Even though this strain grew well in the absence of the amines in air, it was still sensitive to oxygen stress in the absence of added spermidine. In contrast to the ability to grow in air in the absence of polyamines, this strain, surprisingly, showed a requirement for polyamines for growth under strictly anaerobic conditions.

  19. Aromatic L-Amino Acid Decarboxylase (AADC) Is Crucial for Brain Development and Motor Functions

    PubMed Central

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children. PMID:23940784

  20. Aromatic L-amino acid decarboxylase (AADC) is crucial for brain development and motor functions.

    PubMed

    Shih, De-Fen; Hsiao, Chung-Der; Min, Ming-Yuan; Lai, Wen-Sung; Yang, Chianne-Wen; Lee, Wang-Tso; Lee, Shyh-Jye

    2013-01-01

    Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare pediatric neuro-metabolic disease in children. Due to the lack of an animal model, its pathogenetic mechanism is poorly understood. To study the role of AADC in brain development, a zebrafish model of AADC deficiency was generated. We identified an aadc gene homolog, dopa decarboxylase (ddc), in the zebrafish genome. Whole-mount in situ hybridization analysis showed that the ddc gene is expressed in the epiphysis, locus caeruleus, diencephalic catecholaminergic clusters, and raphe nuclei of 36-h post-fertilization (hpf) zebrafish embryos. Inhibition of Ddc by AADC inhibitor NSD-1015 or anti-sense morpholino oligonucleotides (MO) reduced brain volume and body length. We observed increased brain cell apoptosis and loss of dipencephalic catecholaminergic cluster neurons in ddc morphants (ddc MO-injected embryos). Seizure-like activity was also detected in ddc morphants in a dose-dependent manner. ddc morphants had less sensitive touch response and impaired swimming activity that could be rescued by injection of ddc plasmids. In addition, eye movement was also significantly impaired in ddc morphants. Collectively, loss of Ddc appears to result in similar phenotypes as that of ADCC deficiency, thus zebrafish could be a good model for investigating pathogenetic mechanisms of AADC deficiency in children.

  1. Identification and characterization of L-lysine decarboxylase from Huperzia serrata and its role in the metabolic pathway of lycopodium alkaloid.

    PubMed

    Xu, Baofu; Lei, Lei; Zhu, Xiaocen; Zhou, Yiqing; Xiao, Youli

    2017-04-01

    Lysine decarboxylation is the first biosynthetic step of Huperzine A (HupA). Six cDNAs encoding lysine decarboxylases (LDCs) were cloned from Huperzia serrata by degenerate PCR and rapid amplification of cDNA ends (RACE). One HsLDC isoform was functionally characterized as lysine decarboxylase. The HsLDC exhibited greatest catalytic efficiency (k cat /K m , 2.11 s -1  mM -1 ) toward L-lysine in vitro among all reported plant-LDCs. Moreover, transient expression of the HsLDC in tobacco leaves specifically increased cadaverine content from zero to 0.75 mg per gram of dry mass. Additionally, a convenient and reliable method used to detect the two catalytic products was developed. With the novel method, the enzymatic products of HsLDC and HsCAO, namely cadaverine and 5-aminopentanal, respectively, were detected simultaneously both in assay with purified enzymes and in transgenic tobacco leaves. This work not only provides direct evidence of the first two-step in biosynthetic pathway of HupA in Huperzia serrata and paves the way for further elucidation of the pathway, but also enables engineering heterologous production of HupA. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  3. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    PubMed

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  4. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    PubMed

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H 2 O 2 ) under chilling stress conditions using tomato seedlings [( Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H 2 O 2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase ( LeADC. LeADC1 ), ornithine decarboxylase ( LeODC ), and Spd synthase ( LeSPDS ) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S -adenosylmethionine decarboxylase ( LeSAMDC ) and Spm synthase ( LeSPMS ), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9- cis -epoxycarotenoid dioxygenase ( LeNCED1 ) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H 2 O 2 -dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress.

  5. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings

    PubMed Central

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling stress, Spd and Spm enhanced the production of NO in tomato seedlings through an H2O2-dependent mechanism, via the NR and NOS-like pathways. ABA is involved in Put-induced tolerance to chilling stress, and NO could increase the content of Put and Spd under chilling stress. PMID:28261254

  6. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    PubMed

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  7. Ribosomal binding site sequences and promoters for expressing glutamate decarboxylase and producing γ-aminobutyrate in Corynebacterium glutamicum.

    PubMed

    Shi, Feng; Luan, Mingyue; Li, Yongfu

    2018-04-18

    Glutamate decarboxylase (GAD) converts L-glutamate (Glu) into γ-aminobutyric acid (GABA). Corynebacterium glutamicum that expresses exogenous GAD gene, gadB2 or gadB1, can synthesize GABA from its own produced Glu. To enhance GABA production in C. glutamicum, ribosomal binding site (RBS) sequence and promoter were searched and optimized for increasing the expression efficiency of gadB2. R4 exhibited the highest strength among RBS sequences tested, with 6 nt the optimal aligned spacing (AS) between RBS and start codon. This combination of RBS sequence and AS contributed to gadB2 expression, increased GAD activity by 156% and GABA production by 82% compared to normal strong RBS and AS combination. Then, a series of native promoters were selected for transcribing gadB2 under optimal RBS and AS combination. P dnaK , P dtsR , P odhI and P clgR expressed gadB2 and produced GABA as effectively as widely applied P tuf and P cspB promoters and more effectively than P sod promoter. However, each native promoter did not work as well as the synthetic strong promoter P tacM , which produced 20.2 ± 0.3 g/L GABA. Even with prolonged length and bicistronic architecture, the strength of P dnaK did not enhance. Finally, gadB2 and mutant gadB1 were co-expressed under the optimal promoter and RBS combination, thus converted Glu into GABA completely and improved GABA production to more than 25 g/L. This study provides useful promoters and RBS sequences for gene expression in C. glutamicum.

  8. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells

    PubMed Central

    Cheng, Yu-Che; Huang, Chi-Jung; Lee, Yih-Jing; Tien, Lu-Tai; Ku, Wei-Chi; Chien, Raymond; Lee, Fa-Kung; Chien, Chih-Cheng

    2016-01-01

    This study presents human placenta-derived multipotent cells (PDMCs) as a source from which functional glutamatergic neurons can be derived. We found that the small heat-shock protein 27 (HSP27) was downregulated during the neuronal differentiation process. The in vivo temporal and spatial profiles of HSP27 expression were determined and showed inverted distributions with neuronal proteins during mouse embryonic development. Overexpression of HSP27 in stem cells led to the arrest of neuronal differentiation; however, the knockdown of HSP27 yielded a substantially enhanced ability of PDMCs to differentiate into neurons. These neurons formed synaptic networks and showed positive staining for multiple neuronal markers. Additionally, cellular phenomena including the absence of apoptosis and rare proliferation in HSP27-silenced PDMCs, combined with molecular events such as cleaved caspase-3 and the loss of stemness with cleaved Nanog, indicated that HSP27 is located upstream of neuronal differentiation and constrains that process. Furthermore, the induced neurons showed increasing intracellular calcium concentrations upon glutamate treatment. These differentiated cells co-expressed the N-methyl-D-aspartate receptor, vesicular glutamate transporter, and synaptosomal-associated protein 25 but did not show expression of tyrosine hydroxylase, choline acetyltransferase or glutamate decarboxylase 67. Therefore, we concluded that HSP27-silenced PDMCs differentiated into neurons possessing the characteristics of functional glutamatergic neurons. PMID:27444754

  9. Analysis of Gene Expression and Proteomic Profiles of Clonal Genotypes from Theobroma cacao Subjected to Soil Flooding

    PubMed Central

    Bertolde, Fabiana Z.; Almeida, Alex-Alan F.; Pirovani, Carlos P.

    2014-01-01

    Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor. PMID:25289700

  10. Analysis of gene expression and proteomic profiles of clonal genotypes from Theobroma cacao subjected to soil flooding.

    PubMed

    Bertolde, Fabiana Z; Almeida, Alex-Alan F; Pirovani, Carlos P

    2014-01-01

    Soil flooding causes changes in gene transcription, synthesis and degradation of proteins and cell metabolism. The main objective of this study was to understand the biological events of Theobroma cacao during soil flooding-induced stress, using the analyses of gene expression and activity of key enzymes involved in fermentation, as well as the identification of differentially expressed proteins by mass spectrometry in two contrasting genotypes for flooding tolerance (tolerant - TSA-792 and susceptible - TSH-774). Soil anoxia caused by flooding has led to changes in the expression pattern of genes associated with the biosynthesis of alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC) and lactate dehydrogenase (LDH) in leaves and roots of the two evaluated genotypes. Significant differences were observed between the enzyme activities of the two genotypes. Leaves and roots of the TSA-792 genotype showed higher ADH activity as compared to the TSH-774 genotype, whereas the activities of PDC and LDH have varied over the 96 h of soil flooding, being higher for TSA-792 genotype, at the initial stage, and TSH-774 genotype, at the final stage. Some of the identified proteins are those typical of the anaerobic metabolism-involved in glycolysis and alcoholic fermentation-and different proteins associated with photosynthesis, protein metabolism and oxidative stress. The ability to maintain glycolysis and induce fermentation was observed to play an important role in anoxia tolerance in cacao and may also serve to distinguish tolerant and susceptible genotypes in relation to this stressor.

  11. Enzymes involved in the anaerobic degradation of ortho-phthalate by the nitrate-reducing bacterium Azoarcus sp. strain PA01.

    PubMed

    Junghare, Madan; Spiteller, Dieter; Schink, Bernhard

    2016-09-01

    The pathway of anaerobic degradation of o-phthalate was studied in the nitrate-reducing bacterium Azoarcus sp. strain PA01. Differential two-dimensional protein gel profiling allowed the identification of specifically induced proteins in o-phthalate-grown compared to benzoate-grown cells. The genes encoding o-phthalate-induced proteins were found in a 9.9 kb gene cluster in the genome of Azoarcus sp. strain PA01. The o-phthalate-induced gene cluster codes for proteins homologous to a dicarboxylic acid transporter, putative CoA-transferases and a UbiD-like decarboxylase that were assigned to be specifically involved in the initial steps of anaerobic o-phthalate degradation. We propose that o-phthalate is first activated to o-phthalyl-CoA by a putative succinyl-CoA-dependent succinyl-CoA:o-phthalate CoA-transferase, and o-phthalyl-CoA is subsequently decarboxylated to benzoyl-CoA by a putative o-phthalyl-CoA decarboxylase. Results from in vitro enzyme assays with cell-free extracts of o-phthalate-grown cells demonstrated the formation of o-phthalyl-CoA from o-phthalate and succinyl-CoA as CoA donor, and its subsequent decarboxylation to benzoyl-CoA. The putative succinyl-CoA:o-phthalate CoA-transferase showed high substrate specificity for o-phthalate and did not accept isophthalate, terephthalate or 3-fluoro-o-phthalate whereas the putative o-phthalyl-CoA decarboxylase converted fluoro-o-phthalyl-CoA to fluoro-benzoyl-CoA. No decarboxylase activity was observed with isophthalyl-CoA or terephthalyl-CoA. Both enzyme activities were oxygen-insensitive and inducible only after growth with o-phthalate. Further degradation of benzoyl-CoA proceeds analogous to the well-established anaerobic benzoyl-CoA degradation pathway of nitrate-reducing bacteria. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed.

    PubMed

    Hitchins, Megan P; Bentley, Louise; Monk, David; Beechey, Colin; Peters, Jo; Kelsey, Gavin; Ishino, Fumitoshi; Preece, Michael A; Stanier, Philip; Moore, Gudrun E

    2002-12-01

    Maternal duplication of human 7p11.2-p13 has been associated with Silver-Russell syndrome (SRS) in two familial cases. GRB10 is the only imprinted gene identified within this region to date. GRB10 demonstrates an intricate tissue- and isoform-specific imprinting profile in humans, with paternal expression in fetal brain and maternal expression of one isoform in skeletal muscle. The mouse homolog is maternally transcribed. The GRB10 protein is a potent growth inhibitor and represents a candidate for SRS, which is characterized by pre- and postnatal growth retardation and a spectrum of additional dysmorphic features. Since imprinted genes tend to be grouped in clusters, we investigated the imprinting status of the dopa-decarboxylase gene (DDC) and the Cordon-bleu gene (COBL) which flank GRB10 within the 7p11.2-p13 SRS duplicated region. Although both genes were found to replicate asynchronously, suggestive of imprinting, SNP expression analyses showed that neither gene was imprinted in multiple human fetal tissues. The mouse homologues, Ddc and Cobl, which map to the homologous imprinted region on proximal Chr 11, were also biallelically expressed in mice with uniparental maternal or paternal inheritance of this region. With the intent of using mouse Grb10 as an imprinted control, biallelic expression was consistently observed in fetal, postnatal, and adult brain of these mice, in contrast to the maternal-specific transcription previously demonstrated in brain in inter-specific F1 progeny. This may be a further example of over-expression of maternally derived transcripts in inter-specific mouse crosses. GRB10 remains the only imprinted gene identified within 7p11.2-p13.

  13. Gene profiling-based phenotyping for identification of cellular parameters that contribute to fitness, stress-tolerance and virulence of Listeria monocytogenes variants.

    PubMed

    Koomen, Jeroen; den Besten, Heidy M W; Metselaar, Karin I; Tempelaars, Marcel H; Wijnands, Lucas M; Zwietering, Marcel H; Abee, Tjakko

    2018-06-07

    Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants. Upregulated genes included a major contribution of SigB-controlled genes such as intracellular acid resistance-associated glutamate decarboxylase (GAD) (gad3), genes involved in compatible solute uptake (opuC), glycerol metabolism (glpF, glpK, glpD), and virulence (inlA, inlB). Downregulated genes in the two variants involved mainly genes involved in flagella synthesis and motility. Phenotyping results of the two rpsU variants matched the gene profiling data including enhanced freezing resistance conceivably linked to compatible solute accumulation, higher glycerol utilisation rates, and better adhesion to Caco 2 cells presumably linked to higher expression of internalins. Also, bright field and electron microscopy analysis confirmed reduced flagellation of the variants. The activation of SigB-mediated stress defence offers an explanation for the multiple-stress resistant phenotype in rpsU variants. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Human L-DOPA decarboxylase mRNA is a target of miR-145: A prediction to validation workflow.

    PubMed

    Papadopoulos, Emmanuel I; Fragoulis, Emmanuel G; Scorilas, Andreas

    2015-01-10

    l-DOPA decarboxylase (DDC) is a multiply-regulated gene which encodes the enzyme that catalyzes the biosynthesis of dopamine in humans. MicroRNAs comprise a novel class of endogenously transcribed small RNAs that can post-transcriptionally regulate the expression of various genes. Given that the mechanism of microRNA target recognition remains elusive, several genes, including DDC, have not yet been identified as microRNA targets. Nevertheless, a number of specifically designed bioinformatic algorithms provide candidate miRNAs for almost every gene, but still their results exhibit moderate accuracy and should be experimentally validated. Motivated by the above, we herein sought to discover a microRNA that regulates DDC expression. By using the current algorithms according to bibliographic recommendations we found that miR-145 could be predicted with high specificity as a candidate regulatory microRNA for DDC expression. Thus, a validation experiment followed by firstly transfecting an appropriate cell culture system with a synthetic miR-145 sequence and sequentially assessing the mRNA and protein levels of DDC via real-time PCR and Western blotting, respectively. Our analysis revealed that miR-145 had no significant impact on protein levels of DDC but managed to dramatically downregulate its mRNA expression. Overall, the experimental and bioinformatic analysis conducted herein indicate that miR-145 has the ability to regulate DDC mRNA expression and potentially this occurs by recognizing its mRNA as a target. Copyright © 2014. Published by Elsevier B.V.

  15. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway.

    PubMed

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold; Davies, Kelvin Paul

    2009-10-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism.

  16. The mechanism of opiorphin-induced experimental priapism in rats involves activation of the polyamine synthetic pathway

    PubMed Central

    Kanika, Nirmala Devi; Tar, Moses; Tong, Yuehong; Kuppam, Dwaraka Srinivasa Rao; Melman, Arnold

    2009-01-01

    Intracorporal injection of plasmids encoding opiorphins into retired breeder rats can result in animals developing a priapic-like condition. Microarray analysis demonstrated that following intracorporal gene transfer of plasmids expressing opiorphins the most significantly upregulated gene in corporal tissue was the ornithine decarboxylase gene (ODC). Quantitative RT-PCR confirmed the upregulation of ODC, as well as other genes involved in polyamine synthesis, such as arginase-I and -II, polyamine oxidase, spermidine synthase, spermidine acetyltransferase (SAT), and S-adenosylmethionine decarboxylase. Western blot analysis demonstrated upregulation of arginase-I and -II, ODC, and SAT at the protein level. Levels of the polyamine putrescine were upregulated in animals treated with opiorphin-expressing plasmids compared with controls. A direct role for the upregulation of polyamine synthesis in the development of the priapic-like condition was supported by the observation that the ODC inhibitor 1,3-diaminopropane, when added to the drinking water of animals treated with plasmids expressing opiorphins, prevented experimental priapism. We also demonstrate that in sickle cell mice, another model of priapism, there is increased expression of the mouse opiorphin homologue in corporal tissue compared with the background strain at a life stage prior to evidence of priapism. At a life stage when there is onset of priapism, there is increased expression of the enzymes involved in polyamine synthesis (ODC and arginase-I and -II). Our results suggest that the upregulation of enzymes involved in the polyamine synthetic pathway may play a role in the development of experimental priapism and represent a target for the prevention of priapism. PMID:19657052

  17. Enhancement of γ-aminobutyric acid production in recombinant Corynebacterium glutamicum by co-expressing two glutamate decarboxylase genes from Lactobacillus brevis.

    PubMed

    Shi, Feng; Jiang, Junjun; Li, Yongfu; Li, Youxin; Xie, Yilong

    2013-11-01

    γ-Aminobutyric acid (GABA), a non-protein amino acid, is a bioactive component in the food, feed and pharmaceutical fields. To establish an effective single-step production system for GABA, a recombinant Corynebacterium glutamicum strain co-expressing two glutamate decarboxylase (GAD) genes (gadB1 and gadB2) derived from Lactobacillus brevis Lb85 was constructed. Compared with the GABA production of the gadB1 or gadB2 single-expressing strains, GABA production by the gadB1-gadB2 co-expressing strain increased more than twofold. By optimising urea supplementation, the total production of L-glutamate and GABA increased from 22.57 ± 1.24 to 30.18 ± 1.33 g L⁻¹, and GABA production increased from 4.02 ± 0.95 to 18.66 ± 2.11 g L⁻¹ after 84-h cultivation. Under optimal urea supplementation, L-glutamate continued to be consumed, GABA continued to accumulate after 36 h of fermentation, and the pH level fluctuated. GABA production increased to a maximum level of 27.13 ± 0.54 g L⁻¹ after 120-h flask cultivation and 26.32 g L⁻¹ after 60-h fed-batch fermentation. The conversion ratio of L-glutamate to GABA reached 0.60-0.74 mol mol⁻¹. By co-expressing gadB1 and gadB2 and optimising the urea addition method, C. glutamicum was genetically improved for de novo biosynthesis of GABA from its own accumulated L-glutamate.

  18. Differential Regulation of Glutamic Acid Decarboxylase Gene Expression after Extinction of a Recent Memory vs. Intermediate Memory

    ERIC Educational Resources Information Center

    Sangha, Susan; Ilenseer, Jasmin; Sosulina, Ludmila; Lesting, Jorg; Pape, Hans-Christian

    2012-01-01

    Extinction reduces fear to stimuli that were once associated with an aversive event by no longer coupling the stimulus with the aversive event. Extinction learning is supported by a network comprising the amygdala, hippocampus, and prefrontal cortex. Previous studies implicate a critical role of GABA in extinction learning, specifically the GAD65…

  19. Recombinant organisms capable of fermenting cellobiose

    DOEpatents

    Ingram, Lonnie O.; Lai, Xiaokuang; Moniruzzaman, Mohammed; York, Sean W.

    2000-01-01

    This invention relates to a recombinant microorganism which expresses pyruvate decarboxylase, alcohol dehydrogenase, Klebsiella phospho-.beta.-glucosidase and Klebsiella (phosphoenolpyruvate-dependent phosphotransferase system) cellobiose-utilizing Enzyme II, wherein said phospho-.beta.-glucosidase and said (phosphoenolpyruvate-dependent phosphotransferase) cellobiose-utilizing Enzyme II are heterologous to said microorganism and wherein said microorganism is capable of utilizing both hemicellulose and cellulose, including cellobiose, in the production of ethanol.

  20. Activities of Arginine and Ornithine Decarboxylases in Various Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to Vmax, ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. α-Difluoromethylornithine and α-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species. No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed. In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum. PMID:16664442

  1. Activities of arginine and ornithine decarboxylases in various plant species.

    PubMed

    Birecka, H; Bitonti, A J; McCann, P P

    1985-10-01

    In extracts from the youngest leaves of Avena sativa, Hordeum vulgare, Zea Mays, Pisum sativum, Phaseolus vulgaris, Lactuca sativa, and four pyrrolizidine alkaloid-bearing species of Heliotropium, the activities of ornithine decarboxylase, close to V(max), ranged between traces and 1.5 nanomoles per hour per gram fresh weight when based on putrescine formed during incubation with labeled ornithine. The arginine decarboxylase activities in the same extracts ranged between 8 and 8000 nanomoles per hour per gram fresh weight being lowest in the borages and highest in oat and barley. alpha-Difluoromethylornithine and alpha-difluoromethylarginine inhibited ornithine and arginine decarboxylases, respectively, in all species. Agmatine, putrescine, spermidine, and spermine were found in all, diaminopropane in eight, and cadaverine in three species.No correlation was observed between arginine or ornithine decarboxylase level and the levels of total polyamines. The in vitro decarboxylase activities found in the borages cannot explain the high accumulation of putrescine-derived pyrrolizidines in their youngest leaves if the pyrrolizidines are produced in situ from arginine and/or ornithine as precursors; other possibilities are discussed.In assays of ornithine decarboxylase, an interference of decarboxylation not due to this enzyme was observed in extracts from all species. In arginine decarboxylase assays, the interfering decarboxylation as well as the interference of arginase were apparent in two species. Addition of aminoguanidine was needed to suppress oxidative degradation of putrescine and agmatine during incubation of extracts from pea, bean, lettuce, Heliotropium angiospermum, and Heliotropium indicum.

  2. Aversive odorant causing appetite decrease downregulates tyrosine decarboxylase gene expression in the olfactory receptor neuron of the blowfly, Phormia regina

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Ozaki, Mamiko

    2012-01-01

    In the blowfly Phormia regina, exposure to d-limonene for 5 days during feeding inhibits proboscis extension reflex behavior due to decreasing tyramine (TA) titer in the brain. TA is synthesized by tyrosine decarboxylase (Tdc) and catalyzed into octopamine (OA) by TA ß-hydroxylase (Tbh). To address the mechanisms of TA titer regulation in the blowfly, we cloned Tdc and Tbh cDNAs from P. regina (PregTdc and PregTbh). The deduced amino acid sequences of both proteins showed high identity to those of the corresponding proteins from Drosophila melanogaster at the amino acid level. PregTdc was expressed in the antenna, labellum, and tarsus whereas PregTbh was expressed in the head, indicating that TA is mainly synthesized in the sensory organs whereas OA is primarily synthesized in the brain. d-Limonene exposure significantly decreased PregTdc expression in the antenna but not in the labellum and the tarsus, indicating that PregTdc expressed in the antenna is responsible for decreasing TA titer. PregTdc-like immunoreactive material was localized in the thin-walled sensillum. In contrast, the OA/TA receptor (PregOAR/TAR) was localized to the thick-walled sensillum. The results indicated that d-limonene inhibits PregTdc expression in the olfactory receptor neurons in the thin-walled sensilla, likely resulting in reduced TA levels in the receptor neurons in the antenna. TA may be transferred from the receptor neuron to the specific synaptic junction in the antennal lobe of the brain through the projection neurons and play a role in conveying the aversive odorant information to the projection and local neurons.

  3. Lower expression of glutamic acid decarboxylase 67 in the prefrontal cortex in schizophrenia: contribution of altered regulation by Zif268.

    PubMed

    Kimoto, Sohei; Bazmi, H Holly; Lewis, David A

    2014-09-01

    Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia. The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes. GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes. Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.

  4. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression.

    PubMed

    Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra

    2015-01-01

    The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.

  5. Differential gene expression revealed with RNA-Seq and parallel genotype selection of the ornithine decarboxylase gene in fish inhabiting polluted areas.

    PubMed

    Vega-Retter, C; Rojas-Hernandez, N; Vila, I; Espejo, R; Loyola, D E; Copaja, S; Briones, M; Nolte, A W; Véliz, D

    2018-03-19

    How organisms adapt to unfavorable environmental conditions by means of plasticity or selection of favorable genetic variants is a central issue in evolutionary biology. In the Maipo River basin, the fish Basilichthys microlepidotus inhabits polluted and non-polluted areas. Previous studies have suggested that directional selection drives genomic divergence between these areas in 4% of Amplified Fragment Length Polymorphism (AFLP) loci, but the underlying genes and functions remain unknown. We hypothesized that B. microlepidotus in this basin has plastic and/or genetic responses to these conditions. Using RNA-Seq, we identified differentially expressed genes in individuals from two polluted sites compared with fish inhabiting non-polluted sites. In one polluted site, the main upregulated genes were related to cellular proliferation as well as suppression and progression of tumors, while biological processes and molecular functions involved in apoptotic processes were overrepresented in the upregulated genes of the second polluted site. The ornithine decarboxylase gene (related to tumor promotion and progression), which was overexpressed in both polluted sites, was sequenced, and a parallel pattern of a heterozygote deficiency and increase of the same homozygote genotype in both polluted sites compared with fish inhabiting the non-polluted sites was detected. These results suggest the occurrence of both a plastic response in gene expression and an interplay between phenotypic change and genotypic selection in the face of anthropogenic pollution.

  6. Vector-mediated chromosomal integration of the glutamate decarboxylase gene in streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    The integrative vector pINTRS was used to transfer glutamate decarboxylase (GAD) activity to Streptococcus thermophilus ST128, thus allowing for the production of '-aminobutyric acid (GABA). In pINTRS, the gene encoding glutamate decarboxylase, gadB, was flanked by DNA fragments homologous to a S. ...

  7. Polyamines and plant stress - Activation of putrescine biosynthesis by osmotic shock

    NASA Technical Reports Server (NTRS)

    Flores, H. E.; Galston, A. W.

    1982-01-01

    The putrescine content of oat leaf cells and protoplasts increases up to 60-fold within 6 hours of exposure to osmotic stress (0.4 to 0.6 molar sorbitol). Barley, corn, wheat, and wild oat leaves show a similar response. Increased arginine decarboxylase activity parallels the rise in putrescine, whereas ornithine decarboxylase remains unchanged. DL-alpha-Difluoromethylarginine, a specific irreversible inhibitor of arginine decarboxylase, prevents the stress-induced rise in increase in arginine decarboxylase activity and putrescine synthesis, indicating the preferential activation of this pathway.

  8. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-01-01

    Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004

  9. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni.

    PubMed

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-12-29

    Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.

  10. Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells

    PubMed Central

    Zhu, Qingsong; Jin, Lihua; Casero, Robert A.

    2013-01-01

    Our previous studies demonstrated that specific polyamine analogues, oligoamines, down-regulated the activity of a key polyamine biosynthesis enzyme, ornithine decarboxylase (ODC), and suppressed expression of estrogen receptor alpha (ERα) in human breast cancer cells. However, the mechanism underlying the potential regulation of ERα expression by polyamine metabolism has not been explored. Here, we demonstrated that RNAi-mediated knockdown of ODC (ODC KD) down-regulated the polyamine pool, and hindered growth in ERα-positive MCF7 and T47D and ERα-negative MDA-MB-231 breast cancer cells. ODC KD significantly induced the expression and activity of the key polyamine catabolism enzymes, spermine oxidase (SMO) and spermidine/spermine N1-acetyltransferase (SSAT). However, ODC KD-induced growth inhibition could not be reversed by exogenous spermidine or overexpression of antizyme inhibitor (AZI), suggesting that regulation of ODC on cell proliferation may involve the signaling pathways independent of polyamine metabolism. In MCF7 and T47D cells, ODC KD, but not DFMO treatment, diminished the mRNA and protein expression of ERα. Overexpression of antizyme (AZ), an ODC inhibitory protein, suppressed ERα expression, suggesting that ODC plays an important role in regulation of ERα expression. Decrease of ERα expression by ODC siRNA altered the mRNA expression of a subset of ERα response genes. Our previous analysis showed that oligoamines disrupt the binding of Sp1 family members to an ERα minimal promoter element containing GC/CA-rich boxes. By using DNA affinity precipitation and mass spectrometry analysis, we identified ZBTB7A, MeCP2, PARP-1, AP2, and MAZ as co-factors of Sp1 family members that are associated with the ERα minimal promoter element. Taken together, these data provide insight into a novel antiestrogenic mechanism for polyamine biosynthesis enzymes in breast cancer. PMID:22976807

  11. Crystal Structure and Substrate Specificity of Drosophila 3,4-Dihydroxyphenylalanine Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Q.; Ding, H; Robinson, H

    2010-01-01

    3,4-Dihydroxyphenylalanine decarboxylase (DDC), also known as aromatic L-amino acid decarboxylase, catalyzes the decarboxylation of a number of aromatic L-amino acids. Physiologically, DDC is responsible for the production of dopamine and serotonin through the decarboxylation of 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan, respectively. In insects, both dopamine and serotonin serve as classical neurotransmitters, neuromodulators, or neurohormones, and dopamine is also involved in insect cuticle formation, eggshell hardening, and immune responses. In this study, we expressed a typical DDC enzyme from Drosophila melanogaster, critically analyzed its substrate specificity and biochemical properties, determined its crystal structure at 1.75 Angstrom resolution, and evaluated the roles residues T82more » and H192 play in substrate binding and enzyme catalysis through site-directed mutagenesis of the enzyme. Our results establish that this DDC functions exclusively on the production of dopamine and serotonin, with no activity to tyrosine or tryptophan and catalyzes the formation of serotonin more efficiently than dopamine. The crystal structure of Drosophila DDC and the site-directed mutagenesis study of the enzyme demonstrate that T82 is involved in substrate binding and that H192 is used not only for substrate interaction, but for cofactor binding of drDDC as well. Through comparative analysis, the results also provide insight into the structure-function relationship of other insect DDC-like proteins.« less

  12. Molecular cloning and expression of gene encoding aromatic amino acid decarboxylase in 'Vidal blanc' grape berries.

    PubMed

    Pan, Qiu-Hong; Chen, Fang; Zhu, Bao-Qing; Ma, Li-Yan; Li, Li; Li, Jing-Ming

    2012-04-01

    The pleasantly fruity and floral 2-phenylethanol are a dominant aroma compound in post-ripening 'Vidal blanc' grapes. However, to date little has been reported about its synthetic pathway in grapevine. In the present study, a full-length cDNA of VvAADC (encoding aromatic amino acid decarboxylase) was firstly cloned from the berries of 'Vidal blanc', an interspecific hybrid variety of Vitis vinifera × Vitis riparia. This sequence encodes a complete open reading frame of 482 amino acids with a calculated molecular mass of 54 kDa and isoelectric point value (pI) of 5.73. The amino acid sequence deduced shared about 79% identity with that of aromatic L: -amino acid decarboxylases (AADCs) from tomato. Real-time PCR analysis indicated that VvAADC transcript abundance presented a small peak at 110 days after full bloom and then a continuous increase at the berry post-ripening stage, which was consistent with the accumulation of 2-phenylethanol, but did not correspond to the trends of two potential intermediates, phenethylamine and 2-phenylacetaldehyde. Furthermore, phenylalanine still exhibited a continuous increase even in post-ripening period. It is thus suggested that 2-phenylethanol biosynthetic pathway mediated by AADC exists in grape berries, but it has possibly little contribution to a considerable accumulation of 2-phenylethanol in post-ripening 'Vidal blanc' grapes.

  13. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  14. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  15. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme... FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus subtilis. The food additive alpha...

  16. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  17. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Alpha-acetolactate decarboxylase (α-ALDC) enzyme...) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.115 Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant...

  18. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum

    USDA-ARS?s Scientific Manuscript database

    Aspartate 1-decarboxylase (ADC) and dopa decarboxylase (DDC) provide b–alanine and dopamine used in insect cuticle tanning. Beta-alanine is conjugated with dopamine to yield N-b-alanyldopamine (NBAD), a substrate for the phenoloxidase laccase that catalyzes the synthesis of cuticle protein cross-li...

  19. Characterization of Trypanosoma brucei brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone).

    PubMed Central

    Bitonti, A J; Dumont, J A; McCann, P P

    1986-01-01

    Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910

  20. Physiological responses of wild type and putrescine-overproducing transgenic cells of poplar to variations in the form and concentration of nitrogen in the medium

    Treesearch

    Rakesh Minocha; Jae Soon Lee; Stephanie Long; Pratiksha Bhatnagar; Subhash C. Minocha

    2004-01-01

    We determined: (a) the physiological consequences of overproduction of putrescine in transgenic poplar (Populus nigra x mnrimoviczir) cells expressing an omithine decarboxylase transgene; and (b) effects of variation in nitrogen (N) concentration of the medium on cellular polyamine concentration in transgenic and non-transgenic cells. Cells grown in...

  1. Macrophage Responses to B. Anthracis

    DTIC Science & Technology

    2006-08-14

    contaminating DNA present in the RNA samples. key step in the synthesis of spermine and spermidine , key Ornithine decarboxylase expression has long been known...D. Relman. 2000. The transcriptional responses of spermidine protection of plasmid DNA against single-strand breaks induced respiratory epithelial...Nicotera, and S. Orrenius. 1991. Spermidine D. A. Rasko, J. Ravel, T. D. Read, S. N. Peterson, J. Yates 3rd, and P. C. prevents endoclease activation

  2. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae)

    PubMed Central

    2010-01-01

    Background Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. Results The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. Conclusions The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors. PMID:20403175

  3. Cell-specific expression of tryptophan decarboxylase and 10-hydroxygeraniol oxidoreductase, key genes involved in camptothecin biosynthesis in Camptotheca acuminata Decne (Nyssaceae).

    PubMed

    Valletta, Alessio; Trainotti, Livio; Santamaria, Anna Rita; Pasqua, Gabriella

    2010-04-19

    Camptotheca acuminata is a major natural source of the terpenoid indole alkaloid camptothecin (CPT). At present, little is known about the cellular distribution of the biosynthesis of CPT, which would be useful knowledge for developing new strategies and technologies for improving alkaloid production. The pattern of CPT accumulation was compared with the expression pattern of some genes involved in CPT biosynthesis in C. acuminata [i.e., Ca-TDC1 and Ca-TDC2 (encoding for tryptophan decarboxylase) and Ca-HGO (encoding for 10-hydroxygeraniol oxidoreductase)]. Both CPT accumulation and gene expression were investigated in plants at different degrees of development and in plantlets subjected to drought-stress. In all organs, CPT accumulation was detected in epidermal idioblasts, in some glandular trichomes, and in groups of idioblast cells localized in parenchyma tissues. Drought-stress caused an increase in CPT accumulation and in the number of glandular trichomes containing CPT, whereas no increase in epidermal or parenchymatous idioblasts was observed. In the leaf, Ca-TDC1 expression was detected in some epidermal cells and in groups of mesophyll cells but not in glandular trichomes; in the stem, it was observed in parenchyma cells of the vascular tissue; in the root, no expression was detected. Ca-TDC2 expression was observed exclusively in leaves of plantlets subjected to drought-stress, in the same sites described for Ca-TDC1. In the leaf, Ca-HGO was detected in all chlorenchyma cells; in the stem, it was observed in the same sites described for Ca-TDC1; in the root, no expression was detected. The finding that the sites of CPT accumulation are not consistently the same as those in which the studied genes are expressed demonstrates an organ-to-organ and cell-to-cell translocation of CPT or its precursors.

  4. Role of Arginine decarboxylase (ADC) in Arabidopsis thaliana defence against the pathogenic bacterium Pseudomonas viridiflava.

    PubMed

    Rossi, F R; Marina, M; Pieckenstain, F L

    2015-07-01

    Polyamine biosynthesis starts with putrescine production through the decarboxylation of arginine or ornithine. In Arabidopsis thaliana, putrescine is synthesised exclusively by arginine decarboxylase (ADC), which exists as two isoforms (ADC1 and 2) that are differentially regulated by abiotic stimuli, but their role in defence against pathogens has not been studied in depth. This work analysed the participation of ADC in Arabidopsis defence against Pseudomonas viridiflava. ADC activity and expression, polyamine levels and bacterial resistance were analysed in null mutants of each ADC isoform. In non-infected wild-type (WT) plants, ADC2 expression was much higher than ADC1. Analysis of adc mutants demonstrated that ADC2 contributes to a much higher extent than ADC1 to basal ADC activity and putrescine biosynthesis. In addition, adc2 mutants showed increased basal expression of salicylic acid- and jasmonic acid-dependent PR genes. Bacterial infection induced putrescine accumulation and ADC1 expression in WT plants, but pathogen-induced putrescine accumulation was blocked in adc1 mutants. Results suggest a specific participation of ADC1 in defence, although basal resistance was not decreased by dysfunction of either of the two ADC genes. In addition, and as opposed to WT plants, bacterial infection increased ADC2 expression and ADC activity in adc1 mutants, which could counterbalance the lack of ADC1. Results demonstrate a major contribution of ADC2 to total ADC activity and the specific induction of ADC1 in response to infection. A certain degree of functional redundancy between the two isoforms in relation to their contribution to basal resistance is also evident. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    PubMed Central

    2012-01-01

    Background Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases. PMID:23083099

  6. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study.

    PubMed

    Geomela, Panagiota-Aikaterini; Kontos, Christos K; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-10-20

    Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients' prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt) method. DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.

  7. Expression Patterns Conferred by Tyrosine/Dihydroxyphenylalanine Decarboxylase Promoters from Opium Poppy Are Conserved in Transgenic Tobacco1

    PubMed Central

    Facchini, Peter J.; Penzes-Yost, Catherine; Samanani, Nailish; Kowalchuk, Brett

    1998-01-01

    Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species. PMID:9733527

  8. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    PubMed Central

    Käpyaho, K; Kallio, A; Jänne, J

    1984-01-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands. PMID:6430275

  9. Differential effects of 2-difluoromethylornithine and methylglyoxal bis(guanylhydrazone) on the testosterone-induced growth of ventral prostate and seminal vesicles of castrated rats.

    PubMed

    Käpyaho, K; Kallio, A; Jänne, J

    1984-05-01

    2-Difluoromethylornithine totally prevented any increases in putrescine and spermidine concentrations in the ventral prostate of castrated rats during a 6-day testosterone treatment. Prostatic ornithine decarboxylase activity was inhibited by 80%, whereas S-adenosylmethionine decarboxylase was stimulated by more than 9-fold. In seminal vesicle, the inhibition of putrescine and spermidine accumulation, as well as of ornithine decarboxylase activity, was only minimal, and no stimulation of S-adenosylmethionine decarboxylase was observed. Administration of methylglyoxal bis(guanylhydrazone) to castrated androgen-treated rats resulted in a marked increase in concentrations of all prostatic polyamines. Prostatic ornithine decarboxylase activity was nearly 2 times and adenosylmethionine decarboxylase activity 9 times higher than that of the testosterone-treated animals. In contrast with ventral prostate, methylglyoxal bis(guanylhydrazone) treatment inhibited moderately the accumulation of spermidine and spermine in seminal vesicle, although both ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were stimulated. Difluoromethylornithine inhibited significantly the weight gain of ventral prostate, but methylglyoxal bis(guanylhydrazone) produced a substantial increase in prostatic weight. These changes were largely due to the fact that the volume of prostatic secretion was greatly decreased by difluoromethylornithine, whereas methylglyoxal bis(guanylhydrazone) increased the amount of secretion. Treatment with difluoromethylornithine strikingly increased the methylglyoxal bis(guanylhydrazone) content of both ventral prostate and seminal vesicle, but even under these conditions the drug concentration remained low in comparison with other tissues. The results indicate that a combined use of these two polyamine anti-metabolites does not necessarily result in a synergistic growth inhibition of the androgen-induced growth of male accessory sexual glands.

  10. L-Dopa decarboxylase (DDC) constitutes an emerging biomarker in predicting patients' survival with stomach adenocarcinomas.

    PubMed

    Florou, Dimitra; Papadopoulos, Iordanis N; Fragoulis, Emmanuel G; Scorilas, Andreas

    2013-02-01

    Stomach adenocarcinoma represents a major health problem and is regarded as the second commonest cause of cancer-associated mortality, universally, since it is still difficult to be perceived at a curable stage. Several lines of evidence have pointed out that the expression of L-Dopa decarboxylase (DDC) gene and/or protein becomes distinctively modulated in several human neuroendocrine neoplasms as well as adenocarcinomas. In order to elucidate the clinical role of DDC on primary gastric adenocarcinomas, we determined qualitatively and quantitatively the mRNA levels of the gene with regular PCR and real-time PCR by using the comparative threshold cycle method, correspondingly, and detected the expression of DDC protein by immunoblotting in cancerous and normal stomach tissue specimens. A statistically significant association was disclosed between DDC expression and gastric intestinal histotype as well as tumor localization at the distal third part of the stomach (p = 0.025 and p = 0.029, respectively). Univariate and multivariate analyses highlighted the powerful prognostic importance of DDC in relation to disease-free survival and overall survival of gastric cancer patients. According to Kaplan-Meier curves, the relative risk of relapse was found to be decreased in DDC-positive (p = 0.031) patients who, also, exhibited higher overall survival rates (p = 0.016) than those with DDC-negative tumors. This work is the first to shed light on the potential clinical usefulness of DDC, as an efficient tumor biomarker in gastric cancer. The provided evidence underlines the propitious predictive value of DDC expression in the survival of stomach adenocarcinoma patients.

  11. [Molecular cloning, expression and characterization of lysine decarboxylase gene of endophytic fungus Shiraia sp. Slf14 from Huperzia serrata].

    PubMed

    Peng, Silu; Yang, Huilin; Zhu, Du; Zhang, Zhibin; Yan, Riming; Wang, Ya

    2016-04-14

    Huperzine A (HupA) was approved as a drug for the treatment of Alzheimer's disease. The HupA biosynthetic pathway was started from lysine decarboxylase (LDC), which catalyzes lysine to cadaverine. In this study, we cloned and expressed an LDC gene from a HupA-producing endophytic fungus, and tested LDC activities. An endophytic fungus Shiraia sp. Slf14 from Huperzia serrata was used. LDC gene was obtained by RT-PCR, and cloned into pET-22b(+) and pET-32a(+) vectors to construct recombinant plasmids pET- 22b-LDC and pET-32a-LDC. These two recombinant plasmids were transformed into E. coli BL21, cultured for 8 h at 24 °C, 200 r/min with 1×10–3 mol/L IPTG into medium to express the LDC proteins, respectively. LDC proteins were purified by Ni2+ affinity chromatography. Catalytic activities were measured by Thin Layer Chromatography. At last, the physicochemical properties and structures of these two LDCs were obtained by bioinformatics software. LDC and Trx-LDC were expressed in E. coli BL21 successfully. SDS-PAGE analysis shows that the molecular weight of LDC and Trx-LDC were 24.4 kDa and 42.7 kDa respectively, which are consistent with bioinformatics analysis. In addition, TLC analysis reveals that both LDC and Trx-LDC had catalytic abilities. This work can provide fundamental data for enriching LDC molecular information and reveal the HupA biosynthetic pathway in endophytic fungi.

  12. Genome-wide identification, phylogenetic analysis, and expression profiling of polyamine synthesis gene family members in tomato.

    PubMed

    Liu, Taibo; Huang, Binbin; Chen, Lin; Xian, Zhiqiang; Song, Shiwei; Chen, Riyuan; Hao, Yanwei

    2018-06-30

    Polyamines (PAs), including putrescine (Put), spermidine (Spd), spermine (Spm), and thermospermine (T-Spm), play key roles in plant development, including fruit setting and ripening, morphogenesis, and abiotic/biotic stress. Their functions appear to be intimately related to their synthesis, which occurs via arginine/ornithine decarboxylase (ADC/ODC), Spd synthase (SPDS), Spm synthase (SPMS), and Acaulis5 (ACL5), respectively. Unfortunately, the expression and function of these PA synthesis-relate genes during specific developmental process or under stress have not been fully elucidated. Here, we present the results of a genome-wide analysis of the PA synthesis genes (ADC, ODC, SPDS, SPMS, ACL5) in the tomato (Solanum lycopersicum). In total, 14 PA synthesis-related genes were identified. Further analysis of their structures, conserved domains, phylogenetic trees, predicted subcellular localization, and promoter cis-regulatory elements were analyzed. Furthermore, we also performed experiments to evaluate their tissue expression patterns and under hormone and various stress treatments. To our knowledge, this is the first study to elucidate the mechanisms underlying PA function in this variety of tomato. Taken together, these data provide valuable information for future functional characterization of specific genes in the PA synthesis pathway in this and other plant species. Although additional research is required, the insight gained by this and similar studies can be used to improve our understanding of PA metabolism ultimately leading to more effective and consistent plant cultivation. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Predominant processing adaptability of Staphylococcus xylosus strains isolated from Chinese traditional low-salt fermented whole fish.

    PubMed

    Zeng, Xuefeng; He, Laping; Guo, Xu; Deng, Li; Yang, Wangen; Zhu, Qiujin; Duan, Zhenhua

    2017-02-02

    This study aimed to determine the predominant processing adaptability of 27 selected isolates of Staphylococcus xylosus in 'Suan yu', a traditional Chinese low-salt fermented whole-fish product. The isolates were screened for proteolytic, lipolytic, and enzymatic profiles; amino-acid decarboxylase content; antimicrobial activities; and tolerance to low temperatures, pH5.0, and salt. Two S. xylosus strains grew at 10°C in the presence of 10% NaCl and at pH5.0. Agar-plate assays and sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed that 21 and 8 of the strains exhibited appropriate proteolytic activities against myofibrillar and sarcoplasmic proteins, respectively. All S. xylosus strains also displayed different enzymatic profiles, and most strains showed negative decarboxylase activities. The results of this step were used as input data for a Principal Component Analysis; therefore, the most technologically relevant strain 3 and 8 were combined with L. plantarum 120 as MS1 and MS2, respectively, were further selected for the fermented fish surimi, and the fish surimi inoculated with mixed starter cultures (MS1, MS2) scored high for overall acceptability. Free amino acid contents of 1757 and 1765mg/100g sample were found in fish surimi inoculated with MS1 and MS2, respectively, after 72h of fermentation. Therefore, Sx-3 and Sx-8, which presented the best predominant processing adaptability, is an eligible starter culture for fermented fish production. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In vitro evaluation of the safety and probiotic properties of Lactobacilli isolated from chicken and calves.

    PubMed

    Bujnakova, Dobroslava; Strakova, Eva; Kmet, Vladimir

    2014-10-01

    A total of 73 chicken and calves isolates were diagnosed using matrix-assisted laser desorption ionization-time-of flight mass spectrometry (Maldi-Tof MS). After a preliminary subtractive screening based on the high acid tolerance at pH 2.5 and bile resistance at 0.3% oxgall, twenty isolates belonging to the species Lactobacillus salivarius, Lactobacillus agilis, Lactobacillus reuteri, Lactobacillus murinus and Lactobacillus amylovorus were in vitro screened for the safety assessment and probiotic properties, including antibiotics susceptibility patterns, biochemical activity and potential for competitive exclusion of biofilm producing pathogens determined by crystal violet and/or quantitative Fluorescent in situ Hybridisation (FISH) assays utilizing 5'Cy 3 labelled probe Enter1432 for enteric group. Antibiotic susceptibility testing was performed according to the ISO norm 10932. The sixteen strains were susceptible to certain antimicrobial agents, except for two chicken (L. salivarius 12K, L. agilis 13K) and two calves (L. reuteri L10/1, L. murinus L9) isolates with the presence non wild-type ECOFFs (epidemiological cut-off) for gentamicin (≥256 μg ml(-1)), tetracycline (≥128 μg ml(-1)), kanamycin (≥256 μg ml(-1)) and streptomycin (≥96 μg ml(-1)). The two referenced chicken isolates gave positive aac(6')Ie-aph(2″)Ia and tet(L) PCR results. The wild-type ECOFFs isolates were subjected to the apiZYM analysis for enzyme profile evaluation and amino acid decarboxylase activities determined by qualitative plate method and multiplex PCR for the detection of four genes involved in the production of histamine (histidine decarboxylase, hdc), tyramine (tyrosine decarboxylase, tyrdc) and putrescine (via eithers ornithine decarboxylase, odc, or agmatine deiminase, agdi). From examined strains only two chicken isolates (L. reuteri 14K; L. salivarius 15K) had no harmful β-glucuronidase, β-glucosidase activities connected with detrimental effects in the gastrointestinal tract and together no amino acid decarboxylase activities and no genes associated with biogenic amines production though only chicken L. salivarius 15K whole cells and acid supernatants shown strong suppressive potential against biofilm-forming Klebsiella and Escherichia coli. Our results highlight that above-mentioned isolate L. salivarius 15K fulfils the principle requirements of a qualified probiotic and may be seen as a reliable candidate for further validation studies in chicken. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Sugarcane genes differentially expressed in response to Puccinia melanocephala infection: identification and transcript profiling.

    PubMed

    Oloriz, María I; Gil, Víctor; Rojas, Luis; Portal, Orelvis; Izquierdo, Yovanny; Jiménez, Elio; Höfte, Monica

    2012-05-01

    Brown rust caused by the fungus Puccinia melanocephala is a major disease of sugarcane (Saccharum spp.). A sugarcane mutant, obtained by chemical mutagenesis of the susceptible variety B4362, showed a post-haustorial hypersensitive response (HR)-mediated resistance to the pathogen and was used to identify genes differentially expressed in response to P. melanocephala via suppression subtractive hybridization (SSH). Tester cDNA was derived from the brown rust-resistant mutant after inoculation with P. melanocephala, while driver cDNAs were obtained from the non-inoculated resistant mutant and the inoculated susceptible donor variety B4362. Database comparisons of the sequences of the SSH recombinant clones revealed that, of a subset of 89 non-redundant sequences, 88% had similarity to known functional genes, while 12% were of unknown function. Thirteen genes were selected for transcript profiling in the resistant mutant and the susceptible donor variety. Genes involved in glycolysis and C4 carbon fixation were up-regulated in both interactions probably due to disturbance of sugarcane carbon metabolism by the pathogen. Genes related with the nascent polypeptide associated complex, post-translational proteome modulation and autophagy were transcribed at higher levels in the compatible interaction. Up-regulation of a putative L-isoaspartyl O-methyltransferase S-adenosylmethionine gene in the compatible interaction may point to fungal manipulation of the cytoplasmatic methionine cycle. Genes coding for a putative no apical meristem protein, S-adenosylmethionine decarboxylase, non-specific lipid transfer protein, and GDP-L-galactose phosphorylase involved in ascorbic acid biosynthesis were up-regulated in the incompatible interaction at the onset of haustorium formation, and may contribute to the HR-mediated defense response in the rust-resistant mutant.

  16. Structure and Function of 4-Hydroxyphenylacetate Decarboxylase and Its Cognate Activating Enzyme.

    PubMed

    Selvaraj, Brinda; Buckel, Wolfgang; Golding, Bernard T; Ullmann, G Matthias; Martins, Berta M

    2016-01-01

    4-Hydroxyphenylacetate decarboxylase (4Hpad) is the prototype of a new class of Fe-S cluster-dependent glycyl radical enzymes (Fe-S GREs) acting on aromatic compounds. The two-enzyme component system comprises a decarboxylase responsible for substrate conversion and a dedicated activating enzyme (4Hpad-AE). The decarboxylase uses a glycyl/thiyl radical dyad to convert 4-hydroxyphenylacetate into p-cresol (4-methylphenol) by a biologically unprecedented Kolbe-type decarboxylation. In addition to the radical dyad prosthetic group, the decarboxylase unit contains two [4Fe-4S] clusters coordinated by an extra small subunit of unknown function. 4Hpad-AE reductively cleaves S-adenosylmethionine (SAM or AdoMet) at a site-differentiated [4Fe-4S]2+/+ cluster (RS cluster) generating a transient 5'-deoxyadenosyl radical that produces a stable glycyl radical in the decarboxylase by the abstraction of a hydrogen atom. 4Hpad-AE binds up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert that is C-terminal to the RS cluster-binding motif. The ferredoxin-like domain with its two auxiliary clusters is not vital for SAM-dependent glycyl radical formation in the decarboxylase, but facilitates a longer lifetime for the radical. This review describes the 4Hpad and cognate AE families and focuses on the recent advances and open questions concerning the structure, function and mechanism of this novel Fe-S-dependent class of GREs. © 2016 S. Karger AG, Basel.

  17. The krebs cycle enzyme α-ketoglutarate decarboxylase is an essential glycosomal protein in bloodstream African trypanosomes.

    PubMed

    Sykes, Steven; Szempruch, Anthony; Hajduk, Stephen

    2015-03-01

    α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Mash1-expressing cells could differentiate to type III cells in adult mouse taste buds.

    PubMed

    Takagi, Hiroki; Seta, Yuji; Kataoka, Shinji; Nakatomi, Mitsushiro; Toyono, Takashi; Kawamoto, Tatsuo

    2018-03-10

    The gustatory cells in taste buds have been identified as paraneuronal; they possess characteristics of both neuronal and epithelial cells. Like neurons, they form synapses, store and release transmitters, and are capable of generating an action potential. Like epithelial cells, taste cells have a limited life span and are regularly replaced throughout life. However, little is known about the molecular mechanisms that regulate taste cell genesis and differentiation. In the present study, to begin to understand these mechanisms, we investigated the role of Mash1-positive cells in regulating adult taste bud cell differentiation through the loss of Mash1-positive cells using the Cre-loxP system. We found that the cells expressing type III cell markers-aromatic L-amino acid decarboxylase (AADC), carbonic anhydrase 4 (CA4), glutamate decarboxylase 67 (GAD67), neural cell adhesion molecule (NCAM), and synaptosomal-associated protein 25 (SNAP25)-were significantly reduced in the circumvallate taste buds after the administration of tamoxifen. However, gustducin and phospholipase C beta2 (PLC beta2)-markers of type II taste bud cells-were not significantly changed in the circumvallate taste buds after the administration of tamoxifen. These results suggest that Mash1-positive cells could be differentiated to type III cells, not type II cells in the taste buds.

  19. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis.

    PubMed

    Simkin, Andrew J; Lopez-Calcagno, Patricia E; Davey, Philip A; Headland, Lauren R; Lawson, Tracy; Timm, Stefan; Bauwe, Hermann; Raines, Christine A

    2017-07-01

    In this article, we have altered the levels of three different enzymes involved in the Calvin-Benson cycle and photorespiratory pathway. We have generated transgenic Arabidopsis plants with altered combinations of sedoheptulose 1,7-bisphosphatase (SBPase), fructose 1,6-bisphophate aldolase (FBPA) and the glycine decarboxylase-H protein (GDC-H) gene identified as targets to improve photosynthesis based on previous studies. Here, we show that increasing the levels of the three corresponding proteins, either independently or in combination, significantly increases the quantum efficiency of PSII. Furthermore, photosynthetic measurements demonstrated an increase in the maximum efficiency of CO 2 fixation in lines over-expressing SBPase and FBPA. Moreover, the co-expression of GDC-H with SBPase and FBPA resulted in a cumulative positive impact on leaf area and biomass. Finally, further analysis of transgenic lines revealed a cumulative increase of seed yield in SFH lines grown in high light. These results demonstrate the potential of multigene stacking for improving the productivity of food and energy crops. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  20. Role of hindbrain adenosine 5'-monophosphate-activated protein kinase (AMPK) in hypothalamic AMPK and metabolic neuropeptide adaptation to recurring insulin-induced hypoglycemia in the male rat.

    PubMed

    Mandal, Santosh K; Shrestha, Prem K; Alenazi, Fahaad S H; Shakya, Manita; Alhamami, Hussain; Briski, Karen P

    2017-12-01

    Glucose counter-regulatory dysfunction correlates with impaired activation of the hypothalamic metabolic sensor adenosine 5'-monophosphate-activated protein kinase (AMPK). Hypothalamic AMPK is controlled by hindbrain energy status; we examined here whether hindbrain AMPK regulates hypothalamic AMPK and metabolic neurotransmitter maladaptation to recurring insulin-induced hypoglycemia (RIIH). Brain tissue was harvested after single versus serial insulin (I) dosing for Western blot analysis of AMPK, phospho-AMPK (pAMPK), and relevant biosynthetic enzyme/neuropeptide expression in micro-punch dissected arcuate (ARH), ventromedial (VMH), dorsomedial (DMH) nuclei and lateral hypothalamic area (LHA) tissue. The AMPK inhibitor compound c (Cc) or vehicle was administered to the caudal fourth ventricle ahead of antecedent I injections. RIIH caused site-specific elevation (ARH, VMH, LHA) or reduction (DMH) of total AMPK protein versus acute hypoglycemia; Cc respectively exacerbated or attenuated this response in the ARH and VMH. Hindbrain AMPK correspondingly inhibited or stimulated LHA and DMH pAMPK expression during RIIH. RIIH elicited Cc-reversible augmentation of VMH glutamate decarboxylase profiles, but stimulated (ARH pro-opiomelanocortin; LHA orexin-A) or decreased (VMH nitric oxide synthase) other metabolic neurotransmitters without hindbrain sensor involvement. Results demonstrate acclimated up-regulation of total AMPK protein expression in multiple hypothalamic loci during RIIH, and document hindbrain sensor contribution to amplification of this protein profile in the VMH. Concurrent lack of net change in ARH and VMH tissue pAMPK implies adaptive reductions in local sensor activity, which may/may not reflect positive gain in energy state. It remains unclear if 'glucose-excited' VMH GABAergic and/or ARH pro-opiomelanocortin neurons exhibit AMPK habituation to RIIH, and whether diminished sensor activation in these and other mediobasal hypothalamic neurotransmitter populations may contribute to HAAF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Blunted epidermal L-tryptophan metabolism in vitiligo affects immune response and ROS scavenging by Fenton chemistry, part 1: Epidermal H2O2/ONOO(-)-mediated stress abrogates tryptophan hydroxylase and dopa decarboxylase activities, leading to low serotonin and melatonin levels.

    PubMed

    Schallreuter, Karin U; Salem, Mohamed A E L; Gibbons, Nick C J; Martinez, Aurora; Slominski, Radomir; Lüdemann, Jürgen; Rokos, Hartmut

    2012-06-01

    Vitiligo is characterized by a progressive loss of inherited skin color. The cause of the disease is still unknown. To date, there is accumulating in vivo and in vitro evidence for massive oxidative stress via hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)) in the skin of affected individuals. Autoimmune etiology is the favored theory. Since depletion of the essential amino acid L-tryptophan (Trp) affects immune response mechanisms, we here looked at epidermal Trp metabolism via tryptophan hydroxylase (TPH) with its downstream cascade, including serotonin and melatonin. Our in situ immunofluorescence and Western blot data reveal significantly lower TPH1 expression in patients with vitiligo. Expression is also low in melanocytes and keratinocytes under in vitro conditions. Although in vivo Fourier transform-Raman spectroscopy proves the presence of 5-hydroxytryptophan, epidermal TPH activity is completely absent. Regulation of TPH via microphthalmia-associated transcription factor and L-type calcium channels is severely affected. Moreover, dopa decarboxylase (DDC) expression is significantly lower, in association with decreased serotonin and melatonin levels. Computer simulation supports H(2)O(2)/ONOO(-)-mediated oxidation/nitration of TPH1 and DDC, affecting, in turn, enzyme functionality. Taken together, our data point to depletion of epidermal Trp by Fenton chemistry and exclude melatonin as a relevant contributor to epidermal redox balance and immune response in vitiligo.

  2. HU participates in expression of a specific set of genes required for growth and survival at acidic pH in Escherichia coli.

    PubMed

    Bi, Hongkai; Sun, Lianle; Fukamachi, Toshihiko; Saito, Hiromi; Kobayashi, Hiroshi

    2009-05-01

    The major histone-like Escherichia coli protein, HU, is composed of alpha and beta subunits respectively encoded by hupA and hupB in Escherichia coli. A mutant deficient in both hupA and hupB grew at a slightly slower rate than the wild type at pH 7.5. Growth of the mutant diminished with a decrease in pH, and no growth was observed at pH 4.6. Mutants of either hupA or hupB grew at all pH levels tested. The arginine-dependent survival at pH 2.5 was diminished approximately 60-fold by the deletion of both hupA and hupB, whereas the survival was slightly affected by the deletion of either hupA or hupB. The mRNA levels of adiA and adiC, which respectively encode arginine decarboxylase and arginine/agmatine antiporter, were low in the mutant deficient in both hupA and hupB. The deletion of both hupA and hupB had little effect on survival at pH 2.5 in the presence of glutamate or lysine, and expression of the genes for glutamate and lysine decarboxylases was not impaired by the deletion of the HU genes. These results suggest that HU regulates expression of the specific set of genes required for growth and survival in acidic environments.

  3. Suppressive effects of the extracts of Japanese edible seaweeds on mutagen-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) and tumor promotor-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells.

    PubMed

    Okai, Y; Higashi-Okai, K; Nakamura, S; Yano, Y; Otani, S

    1994-11-25

    Some of epidemiological data indicated that ubiquitous consumption of seaweeds in Japan may be a possible protective factor against some types of tumor. To analyse this problem, the authors studied the antimutagenic and antitumor promotion activities in methanol-soluble extracts of typical edible seaweeds which showed suppressive effects on 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indol (Trp-P-1)-induced umu C gene expression in SOS response of Salmonella typhimurium (TA 1535/pSK 1002) and 12-O-tetradecanoylphorbol-13-acetate (TPA)-dependent ornithine decarboxylase induction in BALB/c 3T3 fibroblast cells. Although eight varieties of edible seaweeds including chlorophyta, Phaenophyta and Rhodophyta showed significant antimutagenic and antipromotion activities, they expressed the activities different from each other. Among these seaweeds, Enteromorpha prolifera ('Sujiaonori' in Japanese) and Porphyra tenera ('Asakusanori') showed relatively strong suppressive activities in both antimutagenic and antipromotion assays compared with other seaweeds. These seaweeds contained considerable amounts of beta-carotene as a possible active principle with anticarcinogenic activity. This compound was partially associated with the antimutagenic activity in the seaweed extract, but did not contribute to the antipromotion activity of seaweed extract under our experimental conditions. These results strongly suggest that Japanese edible seaweeds have possible antimutagenic and antipromotion activities probably associated with antitumor activity.

  4. Glutamate decarboxylase from Lactobacillus brevis: activation by ammonium sulfate.

    PubMed

    Hiraga, Kazumi; Ueno, Yoshie; Oda, Kohei

    2008-05-01

    In this study, the glutamate decarboxylase (GAD) gene from Lactobacillus brevis IFO12005 (Biosci. Biotechnol. Biochem., 61, 1168-1171 (1997)), was cloned and expressed. The deduced amino acid sequence showed 99.6% and 53.1% identity with GAD of L. brevis ATCC367 and L. lactis respectively. The His-tagged recombinant GAD showed an optimum pH of 4.5-5.0, and 54 kDa on SDS-PAGE. The GAD activity and stability was significantly dependent on the ammonium sulfate concentration, as observed in authentic GAD. Gel filtration showed that the inactive form of the GAD was a dimer. In contrast, the ammonium sulfate-activated form was a tetramer. CD spectral analyses at pH 5.5 revealed that the structures of the tetramer and the dimer were similar. Treatment of the GAD with high concentrations of ammonium sulfate and subsequent dilution with sodium glutamate was essential for tetramer formation and its activation. Thus the biochemical properties of the GAD from L. brevis IFO12005 were significantly different from those from other sources.

  5. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development

    PubMed Central

    Pendeville, Hélène; Carpino, Nick; Marine, Jean-Christophe; Takahashi, Yutaka; Muller, Marc; Martial, Joseph A.; Cleveland, John L.

    2001-01-01

    Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation. PMID:11533243

  6. Pyruvate Decarboxylase, the Target for Omeprazole in Metronidazole-Resistant and Iron-Restricted Tritrichomonas foetus

    PubMed Central

    Sutak, Róbert; Tachezy, Jan; Kulda, Jaroslav; Hrdý, Ivan

    2004-01-01

    The substituted benzimidazole omeprazole, used for the treatment of human peptic ulcer disease, inhibits the growth of the metronidazole-resistant bovine pathogen Tritrichomonas foetus in vitro (MIC at which the growth of parasite cultures is inhibited by 50%, 22 μg/ml [63 μM]). The antitrichomonad activity appears to be due to the inhibition of pyruvate decarboxylase (PDC), which is the key enzyme responsible for ethanol production and which is strongly upregulated in metronidazole-resistant trichomonads. PDC was purified to homogeneity from the cytosol of metronidazole-resistant strain. The tetrameric enzyme of 60-kDa subunits is inhibited by omeprazole (50% inhibitory concentration, 16 μg/ml). Metronidazole-susceptible T. foetus, which expresses very little PDC, is only slightly affected. Omeprazole has the same inhibitory effect on T. foetus cells grown under iron-limited conditions. Similarly to metronidazole-resistant cells, T. foetus cells grown under iron-limited conditions have nonfunctional hydrogenosomal metabolism and rely on cytosolic PDC-mediated ethanol fermentation. PMID:15155220

  7. Characterization of arginine decarboxylase from Dianthus caryophyllus.

    PubMed

    Ha, Byung Hak; Cho, Ki Joon; Choi, Yu Jin; Park, Ky Young; Kim, Kyung Hyun

    2004-04-01

    Arginine decarboxylase (ADC, EC 4.1.1.9) is a key enzyme in the biosynthesis of polyamines in higher plants, whereas ornithine decarboxylase represents the sole pathway of polyamine biosynthesis in animals. Previously, we characterized a genomic clone from Dianthus caryophyllus, in which the deduced polypeptide of ADC was 725 amino acids with a molecular mass of 78 kDa. In the present study, the ADC gene was subcloned into the pGEX4T1 expression vector in combination with glutathione S-transferase (GST). The fusion protein GST-ADC was water-soluble and thus was purified by sequential GSTrap-arginine affinity chromatography. A thrombin-mediated on-column cleavage reaction was employed to release free ADC from GST. Hiload superdex gel filtration FPLC was then used to obtain a highly purified ADC. The identity of the ADC was confirmed by immunoblot analysis, and its specific activity with respect to (14)C-arginine decarboxylation reaction was determined to be 0.9 CO(2) pkat mg(-1) protein. K(m) and V(max) of the reaction between ADC and the substrate were 0.077 +/- 0.001 mM and 6.0 +/- 0.6 pkat mg(-1) protein, respectively. ADC activity was reduced by 70% in the presence of 0.1 mM Cu(2+) or CO(2+), but was only marginally affected by Mg(2+), or Ca(2+) at the same concentration. Moreover, spermine at 1 mM significantly reduced its activity by 30%.

  8. The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene

    PubMed Central

    Hall, Stephen J.; Eastham, Graham; Licence, Peter; Stephens, Gill

    2015-01-01

    Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway. PMID:25636853

  9. Enzyme markers of maternal malnutrition in fetal rat brain.

    PubMed

    Shambaugh, G E; Mankad, B; Derecho, M L; Koehler, R R

    1987-01-01

    The impact of maternal starvation in late gestation on development of some enzymatic mechanisms concerned with neurotransmission and polyamine synthesis was studied in fetal rat brain. Between 17 and 20 d, acetylcholinesterase and choline acetyltransferase activity increased in fetal brains of fed dams, whereas maternal starvation from day 17 to day 20 resulted in heightened acetylcholinesterase but not choline acetyltransferase activity. Ornithine decarboxylase activity on a per-gram wet-weight basis fell between 17 and 20 d in fetal brain from fed dams. Increasing the duration of maternal starvation resulted in a progressive increase in fetal brain ornithine decarboxylase. Arginine and putrescine levels in the brain were lower in fetuses of starved mothers while spermidine and spermine concentrations were unchanged. Since the Km of ornithine decarboxylase for ornithine was found to vary directly with levels of putrescine in fetal brain, lower concentrations of putrescine and greater ornithine decarboxylase activity in fetal brains from starved mothers suggested that levels of this enzyme may be controlled in part by putrescine. Changes in the maternal nutritional state had no effect on the activity of glutamate decarboxylase in fetal brain, and tissue levels of the product, gamma-aminobutyric acid, were unchanged. Thus changes in ornithine decarboxylase and acetylcholinesterase activity in fetal brain may uniquely reflect biochemical alterations consequent to maternal starvation.

  10. [Isolation, identification and fermentation optimization of Bacillus tequilensis PanD37 producing L-aspartate α- decarboxylase].

    PubMed

    Feng, Zhibin; Zhang, Juan; Chen, Guozhong; Cha, Yaping; Liu, Jinjie; Ge, Yihe; Cheng, Shiwei; Yu, Botao

    2016-01-04

    We screened bacteria producing L-aspartate α-decarboxylase from grapery soil and optimized the fermentation conditions. L-aspartate α-decarboxylase producing bacteria were screened by color-changing circle and liquid secondary screening culture media. Combination of morphological, physiological and biochemical characteristics and 16S rRNA sequence analysis were used to identify the bacteria. Fermentation conditions were optimized by single factor test and orthogonal experiment. Strain PanD37 showed high L-aspartate α-decarboxylase producing property and was identified as Bacillus tequilensis. The optimum fermentation conditions of PanD37 were liquid volume of 50 mL in 500 mL flask, 220 r/min at 35 °C, inoculation amount of 5% for 28 h with a medium of 22.5 g/L sucrose, 7.5 g/L fumaric acid, 20 g/L peptone, 6 g/L L-aspartic acid, 2 g/L Triton X-100, at initial pH of 7.0. Under the optimal fermentation conditions, the highest L-aspartate α-decarboxylase activity reached 44.57 U/mL, which was 2.57 folds higher than that obtained before optimization. Strain PanD37 was identified as Bacillus tequilensiswhich was capable of highly producing L-aspartate α-decarboxylase under the optimal fermentation conditions.

  11. Screening method for detection of immediate amino acid decarboxylases--producing bacteria implicated in food poisoning.

    PubMed

    Hussain, Husniza; Mohd Fuat, A R; Vimala, B; Ghazali, H M

    2011-08-01

    Assessment of amino acid decarboxylase activity can be conducted using tubed broth or plated agar. In this study, the test was carried out in microtitre plates containing lysine, ornithine, arginine, tyrosine, tryptophan, phenylalanine or histidine as biogenic amine precursors. Møller decarboxylase base broth (MDB) with or without 1% of a known amino acid were added to wells of a 96 well-microtitre plate. The wells were inoculated with Escherichia coli, Klebsiella pneumoniae, Acinetobacter anitratus or Staphylococcus aureus to the final concentration of 6.0 x 10(7) cfu/ml and incubated at 35ºC. The absorbance of the culture broth was read at 570 nm at 0, 1.0, 2.0, 3.0, 4.0, 5.5, 6.5 and 7.5 hour. Comparison of means of A'(570) between 0 hour and a specified incubation time was determined statistically. Positive decarboxylase activities were detected in the media inoculated with E. coli and K. pneumoniae in less than 6 hours. The current method is suitable for immediate producers of amino acid decarboxylase enzymes. It costs less as it uses less amino acid and it has the potential to be used for screening aliquots of food materials for amino acid decarboxylase activities.

  12. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  13. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  14. Synthesis of dopamine in E. coli using plasmid-based expression system and its marked effect on host growth profiles.

    PubMed

    Das, Arunangshu; Verma, Anita; Mukherjee, Krishna J

    2017-09-14

    L-Dopa and dopamine are important pathway intermediates toward the synthesis of catecholamine such as epinephrine and norepinephrine from amino acid L-tyrosine. Dopamine, secreted from dopaminergic nerve cells, serves as an important neurotransmitter. We report the synthesis of dopamine by extending the aromatic amino acid pathway of Escherichia coli DH5α by the expression of 4-hydroxyphenylacetate-3-hydrolase (HpaBC) from E. coli and an engineered dopa decarboxylase (DDC) from pig kidney cell. The activity of HpaBC and DDC require 200 µM iron supplementation and 50 µM vitamin B6, respectively as additives to the growth media. The maximum concentration of L-dopa and dopamine obtained from the broth was around 26 and 27 mg/L after 24 hr of separate shake flask studies. We observed that in the presence of dopamine synthesized in vivo host growth was remarkably enhanced. These observations lead us to an interesting finding about the role of these catecholamines on bacterial growth. It is clear that synthesis of dopamine in vivo actually promotes growth much efficiently as compared to when dopamine is added to the system from outside. From HPLC and GC-MS data it was further observed that L-dopa was stable within the observable time of experiments whereas dopamine actually was subjected to degradation via oxidation and host consumption.

  15. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.

    PubMed

    Mix, Annika; Benali, Alia; Eysel, Ulf T; Funke, Klaus

    2010-11-01

    Repetitive transcranial magnetic stimulation (rTMS) can modulate cortical excitability in a stimulus-frequency-dependent manner. Two kinds of theta burst stimulation (TBS) [intermittent TBS (iTBS) and continuous TBS (cTBS)] modulate human cortical excitability differently, with iTBS increasing it and cTBS decreasing it. In rats, we recently showed that this is accompanied by changes in the cortical expression of proteins related to the activity of inhibitory neurons. Expression levels of the calcium-binding protein parvalbumin (PV) and of the 67-kDa isoform of glutamic acid decarboxylase (GAD67) were strongly reduced following iTBS, but not cTBS, whereas both increased expression of the 65-kDa isoform of glutamic acid decarboxylase. In the present study, to investigate possible functional consequences, we applied iTBS and cTBS to rats learning a tactile discrimination task. Conscious rats received either verum or sham rTMS prior to the task. Finally, to investigate how rTMS and learning effects interact, protein expression was determined for cortical areas directly involved in the task and for those either not, or indirectly, involved. We found that iTBS, but not cTBS, improved learning and strongly reduced cortical PV and GAD67 expression. However, the combination of learning and iTBS prevented this effect in those cortical areas involved in the task, but not in unrelated areas. We conclude that the improved learning found following iTBS is a result of the interaction of two effects, possibly in a homeostatic manner: a general weakening of inhibition mediated by the fast-spiking interneurons, and re-established activity in those neurons specifically involved in the learning task, leading to enhanced contrast between learning-induced and background activity. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  16. Construction of an Escherichia coli strain unable to synthesize putrescine, spermidine, or cadaverine: characterization of two genes controlling lysine decarboxylase.

    PubMed

    Tabor, H; Hafner, E W; Tabor, C W

    1980-12-01

    We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.

  17. Histamine-producing Lactobacillus parabuchneri strains isolated from grated cheese can form biofilms on stainless steel.

    PubMed

    Diaz, Maria; Del Rio, Beatriz; Sanchez-Llana, Esther; Ladero, Victor; Redruello, Begoña; Fernández, María; Martin, M Cruz; Alvarez, Miguel A

    2016-10-01

    The consumption of food containing large amounts of histamine can lead to histamine poisoning. Cheese is one of the most frequently involved foods. Histamine, one of the biogenic amines (BAs) exhibiting the highest safety risk, accumulates in food contaminated by microorganisms with histidine decarboxylase activity. The origin of these microorganisms may be very diverse with contamination likely occurring during post-ripening processing, but the microorganisms involved during this manufacturing step have never been identified. The present work reports the isolation of 21 histamine-producing Lactobacillus parabuchneri strains from a histamine-containing grated cheese. PCR revealed that every isolate carried the histidine decarboxylase gene (hdcA). Eight lineages were identified based on the results of genome PFGE restriction analysis plus endonuclease restriction profile analysis of the carried plasmids. Members of all lineages were able to form biofilms on polystyrene and stainless steel surfaces. L. parabuchneri is therefore an undesirable species in the dairy industry; the biofilms it can produce on food processing equipment represent a reservoir of histamine-producing bacteria and thus a source of contamination of post-ripening-processed cheeses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Transcriptional response to deletion of the phosphatidylserine decarboxylase Psd1p in the yeast Saccharomyces cerevisiae.

    PubMed

    Gsell, Martina; Mascher, Gerald; Schuiki, Irmgard; Ploier, Birgit; Hrastnik, Claudia; Daum, Günther

    2013-01-01

    In the yeast, Saccharomyces cerevisiae, the synthesis of the essential phospholipid phosphatidylethanolamine (PE) is accomplished by a network of reactions which comprises four different pathways. The enzyme contributing most to PE formation is the mitochondrial phosphatidylserine decarboxylase 1 (Psd1p) which catalyzes conversion of phosphatidylserine (PS) to PE. To study the genome wide effect of an unbalanced cellular and mitochondrial PE level and in particular the contribution of Psd1p to this depletion we performed a DNA microarray analysis with a ∆psd1 deletion mutant. This approach revealed that 54 yeast genes were significantly up-regulated in the absence of PSD1 compared to wild type. Surprisingly, marked down-regulation of genes was not observed. A number of different cellular processes in different subcellular compartments were affected in a ∆psd1 mutant. Deletion mutants bearing defects in all 54 candidate genes, respectively, were analyzed for their growth phenotype and their phospholipid profile. Only three mutants, namely ∆gpm2, ∆gph1 and ∆rsb1, were affected in one of these parameters. The possible link of these mutations to PE deficiency and PSD1 deletion is discussed.

  19. Immunochemical study of uroporphyrinogen decarboxylase in a patient with mild hepatoerythropoietic porphyria.

    PubMed Central

    Fujita, H; Sassa, S; Toback, A C; Kappas, A

    1987-01-01

    Hepatoerythropoietic porphyria (HEP) is due to a marked deficiency of uroporphyrinogen (URO) decarboxylase, a cytosolic enzyme in the heme biosynthetic pathway. Using a radioimmunoassay method, we determined the concentration of URO decarboxylase protein in erythrocytes from a patient with mild HEP and found that the enzyme protein concentration had markedly decreased to less than 7% of the normal controls. This finding, however, was in contrast to the enzyme activity in the patient's erythrocytes, which was 16% of normal control levels and different from previously reported HEP cases in that erythrocytes in our patient contained disproportionately elevated URO decarboxylase activity in comparison to its immunoreactive material. Our findings suggests the possibility of a mutant isozyme in this patient that is not immunoreactive with an antibody raised against the normal enzyme. PMID:3571497

  20. Albizia lebbeck suppresses histamine signaling by the inhibition of histamine H1 receptor and histidine decarboxylase gene transcriptions.

    PubMed

    Nurul, Islam Mohammed; Mizuguchi, Hiroyuki; Shahriar, Masum; Venkatesh, Pichairajan; Maeyama, Kazutaka; Mukherjee, Pulok K; Hattori, Masashi; Choudhuri, Mohamed Sahabuddin Kabir; Takeda, Noriaki; Fukui, Hiroyuki

    2011-11-01

    Histamine plays major roles in allergic diseases and its action is mediated mainly by histamine H(1) receptor (H1R). We have demonstrated that histamine signaling-related H1R and histidine decarboxylase (HDC) genes are allergic diseases sensitive genes and their expression level affects severity of the allergic symptoms. Therefore, compounds that suppress histamine signaling should be promising candidates as anti-allergic drugs. Here, we investigated the effect of the extract from the bark of Albizia lebbeck (AL), one of the ingredients of Ayruvedic medicines, on H1R and HDC gene expression using toluene-2,4-diisocyanate (TDI) sensitized allergy model rats and HeLa cells expressing endogenous H1R. Administration of the AL extract significantly decreased the numbers of sneezing and nasal rubbing. Pretreatment with the AL extract suppressed TDI-induced H1R and HDC mRNA elevations as well as [(3)H]mepyramine binding, HDC activity, and histamine content in the nasal mucosa. AL extract also suppressed TDI-induced up-regulation of IL-4, IL-5, and IL-13 mRNA. In HeLa cells, AL extract suppressed phorbol-12-myristate-13-acetate- or histamine-induced up-regulation of H1R mRNA. Our data suggest that AL alleviated nasal symptoms by inhibiting histamine signaling in TDI-sensitized rats through suppression of H1R and HDC gene transcriptions. Suppression of Th2-cytokine signaling by AL also suggests that it could affect the histamine-cytokine network. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Mesomere-derived glutamate decarboxylase-expressing blastocoelar mesenchyme cells of sea urchin larvae

    PubMed Central

    Katow, Hideki; Katow, Tomoko; Abe, Kouki; Ooka, Shioh; Kiyomoto, Masato; Hamanaka, Gen

    2014-01-01

    Summary The ontogenetic origin of blastocoelar glutamate decarboxylase (GAD)-expressing cells (GADCs) in larvae of the sea urchin Hemicentrotus pulcherrimus was elucidated. Whole-mount in situ hybridisation (WISH) detected transcription of the gene that encodes GAD in H. pulcherrimus (Hp-gad) in unfertilised eggs and all blastomeres in morulae. However, at and after the swimming blastula stage, the transcript accumulation was particularly prominent in clumps of ectodermal cells throughout the embryonic surface. During the gastrula stage, the transcripts also accumulated in the endomesoderm and certain blastocoelar cells. Consistent with the increasing number of Hp-gad transcribing cells, immunoblot analysis indicated that the relative abundance of Hp-Gad increased considerably from the early gastrula stage until the prism stage. The expression pattern of GADCs determined by immunohistochemistry was identical to the pattern of Hp-gad transcript accumulation determined using WISH. In early gastrulae, GADCs formed blastocoelar cell aggregates around the blastopore with primary mesenchyme cells. The increase in the number of blastocoelar GADCs was inversely proportional to the number of ectodermal GADCs ranging from a few percent of total GADCs in early gastrulae to 80% in late prism larvae; this depended on ingression of ectodermal GADCs into the blastocoel. Some of the blastocoelar GADCs were fluorescein-positive in the larvae that developed from the 16-cell stage chimeric embryos; these comprised fluorescein-labeled mesomeres and unlabelled macromeres and micromeres. Our finding indicates that some of the blastocoelar GADCs are derived from the mesomeres and thus they are the new group of mesenchyme cells, the tertiary mesenchyme cells. PMID:24357228

  2. Enhanced triterpene accumulation in Panax ginseng hairy roots overexpressing mevalonate-5-pyrophosphate decarboxylase and farnesyl pyrophosphate synthase.

    PubMed

    Kim, Yong-Kyoung; Kim, Yeon Bok; Uddin, Md Romij; Lee, Sanghyun; Kim, Soo-Un; Park, Sang Un

    2014-10-17

    To elucidate the function of mevalonate-5-pyrophosphate decarboxylase (MVD) and farnesyl pyrophosphate synthase (FPS) in triterpene biosynthesis, the genes governing the expression of these enzymes were transformed into Panax ginseng hairy roots. All the transgenic lines showed higher expression levels of PgMVD and PgFPS than that by the wild-type control. Among the hairy root lines transformed with PgMVD, M18 showed the highest level of transcription compared to the control (14.5-fold higher). Transcriptions of F11 and F20 transformed with PgFPS showed 11.1-fold higher level compared with control. In triterpene analysis, M25 of PgMVD produced 4.4-fold higher stigmasterol content (138.95 μg/100 mg, dry weight [DW]) than that by the control; F17 of PgFPS showed the highest total ginsenoside (36.42 mg/g DW) content, which was 2.4-fold higher compared with control. Our results indicate that metabolic engineering in P. ginseng was successfully achieved through Agrobacterium rhizogenes-mediated transformation and that the accumulation of phytosterols and ginsenosides was enhanced by introducing the PgMVD and PgFPS genes into the hairy roots of the plant. Our results suggest that PgMVD and PgFPS play an important role in the triterpene biosynthesis of P. ginseng.

  3. Malate decarboxylases: evolution and roles of NAD(P)-ME isoforms in species performing C(4) and C(3) photosynthesis.

    PubMed

    Maier, Alexandra; Zell, Martina B; Maurino, Veronica G

    2011-05-01

    In the C(4) pathway of photosynthesis two types of malate decarboxylases release CO(2) in bundle sheath cells, NADP- and NAD-dependent malic enzyme (NADP-ME and NAD-ME), located in the chloroplasts and the mitochondria of these cells, respectively. The C(4) decarboxylases involved in C(4) photosynthesis did not evolve de novo; they were recruited from existing housekeeping isoforms. NADP-ME housekeeping isoforms would function in the control of malate levels during hypoxia, pathogen defence responses, and microspore separation, while NAD-ME participates in the respiration of malate in the tricarboxylic acid cycle. Recently, the existence of three enzymatic NAD-ME entities in Arabidopsis, occurring by alternative association of two subunits, was described as a novel mechanism to regulate NAD-ME activity under changing metabolic environments. The C(4) NADP-ME is thought to have evolved from a C(3) chloroplastic ancestor, which in turn would have evolved from an ancient cytosolic enzyme. In this way, the C(4) NADP-ME would have emerged through gene duplication, acquisition of a new promoter, and neo-functionalization. In contrast, there would exist a unique NAD-ME in C(4) plants, which would have been adapted to perform a dual function through changes in the kinetic and regulatory properties of the C(3) ancestors. In addition to this, for the evolution of C(4) NAD-ME, insertion of promoters or enhancers into the single-copy genes of the C(3) ancestors would have changed the expression without gene duplication.

  4. The first step in the biosynthesis of cocaine in Erythroxylum coca: the characterization of arginine and ornithine decarboxylases.

    PubMed

    Docimo, Teresa; Reichelt, Michael; Schneider, Bernd; Kai, Marco; Kunert, Grit; Gershenzon, Jonathan; D'Auria, John C

    2012-04-01

    Despite the long history of cocaine use among humans and its social and economic significance today, little information is available about the biochemical and molecular aspects of cocaine biosynthesis in coca (Erythroxylum coca) in comparison to what is known about the formation of other pharmacologically-important tropane alkaloids in species of the Solanaceae. In this work, we investigated the site of cocaine biosynthesis in E. coca and the nature of the first step. The two principal tropane alkaloids of E. coca, cocaine and cinnamoyl cocaine, were present in highest concentrations in buds and rolled leaves. These are also the organs in which the rate of alkaloid biosynthesis was the highest based on the incorporation of ¹³CO₂. In contrast, tropane alkaloids in the Solanaceae are biosynthesized in the roots and translocated to the leaves. A collection of EST sequences from a cDNA library made from young E. coca leaves was employed to search for genes encoding the first step in tropane alkaloid biosynthesis. Full-length cDNA clones were identified encoding two candidate enzymes, ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), and the enzymatic activities of the corresponding proteins confirmed by heterologous expression in E. coli and complementation of a yeast mutant. The transcript levels of both ODC and ADC genes were highest in buds and rolled leaves and lower in other organs. The levels of both ornithine and arginine themselves showed a similar pattern, so it was not possible to assign a preferential role in cocaine biosynthesis to one of these proteins.

  5. Keto-isovalerate decarboxylase enzymes and methods of use thereof

    DOEpatents

    McElvain, Jessica; O'Keefe, Daniel P.; Paul, Brian James; Payne, Mark S.; Rothman, Steven Cary; He, Hongxian

    2016-01-19

    Provided herein are polypeptides and polynucleotides encoding such polypeptides which have ketoisovalerate decarboxylase activity. Also provided are recombinant host cells comprising such polypeptides and polynucleotides and methods of use thereof.

  6. Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon

    PubMed Central

    Chen, Wenxing; Mo, Rongli; Du, Xiaoyun; Zhang, Qinglin; Luo, Zhengrong

    2016-01-01

    Chinese pollination-constant non-astringent (C-PCNA) persimmon (Diospyros kaki Thunb.) is considered to be an important germplasm resource for the breeding of PCNA cultivars, though its molecular mechanisms of astringency removal remain to be elucidated. Previously, we showed that the abundance of pyruvate kinase gene transcripts increased rapidly during astringency removal in C-PCNA persimmon fruit. Here, we report the full-length coding sequences of six novel DkPK genes from C-PCNA persimmon fruit isolated based on a complementary DNA (cDNA) library and transcriptome data. The expression patterns of these six DkPK genes and correlations with the soluble proanthocyanidin (PA) content were analyzed during various fruit development stages in different types of persimmon, with DkPK1 showing an expression pattern during the last stage in C-PCNA persimmon that was positively correlated with a decrease in soluble PAs. Phylogenetic analysis revealed that DkPK1 belongs to cytosolic-1 subgroup, and subcellular localization analysis confirmed that DkPK1 is located in the cytosol. Notably, tissue expression profiling revealed ubiquitous DkPK1 expression in different persimmon organs, with the highest expression in seeds. Furthermore, transient over-expression of DkPK1 in persimmon leaves resulted in a significant decrease in the content of soluble PAs but a significant increase in the transcript levels of pyruvate decarboxylase genes (DkPDC1, -3, -4, -5), which catalyze the conversion of pyruvate to acetaldehyde. Thus, we propose that an acetaldehyde-based coagulation effect reduces the content of soluble PAs. Taken together, our results suggest that DkPK1 might be involved in the natural removal of astringency at the last developmental stage in C-PCNA persimmon. This is the first report to identify several novel full-length DkPK genes as well as their potential roles in the natural loss of astringency in C-PCNA persimmon. PMID:26925075

  7. [ERK activation effects on GABA secretion inhibition induced by SDF-1 in hippocampal neurons of rats].

    PubMed

    Zhang, Zi-juan; Guo, Mei-xia; Xing, Ying

    2015-09-01

    To investigate the effect of extracellular regulating kinase (ERK) signaling pathway on the secretion of gamma-aminobutyric acid (GABA) in cultured rat hippocampal neurons induced by stromal cell derived factor-1 (SDF-1). The hippocampal neurons of newborn SD rats were cultured and identified in vitro; the phosphorylation level of ERK1/2 was examined by Western blot; ELISA was used to detect the effect of PD98059, a ERK1/2 specific blocker on GABA secretion of cultured hippocampal neurons and Western blot were adopted to measure the protein expression levels of glutamate decarboxylase (GAD65/67) and gamma aminobutyric acid transporter (GAT); after blocking ERK1/2 signaling pathway with PD98059; RT-PCR was used to detect the mRNA expression levels of GAT-1 and GAD65 after treated with PD98059. The levels of ERKl/2 phosphorylation were increased significantly by SDF1 acting on hippocampal neurons, and CX-CR4 receptor blocker AMD3100, could inhibit SDF-1 induced ERK1/2 activation; SDF-1 could inhibit the secretion of GABA in cultured hippocampal neurons, and ERK1/2 specific inhibitor PD98059, could partly reverse the inhibition of GABA secretion by SDF-1. The effects of SDF-1 on cultured hippocampal neurons was to decrease the mRNA genesis of glutamic acid decarboxylase GAD65 and GABA transporter GAT-1, besides, ERK inhibitor PD98059 could effectively flip the effect of SDF-1. The results of Western blot showed that SDF-1 could inhibit the protein expression of GAT-1 and GAD65/67 in hippocampal neurons and the inhibition of GAT-1 and GAD65/67 protein expression could be partially restored by ERK1/2 blocker. SDF-1 acts on the CXCR4 of hippocampal neurons in vitro, and inhibits the expression of GAD by activating the ERK1/2 signaling pathway, and this may represent one possible pathway of GABA secretion inhibition.

  8. Ornithine Decarboxylase, Polyamines, and Pyrrolizidine Alkaloids in Senecio and Crotalaria

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Cohen, Eric J.; Bitonti, Alan J.; McCann, Peter P.

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here—using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors—endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence—with relatively very high levels of these compounds—in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence. PMID:16665870

  9. Ornithine decarboxylase, polyamines, and pyrrolizidine alkaloids in senecio and crotalaria.

    PubMed

    Birecka, H; Birecki, M; Cohen, E J; Bitonti, A J; McCann, P P

    1988-01-01

    When tested for ornithine and arginine decarboxylases, pyrrolizidine alkaloid-bearing Senecio riddellii, S. longilobus (Compositae), and Crotalaria retusa (Leguminosae) plants exhibited only ornithine decarboxylase activity. This contrasts with previous studies of four species of pyrrolizidine alkaloid-bearing Heliotropium (Boraginaceae) in which arginine decarboxylase activity was very high relative to that of ornithine decarboxylase. Unlike Heliotropium angiospermum and Heliotropium indicum, in which endogenous arginine was the only detectable precursor of putrescine channeled into pyrrolizidines, in the species studied here-using difluoromethylornithine and difluoromethylarginine as the enzyme inhibitors-endogenous ornithine was the main if not the only precursor of putrescine converted into the alkaloid aminoalcohol moiety. In S. riddellii and C. retusa at flowering, ornithine decarboxylase activity was present mainly in leaves, especially the young ones. However, other very young organs such as inflorescence and growing roots exhibited much lower or very low activities; the enzyme activity in stems was negligible. There was no correlation between the enzyme activity and polyamine or alkaloid content in either species. In both species only free polyamines were detected except for C. retusa roots and inflorescence-with relatively very high levels of these compounds-in which conjugated putrescine, spermidine, and spermine were also found; agmatine was not identified by HPLC in any plant organ except for C. retusa roots with rhizobial nodules. Organ- or age-dependent differences in the polyamine levels were small or insignificant. The highest alkaloid contents were found in young leaves and inflorescence.

  10. S-adenosylmethionine decarboxylase from baker's yeast.

    PubMed Central

    Pösö, H; Sinervirta, R; Jänne, J

    1975-01-01

    1. S-Adenosyl-L-methionine decarboxylase (S-adenosyl-L-methionine carboxy-lyase, EC 4.1.1.50) was purified more than 1100-fold from extracts of Saccharomyces cerevisiae by affinity chromatography on columns of Sepharose containing covalently bound methylglyoxal bis(guanylhydrazone) (1,1'[(methylethanediylidene)dinitrilo]diguanidine) [Pegg, (1974) Biochem J. 141, 581-583]. The final preparation appeared to be homogeneous on polyacrylamide-gel electrophoresis at pH 8.4. 2. S-Adenosylmethionine decarboxylase activity was completely separated from spermidine synthase activity [5'-deoxyadenosyl-(5'),3-aminopropyl-(1),methylsulphonium-salt-putrescine 3-aminopropyltransferase, EC 2.5.1.16] during the purification procedure. 3. Adenosylmethionine decarboxylase activity from crude extracts of baker's yeast was stimulated by putrescine, 1,3-diamino-propane, cadaverine (1,5-diaminopentane) and spermidine; however, the purified enzyme, although still stimulated by the diamines, was completely insensitive to spermidine. 4. Adenosylmethionine decarboxylase has an apparent Km value of 0.09 mM for adenosylmethionine in the presence of saturating concentrations of putrescine. The omission of putrescine resulted in a five-fold increase in the apparent Km value for adenosylmethionine. 5. The apparent Ka value for putrescine, as the activator of the reaction, was 0.012 mM. 6. Methylglyoxal bis(guanylhydrazone) and S-methyladenosylhomocysteamine (decarboxylated adenosylmethionine) were powerful inhibitors of the enzyme. 7. Adenosylmethionine decarboxylase from baker's yeast was inhibited by a number of conventional carbonyl reagents, but in no case could the inhibition be reversed with exogenous pyridoxal 5'-phosphate. PMID:1108876

  11. Expression and stereochemical and isotope effect studies of active 4-oxalocrotonate decarboxylase.

    PubMed

    Stanley, T M; Johnson, W H; Burks, E A; Whitman, C P; Hwang, C C; Cook, P F

    2000-02-01

    4-Oxalocrotonate decarboxylase (4-OD) and vinylpyruvate hydratase (VPH) from Pseudomonas putida mt-2 form a complex that converts 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate in the catechol meta fission pathway. To facilitate mechanistic and structural studies of the complex, the two enzymes have been coexpressed and the complex has been purified to homogeneity. In addition, Glu-106, a potential catalytic residue in VPH, has been changed to glutamine, and the resulting E106QVPH mutant has been coexpressed with 4-OD and purified to homogeneity. The 4-OD/E106QVPH complex retains full decarboxylase activity, with comparable kinetic parameters to those observed for 4-OD in the wild-type complex, but is devoid of any detectable hydratase activity. Decarboxylation of (5S)-2-oxo-3-[5-D]hexenedioate by either the 4-OD/VPH complex or the mutant complex generates 2-hydroxy-2,4E-[5-D]pentadienoate in D(2)O. Ketonization of 2-hydroxy-2,4-pentadienoate by the wild-type complex is highly stereoselective and results in the formation of 2-oxo-(3S)-[3-D]-4-pentenoate, while the mutant complex generates a racemic mixture. These results indicate that 2-hydroxy-2, 4-pentadienoate is the product of 4-OD and that 2-oxo-4-pentenoate results from a VPH-catalyzed process. On this basis, the previously proposed hypothesis for the conversion of 2-oxo-3-hexenedioate to 2-oxo-4-hydroxypentanoate has been revised [Lian, H., and Whitman, C. P. (1994) J. Am. Chem. Soc. 116, 10403-10411]. Finally, the observed (13)C kinetic isotope effect on the decarboxylation of 2-oxo-3-hexenedioate by the 4-OD/VPH complex suggests that the decarboxylation step is nearly rate-limiting. Because the value is not sensitive to either magnesium or manganese, it is likely that the transition state for carbon-carbon bond cleavage is late and that the metal positions the substrate and polarizes the carbonyl group, analogous to its role in oxalacetate decarboxylase.

  12. Characterization and immobilization on nickel-chelated Sepharose of a glutamate decarboxylase A from Lactobacillus brevis BH2 and its application for production of GABA.

    PubMed

    Lee, Ji-Yeon; Jeon, Sung-Jong

    2014-01-01

    A gene encoding glutamate decarboxylase A (GadA) from Lactobacillus brevis BH2 was expressed in a His-tagged form in Escherichia coli cells, and recombinant protein exists as a homodimer consisting of identical subunits of 53 kDa. GadA was absolutely dependent on the ammonium sulfate concentration for catalytic activity and secondary structure formation. GadA was immobilized on the metal affinity resin with an immobilization yield of 95.8%. The pH optima of the immobilized enzyme were identical with those of the free enzyme. However, the optimum temperature for immobilized enzyme was 5 °C higher than that for the free enzyme. The immobilized GadA retained its relative activity of 41% after 30 reuses of reaction within 30 days and exhibited a half-life of 19 cycles within 19 days. A packed-bed bioreactor with immobilized GadA showed a maximum yield of 97.8% GABA from 50 mM l-glutamate in a flow-through system under conditions of pH 4.0 and 55 °C.

  13. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity.

    PubMed

    Shin, Sun-Mi; Kim, Hana; Joo, Yunhye; Lee, Sang-Jae; Lee, Yong-Jik; Lee, Sang Jun; Lee, Dong-Woo

    2014-12-17

    The gadB gene encoding glutamate decarboxylase (GAD) from Lactobacillus plantarum was cloned and expressed in Escherichia coli. The recombinant enzyme exhibited maximal activity at 40 °C and pH 5.0. The 3D model structure of L. plantarum GAD proposed that its C-terminal region (Ile454-Thr468) may play an important role in the pH dependence of catalysis. Accordingly, C-terminally truncated (Δ3 and Δ11 residues) mutants were generated and their enzyme activities compared with that of the wild-type enzyme at different pH values. Unlike the wild-type GAD, the mutants showed pronounced catalytic activity in a broad pH range of 4.0-8.0, suggesting that the C-terminal region is involved in the pH dependence of GAD activity. Therefore, this study may provide effective target regions for engineering pH dependence of GAD activity, thereby meeting industrial demands for the production of γ-aminobutyrate in a broad range of pH values.

  14. Proteins of the Glycine Decarboxylase Complex in the Hydrogenosome of Trichomonas vaginalis†

    PubMed Central

    Mukherjee, Mandira; Brown, Mark T.; McArthur, Andrew G.; Johnson, Patricia J.

    2006-01-01

    Trichomonas vaginalis is a unicellular eukaryote that lacks mitochondria and contains a specialized organelle, the hydrogenosome, involved in carbohydrate metabolism and iron-sulfur cluster assembly. We report the identification of two glycine cleavage H proteins and a dihydrolipoamide dehydrogenase (L protein) of the glycine decarboxylase complex in T. vaginalis with predicted N-terminal hydrogenosomal presequences. Immunofluorescence analyses reveal that both H and L proteins are localized in hydrogenosomes, providing the first evidence for amino acid metabolism in this organelle. All three proteins were expressed in Escherichia coli and purified to homogeneity. The experimental Km of L protein for the two H proteins were 2.6 μM and 3.7 μM, consistent with both H proteins serving as substrates of L protein. Analyses using purified hydrogenosomes showed that endogenous H proteins exist as monomers and endogenous L protein as a homodimer in their native states. Phylogenetic analyses of L proteins revealed that the T. vaginalis homologue shares a common ancestry with dihydrolipoamide dehydrogenases from the firmicute bacteria, indicating its acquisition via a horizontal gene transfer event independent of the origins of mitochondria and hydrogenosomes. PMID:17158739

  15. The importance of SERINE DECARBOXYLASE1 (SDC1) and ethanolamine biosynthesis during embryogenesis of Arabidopsis thaliana.

    PubMed

    Yunus, Ian Sofian; Liu, Yu-Chi; Nakamura, Yuki

    2016-11-01

    In plants, ethanolamine is considered a precursor for the synthesis of choline, which is an essential dietary nutrient for animals. An enzyme serine decarboxylase (SDC) has been identified and characterized in Arabidopsis, which directly converts serine to ethanolamine, a precursor to phosphorylethanolamine and its subsequent metabolites in plants. However, the importance of SDC and ethanolamine production in plant growth and development remains unclear. Here, we show that SDC is required for ethanolamine biosynthesis in vivo and essential in plant embryogenesis in Arabidopsis. The knockout of SDC1 caused an embryonic lethal defect due to the developmental arrest of the embryos at the heart stage. During embryo development, the expression was observed at the later stages, at which developmental defect occurred in the knockout mutant. Overexpression of SDC1 in planta increased levels of ethanolamine, phosphatidylethanolamine, and phosphatidylcholine both in leaves and siliques. These results suggest that SDC1 plays an essential role in ethanolamine biosynthesis during the embryogenesis in Arabidopsis. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  16. N-ω-chloroacetyl-l-ornithine, a new competitive inhibitor of ornithine decarboxylase, induces selective growth inhibition and cytotoxicity on human cancer cells versus normal cells.

    PubMed

    Medina-Enríquez, Miriam Marlene; Alcántara-Farfán, Verónica; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José Guadalupe; Rodríguez-Páez, Lorena; Vargas-Ramírez, Alba Laura

    2015-06-01

    Many cancer cells have high expression of ornithine decarboxylase (ODC) and there is a concerted effort to seek new inhibitors of this enzyme. The aim of the study was to initially characterize the inhibition properties, then to evaluate the cytotoxicity/antiproliferative cell based activity of N-ω-chloroacetyl-l-ornithine (NCAO) on three human cancer cell lines. Results showed NCAO to be a reversible competitive ODC inhibitor (Ki = 59 µM) with cytotoxic and antiproliferative effects, which were concentration- and time-dependent. The EC50,72h of NCAO was 15.8, 17.5 and 10.1 µM for HeLa, MCF-7 and HepG2 cells, respectively. NCAO at 500 µM completely inhibited growth of all cancer cells at 48 h treatment, with almost no effect on normal cells. Putrescine reversed NCAO effects on MCF-7 and HeLa cells, indicating that this antiproliferative activity is due to ODC inhibition.

  17. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks.

    PubMed

    Yang, Mingfeng; Li, Xuefeng; Bu, Chunya; Wang, Hui; Shi, Guanglu; Yang, Xiushan; Hu, Yong; Wang, Xiaoqin

    2014-11-01

    Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC-MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

  18. Identification, Cloning, and Characterization of a Lactococcus lactis Branched-Chain α-Keto Acid Decarboxylase Involved in Flavor Formation

    PubMed Central

    Smit, Bart A.; van Hylckama Vlieg, Johan E. T.; Engels, Wim J. M.; Meijer, Laura; Wouters, Jan T. M.; Smit, Gerrit

    2005-01-01

    The biochemical pathway for formation of branched-chain aldehydes, which are important flavor compounds derived from proteins in fermented dairy products, consists of a protease, peptidases, a transaminase, and a branched-chain α-keto acid decarboxylase (KdcA). The activity of the latter enzyme has been found only in a limited number of Lactococcus lactis strains. By using a random mutagenesis approach, the gene encoding KdcA in L. lactis B1157 was identified. The gene for this enzyme is highly homologous to the gene annotated ipd, which encodes a putative indole pyruvate decarboxylase, in L. lactis IL1403. Strain IL1403 does not produce KdcA, which could be explained by a 270-nucleotide deletion at the 3′ terminus of the ipd gene encoding a truncated nonfunctional decarboxylase. The kdcA gene was overexpressed in L. lactis for further characterization of the decarboxylase enzyme. Of all of the potential substrates tested, the highest activity was observed with branched-chain α-keto acids. Moreover, the enzyme activity was hardly affected by high salinity, and optimal activity was found at pH 6.3, indicating that the enzyme might be active under cheese ripening conditions. PMID:15640202

  19. Mutation of the oxaloacetate decarboxylase gene of Lactococcus lactis subsp. lactis impairs the growth during citrate metabolism.

    PubMed

    Augagneur, Y; Garmyn, D; Guzzo, J

    2008-01-01

    Citrate metabolism generates metabolic energy through the generation of a membrane potential and a pH gradient. The purpose of this work was to study the influence of oxaloacetate decarboxylase in citrate metabolism and intracellular pH maintenance in relation to acidic conditions. A Lactococcus lactis oxaloacetate decarboxylase mutant [ILCitM (pFL3)] was constructed by double homologous recombination. During culture with citrate, and whatever the initial pH, the growth rate of the mutant was lower. In addition, the production of diacetyl and acetoin was altered in the mutant strain. However, our results indicated no relationship with a change in the maintenance of intracellular pH. Experiments performed on resting cells clearly showed that oxaloacetate accumulated temporarily in the supernatant of the mutant. This accumulation could be involved in the perturbations observed during citrate metabolism, as the addition of oxaloacetate in M17 medium inhibited the growth of L. lactis. The mutation of oxaloacetate decarboxylase perturbed citrate metabolism and reduced the benefits of its utilization during growth under acidic conditions. This study allows a better understanding of citrate metabolism and the role of oxaloacetate decarboxylase in the tolerance of lactic acid bacteria to acidic conditions.

  20. A novel MVA-mediated pathway for isoprene production in engineered E. coli.

    PubMed

    Yang, Jianming; Nie, Qingjuan; Liu, Hui; Xian, Mo; Liu, Huizhou

    2016-01-20

    To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel. We firstly introduced fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species into E. coli to directly convert MVA(mevalonate) into 3-methy-3-buten-1-ol. And then to transform 3-methy-3-buten-1-ol to isoprene, oleate hydratase (OhyAEM) from Elizabethkingia meningoseptica was overexpressed in E. coli. A novel biosynthetic pathway of isoprene in E. coli was established by co-expressing the heterologous mvaE gene encoding acetyl-CoA acetyltransferase/HMG-CoA reductase and mvaS gene encoding HMG-CoA synthase from Enterococcus faecalis, fatty acid decarboxylase (OleTJE) and oleate hydratase (OhyAEM). Furthermore, to enhance isoprene production, a further optimization of expression level of OleTJE, OhyAEM was carried out by using different promoters and copy numbers of plasmids. Thereafter, the fermentation process was also optimized to improve the production of isoprene. The final engineered strain, YJM33, bearing the innovative biosynthetic pathway of isoprene, was found to produce isoprene up to 2.2 mg/L and 620 mg/L under flask and fed-batch fermentation conditions, respectively. In this study, by using metabolic engineering techniques, the novel MVA-mediated biosynthetic pathway of isoprene was successfully assembled in E. coli BL21(DE3) with the heterologous MVA upper pathway, OleTJE from Jeotgalicoccus species and OhyAEM from Elizabethkingia meningoseptica. Compared with traditional MVA pathway, the novel pathway is shortened by 3 steps. In addition, this is the first report on the reaction of converting MVA into 3-methy-3-buten-1-ol by fatty acid decarboxylase (OleTJE) from Jeotgalicoccus species. In brief, this study provided an alternative method for isoprene biosynthesis, which is largely different from the well-developed MEP pathway or MVA pathway.

  1. Reduced Glutamate Decarboxylase 65 Protein Within Primary Auditory Cortex Inhibitory Boutons in Schizophrenia

    PubMed Central

    Moyer, Caitlin E.; Delevich, Kristen M.; Fish, Kenneth N.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Dorph-Petersen, Karl-Anton; Lewis, David A.; Sweet, Robert A.

    2012-01-01

    Background Schizophrenia is associated with perceptual and physiological auditory processing impairments that may result from primary auditory cortex excitatory and inhibitory circuit pathology. High-frequency oscillations are important for auditory function and are often reported to be disrupted in schizophrenia. These oscillations may, in part, depend on upregulation of gamma-aminobutyric acid synthesis by glutamate decarboxylase 65 (GAD65) in response to high interneuron firing rates. It is not known whether levels of GAD65 protein or GAD65-expressing boutons are altered in schizophrenia. Methods We studied two cohorts of subjects with schizophrenia and matched control subjects, comprising 27 pairs of subjects. Relative fluorescence intensity, density, volume, and number of GAD65-immunoreactive boutons in primary auditory cortex were measured using quantitative confocal microscopy and stereologic sampling methods. Bouton fluorescence intensities were used to compare the relative expression of GAD65 protein within boutons between diagnostic groups. Additionally, we assessed the correlation between previously measured dendritic spine densities and GAD65-immunoreactive bouton fluorescence intensities. Results GAD65-immunoreactive bouton fluorescence intensity was reduced by 40% in subjects with schizophrenia and was correlated with previously measured reduced spine density. The reduction was greater in subjects who were not living independently at time of death. In contrast, GAD65-immunoreactive bouton density and number were not altered in deep layer 3 of primary auditory cortex of subjects with schizophrenia. Conclusions Decreased expression of GAD65 protein within inhibitory boutons could contribute to auditory impairments in schizophrenia. The correlated reductions in dendritic spines and GAD65 protein suggest a relationship between inhibitory and excitatory synapse pathology in primary auditory cortex. PMID:22624794

  2. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon–carbon bond cleavage during α-oxidation of 3-methyl-branched fatty acids

    PubMed Central

    Foulon, Veerle; Antonenkov, Vasily D.; Croes, Kathleen; Waelkens, Etienne; Mannaerts, Guy P.; Van Veldhoven, Paul P.; Casteels, Minne

    1999-01-01

    In the third step of the α-oxidation of 3-methyl-branched fatty acids such as phytanic acid, a 2-hydroxy-3-methylacyl-CoA is cleaved into formyl-CoA and a 2-methyl-branched fatty aldehyde. The cleavage enzyme was purified from the matrix protein fraction of rat liver peroxisomes and identified as a protein made up of four identical subunits of 63 kDa. Its activity proved to depend on Mg2+ and thiamine pyrophosphate, a hitherto unrecognized cofactor of α-oxidation. Formyl-CoA and 2-methylpentadecanal were identified as reaction products when the purified enzyme was incubated with 2-hydroxy-3-methylhexadecanoyl-CoA as the substrate. Hence the enzyme catalyzes a carbon–carbon cleavage, and we propose calling it 2-hydroxyphytanoyl-CoA lyase. Sequences derived from tryptic peptides of the purified rat protein were used as queries to recover human expressed sequence tags from the databases. The composite cDNA sequence of the human lyase contained an ORF of 1,734 bases that encodes a polypeptide with a calculated molecular mass of 63,732 Da. Recombinant human protein, expressed in mammalian cells, exhibited lyase activity. The lyase displayed homology to a putative Caenorhabditis elegans protein that resembles bacterial oxalyl-CoA decarboxylases. Similarly to the decarboxylases, a thiamine pyrophosphate-binding consensus domain was present in the C-terminal part of the lyase. Although no peroxisome targeting signal, neither 1 nor 2, was apparent, transfection experiments with constructs encoding green fluorescent protein fused to the full-length lyase or its C-terminal pentapeptide indicated that the C terminus of the lyase represents a peroxisome targeting signal 1 variant. PMID:10468558

  3. Transgenic Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) Overexpressing S-Adenosylmethionine Decarboxylase (SAMDC) Gene for Improved Cold Tolerance Through Involvement of H2O2 and NO Signaling.

    PubMed

    Luo, Jianhao; Liu, Mingxi; Zhang, Chendong; Zhang, Peipei; Chen, Jingjing; Guo, Zhenfei; Lu, Shaoyun

    2017-01-01

    Centipedegrass ( Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass species. Transgenic centipedgrass plants overexpressing S-adenosylmethionine decarboxylase from bermudagrass ( CdSAMDC1 ) that was induced in response to cold were generated in this study. Higher levels of CdSAMDC1 transcript and sperimidine (Spd) and spermin (Spm) concentrations and enhanced freezing and chilling tolerance were observed in transgenic plants as compared with the wild type (WT). Transgenic plants had higher levels of polyamine oxidase (PAO) activity and H 2 O 2 than WT, which were blocked by pretreatment with methylglyoxal bis (guanylhydrazone) or MGBG, inhibitor of SAMDC, indicating that the increased PAO and H 2 O 2 were a result of expression of CdSAMDC1 . In addition, transgenic plants had higher levels of nitrate reductase (NR) activity and nitric oxide (NO) concentration. The increased NR activity were blocked by pretreatment with MGBG and ascorbic acid (AsA), scavenger of H 2 O 2 , while the increased NO level was blocked by MGBG, AsA, and inhibitors of NR, indicating that the enhanced NR-derived NO was dependent upon H 2 O 2 , as a result of expression CdSAMDC1 . Elevated superoxide dismutase (SOD) and catalase (CAT) activities were observed in transgenic plants than in WT, which were blocked by pretreatment with MGBG, AsA, inhibitors of NR and scavenger of NO, indicating that the increased activities of SOD and CAT depends on expression of CdSAMDC1 , H 2 O 2 , and NR-derived NO. Our results suggest that the elevated cold tolerance was associated with PAO catalyzed production of H 2 O 2 , which in turn led to NR-derived NO production and induced antioxidant enzyme activities in transgenic plants.

  4. Carbidopa abrogates L-dopa decarboxylase coactivation of the androgen receptor and delays prostate tumor progression.

    PubMed

    Wafa, Latif A; Cheng, Helen; Plaa, Nathan; Ghaidi, Fariba; Fukumoto, Takahiro; Fazli, Ladan; Gleave, Martin E; Cox, Michael E; Rennie, Paul S

    2012-06-15

    The androgen receptor (AR) plays a central role in prostate cancer progression to the castration-resistant (CR) lethal state. L-Dopa decarboxylase (DDC) is an AR coactivator that increases in expression with disease progression and is coexpressed with the receptor in prostate adenocarcinoma cells, where it may enhance AR activity. Here, we hypothesize that the DDC enzymatic inhibitor, carbidopa, can suppress DDC-coactivation of AR and retard prostate tumor growth. Treating LNCaP prostate cancer cells with carbidopa in transcriptional assays suppressed the enhanced AR transactivation seen with DDC overexpression and decreased prostate-specific antigen (PSA) mRNA levels. Carbidopa dose-dependently inhibited cell growth and decreased survival in LNCaP cell proliferation and apoptosis assays. The inhibitory effect of carbidopa on DDC-coactivation of AR and cell growth/survival was also observed in PC3 prostate cancer cells (stably expressing AR). In vivo studies demonstrated that serum PSA velocity and tumor growth rates elevated ∼2-fold in LNCaP xenografts, inducibly overexpressing DDC, were reverted to control levels with carbidopa administration. In castrated mice, treating LNCaP tumors, expressing endogenous DDC, with carbidopa delayed progression to the CR state from 6 to 10 weeks, while serum PSA and tumor growth decreased 4.3-fold and 5.4-fold, respectively. Our study is a first time demonstration that carbidopa can abrogate DDC-coactivation of AR in prostate cancer cells and tumors, decrease serum PSA, reduce tumor growth and delay CR progression. Since carbidopa is clinically approved, it may be readily used as a novel therapeutic strategy to suppress aberrant AR activity and delay prostate cancer progression. Copyright © 2011 UICC.

  5. C3–C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis

    PubMed Central

    Khoshravesh, Roxana; Stinson, Corey R.; Stata, Matt; Busch, Florian A.; Sage, Rowan F.; Ludwig, Martha; Sage, Tammy L.

    2016-01-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S. laxum that is sister to S. hians. We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H. aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H. aturensis and S. hians and to mestome sheath cells of N. minor. Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H. aturensis and S. hians are situated centripetally in a pattern identical to C2 eudicots. In S. laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S. hians. This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. PMID:27073202

  6. C3-C4 intermediacy in grasses: organelle enrichment and distribution, glycine decarboxylase expression, and the rise of C2 photosynthesis.

    PubMed

    Khoshravesh, Roxana; Stinson, Corey R; Stata, Matt; Busch, Florian A; Sage, Rowan F; Ludwig, Martha; Sage, Tammy L

    2016-05-01

    Photorespiratory glycine shuttling and decarboxylation in bundle sheath (BS) cells exhibited by C2 species is proposed to be the evolutionary bridge to C4 photosynthesis in eudicots. To evaluate this in grasses, we compare anatomy, cellular localization of glycine decarboxylase (GDC), and photosynthetic physiology of a suspected C2 grass, Homolepis aturensis, with these traits in known C2 grasses, Neurachne minor and Steinchisma hians, and C3 S laxum that is sister to S hians We also use publicly available genome and RNA-sequencing data to examine the evolution of GDC subunits and enhance our understanding of the evolution of BS-specific GDC expression in C2 and C4 grasses. Our results confirm the identity of H aturensis as a C2 species; GDC is confined predominantly to the organelle-enriched BS cells in H aturensis and S hians and to mestome sheath cells of N minor Phylogenetic analyses and data obtained from immunodetection of the P-subunit of GDC are consistent with the hypothesis that the BS dominant levels of GDC in C2 and C4 species are due to changes in expression of a single GLDP gene in M and BS cells. All BS mitochondria and peroxisomes and most chloroplasts in H aturensis and S hians are situated centripetally in a pattern identical to C2 eudicots. In S laxum, which has C3-like gas exchange patterns, mitochondria and peroxisomes are positioned centripetally as they are in S hians This subcellular phenotype, also present in eudicots, is posited to initiate a facilitation cascade leading to C2 and C4 photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Higher gamma-aminobutyric acid neuron density in the white matter of orbital frontal cortex in schizophrenia.

    PubMed

    Joshi, Dipesh; Fung, Samantha J; Rothwell, Alice; Weickert, Cynthia Shannon

    2012-11-01

    In the orbitofrontal cortex (OFC), reduced gray matter volume and reduced glutamic acid decarboxylase 67kDa isoform (GAD67) messenger (m)RNA are found in schizophrenia; however, how these alterations relate to developmental pathology of interneurons is unclear. The present study therefore aimed to determine if increased interstitial white matter neuron (IWMN) density exists in the OFC; whether gamma-aminobutyric acid (GABA)ergic neuron density in OFC white matter was altered; and how IWMN density may be related to an early-expressed inhibitory neuron marker, Dlx1, in OFC gray matter in schizophrenia. IWMN densities were determined (38 schizophrenia and 38 control subjects) for neuronal nuclear antigen (NeuN+) and 65/67 kDa isoform of glutamic acid decarboxylase immunopositive (GAD65/67+) neurons. In situ hybridization was performed to determine Dlx1 and GAD67 mRNA expression in the OFC gray matter. NeuN and GAD65/67 immunopositive cell density was significantly increased in the superficial white matter in schizophrenia. Gray matter Dlx1 and GAD67 mRNA expression were reduced in schizophrenia. Dlx1 mRNA levels were negatively correlated with GAD65/67 IWMN density. Our study provides evidence that pathology of IWMNs in schizophrenia includes GABAergic interneurons and that increased IWMN density may be related to GABAergic deficits in the overlying gray matter. These findings provide evidence at the cellular level that the OFC is a site of pathology in schizophrenia and support the hypothesis that inappropriate migration of cortical inhibitory interneurons occurs in schizophrenia. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

    PubMed Central

    Crump, Douglas; Lean, David; Trudeau, Vance L

    2002-01-01

    We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p < 0.05), but neither OP nor UV-B alone produced significant changes in body weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic genes and disrupt tadpole growth patterns. PMID:11882479

  9. Octylphenol and UV-B radiation alter larval development and hypothalamic gene expression in the leopard frog (Rana pipiens).

    PubMed

    Crump, Douglas; Lean, David; Trudeau, Vance L

    2002-03-01

    We assessed octylphenol (OP), an estrogenic endocrine-disrupting chemical, and UV-B radiation, a known stressor in amphibian development, for their effects on hypothalamic gene expression and premetamorphic development in the leopard frog Rana pipiens. Newly hatched tadpoles were exposed for 10 days to OP alone at two different dose levels; to subambient UV-B radiation alone; and to two combinations of OP and UV-B. Control animals were exposed to ethanol vehicle (0.01%) exposure, a subset of tadpoles from each treatment group was raised to metamorphosis to assess differences in body weight and time required for hindlimb emergence. Tadpoles from one of the OP/UV-B combination groups had greater body weight and earlier hindlimb emergence (p < 0.05), but neither OP nor UV-B alone produced significant changes in body weight or hindlimb emergence, indicating a potential mechanism of interaction between OP and UV-B. We hypothesized that the developing hypothalamus might be a potential environmental sensor for neurotoxicologic studies because of its role in the endocrine control of metamorphosis. We used a differential display strategy to identify candidate genes differentially expressed in the hypothalamic region of the exposed tadpoles. Homology cloning was performed to obtain R. pipiens glutamate decarboxylases--GAD65 and GAD67, enzymes involved in the synthesis of the neurotransmitter gamma-aminobutyric acid (GABA). cDNA expression profiles revealed that OP and UV-B affected the levels of several candidate transcripts in tadpole (i.e., Nck, Ash, and phospholipase C gamma-binding protein 4 and brain angiogenesis inhibitor-3) and metamorph (i.e., GAD67, cytochrome C oxidase, and brain angiogenesis inhibitor-2 and -3) brains. This study represents a novel approach in toxicology that combines physiologic and molecular end points and indicates that levels of OP commonly found in the environment and subambient levels of UV-B alter the expression of important hypothalamic genes and disrupt tadpole growth patterns.

  10. Polyamine formation by arginine decarboxylase as a transducer of hormonal, environmental and stress stimuli in higher plants

    NASA Technical Reports Server (NTRS)

    Galston, A. W.; Flores, H. E.; Kaur-Sawhney, R.

    1982-01-01

    Recent evidence implicates polyamines including putrescine in the regulation of such diverse plant processes as cell division, embryogenesis and senescence. We find that the enzyme arginine decarboxylase, which controls the rate of putrescine formation in some plant systems, is activated by light acting through P(r) phytochrome as a receptor, by the plant hormone gibberellic acid, by osmotic shock and by other stress stimuli. We therefore propose arginine decarboxylase as a possible transducer of the various initially received tropistic stimuli in plants. The putrescine formed could act by affecting cytoskeletal components.

  11. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community.

    PubMed

    Zargar, K; Saville, R; Phelan, R M; Tringe, S G; Petzold, C J; Keasling, J D; Beller, H R

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation in complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extracts, (iii) both activities were irreversibly inactivated upon exposure to O2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.

  12. Resolving Phenylalanine Metabolism Sheds Light on Natural Synthesis of Penicillin G in Penicillium chrysogenum

    PubMed Central

    Veiga, Tânia; Solis-Escalante, Daniel; Romagnoli, Gabriele; ten Pierick, Angela; Hanemaaijer, Mark; Deshmuhk, Amit; Wahl, Aljoscha; Pronk, Jack T.

    2012-01-01

    The industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G. To analyze this natural pathway for penicillin G production, chemostat cultures were switched to [U-13C]phenylalanine as the nitrogen source. The quantification and modeling of the dynamics of labeled metabolites indicated that phenylalanine was (i) incorporated in nascent protein, (ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation, and (iii) hydroxylated to tyrosine and subsequently metabolized via the homogentisate pathway. The involvement of the homogentisate pathway was supported by the comparative transcriptome analysis of P. chrysogenum cultures grown with phenylalanine and with (NH4)2SO4 as the nitrogen source. This transcriptome analysis also enabled the identification of two putative 2-oxo acid decarboxylase genes (Pc13g9300 and Pc18g01490). cDNAs of both genes were cloned and expressed in the 2-oxo-acid-decarboxylase-free Saccharomyces cerevisiae strain CEN.PK711-7C (pdc1 pdc5 pdc6Δ aro10Δ thi3Δ). The introduction of Pc13g09300 restored the growth of this S. cerevisiae mutant on glucose and phenylalanine, thereby demonstrating that Pc13g09300 encodes a dual-substrate pyruvate and phenylpyruvate decarboxylase, which plays a key role in an Ehrlich-type pathway for the production of phenylacetate in P. chrysogenum. These results provide a basis for the metabolic engineering of P. chrysogenum for the production of the penicillin G side chain precursor phenylacetate. PMID:22158714

  13. Acute glomerular upregulation of ornithine decarboxylase is not essential for mesangial cell proliferation and matrix expansion in anti-Thy-1-nephritis.

    PubMed

    Ketteler, M; Westenfeld, R; Gawlik, A; de Heer, E; Distler, A

    2000-01-01

    Pathways of L-arginine metabolism including nitric oxide, agmatine and polyamine synthesis are upregulated during glomerular inflammation in experimental glomerulonephritis. In anti-Thy-1-glomerulonephritis L-arginine-deficient diets ameliorate the disease course in this model. However, it is unclear which metabolic pathway is affected by this substrate depletion. Since polyamines are important proproliferative molecules, we studied the effect of specific polyamine synthesis blockade in vivo on mesangial cell proliferation and glomerular fibrosis in this model. Anti-Thy-1-glomerulonephritis was induced in male Sprague-Dawley rats by single-bolus injection of monoclonal ER4-antibodies. Rats were treated with difluoromethylornithine (0.5-2% in the drinking water), a selective inhibitor of the rate-limiting enzyme of polyamine synthesis, ornithine decarboxylase (ODC). Mesangial cell proliferation and matrix expansion were evaluated in PAS-stained kidney tissues. Glomerular TGF-beta and biglycan-mRNA-expression were determined by Northern blot analysis and albuminuria was measured using a competitive ELISA. Data were compared to untreated controls. Though complete inhibition of ODC activity was achieved at any time point, difluoromethlornithine treatment had no significant effect on albuminuria, glomerular matrix protein expression and mesangial cell count in this model. The acute upregulation of glomerular ODC activity above baseline in anti-Thy1-glomerulonephritis is not pathophysiologically important for disease development however, biological effects of available polyamine pools cannot be excluded by our study.

  14. Potent suppressive activity of nonpolyphenolic fraction of green tea (Camellia sinensis) against genotoxin-induced umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002), tumor promotor-dependent ornithine decarboxylase induction of BALB/c 3T3 fibroblast cells, and chemically induced mouse skin tumorigenesis.

    PubMed

    Okai, Y; Higashi-Okai, K

    Many experimental studies for anticarcinogenic activity of green tea (Camellia sinensis) and tea-derived polyphenols have been carried out. However, the anticarcinogenic activity of the nonpolyphenolic fraction of green tea has been poorly elucidated. To study this problem, the effect of the nonpolyphenolic fraction of green tea leaves was analyzed using in vitro and in vivo experiments associated with tumor initiation and promotion as follows: 1) The nonpolyphenolic fraction caused a strong suppressive effect on umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) induced by genotoxic substances such as 2-amino-6-methyldipirido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-aminoanthracene (2-AA) in the presence of a hepatic metabolizing enzyme mixture. 2) The same fraction showed a dose-dependent inhibition of ornithine decarboxylase (ODC) in BALB/c 3T3 fibroblasts induced by a tumor promotor, 12-O-tetradecanoylphorbol-13-acetate (TPA). 3) The same fraction also exhibited a significant suppression against mouse skin tumorigenesis induced by 7,12-dimethylbenz[a]anthracene (DMBA) (initiator) and TPA (promotor) through inhibition at both stages of tumor initiation and promotion. These results suggest that the nonpolyphenolic fraction of green tea has a potent suppressing activity against carcinogenesis associated with tumor initiation and promotion.

  15. All-trans beta-carotene enhances mitogenic responses and ornithine decarboxylase activity of BALB/c 3T3 fibroblast cells induced by tumor promoter and fetal bovine serum but suppresses mutagen-dependent umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002).

    PubMed

    Okai, Y; Higashi-Okai, K; Yano, Y; Otani, S

    1996-01-19

    Although previous epidemiological studies have indicated that beta-carotene is an important agent for the chemical prevention against carcinogenesis, a recent prospective study has strikingly suggested that supplementation with beta-carotene significantly increased the incidence of some types of cancer (The alpha-Tocopherol and beta-Carotene Cancer Prevention Study Group, New Engl. J. Med., 330 (1994) 1031-1035). To analyze the discrepancy of this problem, the authors analyze the effects of beta-carotene on biochemical and biological events associated with carcinogenesis by in vitro experiments. (1) All-trans beta-carotene enhanced the proliferation and DNA synthesis of BALB/c 3T3 cells induced by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and fetal bovine serum, although beta-carotene itself did not show mitogenic activity. (2) All-trans beta-carotene caused a remarkable stimulation for the early induction of ornithine decarboxylase (ODC) activity after the stimulation of TPA and fetal bovine serum. (3) All-trans beta-carotene exhibited significant antimutagenic activity which suppresses umu C gene expression in Salmonella typhimurium (TA 1535/pSK 1002) induced by a typical mutagen, 2-aminoanthracene (2-AA). These experimental results suggest that all-trans beta-carotene might cause beneficial and harmful effects on different phases of carcinogenesis.

  16. Expression of neuronal and signaling proteins in penumbra around a photothrombotic infarction core in rat cerebral cortex.

    PubMed

    Demyanenko, S V; Panchenko, S N; Uzdensky, A B

    2015-06-01

    Photodynamic impact on animal cerebral cortex using water-soluble Bengal Rose as a photosensitizer, which does not cross the blood-brain barrier and remains in blood vessels, induces platelet aggregation, vessel occlusion, and brain tissue infarction. This reproduces ischemic stroke. Irreversible cell damage within the infarction core propagates to adjacent tissue and forms a transition zone - the penumbra. Tissue necrosis in the infarction core is too fast (minutes) to be prevented, but much slower penumbral injury (hours) can be limited. We studied the changes in morphology and protein expression profile in penumbra 1 h after local photothrombotic infarction induced by laser irradiation of the cerebral cortex after Bengal Rose administration. Morphological study using standard hematoxylin/eosin staining showed a 3-mm infarct core surrounded by 1.5-2.0 mm penumbra. Morphological changes in the penumbra were lesser and decreased towards its periphery. Antibody microarrays against 224 neuronal and signaling proteins were used for proteomic study. The observed upregulation of penumbra proteins involved in maintaining neurite integrity and guidance (NAV3, MAP1, CRMP2, PMP22); intercellular interactions (N-cadherin); synaptic transmission (glutamate decarboxylase, tryptophan hydroxylase, Munc-18-1, Munc-18-3, and synphilin-1); mitochondria quality control and mitophagy (PINK1 and Parkin); ubiquitin-mediated proteolysis and tissue clearance (UCHL1, PINK1, Parkin, synphilin-1); and signaling proteins (PKBα and ERK5) could be associated with tissue recovery. Downregulation of PKC, PKCβ1/2, and TDP-43 could also reduce tissue injury. These changes in expression of some neuronal proteins were directed mainly to protection and tissue recovery in the penumbra. Some upregulated proteins might serve as markers of protection processes in a penumbra.

  17. ALLYLISOPROPYLACETAMIDE INDUCES RAT HEPATIC ORNITHINE DECARBOXYLASE

    EPA Science Inventory

    In rat liver, allylisopropylacetamide (AIA) treatment strongly induced (25-fold) the activity of rat hepatic ornithine decarboxylase (ODC). y either the oral or the subcutaneous routes, AIA produced a long-lasting induction (30 to 4O hours) of hepatic ODC activity. hree analogs o...

  18. Assaying Ornithine and Arginine Decarboxylases in Some Plant Species 1

    PubMed Central

    Birecka, Helena; Bitonti, Alan J.; McCann, Peter P.

    1985-01-01

    A release of 14CO2 not related to ornithine decarboxylase activity was found in crude leaf extracts from Lycopersicon esculentum, Avena sativa, and especially from the pyrrolizidine alkaloid-bearing Heliotropium angiospermum when incubated with [1-14C]- or [U-14C]ornithine. The total 14CO2 produced was about 5- to 100-fold higher than that due to ornithine decarboxylase activities calculated from labeled putrescine (Put) found by thin-layer electrophoresis in the incubation mixtures. Partial purification with (NH4)2SO4 did not eliminate completely the interfering decarboxylation. When incubated with labeled arginine, a very significant 14CO2 release not related to arginine decarboxylase activity was observed only in extracts from H. angiospermum leaves, especially in Tris·HCl buffer. Under the assay conditions, these extracts exhibited oxidative degradation of added Put and agmatine (Agm) and also revealed a high arginase activity. Amino-guanidine at 0.1 to 0.2 millimolar prevented Put degradation and greatly decreased oxidative degradation of Agm; ornithine at 15 to 20 millimolar significantly inhibited arginase activity. A verification of the reliability of the standard 14CO2-based method by assessing labeled Put and/or Agm—formed in the presence of added aminoguanidine and/or ornithine when needed—is recommended especially when crude or semicrude plant extracts are assayed. When based on Put and/or Agm formed at 1.0 to 2.5 millimolar of substrate, the activities of ornithine decarboxylase and arginine decarboxylase in the youngest leaves of the tested species ranged between 1.1 and 3.6 and 1 and 1600 nanomoles per hour per gram fresh weight, respectively. The enzyme activities are discussed in relation to the biosynthesis of pyrrolizidine alkaloids. PMID:16664441

  19. Activating glutamate decarboxylase activity by removing the autoinhibitory domain leads to hyper γ-aminobutyric acid (GABA) accumulation in tomato fruit.

    PubMed

    Takayama, Mariko; Matsukura, Chiaki; Ariizumi, Tohru; Ezura, Hiroshi

    2017-01-01

    The C-terminal extension region of SlGAD3 is likely involved in autoinhibition, and removing this domain increases GABA levels in tomato fruits. γ-Aminobutyric acid (GABA) is a ubiquitous non-protein amino acid with several health-promoting benefits. In many plants including tomato, GABA is synthesized via decarboxylation of glutamate in a reaction catalyzed by glutamate decarboxylase (GAD), which generally contains a C-terminal autoinhibitory domain. We previously generated transgenic tomato plants in which tomato GAD3 (SlGAD3) was expressed using the 35S promoter/NOS terminator expression cassette (35S-SlGAD3-NOS), yielding a four- to fivefold increase in GABA levels in red-ripe fruits compared to the control. In this study, to further increase GABA accumulation in tomato fruits, we expressed SlGAD3 with (SlGAD3 OX ) or without (SlGAD3ΔC OX ) a putative autoinhibitory domain in tomato using the fruit ripening-specific E8 promoter and the Arabidopsis heat shock protein 18.2 (HSP) terminator. Although the GABA levels in SlGAD3 OX fruits were equivalent to those in 35S-SlGAD3-NOS fruits, GABA levels in SlGAD3ΔC OX fruits increased by 11- to 18-fold compared to control plants, indicating that removing the autoinhibitory domain increases GABA biosynthesis activity. Furthermore, the increased GABA levels were accompanied by a drastic reduction in glutamate and aspartate levels, indicating that enhanced GABA biosynthesis affects amino acid metabolism in ripe-fruits. Moreover, SlGAD3ΔC OX fruits exhibited an orange-ripe phenotype, which was associated with reduced levels of both carotenoid and mRNA transcripts of ethylene-responsive carotenogenic genes, suggesting that over activation of GAD influences ethylene sensitivity. Our strategy utilizing the E8 promoter and HSP terminator expression cassette, together with SlGAD3 C-terminal deletion, would facilitate the production of tomato fruits with increased GABA levels.

  20. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene expression and enzymatic activity of alcohol deydrogenase and pyruvate decarboxilase. PMID:22305374

  1. [Characteristics of the glutamate decarboxylase reaction in homogenates of various regions of the rat brain].

    PubMed

    Rozanov, V A

    1987-01-01

    The glutamate decarboxylase activity in rough homogenates of cerebellum, cortex and truncal part of the rat brain was studied under different conditions of incubation: in the presence of 25 mM glutamate sodium, 0.4 mM pyridoxal-5'-phosphate and both these components. It is found that the initial glutamate decarboxylase activity in cerebellum homogenates is approximately twice as high as in the cortex and trunk homogenates. Addition of the substrate and cofactor, especially in the combination, stimulates considerably the yield of gamma-aminobutyric acid (GABA) in the glutamate decarboxylase reaction, the most pronounced activation being observed in the truncal homogenates. The glutamate/GABA relation both initial and after the completion of the reaction is the maximal in the cortex and minimal in the truncal part of the brain. The data obtained evidence for the differences in the content of the GABA-producing enzyme rather than for the presence of the specific mechanisms of the enzyme regulation in different brain areas.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Jarrod B.; Ealick, Steven E.

    The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structuralmore » isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K{sub i} of 30 {+-} 2 {micro}m. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.« less

  3. Chemoproteomic profiling and discovery of protein electrophiles in human cells

    NASA Astrophysics Data System (ADS)

    Matthews, Megan L.; He, Lin; Horning, Benjamin D.; Olson, Erika J.; Correia, Bruno E.; Yates, John R.; Dawson, Philip E.; Cravatt, Benjamin F.

    2017-03-01

    Activity-based protein profiling (ABPP) serves as a chemical proteomic platform to discover and characterize functional amino acids in proteins on the basis of their enhanced reactivity towards small-molecule probes. This approach, to date, has mainly targeted nucleophilic functional groups, such as the side chains of serine and cysteine, using electrophilic probes. Here we show that 'reverse-polarity' (RP)-ABPP using clickable, nucleophilic hydrazine probes can capture and identify protein-bound electrophiles in cells. Using this approach, we demonstrate that the pyruvoyl cofactor of S-adenosyl-L-methionine decarboxylase (AMD1) is dynamically controlled by intracellular methionine concentrations. We also identify a heretofore unknown modification—an N-terminally bound glyoxylyl group—in the poorly characterized protein secernin-3. RP-ABPP thus provides a versatile method to monitor the metabolic regulation of electrophilic cofactors and discover novel types of electrophilic modifications on proteins in human cells.

  4. Metabolic profiling of Alzheimer's disease brains

    NASA Astrophysics Data System (ADS)

    Inoue, Koichi; Tsutsui, Haruhito; Akatsu, Hiroyasu; Hashizume, Yoshio; Matsukawa, Noriyuki; Yamamoto, Takayuki; Toyo'Oka, Toshimasa

    2013-08-01

    Alzheimer's disease (AD) is an irreversible, progressive brain disease and can be definitively diagnosed after death through an examination of senile plaques and neurofibrillary tangles in several brain regions. It is to be expected that changes in the concentration and/or localization of low-molecular-weight molecules are linked to the pathological changes that occur in AD, and determining their identity would provide valuable information regarding AD processes. Here, we propose definitive brain metabolic profiling using ultra-performance liquid chromatography coupled with electrospray time-of-flight mass spectrometry analysis. The acquired data were subjected to principal components analysis to differentiate the frontal and parietal lobes of the AD/Control groups. Significant differences in the levels of spermine and spermidine were identified using S-plot, mass spectra, databases and standards. Based on the investigation of the polyamine metabolite pathway, these data establish that the downstream metabolites of ornithine are increased, potentially implicating ornithine decarboxylase activity in AD pathology.

  5. Molecular analysis of the glutamate decarboxylase locus in Streptococcus thermophilus ST110

    USDA-ARS?s Scientific Manuscript database

    GABA ('-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermented da...

  6. Detection and transfer of the glutamate decarboxylase gene in Streptococcus thermophilus

    USDA-ARS?s Scientific Manuscript database

    GABA (gamma-aminobutyric acid) is generated from glutamate by the action of glutamic acid decarboxylase (GAD) and characterized by hypotensive, diuretic and tranquilizing effects in humans and animals. The production of GABA by lactic acid starter bacteria would enhance the functionality of fermen...

  7. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zargar, K.; Saville, R.; Phelan, R. M.

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation inmore » complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extract s, (iii) both activities were irreversibly inactivated upon exposure to O 2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.« less

  8. In vitro Characterization of Phenylacetate Decarboxylase, a Novel Enzyme Catalyzing Toluene Biosynthesis in an Anaerobic Microbial Community

    DOE PAGES

    Zargar, K.; Saville, R.; Phelan, R. M.; ...

    2016-08-10

    Anaerobic bacterial biosynthesis of toluene from phenylacetate was reported more than two decades ago, but the biochemistry underlying this novel metabolism has never been elucidated. Here we report results of in vitro characterization studies of a novel phenylacetate decarboxylase from an anaerobic, sewage-derived enrichment culture that quantitatively produces toluene from phenylacetate; complementary metagenomic and metaproteomic analyses are also presented. Among the noteworthy findings is that this enzyme is not the well-characterized clostridial p-hydroxyphenylacetate decarboxylase (CsdBC). However, the toluene synthase under study appears to be able to catalyze both phenylacetate and p-hydroxyphenylacetate decarboxylation. Observations suggesting that phenylacetate and p-hydroxyphenylacetate decarboxylation inmore » complex cell-free extracts were catalyzed by the same enzyme include the following: (i) the specific activity for both substrates was comparable in cell-free extracts, (ii) the two activities displayed identical behavior during chromatographic separation of cell-free extract s, (iii) both activities were irreversibly inactivated upon exposure to O 2, and (iv) both activities were similarly inhibited by an amide analog of p-hydroxyphenylacetate. Based upon these and other data, we hypothesize that the toluene synthase reaction involves a glycyl radical decarboxylase. This first-time study of the phenylacetate decarboxylase reaction constitutes an important step in understanding and ultimately harnessing it for making bio-based toluene.« less

  9. Multi-omics analysis reveals that ornithine decarboxylase contributes to erlotinib resistance in pancreatic cancer cells

    PubMed Central

    Song, Sang-Hoon; Lee, Naeun; Kim, Dong-Joon; Lee, Sooyeun; Jeong, Chul-Ho

    2017-01-01

    Molecular and metabolic alterations in cancer cells are one of the leading causes of acquired resistance to chemotherapeutics. In this study, we explored an experimental strategy to identify which of these alterations can induce erlotinib resistance in human pancreatic cancer. Using genetically matched erlotinib-sensitive (BxPC-3) and erlotinib-resistant (BxPC-3ER) pancreatic cancer cells, we conducted a multi-omics analysis of metabolomes and transcriptomes in these cells. Untargeted and targeted metabolomic analyses revealed significant changes in metabolic pathways involved in the regulation of polyamines, amino acids, and fatty acids. Further transcriptomic analysis identified that ornithine decarboxylase (ODC) and its major metabolite, putrescine, contribute to the acquisition of erlotinib resistance in BxPC-3ER cells. Notably, either pharmacological or genetic blockage of ODC was able to restore erlotinib sensitivity, and this could be rescued by treatment with exogenous putrescine in erlotinib-resistant BxPC-3ER cells. Moreover, using a panel of cancer cells we demonstrated that ODC expression levels in cancer cells are inversely correlated with sensitivity to chemotherapeutics. Taken together, our findings will begin to uncover mechanisms of acquired drug resistance and ultimately help to identify potential therapeutic markers in cancer. PMID:29190951

  10. Fermentation of D-xylose and L-arabinose to ethanol by Erwinia chrysanthemi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolan, J.S.; Finn, R.K.

    1987-09-01

    Erwinia spp. are gram-negative facultative anaerobes within the family Enterobacteriacae which possess several desirable traits for the conversion of pentose sugars to ethanol, such as the ability to ferment a broad range of carbohydrates and the ease with which they can be genetically modified. Twenty-eight strains of Erwinia carotovora and E. chrysanthemi were screened for the ability to ferment D-xylose to ethanol. E. chrysanthemi B374 was chosen for further study on the basis of its superior (4%) ethanol tolerance. They have characterized the fermentation of D-xylose and L-arabinose by the wild type and mutants which bear plasmids containing the pyruvatemore » decarboxylase gene from Zymomonas mobilis. Expression of the gene markedly increased the yields of ethanol (from 0.7 up to 1.45 mol/mol of xylose) and decreased the yields of formate, acetate, and lactate. However, the cells with pyruvate decarboxylase grew only one-fourth as fast as the wild type and tolerated only 2% ethanol. Alcohol tolerance was stimulated by the addition of yeast extract to the growth medium. Xylose catabolism was characterized by a high saturation constant K/sub s/ (4.5 mM).« less

  11. Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

    PubMed

    Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-02-01

    In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Induction of an oxalate decarboxylase in the filamentous fungus Trametes versicolor by addition of inorganic acids.

    PubMed

    Zhu, Cui Xia; Hong, Feng

    2010-01-01

    In order to improve yields and to reduce the cost of oxalate decarboxylase (OxDC, EC 4.1.1.2), the induction of OxDC in the white-rot fungus Trametes versicolor was studied in this work. OxDC was induced by addition of inorganic acids including hydrochloric acid, sulfuric acid, and phosphoric acid to culture media. The results showed that all the acids could enhance OxDC expression. The activity of the acid-induced OxDC rose continuously. All of the OxDC volumetric activities induced by the inorganic acids were higher than 20.0 U/L and were two times higher than that obtained with oxalic acid. OxDC productivity was around 4.0 U*L(-1)*day(-1). The highest specific activity against total protein was 3.2 U/mg protein at day 8 after induction of sulfuric acid, and the specific activity against mycelial dry weight was 10.6 U/g at day 9 after induction of hydrochloric acid. The growth of mycelia was inhibited slightly when the pH values in culture media was around 2.5-3.0, while the growth was inhibited heavily when the pH was lower than 2.5.

  13. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit.

    PubMed

    Yang, Xiaotang; Song, Jun; Du, Lina; Forney, Charles; Campbell-Palmer, Leslie; Fillmore, Sherry; Wismer, Paul; Zhang, Zhaoqi

    2016-03-01

    The effects of ethylene and 1-methylcyclopropene (1-MCP) on apple fruit volatile biosynthesis and gene expression were investigated. Statistical analysis identified 17 genes that changed significantly in response to ethylene and 1-MCP treatments. Genes encoding branched-chain amino acid aminotransferase (BCAT), aromatic amino acid aminotransferase (ArAT) and amino acid decarboxylases (AADC) were up-regulated during ripening and further enhanced by ethylene treatment. Genes related to fatty acid synthesis and metabolism, including acyl-carrier-proteins (ACPs), malonyl-CoA:ACP transacylase (MCAT), acyl-ACP-desaturase (ACPD), lipoxygenase (LOX), hydroperoxide lyase (HPL), alcohol dehydrogenase (ADH), pyruvate decarboxylase (PDC2), β-oxidation, acyl-CoA synthetase (ACS), enoyl-CoA hydratase (ECHD), acyl-CoA dehydrogenase (ACAD), and alcohol acyltransferases (AATs) also increased during ripening and in response to ethylene treatment. Allene oxide synthase (AOS), alcohol dehydrogenase 1 (ADH1), 3-ketoacyl-CoA thiolase and branched-chain amino acid aminotransferase 2 (BCAT2) decreased in ethylene-treated fruit. Treatment with 1-MCP and ethylene generally produced opposite effects on related genes, which provides evidence that regulation of these genes is ethylene dependent. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    ERIC Educational Resources Information Center

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  15. CONFIRMATIONAL IDENTIFICATION OF ESCHERICHIA COLI, A COMPARISON OF GENOTYPIC AND PHENOTYPIC ASSAYS FOR GLUTAMATE DECARBOXYLASE AND B-D-GLUCURONIDASE

    EPA Science Inventory

    Genotypic and phenotypic assays for glutamate decarboxylase (GAD) and B-D-glucuronidase (GUD) were compared for their abilities to detect various strains of Escherichia coli and to discriminate among other bacterial species. Test strains included nonpathogenic E.coli, three major...

  16. DPD epitope-specific glutamic acid decarboxylase GAD)65 autoantibodies in children with Type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    To study whether DPD epitope-specific glutamate decarboxylase autoantibodies are found more frequently in children with milder forms of Type 1 diabetes. We prospectively evaluated 75 children with new-onset autoimmune Type 1 diabetes, in whom we collected demographic, anthropometric and clinical dat...

  17. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators.

    PubMed

    Hudec, Jozef; Burdová, Mária; Kobida, L'ubomír; Komora, Ladislav; Macho, Vendelín; Kogan, Grigorij; Turianica, Ivan; Kochanová, Radka; Lozek, Otto; Habán, Miroslav; Chlebo, Peter

    2007-07-11

    The changes of the antioxidant (AOA) and antiradical activities (ARA) and the total contents of phenolics, anthocyanins, flavonols, and hydroxybenzoic acid in roots and different aerial sections of Echinacea purpurea, nettle, and dandelion, after treatment with ornithine decarboxylase inhibitor, a polyamine inhibitor (O-phosphoethanolamine, KF), and a phenol biosynthesis stimulator (carboxymethyl chitin glucan, CCHG) were analyzed spectrophotometrically; hydroxycinnamic acids content was analyzed by RP-HPLC with UV detection. Both regulators increased the AOA measured as inhibition of peroxidation (IP) in all herb sections, with the exception of Echinacea stems after treatment with KF. In root tissues IP was dramatically elevated mainly after CCHG application: 8.5-fold in Echinacea, 4.14-fold in nettle, and 2.08-fold in dandelion. ARA decrease of Echinacea leaves treated with regulators was in direct relation only with cichoric acid and caftaric acid contents. Both regulators uphold the formation of cinnamic acid conjugates, the most expressive being that of cichoric acid after treatment with CCHG in Echinacea roots from 2.71 to 20.92 mg g(-1). There was a strong relationship between increase of the total phenolics in all sections of Echinacea, as well as in the studied sections of dandelion, and the anthocyanin content.

  18. Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5'AMP-activated protein kinase (AMPK). Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique.

    PubMed

    Sambandam, Nandakumar; Steinmetz, Michael; Chu, Angel; Altarejos, Judith Y; Dyck, Jason R B; Lopaschuk, Gary D

    2004-07-01

    Malonyl-CoA, a potent inhibitor of carnitine pamitoyl transferase-I (CPT-I), plays a pivotal role in fuel selection in cardiac muscle. Malonyl-CoA decarboxylase (MCD) catalyzes the degradation of malonyl-CoA, removes a potent allosteric inhibition on CPT-I and thereby increases fatty acid oxidation in the heart. Although MCD has several Ser/Thr phosphorylation sites, whether it is regulated by AMP-activated protein kinase (AMPK) has been controversial. We therefore overexpressed MCD (Ad.MCD) and constitutively active AMPK (Ad.CA-AMPK) in H9c2 cells, using an adenoviral gene delivery approach in order to examine if MCD is regulated by AMPK. Cells infected with Ad.CA-AMPK demonstrated a fourfold increase in AMPK activity as compared with control cells expressing green fluorescent protein (Ad.GFP). MCD activity increased 40- to 50-fold in Ad.MCD + Ad.GFP cells when compared with Ad.GFP control. Co-expressing AMPK with MCD further augmented MCD expression and activity in Ad.MCD + Ad.CA-AMPK cells compared with the Ad.MCD + Ad.GFP control. Subcellular fractionation further revealed that 54.7 kDa isoform of MCD expression was significantly higher in cytosolic fractions of Ad.MCD + Ad.CA-AMPK cells than of the Ad.MCD +Ad.GFP control. However, the MCD activities in cytosolic fractions were not different between the two groups. Interestingly, in the mitochondrial fractions, MCD activity significantly increased in Ad.MCD + Ad.CA-AMPK cells when compared with Ad.MCD + Ad.GFP cells. Using phosphoserine and phosphothreonine antibodies, no phosphorylation of MCD by AMPK was observed. The increase in MCD activity in mitochondria-rich fractions of Ad.MCD + Ad.CA-AMPK cells was accompanied by an increase in the level of the 50.7 kDa isoform of MCD protein in the mitochondria. This differential regulation of MCD expression and activity in the mitochondria by AMPK may potentially regulate malonyl-CoA levels at sites nearby CPT-I on the mitochondria.

  19. Reduced Chrna7 expression in C3H mice is associated with increases in hippocampal parvalbumin and glutamate decarboxylase-67 (GAD67) as well as altered levels of GABAA receptor subunits

    PubMed Central

    Bates, Ryan C.; Stith, Bradley J.; Stevens, Karen E.; Adams, Catherine E.

    2014-01-01

    Decreased expression of CHRNA7, the gene encoding the α7* subtype of nicotinic receptor, may contribute to the cognitive dysfunction observed in schizophrenia by disrupting the inhibitory/excitatory balance in the hippocampus. C3H mice with reduced Chrna7 expression have significant reductions in hippocampal α7* receptor density, deficits in hippocampal auditory gating, increased hippocampal activity as well as significant decreases in hippocampal glutamate decarboxylase-65 (GAD65) and γ-aminobutyric acid-A (GABAA) receptor levels. The current study investigated whether altered Chrna7 expression is associated with changes in the levels of parvalbumin, GAD67 and/or GABAA receptor subunits in hippocampus from male and female C3H Chrna7 wildtype, C3H Chrna7 heterozygous and C3H Chrna7 knockout mice using quantitative western immunoblotting. Reduced Chrna7 expression was associated with significant increases in hippocampal parvalbumin and GAD67 and with complex alterations in GABAA receptor subunits. A decrease in α3 subunit protein was seen in both female C3H Chrna7 Het and KO mice while a decrease in α4 subunit protein was also detected in C3H Chrna7 KO mice with no sex difference. In contrast, an increase in δ subunit protein was observed in C3H Chrna7 Het mice while a decrease in this subunit was observed in C3H Chrna7 KO mice, with δ subunit protein levels being greater in males than in females. Finally, an increase in γ2 subunit protein was found in C3H Chrna7 KO mice with the levels of this subunit again being greater in males than in females. The increases in hippocampal parvalbumin and GAD67 observed in C3H Chrna7 mice are contrary to reports of reductions in these proteins in postmortem hippocampus from schizophrenic individuals. We hypothesize that the disparate results may occur because of the influence of factors other than CHRNA7 that have been found to be abnormal in schizophrenia. PMID:24836856

  20. Induction of ornithine decarboxylase activity in weanling rat pancreas by an orally administered soy protein isolate.

    PubMed

    Caldwell, K A

    1987-03-15

    The induction of ornithine decarboxylase activity in weanling rat pancreas by a trypsin inhibitor-containing soy protein isolate has been studied. Oral administration of the isolate at 0.8, 1.6, 4.0, 6.0, and 8.0 mg/g body wt produced marked elevations in enzyme activity, a response which was proportional to the amount of isolate administered. Ornithine decarboxylase activity was measured at 2, 4, 6, 8, 12, and 24 hr after the isolate was given. A statistically significant increase in enzyme activity was evident as early as 2 hr after treatment; maximal activity occurred at 6 hr and was approximately 140 times greater than the

  1. Study of the coumarate decarboxylase and vinylphenol reductase activities of Dekkera bruxellensis (anamorph Brettanomyces bruxellensis) isolates.

    PubMed

    Godoy, L; Garrido, D; Martínez, C; Saavedra, J; Combina, M; Ganga, M A

    2009-04-01

    To evaluate the coumarate descarboxylase (CD) and vinylphenol reductase (VR) activities in Dekkera bruxellensis isolates and study their relationship to the growth rate, protein profile and random amplified polymorphic DNA (RAPD) molecular pattern. CD and VR activities were quantified, as well, the growth rate, intracellular protein profile and molecular analysis (RAPD) were determined in 12 isolates of D. bruxellensis. All the isolates studied showed CD activity, but only some showed VR activity. Those isolates with the greatest growth rate did not present a different protein profile from the others. The FASC showed a relationship between RAPD molecular patterns and VR activity. CD activity is common to all of the D. bruxellensis isolates. This was not the case with VR activity, which was detected at a low percentage in the analysed micro-organisms. A correlation was observed between VR activity and the RAPD patterns. This is the first study that quantifies the CD and VR enzyme activities in D. bruxellensis, demonstrating that these activities are not present in all isolates of this yeast.

  2. Changes in expression of cellular oncogenes and endogenous retrovirus-like sequences during hepatocarcinogenesis induced by a peroxisome proliferator.

    PubMed Central

    Hsieh, L. L.; Shinozuka, H.; Weinstein, I. B.

    1991-01-01

    Previous studies have demonstrated that BR-931, a hepatic peroxisome proliferator, can induce liver tumours in mice and rats. Since alterations in gene expression may play a critical role in multistage hepatocarcinogenesis, the present studies examined the expression of the c-myc, c-H-ras, epidermal growth factor (EGF) receptor and ODC (ornithine decarboxylase) genes, as well as endogenous retrovirus-like sequences, in F344 rat liver during the first 8 weeks of feeding a 0.16% Br931 diet and in liver tumours induced by chronic feeding of this diet. Northern blot analysis of poly A + liver RNA samples showed an increase in the level of RNAs homologous to rat leukaemia virus (RaLV) but no significant change in the level of 30S-retrovirus related RNAs in the liver RNA samples obtained from rats during the first 8 weeks of feeding the diet containing BR931. An increase in the levels of c-myc, c-H-ras and ODC transcripts was also seen in the liver RNA samples from the treated rats. Of particular interest was a decrease in the abundance of EGF receptor transcripts in the liver RNA samples from rats fed the BR931 diet. Increased levels of RaLV, c-myc, and ODC RNAs were also seen in the tumours induced by BR931, but this was not the case for 30S and c-H-ras. The liver tumour samples also showed a decrease in EGF receptor RNA. These changes in cellular levels of specific RNAs resemble, in several respect, those we previously described in rodent liver during regeneration and tumour promotion, and also those seen in rodent hepatomas induced by other agents. Therefore, they may reflect a common profile of gene expression relevant to liver proliferation and carcinogenesis. Images Figure 1 Figure 2 PMID:1931600

  3. Arginine decarboxylase (ADC) and agmatinase (AGMAT): an alternative pathway for synthesis of polyamines in pig conceptuses and uteri

    USDA-ARS?s Scientific Manuscript database

    Arginine, a precursor for the synthesis of nitric oxide (NO) and polyamines, is critical for implantation and development of the conceptus. We first reported that the arginine decarboxylase (ADC)/agmatinase(AGMAT) pathway as an alternative pathway for synthesis of polyamines in the ovine conceptuses...

  4. Effects of diamines on ornithine decarboxylase activity in control and virally transformed mouse fibroblasts.

    PubMed Central

    Bethell, D R; Pegg, A E

    1979-01-01

    1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3--12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells. PMID:486108

  5. Characterisation of a thiamine diphosphate-dependent alpha-keto acid decarboxylase from Proteus mirabilis JN458.

    PubMed

    Wang, Biying; Bai, Yajun; Fan, Taiping; Zheng, Xiaohui; Cai, Yujie

    2017-10-01

    Alpha-keto acid decarboxylases can convert keto acids to their corresponding aldehydes, which are often volatile aroma compounds. The gene encoding α-keto acid decarboxylase in Proteus mirabilis JN458 was cloned, and the enzyme overexpressed in Escherichia coli BL21 (DE3), purified in high yield, and characterised. The molecular weight is 62.291kDa by MALDI-TOF MS, and optimum activity at pH 6.0 and 40-50°C. The enzyme is a typical decarboxylase, dependent on thiamine diphosphate and Mg 2+ as cofactors. For the decarboxylation reaction, the enzyme displayed a broad substrate range. Kinetic parameters were determined using 4-methyl-2-oxopentanoic acid, phenyl pyruvate and 3-methyl-2-oxopentanoic acid as substrates. K m and k cat values for phenyl pyruvate were 0.62mM and 77.38s -1 , respectively, and the k cat /K m value was 124.81mM -1 s -1 . The enzyme properties suggest it may act effectively under cheese ripening conditions. Copyright © 2017. Published by Elsevier Ltd.

  6. Malonyl CoA decarboxylase deficiency: C to T transition in intron 2 of the MCD gene.

    PubMed

    Surendran, S; Sacksteder, K A; Gould, S J; Coldwell, J G; Rady, P L; Tyring, S K; Matalon, R

    2001-09-15

    Malonyl CoA decarboxylase (MCD) is an enzyme involved in the metabolism of fatty acids synthesis. Based on reports of MCD deficiency, this enzyme is particular important in muscle and brain metabolism. Mutations in the MCD gene result in a deficiency of MCD activity, that lead to psychomotor retardation, cardiomyopathy and neonatal death. To date however, only a few patients have been reported with defects in MCD. We report here studies of a patient with MCD deficiency, who presented with hypotonia, cardiomyopathy and psychomotor retardation. DNA sequencing of MCD revealed a homozygous intronic mutation, specifically a -5 C to T transition near the acceptor site for exon 3. RT-PCR amplification of exons 2 and 3 revealed that although mRNA from a normal control sample yielded one major DNA band, the mutant mRNA sample resulted in two distinct DNA fragments. Sequencing of the patient's two RT-PCR products revealed that the larger molecular weight fragments contained exons 2 and 3 as well as the intervening intronic sequence. The smaller size band from the patient contained the properly spliced exons, similar to the normal control. Western blotting analysis of the expressed protein showed only a faint band in the patient sample in contrast to a robust band in the control. In addition, the enzyme activity of the mutant protein was lower than that of the control protein. The data indicate that homozygous mutation in intron 2 disrupt normal splicing of the gene, leading to lower expression of the MCD protein and MCD deficiency. Copyright 2001 Wiley-Liss, Inc.

  7. Brain glutamic acid decarboxylase-67kDa alterations induced by magnesium treatment in olfactory bulbectomy and chronic mild stress models in rats.

    PubMed

    Pochwat, Bartłomiej; Nowak, Gabriel; Szewczyk, Bernadeta

    2016-10-01

    The preclinical results indicate that magnesium, an N-methyl-d-aspartate receptor (NMDAR) blocker has anxiolytic and antidepressant-like activity. One of the mechanisms involved in these activities is modulation of glutamate, γ-aminobutyric acid (GABA) system. Based on this, the aim of the present study was to investigate the effect of magnesium on the level of glutamic acid decarboxylase-67kDa (GAD-67) in the different brain areas in the chronic mild stress (CMS) and olfactory bulbectomy (OB) models of depression in rats. Magnesium (15mg/kg) was administered intraperitonealy once daily for 14 days in the OB model and for 35 days in the CMS model. 24h after the last dose, the prefrontal cortex (PFC), hippocampus and amygdala were collected and the GAD-67 protein level was determined by the western blotting method. In the OB model, chronic magnesium treatment normalized decreased by OB protein level of GAD-67 in PFC. CMS did not influence the GAD-67 protein level, however magnesium increased GAD-67 protein expression in amygdala and PFC of stress rats when compared to vehicle-treated stress group. OB or CMS models as well as magnesium treatment did not affect GAD-67 protein level in the hippocampus. Obtained results indicate that the antidepressant-like activity of magnesium in CMS and OB models of depression is associated with an enhanced expression of GAD-67 in the PFC and amygdala. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli.

    PubMed

    Chen, Xiaoyan; Xu, Jingliang; Yang, Liu; Yuan, Zhenhong; Xiao, Shiyuan; Zhang, Yu; Liang, Cuiyi; He, Minchao; Guo, Ying

    2015-11-01

    Higher alcohols, longer chain alcohols, contain more than 3 carbon atoms, showed close energy advantages as gasoline, and were considered as the next generation substitution for chemical fuels. Higher alcohol biosynthesis by native microorganisms mainly needs gene expression of heterologous keto acid decarboxylase and alcohol dehydrogenases. In the present study, branched-chain α-keto acid decarboxylase gene from Lactococcus lactis subsp. lactis CICC 6246 (Kivd) and alcohol dehydrogenases gene from Zymomonas mobilis CICC 41465 (AdhB) were transformed into Escherichia coli for higher alcohol production. SDS-PAGE results showed these two proteins were expressed in the recombinant strains. The resulting strain was incubated in LB medium at 37 °C in Erlenmeyer flasks and much more 3-methyl-1-butanol (104 mg/L) than isobutanol (24 mg/L) was produced. However, in 5 g/L glucose-containing medium, the production of two alcohols was similar, 156 and 161 mg/L for C4 (isobutanol) and C5 (3-methyl-1-butanol) alcohol, respectively. Effects of fermentation factors including temperature, glucose content, and α-keto acid on alcohol production were also investigated. The increase of glucose content and the adding of α-keto acids facilitated the production of C4 and C5 alcohols. The enzyme activities of pure Kivd on α-ketoisovalerate and α-ketoisocaproate were 26.77 and 21.24 μmol min(-1) mg(-1), respectively. Due to its ability on decarboxylation of α-ketoisovalerate and α-ketoisocaproate, the recombinant E. coli strain showed potential application on isoamyl alcohol and isobutanol production.

  9. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    PubMed

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  10. Cloning and characterization of ftsZ and pyrF from the archaeon Thermoplasma acidophilum

    NASA Technical Reports Server (NTRS)

    Yaoi, T.; Laksanalamai, P.; Jiemjit, A.; Kagawa, H. K.; Alton, T.; Trent, J. D.

    2000-01-01

    To characterize cytoskeletal components of archaea, the ftsZ gene from Thermoplasma acidophilum was cloned and sequenced. In T. acidophilum ftsZ, which is involved in cell division, was found to be in an operon with the pyrF gene, which encodes orotidine-5'-monophosphate decarboxylase (ODC), an essential enzyme in pyrimidine biosynthesis. Both ftsZ and pyrF from T. acidophilum were expressed in Escherichia coli and formed functional proteins. FtsZ expression in wild-type E. coli resulted in the filamentous phenotype characteristic of ftsZ mutants. T. acidophilum pyrF expression in an E. coli mutant lacking pyrF complemented the mutation and rescued the strain. Sequence alignments of ODCs from archaea, bacteria, and eukarya reveal five conserved regions, two of which have homology to 3-hexulose-6-phosphate synthase (HPS), suggesting a common substrate recognition and binding motif. Copyright 2000 Academic Press.

  11. Investigation of the impact of sarizotan on the pharmacokinetics of levodopa.

    PubMed

    Krösser, Sonja; Neugebauer, Roland; Chassard, Didier; Kovar, Andreas

    2007-10-01

    To investigate the effect of sarizotan on the pharmacokinetics of levodopa in fixed combination with carbidopa or benserazide. In this open-label, randomized, crossover study, healthy male subjects (n=16) received levodopa 100 mg t.i.d. over two 5-day periods, alone or in combination with sarizotan 5 mg b.i.d. Levodopa was administered with a dopa-decarboxylase inhibitor (carbidopa 25 mg, n=8 or benserazide 25 mg, n=8). Pharmacokinetic parameters of levodopa were obtained on days 1 and 5. ANOVA showed the C(max) values for levodopa were not significantly different with or without sarizotan after single doses (1001 vs 1082 ng/ml; point estimate [PE] 1.10, 90% confidence intervals [CI] 0.83-1.45) or at steady-state (1549 vs 1663 ng/ml; PE 1.06, 90% CI 0.89-1.27); nor were AUC values for single doses (1661 vs 1665 ng h/ml; PE 1.01, 90% CI 0.91-1.11) or at steady-state (2462 vs 2482 ng h/ml; PE 1.01, 90% CI 0.97-1.05). Seven subjects reported adverse events of mild-to-moderate intensity; the most frequent were headaches and dizziness. Coadministration of sarizotan with levodopa, in combination with a dopa-decarboxylase inhibitor had no effect on the pharmacokinetics or adverse event profile of levodopa. (c) 2007 John Wiley & Sons, Ltd.

  12. Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism.

    PubMed

    Pan, D D; Wu, Z; Peng, T; Zeng, X Q; Li, H

    2014-02-01

    Flavor, as one of the most important properties determining the acceptability and preference of fermented milks, is influenced by compositional and processing factors. In this study, we focused on the volatile organic compounds related to flavor during milk fermentation by Lactobacillus pentosus according to electronic nose analysis. Xylose (1% addition) metabolized by Lb. pentosus strongly affects the flavor of yogurt, with the potent volatile organic compounds of ethanol (3.08%), 2,3-butanedione (7.77%), and acetic acid (22.70%) detected using solid-phase microextraction coupled with gas chromatography-mass spectrometry analysis. Sensoryanalysis also showed skimmed yogurt fermented by Lb. pentosus with 1% xylose had the unique scores of sourness (acetic acid) and butter flavor (2,3-butanedione). Furthermore, α-acetolactate synthase and α-acetolactate decarboxylase in carbohydrate metabolism play important roles in milk fermentation. Under preferable conditions (pH 5.5, 42 °C) for α-acetolactate synthase and α-acetolactate decarboxylase, the relative content of potent flavor compound 2,3-butanedione was 10.13%, which was 2.55% higher than common culture condition (pH 4.5, 37 °C), revealing that xylose metabolized by Lb. pentosus has potential values for the milk product industry, such as the acceptability and preference of fermented milk product. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Evaluation of the use of malic acid decarboxylase-deficient starter culture in NaCl-free cucumber fermentations to reduce bloater incidence

    USDA-ARS?s Scientific Manuscript database

    AIMS: Accumulation of carbon dioxide in cucumber fermentations is known to cause hollow cavities inside whole fruits or bloaters, conducive to economic losses for the pickling industry. This study focused on evaluating the use of a malic acid decarboxylase (MDC)-deficient starter culture to minimiz...

  14. Mammalian histidine decarboxylase; changes in molecular properties induced by oxidation and reduction.

    PubMed

    Hammar, L; Hjertén, S

    1980-04-01

    Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.

  15. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus.

    PubMed

    Pan, Ya-Jie; Liu, Jia; Guo, Xiao-Rui; Zu, Yuan-Gang; Tang, Zhong-Hua

    2015-05-01

    Research on transcriptional regulation of terpenoid indole alkaloid (TIA) biosynthesis of the medicinal plant, Catharanthus roseus, has largely been focused on gene function and not clustering analysis of multiple genes at the transcript level. Here, more than ten key genes encoding key enzyme of alkaloid synthesis in TIA biosynthetic pathways were chosen to investigate the integrative responses to exogenous elicitor ethylene and copper (Cu) at both transcriptional and metabolic levels. The ethylene-induced gene transcripts in leaves and roots, respectively, were subjected to principal component analysis (PCA) and the results showed the overall expression of TIA pathway genes indicated as the Q value followed a standard normal distribution after ethylene treatments. Peak gene expression was at 15-30 μM of ethephon, and the pre-mature leaf had a higher Q value than the immature or mature leaf and root. Treatment with elicitor Cu found that Cu up-regulated overall TIA gene expression more in roots than in leaves. The combined effects of Cu and ethephon on TIA gene expression were stronger than their separate effects. It has been documented that TIA gene expression is tightly regulated by the transcriptional factor (TF) ethylene responsive factor (ERF) and mitogen-activated protein kinase (MAPK) cascade. The loading plot combination with correlation analysis for the genes of C. roseus showed that expression of the MPK gene correlated with strictosidine synthase (STR) and strictosidine b-D-glucosidase(SGD). In addition, ERF expression correlated with expression of secologanin synthase (SLS) and tryptophan decarboxylase (TDC), specifically in roots, whereas MPK and myelocytomatosis oncogene (MYC) correlated with STR and SGD genes. In conclusion, the ERF regulates the upstream pathway genes in response to heavy metal Cu mainly in C. roseus roots, while the MPK mainly participates in regulating the STR gene in response to ethylene in pre-mature leaf. Interestingly, the change in TIA accumulation does not correlate with expression of the associated genes. Our previous research found significant accumulation of vinblastine in response to high concentration of ethylene and Cu suggesting the involvement of posttranscriptional and posttranslational mechanisms in a spatial and temporal manner. In this study, meta-analysis reveals ERF and MPK form a positive feedback loop connecting two pathways actively involved in response of TIA pathway genes to ethylene and copper in C. roseus.

  16. Selection of reliable reference genes for gene expression studies in Trichoderma afroharzianum LTR-2 under oxalic acid stress.

    PubMed

    Lyu, Yuping; Wu, Xiaoqing; Ren, He; Zhou, Fangyuan; Zhou, Hongzi; Zhang, Xinjian; Yang, Hetong

    2017-10-01

    An appropriate reference gene is required to get reliable results from gene expression analysis by quantitative real-time reverse transcription PCR (qRT-PCR). In order to identify stable and reliable reference genes in Trichoderma afroharzianum under oxalic acid (OA) stress, six commonly used housekeeping genes, i.e., elongation factor 1, ubiquitin, ubiquitin-conjugating enzyme, glyceraldehyde-3-phosphate dehydrogenase, α-tubulin, actin, from the effective biocontrol isolate T. afroharzianum strain LTR-2 were tested for their expression during growth in liquid culture amended with OA. Four in silico programs (comparative ΔCt, NormFinder, geNorm and BestKeeper) were used to evaluate the expression stabilities of six candidate reference genes. The elongation factor 1 gene EF-1 was identified as the most stably expressed reference gene, and was used as the normalizer to quantify the expression level of the oxalate decarboxylase coding gene OXDC in T. afroharzianum strain LTR-2 under OA stress. The result showed that the expression of OXDC was significantly up-regulated as expected. This study provides an effective method to quantify expression changes of target genes in T. afroharzianum under OA stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Jennifer L.; Zhang, Xiaolin

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  18. GAD-alum immunotherapy in Type 1 diabetes mellitus.

    PubMed

    Morales, Alba E; Thrailkill, Kathryn M

    2011-03-01

    Glutamic acid decarboxylase (GAD)-alum (Diamyd(®), Diamyd Medical, Stockholm, Sweden) is an adjuvant-formulated vaccine incorporating recombinant human GAD65, the specific isoform of GAD expressed in human pancreatic β-cells and a major antigen targeted by autoreactive T lymphocytes in Type 1 diabetes mellitus. Intermittent vaccination with this protein is theorized to induce immune tolerance to GAD65, thereby potentially interrupting further β-cell destruction. Hence, clinical trials are ongoing to examine the efficacy and safety of GAD-alum immunotherapy in patients with autoimmune-mediated forms of diabetes, including Type 1 diabetes and latent autoimmune diabetes in adults.

  19. Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata.

    PubMed

    Liu, Wanhong; Chen, Rong; Chen, Min; Zhang, Haoxing; Peng, Meifang; Yang, Chunxian; Ming, Xingjia; Lan, Xiaozhong; Liao, Zhihua

    2012-07-01

    Tryptophan decarboxylase (TDC) converts tryptophan into tryptamine that is the indole moiety of ajmalicine. The full-length cDNA of Rauvolfia verticillata (RvTDC) was 1,772 bps that contained a 1,500-bp ORF encoding a 499-amino-acid polypeptide. Recombinant 55.5 kDa RvTDC converted tryptophan into tryptamine. The K (m) of RvTDC for tryptophan was 2.89 mM, higher than those reported in other TIAs-producing plants. It demonstrated that RvTDC had lower affinity to tryptophan than other plant TDCs. The K (m) of RvTDC was also much higher than that of strictosidine synthase and strictosidine glucosidase in Rauvolfia. This suggested that TDC might be the committed-step enzyme involved in ajmalicine biosynthesis in R. verticillata. The expression of RvTDC was slightly upregulated by MeJA; the five MEP pathway genes and SGD showed no positive response to MeJA; and STR was sharply downregulated by MeJA. MeJA-treated hairy roots produced higher level of ajmalicine (0.270 mg g(-1) DW) than the EtOH control (0.183 mg g(-1) DW). Highest RvTDC expression level was detected in hairy root, about respectively 11, 19, 65, and 109-fold higher than in bark, young leaf, old leaf, and root. Highest ajmalicine content was also found in hairy root (0.249 mg g(-1) DW) followed by in bark (0.161 mg g(-1) DW) and young leaf (0.130 mg g(-1) DW), and least in root (0.014 mg g(-1) DW). Generally, the expression level of RvTDC was positively consistent with the accumulation of ajmalicine. Therefore, it could be deduced that TDC might be the key enzyme involved in ajmalicine biosynthesis in Rauvolfia.

  20. Cortical Deficits of Glutamic Acid Decarboxylase 67 Expression in Schizophrenia: Clinical, Protein, and Cell Type-Specific Features

    PubMed Central

    Curley, Allison A.; Arion, Dominique; Volk, David W.; Asafu-Adjei, Josephine K.; Sampson, Allan R.; Fish, Kenneth N.; Lewis, David A.

    2012-01-01

    Objective Cognitive deficits in schizophrenia are associated with altered activity of the dorsolateral prefrontal cortex, which has been attributed to lower expression of the 67 kDa isoform of glutamic acid decarboxylase (GAD67), the major γ-aminobutyric acid (GABA)-synthesizing enzyme. However, little is know n about the relationship of prefrontal GAD67 m RNA levels and illness severity, translation of the transcript into protein, and protein levels in axon terminals, the key site of GABA production and function. Method Quantitative polymerase chain reaction was used to measure GAD67 m RNA levels in postmortem specimens of dorsolateral prefrontal cortex from subjects with schizophrenia and matched comparison subjects with no know n history of psychiatric or neurological disorders (N=42 pairs). In a subset of this cohort in which potential confounds of protein measures were controlled (N=19 pairs), Western blotting was used to quantify tissue levels of GAD67 protein in tissue. In five of these pairs, multilabel confocalimm unofluorescence was used to quantify GAD67 protein levels in the axon terminals of parvalbumin-containing GABA neurons, which are know n to have low levels of GAD67 m RNA in schizophrenia. Results GAD67 m RNA levels were significantly lower in schizophrenia subjects (by 15%), but transcript levels were not associated with predictors or measures of illness severity or chronicity. In schizophrenia subjects, GAD67 protein levels were significantly lower in total gray matter (by 10%) and in parvalbumin axon terminals (by 49%). Conclusions The findings that lower GAD67 m RNA expression is com m on in schizophrenia, that it is not a consequence of having the illness, and that it leads to less translation of the protein, especially in the axon terminals of parvalbumin-containing neurons, support the hypothesis that lower GABA synthesis in parvalbumin neurons contributes to dorsolateral prefrontal cortex dysfunction and impaired cognition in schizophrenia. PMID:21632647

  1. Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features.

    PubMed

    Curley, Allison A; Arion, Dominique; Volk, David W; Asafu-Adjei, Josephine K; Sampson, Allan R; Fish, Kenneth N; Lewis, David A

    2011-09-01

    Cognitive deficits in schizophrenia are associated with altered activity of the dorsolateral prefrontal cortex, which has been attributed to lower expression of the 67 kDa isoform of glutamic acid decarboxylase (GAD67), the major γ-aminobutyric acid (GABA)-synthesizing enzyme. However, little is known about the relationship of prefrontal GAD67 mRNA levels and illness severity, translation of the transcript into protein, and protein levels in axon terminals, the key site of GABA production and function. Quantitative polymerase chain reaction was used to measure GAD67 mRNA levels in postmortem specimens of dorsolateral prefrontal cortex from subjects with schizophrenia and matched comparison subjects with no known history of psychiatric or neurological disorders (N=42 pairs). In a subset of this cohort in which potential confounds of protein measures were controlled (N=19 pairs), Western blotting was used to quantify tissue levels of GAD67 protein in tissue. In five of these pairs, multilabel confocal immunofluorescence was used to quantify GAD67 protein levels in the axon terminals of parvalbumin-containing GABA neurons, which are known to have low levels of GAD67 mRNA in schizophrenia. GAD67 mRNA levels were significantly lower in schizophrenia subjects (by 15%), but transcript levels were not associated with predictors or measures of illness severity or chronicity. In schizophrenia subjects, GAD67 protein levels were significantly lower in total gray matter (by 10%) and in parvalbumin axon terminals (by 49%). The findings that lower GAD67 mRNA expression is common in schizophrenia, that it is not a consequence of having the illness, and that it leads to less translation of the protein, especially in the axon terminals of parvalbumin-containing neurons, support the hypothesis that lower GABA synthesis in parvalbumin neurons contributes to dorsolateral prefrontal cortex dysfunction and impaired cognition in schizophrenia.

  2. Effects of polyamine biosynthesis inhibitors on S-adenosylmethionine synthetase and S-adenosylmethionine decarboxylase activities in carrot cell cultures

    Treesearch

    S.C. Minocha; R. Minocha; A. Komamine

    1991-01-01

    Changes in the activites of S-adcnosylmethionine (SAM) synthetase (methionine adenosyltransferase, EC 2.5.1.6.) and SAM decarboxylase (EC 4.1.1.50) were studied in carrot (Daucus carota) cell cultures in response to 2,4-dichlorophenoxyacetic acid (2,4-D) and several inhibitors of polyamine biosynthesis. Activity of SAM synthetase increased...

  3. Experimental Evidence and In Silico Identification of Tryptophan Decarboxylase in Citrus Genus.

    PubMed

    De Masi, Luigi; Castaldo, Domenico; Pignone, Domenico; Servillo, Luigi; Facchiano, Angelo

    2017-02-11

    Plant tryptophan decarboxylase (TDC) converts tryptophan into tryptamine, precursor of indolealkylamine alkaloids. The recent finding of tryptamine metabolites in Citrus plants leads to hypothesize the existence of TDC activity in this genus. Here, we report for the first time that, in Citrus x limon seedlings, deuterium labeled tryptophan is decarboxylated into tryptamine, from which successively deuterated N , N , N -trimethyltryptamine is formed. These results give an evidence of the occurrence of the TDC activity and the successive methylation pathway of the tryptamine produced from the tryptophan decarboxylation. In addition, with the aim to identify the genetic basis for the presence of TDC, we carried out a sequence similarity search for TDC in the Citrus genomes using as a probe the TDC sequence reported for the plant Catharanthus roseus . We analyzed the genomes of both Citrus clementina and Citrus sinensis , available in public database, and identified putative protein sequences of aromatic l-amino acid decarboxylase. Similarly, 42 aromatic l-amino acid decarboxylase sequences from 23 plant species were extracted from public databases. Potential sequence signatures for functional TDC were then identified. With this research, we propose for the first time a putative protein sequence for TDC in the genus Citrus .

  4. Indole-3-acetic acid modulates phytohormones and polyamines metabolism associated with the tolerance to water stress in white clover.

    PubMed

    Li, Zhou; Li, Yaping; Zhang, Yan; Cheng, Bizhen; Peng, Yan; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2018-06-09

    Endogenous hormones and polyamines (PAs) could interact to regulate growth and tolerance to water stress in white clover. The objective of this study was to investigate whether the alteration of endogenous indole-3-acetic acid (IAA) level affected other hormones level and PAs metabolism contributing to the regulation of tolerance to water stress in white clover. Plants were pretreated with IAA or L-2-aminooxy-3-phenylpropionic acid (L-AOPP, the inhibitor of IAA biosynthesis) for 3 days and then subjected to water-sufficient condition and water stress induced by 15% polyethylene glycol 6000 for 8 days in growth chambers. Exogenous application of IAA significantly increased endogenous IAA, gibberellin (GA), abscisic acid (ABA), and polyamine (PAs) levels, but had no effect on cytokinin content under water stress. The increase in endogenous IAA level enhanced PAs anabolism via the improvement of enzyme activities and transcript level of genes including arginine decarboxylase, ornithine decarboxylase, and S-adenosylmethionine decarboxylase. Exogenous application of IAA also affected PAs catabolism, as manifested by an increase in diamine oxidase and a decrease in polyamine oxidase activities and genes expression. More importantly, the IAA deficiency in white clover decreased endogenous hormone levels (GA, ABA, and PAs) and PAs anabolism along with decline in antioxidant defense and osmotic adjustment (OA). On the contrary, exogenous IAA effectively alleviated stress-induced oxidative damage, growth inhibition, water deficit, and leaf senescence through the maintenance of higher chlorophyll content, OA, and antioxidant defense as well as lower transcript levels of senescence marker genes SAG101 and SAG102 in leaves under water stress. These results indicate that IAA-induced the crosstalk between endogenous hormones and PAs could be involved in the improvement of antioxidant defense and OA conferring tolerance to water stress in white clover. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Trypanosoma cruzi has not lost its S-adenosylmethionine decarboxylase: characterization of the gene and the encoded enzyme.

    PubMed Central

    Persson, K; Aslund, L; Grahn, B; Hanke, J; Heby, O

    1998-01-01

    All attempts to identify ornithine decarboxylase in the human pathogen Trypanosoma cruzi have failed. The parasites have instead been assumed to depend on putrescine uptake and S-adenosylmethionine decarboxylase (AdoMetDC) for their synthesis of the polyamines spermidine and spermine. We have now identified the gene encoding AdoMetDC in T. cruzi by PCR cloning, with degenerate primers corresponding to conserved amino acid sequences in AdoMetDC proteins of other trypanosomatids. The amplified DNA fragment was used as a probe to isolate the complete AdoMetDC gene from a T. cruzi genomic library. The AdoMetDC gene was located on chromosomes with a size of approx. 1.4 Mbp, and contained a coding region of 1110 bp, specifying a sequence of 370 amino acid residues. The protein showed a sequence identity of only 25% with human AdoMetDC, the major differences being additional amino acids present in the terminal regions of the T. cruzi enzyme. As expected, a higher sequence identity (68-72%) was found in comparison with trypanosomatid AdoMetDCs. When the coding region was expressed in Escherichia coli, the recombinant protein underwent autocatalytic cleavage, generating a 33-34 kDa alpha subunit and a 9 kDa beta subunit. The encoded protein catalysed the decarboxylation of AdoMet (Km 0.21 mM) and was stimulated by putrescine but inhibited by the polyamines, weakly by spermidine and strongly by spermine. Methylglyoxal-bis(guanylhydrazone) (MGBG), a potent inhibitor of human AdoMetDC, was a poor inhibitor of the T. cruzi enzyme. This differential sensitivity to MGBG suggests that the two enzymes are sufficiently different to warrant the search for compounds that might interfere with the progression of Chagas' disease by selectively inhibiting T. cruzi AdoMetDC. PMID:9677309

  6. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  7. Characterization of C₃--C₄ intermediate species in the genus Heliotropium L. (Boraginaceae): anatomy, ultrastructure and enzyme activity.

    PubMed

    Muhaidat, Riyadh; Sage, Tammy L; Frohlich, Michael W; Dengler, Nancy G; Sage, Rowan F

    2011-10-01

    Photosynthetic pathway characteristics were studied in nine species of Heliotropium (sensu lato, including Euploca), using assessments of leaf anatomy and ultrastructure, activities of PEP carboxylase and C₄ acid decarboxylases, and immunolocalization of ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) and the P-subunit of glycine decarboxylase (GDC). Heliotropium europaeum, Heliotropium calcicola and Heliotropium tenellum are C₃ plants, while Heliotropium texanum and Heliotropium polyphyllum are C₄ species. Heliotropium procumbens and Heliotropium karwinskyi are functionally C₃, but exhibit 'proto-Kranz' anatomy where bundle sheath (BS) cells are enlarged and mitochondria primarily occur along the centripetal (inner) wall of the BS cells; GDC is present throughout the leaf. Heliotropium convolvulaceum and Heliotropium greggii are C₃--C₄ intermediates, with Kranz-like enlargement of the BS cells, localization of mitochondria along the inner BS wall and a loss of GDC in the mesophyll (M) tissue. These C₃--C₄ species of Heliotropium probably shuttle photorespiratory glycine from the M to the BS tissue for decarboxylation. Heliotropium represents an important new model for studying C₄ evolution. Where existing models such as Flaveria emphasize diversification of C₃--C₄ intermediates, Heliotropium has numerous C₃ species expressing proto-Kranz traits that could represent a critical initial phase in the evolutionary origin of C₄ photosynthesis. © 2011 Blackwell Publishing Ltd.

  8. Transcription of ethylene perception and biosynthesis genes is altered by putrescine, spermidine and aminoethoxyvinylglycine (AVG) during ripening in peach fruit (Prunus persica).

    PubMed

    Ziosi, Vanina; Bregoli, Anna Maria; Bonghi, Claudio; Fossati, Tiziana; Biondi, Stefania; Costa, Guglielmo; Torrigiani, Patrizia

    2006-01-01

    The time course of ethylene biosynthesis and perception was investigated in ripening peach fruit (Prunus persica) following treatments with the polyamines putrescine (Pu) and spermidine (Sd), and with aminoethoxyvinylglycine (AVG). Fruit treatments were performed in planta. Ethylene production was measured by gas chromatography, and polyamine content by high-performance liquid chromatography; expression analyses were performed by Northern blot or real-time polymerase chain reaction. Differential increases in the endogenous polyamine pool in the epicarp and mesocarp were induced by treatments; in both cases, ethylene production, fruit softening and abscission were greatly inhibited. The rise in 1-aminocyclopropane-1-carboxylate oxidase (PpACO1) mRNA was counteracted and delayed in polyamine-treated fruit, whereas transcript abundance of ethylene receptors PpETR1 (ethylene receptor 1) and PpERS1 (ethylene sensor 1) was enhanced at harvest. Transcript abundance of arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) was transiently reduced in both the epicarp and mesocarp. AVG, here taken as a positive control, exerted highly comparable effects to those of Pu and Sd. Thus, in peach fruit, increasing the endogenous polyamine pool in the epicarp or in the mesocarp strongly interfered, both at a biochemical and at a biomolecular level, with the temporal evolution of the ripening syndrome.

  9. Mutation-adapted U1 snRNA corrects a splicing error of the dopa decarboxylase gene.

    PubMed

    Lee, Ni-Chung; Lee, Yu-May; Chen, Pin-Wen; Byrne, Barry J; Hwu, Wuh-Liang

    2016-12-01

    Aromatic l-amino acid decarboxylase (AADC) deficiency is an inborn error of monoamine neurotransmitter synthesis, which results in dopamine, serotonin, epinephrine and norepinephrine deficiencies. The DDC gene founder mutation IVS6 + 4A > T is highly prevalent in Chinese patients with AADC deficiency. In this study, we designed several U1 snRNA vectors to adapt U1 snRNA binding sequences of the mutated DDC gene. We found that only the modified U1 snRNA (IVS-AAA) that completely matched both the intronic and exonic U1 binding sequences of the mutated DDC gene could correct splicing errors of either the mutated human DDC minigene or the mouse artificial splicing construct in vitro. We further injected an adeno-associated viral (AAV) vector to express IVS-AAA in the brain of a knock-in mouse model. This treatment was well tolerated and improved both the survival and brain dopamine and serotonin levels of mice with AADC deficiency. Therefore, mutation-adapted U1 snRNA gene therapy can be a promising method to treat genetic diseases caused by splicing errors, but the efficiency of such a treatment still needs improvements. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Threonine 57 is required for the post-translational activation of Escherichia coli aspartate α-decarboxylase

    PubMed Central

    Webb, Michael E.; Yorke, Briony A.; Kershaw, Tom; Lovelock, Sarah; Lobley, Carina M. C.; Kilkenny, Mairi L.; Smith, Alison G.; Blundell, Tom L.; Pearson, Arwen R.; Abell, Chris

    2014-01-01

    Aspartate α-decarboxylase is a pyruvoyl-dependent decarboxylase required for the production of β-alanine in the bacterial pantothenate (vitamin B5) biosynthesis pathway. The pyruvoyl group is formed via the intramolecular rearrangement of a serine residue to generate a backbone ester intermediate which is cleaved to generate an N-terminal pyruvoyl group. Site-directed mutagenesis of residues adjacent to the active site, including Tyr22, Thr57 and Tyr58, reveals that only mutation of Thr57 leads to changes in the degree of post-translational activation. The crystal structure of the site-directed mutant T57V is consistent with a non-rearranged backbone, supporting the hypothesis that Thr57 is required for the formation of the ester intermediate in activation. PMID:24699660

  11. Antileishmanial activity of berenil and methylglyoxal bis (guanylhydrazone) and its correlation with S-adenosylmethionine decarboxylase and polyamines.

    PubMed

    Mukhopadhyay, R; Madhubala, R

    1995-01-01

    Leishmania donovani S-adenosyl-L-methionine (AdoMet) decarboxylase was found to show a growth related pattern. Methylglyoxal bis (guanylhydrazone) (MGBG) and Berenil inhibited the growth of Leishmania donovani promastigotes (strain UR6) in a dose dependent manner. The concentrations of MGBG and Berenil required for 50% inhibition of rate of growth were 67 and 47 microM, respectively. The growth inhibition of MGBG was partially reversed by spermidine (100 microM) and spermine (100 microM). Berenil inhibition of promastigote growth was partially reversed by 100 microM spermidine whereas 100 microM spermine did not result in any reversal of growth. The reduction in parasitemia in vitro by these inhibitors was accompanied by inhibition of AdoMet decarboxylase activity and spermidine levels.

  12. Role of glutamic acid decarboxylase 67 in regulating cortical parvalbumin and GABA membrane transporter 1 expression: implications for schizophrenia.

    PubMed

    Curley, Allison A; Eggan, Stephen M; Lazarus, Matt S; Huang, Z Josh; Volk, David W; Lewis, David A

    2013-02-01

    Markers of GABA neurotransmission are altered in multiple regions of the neocortex in individuals with schizophrenia. Lower levels of glutamic acid decarboxylase 67 (GAD67) mRNA and protein, which is responsible for most cortical GABA synthesis, are accompanied by lower levels of GABA membrane transporter 1 (GAT1) mRNA. These alterations are thought to be most prominent in the parvalbumin (PV)-containing subclass of interneurons, which also contain lower levels of PV mRNA. Since GAT1 and PV each reduce the availability of GABA at postsynaptic receptors, lower levels of GAT1 and PV mRNAs have been hypothesized to represent compensatory responses to an upstream reduction in cortical GABA synthesis in schizophrenia. However, such cause-and-effect hypotheses cannot be directly tested in a human illness. Consequently, we used two mouse models with reduced GAD67 expression specifically in PV neurons (PV(GAD67+/-)) or in all interneurons (GABA(GAD67+/-)) and quantified GAD67, GAT1 and PV mRNA levels using methods identical to those employed in studies of schizophrenia. Cortical levels of PV or GAT1 mRNAs were not altered in PV(GAD67+/-) mice during postnatal development or in adulthood. Furthermore, cellular analyses confirmed the predicted reduction in GAD67 mRNA, but failed to show a deficit in PV mRNA in these animals. Levels of PV and GAT1 mRNAs were also unaltered in GABA(GAD67+/-) mice. Thus, mouse lines with cortical reductions in GAD67 mRNA that match or exceed those present in schizophrenia, and that differ in the developmental timing and cell type-specificity of the GAD67 deficit, failed to provide proof-of-concept evidence that lower PV and GAT1 expression in schizophrenia are a consequence of lower GAD67 expression. Together, these findings suggest that the correlated decrements in cortical GAD67, PV and GAT1 mRNAs in schizophrenia may be a common consequence of some other upstream factor. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Truncation of a mannanase from Trichoderma harzianum improves its enzymatic properties and expression efficiency in Trichoderma reesei.

    PubMed

    Wang, Juan; Zeng, Desheng; Liu, Gang; Wang, Shaowen; Yu, Shaowen

    2014-01-01

    To obtain high expression efficiency of a mannanase gene, ThMan5A, cloned from Trichoderma harzianum MGQ2, both the full-length gene and a truncated gene (ThMan5AΔCBM) that contains only the catalytic domain, were expressed in Trichoderma reesei QM9414 using the strong constitutive promoter of the gene encoding pyruvate decarboxylase (pdc), and purified to homogeneity, respectively. We found that truncation of the gene improved its expression efficiency as well as the enzymatic properties of the encoded protein. The recombinant strain expressing ThMan5AΔCBM produced 2,460 ± 45.1 U/ml of mannanase activity in the culture supernatant; 2.3-fold higher than when expressing the full-length ThMan5A gene. In addition, the truncated mannanase had superior thermostability compared with the full-length enzyme and retained 100 % of its activity after incubation at 60 °C for 48 h. Our results clearly show that the truncated ThMan5A enzyme exhibited improved characteristics both in expression efficiency and in its thermal stability. These characteristics suggest that ThMan5AΔCBM has potential applications in the food, feed, paper, and pulp industries.

  14. Physiological consequences of starvation in Pseudomonas putida: degradation of intracellular protein and loss of activity of the inducible enzymes of L-arginine catabolism.

    PubMed

    Fan, C L; Rodwell, V W

    1975-12-01

    We investigated the degradation of radioisotopically labeled intracellular protein in starved, intact cells of Pseudomonas putida P2 (ATCC 25571) and the regulation of this process. Intracellular protein isotopically labeled with L-[4,5-3H]leucine during log-phase growth at 30 C is degraded at rates of 1 to 2%/h in log-phase cells and 7 to 9%/h in starved cells. Rifampin, chloramphenicol, and tosyllysine chloromethylketone lower the rate of protein degradation by starved cells. Addition to starved cells of a nutrient upon which the culture is induced for growth rapidly lowers the rate of protein degradation from 7 to 9%/h to less than 1.5%/h. A nutrient that is oxidized but that cannot immediately support growth also lowers the rate of starvation-induced protein degradation. Proteolytic activity of cell extracts requires a divalent metal ion and may be inhibited up to 60% by tosyllysine chloromethylketone or p-toluenesulfonyl fluoride. Rifampin and chloramphenicol have no effect. In contrast to intact cells, extracts of growing or starving cells degrade protein at equivalent rates. We also investigated the stabilities of the inducible transport system and of four inducible intracellular enzymes of L-arginine catabolism. These include: the membrane-associated, L-arginine-specific transport system; L-arginine oxidase (oxidase); alpha-ketoarginine decarboxylase (decarboxylase); gamma-guanidinobutyraldehyde dehydrogenase ( dehydrogenase); and gamma-guanidinobutyrate amidinohydrolase (hydrolase). In starved cells, the rates of loss of activities were: transport and dehydrogenase activities, stable; oxidase and decarboxylase activities, 20 to 30%/h; hydrolase activity, 5 to 8%/h. Chloramphenicol decreases the rate of loss of oxidase, decarboxylase, and hydrolase activity, whereas p-toluenesulfonyl fluoride lowers the rate of loss of decarboxylase but not of oxidase or hydrolase activity. Addition to starved cells of a nutrient for which they are already induced for growth (e.g., malate, a noninducer of arginine catabolic enzymes) decreases the rate of loss of oxidase and decarboxylase activity but not that of the hydrolase.

  15. A novel role for antizyme inhibitor 2 as a regulator of serotonin and histamine biosynthesis and content in mouse mast cells.

    PubMed

    Acosta-Andrade, Carlos; Lambertos, Ana; Urdiales, José L; Sánchez-Jiménez, Francisca; Peñafiel, Rafael; Fajardo, Ignacio

    2016-10-01

    Antizymes and antizyme inhibitors are key regulatory proteins of polyamine levels by affecting ornithine decarboxylase and polyamine uptake. Our previous studies indicated a metabolic interplay among polyamines, histamine and serotonin in mast cells, and demonstrated that polyamines are present in mast cell secretory granules, being important for histamine storage and serotonin levels. Recently, the novel antizyme inhibitor-2 (AZIN2) was proposed as a local regulator of polyamine biosynthesis in association with mast cell serotonin-containing granules. To gain insight into the role of AZIN2 in the biosynthesis and storage of serotonin and histamine, we have generated bone marrow derived mast cells (BMMCs) from both wild-type and transgenic Azin2 hypomorphic mice, and have analyzed polyamines, serotonin and histamine contents, and some elements of their metabolisms. Azin2 hypomorphic BMMCs did not show major mast cell phenotypic alterations as judged by morphology and specific mast cell proteases. However, compared to wild-type controls, these cells showed reduced spermidine and spermine levels, and diminished growth rate. Serotonin levels were also reduced, whereas histamine levels tended to increase. Accordingly, tryptophan hydroxylase-1 (TPH1; the key enzyme for serotonin biosynthesis) mRNA expression and protein levels were reduced, whereas histidine decarboxylase (the enzyme responsible for histamine biosynthesis) enzymatic activity was increased. Furthermore, microphtalmia-associated transcription factor, an element involved in the regulation of Tph1 expression, was reduced. Taken together, our results show, for the first time, an element of polyamine metabolism -AZIN2-, so far described as exclusively devoted to the control of polyamine concentrations, involved in regulating the biosynthesis and content of other amines like serotonin and histamine.

  16. L-DOPA decarboxylase mRNA levels provide high diagnostic accuracy and discrimination between clear cell and non-clear cell subtypes in renal cell carcinoma.

    PubMed

    Papadopoulos, Emmanuel I; Petraki, Constantina; Gregorakis, Alkiviadis; Chra, Eleni; Fragoulis, Emmanuel G; Scorilas, Andreas

    2015-06-01

    Renal cell carcinoma (RCC) is the most frequent type of kidney cancer. RCC patients frequently present with arterial hypertension due to various causes, including intrarenal dopamine deficiency. L-DOPA decarboxylase (DDC) is the gene encoding the enzyme that catalyzes the biosynthesis of dopamine in humans. Several studies have shown that the expression levels of DDC are significantly deregulated in cancer. Thus, we herein sought to analyze the mRNA levels of DDC and evaluate their clinical significance in RCC. DDC levels were analyzed in 58 surgically resected RCC tumors and 44 adjacent non-cancerous renal tissue specimens via real-time PCR. Relative levels of DDC were estimated by applying the 2(-ΔΔC)T method, while their diagnostic accuracy and correlation with the clinicopathological features of RCC tumors were assessed by comprehensive statistical analysis. DDC mRNA levels were found to be dramatically downregulated (p<0.001) in RCC tumors, exhibiting remarkable diagnostic accuracy as assessed by ROC curve analysis (AUC: 0.910; p<0.001) and logistic regression (OR: 0.678; p=0.001). Likewise, DDC was found to be differentially expressed between clear cell RCC and the group of non-clear cell subtypes (p=0.001) consisted of papillary and chromophobe RCC specimens. Furthermore, a statistically significant inverse correlation was also observed when the mRNA levels of DDC were analyzed in relation to tumor grade (p=0.049). Our data showed that DDC constitutes a highly promising molecular marker for RCC, exhibiting remarkable diagnostic accuracy and potential to discriminate between clear cell and non-clear cell histological subtypes of RCC. Copyright © 2015. Published by Elsevier Inc.

  17. A pathogenic S250F missense mutation results in a mouse model of mild aromatic l-amino acid decarboxylase (AADC) deficiency.

    PubMed

    Caine, Charlotte; Shohat, Meytal; Kim, Jeong-Ki; Nakanishi, Koki; Homma, Shunichi; Mosharov, Eugene V; Monani, Umrao R

    2017-11-15

    Homozygous mutations in the aromatic l-amino acid decarboxylase (AADC) gene result in a severe depletion of its namesake protein, triggering a debilitating and often fatal form of infantile Parkinsonism known as AADC deficiency. AADC deficient patients fail to produce normal levels of the monoamine neurotransmitters dopamine and serotonin, and suffer a multi-systemic disorder characterized by movement abnormalities, developmental delay and autonomic dysfunction; an absolute loss of dopamine is generally considered incompatible with life. There is no optimal treatment for AADC deficiency and few truly good models in which to investigate disease mechanisms or develop and refine therapeutic strategies. In this study, we introduced a relatively frequently reported but mildly pathogenic S250F missense mutation into the murine Aadc gene. We show that mutants homozygous for the mutation are viable and express a stable but minimally active form of the AADC protein. Although the low enzymatic activity of the protein resulted in only modestly reduced concentrations of brain dopamine, serotonin levels were markedly diminished, and this perturbed behavior as well as autonomic function in mutant mice. Still, we found no evidence of morphologic abnormalities of the dopaminergic cells in mutant brains. The striatum as well as substantia nigra appeared normal and no loss of dopamine expressing cells in the latter was detected. We conclude that even minute levels of active AADC are sufficient to allow for substantial amounts of dopamine to be produced in model mice harboring the S250F mutation. Such mutants represent a novel, mild model of human AADC deficiency. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Gene Transfer of Glutamic Acid Decarboxylase 67 by Herpes Simplex Virus Vectors Suppresses Neuropathic Pain Induced by Human Immunodeficiency Virus gp120 Combined with ddC in Rats.

    PubMed

    Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin

    2015-06-01

    Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.

  19. Proteomic analysis of kidney in rats chronically exposed to monosodium glutamate.

    PubMed

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha'on, Ubon

    2014-01-01

    Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at -75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake.

  20. Proteomic Analysis of Kidney in Rats Chronically Exposed to Monosodium Glutamate

    PubMed Central

    Sharma, Amod; Wongkham, Chaisiri; Prasongwattana, Vitoon; Boonnate, Piyanard; Thanan, Raynoo; Reungjui, Sirirat; Cha’on, Ubon

    2014-01-01

    Background Chronic monosodium glutamate (MSG) intake causes kidney dysfunction and renal oxidative stress in the animal model. To gain insight into the renal changes induced by MSG, proteomic analysis of the kidneys was performed. Methods Six week old male Wistar rats were given drinking water with or without MSG (2 mg/g body weight, n = 10 per group) for 9 months. Kidneys were removed, frozen, and stored at –75°C. After protein extraction, 2-D gel electrophoresis was performed and renal proteome profiles were examined with Colloidal Coomassie Brilliant Blue staining. Statistically significant protein spots (ANOVA, p<0.05) with 1.2-fold difference were excised and analyzed by LC-MS. Proteomic data were confirmed by immunohistochemistry and Western blot analyses. Results The differential image analysis showed 157 changed spots, of which 71 spots were higher and 86 spots were lower in the MSG-treated group compared with those in the control group. Eight statistically significant and differentially expressed proteins were identified: glutathione S-transferase class-pi, heat shock cognate 71 kDa, phosphoserine phosphatase, phosphoglycerate kinase, cytosolic glycerol-3-phosphate dehydrogenase, 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, α-ketoglutarate dehydrogenase and succinyl-CoA ligase. Conclusion The identified proteins are mainly related to oxidative stress and metabolism. They provide a valuable clue to explore the mechanism of renal handling and toxicity on chronic MSG intake. PMID:25551610

  1. Systematic Analysis of γ-Aminobutyric Acid (GABA) Metabolism and Function in the Social Amoeba Dictyostelium discoideum*

    PubMed Central

    Wu, Yuantai; Janetopoulos, Chris

    2013-01-01

    While GABA has been suggested to regulate spore encapsulation in the social amoeba Dictyostelium discoideum, the metabolic profile and other potential functions of GABA during development remain unclear. In this study, we investigated the homeostasis of GABA metabolism by disrupting genes related to GABA metabolism and signaling. Extracellular levels of GABA are tightly regulated during early development, and GABA is generated by the glutamate decarboxylase, GadB, during growth and in early development. However, overexpression of the prespore-specific homologue, GadA, in the presence of GadB reduces production of extracellular GABA. Perturbation of extracellular GABA levels delays the process of aggregation. Cytosolic GABA is degraded by the GABA transaminase, GabT, in the mitochondria. Disruption of a putative vesicular GABA transporter (vGAT) homologue DdvGAT reduces secreted GABA. We identified the GABAB receptor-like family member GrlB as the major GABA receptor during early development, and either disruption or overexpression of GrlB delays aggregation. This delay is likely the result of an abolished pre-starvation response and late expression of several “early” developmental genes. Distinct genes are employed for GABA generation during sporulation. During sporulation, GadA alone is required for generating GABA and DdvGAT is likely responsible for GABA secretion. GrlE but not GrlB is the GABA receptor during late development. PMID:23548898

  2. HemQ: An iron-coproporphyrin oxidative decarboxylase for protoheme synthesis in Firmicutes and Actinobacteria

    DOE PAGES

    Dailey, Harry A.; Gerdes, Svetlana

    2015-02-21

    Genes for chlorite dismutase-like proteins are found widely among heme-synthesizing bacteria and some Archaea. It is now known that among the Firmicutes and Actinobacteria these proteins do not possess chlorite dismutase activity but instead are essential for heme synthesis. These proteins, named HemQ, are ironcoproporphyrin (coproheme) decarboxylases that catalyze the oxidative decarboxylation of coproheme III into protoheme IX. As purified, HemQs do not contain bound heme, but readily bind exogeneously supplied heme with low micromolar affinity. We find that the heme-bound form of HemQ has low peroxidase activity and in the presence of peroxide the bound heme may be destroyed.more » Furthermore, it is possible that HemQ may serve a dual role as a decarboxylase in heme biosynthesis and a regulatory protein in heme homeostasis.« less

  3. Bacopa monniera recombinant mevalonate diphosphate decarboxylase: Biochemical characterization.

    PubMed

    Abbassi, Shakeel J; Vishwakarma, Rishi K; Patel, Parth; Kumari, Uma; Khan, Bashir M

    2015-08-01

    Mevalonate diphosphate decarboxylase (MDD; EC 4.1.1.33) is an important enzyme in the mevalonic acid pathway catalyzing the Mg(2+)-ATP dependant decarboxylation of mevalonate 5-diphosphate (MVAPP) to isopentenyl diphosphate (IPP). Bacopa monniera recombinant MDD (BmMDD) protein was overexpressed in Escherichia coli BL21 (DE3) strain and purified to apparent homogeneity. Km and Vmax for MVAPP were 144 μM and 52 U mg(-1) respectively. The values of turnover (kcat) and kcat/Km for mevalonate 5-diphosphate were determined to be 40s(-1) and 2.77×10(5) M(-1) s(-1) and kcat and kcat/Km values for ATP were found to be 30 s(-1) and 2.20×10(4) M(-1) s(-1), respectively. pH activity profile indicated the involvement of carboxylate ion, lysine and arginine for the activity of enzyme. The apparent activation energy for the BmMDD catalyzed reaction was 12.7 kJ mol(-1). Optimum pH and temperature for the forward reaction was found to be 8.0 and 45 °C. The enzyme was most stable at pH 7 at 20 °C with the deactivation rate constant (Kd(*)) of 1.69×10(-4) and half life (t1/2) of 68 h. The cation studies suggested that BmMDD is a cation dependant enzyme and optimum activity was achieved in the presence of Mg(2+). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Metabolic characterization and transformation of the non-dairy Lactococcus lactis strain KF147, for production of ethanol from xylose.

    PubMed

    Petersen, Kia Vest; Liu, Jianming; Chen, Jun; Martinussen, Jan; Jensen, Peter Ruhdal; Solem, Christian

    2017-08-01

    The non-dairy lactic acid bacterium Lactococcus lactis KF147 can utilize xylose as the sole energy source. To assess whether KF147 could serve as a platform organism for converting second generation sugars into useful chemicals, the authors characterized growth and product formation for KF147 when grown on xylose. In a defined medium KF147 was found to co-metabolize xylose and arginine, resulting in bi-phasic growth. Especially at low xylose concentrations, arginine significantly improved growth rate. To facilitate further studies of the xylose metabolism, the authors eliminated arginine catabolism by deleting the arcA gene encoding the arginine deiminase. The fermentation product profile suggested two routes for xylose degradation, the phosphoketolase pathway and the pentose phosphate pathway. Inactivation of the phosphoketolase pathway redirected the entire flux through the pentose phosphate pathway whereas over-expression of phosphoketolase increased the flux through the phosphoketolase pathway. In general, significant amounts of the mixed-acid products, including lactate, formate, acetate and ethanol, were formed irrespective of xylose concentrations. To demonstrate the potential of KF147 for converting xylose into useful chemicals the authors chose to redirect metabolism towards ethanol production. A synthetic promoter library was used to drive the expression of codon-optimized versions of the Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase, and the outcome was a strain producing ethanol as the sole fermentation product with a high yield corresponding to 83% of the theoretical maximum. The results clearly indicate the great potential of using the more metabolically diverse non-dairy L. lactis strains for bio-production based on xylose containing feedstocks. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Differential gene expression profiles in the venom gland/sac of Eumenes pomiformis (Hymenoptera: Eumenidae).

    PubMed

    Baek, Ji Hyeong; Lee, Si Hyeock

    2010-06-01

    To search for novel transcripts encoding biologically active venom components, a subtractive cDNA library specific to the venom gland and sac (gland/sac) of a solitary hunting wasp species, Eumenes pomiformis Fabricius (1781), was constructed by suppression subtractive hybridization. A total of 541 expressed sequence tags (ESTs) were clustered and assembled into 102 contigs (31 multiple sequences and 71 singletons). In total, 37 cDNAs were found in the library via BLASTx searching and manual annotation. Eight contigs (337 ESTs) encoding short venom peptides (10 to 16 amino acids) occupied 62% of the library. The deduced amino acid sequence (78 amino acids) of a novel venom peptide transcript shared sequence similarity with trypsin inhibitors and dendrotoxin-like venom peptides known to be K(+) channel blockers, implying that this novel peptide may play a role in the paralysis of prey. In addition to phospholipase A2 and hyaluronidase, which are known to be the main components of wasp venoms, several transcripts encoding enzymes, including three metallopeptidases and a decarboxylase likely involved in the processing and activation of venomous proteins, peptides, amines, and neurotransmitters, were also isolated from the library. The presence of a transcript encoding a putative insulin/insulin-like peptide binding protein suggests that solitary hunting wasps use their venom to control their prey, leading to larval growth cessation. The abundance of these venom components in the venom gland/sac and in the alimentary canal was confirmed by quantitative real-time PCR. Discovery of venom gland/sac-specific transcripts should promote further studies on biologically active components in the venom of solitary hunting wasps. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. Streptomycin Resistance (rpsL) Produces an Absolute Requirement for Polyamines for Growth of an Escherichia coli Strain Unable to Synthesize Putrescine and Spermidine [Δ(speA-speB) ΔspecC

    PubMed Central

    Tabor, Herbert; Tabor, Celia White; Cohn, Murray S.; Hafner, Edmund W.

    1981-01-01

    The presence of certain rpsL (strA) mutations in a strain of Escherichia coli that cannot synthesize putrescine or spermidine because of deletions in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase, converts a partial requirement for polyamines for growth into an absolute requirement. PMID:7021537

  7. Development of vestibular function: biochemical, morphological and electronystagmographical assessment in the rat.

    PubMed

    Meza, G; Acuña, D; Gutiérrez, A; Merchan, J M; Rueda, J

    1996-07-01

    Glutamate decarboxylase and choline acetyltransferase were measured in homogenated ampullar cristae of rats during development from postnatal day 13 to 60 to determine changes in levels of these enzymes during early postnatal development. Afferent and efferent innervation of the hair cells of the developing cristae were studied using electron microscopy. In parallel, groups of rats, postrotatory nystagmus were used to assess the development of semicircular canal function during the same time interval. The level of glutamate decarboxylase was high on postnatal day 15 and did not change notably over the remaining days to day 60. Activity of choline acetyltransferase was nearly absent at day 15, but reached levels seen in mature animals by day 17, and remained almost unchanged thereafter. In contrast, as revealed by electronmicroscopy, afferent and efferent innervation appeared to be mature by day 8. Postrotatory nystagmus presented the adult-like features from day 19 onward. According to these results, a role for glutamate decarboxylase in afferent transmission is suggested by the parallel development of levels of glutamate decarboxylase and afferent innervation of the ampullary cristae. The finding of a similar time course of development of choline acetyltransferase levels and postrotatory nystagmus suggests that a cholinergic efferent innervation is involved in the onset of vestibular-ocular function.

  8. Structures of Bacterial Biosynthetic Arginine Decarboxylases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Forouhar; S Lew; J Seetharaman

    2011-12-31

    Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. Themore » TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.« less

  9. In vivo inhibition of polyamine biosynthesis and growth in tobacco ovary tissues

    NASA Technical Reports Server (NTRS)

    Slocum, R. D.; Galston, A. W.

    1985-01-01

    Post fertilization growth of tobacco ovary tissues treated with inhibitors of polyamine (PA) biosynthesis was examined in relation to endogenous PA titers and the activities of arginine decarboxylase (ADC, EC 4.1.1.19) and ornithine decarboxylase (ODC, EC 4.1.1.17). DL-alpha-Difluoromethylornithine (DFMO) and DL-alpha-difluoromethylarginine (DFMA), specific, irreversible ("suicide") inhibitors of ODC and ADC in vitro, were used to modulate PA biosynthesis in excised flowers. ODC represented >99% of the total decarboxylase activity in tobacco ovaries. In vivo inhibition of ODC with DFMO resulted in a significant decrease in PA titers, ovary fresh weight and protein content. Simultaneous inhibition of both decarboxylases by DFMO and DFMA produced only a marginally greater depression in growth and PA titers, indicating that ODC activity is rate-limiting for PA biosynthesis in these tissues. Paradoxically, DFMA alone inhibited PA biosynthesis, not as a result of a specific inhibition of ADC, but primarily through the inactivation of ODC. In vivo inhibition of ODC by DFMA appears to result from arginase-mediated hydrolysis of this inhibitor to urea and DFMO, the suicide substrate for ODC. Putrescine conjugates in tobacco appear to function as a storage form of this amine which, upon hydrolysis, may contribute to Put homeostasis during growth.

  10. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization.

    PubMed

    Luqman, Arif; Nega, Mulugeta; Nguyen, Minh-Thu; Ebner, Patrick; Götz, Friedrich

    2018-01-09

    A subgroup of biogenic amines, the so-called trace amines (TAs), are produced by mammals and bacteria and can act as neuromodulators. In the genus Staphylococcus, certain species are capable of producing TAs through the activity of staphylococcal aromatic amino acid decarboxylase (SadA). SadA decarboxylates aromatic amino acids to produce TAs, as well as dihydroxy phenylalanine and 5-hydroxytryptophan to thus produce the neurotransmitters dopamine and serotonin. SadA-expressing staphylococci were prevalent in the gut of most probands, where they are part of the human intestinal microflora. Furthermore, sadA-expressing staphylococci showed increased adherence to HT-29 cells and 2- to 3-fold increased internalization. Internalization and adherence was also increased in a sadA mutant in the presence of tryptamine. The α2-adrenergic receptor is required for enhanced adherence and internalization. Thus, staphylococci in the gut might contribute to gut activity and intestinal colonization. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Establishment of an efficient fermentation system of gamma-aminobutyric acid by a lactic acid bacterium, Enterococcus avium G-15, isolated from carrot leaves.

    PubMed

    Tamura, Takayoshi; Noda, Masafumi; Ozaki, Moeko; Maruyama, Masafumi; Matoba, Yasuyuki; Kumagai, Takanori; Sugiyama, Masanori

    2010-01-01

    In the present study, we successfully isolated a carrot leaf-derived lactic acid bacterium that produces gamma-aminobutyric acid (GABA) from monosodium L-glutamate (L-MSG) at a hyper conversion rate. The GABA-producing bacterium, identified as Enterococcus (E.) avium G-15, produced 115.7±6.4 g/l GABA at a conversion rate of 86.0±5.0% from the added L-MSG under the optimum culture condition by a continuous L-MSG feeding method using a jar-fermentor, suggesting that the bacterium displays a great potential ability for the commercial-level fermentation production of GABA. Using the reverse transcription polymerase chain reaction (RT-PCR) method, we analyzed the expression of genes for the GABA transporter and glutamate decarboxylase, designated gadT and gadG, respectively, which were cloned from the E. avium G-15 chromosome. Both genes were expressed even without the added L-MSG, but their expression was enhanced by the addition of L-MSG.

  12. Agmatine attenuates brain edema through reducing the expression of aquaporin-1 after cerebral ischemia

    PubMed Central

    Kim, Jae Hwan; Lee, Yong Woo; Park, Kyung Ah; Lee, Won Taek; Lee, Jong Eun

    2010-01-01

    Brain edema is frequently shown after cerebral ischemia. It is an expansion of brain volume because of increasing water content in brain. It causes to increase mortality after stroke. Agmatine, formed by the decarboxylation of -arginine by arginine decarboxylase, has been shown to be neuroprotective in trauma and ischemia models. The purpose of this study was to investigate the effect of agmatine for brain edema in ischemic brain damage and to evaluate the expression of aquaporins (AQPs). Results showed that agmatine significantly reduced brain swelling volume 22 h after 2 h middle cerebral artery occlusion in mice. Water content in brain tissue was clearly decreased 24 h after ischemic injury by agmatine treatment. Blood–brain barrier (BBB) disruption was diminished with agmatine than without. The expressions of AQPs-1 and -9 were well correlated with brain edema as water channels, were significantly decreased by agmatine treatment. It can thus be suggested that agmatine could attenuate brain edema by limitting BBB disruption and blocking the accumulation of brain water content through lessening the expression of AQP-1 after cerebral ischemia. PMID:20029450

  13. Chemical models and their mechanistic implications for the transformation of 6-cyanouridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase.

    PubMed

    Chien, Tun-Cheng; Jen, Cheng-Hung; Wu, Yuen-Jen; Liao, Chen-Chieh

    2008-01-01

    Orotidine 5'-monophosphate decarboxylase (ODCase) catalyzes an unprecedented transformation of 6- cyanouridine 5'-monophosphate (6-CN-UMP) into barbiturate nucleoside 5'-monophosphate (6-hydroxyuridine 5'-monophosphate, BMP). The reactions of 6- cyano-1,3-dimethyluracil toward various nucleophilic conditions have been studied as chemical models in order to understand the possible mechanism for the ODCase-catalyzed transformation of 6-CN-UMP.

  14. Humanized in vivo Model for Autoimmune Diabetes

    DTIC Science & Technology

    2010-05-07

    the tolerance mechanisms of high and low avidity T cells reactive to the diabetes autoantigen glutamic acid decarboxylase 65 (GAD65) and their...of this study, we have used humanized DR0401 (DR4) mice and demonstrated that: high avidity T cells reactive to glutamic acid decarboxylase 65...JA, Unrath KA, Falk BA, Ito K, Wen L, Daniels LT, Lernmark A, Nepom GT. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid

  15. The actions of dihydroxyphenylalanine and dihydroxyphenylserine on the sleep-wakefulness cycle of the rat after peripheral decarboxylase inhibition.

    PubMed Central

    Altier, H; Moldes, M; Monti, J M

    1975-01-01

    1. The actions of dihydroxyphenylalanine (DOPA) and dihydroxyphenylserine (DOPS) were assessed on the sleep-wakefulness cycle of male Wistar rats. 2. In comparative studies the extracerebral decarboxylase was inhibited with serinetrihydroxybenzylhydrazide (RO 4-4602) before injection of DOPA or DOPS. 3. DOPA (80-160 mg/kg, i.p.) with or without previous inhibition of the peripheral decarboxylase gave rise to an initial significant increase of slow wave activity, which may be related to a release of 5-hydroxytryptamine. 4. During the subsequent 8 h sessions, DOPA significantly decreased slow wave sleep and rapid eye movement sleep (REM) and increased wakefulness. 5. DOPS (80-160 mg/kg, i.p.) did not significantly modify the sleep-wakefulness cycle apart from a decrease of the latency for the first REM episode after 160 mg/kg in the RO 4-4602 pretreated animals. PMID:166716

  16. Arginine decarboxylase as the source of putrescine for tobacco alkaloids

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Galston, A. W.

    1986-01-01

    The putrescine which forms a part of nicotine and other pyrrolidine alkaloids is generally assumed to arise through the action of ornithine decarboxylase (ODC). However, we have previously noted that changes in the activity of arginine decarboxylase (ADC), an alternate source of putrescine, parallel changes in tissue alkaloids, while changes in ODC activity do not. This led us to undertake experiments to permit discrimination between ADC and ODC as enzymatic sources of putrescine destined for alkaloids. Two kinds of evidence presented here support a major role for ADC in the generation of putrescine going into alkaloids: (a) A specific 'suicide inhibitor' of ADC effectively inhibits the biosynthesis of nicotine and nornicotine in tobacco callus, while the analogous inhibitor of ODC is less effective, and (b) the flow of 14C from uniformly labelled arginine into nicotine is much more efficient than that from ornithine.

  17. Analysis of methylated patterns and quality-related genes in tobacco (Nicotiana tabacum) cultivars.

    PubMed

    Jiao, Junna; Jia, Yanlong; Lv, Zhuangwei; Sun, Chuanfei; Gao, Lijie; Yan, Xiaoxiao; Cui, Liusu; Tang, Zongxiang; Yan, Benju

    2014-08-01

    Methylation-sensitive amplified polymorphism was used in this study to investigate epigenetic information of four tobacco cultivars: Yunyan 85, NC89, K326, and Yunyan 87. The DNA fragments with methylated information were cloned by reamplified PCR and sequenced. The results of Blast alignments showed that the genes with methylation information included chitinase, nitrate reductase, chloroplast DNA, mitochondrial DNA, ornithine decarboxylase, ribulose carboxylase, and promoter sequences. Homologous comparison in three cloned gene sequences (nitrate reductase, ornithine decarboxylase, and ribulose decarboxylase) indicated that geographic factors had significant influence on the whole genome methylation. Introns also contained different information in different tobacco cultivars. These findings suggest that synthetic mechanisms for tobacco aromatic components could be affected by different environmental factors leading to variation of noncoding regions in the genome, which finally results in different fragrance and taste in different tobacco cultivars.

  18. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    PubMed Central

    Jänne, J; Morris, D R

    1984-01-01

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine. PMID:6426466

  19. Inhibition of S-adenosylmethionine decarboxylase and diamine oxidase activities by analogues of methylglyoxal bis(guanylhydrazone) and their cellular uptake during lymphocyte activation.

    PubMed

    Jänne, J; Morris, D R

    1984-03-15

    Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.

  20. NLX-P101, an adeno-associated virus gene therapy encoding glutamic acid decarboxylase, for the potential treatment of Parkinson's disease.

    PubMed

    Diaz-Nido, Javier

    2010-07-01

    Parkinson's disease (PD) is a neurodegenerative disease affecting nigrostriatal dopaminergic neurons. Dopamine depletion in the striatum leads to functional changes in several deep brain nuclei, including the subthalamic nucleus (STN), which becomes disinhibited and perturbs the control of body movement. Although there is no cure for PD, some pharmacological and surgical treatments can significantly improve the functional ability of patients, particularly in the early stages of the disease. Among neurodegenerative diseases, PD is a particularly suitable target for gene therapy because the neuropathology is largely confined to a relatively small region of the brain. Neurologix Inc is developing NLX-P101 (AAV2-GAD), an adeno-associated viral vector encoding glutamic acid decarboxylase (GAD), for the potential therapy of PD. As GAD potentiates inhibitory neurotransmission from the STN, sustained expression of GAD in the STN by direct delivery of NLX-P101 decreases STN overactivation. This procedure was demonstrated to be a safe and efficient method of reducing motor deficits in animal models of PD. A phase I clinical trial has demonstrated that NLX-P101 was safe and indicated the efficacy of this approach in patients with PD. Results from an ongoing phase II clinical trial of NLX-P101 are awaited to establish the clinical efficacy of this gene therapy.

  1. Uroporphyrinogen decarboxylase is a radiosensitizing target for head and neck cancer.

    PubMed

    Ito, Emma; Yue, Shijun; Moriyama, Eduardo H; Hui, Angela B; Kim, Inki; Shi, Wei; Alajez, Nehad M; Bhogal, Nirmal; Li, Guohua; Datti, Alessandro; Schimmer, Aaron D; Wilson, Brian C; Liu, Peter P; Durocher, Daniel; Neel, Benjamin G; O'Sullivan, Brian; Cummings, Bernard; Bristow, Rob; Wrana, Jeff; Liu, Fei-Fei

    2011-01-26

    Head and neck cancer (HNC) is the eighth most common malignancy worldwide, comprising a diverse group of cancers affecting the head and neck region. Despite advances in therapeutic options over the last few decades, treatment toxicities and overall clinical outcomes have remained disappointing, thereby underscoring a need to develop novel therapeutic approaches in HNC treatment. Uroporphyrinogen decarboxylase (UROD), a key regulator of heme biosynthesis, was identified from an RNA interference-based high-throughput screen as a tumor-selective radiosensitizing target for HNC. UROD knockdown plus radiation induced caspase-mediated apoptosis and cell cycle arrest in HNC cells in vitro and suppressed the in vivo tumor-forming capacity of HNC cells, as well as delayed the growth of established tumor xenografts in mice. This radiosensitization appeared to be mediated by alterations in iron homeostasis and increased production of reactive oxygen species, resulting in enhanced tumor oxidative stress. Moreover, UROD was significantly overexpressed in HNC patient biopsies. Lower preradiation UROD mRNA expression correlated with improved disease-free survival, suggesting that UROD could potentially be used to predict radiation response. UROD down-regulation also radiosensitized several different models of human cancer, as well as sensitized tumors to chemotherapeutic agents, including 5-fluorouracil, cisplatin, and paclitaxel. Thus, our study has revealed UROD as a potent tumor-selective sensitizer for both radiation and chemotherapy, with potential relevance to many human malignancies.

  2. Characterization of a Glutamate Decarboxylase (GAD) from Enterococcus avium M5 Isolated from Jeotgal, a Korean Fermented Seafood.

    PubMed

    Lee, Kang Wook; Shim, Jae Min; Yao, Zhuang; Kim, Jeong A; Kim, Hyun-Jin; Kim, Jeong Hwan

    2017-07-28

    To develop starters for the production of functional foods or materials, lactic acid bacteria producing γ-aminobutyric acid (GABA) were screened from jeotgals, Korean fermented seafoods. One isolate producing a high amount of GABA from monosodium L-glutamate (MSG) was identified as Enterococcus avium by 16S rRNA gene sequencing. E. avium M5 produced 18.47 ± 1.26 mg/ml GABA when incubated for 48 h at 37°C in MRS broth with MSG (3% (w/v)). A gadB gene encoding glutamate decarboxylase (GAD) was cloned and overexpressed in E. coli BL21 (DE3) using the pET26b (+) expression vector. Recombinant GAD was purified through a Ni-NTA column and the size was estimated to be 53 kDa by SDS-PAGE. Maximum GAD activity was observed at pH 4.5 and 55°C and the activity was dependent on pyridoxal 5'-phosphate. The K m and V max values of GAD were 3.26 ± 0.21 mM and 0.0120 ± 0.0001 mM/min, respectively, when MSG was used as a substrate. Enterococcus avium M5 secretes a lot of GABA when grown on MRS with MSG, and the strain is useful for the production of fermented foods containing a high amount of GABA.

  3. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation.

    PubMed

    Saenko, S V; Jerónimo, M A; Beldade, P

    2012-06-01

    Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration.

  4. Polyamine is a critical determinant of Pseudomonas chlororaphis O6 for GacS-dependent bacterial cell growth and biocontrol capacity.

    PubMed

    Park, Ju Yeon; Kang, Beom Ryong; Ryu, Choong-Min; Anderson, Anne J; Kim, Young Cheol

    2018-05-01

    The Gac/Rsm network regulates, at the transcriptional level, many beneficial traits in biocontrol-active pseudomonads. In this study, we used Phenotype MicroArrays, followed by specific growth studies and mutational analysis, to understand how catabolism is regulated by this sensor kinase system in the biocontrol isolate Pseudomonas chlororaphis O6. The growth of a gacS mutant was decreased significantly relative to that of the wild-type on ornithine and arginine, and on the precursor of these amino acids, N-acetyl-l-glutamic acid. The gacS mutant also showed reduced production of polyamines. Expression of the genes encoding arginine decarboxylase (speA) and ornithine decarboxylases (speC) was controlled at the transcriptional level by the GacS sensor of P. chlororaphis O6. Polyamine production was reduced in the speC mutant, and was eliminated in the speAspeC mutant. The addition of exogenous polyamines to the speAspeC mutant restored the in vitro growth inhibition of two fungal pathogens, as well as the secretion of three biological control-related factors: pyrrolnitrin, protease and siderophore. These results extend our knowledge of the regulation by the Gac/Rsm network in a biocontrol pseudomonad to include polyamine synthesis. Collectively, our studies demonstrate that bacterial polyamines act as important regulators of bacterial cell growth and biocontrol potential. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  5. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation

    PubMed Central

    Saenko, S V; Jerónimo, M A; Beldade, P

    2012-01-01

    Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration. PMID:22234245

  6. Expression of an oxalate decarboxylase impairs the necrotic effect induced by Nep1-like protein (NLP) of Moniliophthora perniciosa in transgenic tobacco.

    PubMed

    da Silva, Leonardo F; Dias, Cristiano V; Cidade, Luciana C; Mendes, Juliano S; Pirovani, Carlos P; Alvim, Fátima C; Pereira, Gonçalo A G; Aragão, Francisco J L; Cascardo, Júlio C M; Costa, Marcio G C

    2011-07-01

    Oxalic acid (OA) and Nep1-like proteins (NLP) are recognized as elicitors of programmed cell death (PCD) in plants, which is crucial for the pathogenic success of necrotrophic plant pathogens and involves reactive oxygen species (ROS). To determine the importance of oxalate as a source of ROS for OA- and NLP-induced cell death, a full-length cDNA coding for an oxalate decarboxylase (FvOXDC) from the basidiomycete Flammulina velutipes, which converts OA into CO(2) and formate, was overexpressed in tobacco plants. The transgenic plants contained less OA and more formic acid compared with the control plants and showed enhanced resistance to cell death induced by exogenous OA and MpNEP2, an NLP of the hemibiotrophic fungus Moniliophthora perniciosa. This resistance was correlated with the inhibition of ROS formation in the transgenic plants inoculated with OA, MpNEP2, or a combination of both PCD elicitors. Taken together, these results have established a pivotal function for oxalate as a source of ROS required for the PCD-inducing activity of OA and NLP. The results also indicate that FvOXDC represents a potentially novel source of resistance against OA- and NLP-producing pathogens such as M. perniciosa, the causal agent of witches' broom disease of cacao (Theobroma cacao L.).

  7. Glucocorticoids and Polyamine Inhibitors Synergize to Kill Human Leukemic CEM Cells1

    PubMed Central

    Miller, Aaron L; Johnson, Betty H; Medh, Rheem D; Townsend, Courtney M; Thompson, E Brad

    2002-01-01

    Abstract Glucocorticoids are well-known apoptotic agents in certain classes of lymphoid cell malignancies. Reduction of intracellular polyamine levels by use of inhibitors that block polyamine synthesis slows or inhibits growth of many cells in vitro. Several such inhibitors have shown efficacy in clinical trials, though the toxicity of some compounds has limited their usefulness. We have tested the effects of combinations of the glucocorticoid dexamethasone (Dex) and two polyamine inhibitors, difluoromethylornithine (DFMO) and methyl glyoxal bis guanylhydrazone (MGBG), on the clonal line of human acute lymphoblastic leukemia cells, CEM-C7-14. Dex alone kills these cells, though only after a delay of at least 24 hours. We also evaluated a partially glucocorticoid-resistant c-Myc-expressing CEM-C7-14 clone. We show that Dex downregulates ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine synthesis. Pretreatment with the ODC inhibitor DFMO, followed by addition of Dex, enhances steroid-evoked kill slightly. The combination of pretreatment with sublethal concentrations of both DFMO and the inhibitor of S-adenosylmethionine decarboxylase, MGBG, followed by addition of Dex, results in strong synergistic cell kill. Both the rapidity and extent of cell kill are enhanced compared to the effects of Dex alone. These results suggest that use of such combinations in vivo may result in apoptosis of malignant cells with lower overall toxicity. PMID:11922393

  8. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production.

    PubMed

    Irla, Marta; Heggeset, Tonje M B; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B; Brautaset, Trygve; Wendisch, Volker F

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium.

  9. Genome-Based Genetic Tool Development for Bacillus methanolicus: Theta- and Rolling Circle-Replicating Plasmids for Inducible Gene Expression and Application to Methanol-Based Cadaverine Production

    PubMed Central

    Irla, Marta; Heggeset, Tonje M. B.; Nærdal, Ingemar; Paul, Lidia; Haugen, Tone; Le, Simone B.; Brautaset, Trygve; Wendisch, Volker F.

    2016-01-01

    Bacillus methanolicus is a thermophilic methylotroph able to overproduce amino acids from methanol, a substrate not used for human or animal nutrition. Based on our previous RNA-seq analysis a mannitol inducible promoter and a putative mannitol activator gene mtlR were identified. The mannitol inducible promoter was applied for controlled gene expression using fluorescent reporter proteins and a flow cytometry analysis, and improved by changing the -35 promoter region and by co-expression of the mtlR regulator gene. For independent complementary gene expression control, the heterologous xylose-inducible system from B. megaterium was employed and a two-plasmid gene expression system was developed. Four different replicons for expression vectors were compared with respect to their copy number and stability. As an application example, methanol-based production of cadaverine was shown to be improved from 11.3 to 17.5 g/L when a heterologous lysine decarboxylase gene cadA was expressed from a theta-replicating rather than a rolling-circle replicating vector. The current work on inducible promoter systems and compatible theta- or rolling circle-replicating vectors is an important extension of the poorly developed B. methanolicus genetic toolbox, valuable for genetic engineering and further exploration of this bacterium. PMID:27713731

  10. Chemical models and their mechanistic implications for the transformation of 6-cyanouridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase.

    PubMed

    Wu, Yuen-Jen; Liao, Chen-Chieh; Jen, Cheng-Hung; Shih, Yu-Chiao; Chien, Tun-Cheng

    2010-07-14

    The reactions of 6-cyano-1,3-dimethyluracil have been studied as chemical models to illustrate the mechanism for the transformation of 6-cyanouridine 5'-monophosphate (6-CN-UMP) to barbiturate ribonucleoside 5'-monophosphate (BMP) catalyzed by orotidine 5'-monophosphate decarboxylase (ODCase). The results suggest that the Asp residue in the ODCase active site plays the role of a general base in the transformation.

  11. GLUTAMIC DECARBOXYLASE OF ERGOT, CLAVICEPS PURPUREA

    PubMed Central

    Anderson, John A.; Cheldelin, Vernon H.; King, Tsoo E.

    1961-01-01

    Anderson, John A. (Oregon State University, Corvallis), Vernon H. Cheldelin, and Tsoo E. King. Glutamic decarboxylase of ergot, Claviceps purpurea. J. Bacteriol. 82:354–358. 1961.—l-Glutamic acid is the only naturally occurring amino acid which can be decarboxylated by cell-free extracts of Claviceps purpurea. This decarboxylase was partially purified and the properties of the enzyme studied. The specific activity of the purified preparation was 111 μliters per 10 min per mg of protein. The products formed, stability, inhibition, stimulation of activity with pyridoxal phosphate, and pH activity curve were typical of l-glutamic decarboxylase in Escherichia coli and other microorganisms. The substrate constants at pH 4.6, 5.25, and 5.65 were 0.0169 m, 0.0174 m, and 0.0139 m, respectively. The respective maximal velocities at these pH values were 104, 104, and 90 μliters per 10 min. The pH optimum was 4.8 to 5.2. The enzyme was unstable below pH 4.5 and it was suggested that the fall in activity at the lower end of the pH curve was due to inactivation of the enzyme. The decrease in activity above pH 5.2 did not appear to be due to a change in affinity of enzyme for substrate but to a change of the enzyme-substrate complex into an inactive form. PMID:13683214

  12. Inhibition of ultraviolet-B epidermal ornithine decarboxylase induction and skin carcinogenesis in hairless mice by topical indomethacin and triamcinolone acetonide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, N.J.; Connor, M.J.; Breeding, J.

    1982-10-01

    Modulation of ultraviolet-B (UVB) skin carcinogenesis by topical treatment with two antiinflammatory drugs expected to have different mechanisms of action has been studied in the hairless mouse. Indomethacin is a nonsteroidal antiinflammatory agent which may act by inhibiting prostaglandin biosynthesis. Triamcinolone acetonide is a steroidal antiinflammatory agent. Both of these drugs inhibited the induction of epidermal ornithine decarboxylase by UVB when applied topically in a acetone vehicle. A UVB skin tumor study was designed. Groups of mice were irradiated daily with UVB for 20 days, each mouse receiving a total of 17.1 kJ UVB per sq m. Group 1 wasmore » treated with acetone immediately after each irradiation; Group 2 received 700 nmol indomethacin in acetone immediately after each irradiation; Group 3 received 14.4 nmol triamcinolone acetonide in acetone immediately after each irradiation. Mice were killed after 52 weeks, and the tumors were excised and examined histologically. Both topical indomethacin and topical triamcinolone acetonide were effective in reducing the incidence and size of the skin tumors induced by UVB. This evidence supports the hypothesis that the induction of ornithine decarboxylase may be a critical component of UVB skin carcinogenesis and that inhibition of ornithine decarboxylase induction can be used as a screen for agents which will inhibit UVB skin carcinogenesis.« less

  13. Protection of wheat against leaf and stem rust and powdery mildew diseases by inhibition of polyamine metabolism

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Osmeloski, J. F.; Wettlaufer, S. H.; Galston, A. W.

    1987-01-01

    In higher plants, polyamines arise from arginine by one of two pathways: via ornithine and ornithine decarboxylase or via agmatine and arginine decarboxylase but in fungi, only the ornithine decarboxylase pathway is present. Since polyamines are required for normal growth of microorganisms and plants and since the ornithine pathway can be irreversibly blocked by alpha-difluoromethylornithine (DFMO) which has no effect on arginine decarboxylase, fungal infection of green plants might be controlled by the site-directed use of such a specific metabolic inhibitor. DFMO at relatively low concentrations provided effective control of the three biotrophic fungal pathogens studied, Puccinia recondita (leaf rust), P. graminis f. sp. tritici (stem rust), and Erysiphe graminis (powdery mildew) on wheat (Triticum aestivum L.) Effective control of infection by leaf or stem rust fungi was obtained with sprays of DFMO that ranged from about 0.01 to 0.20 mM in experiments where the inhibitor was applied after spore inoculation. The powdery mildew fungus was somewhat more tolerant of DFMO, but good control of the pathogen was obtained at less than 1.0 mM. In general, application of DFMO after spore inoculation was more effective than application before inoculation. Less control was obtained following treatment with alpha-difluoromethylarginine (DFMA) but the relatively high degree of control obtained raises the possibility of a DFMA to DFMO conversion by arginase.

  14. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; Vittorio Bottari; Richard W. Hemingway; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce DOC activity at least as much as 3 µg of 12-O-tetradecanoylphorbol-13.acetate (TPA)....

  15. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  16. Antibodies against glutamic acid decarboxylase and indices of insulin resistance and insulin secretion in nondiabetic adults: a cross-sectional study

    PubMed Central

    Mendivil, Carlos O; Toloza, Freddy JK; Ricardo-Silgado, Maria L; Morales-Álvarez, Martha C; Mantilla-Rivas, Jose O; Pinzón-Cortés, Jairo A; Lemus, Hernán N

    2017-01-01

    Background Autoimmunity against insulin-producing beta cells from pancreatic islets is a common phenomenon in type 1 diabetes and latent autoimmune diabetes in adults. Some reports have also related beta-cell autoimmunity to insulin resistance (IR) in type 2 diabetes. However, the extent to which autoimmunity against components of beta cells is present and relates to IR and insulin secretion in nondiabetic adults is uncertain. Aim To explore the association between antibodies against glutamic acid decarboxylase (GADA), a major antigen from beta cells, and indices of whole-body IR and beta-cell capacity/insulin secretion in adults who do not have diabetes. Methods We studied 81 adults of both sexes aged 30–70, without known diabetes or any autoimmune disease. Participants underwent an oral glucose tolerance test (OGTT) with determination of plasma glucose and insulin at 0, 30, 60, 90, and 120 minutes. From these results we calculated indices of insulin resistance (homeostasis model assessment of insulin resistance [HOMA-IR] and incremental area under the insulin curve [iAUCins]) and insulin secretion (corrected insulin response at 30 minutes and HOMA beta-cell%). GADAs were measured in fasting plasma using immunoenzymatic methods. Results We found an overall prevalence of GADA positivity of 21.3%, without differences by sex and no correlation with age. GADA titers did not change monotonically across quartiles of any of the IR or insulin secretion indices studies. GADA did not correlate linearly with fasting IR expressed as HOMA-IR (Spearman’s r=−0.18, p=0.10) or postabsorptive IR expressed as iAUCins (r=−0.15, p=0.18), but did show a trend toward a negative correlation with insulin secretory capacity expressed by the HOMA-beta cell% index (r=−0.20, p=0.07). Hemoglobin A1c, body mass index, and waist circumference were not associated with GADA titers. Conclusion GADA positivity is frequent and likely related to impaired beta-cell function among adults without known diabetes. PMID:28507444

  17. Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb.

    PubMed

    Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Fones, Lilah; Brown, Elizabeth; Yanagawa, Yuchio; Cave, John W

    2017-05-03

    Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 ( Gad1 ) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase ( Th ), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression. SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis ( Gad1 and Th , respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels. Copyright © 2017 the authors 0270-6474/17/374778-12$15.00/0.

  18. Biosynthesis of o-succinylbenzoic acid in Bacillus subtilis: identification of menD mutants and evidence against the involvement of the alpha-ketoglutarate dehydrogenase complex.

    PubMed Central

    Palaniappan, C; Taber, H; Meganathan, R

    1994-01-01

    The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity. PMID:8169214

  19. Contribution of polyamines metabolism and GABA shunt to chilling tolerance induced by nitric oxide in cold-stored banana fruit.

    PubMed

    Wang, Yansheng; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-04-15

    Effect of exogenous nitric oxide (NO) on polyamines (PAs) catabolism, γ-aminobutyric acid (GABA) shunt, proline accumulation and chilling injury of banana fruit under cold storage was investigated. Banana fruit treated with NO sustained lower chilling injury index than the control. Notably elevated nitric oxide synthetase activity and endogenous NO level were observed in NO-treated banana fruit. PAs contents in treated fruit were significantly higher than control fruit, due to the elevated activities of arginine decarboxylase and ornithine decarboxylase. NO treatment increased the activities of diamine oxidase, polyamine oxidase and glutamate decarboxylase, while reduced GABA transaminase activity to lower levels compared with control fruit, which resulted the accumulation of GABA. Besides, NO treatment upregulated proline content and significantly enhanced the ornithine aminotransferase activity. These results indicated that the chilling tolerance induced by NO treatment might be ascribed to the enhanced catabolism of PAs, GABA and proline. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Immunological markers as predictors of developing steroid-induced diabetes mellitus in pemphigus vulgaris patients: An observational study.

    PubMed

    Dănescu, Ana Sorina; Bâldea, Ioana; Leucuţa, Daniel Corneliu; Lupan, Iulia; Samaşca, Gabriel; Sitaru, Cassian; Chiorean, Roxana; Baican, Adrian

    2018-04-01

    The aim of this study was to evaluate the clinical importance of autoantibodies in pemphigus vulgaris patients who developed steroid-induced diabetes mellitus (SID) because of the glucocorticoid therapy of pemphigus.A total of 137 patients with pemphigus vulgaris were studied. Patients with SID and pemphigus were compared with those that had only pemphigus. The variables recorded were: age at diagnosis, sex, body mass index, presence of diabetes mellitus (DM), cumulative cortisone dose, treatment duration, value of anti-desmoglein 1 and 3, and anti-glutamic acid decarboxylase autoantibodies.A total of 31 patients (22.62%) that developed steroid-induced DM were identified. Anti-glutamic acid decarboxylase autoantibodies were positive in 20.75% of patients with pemphigus vulgaris and in 25.75% of patients with pemphigus vulgaris and SID.The overall anti-glutamic acid decarboxylase autoantibodies prevalence in pemphigus patients was high, and the risk of developing DM in patients with pemphigus remains a serious problem, being associated with increased risk of mortality.

  1. Genome-wide identification of genes involved in polyamine biosynthesis and the role of exogenous polyamines in Malus hupehensis Rehd. under alkaline stress.

    PubMed

    Gong, Xiaoqing; Dou, Fangfang; Cheng, Xi; Zhou, Jing; Zou, Yangjun; Ma, Fengwang

    2018-08-30

    Polyamines (PAs) in plants are growth substrates with functions similar to phytohormones. Although they contribute to diverse processes, little is known about their role in stress responses, especially for perennial woody plants. We conducted a genome-wide investigation of 18 sequences involved in PA biosynthesis in the genome of apple (Malus domestica). Further analysis was performed to construct a phylogenetic tree, analyze their protein motifs and gene structures. In addition, we developed their expression profiles in response to stressed conditions. Both MDP0000171041 (MdSAMDC1) and MDP0000198590 (MdSPDS1) were induced by alkaline, salt, ABA, cold, and dehydration stress treatments, suggesting that these genes are the main contributors to activities of S-adenosylmethionine decarboxylase (EC 4.1.1.50) and spermidine synthase (EC 2.5.1.16) in apple. Changes in PA biosynthesis under stress conditions indicated that spermidine and spermine are more essential than putrescine for apple, especially when responding to alkaline or salt stress. When seedlings of M. hupehensis Rehd. were supplied with exogenous PAs, their leaves showed less chlorosis under alkaline stress when compared with untreated plants. This application also inhibited the decline in SPAD levels and reduced relative electrolyte leakage in those stressed seedlings, while increasing their concentration of active iron. These results suggest that the alteration in PA biosynthesis confers enhanced tolerance to alkaline stress in M. hupehensis Rehd. Copyright © 2018. Published by Elsevier B.V.

  2. Evidence for Arginine as the Endogenous Precursor of Necines in Heliotropium1

    PubMed Central

    Birecka, Helena; Birecki, Mieczyslaw; Frohlich, M. W.

    1987-01-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to 14C-labeled CO2 for 44 hours, the incorporation of 14C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with α-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on 14C incorporation into the necines. In contrast, α-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of 14C into the necines of both species; the inhibitor did not affect the absolute incorporation of 14C from exogenous [1,4-14C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-14C]arginine, but also exogenous l-[5-14C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of 14C-labeled CO2 assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed. PMID:16665402

  3. Evidence for arginine as the endogenous precursor of necines in heliotropium.

    PubMed

    Birecka, H; Birecki, M; Frohlich, M W

    1987-05-01

    In pyrrolizidine alkaloid-bearing Heliotropium angiospermum and H. indicum shoots exposed, in the light, to (14)C-labeled CO(2) for 44 hours, the incorporation of (14)C into 1,2-epoxy-1-hydroxymethylpyrrolizidine and retronecine amounted to 0.23 and 0.15%, respectively, of the total carbon assimilated. Treatment of the shoots with alpha-dl-difluoromethylornithine, the specific ornithine decarboxylase inhibitor, at 1 to 2 millimolar had no effect on (14)C incorporation into the necines. In contrast, alpha-dl-difluoromethylarginine, the specific arginine decarboxylase inhibitor, prevented the incorporation of (14)C into the necines of both species; the inhibitor did not affect the absolute incorporation of (14)C from exogenous [1,4-(14)C] putrescine in either species. Thus, arginine is the only apparent endogenous precursor of the putrescine channeled into pyrrolizidines, at least in these two Heliotropium species that exhibited a relatively much higher in vitro activity of arginine decarboxylase than of ornithine decarboxylase. However, within 28 hours after administration, not only exogenous l-[5-(14)C]arginine, but also exogenous l-[5-(14)C]ornithine exhibited significant incorporation of their label into the necines, incorporation that could be partially prevented by both inhibitors. Neither inhibitor affected the rates of (14)C-labeled CO(2) assimilation, transformation of labeled assimilates into ethanol-insoluble compounds, or the very high degree of conversion of the introduced amino acids into other compounds. Methodology related to alkaloid biosynthetic studies is discussed.

  4. Orotic aciduria and uridine monophosphate synthase: a reappraisal.

    PubMed

    Bailey, C J

    2009-12-01

    Three subtypes of hereditary orotic aciduria are described in the literature, all related to deficiencies in uridine monophosphate synthase, the multifunctional enzyme that contains both orotate: pyrophosphoryl transferase and orotidine monophosphate decarboxylase activities. The type of enzyme defect present in the subtypes has been re-examined by steady-state modelling of the relative outputs of the three enzymic products, uridine monophosphate, urinary orotic acid and urinary orotidine. It is shown that the ratio of urinary outputs of orotidine to orotate provides a means of testing for particular forms of enzyme defect. It is confirmed that the type I defect is caused by loss of uridine monophosphate synthase activity. Cells and tissue of type I cases have a residual amount of activity that is qualitatively unchanged: the relative rates of the transferase and decarboxylase do not differ from those of wild-type enzyme. The single claimed case of type II, thought to be due to specific inactivation of orotidine monophosphate decarboxylase, is shown to have a product spectrum inconsistent with that claim. It is proposed that this type II form does not differ sufficiently to be accepted as separate from type I. The third subtype, hereditary orotic aciduria without megaloblastic anaemia, occurs in two cases. It has the product spectrum expected of a defect in orotidine monophosphate decarboxylase. This form is the only one that appears to have a qualitatively different uridine monophosphate synthase. The possibility that orotidine monophosphate may control flux through the pyrimidine biosynthesis pathway in hereditary orotic aciduria is discussed.

  5. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mydy, Lisa S.; Mashhadi, Zahra; Knight, T. William

    The Gram-negative bacteriumSphingomonas wittichiiRW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, theS. wittichiigenome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in themore » fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure–function relationships within the ADCSF in general.« less

  6. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis.

    PubMed

    Bien, Christian G; Vincent, Angela; Barnett, Michael H; Becker, Albert J; Blümcke, Ingmar; Graus, Francesc; Jellinger, Kurt A; Reuss, David E; Ribalta, Teresa; Schlegel, Jürgen; Sutton, Ian; Lassmann, Hans; Bauer, Jan

    2012-05-01

    Classical paraneoplastic encephalitis syndromes with 'onconeural' antibodies directed to intracellular antigens, and the recently described paraneoplastic or non-paraneoplastic encephalitides and antibodies against both neural surface antigens (voltage-gated potassium channel-complexes, N-methyl-d-aspartate receptors) and intracellular antigens (glutamic acid decarboxylase-65), constitute an increasingly recognized group of immune-mediated brain diseases. Evidence for specific immune mechanisms, however, is scarce. Here, we report qualitative and quantitative immunopathology in brain tissue (biopsy or autopsy material) of 17 cases with encephalitis and antibodies to either intracellular (Hu, Ma2, glutamic acid decarboxylase) or surface antigenic targets (voltage-gated potassium channel-complex or N-methyl-d-aspartate receptors). We hypothesized that the encephalitides with antibodies against intracellular antigens (intracellular antigen-onconeural and intracellular antigen-glutamic acid decarboxylase groups) would show neurodegeneration mediated by T cell cytotoxicity and the encephalitides with antibodies against surface antigens would be antibody-mediated and would show less T cell involvement. We found a higher CD8/CD3 ratio and more frequent appositions of granzyme-B(+) cytotoxic T cells to neurons, with associated neuronal loss, in the intracellular antigen-onconeural group (anti-Hu and anti-Ma2 cases) compared to the patients with surface antigens (anti-N-methyl-d-aspartate receptors and anti-voltage-gated potassium channel complex cases). One of the glutamic acid decarboxylase antibody encephalitis cases (intracellular antigen-glutamic acid decarboxylase group) showed multiple appositions of GrB-positive T cells to neurons. Generally, however, the glutamic acid decarboxylase antibody cases showed less intense inflammation and also had relatively low CD8/CD3 ratios compared with the intracellular antigen-onconeural cases. Conversely, we found complement C9neo deposition on neurons associated with acute neuronal cell death in the surface antigen group only, specifically in the voltage-gated potassium channel-complex antibody patients. N-methyl-d-aspartate receptors-antibody cases showed no evidence of antibody and complement-mediated tissue injury and were distinguished from all other encephalitides by the absence of clear neuronal pathology and a low density of inflammatory cells. Although tissue samples varied in location and in the stage of disease, our findings strongly support a central role for T cell-mediated neuronal cytotoxicity in encephalitides with antibodies against intracellular antigens. In voltage-gated potassium channel-complex encephalitis, a subset of the surface antigen antibody encephalitides, an antibody- and complement-mediated immune response appears to be responsible for neuronal loss and cerebral atrophy; the apparent absence of these mechanisms in N-methyl-d-aspartate receptors antibody encephalitis is intriguing and requires further study.

  7. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Gryllus bimaculatus.

    PubMed

    Watanabe, T; Sadamoto, Hitoshi; Aonuma, H

    2011-10-01

    Serotonin (5-HT) modulates various aspects of behaviours such as aggressive behaviour and circadian behaviour in the cricket. To elucidate the molecular basis of the cricket 5-HT system, we identified 5-HT-related genes in the field cricket Gryllus bimaculatus DeGeer. Complementary DNA of tryptophan hydroxylase and phenylalanine-tryptophan hydroxylase, which convert tryptophan into 5-hydroxy-L-tryptophan (5-HTP), and that of aromatic L-amino acid decarboxylase, which converts 5-HTP into 5-HT, were isolated from a cricket brain cDNA library. In addition, four 5-HT receptor genes (5-HT(1A) , 5-HT(1B) , 5-HT(2α) , and 5-HT(7) ) were identified. Expression analysis of the tryptophan hydroxylase gene TRH and phenylalanine-tryptophan hydroxylase gene TPH, which are selectively involved in neuronal and peripheral 5-HT synthesis in Drosophila, suggested that two 5-HT synthesis pathways co-exist in the cricket neuronal tissues. The four 5-HT receptor genes were expressed in various tissues at differential expression levels, suggesting that the 5-HT system is widely distributed in the cricket. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  8. Bioethanol production by heterologous expression of Pdc and AdhII in Streptomyces lividans.

    PubMed

    Lee, Jae Sun; Chi, Won-Jae; Hong, Soon-Kwang; Yang, Ji-Won; Chang, Yong Keun

    2013-07-01

    Two genes from Zymomonas mobilis that are responsible for ethanol production, pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhII), were heterologously expressed in the Gram-positive bacterium Streptomyces lividans TK24. An examination of carbon distribution revealed that a significant portion of carbon metabolism was switched from biomass and organic acid biosynthesis to ethanol production upon the expression of pdc and adhII. The recombinant S. lividans TK24 produced ethanol from glucose with a yield of 23.7% based on the carbohydrate consumed. The recombinant was able to produce ethanol from xylose, L-arabinose, mannose, L-rhamnose, galactose, ribose, and cellobiose with yields of 16.0, 25.6, 21.5, 33.6, 30.6, 14.6, and 33.3%, respectively. Polymeric substances such as starch and xylan were directly converted to ethanol by the recombinant with ethanol yields of 18.9 and 8.8%, respectively. The recombinant S. lividans TK24/Tpet developed in this study is potentially a useful microbial resource for ethanol production from various sources of biomasses, especially microalgae.

  9. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingwei; Kao, Emily; Wang, George

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  10. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone

    DOE PAGES

    Zhang, Jingwei; Kao, Emily; Wang, George; ...

    2016-12-01

    2-Pyrrolidone is a valuable bulk chemical with myriad applications as a solvent, polymer precursor and active pharmaceutical intermediate. A novel 2-pyrrolidone synthase, ORF27, from Streptomyces aizunensis was identified to catalyze the ring closing dehydration of γ-aminobutyrate. ORF27's tendency to aggregate was resolved by expression at low temperature and fusion to the maltose binding protein (MBP). Recombinant Escherichia coli was metabolically engineered for the production of 2-pyrrolidone from glutamate by expressing both the genes encoding GadB, a glutamate decarboxylase, and ORF27. Incorporation of a GadB mutant lacking H465 and T466, GadB_δHT, improved the efficiency of one-pot 2-pyrrolidone biosynthesis in vivo. Whenmore » the recombinant E. coli strain expressing the E. coli GadB_δHT mutant and the ORF27-MBP fusion was cultured in ZYM-5052 medium containing 9. g/L of l-glutamate, 7.7. g/L of l-glutamate was converted to 1.1. g/L of 2-pyrrolidone within 31. h, achieving 25% molar yield from the consumed substrate.« less

  11. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection

    PubMed Central

    Hardbower, Dana M.; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A.; Verriere, Thomas; Lewis, Nuruddeen D.; Chaturvedi, Rupesh; Piazuelo, M. Blanca; Wilson, Keith T.

    2016-01-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2−/− mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2−/− to Nos2−/− mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2−/− and Arg2−/−;Nos2−/− mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2−/− mice demonstrated enhanced M1 macrophage activation, Nos2−/− and Arg2−/−;Nos2−/− mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/ Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2−/−, but not Nos2−/− or Arg2−/−;Nos2−/− mice. Gastric tissues from infected Arg2−/− mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N1-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism. PMID:27074721

  12. Heat Resistance of Histidine Decarboxylase from Gram-Negative Histamine-Producing Bacteria in Seafood.

    PubMed

    Bjornsdottir-Butler, K; Bencsath, F A; McCarthy, S; Benner, R A

    2017-08-01

    Precooking of tuna is a potential critical control point (CCP) in the commercial manufacturing of canned tuna. To assess the efficacy of precooking as a CCP, an understanding of the thermal properties of histamine-producing bacteria (HPB) and their histidine decarboxylase (HDC) enzymes is required. The thermal properties of many HPB have been determined, but the thermal resistances of the HDC enzymes are unknown. The purpose of this study was to determine the D- and z-values of selected HDC enzymes to evaluate the CCP of precooking during the canning process and provide scientific data to support U.S. Food and Drug Administration guidelines. HDC (hdc) genes from three strains each of Morganella morganii, Enterobacter aerogenes, Raoultella planticola, and Photobacterium damselae were cloned, expressed, and purified using the Champion pET Directional TOPO Expression System, pET100 cloning vector, and HisPur Cobalt resin. The heat resistances of all enzymes were compared at 50°C, and the D- and z-values from one strain of each HPB were determined at 50 to 60°C. To evaluate the heat inactivation of HDC enzymes during canned tuna processing, tuna tissue was inoculated with HDCs and heated to 60°C in a water bath set at 65 and 100°C. The D-values for the HDC enzymes from M. morganii, E. aerogenes, R. planticola, and P. damselae ranged from 1.6 to 4.1, 1.6 to 6.3, 1.9 to 4.3, and 1.6 to 2.9 min, respectively, at 50 to 60°C. The z-values for M. morganii, E. aerogenes, R. planticola, and P. damselae were 19.2, 18.0, 22.0, and 13.3°C, respectively. The HDCs from all HPB except E. aerogenes showed no significant activity after being heated to 60°C. The data generated in this study will help refine current guidelines for the thermal destruction of the HDC enzymes.

  13. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    PubMed

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic, and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septotemporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septotemporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18 mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity, and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit-level modifications in middle-age were associated with modest enhancement in contextual fear memory precision, anxiety-like behavior and antidepressant-like behavioral responses. © 2015 Wiley Periodicals, Inc.

  14. Genetic manipulation of the γ-aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate decarboxylase (GAD2) and knockdown of γ-aminobutyric acid transaminase (GABA-T) lead to sustained and high levels of GABA accumulation in rice kernels.

    PubMed

    Shimajiri, Yasuka; Oonishi, Takayuki; Ozaki, Kae; Kainou, Kumiko; Akama, Kazuhito

    2013-06-01

    Gamma-aminobutyric acid (GABA) is a non-protein amino acid commonly present in all organisms. Because cellular levels of GABA in plants are mainly regulated by synthesis (glutamate decarboxylase, GAD) and catabolism (GABA-transaminase, GABA-T), we attempted seed-specific manipulation of the GABA shunt to achieve stable GABA accumulation in rice. A truncated GAD2 sequence, one of five GAD genes, controlled by the glutelin (GluB-1) or rice embryo globulin promoters (REG) and GABA-T-based trigger sequences in RNA interference (RNAi) cassettes controlled by one of these promoters as well, was introduced into rice (cv. Koshihikari) to establish stable transgenic lines under herbicide selection using pyriminobac. T₁ and T₂ generations of rice lines displayed high GABA concentrations (2-100 mg/100 g grain). In analyses of two selected lines from the T₃ generation, there was a strong correlation between GABA level and the expression of truncated GAD2, whereas the inhibitory effect of GABA-T expression was relatively weak. In these two lines both with two T-DNA copies, their starch, amylose, and protein levels were slightly lower than non-transformed cv. Koshihikari. Free amino acid analysis of mature kernels of these lines demonstrated elevated levels of GABA (75-350 mg/100 g polished rice) and also high levels of several amino acids, such as Ala, Ser, and Val. Because these lines of seeds could sustain their GABA content after harvest (up to 6 months), the strategy in this study could lead to the accumulation GABA and for these to be sustained in the edible parts. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    PubMed Central

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    Fluoxetine, a selective serotonin-reuptake inhibitor (SSRI), is known to induce structural rearrangements and changes in synaptic transmission in hippocampal circuitry. In the adult hippocampus, structural changes include neurogenesis, dendritic and axonal plasticity of pyramidal and dentate granule neurons, and dedifferentiation of dentate granule neurons. However, much less is known about how chronic fluoxetine affects these processes along the septo-temporal axis and during the aging process. Importantly, studies documenting the effects of fluoxetine on density and distribution of spines along different dendritic segments of dentate granule neurons and CA1 pyramidal neurons along the septo-temporal axis of hippocampus in adulthood and during aging are conspicuously absent. Here, we use a transgenic mouse line in which mature dentate granule neurons and CA1 pyramidal neurons are genetically labeled with green fluorescent protein (GFP) to investigate the effects of chronic fluoxetine treatment (18mg/kg/day) on input-specific spine remodeling and mossy fiber structural plasticity in the dorsal and ventral hippocampus in adulthood and middle age. In addition, we examine levels of adult hippocampal neurogenesis, maturation state of dentate granule neurons, neuronal activity and glutamic acid decarboxylase-67 expression in response to chronic fluoxetine in adulthood and middle age. Our studies reveal that while chronic fluoxetine fails to augment adult hippocampal neurogenesis in middle age, the middle-aged hippocampus retains high sensitivity to changes in the dentate gyrus (DG) such as dematuration, hypoactivation, and increased glutamic acid decarboxylase 67 (GAD67) expression. Interestingly, the middle-aged hippocampus shows greater sensitivity to fluoxetine-induced input-specific synaptic remodeling than the hippocampus in adulthood with the stratum-oriens of CA1 exhibiting heightened structural plasticity. The input-specific changes and circuit-level modifications in middle-age were associated with modest enhancement in contextual fear memory precision, anxiety-like behavior and antidepressant-like behavioral responses. PMID:25850664

  16. Future of cell and gene therapies for Parkinson's disease.

    PubMed

    Isacson, Ole; Kordower, Jeffrey H

    2008-12-01

    The experimental field of restorative neurology continues to advance with implantation of cells or transfer of genes to treat patients with neurological disease. Both strategies have generated a consensus that demonstrates their capacity for structural and molecular brain modification in the adult brain. However, both approaches have yet to successfully address the complexities to make such novel therapeutic modalities work in the clinic. Prior experimental cell transplantation to patients with PD utilized dissected pieces of fetal midbrain tissue, containing mixtures of cells and neuronal types, as donor cells. Stem cell and progenitor cell biology provide new opportunities for selection and development of large batches of specific therapeutic cells. This may allow for cell composition analysis and dosing to optimize the benefit to an individual patient. The biotechnology used for cell and gene therapy for treatment of neurological disease may eventually be as advanced as today's pharmaceutical drug-related design processes. Current gene therapy phase 1 safety trials for PD include the delivery of a growth factor (neurturin via the glial cell line-derived neurotrophic factor receptor) and a transmitter enzyme (glutamic acid decarboxylase and aromatic acid decarboxylase). Many new insights from cell biological and molecular studies provide opportunities to selectively express or suppress factors relevant to neuroprotection and improved function of neurons involved in PD. Future gene and cell therapies are likely to coexist with classic pharmacological therapies because their use can be tailored to individual patients' underlying disease process and need for neuroprotective or restorative interventions.

  17. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production

    PubMed Central

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-01-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. PMID:25757029

  18. Substrate uptake and protein stability relationship in mammalian histidine decarboxylase.

    PubMed

    Pino-Angeles, A; Morreale, A; Negri, A; Sánchez-Jiménez, F; Moya-García, A A

    2010-01-01

    There is some evidence linking the substrate entrance in the active site of mammalian histidine decarboxylase and an increased stability against proteolytic degradation. In this work, we study the basis of this relationship by means of protein structure network analysis and molecular dynamics simulations. We find that the substrate binding to the active site influences the conformation of a flexible region sensible to proteolytic degradation and observe how formation of the Michaelis-Menten complex increases stability in the conformation of this region. (c) 2009 Wiley-Liss, Inc.

  19. Adenovirus type 5 induces progression of quiescent rat cells into S phase without polyamine accumulation.

    PubMed Central

    Cheetham, B F; Shaw, D C; Bellett, A J

    1982-01-01

    Adenovirus type 5 induces cellular DNA synthesis and thymidine kinase in quiescent rat cells but does not induce ornithine decarboxylase. We now show that unlike serum, adenovirus type 5 fails to induce S-adenosylmethionine decarboxylase or polyamine accumulation. The inhibition by methylglyoxal bis(guanylhydrazone) of the induction of thymidine kinase by adenovirus type 5 is probably unrelated to its effects on polyamine biosynthesis. Thus, induction of cellular thymidine kinase and DNA replication by adenovirus type 5 is uncoupled from polyamine accumulation. PMID:7177112

  20. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    PubMed

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice.

    PubMed

    Kong, Qin; Zhang, Haojun; Zhao, Tingting; Zhang, Weiku; Yan, Meihua; Dong, Xi; Li, Ping

    2016-12-01

    Tangshen formula (TSF), a well-prescribed traditional Chinese formula, has been used in the treatment of diabetic nephropathy. However, whether TSF ameliorates dyslipidemia and liver injury associated with diabetes remains unclear. In this study, we examined the effects of TSF on lipid profiles and hepatic steatosis in db/db mice. For this purpose, 8‑week-old db/db mice were treated with TSF or saline for 12 weeks via gavage and db/m mice were used as controls. Body weight and blood glucose levels were monitored weekly and bi-weekly, respectively. Blood samples were obtained for the analysis of lipids and enzymes related to hepatic function, and liver tissues were analyzed by histology, immunohistochemistry and molecular examination. The results revealed that TSF markedly reduced body weight, liver index [liver/body weight (LW/BW)] and improved lipid profiles, hepatic function and steatosis in db/db mice. TSF induced the phosphoralation of AMP-activated protein kinase and inhibited the activity of sterol regulatory element-binding protein 1 together with the inhibition of the expression of genes involved in de novo lipogenesis (DNL) and gluconeogenesis, such as fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), stearoyl CoA desaturase 1 (SCD1), glucose-6-phosphatase (G6pc) and phosphoenolpyruvate carboxykinase 1 (Pck1). Additionally, the silent mating type information regulation 2 homolog 1 (Sirt1)/peroxisome proliferator-activated receptor α (PPARα)/malonyl-CoA decarboxylase (MLYCD) cascade was potently activated by TSF in the liver and skeletal muscle of db/db mice, which led to enhanced fatty acid oxidation. These findings demonstrated that TSF attenuated hepatic fat accumulation and steatosis in db/db mice by inhibiting lipogenesis and augmenting fatty acid oxidation.

  2. The gamma-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, W; Brune, D; Vermaas, WFJ

    2014-07-16

    A traditional 2-oxoglutarate dehydrogenase complex is missing in the cyanobacterial tricarboxylic acid cycle. To determine pathways that convert 2-oxoglutarate into succinate in the cyanobacterium Synechocystis sp. PCC 6803, a series of mutant strains, Delta sll1981, Delta slr0370, Delta slr1022 and combinations thereof, deficient in 2-oxoglutarate decarboxylase (Sll1981), succinate semialdehyde dehydrogenase (Slr0370), and/or in gamma-aminobutyrate metabolism (Slr1022) were constructed. Like in Pseudomonas aeruginosa, N-acetylornithine aminotransferase, encoded by slr1022, was shown to also function as gamma-aminobutyrate aminotransferase, catalysing gamma-aminobutyrate conversion to succinic semialdehyde. As succinic semialdehyde dehydrogenase converts succinic semialdehyde to succinate, an intact gamma-aminobutyrate shunt is present in Synechocystis. The Deltamore » sll1981 strain, lacking 2-oxoglutarate decarboxylase, exhibited a succinate level that was 60% of that in wild type. However, the succinate level in the Delta slr1022 and Delta slr0370 strains and the Delta sll1981/Delta slr1022 and Delta sll1981/Delta slr0370 double mutants was reduced to 20-40% of that in wild type, suggesting that the gamma-aminobutyrate shunt has a larger impact on metabolite flux to succinate than the pathway via 2-oxoglutarate decarboxylase. C-13-stable isotope analysis indicated that the gamma-aminobutyrate shunt catalysed conversion of glutamate to succinate. Independent of the 2-oxoglutarate decarboxylase bypass, the gamma-aminobutyrate shunt is a major contributor to flux from 2-oxoglutarate and glutamate to succinate in Synechocystis sp. PCC 6803.« less

  3. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase.

    PubMed

    Tabor, C W; Tabor, H

    1987-11-25

    We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).

  4. Identification of a second PAD1 in Brettanomyces bruxellensis LAMAP2480.

    PubMed

    González, Camila; Godoy, Liliana; Ganga, Ma Angélica

    2017-02-01

    Volatile phenols are aromatic compounds produced by some yeasts of the genus Brettanomyces as defense against the toxicity of hydroxycinnamic acids (p-coumaric acid, ferulic acid and caffeic acid). The origin of these compounds in winemaking involves the sequential action of two enzymes: coumarate decarboxylase and vinylphenol reductase. The first one converts hydroxycinnamic acids into hydroxystyrenes, which are then reduced to ethyl derivatives by vinylphenol reductase. Volatile phenols derived from p-coumaric acid (4-vinylphenol and 4-ethylphenol) have been described as the major contributors to self-defeating aromas associated with stable, gouache, wet mouse, etc., which generates large economic losses in the wine industry. The gene responsible for the production of 4-vinylphenol from p-coumaric acid has been identified as PAD1, which encodes a phenylacrylic acid decarboxylase. PAD1 has been described for many species, among them Candida albicans, Candida dubliniensis, Debaryomyces hansenii and Pichia anomala. In Brettanomyces bruxellensis LAMAP2480, a 666 bp reading frame (DbPAD) encodes a coumarate decarboxylase. Recent studies have reported the existence of a new reading frame belonging to DbPAD called DbPAD2 of 531 bp, which could encode a protein with similar enzymatic activity to PAD1. The present study confirmed that the transformation of Saccharomyces cerevisiae strain BY4722 with reading frame DbPAD2 under the control of the B. bruxellensis ACT1 promoter, encodes an enzyme with coumarate decarboxylase activity. This work has provided deeper insight into the origin of aroma defects in wine due to contamination by Brettanomyces spp.

  5. Structures of the N47A and E109Q mutant proteins of pyruvoyl-dependent arginine decarboxylase from Methanococcus jannaschii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soriano, Erika V.; McCloskey, Diane E.; Kinsland, Cynthia

    2008-04-01

    The crystal structures of two arginine decarboxylase mutant proteins provide insights into the mechanisms of pyruvoyl-group formation and the decarboxylation reaction. Pyruvoyl-dependent arginine decarboxylase (PvlArgDC) catalyzes the first step of the polyamine-biosynthetic pathway in plants and some archaebacteria. The pyruvoyl group of PvlArgDC is generated by an internal autoserinolysis reaction at an absolutely conserved serine residue in the proenzyme, resulting in two polypeptide chains. Based on the native structure of PvlArgDC from Methanococcus jannaschii, the conserved residues Asn47 and Glu109 were proposed to be involved in the decarboxylation and autoprocessing reactions. N47A and E109Q mutant proteins were prepared and themore » three-dimensional structure of each protein was determined at 2.0 Å resolution. The N47A and E109Q mutant proteins showed reduced decarboxylation activity compared with the wild-type PvlArgDC. These residues may also be important for the autoprocessing reaction, which utilizes a mechanism similar to that of the decarboxylation reaction.« less

  6. Crystallization and preliminary X-ray analysis of the inducible lysine decarboxylase from Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexopoulos, Eftichia; Department of Medical Biophysics, University of Toronto, Division of Cancer Genomics and Proteomics, Ontario Cancer Institute, Toronto Medical Discovery Tower, 101 College Street, Toronto, Ontario M5G 1L7; Kanjee, Usheer

    2008-08-01

    The structure of the decameric inducible lysine decarboxylase from E. coli was determined by SIRAS using a hexatantalum dodecabromide (Ta{sub 6}Br{sub 12}{sup 2+}) derivative. Model building and refinement are under way. The decameric inducible lysine decarboxylase (LdcI) from Escherichia coli has been crystallized in space groups C2 and C222{sub 1}; the Ta{sub 6}Br{sub 12}{sup 2+} cluster was used to derivatize the C2 crystals. The method of single isomorphous replacement with anomalous scattering (SIRAS) as implemented in SHELXD was used to solve the Ta{sub 6}Br{sub 12}{sup 2+}-derivatized structure to 5 Å resolution. Many of the Ta{sub 6}Br{sub 12}{sup 2+}-binding sites hadmore » twofold and fivefold noncrystallographic symmetry. Taking advantage of this feature, phase modification was performed in DM. The electron-density map of LdcI displays many features in agreement with the low-resolution negative-stain electron-density map [Snider et al. (2006 ▶), J. Biol. Chem.281, 1532–1546].« less

  7. The catalytic activity for ginkgolic acid biodegradation, homology modeling and molecular dynamic simulation of salicylic acid decarboxylase.

    PubMed

    Hu, Yanying; Hua, Qingyuan; Sun, Guojuan; Shi, Kunpeng; Zhang, Huitu; Zhao, Kai; Jia, Shiru; Dai, Yujie; Wu, Qingli

    2018-05-02

    The toxic ginkgolic acids are the main safety concern for the application of Ginkgo biloba. In this study, the degradation ability of salicylic acid decarboxylase (SDC) for ginkgolic acids was examined using ginkgolic acid C15:1 as a substrate. The results indicated that the content of ginkgolic acid C15:1 in Ginkgo biloba seeds was significantly decreased after 5 h treatment with SDC at 40 °Cand pH 5.5. In order to explore the structure of SDC and the interaction between SDC and substrates, homology modeling, molecular docking and molecular dynamics were performed. The results showed that SDC might also have a catalytic active center containing a Zn 2+ . Compared with the template structure of 2,6-dihydroxybenzoate decarboxylase, the residues surrounding the binding pocket, His10, Phe23 and Phe290, were replaced by Ala10, Tyr27 and Tyr301 in the homology constructed structure of SDC, respectively. These differences may significantly affect the substrates adaptability of SDC for salicylic acid derivatives. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Enchancement of Gamma-Aminobutyric Acid Production by Co-Localization of Neurospora crassa OR74A Glutamate Decarboxylase with Escherichia coli GABA Transporter Via Synthetic Scaffold Complex.

    PubMed

    Somasundaram, Sivachandiran; Maruthamuthu, Murali Kannan; Ganesh, Irisappan; Eom, Gyeong Tae; Hong, Soon Ho

    2017-09-28

    Gamma-aminobutyric acid is a precursor of nylon-4, which is a promising heat-resistant biopolymer. GABA can be produced from the decarboxylation of glutamate by glutamate decarboxylase. In this study, a synthetic scaffold complex strategy was employed involving the Neurospora crassa glutamate decarboxylase (GadB) and Escherichia coli GABA antiporter (GadC) to improve GABA production. To construct the complex, the SH3 domain was attached to the N. crassa GadB, and the SH3 ligand was attached to the N-terminus, middle, and C-terminus of E. coli GadC. In the C-terminus model, 5.8 g/l of GABA concentration was obtained from 10 g/l glutamate. When a competing pathway engineered strain was used, the final GABA concentration was further increased to 5.94 g/l, which corresponds to 97.5% of GABA yield. With the introduction of the scaffold complex, the GABA productivity increased by 2.9 folds during the initial culture period.

  9. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

    PubMed

    Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael

    2016-09-19

    The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Polyamine metabolism in the kidneys of castrated and testosterone-treated mice after administration of methylglyoxal bis(guanylhydrazone).

    PubMed

    Henningsson, S; Persson, L; Rosengren, E

    1979-02-01

    The effects of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) activity were studied in the mouse kidney stimulated to growth by testosterone administration. The drug was found a potent inhibitor of the enzyme in vitrol Administration of methylglyoxal bis(guanylhydrazone) in vivo resulted in a transient inhibition followed by a strong enhancement of the enzyme activity. Dialysis of the kidney extract, to remove remaining methylglyoxal bis(guanylhydrazone), revealed a great and rapid increase in the activity of S-adenosyl-L-methionine decarboxylase. Injections of testosterone to castrated mice resulted in a marked increase in kidney weight and an accumulation of renal putrescine, spermidine and spermine. These effects of testosterone could not be blocked by simultaneous injections of methylglyoxal bis(guanylhydrazone). It appears that due to secondary effects by which the inhibition of methylglyoxal bis(guanylhydrazone) on S-adenosyl-L-methionine decarboxylase activity is circumvented the inhibitor seems to be of uncertain value in attempts to decrease selectively the in vivo levels of polyamines.

  11. Mucuna pruriens in Parkinson Disease: A Kinetic-Dynamic Comparison With Levodopa Standard Formulations.

    PubMed

    Contin, Manuela; Lopane, Giovanna; Passini, Andrea; Poli, Ferruccio; Iannello, Carmelina; Guarino, Maria

    2015-01-01

    We compared levodopa (LD) kinetic-dynamic profile of a dose of LD/aromatic amino acid decarboxylase peripheral inhibitors versus a nominally equivalent dose of a commercial Mucuna pruriens (Mucuna) seeds extract in 2 patients with Parkinson disease chronically taking LD standard combined with self-prescribed Mucuna. Patients were challenged with a fasting morning dose of 100 mg LD/25 mg carbidopa (patient 1) or benserazide (patient 2) versus 100 mg LD from Mucuna capsules in 2 different sessions, after a 12-hour standard LD formulations' washout. They underwent kinetic-dynamic LD monitoring based on LD dose intake and simultaneous serial assessments of plasma drug concentrations and motor test performances. Quantitative analysis of LD in Mucuna capsules was also performed. Levodopa bioavailability was markedly lower after Mucuna administration compared with LD standard formulations: in patient 1, peak plasma LD concentration (Cmax) decreased from 2.0 to 1.0 mg/L and the area under the plasma concentration time curve from 137 to 33.6 mg/L per minute; in patient 2, Cmax was 0.7 mg/L after LD/benserazide and nearly undetectable after Mucuna. In patient 1, impaired LD bioavailability from Mucuna resulted in reduced duration and overall extent of drug response compared with LD/carbidopa. In patient 2, no significant subacute LD motor response was observed in either condition. Quantitative analysis of Mucuna formulation confirmed the 100 mg LD content for the utilized capsules. Our results show an impaired LD bioavailability from Mucuna preparation, as expected by the lacking aromatic amino acid decarboxylase inhibitors coadministration, which might explain the suggested lower dyskinetic potential of Mucuna compared with standard LD formulations.

  12. Coordinated gene expression for pheromone biosynthesis in the pine engraver beetle, Ips pini (Coleoptera: Scolytidae)

    NASA Astrophysics Data System (ADS)

    Keeling, Christopher I.; Blomquist, Gary J.; Tittiger, Claus

    In several pine bark beetle species, phloem feeding induces aggregation pheromone production to coordinate a mass attack on the host tree. Male pine engraver beetles, Ips pini (Say) (Coleoptera: Scolytidae), produce the monoterpenoid pheromone component ipsdienol de novo via the mevalonate pathway in the anterior midgut upon feeding. To understand how pheromone production is regulated in this tissue, we used quantitative real-time PCR to examine feeding-induced changes in gene expression of seven mevalonate pathway genes: acetoacetyl-coenzyme A thiolase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate 5-diphosphate decarboxylase, isopentenyl-diphosphate isomerase, geranyl-diphosphate synthase (GPPS), and farnesyl-diphosphate synthase (FPPS). In males, expression of all these genes significantly increased upon feeding. In females, the expression of the early mevalonate pathway genes (up to and including the isomerase) increased significantly, but the expression of the later genes (GPPS and FPPS) was unaffected or decreased upon feeding. Thus, feeding coordinately regulates expression of the mevalonate pathway genes necessary for pheromone biosynthesis in male, but not female, midguts. Furthermore, basal mRNA levels were 5- to 41-fold more abundant in male midguts compared to female midguts. This is the first report of coordinated regulation of mevalonate pathway genes in an invertebrate model consistent with their sex-specific role in de novo pheromone biosynthesis.

  13. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening

    PubMed Central

    Abrahams, Garth L.; Kumar, Anuradha; Savvi, Suzana; Hung, Alvin W.; Wen, Shijun; Abell, Chris; Barry, Clifton E.; Sherman, David R.; Boshoff, Helena I.M.; Mizrahi, Valerie

    2012-01-01

    SUMMARY Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery but subsequent target elucidation often proves difficult. Conditional mutants that under-express essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA) and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered the mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery. PMID:22840772

  14. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum.

    PubMed

    Jojima, Toru; Noburyu, Ryoji; Sasaki, Miho; Tajima, Takahisa; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-02-01

    Recombinant Corynebacterium glutamicum harboring genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase (adhB) can produce ethanol under oxygen deprivation. We investigated the effects of elevating the expression levels of glycolytic genes, as well as pdc and adhB, on ethanol production. Overexpression of four glycolytic genes (pgi, pfkA, gapA, and pyk) in C. glutamicum significantly increased the rate of ethanol production. Overexpression of tpi, encoding triosephosphate isomerase, further enhanced productivity. Elevated expression of pdc and adhB increased ethanol yield, but not the rate of production. Fed-batch fermentation using an optimized strain resulted in ethanol production of 119 g/L from 245 g/L glucose with a yield of 95% of the theoretical maximum. Further metabolic engineering, including integration of the genes for xylose and arabinose metabolism, enabled consumption of glucose, xylose, and arabinose, and ethanol production (83 g/L) at a yield of 90 %. This study demonstrated that C. glutamicum has significant potential for the production of cellulosic ethanol.

  15. Neuronal nicotinic acetylcholine receptor subunits in autism: an immunohistochemical investigation in the thalamus.

    PubMed

    Ray, M A; Graham, A J; Lee, M; Perry, R H; Court, J A; Perry, E K

    2005-08-01

    The cholinergic system has been implicated in the development of autism on the basis of neuronal nicotinic acetylcholine receptor (nAChR) losses in cerebral and cerebellar cortex. In the present study, the first to explore nAChRs in the thalamus in autism, alpha4, alpha7 and beta2 nAChR subunit expression in thalamic nuclei of adult individuals with autism (n=3) and age-matched control cases (n=3) was investigated using immunochemical methods. Loss of alpha7- and beta2- (but not alpha4-) immunoreactive neurons occurred in the paraventricular nucleus (PV) and nucleus reuniens in autism. Preliminary results indicated glutamic acid decarboxylase immunoreactivity occurred at a low level in PV, co-expressed with alpha7 in normal and autistic cases and was not reduced in autism. This suggested loss of neuronal alpha7 in autism is not caused by loss of GABAergic neurons. These findings indicate nicotinic abnormalities that occur in the thalamus in autism which may contribute to sensory or attentional deficits.

  16. A novel analog of olanzapine linked to sarcosinyl moiety (PGW5) demonstrates high efficacy and good safety profile in mouse models of schizophrenia.

    PubMed

    Gil-Ad, Irit; Portnoy, Moshe; Tarasenko, Igor; Bidder, Miri; Kramer, Maria; Taler, Michal; Weizman, Abraham

    2014-03-01

    Schizophrenia is a chronic mental disorder related to hypo-functioning of glutamatergic neurotransmission. N-methyl-D-aspartate-receptor (NMDA-R) positive modulators were reported to reduce schizophrenia symptoms. However, their efficacy is low and inconsistent. We developed a novel antipsychotic possessing an olanzapine moiety linked to the positive modulator of glutamate NMDA-R sarcosine (PGW5) and characterized the pharmacodynamic properties of the novel molecule in-vivo using MK-801 and in-vitro using receptor binding analysis. We investigated the pharmacological activity of PGW5 (olanzapine linked to sarcosinyl moiety) in male mice (BALB/c or C57BL). In an open field test, up to 50mg/kg PGW5 did not affect motility while higher doses were sedative. PGW5 (25-50mg/kg po) antagonized MK-801 (0.15 mg/kg ip) and amphetamine-induced (5mg/kg ip) hyperactivity. PGW5 (25mg/kg po/d) treatment for 15 or 22 days exhibited antidepressant and anxiolytic activity in mice. Moreover, PGW5, but not olanzapine, attenuated phencyclidine (PCP)-induced deficits of social preference in mice and promoted the expression of brain derived neurotrophic factor (BDNF) in the hippocampus and the frontal cortex and glutamic acid decarboxylase (GAD67) in the hippocampus. Mice treated with PGW5 (25 and 50mg/kg/d) for 28 days did not show toxic effects in terms of weight gain and blood-chemistry analysis. PGW5 is a novel and safe antipsychotic, efficacious against schizophrenia-like positive and negative symptoms at nonsedative doses. The drug shows anxiolytic and antidepressant activity, and improves impaired social performance in phencyclidine (PCP) treated mice. The mechanism underlying its activity seems to involve potentiation of NMDA receptor as well as stimulation of brain BDNF and GAD67 expression. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  17. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy.

    PubMed

    Muthusamy, Mylrajan; Burrell, Matthew R; Thorneley, Roger N F; Bornemann, Stephen

    2006-09-05

    Oxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate. The K(m) for oxalate determined using this assay was 3.8-fold lower than that estimated from a stopped assay. The infrared assay was also capable of distinguishing between oxalate decarboxylase and oxalate oxidase activity by the lack of formate being produced by the latter. In D(2)O, the product with oxalate decarboxylase was C-deuterio formate rather than formate, showing that the source of the hydron was solvent as expected. Large solvent deuterium kinetic isotope effects were observed on V(max) (7.1 +/- 0.3), K(m) for oxalate (3.9 +/- 0.9), and k(cat)/K(m) (1.8 +/- 0.4) indicative of a proton transfer event during a rate-limiting step. Semiempirical quantum mechanical calculations on the stability of formate-derived species gave an indication of the stability and nature of a likely enzyme-bound formyl radical catalytic intermediate. The capability of the enzyme to bind formate under conditions in which the enzyme is known to be active was determined by electron paramagnetic resonance. However, no enzyme-catalyzed exchange of the C-hydron of formate was observed using the infrared assay, suggesting that a formyl radical intermediate is not accessible in the reverse reaction. This restricts the formation of potentially harmful radical intermediates to the forward reaction.

  18. Production of biogenic amines by lactic acid bacteria and enterobacteria isolated from fresh pork sausages packaged in different atmospheres and kept under refrigeration.

    PubMed

    Curiel, J A; Ruiz-Capillas, C; de Las Rivas, B; Carrascosa, A V; Jiménez-Colmenero, F; Muñoz, R

    2011-07-01

    The occurrence of in vitro amino acid activity in bacterial strains associated with fresh pork sausages packaged in different atmospheres and kept in refrigeration was studied. The presence of biogenic amines in decarboxylase broth was confirmed by ion-exchange chromatography and by the presence of the corresponding decarboxylase genes by PCR. From the 93 lactic acid bacteria and 100 enterobacteria strains analysed, the decarboxylase medium underestimates the number of biogenic amine-producer strains. 28% of the lactic acid bacteria produced tyramine and presented the tdc gene. All the tyramine-producer strains were molecularly identified as Carnobacterium divergens. Differences on the relative abundance of C. divergens were observed among the different packaging atmospheres assayed. After 28 days of storage, the presence of argon seems to inhibit C. divergens growth, while packing under vacuum seems to favour it. Among enterobacteria, putrescine was the amine more frequently produced (87%), followed by cadaverine (85%); agmatine and tyramine were only produced by 13 and 1%, respectively, of the strains analysed. Packing under vacuum or in an atmosphere containing nitrogen seems to inhibit the growth of enterobacteria which produce simultaneously putrescine, cadaverine, and agmatine. Contrarily, over-wrapping or packing in an atmosphere containing argon seems to favour the growth of agmatine producer-enterobacteria. The production of putrescine and cadaverine was associated with the presence of the corresponding amino acid decarboxylase genes. The biogenic amine-producer strains were included in a wide range of enterobacterial species, including Kluyvera intermedia, Enterobacter aerogenes, Yersinia kristensenii, Serratia grimesii, Serratia ficaria, Yersinia rodhei, Providencia vermicola and Obesumbacterium proteus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway.

    PubMed

    Nakada, Yuji; Itoh, Yoshifumi

    2003-03-01

    Putrescine can be synthesized either directly from ornithine by ornithine decarboxylase (ODC; the speC product) or indirectly from arginine via arginine decarboxylase (ADC; the speA product). The authors identified the speA and speC genes in Pseudomonas aeruginosa PAO1. The activities of the two decarboxylases were similar and each enzyme alone appeared to direct sufficient formation of the polyamine for normal growth. A mutant defective in both speA and speC was a putrescine auxotroph. In this strain, agmatine deiminase (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), which were initially identified as the catabolic enzymes of agmatine, biosynthetically convert agmatine to putrescine in the ADC pathway: a double mutant of aguAB and speC was a putrescine auxotroph. AguA was purified as a homodimer of 43 kDa subunits and AguB as a homohexamer of 33 kDa subunits. AguA specifically deiminated agmatine with K(m) and K(cat) values of 0.6 mM and 4.2 s(-1), respectively. AguB was specific to N-carbamoylputrescine and the K(m) and K(cat) values of the enzyme for the substrate were 0.5 mM and 3.3 s(-1), respectively. Whereas AguA has no structural relationship to any known C-N hydrolases, AguB is a protein of the nitrilase family that performs thiol-assisted catalysis. Inhibition by SH reagents and the conserved cysteine residue in AguA and its homologues suggested that this enzyme is also involved in thiol-mediated catalysis.

  20. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    NASA Astrophysics Data System (ADS)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  1. Putrescine biosynthesis in mammalian tissues.

    PubMed Central

    Coleman, Catherine S; Hu, Guirong; Pegg, Anthony E

    2004-01-01

    L-ornithine decarboxylase provides de novo putrescine biosynthesis in mammals. Alternative pathways to generate putrescine that involve ADC (L-arginine decarboxylase) occur in non-mammalian organisms. It has been suggested that an ADC-mediated pathway may generate putrescine via agmatine in mammalian tissues. Published evidence for a mammalian ADC is based on (i) assays using mitochondrial extracts showing production of 14CO2 from [1-14C]arginine and (ii) cloned cDNA sequences that have been claimed to represent ADC. We have reinvestigated this evidence and were unable to find any evidence supporting a mammalian ADC. Mitochondrial extracts prepared from freshly isolated rodent liver and kidney using a metrizamide/Percoll density gradient were assayed for ADC activity using L-[U-14C]-arginine in the presence or absence of arginine metabolic pathway inhibitors. Although 14CO2 was produced in substantial amounts, no labelled agmatine or putrescine was detected. [14C]Agmatine added to liver extracts was not degraded significantly indicating that any agmatine derived from a putative ADC activity was not lost due to further metabolism. Extensive searches of current genome databases using non-mammalian ADC sequences did not identify a viable candidate ADC gene. One of the putative mammalian ADC sequences appears to be derived from bacteria and the other lacks several residues that are essential for decarboxylase activity. These results indicate that 14CO2 release from [1-14C]arginine is not adequate evidence for a mammalian ADC. Although agmatine is a known constituent of mammalian cells, it can be transported from the diet. Therefore L-ornithine decarboxylase remains the only established route for de novo putrescine biosynthesis in mammals. PMID:14763899

  2. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    PubMed Central

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-01-01

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in combination with difluoromethylornithine or related inhibitors of ornithine decarboxylase. PMID:6433883

  3. Glyoxal bis(guanylhydrazone) as an inhibitor of polyamine biosynthesis in tumour cells.

    PubMed

    Seppänen, P; Fagerström, R; Alhonen-Hongisto, L; Elo, H; Lumme, P; Jänne, J

    1984-07-15

    Glyoxal bis(guanylhydrazone), the parent compound of methylglyoxal bis(guanylhydrazone), was synthesized and tested for its ability to inhibit the biosynthesis of polyamines. It was found to be a powerful competitive inhibitor of adenosylmethionine decarboxylase (EC 4.1.1.50), yet the lack of the methyl group at the glyoxal portion increased the apparent Ki value for the enzyme by about 30-fold in comparison with methylglyoxal bis(guanylhydrazone). Glyoxal bis(guanylhydrazone) inhibited diamine oxidase (EC 1.4.3.6) activity as effectively as did methylglyoxal bis(guanylhydrazone). The cellular accumulation curves of glyoxal bis(guanylhydrazone) in L1210 cells were practically superimposable with those of methylglyoxal bis(guanylhydrazone), and the uptake of both compounds was distinctly stimulated by a prior treatment with 2-difluoromethylornithine. The drug decreased the concentration of spermidine in a dose-dependent manner and, in contrast with methylglyoxal bis(guanylhydrazone), without a concomitant accumulation of putrescine. The fact that putrescine concentrations were decreased in cells exposed to glyoxal bis(guanylhydrazone) was, at least in part, attributable to an inhibition of ornithine decarboxylase (EC 4.1.1.17) activity in cells treated with the compound. Under these experimental conditions equivalent concentrations of methylglyoxal bis(guanylhydrazone) [1,1'-[(methylethanediylidine)dinitrilo]diguanidine] elicited large increases in the enzyme activity. When combined with difluoromethylornithine, glyoxal bis(guanylhydrazone) potentiated the growth-inhibitory effect of that drug. Taking into consideration the proven anti-leukaemic activity of glyoxal bis(guanylhydrazone), its effectiveness to inhibit spermidine biosynthesis (without raising the concentration of putrescine) as well as its suitability for combined use with inhibitors of ornithine decarboxylase, this drug is apparently worthy of further testing in tumour-bearing animals, especially in combination with difluoromethylornithine or related inhibitors of ornithine decarboxylase.

  4. Next-generation sequencing (NGS) transcriptomes reveal association of multiple genes and pathways contributing to secondary metabolites accumulation in tuberous roots of Aconitum heterophyllum Wall.

    PubMed

    Pal, Tarun; Malhotra, Nikhil; Chanumolu, Sree Krishna; Chauhan, Rajinder Singh

    2015-07-01

    The transcriptomes of Aconitum heterophyllum were assembled and characterized for the first time to decipher molecular components contributing to biosynthesis and accumulation of metabolites in tuberous roots. Aconitum heterophyllum Wall., popularly known as Atis, is a high-value medicinal herb of North-Western Himalayas. No information exists as of today on genetic factors contributing to the biosynthesis of secondary metabolites accumulating in tuberous roots, thereby, limiting genetic interventions towards genetic improvement of A. heterophyllum. Illumina paired-end sequencing followed by de novo assembly yielded 75,548 transcripts for root transcriptome and 39,100 transcripts for shoot transcriptome with minimum length of 200 bp. Biological role analysis of root versus shoot transcriptomes assigned 27,596 and 16,604 root transcripts; 12,340 and 9398 shoot transcripts into gene ontology and clusters of orthologous group, respectively. KEGG pathway mapping assigned 37 and 31 transcripts onto starch-sucrose metabolism while 329 and 341 KEGG orthologies associated with transcripts were found to be involved in biosynthesis of various secondary metabolites for root and shoot transcriptomes, respectively. In silico expression profiling of the mevalonate/2-C-methyl-D-erythritol 4-phosphate (non-mevalonate) pathway genes for aconites biosynthesis revealed 4 genes HMGR (3-hydroxy-3-methylglutaryl-CoA reductase), MVK (mevalonate kinase), MVDD (mevalonate diphosphate decarboxylase) and HDS (1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase) with higher expression in root transcriptome compared to shoot transcriptome suggesting their key role in biosynthesis of aconite alkaloids. Five genes, GMPase (geranyl diphosphate mannose pyrophosphorylase), SHAGGY, RBX1 (RING-box protein 1), SRF receptor kinases and β-amylase, implicated in tuberous root formation in other plant species showed higher levels of expression in tuberous roots compared to shoots. A total of 15,487 transcription factors belonging to bHLH, MYB, bZIP families and 399 ABC transporters which regulate biosynthesis and accumulation of bioactive compounds were identified in root and shoot transcriptomes. The expression of 5 ABC transporters involved in tuberous root development was validated by quantitative PCR analysis. Network connectivity diagrams were drawn for starch-sucrose metabolism and isoquinoline alkaloid biosynthesis associated with tuberous root growth and secondary metabolism, respectively, in root transcriptome of A. heterophyllum. The current endeavor will be of practical importance in planning a suitable genetic intervention strategy for the improvement of A. heterophyllum.

  5. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger

    PubMed Central

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2017-01-01

    ABSTRACT The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, Pgas, which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger, an excellent platform for the production of organic acids, and we found that the promoter Pgas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein (sGFP) was successfully expressed by Pgas at pH 2.0, verifying the results of the transcriptional analysis. Next, Pgas was used to express the cis-aconitate decarboxylase (cad) gene of Aspergillus terreus in A. niger, allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that Pgas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter Pgas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. PMID:28087530

  6. Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model

    PubMed Central

    Walker, Angela K.; Park, Won-Mee; Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.

    2013-01-01

    Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells. PMID:23555941

  7. Overexpression and optimization of glutamate decarboxylase in Lactobacillus plantarum Taj-Apis362 for high gamma-aminobutyric acid production.

    PubMed

    Tajabadi, Naser; Baradaran, Ali; Ebrahimpour, Afshin; Rahim, Raha A; Bakar, Fatimah A; Manap, Mohd Yazid A; Mohammed, Abdulkarim S; Saari, Nazamid

    2015-07-01

    Gamma-aminobutyric acid (GABA) is an important bioactive compound biosynthesized by microorganisms through decarboxylation of glutamate by glutamate decarboxylase (GAD). In this study, a full-length GAD gene was obtained by cloning the template deoxyribonucleic acid to pTZ57R/T vector. The open reading frame of the GAD gene showed the cloned gene was composed of 1410 nucleotides and encoded a 469 amino acids protein. To improve the GABA-production, the GAD gene was cloned into pMG36e-LbGAD, and then expressed in Lactobacillus plantarum Taj-Apis362 cells. The overexpression was confirmed by SDS-PAGE and GAD activity, showing a 53 KDa protein with the enzyme activity increased by sevenfold compared with the original GAD activity. The optimal fermentation conditions for GABA production established using response surface methodology were at glutamic acid concentration of 497.973 mM, temperature 36°C, pH 5.31 and time 60 h. Under the conditions, maximum GABA concentration obtained (11.09 mM) was comparable with the predicted value by the model at 11.23 mM. To our knowledge, this is the first report of successful cloning (clone-back) and overexpression of the LbGAD gene from L. plantarum to L. plantarum cells. The recombinant Lactobacillus could be used as a starter culture for direct incorporation into a food system during fermentation for production of GABA-rich products. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  8. Genes in the GABA pathway increase in the lateral thalamus of Sprague Dawley rats during the proestrus/estrus phase

    PubMed Central

    Umorin, Mikhail; Stinson, Crystal; Bellinger, Larry L.; Kramer, Phillip

    2015-01-01

    Pain can vary over the estrous cycle as a result of changes in estradiol concentration but the mechanism causing this variation is unclear. Because the thalamus is important in pain control, gene expression in the lateral thalamus (ventral posteromedial, ventral posterolateral, reticular thalamic nuclei) was screened at different phases of the estrous cycle. Gene expression changes in Sprague-Dawley rats were further analyzed by real-time PCR and ELISA and plasma estradiol levels were measured by RIAs at different phases of the estrous cycle. Our results indicated that both the RNA and protein expression of glutamate decarboxylase 1 and 2 (GAD1, GAD2), GABA(A) receptor-associated protein like 1 (GABARAPL1) and vesicular GABA transporter (VGAT) significantly increased in the lateral thalamus when plasma estradiol levels were elevated. Estradiol levels were elevated during the proestrus and estrus phases of the estrous cycle. Estrogen receptor α (ERα) was observed to be co-localized in thalamic cells and thalamic infusion of an ERα antagonist significantly reduced GAD1 and VGAT transcript. GAD1, GAD2 GABARAPL1 and VGAT have been shown to effect neuronal responses suggesting that modulation of pain during the estrous cycle can be dependent, in part, through estradiol induced changes in thalamic gene expression. PMID:26388520

  9. The neonatal ventral hippocampal lesion model of schizophrenia: effects on dopamine and GABA mRNA markers in the rat midbrain.

    PubMed

    Lipska, Barbara K; Lerman, Daniel N; Khaing, Zin Z; Weinberger, Daniel R

    2003-12-01

    The neonatal ventral hippocampal lesion in the rat has been used as a model of schizophrenia, a human disorder associated with changes in markers of dopamine and gamma-aminobutyric acid (GABA) circuits in various regions of the brain. We investigated whether alterations in mRNA markers related to the activity of midbrain dopaminergic and GABAergic neurons are associated with this model. We used in situ hybridization histochemistry to assess expression of mRNAs for dopamine transporter (DAT), tyrosine hydroxylase (TH) and glutamate decarboxylase-67 (GAD67) in the midbrain of adult rats with neonatal and adult ibotenic acid lesions of the ventral hippocampus. Neonatally lesioned rats showed in adulthood significantly reduced expression of DAT mRNA in the substantia nigra and the ventral tegmental area but no changes in the expression of TH and GAD67 mRNAs in these midbrain regions. Adult lesioned rats showed no changes in the expression of any of these genes. As the neonatal ventral hippocampal lesion reproduces many aspects of schizophrenia and is used as an animal model of this disorder, these results suggest that the reduction in DAT mRNA could result from developmental neuropathology in the ventral hippocampus and may thus represent a molecular substrate of the disease process.

  10. Mapping gene expression patterns during myeloid differentiation using the EML hematopoietic progenitor cell line.

    PubMed

    Du, Yang; Campbell, Janee L; Nalbant, Demet; Youn, Hyewon; Bass, Ann C Hughes; Cobos, Everardo; Tsai, Schickwann; Keller, Jonathan R; Williams, Simon C

    2002-07-01

    The detailed examination of the molecular events that control the early stages of myeloid differentiation has been hampered by the relative scarcity of hematopoietic stem cells and the lack of suitable cell line models. In this study, we examined the expression of several myeloid and nonmyeloid genes in the murine EML hematopoietic stem cell line. Expression patterns for 19 different genes were examined by Northern blotting and RT-PCR in RNA samples from EML, a variety of other immortalized cell lines, and purified murine hematopoietic stem cells. Representational difference analysis (RDA) was performed to identify differentially expressed genes in EML. Expression patterns of genes encoding transcription factors (four members of the C/EBP family, GATA-1, GATA-2, PU.1, CBFbeta, SCL, and c-myb) in EML were examined and were consistent with the proposed functions of these proteins in hematopoietic differentiation. Expression levels of three markers of terminal myeloid differentiation (neutrophil elastase, proteinase 3, and Mac-1) were highest in EML cells at the later stages of differentiation. In a search for genes that were differentially expressed in EML cells during myeloid differentiation, six cDNAs were isolated. These included three known genes (lysozyme, histidine decarboxylase, and tryptophan hydroxylase) and three novel genes. Expression patterns of known genes in differentiating EML cells accurately reflected their expected expression patterns based on previous studies. The identification of three novel genes, two of which encode proteins that may act as regulators of hematopoietic differentiation, suggests that EML is a useful model system for the molecular analysis of hematopoietic differentiation.

  11. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    PubMed

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  12. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone

    PubMed Central

    Jin, Xia

    2015-01-01

    ABSTRACT Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. IMPORTANCE Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. PMID:26223636

  13. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    PubMed

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Study of pyruvate decarboxylase and thiamine kinase from brewer's yeast by SERS

    NASA Astrophysics Data System (ADS)

    Maskevich, Sergei A.; Chernikevich, Ivan P.; Gachko, Gennedy A.; Kivach, Leonid N.; Strekal, Nataliya D.

    1993-06-01

    The Surface Enhanced Raman Scattering (SERS) spectra of holopyruvate decarboxylase (PDC) and thiamine kinase (ThK) adsorbed on silver electrode were obtained. In contrast to the Raman, the SERS spectrum of PDC contained no modes of tryptophan residues, it indicates a removal of this moiety from the surface. In the SERS spectrum of ThK the bands belonging to ligands bound to the protein were observed. A correlation between the SERS signal intensity and the enzymatic activity of the ThK separate fraction and found. The influence of amino acids on SERS spectra of thiamine (Th) was studied to determine the possible composition on microsurrounding of coenzyme.

  15. Effects of methylglyoxal bis(guanylhydrazone) and two phenylated analogues on S-adenosylmethionine decarboxylase activity from Eimeria stiedai (Apicomplexa).

    PubMed

    San-Martín Núñez, B; Alunda, J M; Balaña-Fouce, R; Ordóñez Escudero, D

    1987-01-01

    1. Activity of S-adenosylmethionine decarboxylase, one of the rate-limiting enzymes of polyamine biosynthesis, was determined in oocysts of Eimeria stiedai, a coccidian parasite of the rabbit. 2. Several properties of the enzyme were compared to the mammalian enzyme. It showed considerably less substrate affinity than the analog enzyme from the rabbit. 3. The E. stiedai enzyme showed a low sensitivity to methylglyoxal bis(guanylhydrazone), a frequently used inhibitor of the enzyme in mammals, and two phenylated derivatives. 4. Results with the inhibitors are discussed in view of their potential use in chemotherapy.

  16. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae.

    PubMed

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved.

  17. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae

    PubMed Central

    Yoshida, Shiori; Tanaka, Hideki; Hirayama, Makoto; Murata, Kousaku; Kawai, Shigeyuki

    2015-01-01

    Mannitol is contained in brown macroalgae up to 33% (w/w, dry weight), and thus is a promising carbon source for white biotechnology. However, Saccharomyces cerevisiae, a key cell factory, is generally regarded to be unable to assimilate mannitol for growth. We have recently succeeded in producing S. cerevisiae that can assimilate mannitol through spontaneous mutations of Tup1-Cyc8, each of which constitutes a general corepressor complex. In this study, we demonstrate production of pyruvate from mannitol using this mannitol-assimilating S. cerevisiae through deletions of all 3 pyruvate decarboxylase genes. The resultant mannitol-assimilating pyruvate decarboxylase-negative strain produced 0.86 g/L pyruvate without use of acetate after cultivation for 4 days, with an overall yield of 0.77 g of pyruvate per g of mannitol (the theoretical yield was 79%). Although acetate was not needed for growth of this strain in mannitol-containing medium, addition of acetate had a significant beneficial effect on production of pyruvate. This is the first report of production of a valuable compound (other than ethanol) from mannitol using S. cerevisiae, and is an initial platform from which the productivity of pyruvate from mannitol can be improved. PMID:26588105

  18. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krungkrai, Sudaratana R.; Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871; Tokuoka, Keiji

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 asmore » a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V{sub M} = 2.3 Å{sup 3} Da{sup −1})« less

  19. Arginine Decarboxylase Is Localized in Chloroplasts.

    PubMed Central

    Borrell, A.; Culianez-Macia, F. A.; Altabella, T.; Besford, R. T.; Flores, D.; Tiburcio, A. F.

    1995-01-01

    Plants, unlike animals, can use either ornithine decarboxylase or arginine decarboxylase (ADC) to produce the polyamine precursor putrescine. Lack of knowledge of the exact cellular and subcellular location of these enzymes has been one of the main obstacles to our understanding of the biological role of polyamines in plants. We have generated polyclonal antibodies to oat (Avena sativa L.) ADC to study the spatial distribution and subcellular localization of ADC protein in different oat tissues. By immunoblotting and immunocytochemistry, we show that ADC is organ specific. By cell fractionation and immunoblotting, we show that ADC is localized in chloroplasts associated with the thylakoid membrane. The results also show that increased levels of ADC protein are correlated with high levels of ADC activity and putrescine in osmotically stressed oat leaves. A model of compartmentalization for the arginine pathway and putrescine biosynthesis in active photosynthetic tissues has been proposed. In the context of endosymbiote-driven metabolic evolution in plants, the location of ADC in the chloroplast compartment may have major evolutionary significance, since it explains (a) why plants can use two alternative pathways for putrescine biosynthesis and (b) why animals do not possess ADC. PMID:12228631

  20. Biotin augments acetyl CoA carboxylase 2 gene expression in the hypothalamus, leading to the suppression of food intake in mice.

    PubMed

    Sone, Hideyuki; Kamiyama, Shin; Higuchi, Mutsumi; Fujino, Kaho; Kubo, Shizuka; Miyazawa, Masami; Shirato, Saya; Hiroi, Yuka; Shiozawa, Kota

    2016-07-29

    It is known that biotin prevents the development of diabetes by increasing the functions of pancreatic beta-cells and improving insulin sensitivity in the periphery. However, its anti-obesity effects such as anorectic effects remain to be clarified. Acetyl CoA carboxylase (ACC), a biotin-dependent enzyme, has two isoforms (ACC1 and ACC2) and serves to catalyze the reaction of acetyl CoA to malonyl CoA. In the hypothalamus, ACC2 increases the production of malonyl CoA, which acts as a satiety signal. In this study, we investigated whether biotin increases the gene expression of ACC2 in the hypothalamus and suppresses food intake in mice administered excessive biotin. Food intake was significantly decreased by biotin, but plasma regulators of appetite, including glucose, ghrelin, and leptin, were not affected. On the other hand, biotin notably accumulated in the hypothalamus and enhanced ACC2 gene expression there, but it did not change the gene expression of ACC1, malonyl CoA decarboxylase (a malonyl CoA-degrading enzyme), and AMP-activated protein kinase α-2 (an ACC-inhibitory enzyme). These findings strongly suggest that biotin potentiates the suppression of appetite by upregulating ACC2 gene expression in the hypothalamus. This effect of biotin may contribute to the prevention of diabetes by biotin treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Selection of reference genes for quantitative real-time RT-PCR assays in different morphological forms of dimorphic zygomycetous fungus Benjaminiella poitrasii.

    PubMed

    Pathan, Ejaj K; Ghormade, Vandana; Deshpande, Mukund V

    2017-01-01

    Benjaminiella poitrasii, a dimorphic non-pathogenic zygomycetous fungus, exhibits a morphological yeast (Y) to hypha (H) reversible transition in the vegetative phase, sporangiospores (S) in the asexual phase and zygospores (Z) in the sexual phase. To study the gene expression across these diverse morphological forms, suitable reference genes are required. In the present study, 13 genes viz. ACT, 18S rRNA, eEF1α, eEF-Tu,eIF-1A, Tub-α, Tub-b, Ubc, GAPDH, Try, WS-21, NADGDH and NADPGDH were evaluated for their potential as a reference, particularly for studying gene expression during the Y-H reversible transition and also for other asexual and sexual life stages of B. poitrasii. Analysis of RT-qPCR data using geNorm, normFinder and BestKeeper software revealed that genes such as Ubc, 18S rRNA and WS-21 were expressed at constant levels in each given subset of RNA samples from all the morphological phases of B. poitrasii. Therefore, these reference genes can be used to elucidate the role of morpho-genes in B. poitrasii. Further, use of the two most stably expressed genes (Ubc and WS-21) to normalize the expression of the ornithine decarboxylase gene (Bpodc) in different morphological forms of B. poitrasii, generated more reliable results, indicating that our selection of reference genes was appropriate.

  2. Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster.

    PubMed

    M'Angale, P G; Staveley, B E

    2016-10-24

    Autophagy is a cellular mechanism implicated in the pathology of Parkinson's disease. The proteins Atg6 (Beclin 1) and Pi3K59F are involved in autophagosome formation, a key step in the initiation of autophagy. We first used the GMR-Gal4 driver to determine the effect of reducing the expression of the genes encoding these proteins on the developing Drosophila melanogaster eye. Subsequently, we inhibited their expression in D. melanogaster neurons under the direction of a Dopa decarboxylase (Ddc) transgene, and examined the effects on longevity and motor function. Decreased longevity coupled with an age-dependent loss of climbing ability was observed. In addition, we investigated the roles of these genes in the well-studied α-synuclein-induced Drosophila model of Parkinson's disease. In this context, lowered expression of Atg6 or Pi3K59F in Ddc-Gal4-expressing neurons results in decreased longevity and associated age-dependent loss of locomotor ability. Inhibition of Atg6 or Pi3K59F together with overexpression of the sole pro-survival Bcl-2 Drosophila homolog Buffy in Ddc-Gal4-expressing neurons resulted in further decrease in the survival and climbing ability of Atg6-RNAi flies, whereas these measures were ameliorated in Pi3K59F-RNAi flies.

  3. 21 CFR 862.1163 - Cardiac allograft gene expression profiling test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiac allograft gene expression profiling test... Chemistry Test Systems § 862.1163 Cardiac allograft gene expression profiling test system. (a) Identification. A cardiac allograft gene expression profiling test system is a device that measures the...

  4. The nestin-expressing and non-expressing neurons in rat basal forebrain display different electrophysiological properties and project to hippocampus

    PubMed Central

    2011-01-01

    Background Nestin-immunoreactive (nestin-ir) neurons have been identified in the medial septal/diagonal band complex (MS/DBB) of adult rat and human, but the significance of nestin expression in functional neurons is not clear. This study investigated electrophysiological properties and neurochemical phenotypes of nestin-expressing (nestin+) neurons using whole-cell recording combined with single-cell RT-PCR to explore the significance of nestin expression in functional MS/DBB neurons. The retrograde labelling and immunofluorescence were used to investigate the nestin+ neuron related circuit in the septo-hippocampal pathway. Results The results of single-cell RT-PCR showed that 87.5% (35/40) of nestin+ cells expressed choline acetyltransferase mRNA (ChAT+), only 44.3% (35/79) of ChAT+ cells expressed nestin mRNA. Furthermore, none of the nestin+ cells expressed glutamic acid decarboxylases 67 (GAD67) or vesicular glutamate transporters (VGLUT) mRNA. All of the recorded nestin+ cells were excitable and demonstrated slow-firing properties, which were distinctive from those of GAD67 or VGLUT mRNA-positive neurons. These results show that the MS/DBB cholinergic neurons could be divided into nestin-expressing cholinergic neurons (NEChs) and nestin non-expressing cholinergic neurons (NNChs). Interestingly, NEChs had higher excitability and received stronger spontaneous excitatory synaptic inputs than NNChs. Retrograde labelling combined with choline acetyltransferase and nestin immunofluorescence showed that both of the NEChs and NNChs projected to hippocampus. Conclusions These results suggest that there are two parallel cholinergic septo-hippocampal pathways that may have different functions. The significance of nestin expressing in functional neurons has been discussed. PMID:22185478

  5. Preprodynorphin-expressing neurons constitute a large subgroup of somatostatin-expressing GABAergic interneurons in the mouse neocortex.

    PubMed

    Sohn, Jaerin; Hioki, Hiroyuki; Okamoto, Shinichiro; Kaneko, Takeshi

    2014-05-01

    Dynorphins, leumorphin, and neoendorphins are preprodynorphin (PPD)-derived peptides and ligands for κ-opioid receptors. Using an antibody to PPD C-terminal, we investigated the chemical and molecular characteristics of PPD-expressing neurons in mouse neocortex. PPD-immunopositive neuronal somata were distributed most frequently in layer 5 and less frequently in layers 2-4 and 6 throughout neocortical regions. Combined labeling of immunofluorescence and fluorescent mRNA signals revealed that almost all PPD-immunopositive neurons expressed glutamic acid decarboxylase but not vesicular glutamate transporter, indicating their γ-aminobutyric acid (GABA)ergic characteristics, and that PPD-immunopositive neurons accounted for 15% of GABAergic interneurons in the primary somatosensory area. As GABAergic interneurons were divided into several groups by specific markers, we further examined the chemical characteristics of PPD-expressing neurons by the double immunofluorescence labeling method. More than 95% of PPD-immunopositive neurons were also somatostatin (SOM)-immunopositive in the primary somatosensory, primary motor, orbitofrontal, and primary visual areas, but only 24% were SOM-immunopositive in the medial prefrontal cortex. In the primary somatosensory area, PPD-immunopositive neurons constituted 50%, 79%, 55%, and 17% of SOM-immunopositive neurons in layers 2-3, 4, 5, and 6, respectively. Although SOM-expressing neurons contained calretinin-, neuropeptide Y-, nitric oxide synthase-, and reelin-expressing neurons as subgroups, only reelin immunoreactivity was detected in many PPD-immunopositive neurons. These results indicate that PPD-expressing neurons constitute a large subgroup of SOM-expressing cortical interneurons, and the PPD/SOM-expressing GABAergic neurons might serve not only as inhibitory elements in the local cortical circuit, but also as modulators for cortical neurons expressing κ-opioid and/or SOM receptors. Copyright © 2013 Wiley Periodicals, Inc.

  6. Production of monospecific antibodies to rat liver ornithine decarboxylase and their use in turnover studies.

    PubMed

    Obenrader, M F; Prouty, W F

    1977-05-10

    Two forms of ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) were purified from the livers of rats which had been treated with thioacetamide for 16 h (for details, see miniprint to Obenrader, M.F., and Prouty, W. F. (1977) J. Biol. Chem. 252, 2860-2865). The enzyme was purified over 7,000-fold from liver cytosol with an overall yield of 8%. Enzyme activity was eluted finally in two distinct fractions by chromatography on activated thiol-Sepharose 4B. Both forms appear to be dimeric proteins having molecular weights of approximately 100,000 by equilibrium sedimentation and analysis on a calibrated Sephadex G-200 column. The apparent subunits are approximately 50,000 daltons as determined by electrophoresis on polyacrylamide gels in the presence of sodium dodecyl sulfate. Since electrophoresis in the presence of detergent is the only method used here to indicate subunits, the possibility that conditions of sample preparation resulted in splitting of a labile protein cannot be excluded from consideration. Ornithine decarboxylase has a very broad pH-activity curve with an optimum that shifts from pH 7.0 to pH 7.8 as the enzyme is purified. The apparent Km values for a highly purified mixture of the two forms of enzyme for L-ornithine and pyridoxal 5'-phosphate were determined to be 0.13 mM and 0.25 micronM, respectively. Both sodium and potassium chloride were shown to inhibit enzymatic activity; 50% inhibition occurred at 270 mM for each when Km amounts or ornithine were used. Rat liver ornithine decarboxylase antiserum was prepared in rabbits using Form I of the enzyme as the antigen. The antibody was shown to precipitate quantitatively the ornithine decarboxylase activity isolated from induced rat liver and rat ventral prostate. The specificity of the antiserum was demonstrated by rocket immunoelectrophoresis and by gel electrophoresis in the presence of sodium dodecyl sulfate using immunoprecipitates obtained from enzyme preparations labeled either in vivo, with [3H]leucine, or in vitro, by reductive methylation using formaldehyde and sodium [3H]borohydride. The antibody preparation has been used in a titration method to assess the half-life of antigen in livers of rats induced for ornithine decarboxylase by injection of thioacetamide. In two experiments, the t1/2 of activity at the height of induction, following injection of cycloheximide, was 19 and 24 min, while the t1/2 of disappearance of antigen was 28 and 33 min, respectively. In each experiment the t1/2 for antigen was significantly longer than the t1/2 for loss of enzyme activity. Enzyme levels appear to be modulated primarily by synthesis and degradation of antigen. Furthermore, the observation that enzyme activity is lost with a shorter t1/2 than antigen is consistent with the idea that denaturation is an initial step in the degradation of this enzyme...

  7. Gene expression in dopamine and GABA systems in an animal model of schizophrenia: effects of antipsychotic drugs.

    PubMed

    Lipska, Barbara K; Lerman, Daniel N; Khaing, Zin Z; Weickert, Cynthia Shannon; Weinberger, Daniel R

    2003-07-01

    We used in situ hybridization histochemistry to assess expression of dopamine receptors (D1R, D2R and D3R), neurotensin, proenkephalin and glutamate decarboxylase-67 (GAD67) in the prefrontal cortex, striatum, and/or nucleus accumbens in adult rats with neonatal ventral hippocampal (VH) lesions and in control animals after acute and chronic treatment with antipsychotic drugs clozapine and haloperidol. We also acquired these measures in a separate cohort of treatment-naïve sham and neonatally VH-lesioned rats used as an animal model of schizophrenia. Our results indicate that the neonatal VH lesion did not alter expression of D1R, D3R, neurotensin or proenkephalin expression in any brain region examined. However, D2R mRNA expression was down-regulated in the striatum, GAD67 mRNA was down-regulated in the prefrontal cortex and prodynorphin mRNA was up-regulated in the striatum of the VH-lesioned rats as compared with sham controls. Antipsychotic drugs did not alter expression of D1R, D2R or D3R receptor mRNAs but elevated neurotensin and proenkephalin expression in both groups of rats; patterns of changes were dependent on the duration of treatment and brain area examined. GAD67 mRNA was up-regulated by chronic antispychotics in the nucleus accumbens and the striatum and by chronic haloperidol in the prefrontal cortex in both sham and lesioned rats. These results indicate that the developmental VH lesion changed the striatal expression of D2R and prodynorphin and robustly compromised prefrontal GAD67 expression but did not modify drug-induced expression of any genes examined in this study.

  8. A Dopa Decarboxylase Modulating the Immune Response of Scallop Chlamys farreri

    PubMed Central

    Zhou, Zhi; Yang, Jialong; Wang, Lingling; Zhang, Huan; Gao, Yang; Shi, Xiaowei; Wang, Mengqiang; Kong, Pengfei; Qiu, Limei; Song, Linsheng

    2011-01-01

    Background Dopa decarboxylase (DDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme that catalyzes the decarboxylation of L-Dopa to dopamine, and involved in complex neuroendocrine-immune regulatory network. The function for DDC in the immunomodulation remains unclear in invertebrate. Methodology The full-length cDNA encoding DDC (designated CfDDC) was cloned from mollusc scallop Chlamys farreri. It contained an open reading frame encoding a polypeptide of 560 amino acids. The CfDDC mRNA transcripts could be detected in all the tested tissues, including the immune tissues haemocytes and hepatopancreas. After scallops were treated with LPS stimulation, the mRNA expression level of CfDDC in haemocytes increased significantly (5.5-fold, P<0.05) at 3 h and reached the peak at 12 h (9.8-fold, P<0.05), and then recovered to the baseline level. The recombinant protein of CfDDC (rCfDDC) was expressed in Escherichia coli BL21 (DE3)-Transetta, and 1 mg rCfDDC could catalyze the production of 1.651±0.22 ng dopamine within 1 h in vitro. When the haemocytes were incubated with rCfDDC-coated agarose beads, the haemocyte encapsulation to the beads was increased significantly from 70% at 6 h to 93% at 24 h in vitro in comparison with that in the control (23% at 6 h to 25% at 24 h), and the increased haemocyte encapsulation was repressed by the addition of rCfDDC antibody (which is acquired via immunization 6-week old rats with rCfDDC). After the injection of DDC inhibitor methyldopa, the ROS level in haemocytes of scallops was decreased significantly to 0.41-fold (P<0.05) of blank group at 12 h and 0.47-fold (P<0.05) at 24 h, respectively. Conclusions These results collectively suggested that CfDDC, as a homologue of DDC in scallop, modulated the immune responses such as haemocytes encapsulation as well as the ROS level through its catalytic activity, functioning as an indispensable immunomodulating enzyme in the neuroendocrine-immune regulatory network of mollusc. PMID:21533240

  9. Comparative studies on glutamate decarboxylase and choline acetyltransferase activities in the vertebrate vestibule.

    PubMed

    López, I; Meza, G

    1990-01-01

    1. Vestibular putative neurotransmitters GABA and acetylcholine synthesizing enzymes were quantified in four vertebrate species to find a correlation between all-vertebrate vestibular hair cell II (HCII) and synaptic contacts and appearance of hair cell I (HCI) and related synapses in terrestrial species. 2. Glutamate decarboxylase (GAD) and choline acetyltransferase (ChAT) values were: 3.76; 15.38; 21.68; 27.78 and 9.44; 450; 720; 970 n(pico)mol/mg protein/hr (min) in, respectively, frogs, guinea pigs, rats and chicks. 3. GAD and ChAT omnipresence may indicate constant GABAergic HCII and its cholinergic efferent synapses, their raised content, appearance of GABA-containing HCI and related cholinergic boutons in higher vertebrates.

  10. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    PubMed

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  11. Pgas, a Low-pH-Induced Promoter, as a Tool for Dynamic Control of Gene Expression for Metabolic Engineering of Aspergillus niger.

    PubMed

    Yin, Xian; Shin, Hyun-Dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-03-15

    The dynamic control of gene expression is important for adjusting fluxes in order to obtain desired products and achieve appropriate cell growth, particularly when the synthesis of a desired product drains metabolites required for cell growth. For dynamic gene expression, a promoter responsive to a particular environmental stressor is vital. Here, we report a low-pH-inducible promoter, P gas , which promotes minimal gene expression at pH values above 5.0 but functions efficiently at low pHs, such as pH 2.0. First, we performed a transcriptional analysis of Aspergillus niger , an excellent platform for the production of organic acids, and we found that the promoter P gas may act efficiently at low pH. Then, a gene for synthetic green fluorescent protein ( sGFP ) was successfully expressed by P gas at pH 2.0, verifying the results of the transcriptional analysis. Next, P gas was used to express the cis -aconitate decarboxylase ( cad ) gene of Aspergillus terreus in A. niger , allowing the production of itaconic acid at a titer of 4.92 g/liter. Finally, we found that P gas strength was independent of acid type and acid ion concentration, showing dependence on pH only. IMPORTANCE The promoter P gas can be used for the dynamic control of gene expression in A. niger for metabolic engineering to produce organic acids. This promoter may also be a candidate tool for genetic engineering. Copyright © 2017 American Society for Microbiology.

  12. Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion.

    PubMed

    Wang, Juli; Yu, Haiying; Zhu, Kun

    2018-05-01

    1-Alkenes are traditionally used as basic chemicals with great importance. Biosynthetic 1-alkenes also have the potential to serve as biofuels. In this study, we engineered a Pseudomonas lipolytic microbial platform for 1-alkene production using hydrophobic substrate as sole carbon source. Fatty acid decarboxylase UndA and UndB were cloned and expressed, which successfully produced 1-alkenes. Optimal culturing temperature and the interruption of competitive pathway were proven to be beneficial to 1-alkene synthesis. Chromosomal integration of UndB conferred 177.8 mg/L 1-alkenes (mainly 1-undecene) in lauric acid medium and 128.9 mg/L 1-alkenes (mainly 1-pentadecene) in palm oil medium. Thioesterase expression, adjustments of fatty acid degradation pathway and a second copy of UndB improved 1-alkene titer to 1102.6 mg/L using lauric acid and 778.4 mg/L using palm oil. All in all, this study offers the first demonstration of lipolytic microbial 1-alkene producing platform with highest reported 1-alkene product titer up to date. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. An unusual strategy for the anoxic biodegradation of phthalate.

    PubMed

    Ebenau-Jehle, Christa; Mergelsberg, Mario; Fischer, Stefanie; Brüls, Thomas; Jehmlich, Nico; von Bergen, Martin; Boll, Matthias

    2017-01-01

    In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and 'Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested.

  14. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  15. Understanding the roles of glutamine synthetase, glutaminase, and glutamate decarboxylase autoantibodies in imbalanced excitatory/inhibitory neurotransmission as etiological mechanisms of autism.

    PubMed

    Hamed, Najat O; Al-Ayadhi, Laila; Osman, Mohamed A; Elkhawad, Abdalla O; Qasem, Hanan; Al-Marshoud, Majida; Merghani, Nada M; El-Ansary, Afaf

    2018-05-01

    Autism is a heterogeneous neurological disorder that is characterized by impairments in communication and social interactions, repetitive behaviors, and sensory abnormalities. The etiology of autism remains unclear. Animal, genetic, and post-mortem studies suggest that an imbalance exists in the neuronal excitation and inhibition system in autism. The aim of this study was to determine whether alterations of the measured parameters in children with autism are significantly associated with the risk of a sensory dysfunction. The glutamine synthetase (GS), kidney-type glutaminase (GLS1), and glutamic acid decarboxylase autoantibody levels were analyzed in 38 autistic children and 33 age- and sex-matched controls using enzyme-linked immunosorbent assays. The obtained data demonstrated significant alterations in glutamate and glutamine cycle enzymes, as represented by GS and GLS1, respectively. While the glutamic acid decarboxylase autoantibodies levels were remarkably increased, no significant difference was observed compared to the healthy control participants. The obtained data indicate that GS and GLS1 are promising indicators of a neuronal excitation and inhibition system imbalance and that combined measured parameters are good predictive biomarkers of autism. © 2018 The Authors. Psychiatry and Clinical Neurosciences © 2018 Japanese Society of Psychiatry and Neurology.

  16. An adaptation to life in acid through a novel mevalonate pathway

    DOE PAGES

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; ...

    2016-12-22

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  17. An adaptation to life in acid through a novel mevalonate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  18. An unusual strategy for the anoxic biodegradation of phthalate

    PubMed Central

    Ebenau-Jehle, Christa; Mergelsberg, Mario; Fischer, Stefanie; Brüls, Thomas; Jehmlich, Nico; von Bergen, Martin; Boll, Matthias

    2017-01-01

    In the past two decades, the study of oxygen-independent degradation of widely abundant aromatic compounds in anaerobic bacteria has revealed numerous unprecedented enzymatic principles. Surprisingly, the organisms, metabolites and enzymes involved in the degradation of o-phthalate (1,2-dicarboxybenzene), mainly derived from phthalate esters that are annually produced at the million ton scale, are sparsely known. Here, we demonstrate a previously unknown capacity of complete phthalate degradation in established aromatic compound-degrading, denitrifying model organisms of the genera Thauera, Azoarcus and ‘Aromatoleum'. Differential proteome analyses revealed phthalate-induced gene clusters involved in uptake and conversion of phthalate to the central intermediate benzoyl-CoA. Enzyme assays provided in vitro evidence for the formation of phthaloyl-CoA by a succinyl-CoA- and phthalate-specific CoA transferase, which is essential for the subsequent oxygen-sensitive decarboxylation to benzoyl-CoA. The extreme instability of the phthaloyl-CoA intermediate requires highly balanced CoA transferase and decarboxylase activities to avoid its cellular accumulation. Phylogenetic analysis revealed phthaloyl-CoA decarboxylase as a novel member of the UbiD-like, (de)carboxylase enzyme family. Homologs of the encoding gene form a phylogenetic cluster and are found in soil, freshwater and marine bacteria; an ongoing global distribution of a possibly only recently evolved degradation pathway is suggested. PMID:27392087

  19. Structural basis of enzymatic activity for the ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4.

    PubMed

    Gu, Wen; Yang, Jinkui; Lou, Zhiyong; Liang, Lianming; Sun, Yuna; Huang, Jingwen; Li, Xuemei; Cao, Yi; Meng, Zhaohui; Zhang, Ke-Qin

    2011-01-21

    Microbial ferulic acid decarboxylase (FADase) catalyzes the transformation of ferulic acid to 4-hydroxy-3-methoxystyrene (4-vinylguaiacol) via non-oxidative decarboxylation. Here we report the crystal structures of the Enterobacter sp. Px6-4 FADase and the enzyme in complex with substrate analogues. Our analyses revealed that FADase possessed a half-opened bottom β-barrel with the catalytic pocket located between the middle of the core β-barrel and the helical bottom. Its structure shared a high degree of similarity with members of the phenolic acid decarboxylase (PAD) superfamily. Structural analysis revealed that FADase catalyzed reactions by an "open-closed" mechanism involving a pocket of 8 × 8 × 15 Å dimension on the surface of the enzyme. The active pocket could directly contact the solvent and allow the substrate to enter when induced by substrate analogues. Site-directed mutagenesis showed that the E134A mutation decreased the enzyme activity by more than 60%, and Y21A and Y27A mutations abolished the enzyme activity completely. The combined structural and mutagenesis results suggest that during decarboxylation of ferulic acid by FADase, Trp25 and Tyr27 are required for the entering and proper orientation of the substrate while Glu134 and Asn23 participate in proton transfer.

  20. Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle.

    PubMed

    Chen, Grey S; Siao, Siang Wun; Shen, Claire R

    2017-09-12

    Iterative ketoacid elongation has been an essential tool in engineering artificial metabolism, in particular the synthetic alcohols. However, precise control of product specificity is still greatly challenged by the substrate promiscuity of the ketoacid decarboxylase, which unselectively hijacks ketoacid intermediates from the elongation cycle along with the target ketoacid. In this work, preferential tuning of the Lactococcus lactis ketoisovalerate decarboxylase (Kivd) specificity toward 1-pentanol synthesis was achieved via saturated mutagenesis of the key residue V461 followed by screening of the resulting alcohol spectrum. Substitution of V461 with the small and polar amino acid glycine or serine significantly improved the Kivd selectivity toward the 1-pentanol precursor 2-ketocaproate by lowering its catalytic efficiency for the upstream ketoacid 2-ketobutyrate and 2-ketovalerate. Conversely, replacing V461 with bulky or charged side chains displayed severely adverse effect. Increasing supply of the iterative addition unit acetyl-CoA by acetate feeding further drove 2-ketoacid flux into the elongation cycle and enhanced 1-pentanol productivity. The Kivd V461G variant enabled a 1-pentanol production specificity around 90% of the total alcohol content with or without oleyl alcohol extraction. This work adds insight to the selectivity of Kivd active site.

  1. Diethylglyoxal bis(guanylhydrazone): a novel highly potent inhibitor of S-adenosylmethionine decarboxylase with promising properties for potential chemotherapeutic use.

    PubMed

    Elo, H; Mutikainen, I; Alhonen-Hongisto, L; Laine, R; Jänne, J

    1988-07-01

    Diethylglyoxal bis(guanylhydrazone) (DEGBG), a novel analog of the antileukemic agent methylglyoxal bis(guanylhydrazone) (MGBG) was synthesized. It was found to be the most powerful inhibitor of yeast S-adenosylmethionine decarboxylase (AdoMetDC) so far studied (Ki approx. 9 nM). This property, together with the finding that the compound is a weaker inhibitor of intestinal diamine oxidase than are MGBG and its glyoxal, ethylglyoxal and ethylmethylglyoxal analogs, makes the compound a promising candidate as a polyamine antimetabolite for chemotherapy studies. DEGBG was also found to potentiate the antiproliferative effect of the ornithine decarboxylase inhibitor alpha-difluoromethyl ornithine against mouse L1210 leukemia cells in vitro. DEGBG increased several-fold the intracellular putrescine concentration of cultured L1210 cells, just as MGBG and its ethylglyoxal analog are known to do. The results strongly suggest that DEGBG is worth further studies. Combined with previous studies, they also made possible the construction of some empirical rules concerning the structure-activity relationships of bis(guanylhydrazone) type inhibitors of AdoMetDC. The identity of DEGBG was confirmed by a single-crystal X-ray analysis and by 1H- and 13C-NMR spectroscopy. It consisted of the same isomer as MGBG and several of its analogs are known to consist of.

  2. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance

    PubMed Central

    Quinet, Muriel; Lefèvre, Isabelle; Lambillotte, Béatrice; Dupont-Gillain, Christine C.; Lutts, Stanley

    2010-01-01

    Effects of salt stress on polyamine metabolism and ethylene production were examined in two rice (Oryza sativa L.) cultivars [I Kong Pao (IKP), salt sensitive; and Pokkali, salt resistant] grown for 5 d and 12 d in nutrient solution in the presence or absence of putrescine (1 mM) and 0, 50, and 100 mM NaCl. The salt-sensitive (IKP) and salt-resistant (Pokkali) cultivars differ not only in their mean levels of putrescine, but also in the physiological functions assumed by this molecule in stressed tissues. Salt stress increased the proportion of conjugated putrescine in salt-resistant Pokkali and decreased it in the salt-sensitive IKP, suggesting a possible protective function in response to NaCl. Activities of the enzymes ornithine decarboxylase (ODC; EC 4.1.1.17) and arginine decarboxylase (ADC; EC 4.1.1.19) involved in putrescine synthesis were higher in salt-resistant Pokkali than in salt-sensitive IKP. Both enzymes were involved in the response to salt stress. Salt stress also increased diamine oxidase (DAO; 1.4.3.6) and polyamine oxidase (PAO EC 1.5.3.11) activities in the roots of salt-resistant Pokkali and in the shoots of salt-sensitive IKP. Gene expression followed by reverse transcription-PCR suggested that putrescine could have a post-translational impact on genes coding for ADC (ADCa) and ODC (ODCa and ODCb) but could induce a transcriptional activation of genes coding for PAO (PAOb) mainly in the shoot of salt-stressed plants. The salt-resistant cultivar Pokkali produced higher amounts of ethylene than the salt-sensitive cultivar IKP, and exogenous putrescine increased ethylene synthesis in both cultivars, suggesting no direct antagonism between polyamine and ethylene pathways in rice. PMID:20472577

  3. Lower glutamic acid decarboxylase 65kD mRNA and protein levels in the prefrontal cortex in schizoaffective disorder but not schizophrenia

    PubMed Central

    Glausier, JR; Kimoto, S; Fish, KN; Lewis, DA

    2014-01-01

    Background Altered GABA signaling in the prefrontal cortex (PFC) has been associated with cognitive dysfunction in schizophrenia and schizoaffective disorder. PFC levels of the GABA-synthesizing enzyme glutamic acid decarboxylase 67kD (GAD67) has been consistently reported to be lower in these disorders, but the status of the second GABA-synthesizing enzyme, GAD65, remains unclear. Methods GAD65 mRNA levels were quantified in PFC area 9 by quantitative polymerase chain reaction from 62 subjects with schizophrenia or schizoaffective disorder and 62 matched healthy comparison subjects. GAD65 relative protein levels were quantified in a subset of subject pairs by confocal immunofluorescence microscopy. Results Mean GAD65 mRNA levels were 13.6% lower in schizoaffective disorder subjects, but did not differ in schizophrenia subjects, relative to their matched healthy comparison subjects. In the subjects with schizoaffective disorder, mean GAD65 protein levels were 19.4% lower and were correlated with GAD65 mRNA levels. Lower GAD65 mRNA and protein measures within schizoaffective disorder subjects was not attributable to factors commonly comorbid with the diagnosis. Conclusions In concert with previous studies, these findings suggest that schizoaffective disorder is associated with lower levels of both GAD65 and GAD67 mRNA and protein in the PFC, whereas subjects with schizophrenia have lower mean levels of only GAD67 mRNA and protein. Because cognitive function is generally better preserved in subjects with schizoaffective disorder relative to subjects with schizophrenia, these findings may support an interpretation that GAD65 down-regulation provides a homeostatic response complementary to GAD67 down-regulation expression that serves to reduce inhibition in the face of lower PFC network activity. PMID:24993056

  4. Metabolomic studies identify changes in transmethylation and polyamine metabolism in a brain-specific mouse model of tuberous sclerosis complex.

    PubMed

    McKenna, James; Kapfhamer, David; Kinchen, Jason M; Wasek, Brandi; Dunworth, Matthew; Murray-Stewart, Tracy; Bottiglieri, Teodoro; Casero, Robert A; Gambello, Michael J

    2018-06-15

    Tuberous sclerosis complex (TSC) is an autosomal dominant neurodevelopmental disorder and the quintessential disorder of mechanistic Target of Rapamycin Complex 1 (mTORC1) dysregulation. Loss of either causative gene, TSC1 or TSC2, leads to constitutive mTORC1 kinase activation and a pathologically anabolic state of macromolecular biosynthesis. Little is known about the organ-specific metabolic reprogramming that occurs in TSC-affected organs. Using a mouse model of TSC in which Tsc2 is disrupted in radial glial precursors and their neuronal and glial descendants, we performed an unbiased metabolomic analysis of hippocampi to identify Tsc2-dependent metabolic changes. Significant metabolic reprogramming was found in well-established pathways associated with mTORC1 activation, including redox homeostasis, glutamine/tricarboxylic acid cycle, pentose and nucleotide metabolism. Changes in two novel pathways were identified: transmethylation and polyamine metabolism. Changes in transmethylation included reduced methionine, cystathionine, S-adenosylmethionine (SAM-the major methyl donor), reduced SAM/S-adenosylhomocysteine ratio (cellular methylation potential), and elevated betaine, an alternative methyl donor. These changes were associated with alterations in SAM-dependent methylation pathways and expression of the enzymes methionine adenosyltransferase 2A and cystathionine beta synthase. We also found increased levels of the polyamine putrescine due to increased activity of ornithine decarboxylase, the rate-determining enzyme in polyamine synthesis. Treatment of Tsc2+/- mice with the ornithine decarboxylase inhibitor α-difluoromethylornithine, to reduce putrescine synthesis dose-dependently reduced hippocampal astrogliosis. These data establish roles for SAM-dependent methylation reactions and polyamine metabolism in TSC neuropathology. Importantly, both pathways are amenable to nutritional or pharmacologic therapy.

  5. Glutamate Decarboxylase-Dependent Acid Resistance in Brucella spp.: Distribution and Contribution to Fitness under Extremely Acidic Conditions

    PubMed Central

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel

    2014-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative. PMID:25381237

  6. Glutamate decarboxylase-dependent acid resistance in Brucella spp.: distribution and contribution to fitness under extremely acidic conditions.

    PubMed

    Damiano, Maria Alessandra; Bastianelli, Daniela; Al Dahouk, Sascha; Köhler, Stephan; Cloeckaert, Axel; De Biase, Daniela; Occhialini, Alessandra

    2015-01-01

    Brucella is an expanding genus of major zoonotic pathogens, including at least 10 genetically very close species occupying a wide range of niches from soil to wildlife, livestock, and humans. Recently, we have shown that in the new species Brucella microti, the glutamate decarboxylase (Gad)-dependent system (GAD system) contributes to survival at a pH of 2.5 and also to infection in mice by the oral route. In order to study the functionality of the GAD system in the genus Brucella, 47 isolates, representative of all known species and strains of this genus, and 16 strains of the closest neighbor genus, Ochrobactrum, were studied using microbiological, biochemical, and genetic approaches. In agreement with the genome sequences, the GAD system of classical species was not functional, unlike that of most strains of Brucella ceti, Brucella pinnipedialis, and newly described species (B. microti, Brucella inopinata BO1, B. inopinata-like BO2, and Brucella sp. isolated from bullfrogs). In the presence of glutamate, these species were more acid resistant in vitro than classical terrestrial brucellae. Expression in trans of the gad locus from representative Brucella species in the Escherichia coli MG1655 mutant strain lacking the GAD system restored the acid-resistant phenotype. The highly conserved GAD system of the newly described or atypical Brucella species may play an important role in their adaptation to acidic external and host environments. Furthermore, the GAD phenotype was shown to be a useful diagnostic tool to distinguish these latter Brucella strains from Ochrobactrum and from classical terrestrial pathogenic Brucella species, which are GAD negative. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. A General Method for Selection of α-Acetolactate Decarboxylase-Deficient Lactococcus lactis Mutants To Improve Diacetyl Formation

    PubMed Central

    Curic, Mirjana; Stuer-Lauridsen, Birgitte; Renault, Pierre; Nilsson, Dan

    1999-01-01

    The enzyme acetolactate decarboxylase (Ald) plays a key role in the regulation of the α-acetolactate pool in both pyruvate catabolism and the biosynthesis of the branched-chain amino acids, isoleucine, leucine, and valine (ILV). This dual role of Ald, due to allosteric activation by leucine, was used as a strategy for the isolation of Ald-deficient mutants of Lactococcus lactis subsp. lactis biovar diacetylactis. Such mutants can be selected as leucine-resistant mutants in ILV- or IV-prototrophic strains. Most dairy lactococcus strains are auxotrophic for the three amino acids. Therefore, the plasmid pMC004 containing the ilv genes (encoding the enzymes involved in the biosynthesis of IV) of L. lactis NCDO2118 was constructed. Introduction of pMC004 into ILV-auxotrophic dairy strains resulted in an isoleucine-prototrophic phenotype. By plating the strains on a chemically defined medium supplemented with leucine but not valine and isoleucine, spontaneous leucine-resistant mutants were obtained. These mutants were screened by Western blotting with Ald-specific antibodies for the presence of Ald. Selected mutants lacking Ald were subsequently cured of pMC004. Except for a defect in the expression of Ald, the resulting strain, MC010, was identical to the wild-type strain, as shown by Southern blotting and DNA fingerprinting. The mutation resulting in the lack of Ald in MC010 occurred spontaneously, and the strain does not contain foreign DNA; thus, it can be regarded as food grade. Nevertheless, its application in dairy products depends on the regulation of genetically modified organisms. These results establish a strategy to select spontaneous Ald-deficient mutants from transformable L. lactis strains. PMID:10049884

  8. Functional Analysis of Corn Husk Photosynthesis[W][OA

    PubMed Central

    Pengelly, Jasper J.L.; Kwasny, Scott; Bala, Soumi; Evans, John R.; Voznesenskaya, Elena V.; Koteyeva, Nuria K.; Edwards, Gerald E.; Furbank, Robert T.; von Caemmerer, Susanne

    2011-01-01

    The husk surrounding the ear of corn/maize (Zea mays) has widely spaced veins with a number of interveinal mesophyll (M) cells and has been described as operating a partial C3 photosynthetic pathway, in contrast to its leaves, which use the C4 photosynthetic pathway. Here, we characterized photosynthesis in maize husk and leaf by measuring combined gas exchange and carbon isotope discrimination, the oxygen dependence of the CO2 compensation point, and photosynthetic enzyme activity and localization together with anatomy. The CO2 assimilation rate in the husk was less than that in the leaves and did not saturate at high CO2, indicating CO2 diffusion limitations. However, maximal photosynthetic rates were similar between the leaf and husk when expressed on a chlorophyll basis. The CO2 compensation points of the husk were high compared with the leaf but did not vary with oxygen concentration. This and the low carbon isotope discrimination measured concurrently with gas exchange in the husk and leaf suggested C4-like photosynthesis in the husk. However, both Rubisco activity and the ratio of phosphoenolpyruvate carboxylase to Rubisco activity were reduced in the husk. Immunolocalization studies showed that phosphoenolpyruvate carboxylase is specifically localized in the layer of M cells surrounding the bundle sheath cells, while Rubisco and glycine decarboxylase were enriched in bundle sheath cells but also present in M cells. We conclude that maize husk operates C4 photosynthesis dispersed around the widely spaced veins (analogous to leaves) in a diffusion-limited manner due to low M surface area exposed to intercellular air space, with the functional role of Rubisco and glycine decarboxylase in distant M yet to be explained. PMID:21511990

  9. Herpes simplex virus vector-mediated gene delivery of glutamic acid decarboxylase reduces detrusor overactivity in spinal cord injured rats

    PubMed Central

    Miyazato, Minoru; Sugaya, Kimio; Goins, William F.; Goss, James R.; Chancellor, Michael B.; de Groat, William C.; Glorioso, Joseph C.; Yoshimura, Naoki

    2010-01-01

    We examined whether replication-defective herpes simplex virus (HSV) vectors encoding the 67 Kd form of the glutamic acid decarboxylase (GAD67) gene product, the gamma-aminobutyric acid (GABA) synthesis enzyme, can suppress detrusor overactivity (DO) in spinal cord injury (SCI) rats. One week after spinalization, HSV vectors expressing GAD and green fluorescent protein (GFP) (HSV-GAD) were injected into the bladder wall. SCI rats without HSV injection (HSV-untreated) and those injected with lacZ-encoding reporter gene HSV vectors (HSV-LacZ) were used as controls. Three weeks after viral injection, continuous cystometry was performed under awake conditions in all three groups. In the HSV-GAD group, the number and amplitude of non-voiding contractions (NVCs) were significantly decreased (40–45% and 38–40%, respectively) along with an increase in voiding efficiency, compared with HSV-untreated and HSV-LacZ groups, but micturition pressure was not different among the three groups. Intrathecal application of bicuculline partly reversed the decreased number and amplitude of NVCs, and decreased voiding efficiency in the HSV-GAD group. In the HSV-GAD group, GAD67 mRNA and protein levels were significantly increased in L6-S1 dorsal root ganglia (DRG) compared with the HSV-LacZ group while 57% of DRG cells were GFP-positive, and these neurons showed increased GAD67-like immunoreactivity compared with the HSV-LacZ group. These results indicate that GAD gene therapy effectively suppresses DO following SCI predominantly via activation of spinal GABAA receptors. Thus, HSV-based GAD gene transfer to bladder afferent pathways may represent a novel approach for the treatment of neurogenic DO. PMID:19225548

  10. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decarboxylase gene

    PubMed Central

    Martínez, María Elena; O'Brien, Thomas G.; Fultz, Kimberly E.; Babbar, Naveen; Yerushalmi, Hagit; Qu, Ning; Guo, Yongjun; Boorman, David; Einspahr, Janine; Alberts, David S.; Gerner, Eugene W.

    2003-01-01

    Most sporadic colon adenomas acquire mutations in the adenomatous polyposis coli gene (APC) and show defects in APC-dependent signaling. APC influences the expression of several genes, including the c-myc oncogene and its antagonist Mad1. Ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, is a transcriptional target of c-myc and a modifier of APC-dependent tumorigenesis. A single-nucleotide polymorphism exists in intron 1 of the human ODC gene, which lies between two myc-binding domains. This region is known to affect ODC transcription, but no data exist on the relationship of this polymorphism to risk of colorectal neoplasia in humans. We show that individuals homozygous for the minor ODC A-allele who reported using aspirin are ≈0.10 times as likely to have an adenoma recurrence as non-aspirin users homozygous for the major G-allele. Mad1 selectively suppressed the activity of the ODC promoter containing the A-allele, but not the G-allele, in a human colon cancer-derived cell line (HT29). Aspirin (≥10 μM) did not affect ODC allele-specific promoter activity but did activate polyamine catabolism and lower polyamine content in HT29 cells. We propose that the ODC polymorphism and aspirin act independently to reduce the risk of adenoma recurrence by suppressing synthesis and activating catabolism, respectively, of colonic mucosal polyamines. These findings confirm the hypothesis that the ODC polymorphism is a genetic marker for colon cancer risk, and support the use of ODC inhibitors and aspirin, or other nonsteroidal antiinflammatory drugs (NSAIDs), in combination as a strategy for colon cancer prevention. PMID:12810952

  11. Chronic treatment with glucocorticoids alters rat hippocampal and prefrontal cortical morphology in parallel with endogenous agmatine and arginine decarboxylase levels

    PubMed Central

    Zhu, Meng-Yang; Wang, Wei-Ping; Huang, Jingjing; Regunathan, Soundar

    2009-01-01

    In the present study, we examined the possible effect of chronic treatment with glucocorticoids on the morphology of the rat brain and levels of endogenous agmatine and arginine decarboxylase (ADC) protein, the enzyme essential for agmatine synthesis. Seven-day treatment with dexamethasone, at a dose (10 and 50 µg/kg/day) associated to stress effects contributed by glucocorticoids, did not result in obvious morphologic changes in the medial prefrontal cortex and hippocampus, as measured by immunocytochemical staining with β-tubulin III. However, 21-day treatment (50 µg/kg/day) produced noticeable structural changes such as the diminution and disarrangement of dendrites and neurons in these areas. Simultaneous treatment with agmatine (50 mg/kg/day) prevented these morphological changes. Further measurement with HPLC showed that endogenous agmatine levels in the prefrontal cortex and hippocampus were significantly increased after 7-day treatments with dexamethasone in a dose-dependent manner. On the contrary, 21-day treatment with glucocorticoids robustly reduced agmatine levels in these regions. The treatment-caused biphasic alterations of endogenous agmatine levels were also seen in the striatum and hypothalamus. Interestingly, treatment with glucocorticoids resulted in a similar change of ADC protein levels in most brain areas to endogenous agmatine levels: an increase after 7-day treatment versus a reduction after 21-day treatment. These results demonstrated that agmatine has neuroprotective effects against structural alterations caused by glucocorticoids in vivo. The parallel alterations in the endogenous agmatine levels and ADC expression in the brain after treatment with glucocorticoids indicate the possible regulatory effect of these stress hormones on the synthesis and metabolism of agmatine in vivo. PMID:17760863

  12. Markedly Lower Glutamic Acid Decarboxylase 67 Protein Levels in a Subset of Boutons in Schizophrenia.

    PubMed

    Rocco, Brad R; Lewis, David A; Fish, Kenneth N

    2016-06-15

    Convergent findings indicate that cortical gamma-aminobutyric acid (GABA)ergic circuitry is altered in schizophrenia. Postmortem studies have consistently found lower levels of glutamic acid decarboxylase 67 (GAD67) messenger RNA (mRNA) in the prefrontal cortex (PFC) of subjects with schizophrenia. At the cellular level, the density of GABA neurons with detectable levels of GAD67 mRNA is ~30% lower across cortical layers. Knowing how this transcript deficit translates to GAD67 protein levels in axonal boutons is important for understanding the impact it might have on GABA synthesis. In addition, because reductions in GAD67 expression before, but not after, the maturation of GABAergic boutons results in a lower density of GABAergic boutons in mouse cortical cultures, knowing if GABAergic bouton density is altered in schizophrenia would provide insight into the timing of the GAD67 deficit. PFC tissue sections from 20 matched pairs of schizophrenia and comparison subjects were immunolabeled for the vesicular GABA transporter (vGAT) and GAD67. vGAT+ bouton density did not differ between subject groups, consistent with findings that vGAT mRNA levels are unaltered in the illness and confirming that the number of cortical GABAergic boutons is not lower in schizophrenia. In contrast, in schizophrenia subjects, the proportion of vGAT+ boutons with detectable GAD67 levels (vGAT+/GAD67+ boutons) was 16% lower and mean GAD67 levels were 14% lower in the remaining vGAT+/GAD67+ boutons. Our findings suggest that GABA production is markedly reduced in a subset of boutons in the PFC of schizophrenia subjects and that this reduction likely occurs after the maturation of GABAergic boutons. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Transcriptional and translational control of ornithine decarboxylase during Ras transformation.

    PubMed Central

    Shantz, Lisa M

    2004-01-01

    ODC (ornithine decarboxylase) activity is induced following ras activation. However, the Ras effector pathways responsible are unknown. These experiments used NIH-3T3 cells expressing partial-loss-of-function Ras mutants to activate selectively pathways downstream of Ras and examined the contribution of each pathway to ODC induction. Overexpression of Ras12V, a constitutively active mutant, resulted in ODC activities up to 20-fold higher than controls. Stable transfections of Ras partial-loss-of-function mutants and constitutively active forms of MEK (MAPK kinase) and Akt indicated that activation of more than one Ras effector pathway is necessary for the complete induction of ODC activity. The increase in ODC activity in Ras12V-transformed cells is not owing to a substantial change in ODC protein half-life, which increased by <2-fold. Northern-blot analysis and reporter assays suggested that the mechanism of ODC induction involves both a modest increase in the transcription of ODC mRNA and a much more considerable increase in the translation of mRNA into protein. ODC transcription was controlled through a pathway dependent on Raf/MEK/ERK (where ERK stands for extracellular-signal-regulated kinase) activation, whereas activation of the phosphoinositide 3-kinase and the Raf/MEK/ERK pathways were necessary for translational regulation of ODC. The increase in ODC synthesis was accompanied by changes in phosphorylation of eukaryotic initiation factor 4E and its binding protein 4E-BP1. Results show that the phosphoinositide 3-kinase pathway regulates phosphorylation of both proteins, whereas the Raf/MEK/ERK pathway affects only the eukaryotic initiation factor 4E phosphorylation. PMID:14519103

  14. Evolution of Substrate Specificity within a Diverse Family of [beta/alpha]-Barrel-fold Basic Amino Acid Decarboxylases X-ray Structure Determination of Enzymes with Specificity for L-Arginine and Carboxynorspermidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Xiaoyi; Lee, Jeongmi; Michael, Anthony J.

    2010-08-26

    Pyridoxal 5{prime}-phosphate (PLP)-dependent basic amino acid decarboxylases from the {beta}/{alpha}-barrel-fold class (group IV) exist in most organisms and catalyze the decarboxylation of diverse substrates, essential for polyamine and lysine biosynthesis. Herein we describe the first x-ray structure determination of bacterial biosynthetic arginine decarboxylase (ADC) and carboxynorspermidine decarboxylase (CANSDC) to 2.3- and 2.0-{angstrom} resolution, solved as product complexes with agmatine and norspermidine. Despite low overall sequence identity, the monomeric and dimeric structures are similar to other enzymes in the family, with the active sites formed between the {beta}/{alpha}-barrel domain of one subunit and the {beta}-barrel of the other. ADC contains bothmore » a unique interdomain insertion (4-helical bundle) and a C-terminal extension (3-helical bundle) and it packs as a tetramer in the asymmetric unit with the insertions forming part of the dimer and tetramer interfaces. Analytical ultracentrifugation studies confirmed that the ADC solution structure is a tetramer. Specificity for different basic amino acids appears to arise primarily from changes in the position of, and amino acid replacements in, a helix in the {beta}-barrel domain we refer to as the 'specificity helix.' Additionally, in CANSDC a key acidic residue that interacts with the distal amino group of other substrates is replaced by Leu{sup 314}, which interacts with the aliphatic portion of norspermidine. Neither product, agmatine in ADC nor norspermidine in CANSDC, form a Schiff base to pyridoxal 5{prime}-phosphate, suggesting that the product complexes may promote product release by slowing the back reaction. These studies provide insight into the structural basis for the evolution of novel function within a common structural-fold.« less

  15. Aroma compounds generation in citrate metabolism of Enterococcus faecium: Genetic characterization of type I citrate gene cluster.

    PubMed

    Martino, Gabriela P; Quintana, Ingrid M; Espariz, Martín; Blancato, Victor S; Magni, Christian

    2016-02-02

    Enterococcus is one of the most controversial genera belonging to Lactic Acid Bacteria. Research involving this microorganism reflects its dual behavior as regards its safety. Although it has also been associated to nosocomial infections, natural occurrence of Enterococcus faecium in food contributes to the final quality of cheese. This bacterium is capable of fermenting citrate, which is metabolized to pyruvate and finally derives in the production of the aroma compounds diacetyl, acetoin and 2,3 butanediol. Citrate metabolism was studied in E. faecium but no data about genes related to these pathways have been described. A bioinformatic approach allowed us to differentiate cit(-) (no citrate metabolism genes) from cit(+) strains in E. faecium. Furthermore, we could classify them according to genes encoding for the transcriptional regulator, the oxaloacetate decarboxylase and the citrate transporter. Thus we defined type I organization having CitI regulator (DeoR family), CitM cytoplasmic soluble oxaloacetate decarboxylase (Malic Enzyme family) and CitP citrate transporter (2-hydroxy-carboxylate transporter family) and type II organization with CitO regulator (GntR family), OAD membrane oxaloacetate decarboxylase complex (Na(+)-transport decarboxylase enzyme family) and CitH citrate transporter (CitMHS family). We isolated and identified 17 E. faecium strains from regional cheeses. PCR analyses allowed us to classify them as cit(-) or cit(+). Within the latter classification we could differentiate type I but no type II organization. Remarkably, we came upon E. faecium GM75 strain which carries the insertion sequence IS256, involved in adaptative and evolution processes of bacteria related to Staphylococcus and Enterococcus genera. In this work we describe the differential behavior in citrate transport, metabolism and aroma generation of three strains and we present results that link citrate metabolism and genetic organizations in E. faecium for the first time. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: insight into the structural basis for substrate specificity

    PubMed Central

    Shah, Rahul; Akella, Radha; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2008-01-01

    The group IV pyridoxal-5′-phosphate (PLP)-dependent decarboxylases belong to the β/α barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 Å resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2 – 1.4 Å), however, the active site has significant structural rearrangements. The key “specificity element,” is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 Å away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the “K148-loop” (homologous to the “K169-loop” of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release. PMID:17305368

  17. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation

    PubMed Central

    2011-01-01

    Background Acid stress impacts the persistence of lactobacilli in industrial sourdough fermentations, and in intestinal ecosystems. However, the contribution of glutamate to acid resistance in lactobacilli has not been demonstrated experimentally, and evidence for the contribution of acid resistance to the competitiveness of lactobacilli in sourdough is lacking. It was therefore the aim of this study to investigate the ecological role of glutamate decarboxylase in L. reuteri. Results A gene coding for a putative glutamate decarboxylase, gadB, was identified in the genome of L. reuteri 100-23. Different from the organization of genetic loci coding for glutamate decarboxylase in other lactic acid bacteria, gadB was located adjacent to a putative glutaminase gene, gls3. An isogenic deletion mutant, L. reuteri ∆gadB, was generated by a double crossover method. L. reuteri 100-23 but not L. reuteri ∆gadB converted glutamate to γ-aminobutyrate (GABA) in phosphate butter (pH 2.5). In sourdough, both strains converted glutamine to glutamate but only L. reuteri 100-23 accumulated GABA. Glutamate addition to phosphate buffer, pH 2.5, improved survival of L. reuteri 100-23 100-fold. However, survival of L. reuteri ∆gadB remained essentially unchanged. The disruption of gadB did not affect growth of L. reuteri in mMRS or in sourdough. However, the wild type strain L. reuteri 100-23 displaced L. reuteri ∆gadB after 5 cycles of fermentation in back-slopped sourdough fermentations. Conclusions The conversion of glutamate to GABA by L. reuteri 100-23 contributes to acid resistance and to competitiveness in industrial sourdough fermentations. The organization of the gene cluster for glutamate conversion, and the availability of amino acids in cereals imply that glutamine rather than glutamate functions as the substrate for GABA formation. The exceptional coupling of glutamine deamidation to glutamate decarboxylation in L. reuteri likely reflects adaptation to cereal substrates. PMID:21995488

  18. Diagnostic accuracy of the anti-glutamic acid decarboxylase antibody in type 1 diabetes mellitus: Comparison between radioimmunoassay and enzyme-linked immunosorbent assay.

    PubMed

    Murata, Takashi; Tsuzaki, Kokoro; Nirengi, Shinsuke; Watanabe, Tomokazu; Mizutani, Yukako; Okada, Hayami; Tsukamoto, Masami; Odori, Shinji; Nakagawachi, Reiko; Kawaguchi, Yaeko; Yoshioka, Fumi; Yamada, Kazunori; Shimatsu, Akira; Kotani, Kazuhiko; Satoh-Asahara, Noriko; Sakane, Naoki

    2017-07-01

    The distributer of the anti-glutamic acid decarboxylase antibody assay kit using radioimmunoassay (RIA) recently announced its discontinuation, and proposed an alternative kit using enzyme-linked immunosorbent assay (ELISA). The aim of the present study was to investigate the diagnostic values of the anti-glutamic acid decarboxylase antibody by RIA and ELISA among type 1 diabetes mellitus patients and control participants. A total of 79 type 1 diabetes mellitus patients and 79 age-matched controls were enrolled and assessed using RIA and ELISA. Sensitivity, specificity, positive predictive values and negative predictive values were calculated for cut-off values (RIA = 1.5 U/mL and ELISA = 5.0 U/mL, respectively). Kappa coefficients were used to test for agreements between the RIA and ELISA methods regarding the diagnosis of type 1 diabetes mellitus. The sensitivity, specificity, positive predictive values, and negative predictive values for diagnosing type 1 diabetes mellitus were 57.0, 97.5, 95.7, and 69.4% by RIA, and 60.8, 100.0, 100.0 and 71.8% by ELISA, respectively. The diagnosis of type 1 diabetes mellitus using the RIA and ELISA methods showed substantial agreement with the kappa values of 0.74 for all participants, and of 0.64 for the acute type; however, there was moderate agreement with the kappa value of 0.56 for the slowly progressive type. The present study suggests that both anti-glutamic acid decarboxylase antibody by RIA and ELISA was useful for diagnosing type 1 diabetes mellitus. However, in the slowly progressive type, the degree of agreement of these two kits was poorer compared with those in all participants or in the acute type. © 2016 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  19. Technical variables in high-throughput miRNA expression profiling: much work remains to be done.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Wilfred, Bernard R; Tang, Guiliang

    2008-11-01

    MicroRNA (miRNA) gene expression profiling has provided important insights into plant and animal biology. However, there has not been ample published work about pitfalls associated with technical parameters in miRNA gene expression profiling. One source of pertinent information about technical variables in gene expression profiling is the separate and more well-established literature regarding mRNA expression profiling. However, many aspects of miRNA biochemistry are unique. For example, the cellular processing and compartmentation of miRNAs, the differential stability of specific miRNAs, and aspects of global miRNA expression regulation require specific consideration. Additional possible sources of systematic bias in miRNA expression studies include the differential impact of pre-analytical variables, substrate specificity of nucleic acid processing enzymes used in labeling and amplification, and issues regarding new miRNA discovery and annotation. We conclude that greater focus on technical parameters is required to bolster the validity, reliability, and cultural credibility of miRNA gene expression profiling studies.

  20. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  1. RNA sequencing reveals differential thermal regulation mechanisms between sexes of Glanville fritillary butterfly in the Tianshan Mountains, China.

    PubMed

    Lei, Ying; Wang, Yang; Ahola, Virpi; Luo, Shiqi; Xu, Chongren; Wang, Rongjiang

    2016-12-01

    The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.

  2. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    PubMed Central

    Pandey, Shiv S.; Singh, Sucheta; Babu, C. S. Vivek; Shanker, Karuna; Srivastava, N. K.; Shukla, Ashutosh K.; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  3. Glutamatergic neurons are present in the rat ventral tegmental area

    PubMed Central

    Yamaguchi, Tsuyoshi; Sheen, Whitney; Morales, Marisela

    2010-01-01

    The ventral tegmental area (VTA) is thought to play an important role in reward function. Two populations of neurons, containing either dopamine (DA) or γ-amino butyric acid (GABA), have been extensively characterized in this area. However, recent electrophysiological studies are consistent with the notion that neurons that utilize neurotransmitters other than DA or GABA are likely to be present in the VTA. Given the pronounced phenotypic diversity of neurons in this region, we have proposed that additional cell types, such as those that express the neurotransmitter glutamate may also be present in this area. Thus, by using in situ hybridization histochemistry we investigated whether transcripts encoded by genes for the two vesicular glutamate transporters, VGluT1 or VGluT2, were expressed in the VTA. We found that VGluT2 mRNA but not VGluT1 mRNA is expressed in the VTA. Neurons expressing VGluT2 mRNA were differentially distributed throughout the rostro-caudal and medio-lateral aspects of the VTA, with the highest concentration detected in rostro-medial areas. Phenotypic characterization with double in situ hybridization of these neurons indicated that they rarely co–expressed mRNAs for tyrosine hydroxylase (TH, marker for DAergic neurons) or glutamic acid decarboxylase (GAD, marker for GABAergic neurons). Based on the results described here, we concluded that the VTA contains glutamatergic neurons that in their vast majority are clearly non-DAergic and non-GABAergic. PMID:17241272

  4. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Peroxisome proliferator-activated receptor-alpha regulates fatty acid utilization in primary human skeletal muscle cells.

    PubMed

    Muoio, Deborah M; Way, James M; Tanner, Charles J; Winegar, Deborah A; Kliewer, Steven A; Houmard, Joseph A; Kraus, William E; Dohm, G Lynis

    2002-04-01

    In humans, skeletal muscle is a major site of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) expression, but its function in this tissue is unclear. We investigated the role of hPPAR-alpha in regulating muscle lipid utilization by studying the effects of a highly selective PPAR-alpha agonist, GW7647, on [(14)C]oleate metabolism and gene expression in primary human skeletal muscle cells. Robust induction of PPAR-alpha protein expression occurred during muscle cell differentiation and corresponded with differentiation-dependent increases in oleate oxidation. In mature myotubes, 48-h treatment with 10-1,000 nmol/l GW7647 increased oleate oxidation dose-dependently, up to threefold. Additionally, GW7647 decreased oleate esterification into myotube triacylglycerol (TAG), up to 45%. This effect was not abolished by etomoxir, a potent inhibitor of beta-oxidation, indicating that PPAR-alpha-mediated TAG depletion does not depend on reciprocal changes in fatty acid catabolism. Consistent with its metabolic actions, GW7647 induced mRNA expression of mitochondrial enzymes that promote fatty acid catabolism; carnitine palmityltransferase 1 and malonyl-CoA decarboxylase increased approximately 2-fold, whereas pyruvate dehydrogenase kinase 4 increased 45-fold. Expression of several genes that regulate glycerolipid synthesis was not changed by GW7647 treatment, implicating involvement of other targets to explain the TAG-depleting effect of the compound. These results demonstrate a role for hPPAR-alpha in regulating muscle lipid homeostasis.

  6. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways

    PubMed Central

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses. PMID:26241953

  7. Activity-Dependent Bidirectional Regulation of GAD Expression in a Homeostatic Fashion Is Mediated by BDNF-Dependent and Independent Pathways.

    PubMed

    Hanno-Iijima, Yoko; Tanaka, Masami; Iijima, Takatoshi

    2015-01-01

    Homeostatic synaptic plasticity, or synaptic scaling, is a mechanism that tunes neuronal transmission to compensate for prolonged, excessive changes in neuronal activity. Both excitatory and inhibitory neurons undergo homeostatic changes based on synaptic transmission strength, which could effectively contribute to a fine-tuning of circuit activity. However, gene regulation that underlies homeostatic synaptic plasticity in GABAergic (GABA, gamma aminobutyric) neurons is still poorly understood. The present study demonstrated activity-dependent dynamic scaling in which NMDA-R (N-methyl-D-aspartic acid receptor) activity regulated the expression of GABA synthetic enzymes: glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67). Results revealed that activity-regulated BDNF (brain-derived neurotrophic factor) release is necessary, but not sufficient, for activity-dependent up-scaling of these GAD isoforms. Bidirectional forms of activity-dependent GAD expression require both BDNF-dependent and BDNF-independent pathways, both triggered by NMDA-R activity. Additional results indicated that these two GAD genes differ in their responsiveness to chronic changes in neuronal activity, which could be partially caused by differential dependence on BDNF. In parallel to activity-dependent bidirectional scaling in GAD expression, the present study further observed that a chronic change in neuronal activity leads to an alteration in neurotransmitter release from GABAergic neurons in a homeostatic, bidirectional fashion. Therefore, the differential expression of GAD65 and 67 during prolonged changes in neuronal activity may be implicated in some aspects of bidirectional homeostatic plasticity within mature GABAergic presynapses.

  8. Targeted Enhancement of Glutamate-to-γ-Aminobutyrate Conversion in Arabidopsis Seeds Affects Carbon-Nitrogen Balance and Storage Reserves in a Development-Dependent Manner1[W][OA

    PubMed Central

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P.; Napier, Johnathan A.; Galili, Gad; Fernie, Alisdair R.

    2011-01-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca2+-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  9. Gene Profiling of Nucleus Basalis Tau Containing Neurons in Chronic Traumatic Encephalopathy: A Chronic Effects of Neurotrauma Consortium Study.

    PubMed

    Mufson, Elliott J; He, Bin; Ginsberg, Stephen D; Carper, Benjamin A; Bieler, Gayle S; Crawford, Fiona; Alvarez, Victor E; Huber, Bertrand R; Stein, Thor D; McKee, Ann C; Perez, Sylvia E

    2018-06-01

    Military personnel and athletes exposed to traumatic brain injury may develop chronic traumatic encephalopathy (CTE). Brain pathology in CTE includes intracellular accumulation of abnormally phosphorylated tau proteins (p-tau), the main constituent of neurofibrillary tangles (NFTs). Recently, we found that cholinergic basal forebrain (CBF) neurons within the nucleus basalis of Meynert (nbM), which provide the major cholinergic innervation to the cortex, display an increased number of NFTs across the pathological stages of CTE. However, molecular mechanisms underlying nbM neurodegeneration in the context of CTE pathology remain unknown. Here, we assessed the genetic signature of nbM neurons containing the p-tau pretangle maker pS422 from CTE subjects who came to autopsy and received a neuropathological CTE staging assessment (Stages II, III, and IV) using laser capture microdissection and custom-designed microarray analysis. Quantitative analysis revealed dysregulation of key genes in several gene ontology groups between CTE stages. Specifically, downregulation of the nicotinic cholinergic receptor subunit β-2 gene (CHRNB2), monoaminergic enzymes catechol-O-methyltransferase (COMT) and dopa decarboxylase (DDC), chloride channels CLCN4 and CLCN5, scaffolding protein caveolin 1 (CAV1), cortical development/cytoskeleton element lissencephaly 1 (LIS1), and intracellular signaling cascade member adenylate cyclase 3 (ADCY3) was observed in pS422-immunreactive nbM neurons in CTE patients. By contrast, upregulation of calpain 2 (CAPN2) and microtubule-associated protein 2 (MAP2) transcript levels was found in Stage IV CTE patients. These single-population data in vulnerable neurons indicate alterations in gene expression associated with neurotransmission, signal transduction, the cytoskeleton, cell survival/death signaling, and microtubule dynamics, suggesting novel molecular pathways to target for drug discovery in CTE.

  10. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation.

  11. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration.

    PubMed

    Booth, Laurence; Roberts, Jane L; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-01-19

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo , prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies.

  12. [Neratinib + Valproate] exposure permanently reduces ERBB1 and RAS expression in 4T1 mammary tumors and enhances M1 macrophage infiltration

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Rais, Rumeesa; Kirkwood, John; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Poklepovic, Andrew; Dent, Paul

    2018-01-01

    The irreversible ERBB1/2/4 inhibitor neratinib has been shown in vitro to rapidly reduce the expression of ERBB1/2/4 and RAS proteins via autophagic/lysosomal degradation. We have recently demonstrated that neratinib and valproate interact to suppress the growth of 4T1 mammary tumors but had not defined whether the [neratinib + valproate] drug combination, in a mouse, had altered the biology of the 4T1 cells. Exposure of 4T1 mammary tumors to [neratinib + valproate] for three days resulted, two weeks later, in tumors that expressed less ERBB1, K-RAS, N-RAS, indoleamine-pyrrole 2,3-dioxygenase (IDO-1), ornithine decarboxylase (ODC) and had increased Class I MHCA expression. Tumors previously exposed to [neratinib + valproate] grew more slowly than those exposed to vehicle control and contained more CD8+ cells and activated NK cells. M1 but not M2 macrophage infiltration was significantly enhanced by the drug combination. In vitro exposure of 4T1 tumor cells to [neratinib + valproate] variably reduced the expression of histone deacetylases 1-11. In vivo, prior exposure of tumors to [neratinib + valproate] permanently reduced the expression of HDACs 1-3, 6 and 10. Combined knock down of HDACs 1/2/3 or of 3/10 rapidly reduced the expression IDO-1, and ODC and increased the expression of MHCA. H&E staining of normal tissues at animal nadir revealed no obvious cyto-architectural differences between control and drug-treated animals. We conclude that [neratinib + valproate] evolves 4T1 tumors to grow more slowly and to be more sensitive to checkpoint immunotherapy antibodies. PMID:29464055

  13. Garcinol Upregulates GABAA and GAD65 Expression, Modulates BDNF-TrkB Pathway to Reduce Seizures in Pentylenetetrazole (PTZ)-Induced Epilepsy

    PubMed Central

    Hao, Fang; Jia, Li-Hua; Li, Xiao-Wan; Zhang, Ying-Rui; Liu, Xue-Wu

    2016-01-01

    Background Epilepsy is the most predominant neurological disorder characterized by recurrent seizures. Despite treatment with antiepileptic drugs, epilepsy still is a challenge to treat, due to the associated adverse effects of the drugs. Previous investigations have shown critical roles of BDNF-TrkB signalling and expression of glutamic acid decarboxylase 65 (GAD65) and GABAA in the brain during epilepsy. Thus, drugs that could modulate BDNF-TrkB signal and expression of GAD65 and GABAA could aid in therapy. Recent experimental data have focussed on plant-derived compounds in treatments. Garcinol (camboginol), is a polyisoprenylated benzophenone derived from the fruit of Garcinia indica. We investigated the effects of garcinol in pentylenetetrazole (PTZ)-induced epileptic models. Material/Methods Seizure scores were measured in epilepsy kindled mice. Neuronal degeneration and apoptosis were assessed by Nissl staining, TUNEL assay, and Fluoro-Jade B staining. Immunohistochemistry was performed to evaluate cleaved caspase-3 expressions. Expression of BDNF, TrkB, GABAA, GAD65, Bad, Bcl-2, Bcl-xL, and Bax were determined by western blots. Results Significantly reduced seizure scores and mortality rates were observed with pretreatment with garcinol. Elevated expression of apoptotic proteins and caspase-3 in kindled mice were effectively downregulated by garcinol. Epileptogenic mice presented increased BDNF and TrkB with considerably decreased GABAA and GAD65 expression. Garcinol significantly enhanced GABAA and GAD65 while it suppressed BDNF and TrkB. Garcinol enhanced the performance of mice in Morris water maze tests. Conclusions Garcinol exerts neuroprotective effects via supressing apoptosis and modulating BDNF-TrkB signalling and GAD65/GABAA expressions and also enhanced cognition and memory of the mice. PMID:27855137

  14. Ectopic transgene expression in the retina of four transgenic mouse lines

    PubMed Central

    Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh

    2017-01-01

    Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404

  15. Droxidopa in neurogenic orthostatic hypotension

    PubMed Central

    Kaufmann, Horacio; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto

    2015-01-01

    Neurogenic orthostatic hypotension (nOH) is a fall in blood pressure on standing due to reduced norepinephrine release from sympathetic nerve terminals. nOH is a feature of several neurological disorders that affect the autonomic nervous system, most notably Parkinson disease (PD), multiple system atrophy, pure autonomic failure and other autonomic neuropathies. Droxidopa, an orally active synthetic amino acid that is converted to norepinephrine by the enzyme aromatic L-amino acid decarboxylase (dopa-decarboxylase), was recently approved by the FDA for the short-term treatment of nOH. It is presumed to raise blood pressure by acting at the neurovascular junction to increase vascular tone. This review summarizes the pharmacological properties of droxidopa, its mechanism of action, and the efficacy and safety results of clinical trials. PMID:26092297

  16. Droxidopa in neurogenic orthostatic hypotension.

    PubMed

    Kaufmann, Horacio; Norcliffe-Kaufmann, Lucy; Palma, Jose-Alberto

    2015-01-01

    Neurogenic orthostatic hypotension (nOH) is a fall in blood pressure (BP) on standing due to reduced norepinephrine release from sympathetic nerve terminals. nOH is a feature of several neurological disorders that affect the autonomic nervous system, most notably Parkinson disease (PD), multiple system atrophy (MSA), pure autonomic failure (PAF), and other autonomic neuropathies. Droxidopa, an orally active synthetic amino acid that is converted to norepinephrine by the enzyme aromatic L-amino acid decarboxylase (dopa-decarboxylase), was recently approved by the FDA for the short-term treatment of nOH. It is presumed to raise BP by acting at the neurovascular junction to increase vascular tone. This article summarizes the pharmacological properties of droxidopa, its mechanism of action, and the efficacy and safety results of clinical trials.

  17. The three-dimensional structure of "Lonely Guy" from Claviceps purpurea provides insights into the phosphoribohydrolase function of Rossmann fold-containing lysine decarboxylase-like proteins.

    PubMed

    Dzurová, Lenka; Forneris, Federico; Savino, Simone; Galuszka, Petr; Vrabka, Josef; Frébort, Ivo

    2015-08-01

    The recently discovered cytokinin (CK)-specific phosphoribohydrolase "Lonely Guy" (LOG) is a key enzyme of CK biosynthesis, converting inactive CK nucleotides into biologically active free bases. We have determined the crystal structures of LOG from Claviceps purpurea (cpLOG) and its complex with the enzymatic product phosphoribose. The structures reveal a dimeric arrangement of Rossmann folds, with the ligands bound to large pockets at the interface between cpLOG monomers. Structural comparisons highlight the homology of cpLOG to putative lysine decarboxylases. Extended sequence analysis enabled identification of a distinguishing LOG sequence signature. Taken together, our data suggest phosphoribohydrolase activity for several proteins of unknown function. © 2015 Wiley Periodicals, Inc.

  18. Flooding of the root system in soybean: biochemical and molecular aspects of N metabolism in the nodule during stress and recovery.

    PubMed

    Souza, Sarah C R; Mazzafera, Paulo; Sodek, Ladaslav

    2016-05-01

    Nitrogen fixation of the nodule of soybean is highly sensitive to oxygen deficiency such as provoked by waterlogging of the root system. This study aimed to evaluate the effects of flooding on N metabolism in nodules of soybean. Flooding resulted in a marked decrease of asparagine (the most abundant amino acid) and a concomitant accumulation of γ-aminobutyric acid (GABA). Flooding also resulted in a strong reduction of the incorporation of (15)N2 in amino acids. Nodule amino acids labelled before flooding rapidly lost (15)N during flooding, except for GABA, which initially increased and declined slowly thereafter. Both nitrogenase activity and the expression of nifH and nifD genes were strongly decreased on flooding. Expression of the asparagine synthetase genes SAS1 and SAS2 was reduced, especially the former. Expression of genes encoding the enzyme glutamic acid decarboxylase (GAD1, GAD4, GAD5) was also strongly suppressed except for GAD2 which increased. Almost all changes observed during flooding were reversible after draining. Possible changes in asparagine and GABA metabolism that may explain the marked fluctuations of these amino acids during flooding are discussed. It is suggested that the accumulation of GABA has a storage role during flooding stress.

  19. Glutamic acid decarboxylase autoantibody-positivity post-partum is associated with impaired β-cell function in women with gestational diabetes mellitus.

    PubMed

    Lundberg, T P; Højlund, K; Snogdal, L S; Jensen, D M

    2015-02-01

    To investigate whether the presence of glutamic acid decarboxylase (GAD) autoantibodies post-partum in women with prior gestational diabetes mellitus was associated with changes in metabolic characteristics, including β-cell function and insulin sensitivity. During 1997-2010, 407 women with gestational diabetes mellitus were offered a 3-month post-partum follow-up including anthropometrics, serum lipid profile, HbA1c and GAD autoantibodies, as well as a 2-h oral glucose tolerance test (OGTT) with blood glucose, serum insulin and C-peptide at 0, 30 and 120 min. Indices of insulin sensitivity and insulin secretion were estimated to assess insulin secretion adjusted for insulin sensitivity, disposition index (DI). Twenty-two (5.4%) women were positive for GAD autoantibodies (GAD+ve) and the remainder (94.6%) were negative for GAD autoantibodies (GAD-ve). The two groups had similar age and prevalence of diabetes mellitus. Women who were GAD+ve had significantly higher 2-h OGTT glucose concentrations during their index-pregnancy (10.5 vs. 9.8 mmol/l, P = 0.001), higher fasting glucose (5.2 vs. 5.0 mmol/l, P = 0.02) and higher 2-h glucose (7.8 vs. 7.1 mmol/l, P = 0.05) post-partum. Fasting levels of C-peptide and insulin were lower in GAD+ve women compared with GAD-ve women (520 vs. 761 pmol/l, P = 0.02 and 33 vs. 53 pmol/l, P = 0.05) Indices of insulin sensitivity were similar in GAD+ve and GAD-ve women, whereas all estimates of DI were significantly reduced in GAD+ve women. GAD+ve women had higher glucose levels and impaired insulin secretion adjusted for insulin sensitivity (DI) compared with GAD-ve women. The combination of OGTT and GAD autoantibodies post-partum identify women with impaired β-cell function. These women should be followed with special focus on development of Type 1 diabetes. © 2014 The Authors. Diabetic Medicine © 2014 Diabetes UK.

  20. Biogenic amines in italian pecorino cheese.

    PubMed

    Schirone, Maria; Tofalo, Rosanna; Visciano, Pierina; Corsetti, Aldo; Suzzi, Giovanna

    2012-01-01

    The quality of distinctive artisanal cheeses is closely associated with the territory of production and its traditions. Pedoclimatic characteristics, genetic autochthonous variations, and anthropic components create an environment so specific that it would be extremely difficult to reproduce elsewhere. Pecorino cheese is included in this sector of the market and is widely diffused in Italy (∼62.000t of production in 2010). Pecorino is a common name given to indicate Italian cheeses made exclusively from pure ewes' milk characterized by a high content of fat matter and it is mainly produced in the middle and south of Italy by traditional procedures from raw or pasteurized milk. The microbiota plays a major role in the development of the organoleptic characteristics of the cheese but it can also be responsible for the accumulation of undesirable substances, such as biogenic amines (BA). Bacterial amino acid decarboxylase activity and BA content have to be investigated within the complex microbial community of raw milk cheese for different cheese technologies. The results emphasize the necessity of controlling the indigenous bacterial population responsible for high production of BA and the use of competitive adjunct cultures could be suggested. Several factors can contribute to the qualitative and quantitative profiles of BA's in Pecorino cheese such as environmental hygienic conditions, pH, salt concentration, water activity, fat content, pasteurization of milk, decarboxylase microorganisms, starter cultures, temperature and time of ripening, storage, part of the cheese (core, edge), and the presence of cofactor (pyridoxal phosphate, availability of aminases and deaminases). In fact physico-chemical parameters seem to favor biogenic amine-positive microbiota; both of these environmental factors can easily be modulated, in order to control growth of undesirable microorganisms. Generally, the total content of BA's in Pecorino cheeses can range from about 100-2400 mg/kg, with a prevalence of toxicologically important BA's, tyramine and histamine. The presence of BA is becoming increasingly important to consumers and cheese-maker alike, due to the potential threats of toxicity to humans and consequent trade implications.

  1. Regulation of endothelial nitric oxide synthase by agmatine after transient global cerebral ischemia in rat brain.

    PubMed

    Mun, Chin Hee; Lee, Won Taek; Park, Kyung Ah; Lee, Jong Eun

    2010-09-01

    Nitric oxide (NO) production by endothelial nitric oxide synthase (eNOS) plays a protective role in cerebral ischemia by maintaining vascular permeability, whereas NO derived from neuronal and inducible NOS is neurotoxic and can participate in neuronal damage occurring in ischemia. Matrix metalloproteinases (MMPs) are up-regulated by ischemic injury and degrade the basement membrane if brain vessels to promote cell death and tissue injury. We previously reported that agmatine, synthesized from L-arginine by arginine decarboxylase (ADC) which is expressed in endothelial cells, has shown a direct increased eNOS expression and decreased MMPs expression in bEnd3 cells. But, there are few reports about the regulation of eNOS by agmatine in ischemic animal model. In the present study, we examined the expression of eNOS and MMPs by agmatine treatment after transient global ischemia in vivo. Global ischemia was induced with four vessel occlusion (4-VO) and agmatine (100 mg/kg) was administered intraperitoneally at the onset of reperfusion. The animals were euthanized at 6 and 24 hours after global ischemia and prepared for other analysis. Global ischemia led severe neuronal damage in the rat hippocampus and cerebral cortex, but agmatine treatment protected neurons from ischemic injury. Moreover, the level and expression of eNOS was increased by agmatine treatment, whereas inducible NOS (iNOS) and MMP-9 protein expressions were decreased in the brain. These results suggest that agmatine protects microvessels in the brain by activation eNOS as well as reduces extracellular matrix degradation during the early phase of ischemic insult.

  2. Clusterin deficiency induces lipid accumulation and tissue damage in kidney.

    PubMed

    Heo, Jung-Yoon; Kim, Ji-Eun; Dan, Yongwook; Kim, Yong-Woon; Kim, Jong-Yeon; Cho, Kyu Hyang; Bae, Young Kyung; Im, Seung-Soon; Liu, Kwang-Hyeon; Song, In-Hwan; Kim, Jae-Ryong; Lee, In-Kyu; Park, So-Young

    2018-05-01

    Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease. © 2018 Society for Endocrinology.

  3. Structure-Activity Relationships of Orotidine-5′-Monophosphate Decarboxylase Inhibitors as Anticancer Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bello, A.; Konforte, D; Poduch, E

    2009-01-01

    A series of 6-substituted and 5-fluoro-6-substituted uridine derivatives were synthesized and evaluated for their potential as anticancer agents. The designed molecules were synthesized from either fully protected uridine or the corresponding 5-fluorouridine derivatives. The mononucleotide derivatives were used for enzyme inhibition investigations against ODCase. Anticancer activities of all the synthesized derivatives were evaluated using the nucleoside forms of the inhibitors. 5-Fluoro-UMP was a very weak inhibitor of ODCase. 6-Azido-5-fluoro and 5-fluoro-6-iodo derivatives are covalent inhibitors of ODCase, and the active site Lys145 residue covalently binds to the ligand after the elimination of the 6-substitution. Among the synthesized nucleoside derivatives, 6-azido-5-fluoro,more » 6-amino-5-fluoro, and 6-carbaldehyde-5-fluoro derivatives showed potent anticancer activities in cell-based assays against various leukemia cell lines. On the basis of the overall profile, 6-azido-5-fluoro and 6-amino-5-fluoro uridine derivatives exhibited potential for further investigations.« less

  4. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    PubMed

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  5. A comparison of honeybee (Apis mellifera) queen, worker and drone larvae by RNA-Seq.

    PubMed

    He, Xu-Jiang; Jiang, Wu-Jun; Zhou, Mi; Barron, Andrew B; Zeng, Zhi-Jiang

    2017-11-06

    Honeybees (Apis mellifera) have haplodiploid sex determination: males develop from unfertilized eggs and females develop from fertilized ones. The differences in larval food also determine the development of females. Here we compared the total somatic gene expression profiles of 2-day and 4-day-old drone, queen and worker larvae by RNA-Seq. The results from a co-expression network analysis on all expressed genes showed that 2-day-old drone and worker larvae were closer in gene expression profiles than 2-day-old queen larvae. This indicated that for young larvae (2-day-old) environmental factors such as larval diet have a greater effect on gene expression profiles than ploidy or sex determination. Drones had the most distinct gene expression profiles at the 4-day larval stage, suggesting that haploidy, or sex dramatically affects the gene expression of honeybee larvae. Drone larvae showed fewer differences in gene expression profiles at the 2-day and 4-day time points than the worker and queen larval comparisons (598 against 1190 and 1181), suggesting a different pattern of gene expression regulation during the larval development of haploid males compared to diploid females. This study indicates that early in development the queen caste has the most distinct gene expression profile, perhaps reflecting the very rapid growth and morphological specialization of this caste compared to workers and drones. Later in development the haploid male drones have the most distinct gene expression profile, perhaps reflecting the influence of ploidy or sex determination on gene expression. © 2017 Institute of Zoology, Chinese Academy of Sciences.

  6. Early diffusion of gene expression profiling in breast cancer patients associated with areas of high income inequality.

    PubMed

    Ponce, Ninez A; Ko, Michelle; Liang, Su-Ying; Armstrong, Joanne; Toscano, Michele; Chanfreau-Coffinier, Catherine; Haas, Jennifer S

    2015-04-01

    With the Affordable Care Act reducing coverage disparities, social factors could prominently determine where and for whom innovations first diffuse in health care markets. Gene expression profiling is a potentially cost-effective innovation that guides chemotherapy decisions in early-stage breast cancer, but adoption has been uneven across the United States. Using a sample of commercially insured women, we evaluated whether income inequality in metropolitan areas was associated with receipt of gene expression profiling during its initial diffusion in 2006-07. In areas with high income inequality, gene expression profiling receipt was higher than elsewhere, but it was associated with a 10.6-percentage-point gap between high- and low-income women. In areas with low rates of income inequality, gene expression profiling receipt was lower, with no significant differences by income. Even among insured women, income inequality may indirectly shape diffusion of gene expression profiling, with benefits accruing to the highest-income patients in the most unequal places. Policies reducing gene expression profiling disparities should address low-inequality areas and, in unequal places, practice settings serving low-income patients. Project HOPE—The People-to-People Health Foundation, Inc.

  7. Structural Characterization of the Molecular Events during a Slow Substrate-Product Transition in Orotidine 5'-Monophosphate Decarboxylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P

    2009-04-06

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6more » of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.« less

  8. Structural characterization of the molecular events during a slow substrate-product transition in orotidine 5'-monophosphate decarboxylase.

    PubMed

    Fujihashi, Masahiro; Wei, Lianhu; Kotra, Lakshmi P; Pai, Emil F

    2009-04-17

    Crystal structures of substrate-product complexes of Methanobacterium thermoautotrophicum orotidine 5'-monophosphate decarboxylase, obtained at various steps in its catalysis of the unusual transformation of 6-cyano-uridine 5'-monophosphate (UMP) into barbituric acid ribosyl monophosphate, show that the cyano substituent of the substrate, when bound to the active site, is first bent significantly from the plane of the pyrimidine ring and then replaced by an oxygen atom. Although the K72A and D70A/K72A mutants are either catalytically impaired or even completely inactive, they still display bending of the C6 substituent. Interestingly, high-resolution structures of the D70A and D75N mutants revealed a covalent bond between C6 of UMP and the Lys72 side chain after the -CN moiety's release. The same covalent bond was observed when the native enzyme was incubated with 6-azido-UMP and 6-iodo-UMP; in contrast, the K72A mutant transformed 6-iodo-UMP to barbituric acid ribosyl 5'-monophosphate. These results demonstrate that, given a suitable environment, native orotidine 5'-monophosphate decarboxylase and several of its mutants are not restricted to the physiologically relevant decarboxylation; they are able to catalyze even nucleophilic substitution reactions but consistently maintain distortion on the C6 substituent as an important feature of catalysis.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Arjun K.; Agnihotri, Pragati; Srivastava, Vijay Kumar

    Highlights: • L. donovani spermidine synthase and S-adenosylmethionine decarboxylase have been cloned and purified. • S-adenosylmethionine decarboxylase has autocatalytic property. • GST pull down assay shows the two proteins to form a metabolon. • Isothermal titration calorimetry shows that binding was exothermic having K{sub d} value of 0.4 μM. • Interaction confirmed by fluorescence spectroscopy and size exclusion chromatography. - Abstract: Polyamine biosynthesis pathway has long been considered an essential drug target for trypanosomatids including Leishmania. S-adenosylmethionine decarboxylase (AdoMetDc) and spermidine synthase (SpdSyn) are enzymes of this pathway that catalyze successive steps, with the product of the former, decarboxylated S-adenosylmethioninemore » (dcSAM), acting as an aminopropyl donor for the latter enzyme. Here we have explored the possibility of and identified the protein–protein interaction between SpdSyn and AdoMetDc. The protein–protein interaction has been identified using GST pull down assay. Isothermal titration calorimetry reveals that the interaction is thermodynamically favorable. Fluorescence spectroscopy studies also confirms the interaction, with SpdSyn exhibiting a change in tertiary structure with increasing concentrations of AdoMetDc. Size exclusion chromatography suggests the presence of the complex as a hetero-oligomer. Taken together, these results suggest that the enzymes indeed form a heteromer. Computational analyses suggest that this complex differs significantly from the corresponding human complex, implying that this complex could be a better therapeutic target than the individual enzymes.« less

  10. Alkylation of an active-site cysteinyl residue during substrate-dependent inactivation of Escherichia coli S-adenosylmethionine decarboxylase.

    PubMed

    Diaz, E; Anton, D L

    1991-04-23

    S-Adenosylmethionine decarboxylase from Escherichia coli is a member of a small class of enzymes that uses a pyruvoyl prosthetic group. The pyruvoyl group is proposed to form a Schiff base with the substrate and then act as an electron sink facilitating decarboxylation. We have previously shown that once every 6000-7000 turnovers the enzyme undergoes an inactivation that results in a transaminated pyruvoyl group and the formation of an acrolein-like species from the methionine moiety. The acrolein then covalently alkylates the enzyme [Anton, D. L., & Kutny, R. (1987) Biochemistry 26, 6444]. After reduction of the alkylated enzyme with NaBH4, a tryptic peptide with the sequence Ala-Asp-Ile-Glu-Val-Ser-Thr-[S-(3-hydroxypropyl)Cys]-Gly-Val-Ile-Ser-Pro - Leu-Lys was isolated. This corresponds to acrolein alkylation of a cysteine residue in the second tryptic peptide from the NH2 terminal of the alpha-subunit [Anton, D. L., & Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822]. The modified residue derived is from Cys-140 of the proenzyme [Tabor, C. W., & Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040] and lies in the only sequence conserved between rat liver and E. coli S-adenosylmethionine decarboxylase [Pajunen et al. (1988) J. Biol. Chem. 263, 17040-17049]. We suggest that the alkylated Cys residue could have a role in the catalytic mechanism.

  11. Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast.

    PubMed

    Kannan, Muthukumar; Riekhof, Wayne R; Voelker, Dennis R

    2015-02-01

    Over the past two decades, most of the genes specifying lipid synthesis and metabolism in yeast have been identified and characterized. Several of these biosynthetic genes and their encoded enzymes have provided valuable tools for the genetic and biochemical dissection of interorganelle lipid transport processes in yeast. One such pathway involves the synthesis of phosphatidylserine (PtdSer) in the endoplasmic reticulum (ER), and its non-vesicular transport to the site of phosphatidylserine decarboxylase2 (Psd2p) in membranes of the Golgi and endosomal sorting system. In this review, we summarize the identification and characterization of the yeast phosphatidylserine decarboxylases, and examine their role in studies of the transport-dependent pathways of de novo synthesis of phosphatidylethanolamine (PtdEtn). The emerging picture of the Psd2p-specific transport pathway is one in which the enzyme and its non-catalytic N-terminal domains act as a hub to nucleate the assembly of a multiprotein complex, which facilitates PtdSer transport at membrane contact sites between the ER and Golgi/endosome membranes. After transport to the catalytic site of Psd2p, PtdSer is decarboxylated to form PtdEtn, which is disseminated throughout the cell to support the structural and functional needs of multiple membranes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Optimization of monomethoxy polyethyleneglycol-modified oxalate decarboxylase by response surface methodology.

    PubMed

    Long, Han; Cai, XingHua; Yang, Hui; He, JunBin; Wu, Jia; Lin, RiHui

    2017-09-01

    In order to improve the stability of oxalate decarboxylase (Oxdc), response surface methodology (RSM), based on a four-factor three-level Box-Behnken central composite design was used to optimize the reaction conditions of oxalate decarboxylase (Oxdc) modified with monomethoxy polyethyleneglycol (mPEG5000). Four independent variables such as the ratio of mPEG-aldehyde to Oxdc, reaction time, temperature, and reaction pH were investigated in this work. The structure of modified Oxdc was identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy, the stability of the modified Oxdc was also investigated. The optimal conditions were as follows: the mole ratio of mPEG-aldehyde to Oxdc of 1:47.6, time of 13.1 h, temperature at 29.9 °C, and the reaction pH of 5.3. Under optimal conditions, experimental modified rate (MR = 73.69%) and recovery rate (RR = 67.58%) were matched well with the predicted value (MR = 75.11%) and (RR = 69.17%). SDS-PAGE and FTIR analysis showed that mPEG was covalently bound to the Oxdc. Compared with native Oxdc, the modified Oxdc (mPEG-Oxdc) showed higher thermal stability and better tolerance to trypsin or different pH treatment. This work will provide a further theoretical reference for enzyme modification and conditional optimization.

  13. Structural insights into the Escherichia coli lysine decarboxylases and molecular determinants of interaction with the AAA+ ATPase RavA

    PubMed Central

    Kandiah, Eaazhisai; Carriel, Diego; Perard, Julien; Malet, Hélène; Bacia, Maria; Liu, Kaiyin; Chan, Sze W. S.; Houry, Walid A.; Ollagnier de Choudens, Sandrine; Elsen, Sylvie; Gutsche, Irina

    2016-01-01

    The inducible lysine decarboxylase LdcI is an important enterobacterial acid stress response enzyme whereas LdcC is its close paralogue thought to play mainly a metabolic role. A unique macromolecular cage formed by two decamers of the Escherichia coli LdcI and five hexamers of the AAA+ ATPase RavA was shown to counteract acid stress under starvation. Previously, we proposed a pseudoatomic model of the LdcI-RavA cage based on its cryo-electron microscopy map and crystal structures of an inactive LdcI decamer and a RavA monomer. We now present cryo-electron microscopy 3D reconstructions of the E. coli LdcI and LdcC, and an improved map of the LdcI bound to the LARA domain of RavA, at pH optimal for their enzymatic activity. Comparison with each other and with available structures uncovers differences between LdcI and LdcC explaining why only the acid stress response enzyme is capable of binding RavA. We identify interdomain movements associated with the pH-dependent enzyme activation and with the RavA binding. Multiple sequence alignment coupled to a phylogenetic analysis reveals that certain enterobacteria exert evolutionary pressure on the lysine decarboxylase towards the cage-like assembly with RavA, implying that this complex may have an important function under particular stress conditions. PMID:27080013

  14. The influence of nerve section on the metabolism of polyamines in rat diaphragm muscle.

    PubMed Central

    Hopkins, D; Manchester, K L

    1981-01-01

    Concentrations of spermidine, spermine and putrescine have been measured in rat diaphragm muscle after unilateral nerve section. The concentration of putrescine increased approx. 10-fold 2 days after nerve section, that of spermidine about 3-fold by day 3, whereas an increase in the concentration of spermine was only observed after 7-10 days. It was not possible to show enhanced uptake of either exogenous putrescine or spermidine by the isolated tissue during the hypertrophy. Consistent with the accumulation of putrescine, activity of ornithine decarboxylase increased within 1 day of nerve section, was maximally elevated by the second day and then declined. Synthesis of spermidine from [14C]putrescine and either methionine or S-adenosylmethionine bt diaphragm cytosol rose within 1 day of nerve section, but by day 3 had returned to normal or below normal values. Activity of adenosylmethionine decarboxylase similarly increased within 1 day of nerve section, but by day 3 had declined to below normal values. Activity of methionine adenosyltransferase was elevated throughout the period studied. The concentration of S-adenosylmethionine was likewise enhanced during hypertrophy. Administration of methylglyoxal bis(guanylhydrazone) produced a marked increase in adenosylmethionine decarboxylase activity and a large increase in putrescine concentration, but did not prevent the rise in spermidine concentration produced by denervation. Possible regulatory mechanisms of polyamine metabolism consistent with the observations are discussed. PMID:7316998

  15. Hematopoietic progenitors express neural genes

    PubMed Central

    Goolsby, James; Marty, Marie C.; Heletz, Dafna; Chiappelli, Joshua; Tashko, Gerti; Yarnell, Deborah; Fishman, Paul S.; Dhib-Jalbut, Suhayl; Bever, Christopher T.; Pessac, Bernard; Trisler, David

    2003-01-01

    Bone marrow, or cells selected from bone marrow, were reported recently to give rise to cells with a neural phenotype after in vitro treatment with neural-inducing factors or after delivery into the brain. However, we showed previously that untreated bone marrow cells express products of the neural myelin basic protein gene, and we demonstrate here that a subset of ex vivo bone marrow cells expresses the neurogenic transcription factor Pax-6 as well as neuronal genes encoding neurofilament H, NeuN (neuronal nuclear protein), HuC/HuD (Hu-antigen C/Hu-antigen D), and GAD65 (glutamic acid decarboxylase 65), as well as the oligodendroglial gene encoding CNPase (2′,3′ cyclic nucleotide 3′-phosphohydrolase). In contrast, astroglial glial fibrillary acidic protein (GFAP) was not detected. These cells also were CD34+, a marker of hematopoietic stem cells. Cultures of these highly proliferative CD34+ cells, derived from adult mouse bone marrow, uniformly displayed a phenotype comparable with that of hematopoietic progenitor cells (CD45+, CD34+, Sca-1+, AA4.1+, cKit+, GATA-2+, and LMO-2+). The neuronal and oligodendroglial genes expressed in ex vivo bone marrow also were expressed in all cultured CD34+ cells, and GFAP was not observed. After CD34+ cell transplantation into adult brain, neuronal or oligodendroglial markers segregated into distinct nonoverlapping cell populations, whereas astroglial GFAP appeared, in the absence of other neural markers, in a separate set of implanted cells. Thus, neuronal and oligodendroglial gene products are present in a subset of bone marrow cells, and the expression of these genes can be regulated in brain. The fact that these CD34+ cells also express transcription factors (Rex-1 and Oct-4) that are found in early development elicits the hypothesis that they may be pluripotent embryonic-like stem cells. PMID:14634211

  16. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Indro Neil; Landick, Robert

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  17. Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.

    PubMed

    Hoftman, Gil D; Volk, David W; Bazmi, H Holly; Li, Siyu; Sampson, Allan R; Lewis, David A

    2015-01-01

    Schizophrenia is a neurodevelopmental disorder with altered expression of GABA-related genes in the prefrontal cortex (PFC). However, whether these gene expression abnormalities reflect disturbances in postnatal developmental processes before clinical onset or arise as a consequence of clinical illness remains unclear. Expression levels for 7 GABA-related transcripts (vesicular GABA transporter [vGAT], GABA membrane transporter [GAT1], GABAA receptor subunit α1 [GABRA1] [novel in human and monkey cohorts], glutamic acid decarboxylase 67 [GAD67], parvalbumin, calretinin, and somatostatin [previously reported in human cohort, but not in monkey cohort]) were quantified in the PFC from 42 matched pairs of schizophrenia and comparison subjects and from 49 rhesus monkeys ranging in age from 1 week postnatal to adulthood. Levels of vGAT and GABRA1, but not of GAT1, messenger RNAs (mRNAs) were lower in the PFC of the schizophrenia subjects. As previously reported, levels of GAD67, parvalbumin, and somatostatin, but not of calretinin, mRNAs were also lower in these subjects. Neither illness duration nor age accounted for the levels of the transcripts with altered expression in schizophrenia. In monkey PFC, developmental changes in expression levels of many of these transcripts were in the opposite direction of the changes observed in schizophrenia. For example, mRNA levels for vGAT, GABRA1, GAD67, and parvalbumin all increased with age. Together with published reports, these findings support the interpretation that the altered expression of GABA-related transcripts in schizophrenia reflects a blunting of normal postnatal development changes, but they cannot exclude a decline during the early stages of clinical illness. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. OptSSeq: High-throughput sequencing readout of growth enrichment defines optimal gene expression elements for homoethanologenesis

    DOE PAGES

    Ghosh, Indro Neil; Landick, Robert

    2016-07-16

    The optimization of synthetic pathways is a central challenge in metabolic engineering. OptSSeq (Optimization by Selection and Sequencing) is one approach to this challenge. OptSSeq couples selection of optimal enzyme expression levels linked to cell growth rate with high-throughput sequencing to track enrichment of gene expression elements (promoters and ribosomebinding sites) from a combinatorial library. OptSSeq yields information on both optimal and suboptimal enzyme levels, and helps identify constraints that limit maximal product formation. Here we report a proof-of-concept implementation of OptSSeq using homoethanologenesis, a two-step pathway consisting of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (Adh) that converts pyruvate tomore » ethanol and is naturally optimized in the bacterium Zymomonas mobilis. We used OptSSeq to determine optimal gene expression elements and enzyme levels for Z. mobilis Pdc, AdhA, and AdhB expressed in Escherichia coli. By varying both expression signals and gene order, we identified an optimal solution using only Pdc and AdhB. We resolved current uncertainty about the functions of the Fe 2+-dependent AdhB and Zn 2+- dependent AdhA by showing that AdhB is preferred over AdhA for rapid growth in both E. coli and Z. mobilis. Finally, by comparing predictions of growth-linked metabolic flux to enzyme synthesis costs, we established that optimal E. coli homoethanologenesis was achieved by our best pdc-adhB expression cassette and that the remaining constraints lie in the E. coli metabolic network or inefficient Pdc or AdhB function in E. coli. Furthermore, OptSSeq is a general tool for synthetic biology to tune enzyme levels in any pathway whose optimal function can be linked to cell growth or survival.« less

  19. RNA-Stabilized Whole Blood Samples but Not Peripheral Blood Mononuclear Cells Can Be Stored for Prolonged Time Periods Prior to Transcriptome Analysis

    PubMed Central

    Debey-Pascher, Svenja; Hofmann, Andrea; Kreusch, Fatima; Schuler, Gerold; Schuler-Thurner, Beatrice; Schultze, Joachim L.; Staratschek-Jox, Andrea

    2011-01-01

    Microarray-based transcriptome analysis of peripheral blood as surrogate tissue has become an important approach in clinical implementations. However, application of gene expression profiling in routine clinical settings requires careful consideration of the influence of sample handling and RNA isolation methods on gene expression profile outcome. We evaluated the effect of different sample preservation strategies (eg, cryopreservation of peripheral blood mononuclear cells or freezing of PAXgene-stabilized whole blood samples) on gene expression profiles. Expression profiles obtained from cryopreserved peripheral blood mononuclear cells differed substantially from those of their nonfrozen counterpart samples. Furthermore, expression profiles in cryopreserved peripheral blood mononuclear cell samples were found to undergo significant alterations with increasing storage period, whereas long-term freezing of PAXgene RNA stabilized whole blood samples did not significantly affect stability of gene expression profiles. This report describes important technical aspects contributing toward the establishment of robust and reliable guidance for gene expression studies using peripheral blood and provides a promising strategy for reliable implementation in routine handling for diagnostic purposes. PMID:21704280

  20. Proton transfer from C-6 of uridine 5'-monophosphate catalyzed by orotidine 5'-monophosphate decarboxylase: formation and stability of a vinyl carbanion intermediate and the effect of a 5-fluoro substituent.

    PubMed

    Tsang, Wing-Yin; Wood, B McKay; Wong, Freeman M; Wu, Weiming; Gerlt, John A; Amyes, Tina L; Richard, John P

    2012-09-05

    The exchange for deuterium of the C-6 protons of uridine 5'-monophosphate (UMP) and 5-fluorouridine 5'-monophosphate (F-UMP) catalyzed by yeast orotidine 5'-monophosphate decarboxylase (ScOMPDC) at pD 6.5-9.3 and 25 °C was monitored by (1)H NMR spectroscopy. Deuterium exchange proceeds by proton transfer from C-6 of the bound nucleotide to the deprotonated side chain of Lys-93 to give the enzyme-bound vinyl carbanion. The pD-rate profiles for k(cat) give turnover numbers for deuterium exchange into enzyme-bound UMP and F-UMP of 1.2 × 10(-5) and 0.041 s(-1), respectively, so that the 5-fluoro substituent results in a 3400-fold increase in the first-order rate constant for deuterium exchange. The binding of UMP and F-UMP to ScOMPDC results in 0.5 and 1.4 unit decreases, respectively, in the pK(a) of the side chain of the catalytic base Lys-93, showing that these nucleotides bind preferentially to the deprotonated enzyme. We also report the first carbon acid pK(a) values for proton transfer from C-6 of uridine (pK(CH) = 28.8) and 5-fluorouridine (pK(CH) = 25.1) in aqueous solution. The stabilizing effects of the 5-fluoro substituent on C-6 carbanion formation in solution (5 kcal/mol) and at ScOMPDC (6 kcal/mol) are similar. The binding of UMP and F-UMP to ScOMPDC results in a greater than 5 × 10(9)-fold increase in the equilibrium constant for proton transfer from C-6, so that ScOMPDC stabilizes the bound vinyl carbanions, relative to the bound nucleotides, by at least 13 kcal/mol. The pD-rate profile for k(cat)/K(m) for deuterium exchange into F-UMP gives the intrinsic second-order rate constant for exchange catalyzed by the deprotonated enzyme as 2300 M(-1) s(-1). This was used to calculate a total rate acceleration for ScOMPDC-catalyzed deuterium exchange of 3 × 10(10) M(-1), which corresponds to a transition-state stabilization for deuterium exchange of 14 kcal/mol. We conclude that a large portion of the total transition-state stabilization for the decarboxylation of orotidine 5'-monophosphate can be accounted for by stabilization of the enzyme-bound vinyl carbanion intermediate of the stepwise reaction.

  1. Proton Transfer from C-6 of Uridine 5′-Monophosphate Catalyzed by Orotidine 5′-Monophosphate Decarboxylase: Formation and Stability of a Vinyl Carbanion Intermediate and the Effect of a 5-Fluoro Substituent

    PubMed Central

    Tsang, Wing-Yin; Wood, B. McKay; Wong, Freeman M.; Wu, Weiming; Gerlt, John A.; Amyes, Tina L.; Richard, John P.

    2012-01-01

    The exchange for deuterium of the C-6 protons of uridine 5′-monophosphate (UMP) and 5-fluorouridine 5′-monophosphate (F-UMP) catalyzed by yeast orotidine 5′-monophosphate decarboxylase (ScOMPDC) at pD 6.5 – 9.3 and 25 °C was monitored by 1H NMR spectroscopy. Deuterium exchange proceeds by proton transfer from C-6 of the bound nucleotide to the deprotonated side chain of Lys-93 to give the enzyme-bound vinyl carbanion. The pD-rate profiles for kcat give turnover numbers for deuterium exchange into enzyme-bound UMP and F-UMP of 1.2 × 10−5 and 0.041 s−1, respectively, so that the 5-fluoro substituent results in a 3400-fold increase in the first-order rate constant for deuterium exchange. The binding of UMP and F-UMP to ScOMPDC results in 0.5 and 1.4 unit decreases, respectively, in the pKa of the side chain of the catalytic base Lys-93, showing that these nucleotides bind preferentially to the deprotonated enzyme. We also report the first carbon acid pKas for proton transfer from C-6 of uridine (pKCH = 28.8) and 5-fluorouridine (pKCH = 25.1) in aqueous solution. The stabilizing effects of the 5-fluoro substituent on C-6 carbanion formation in solution (5 kcal/mol) and at ScOMPDC (6 kcal/mol) are similar. The binding of UMP and F-UMP to ScOMPDC results in a greater than 5 × 109-fold increase in the equilibrium constant for proton transfer from C-6 so that ScOMPDC stabilizes the bound vinyl carbanions, relative to the bound nucleotides, by at least 13 kcal/mol. The pD-rate profile for kcat/Km for deuterium exchange into F-UMP gives the intrinsic second-order rate constant for exchange catalyzed by the deprotonated enzyme as 2300 M−1 s−1. This was used to calculate a total rate acceleration for ScOMPDC-catalyzed deuterium exchange of 3 × 1010 M−1, which corresponds to a transition state stabilization for deuterium exchange of 14 kcal/mol. We conclude that a large portion of the total transition state stabilization for the decarboxylation of orotidine 5′-monophosphate can be accounted for by stabilization of the enzyme-bound vinyl carbanion intermediate of the stepwise reaction. PMID:22812629

  2. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5'-monophosphate decarboxylase: a two-part substrate approach.

    PubMed

    Barnett, Shonoi A; Amyes, Tina L; Wood, Bryant M; Gerlt, John A; Richard, John P

    2008-07-29

    Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.

  3. Anatomical mapping of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in outer hair cell efferents in adult rats.

    PubMed

    Dannhof, B J; Roth, B; Bruns, V

    1991-10-01

    The distribution of choline acetyltransferase (ChAT)-like and glutamate decarboxylase (GAD)-like immunoreactivity in the cochleae of 15 adult Wistar white rats was investigated using the peroxidase-antiperoxidase (PAP) technique. A monoclonal antibody to ChAT and a polyclonal antiserum to GAD were used. Immunoreaction was investigated quantitatively, in the electron microscope, on tangential sections of the tunnel of Corti and the rows of outer hair cells. ChAT-like and GAD-like immunoreactivity was found in all efferent nerve fibres in the tunnel of Corti and in all efferent synapses on the outer hair cells. A coexistence of ChAT and GAD in the efferent system to the outer hair cells of the rat is therefore assumed.

  4. Hepatoerythropoietic porphyria precipitated by viral hepatitis.

    PubMed Central

    Hift, R J; Meissner, P N; Todd, G

    1993-01-01

    Porphyria cutanea tarda (PCT), the condition resulting from a deficiency of hepatic uroporphyrinogen decarboxylase activity, is the commonest form of porphyria. Both acquired and familial form exist and are commonly associated in adults with liver disease and hepatic iron overload. The condition is extremely rare in children; most cases of childhood PCT are familial and some particularly severe cases have been shown to have a hepatoerythropoietic porphyria or homozygous uroporphyrinogen decarboxylase deficiency. A case is described of hepatoerythropoietic porphyria in which the disease was first precipitated at the age of two by a coincidental hepatitis A infection and improved as the hepatitis cleared. This paper reviews the evidence that viral hepatitis may precipitate overt PCT in children in a manner analogous to the precipitation of PCT in adults by alcohol associated liver disease. PMID:7902313

  5. Downbeating nystagmus and muscle spasms in a patient with glutamic-acid decarboxylase antibodies.

    PubMed

    Ances, Beau M; Dalmau, Josep O; Tsai, Jean; Hasbani, M Josh; Galetta, Steven L

    2005-07-01

    To report the ophthalmic findings and response to treatment in a patient with glutamic-acid decarboxylase antibodies. Case report. A 55-year-old woman developed progressive, painful, low back muscle spasms, vertical diplopia, downbeating nystagmus, and asymmetric appendicular ataxia. Downbeating nystagmus was present in primary gaze with an alternating skew deviation in lateral gaze. Serum and cerebrospinal fluid GAD antibodies were detected. Treatment with diazepam led to resolution of spasticity, whereas repeated courses of intravenous immunoglobulin improved cerebellar function, including appendicular ataxia and downbeating nystagmus. Patients with GAD antibodies may have elements of both Stiff-person syndrome (muscle rigidity and spasms) and prominent cerebellar dysfunction. Treatment with diazepam rapidly improved Stiff-person symptoms, whereas IVIg was partially effective at the early stage of cerebellar dysfunction.

  6. Active-Site Engineering of Benzaldehyde Lyase Shows That a Point Mutation Can Confer Both New Reactivity and Susceptibility to Mechanism-Based Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.

    2010-02-11

    Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active sitemore » in many ThDP-dependent decarboxylases.« less

  7. Profiling Pre-MicroRNA and Mature MicroRNA Expressions Using a Single Microarray and Avoiding Separate Sample Preparation

    PubMed Central

    Gan, Lin; Denecke, Bernd

    2013-01-01

    Mature microRNA is a crucial component in the gene expression regulation network. At the same time, microRNA gene expression and procession is regulated in a precise and collaborated way. Pre-microRNAs mediate products during the microRNA transcription process, they can provide hints of microRNA gene expression regulation or can serve as alternative biomarkers. To date, little effort has been devoted to pre-microRNA expression profiling. In this study, three human and three mouse microRNA profile data sets, based on the Affymetrix miRNA 2.0 array, have been re-analyzed for both mature and pre-microRNA signals as a primary test of parallel mature/pre-microRNA expression profiling on a single platform. The results not only demonstrated a glimpse of pre-microRNA expression in human and mouse, but also the relationship of microRNA expressions between pre- and mature forms. The study also showed a possible application of currently available microRNA microarrays in profiling pre-microRNA expression in a time and cost effective manner. PMID:27605179

  8. Biosynthesis and function of simple amides in Xenorhabdus doucetiae.

    PubMed

    Bode, Edna; He, Yue; Vo, Tien Duy; Schultz, Roland; Kaiser, Marcel; Bode, Helge B

    2017-11-01

    Xenorhabdus doucetiae, the bacterial symbiont of the entomopathogenic nematode Steinernema diaprepesi produces several different fatty acid amides. Their biosynthesis has been studied using a combination of analysis of gene deletions and promoter exchanges in X. doucetiae and heterologous expression of candidate genes in E. coli. While a decarboxylase is required for the formation of all observed phenylethylamides and tryptamides, the acyltransferase XrdE encoded in the xenorhabdin biosynthesis gene cluster is responsible for the formation of short chain acyl amides. Additionally, new, long-chain and cytotoxic acyl amides were identified in X. doucetiae infected insects and when X. doucetiae was grown in Galleria Instant Broth (GIB). When the bioactivity of selected amides was tested, a quorum sensing modulating activity was observed for the short chain acyl amides against the two different quorum sensing systems from Chromobacterium and Janthinobacterium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Arginine dependence of tumor cells: targeting a chink in cancer’s armor

    PubMed Central

    Patil, MD; Bhaumik, J; Babykutty, S; Banerjee, UC; Fukumura, D

    2017-01-01

    Arginine, one among the 20 most common natural amino acids, has a pivotal role in cellular physiology as it is being involved in numerous cellular metabolic and signaling pathways. Dependence on arginine is diverse for both tumor and normal cells. Because of decreased expression of argininosuccinate synthetase and/or ornithine transcarbamoylase, several types of tumor are auxotrophic for arginine. Deprivation of arginine exploits a significant vulnerability of these tumor cells and leads to their rapid demise. Hence, enzyme-mediated arginine depletion is a potential strategy for the selective destruction of tumor cells. Arginase, arginine deiminase and arginine decarboxylase are potential enzymes that may be used for arginine deprivation therapy. These arginine catabolizing enzymes not only reduce tumor growth but also make them susceptible to concomitantly administered anti-cancer therapeutics. Most of these enzymes are currently under clinical investigations and if successful will potentially be advanced as anti-cancer modalities. PMID:27109103

  10. Seasonal induction of alternative principal pathway for rose flower scent

    PubMed Central

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu

    2016-01-01

    Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950

  11. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The state of autotrophic ethanol production in Cyanobacteria.

    PubMed

    Dexter, J; Armshaw, P; Sheahan, C; Pembroke, J T

    2015-07-01

    Ethanol production directly from CO2 , utilizing genetically engineered photosynthetic cyanobacteria as a biocatalyst, offers significant potential as a renewable and sustainable source of biofuel. Despite the current absence of a commercially successful production system, significant resources have been deployed to realize this goal. Utilizing the pyruvate decarboxylase from Zymomonas species, metabolically derived pyruvate can be converted to ethanol. This review of both peer-reviewed and patent literature focuses on the genetic modifications utilized for metabolic engineering and the resultant effect on ethanol yield. Gene dosage, induced expression and cassette optimizat-ion have been analyzed to optimize production, with production rates of 0·1-0·5 g L(-1) day(-1) being achieved. The current 'toolbox' of molecular manipulations and future directions focusing on applicability, addressing the primary challenges facing commercialization of cyanobacterial technologies are discussed. © 2015 The Society for Applied Microbiology.

  13. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  14. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  15. Cysteamine treatment ameliorates alterations in GAD67 expression and spatial memory in heterozygous reeler mice

    PubMed Central

    Kutiyanawalla, Ammar; Promsote, Wanwisa; Terry, Alvin; Pillai, Anilkumar

    2011-01-01

    Brain derived neurotrophic factor (BDNF) signaling through its receptor, TrkB is known to regulate GABAergic function and glutamic acid decarboxylase (GAD) 67 expression in neurons. Alterations in BDNF signaling have been implicated in the pathophysiology of schizophrenia and as a result, they are a potential therapeutic target. Interestingly, heterozygous reeler mice (HRM) have decreased GAD67 expression in the frontal cortex and hippocampus and they exhibit many behavioral and neurochemical abnormalities similar to schizophrenia. In the present study, we evaluated the potential of cysteamine, a neuroprotective compound to improve the deficits in GAD67 expression and cognitive function in HRM. We found that cysteamine administration (150 mg/kg/day, through drinking water) for 30 days significantly ameliorated the decreases in GAD67, mature BDNF and full-length TrkB protein levels found in frontal cortex and hippocampus of HRM. A significant attenuation of the increased levels of truncated BDNF in frontal cortex and hippocampus, as well as truncated TrkB in frontal cortex of HRM was also observed following cysteamine treatment. In behavioral studies, HRM were impaired in a Y-maze spatial recognition memory task, but not in a spontaneous alternation task or a sensorimotor, prepulse inhibition (PPI) procedure. Cysteamine improved Y-maze spatial recognition in HRM to the level of wide-type controls and it improved PPI in both wild-type and HRM. Finally, mice deficient in TrkB, showed a reduced response to cysteamine in GAD67 expression suggesting that TrkB signaling plays an important role in GAD67 regulation by cysteamine. PMID:21777509

  16. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases.

    PubMed

    Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E

    2012-04-05

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.

  17. Reduced Chrna7 expression in mice is associated with decreases in hippocampal markers of inhibitory function: implications for neuropsychiatric diseases

    PubMed Central

    Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.

    2012-01-01

    The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319

  18. The effect of propofol postconditioning on the expression of K(+)-Cl(-)-co-transporter 2 in GABAergic inhibitory interneurons of acute ischemia/reperfusion injury rats.

    PubMed

    Wang, Hongbai; Liu, Shuying; Wang, Haiyun; Wang, Guolin; Zhu, Ai

    2015-02-09

    It has been shown in our previous study that propofol postconditioning enhanced the activity of phosphatidylinositol-3-kinase (PI3K) and prevented the internalization of GluR2 subunit of α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, thus provided neuroprotection in cerebral ischemia/reperfusion (I/R) injury. Regarding inhibitory system in CNS, K(+)-Cl(-)-co-transporter 2 (KCC2), a Cl(-) extruder, plays a critical role in gamma-aminobutyric acid (GABA) inhibitory effect in mature central neurons. However, the effect of propofol postconditioning on the expression of KCC2 in GABAergic interneurons is unclear. Therefore, in this article we describe the role of KCC2 in GABAergic interneurons in the ipsilateral hippocampal CA1 region of adult rats and the effects of propofol postconditioning on this region. Herein we demonstrate that propofol postconditioning (20mg/kg/h, 2h) improved rats' neurobehavioral abilities, increased the number of survival neurons, and up-regulated neuronal KCC2 expression in glutamic acid decarboxylase 67 (GAD67) expressing GABAergic interneurons in hippocampal CA1 region at 24h after I/R. In contrast, when rats were injected with the KCC2 antagonist, [(dihydroindenyl)oxy] alkanoic acid (DIOA), the neuroprotective effects induced by propofol postconditioning were reversed. Our study indicated that propofol postconditioning increased the expression of KCC2 in inhibitory GABAergic interneurons, thus providing acute neuroprotection to rats who had undergone cerebral I/R injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    PubMed

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  20. Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; York, S.W.; Yomano, L.P.

    1999-10-01

    Previous studies have shown an unexpectedly high nutrient requirement for efficient ethanol production by ethanologenic recombinants of Escherichia coli B such as LY01 which contain chromosomally integrated Zymomonas mobilis genes (pdc, adhB) encoding the ethanol pathway. The basis for this requirement has been identified as a media-dependent effect on the expression of the Z. mobilis genes rather than a nutritional limitation. Ethanol production was substantially increased without additional nutrients simply by increasing the level of pyruvate decarboxylase activity. This was accomplished by adding a multicopy plasmid containing pdc alone (but not adhB alone) to strain LY01, and by adding multicopymore » plasmids which express pdc and adhB from strong promoters. New strong promoters were isolated from random fragments of Z. mobilis DNA and characterized but were not used to construct integrated biocatalysts. These promoters contained regions resembling recognition sites for 3 different E. coli sigma factors: {sigma}{sup 70}, {sigma}{sup 38}, and {sigma}{sup 28}. The most effective plasmid-based promoters for fermentation were recognized by multiple sigma factors, expressed both pdc and adhB at high levels, and produced ethanol efficiently while allowing up to 80% reduction in complex nutrients as compared to LY01. The ability to utilize multiple sigma factors may be advantageous to maintain the high levels of PDC and ADH needed for efficient ethanol production throughout batch fermentation.« less

  1. Repeated short-term stress synergizes the ROS signalling through up regulation of NFkB and iNOS expression induced due to combined exposure of trichloroethylene and UVB rays.

    PubMed

    Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Restraint stress is known to catalyse the pathogenesis of the variety of chronic inflammatory disorders. The present study was designed to evaluate the effect of repeated short-term stress (RRS) on cellular transduction apart from oxidative burden and early tumour promotional biomarkers induced due to combined exposure of trichloroethylene (TCE) and Ultra-violet radiation (UVB). RRS leads to the increase in the expression of the stress responsive cellular transduction elements NFkB-p65 and activity of iNOS in the epidermal tissues of mice after toxicant exposure. RRS augments the steep depletion of the cellular antioxidant machinery which was evidenced by the marked depletion in GSH (Glutathione and GSH dependant enzymes), superoxide dismutase and catalase activity that were observed at significance level of P < 0.001 with increase in lipid peroxidation, H(2)O(2) and xanthine oxidase activity (P < 0.001) in the stressed animals and down regulation of DT-diaphorase activity (P < 0.001). Since, the induction of NFkB-p65 and inducible nitric oxide synthase expression mediated can lead to the hyperproliferation, we estimated a significant increment (P < 0.001) in the synthesis of polyamines in mice skin evidenced here by the ornithine decarboxylase which is the early marker of tumour promotion and further evaluated PCNA expression. All these findings cues towards the synergising ability of repeated short-term stress in the toxic response of TCE and UVB radiation.

  2. Honey bee foraging induces upregulation of early growth response protein 1, hormone receptor 38 and candidate downstream genes of the ecdysteroid signalling pathway.

    PubMed

    Singh, A S; Shah, A; Brockmann, A

    2018-02-01

    In honey bees, continuous foraging at an artificial feeder induced a sustained upregulation of the immediate early genes early growth response protein 1 (Egr-1) and hormone receptor 38 (Hr38). This gene expression response was accompanied by an upregulation of several Egr-1 candidate downstream genes: ecdysone receptor (EcR), dopamine/ecdysteroid receptor (DopEcR), dopamine decarboxylase and dopamine receptor 2. Hr38, EcR and DopEcR are components of the ecdysteroid signalling pathway, which is highly probably involved in learning and memory processes in honey bees and other insects. Time-trained foragers still showed an upregulation of Egr-1 when the feeder was presented at an earlier time of the day, suggesting that the genomic response is more dependent on the food reward than training time. However, presentation of the feeder at the training time without food was still capable of inducing a transient increase in Egr-1 expression. Thus, learnt feeder cues, or even training time, probably affect Egr-1 expression. In contrast, whole brain Egr-1 expression changes did not differ between dancing and nondancing foragers. On the basis of our results we propose that food reward induced continuous foraging ultimately elicits a genomic response involving Egr-1 and Hr38 and their downstream genes. Furthermore this genomic response is highly probably involved in foraging-related learning and memory responses. © 2017 The Royal Entomological Society.

  3. Inhibitors of Eicosanoid Biosynthesis Influencing the Transcripts Level of sHSP21.4 Gene Induced by Pathogen Infections, in Antheraea pernyi

    PubMed Central

    Zhang, Congfen; Dai, Lishang; Wang, Lei; Qian, Cen; Wei, Guoqing; Li, Jun; Zhu, Baojian; Liu, Chaoliang

    2015-01-01

    Small heat shock proteins (sHSPs) can regulate protein folding and protect cells from stress. To investigate the role of sHSPs in the silk-producing insect Antheraea pernyi response to microorganisms, a sHsp gene termed as Ap-sHSP21.4, was identified. This gene encoded a 21.4 kDa protein which shares the conserved structure of insect sHsps and belongs to sHSP21.4 family. Ap-sHSP21.4 was highly expressed in fat body and up-regulated in midgut and fat body of A. pernyi challenged with Escherichia coli, Beauveria bassiana and nuclear polyhedrosis virus (NPV), which was determined by quantitative real-time PCR. Meanwhile, knock down of Ap-sHSP21.4 with dsRNA result in the decrease at the expression levels of several immune response-related genes (defensin, Dopa decarboxylase, Toll1, lysozyme and Kazal-type serine protease inhibitor). Additionally, the impact of eicosanoid biosynthesis on the expression of Ap-sHSP21.4 response to NPV was determined using qPCR, inhibitors of eicosanoid biosynthesis significantly suppress Ap-HSP21.4 expression upon NPV challenge. All together, Ap-sHSP21.4 was involved in the immunity of A. pernyi against microorganism and possibly mediated by eicosanoids pathway. These results will shed light in the understanding of the pathogen-host interaction in A. pernyi. PMID:25844646

  4. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    2016-01-01

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  5. [Mechanisms of nitroxide-ergic dysregulation in tissues of parodontium in rats under combined excessive sodium nitrate and fluoride intake].

    PubMed

    Богданов, Алексей В; Гришко, Юлия М; Костенко, Виталий А

    intake of inorganic nitrates is typically accompanied by production of excessive amount of nitric oxide (NO), which level is maintained by the mechanism of autoregulation known as the NO cycle. Hypothetically, this process may be disrupted with fluorides that are able to suppress arginase pathway of L-arginine metabolism, which competes with NO-synthase pathway. to study mechanisms of disregulation of oxidative (NO-synthase) and non-oxidative (arginase) metabolic pathways of L-arginine in the tissues of periodontium under combined excessive sodium nitrate and fluoride intake. these investigations were carried out on 90 white Wistar rats. Homogenates of parodontium soft tissues were used to assess spectrophotometrically the total activities of NO-synthase (NOS), arginase, ornithine decarboxylase as well as the peroxynitrite concentration. typical for the isolated sodium nitrate administration inhibition of total NOS activity varies under combined administration of nitrate and sodium fluoride and is usually manifested by its hyperactivation that is accompanied by an increase in peroxynitrite concentration. At this time arginase and ornithine decarboxylase activity is observed to be substantially reduced. The administration of aminoguanidine, an iNOS inhibitor, (20 mg/kg, twice a week during the experiment) increases arginase and ornithine decarboxylase activities, and the administration of L-arginine (500 mg/kg, twice a week) results in the increase of arginase activity. The administration of L-selenomethionine, a peroxynitrite scavenger (3 mg/kg, twice a week), and JSH-23 (4-methyl-N-(3-phenylpropyl) benzene-1,2-diamine, an inhibitor of NF-κB activation (1 mg/kg, twice a week) for modeling binary nitrate and fluoride intoxication reduces the total concentration of NOS activity and peroxynitrite concentration, and increases ornithine decarboxylase activity. the combined effect of nitrate and sodium fluoride for 30 days leads to disregulatory increased activity of NO-synthase enzymes and reduction of arginase pathway of L-arginine in the soft tissues of parodontium that is promoted by hyperactivation of iNOS and NF-κB, and increased peroxynitrite production.

  6. Simultaneous measurement of monoamine metabolites and 5-methyltetrahydrofolate in the cerebrospinal fluid of children.

    PubMed

    Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Nakamura, Kazuyuki; Tsuyusaki, Yu; Kubota, Masaya; Yoshinaga, Harumi; Kobayashi, Katsuhiro

    2017-02-01

    We describe a new method for simultaneous measurement of monoamine metabolites (3-O-methyldopa [3-OMD], 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG], 5-hydroxyindoleacetic acid [5-HIAA], and homovanillic acid [HVA]) and 5-methyltetrahydrofolate (5-MTHF) and its use on cerebrospinal fluid (CSF) samples from pediatric patients. Monoamine metabolites and 5-MTHF were measured by high-performance liquid chromatography with fluorescence detection. CSF samples were prospectively collected from children according to a standardized collection protocol in which the first 1-ml fraction was used for analysis. Monoamine metabolites and 5-MTHF were separated within 10min. They showed linearity from the limit of detection to 1024nmol/l. The limit of quantification of each metabolite was sufficiently low for the CSF sample assay. In 42 CSF samples after excluding cases with possibly altered neurotransmitter profiles, the concentrations of 3-OMD, MHPG, 5-HIAA, HVA, and 5-MTHF showed significant age dependence and their ranges were comparable with the reference values in the literature. The metabolite profiles of aromatic l-amino acid decarboxylase deficiency, Segawa disease, and folate receptor α defect by this method were compatible with those in the literature. This method is a simple means of measuring CSF monoamine metabolites and 5-MTHF, and is especially useful for laboratories not equipped with electrochemical detectors. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Jarrod B.; Yates, Phillip A.; Soysa, D.Radika

    The final two steps of de novo uridine 5'-monophosphate (UMP) biosynthesis are catalyzed by orotate phosphoribosyltransferase (OPRT) and orotidine 5'-monophosphate decarboxylase (OMPDC). In most prokaryotes and simple eukaryotes these two enzymes are encoded by separate genes, whereas in mammals they are expressed as a bifunctional gene product called UMP synthase (UMPS), with OPRT at the N terminus and OMPDC at the C terminus. Leishmania and some closely related organisms also express a bifunctional enzyme for these two steps, but the domain order is reversed relative to mammalian UMPS. In this work we demonstrate that L. donovani UMPS (LdUMPS) is anmore » essential enzyme in promastigotes and that it is sequestered in the parasite glycosome. We also present the crystal structure of the LdUMPS in complex with its product, UMP. This structure reveals an unusual tetramer with two head to head and two tail to tail interactions, resulting in two dimeric OMPDC and two dimeric OPRT functional domains. In addition, we provide structural and biochemical evidence that oligomerization of LdUMPS is controlled by product binding at the OPRT active site. We propose a model for the assembly of the catalytically relevant LdUMPS tetramer and discuss the implications for the structure of mammalian UMPS.« less

  8. Tics and Tourette: a clinical, pathophysiological and etiological review.

    PubMed

    Dale, Russell C

    2017-12-01

    Describe developments in the etiological understanding of Tourette syndrome. Tourette syndrome is a complex heterogenous clinical syndrome, which is not a unitary entity. Pathophysiological models describe gamma-aminobutyric acid-ergic-associated disinhibition of cortico-basal ganglia motor, sensory and limbic loops. MRI studies support basal ganglia volume loss, with additional white matter and cerebellar changes. Tourette syndrome cause likely involves multiple vulnerability genes and environmental factors. Only recently have some vulnerability gene findings been replicated, including histidine decarboxylase and neurexin 1, yet these rare variants only explain a small proportion of patients. Planned large genetic studies will improve genetic understanding. The role of inflammation as a contributor to disease expression is now supported by large epidemiological studies showing an association with maternal autoimmunity and childhood infection. Investigation of blood cytokines, blood mRNA and brain mRNA expression support the role of a persistent immune activation, and there are similarities with the immune literature of autistic spectrum disorder. Current treatment is symptomatic, although there is a better appreciation of factors that influence treatment response. At present, therapeutics is focused on symptom-based treatments, yet with improved etiological understanding, we will move toward disease-modifying therapies in the future.

  9. Wedelolactone mitigates UVB induced oxidative stress, inflammation and early tumor promotion events in murine skin: plausible role of NFkB pathway.

    PubMed

    Ali, Farrah; Khan, Bilal Azhar; Sultana, Sarwat

    2016-09-05

    UVB (Ultra-violet B) radiation is one of the major etiological factors in various dermal pathology viz. dermatitis, actinic folliculitis, solar urticaria, psoriasis and cancer among many others. UVB causes toxic manifestation in tissues by inciting inflammatory and tumor promoting events. We have designed this study to assess the anti-inflammatory and anti-tumor promotion effect of Wedelolactone (WDL) a specific IKK inhibitor. Results indicate significant restoration of anti-oxidative enzymes due to WDL treatments. We also found that WDL was effective in mitigating inflammatory markers consisting of MPO (myeloperoxidase), Mast cells trafficking, Langerhans cells suppression and COX 2 expression up regulation due to UVB exposure. We also deduce that WDL presented a promising intervention in attenuating early tumor promotion events caused by UVB exposure as indicated by the results of ODC (Ornithine Decarboxylase), Thymidine assay, Vimentin and VEGF (Vascular-endothelial growth factor) expression. This study was able to provide substantial cues for the therapeutic ability of Wedelolactone against inflammatory and tumor promoting events in murine skin depicting plausible role of NFkB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Genetic structure of the mating-type locus of Chlamydomonas reinhardtii.

    PubMed Central

    Ferris, Patrick J; Armbrust, E Virginia; Goodenough, Ursula W

    2002-01-01

    Portions of the cloned mating-type (MT) loci (mt(+) and mt(-)) of Chlamydomonas reinhardtii, defined as the approximately 1-Mb domains of linkage group VI that are under recombinational suppression, were subjected to Northern analysis to elucidate their coding capacity. The four central rearranged segments of the loci were found to contain both housekeeping genes (expressed during several life-cycle stages) and mating-related genes, while the sequences unique to mt(+) or mt(-) carried genes expressed only in the gametic or zygotic phases of the life cycle. One of these genes, Mtd1, is a candidate participant in gametic cell fusion; two others, Mta1 and Ezy2, are candidate participants in the uniparental inheritance of chloroplast DNA. The identified housekeeping genes include Pdk, encoding pyruvate dehydrogenase kinase, and GdcH, encoding glycine decarboxylase complex subunit H. Unusual genetic configurations include three genes whose sequences overlap, one gene that has inserted into the coding region of another, several genes that have been inactivated by rearrangements in the region, and genes that have undergone tandem duplication. This report extends our original conclusion that the MT locus has incurred high levels of mutational change. PMID:11805055

  11. Restoration of GABA production machinery in Lactobacillus brevis by accessible carbohydrates, anaerobiosis and early acidification.

    PubMed

    Wu, Qinglong; Shah, Nagendra P

    2018-02-01

    Lactobacillus brevis is an efficient cell factory for producing bioactive γ-aminobutyric acid (GABA) by its gad operon-encoded glutamic acid decarboxylase (GAD) system. However, little mechanistic insights have been reported on the effects of carbohydrate, oxygen and early acidification on GABA production machinery in Lb. brevis. In the present study, GABA production from Lb. brevis was enhanced by accessible carbohydrates. Fast growth of this organism was stimulated by maltose and xylose. However, its GABA production was highly suppressed by oxygen exposure, but was fully restored by anaerobiosis that up-regulated the expression of gad operon in Lb. brevis cells. Although the level of cytosolic acidity was suitable for the functioning of GadA and GadB, early acidification of the medium (ipH 5 and ipH 4) restored GABA synthesis strictly in aerated cells of Lb. brevis because the expression of gad operon was not up-regulated in them. We conclude that GABA production machinery in Lb. brevis could be restored by accessible carbohydrates, anaerobiosis and early acidification. This will be of interest for controlling fermentation for synthesis of GABA and manufacturing GABA-rich fermented vegetables. Copyright © 2017. Published by Elsevier Ltd.

  12. Molecular cloning of mevalonate pathway genes from Taraxacum brevicorniculatum and functional characterisation of the key enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase.

    PubMed

    van Deenen, Nicole; Bachmann, Anne-Lena; Schmidt, Thomas; Schaller, Hubert; Sand, Jennifer; Prüfer, Dirk; Schulze Gronover, Christian

    2012-04-01

    Taraxacum brevicorniculatum is known to produce high quality rubber. The biosynthesis of rubber is dependent on isopentenyl pyrophosphate (IPP) precursors derived from the mevalonate (MVA) pathway. The cDNA sequences of seven MVA pathway genes from latex of T. brevicorniculatum were isolated, including three cDNA sequences encoding for 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductases (TbHMGR1-3). Expression analyses indicate an important role of TbHMGR1 as well as for the HMG-CoA synthase (TbHMGS), the diphosphomevalonate decarboxylase and the mevalonate kinase in the provision of precursors for rubber biosynthesis. The amino acid sequences of the TbHMGRs show the typical motifs described for plant HMGRs such as two transmembrane domains and a catalytic domain containing two HMG-CoA and two NADP(H) binding sites. The functionality of the HMGRs was demonstrated by complementation assay using an IPP auxotroph mutant of Escherichia coli. Furthermore, the transient expression of the catalytic domains of TbHMGR1 and TbHMGR2 in Nicotiana benthamiana resulted in a strong accumulation of sterol precursors, one of the major groups of pathway end-products.

  13. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome.

    PubMed

    Haebig, Eileen; Sterling, Audra

    2017-02-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD.

  14. Investigating the Receptive-Expressive Vocabulary Profile in Children with Idiopathic ASD and Comorbid ASD and Fragile X Syndrome

    PubMed Central

    Sterling, Audra

    2016-01-01

    Previous work has noted that some children with autism spectrum disorder (ASD) display weaknesses in receptive vocabulary relative to expressive vocabulary abilities. The current study extended previous work by examining the receptive-expressive vocabulary profile in boys with idiopathic ASD and boys with concomitant ASD and fragile X syndrome (ASD + FXS). On average, boys with ASD + FXS did not display the same atypical receptive-expressive profile as boys with idiopathic ASD. Notably, there was variation in vocabulary abilities and profiles in both groups. Although we did not identify predictors of receptive-expressive differences, we demonstrated that nonverbal IQ and expressive vocabulary positively predicted concurrent receptive vocabulary knowledge and receptive vocabulary predicted expressive vocabulary. We discuss areas of overlap and divergence in subgroups of ASD. PMID:27796729

  15. A comparative study of extraction techniques for maximum recovery of glutamate decarboxylase (GAD) from Aspergillus oryzae NSK

    PubMed Central

    2013-01-01

    Background γ-Amino butyric acid (GABA) is a major inhibitory neurotransmitter of the mammalian central nervous system that plays a vital role in regulating vital neurological functions. The enzyme responsible for producing GABA is glutamate decarboxylase (GAD), an intracellular enzyme that both food and pharmaceutical industries are currently using as the major catalyst in trial biotransformation process of GABA. We have successfully isolated a novel strain of Aspergillus oryzae NSK that possesses a relatively high GABA biosynthesizing capability compared to other reported GABA-producing fungal strains, indicating the presence of an active GAD. This finding has prompted us to explore an effective method to recover maximum amount of GAD for further studies on the GAD’s biochemical and kinetic properties. The extraction techniques examined were enzymatic lysis, chemical permeabilization, and mechanical disruption. Under the GAD activity assay used, one unit of GAD activity is expressed as 1 μmol of GABA produced per min per ml enzyme extract (U/ml) while the specific activity was expressed as U/mg protein. Results Mechanical disruption by sonication, which yielded 1.99 U/mg of GAD, was by far the most effective cell disintegration method compared with the other extraction procedures examined. In contrast, the second most effective method, freeze grinding followed by 10% v/v toluene permeabilization at 25°C for 120 min, yielded only 1.17 U/mg of GAD, which is 170% lower than the sonication method. Optimized enzymatic lysis with 3 mg/ml Yatalase® at 60°C for 30 min was the least effective. It yielded only 0.70 U/mg of GAD. Extraction using sonication was further optimized using a one-variable-at-a-time approach (OVAT). Results obtained show that the yield of GAD increased 176% from 1.99 U/mg to 3.50 U/mg. Conclusion Of the techniques used to extract GAD from A. oryzae NSK, sonication was found to be the best. Under optimized conditions, about 176% of GAD was recovered compared to recovery under non optimized conditions. The high production level of GAD in this strain offers an opportunity to conduct further studies on GABA production at a larger scale. PMID:24321181

  16. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo.

    PubMed

    Booth, Laurence; Roberts, Jane L; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Dent, Paul

    2017-10-27

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo , neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses.

  17. HDAC inhibitors enhance neratinib activity and when combined enhance the actions of an anti-PD-1 immunomodulatory antibody in vivo

    PubMed Central

    Booth, Laurence; Roberts, Jane L.; Poklepovic, Andrew; Avogadri-Connors, Francesca; Cutler, Richard E.; Lalani, Alshad S.; Dent, Paul

    2017-01-01

    Patients whose NSCLC tumors become afatinib resistant presently have few effective therapeutic options to extend their survival. Afatinib resistant NSCLC cells were sensitive to clinically relevant concentrations of the irreversible pan-HER inhibitor neratinib, but not by the first generation ERBB1/2/4 inhibitor lapatinib. In multiple afatinib resistant NSCLC clones, HDAC inhibitors reduced the expression of ERBB1/3/4, but activated c-SRC, which resulted in higher total levels of ERBB1/3 phosphorylation. Neratinib also rapidly reduced the expression of ERBB1/2/3/4, c-MET and of mutant K-/N-RAS; K-RAS co-localized with phosphorylated ATG13 and with cathepsin B in vesicles. Combined exposure of cells to [neratinib + HDAC inhibitors] caused inactivation of mTORC1 and mTORC2, enhanced autophagosome and subsequently autolysosome formation, and caused an additive to greater than additive induction of cell death. Knock down of Beclin1 or ATG5 prevented HDAC inhibitors or neratinib from reducing ERBB1/3/4 and K-/N-RAS expression and reduced [neratinib + HDAC inhibitor] lethality. Neratinib and HDAC inhibitors reduced the expression of multiple HDAC proteins via autophagy that was causal in the reduced expression of PD-L1, PD-L2 and ornithine decarboxylase, and increased expression of Class I MHCA. In vivo, neratinib and HDAC inhibitors interacted to suppress the growth of 4T1 mammary tumors, an effect that was enhanced by an anti-PD-1 antibody. Our data support the premises that neratinib lethality can be enhanced by HDAC inhibitors, that neratinib may be a useful therapeutic tool in afatinib resistant NSCLC, and that [neratinib + HDAC inhibitor] exposure facilitates anti-tumor immune responses. PMID:29163826

  18. Collagen XIX Is Expressed by Interneurons and Contributes to the Formation of Hippocampal Synapses

    PubMed Central

    Su, Jianmin; Gorse, Karen; Ramirez, Francesco; Fox, Michael A.

    2010-01-01

    Extracellular matrix (ECM) molecules contribute to the formation and maintenance of synapses in the mammalian nervous system. We previously discovered a family of nonfibrillar collagens that organize synaptic differentiation at the neuromuscular junction (NMJ). Although many NMJ-organizing cues contribute to central nervous system (CNS) synaptogenesis, whether similar roles for collagens exist at central synapses remained unclear. In the present study we discovered that col19a1, the gene encoding nonfibrillar collagen XIX, is expressed by subsets of hippocampal neurons. Colocalization with the interneuron-specific enzyme glutamate decarboxylase 67 (Gad67), but not other cell-type-specific markers, suggests that hippocampal expression of col19a1 is restricted to interneurons. However, not all hippocampal interneurons express col19a1 mRNA; subsets of neuropeptide Y (NPY)-, somatostatin (Som)-, and calbindin (Calb)-immunoreactive interneurons express col19a1, but those containing parvalbumin (Parv) or calretinin (Calr) do not. To assess whether collagen XIX is required for the normal formation of hippocampal synapses, we examined synaptic morphology and composition in targeted mouse mutants lacking collagen XIX. We show here that subsets of synaptotagmin 2 (Syt2)-containing hippocampal nerve terminals appear malformed in the absence of collagen XIX. The presence of Syt2 in inhibitory hippocampal synapses, the altered distribution of Gad67 in collagen XIX-deficient subiculum, and abnormal levels of gephyrin in collagen XIX-deficient hippocampal extracts all suggest inhibitory synapses are affected by the loss of collagen XIX. Together, these data not only reveal that collagen XIX is expressed by central neurons, but show for the first time that a nonfibrillar collagen is necessary for the formation of hippocampal synapses. PMID:19937713

  19. Hepatitis C virus core protein triggers abnormal porphyrin metabolism in human hepatocellular carcinoma cells.

    PubMed

    Nakano, Takafumi; Moriya, Kyoji; Koike, Kazuhiko; Horie, Toshiharu

    2018-01-01

    Porphyria cutanea tarda (PCT), the most common of the human porphyrias, arises from a deficiency of uroporphyrinogen decarboxylase. Studies have shown a high prevalence of hepatitis C virus (HCV) infection in patients with PCT. While these observations implicate HCV infection as a risk factor for PCT pathogenesis, the mechanism of interaction between the virus and porphyrin metabolism is unknown. This study aimed to assess the effect of HCV core protein on intracellular porphyrin metabolism to elucidate the link between HCV infection and PCT. The accumulation and excretion of porphyrins after treatment with 5-aminolevulinic acid, a porphyrin precursor, were compared between cells stably expressing HCV core protein and controls. Cells expressing HCV core protein had lower amounts of intracellular protoporphyrin IX and heme and had higher amounts of excreted coproporphyrin III, the oxidized form of coproporphyrinogen III, compared with controls. These observations suggest that HCV core protein affects porphyrin metabolism and facilitates the export of excess coproporphyrinogen III and/or coproporphyrin III, possibly via porphyrin transporters. Real-time PCR analysis revealed that the presence of HCV core protein increased the mRNA expression of porphyrin exporters ABCG2 and FLVCR1. Western blot analysis showed a higher expression level of FLVCR1, but not ABCG2, as well as a higher expression level of mature ALAS1, which is the rate-limiting enzyme in the heme synthesis pathway, in HCV core protein-expressing cells compared with controls. The data indicate that HCV core protein induced abnormal intracellular porphyrin metabolism, with an over-excretion of coproporphyrin III. These findings may partially account for the susceptibility of HCV-infected individuals to PCT development.

  20. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon

    2008-04-01

    The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.

Top