Sample records for decay equations solved

  1. Explicit solutions for exit-only radioactive decay chains

    NASA Astrophysics Data System (ADS)

    Yuan, Ding; Kernan, Warnick

    2007-05-01

    In this study, we extended Bateman's [Proc. Cambridge Philos. Soc. 15, 423 (1910)] original work for solving radioactive decay chains and explicitly derived analytic solutions for generic exit-only radioactive decay problems under given initial conditions. Instead of using the conventional Laplace transform for solving Bateman's equations, we used a much simpler algebraic approach. Finally, we discuss methods of breaking down certain classes of large decay chains into collections of simpler chains for easy handling.

  2. On the solution of the generalized wave and generalized sine-Gordon equations

    NASA Technical Reports Server (NTRS)

    Ablowitz, M. J.; Beals, R.; Tenenblat, K.

    1986-01-01

    The generalized wave equation and generalized sine-Gordon equations are known to be natural multidimensional differential geometric generalizations of the classical two-dimensional versions. In this paper, a system of linear differential equations is associated with these equations, and it is shown how the direct and inverse problems can be solved for appropriately decaying data on suitable lines. An initial-boundary value problem is solved for these equations.

  3. Radioactivity Calculations

    ERIC Educational Resources Information Center

    Onega, Ronald J.

    1969-01-01

    Three problems in radioactive buildup and decay are presented and solved. Matrix algebra is used to solve the second problem. The third problem deals with flux depression and is solved by the use of differential equations. (LC)

  4. Activity computer program for calculating ion irradiation activation

    NASA Astrophysics Data System (ADS)

    Palmer, Ben; Connolly, Brian; Read, Mark

    2017-07-01

    A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.

  5. Analytical solution for the advection-dispersion transport equation in layered media

    USDA-ARS?s Scientific Manuscript database

    The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...

  6. Re-ionization and decaying dark matter

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Jubas, Jay M.

    1991-01-01

    Gunn-Peterson tests suggest that the Universe was reionized after the standard recombination epoch. A systematic treatment is presented of the ionization process by deriving the Boltzmann equations appropriate to this regime. A compact solution for the photon spectrum is found in terms of the ionization ratio. These equations are then solved numerically for the Decaying Dark Matter scenario, wherein neutrinos with mass of order 30 eV radiatively decay producing photons which ionize the intergalactic medium. It was found that the neutrino mass and lifetime are severely constrained by Gunn-Peterson tests, observations of the diffuse photon spectrum in the ultraviolet regime, and the Hubble parameter.

  7. B^+→ K^-π ^+π ^+: Three-Body Final State Interactions and Kπ Isospin States

    NASA Astrophysics Data System (ADS)

    Nogueira, J. H. Alvarenga; Frederico, T.; Lourenço, O.

    2017-03-01

    In this exploratory study, final state interactions are considered to formulate the B meson decay amplitude for the Kπ π channel. The Faddeev decomposition of the Bethe-Salpeter equation is used in order to build a relativistic three-body model within the light-front framework. The S-wave scattering amplitude for the Kπ system is considered in the 1/2 and 3/2 isospin channels with the set of inhomogeneous integral equations solved perturbatively. In comparison with previous results for the D meson decay in the same channel, one has to consider the different partonic processes, which build the source amplitudes, and the larger absorption to other decay channels appears, that are important features to be addressed. As in the D decay case, the convergence of the rescattering perturbative series is also achieved with two-loop contributions.

  8. Approach to calculation of mass spectra and two-photon decays of c c¯ mesons in the framework of Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Shashank; Alemu, Lmenew

    2018-02-01

    In this work we calculate the mass spectra of charmonium for 1 P ,…,4 P states of 0++ and 1++, for 1 S ,…,5 S states of 0-+, and for 1 S ,…,4 D states of 1- along with the two-photon decay widths of the ground and first excited states of 0++ quarkonia for the process O++→γ γ in the framework of a QCD-motivated Bethe-Salpeter equation (BSE). In this 4 ×4 BSE framework, the coupled Salpeter equations are first shown to decouple for the confining part of the interaction (under the heavy-quark approximation) and are analytically solved, and later the one-gluon-exchange interaction is perturbatively incorporated, leading to mass spectral equations for various quarkonia. The analytic forms of wave functions obtained are used for the calculation of the two-photon decay widths of χc 0. Our results are in reasonable agreement with data (where available) and other models.

  9. Fine structure of α decay from the variational principle

    NASA Astrophysics Data System (ADS)

    Mirea, M.

    2017-12-01

    Starting from the variational principle, the time-dependent pairing equations are generalized by including the Landau-Zener effect and the Coriolis coupling. A system of microscopic equations of motion for configuration mixing is deduced, allowing the determination of quantities that have the same meaning as the preformation factors of the α particle. These equations are solved in order to reproduce the hindrance factors of the α decay of an odd-A mass nucleus. The α decay of 211Po is treated as a superasymmetric fission process, by following the rearrangement of the nuclear orbitals from the parent ground state up to the scission configuration. The probabilities of finding the excited states of the daughter at scission are obtained from the microscopic equations of motion. The intensities of the transitions to the excited states of the daughter were evaluated theoretically. The experimental data were compared with the theoretical findings. A very good agreement was obtained. A mean value of the tunneling velocity of about 2 ×104 fm/fs was extracted.

  10. Nonlinear modulation of an extraordinary wave under the conditions of parametric decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B.; Turikov, V. A.

    2012-06-15

    A self-consistent set of Hamilton equations describing nonlinear saturation of the amplitude of oscillations excited under the conditions of parametric decay of an elliptically polarized extraordinary wave in cold plasma is solved analytically and numerically. It is shown that the exponential increase in the amplitude of the secondary wave excited at the half-frequency of the primary wave changes into a reverse process in which energy is returned to the primary wave and nonlinear oscillations propagating across the external magnetic field are generated. The system of 'slow' equations for the amplitudes, obtained by averaging the initial equations over the high-frequency period,more » is used to describe steady-state nonlinear oscillations in plasma.« less

  11. First-order reactant in homogeneous turbulence before the final period of decay. [contaminant fluctuations in chemical reaction

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Patel, S. R.

    1974-01-01

    A method is described for studying theoretically the concentration fluctuations of a dilute contaminate undergoing a first-order chemical reaction. The method is based on Deissler's (1958) theory for homogeneous turbulence for times before the final period, and it follows the approach used by Loeffler and Deissler (1961) to study temperature fluctuations in homogeneous turbulence. Four-point correlation equations are obtained; it is assumed that terms containing fifth-order correlation are very small in comparison with those containing fourth-order correlations, and can therefore be neglected. A spectrum equation is obtained in a form which can be solved numerically, yielding the decay law for the concentration fluctuations in homogeneous turbulence for the period much before the final period of decay.

  12. Parametric instabilities of finite-amplitude, circularly polarized Alfven waves in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu

    1993-01-01

    A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.

  13. Analytical solution of tt¯ dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-03-01

    The top quark antiquark production system in the dilepton decay channel is described by a set of equations which is nonlinear in the unknown neutrino momenta. Its most precise and least time consuming solution is of major importance for measurements of top quark properties like the top quark mass and tt¯ spin correlations. The initial system of equations can be transformed into two polynomial equations with two unknowns by means of elementary algebraic operations. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation is solved analytically.

  14. Long-time asymptotics of the Navier-Stokes and vorticity equations on R(3).

    PubMed

    Gallay, Thierry; Wayne, C Eugene

    2002-10-15

    We use the vorticity formulation to study the long-time behaviour of solutions to the Navier-Stokes equation on R(3). We assume that the initial vorticity is small and decays algebraically at infinity. After introducing self-similar variables, we compute the long-time asymptotics of the rescaled vorticity equation up to second order. Each term in the asymptotics is a self-similar divergence-free vector field with Gaussian decay at infinity, and the coefficients in the expansion can be determined by solving a finite system of ordinary differential equations. As a consequence of our results, we are able to characterize the set of solutions for which the velocity field satisfies ||u(.,t)||(L(2)) = o(t(-5/4)) as t-->+ infinity. In particular, we show that these solutions lie on a smooth invariant submanifold of codimension 11 in our function space.

  15. Mixing of a passive scalar in isotropic and sheared homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Shirani, E.; Ferziger, J. H.; Reynolds, W. C.

    1981-01-01

    In order to calculate the velocity and scalar fields, the three dimensional, time-dependent equations of motion and the diffusion equation were solved numerically. The following cases were treated: isotropic, homogeneous turbulence with decay of a passive scalar; and homogeneous turbulent shear flow with a passive scalar whose mean varies linearly in the spanwise direction. The solutions were obtained at relatively low Reynolds numbers so that all of the turbulent scales could be resolved without modeling. Turbulent statistics such as integral length scales, Taylor microscales, Kolmogorov length scale, one- and two-point correlations of velocity-velocity and velocity-scalar, turbulent Prandtl/Schmidt number, r.m.s. values of velocities, the scalar quantity and pressure, skewness, decay rates, and decay exponents were calculated. The results are compared with the available expermental results, and good agreement is obtained.

  16. Stochastic Mixing Model with Power Law Decay of Variance

    NASA Technical Reports Server (NTRS)

    Fedotov, S.; Ihme, M.; Pitsch, H.

    2003-01-01

    Here we present a simple stochastic mixing model based on the law of large numbers (LLN). The reason why the LLN is involved in our formulation of the mixing problem is that the random conserved scalar c = c(t,x(t)) appears to behave as a sample mean. It converges to the mean value mu, while the variance sigma(sup 2)(sub c) (t) decays approximately as t(exp -1). Since the variance of the scalar decays faster than a sample mean (typically is greater than unity), we will introduce some non-linear modifications into the corresponding pdf-equation. The main idea is to develop a robust model which is independent from restrictive assumptions about the shape of the pdf. The remainder of this paper is organized as follows. In Section 2 we derive the integral equation from a stochastic difference equation describing the evolution of the pdf of a passive scalar in time. The stochastic difference equation introduces an exchange rate gamma(sub n) which we model in a first step as a deterministic function. In a second step, we generalize gamma(sub n) as a stochastic variable taking fluctuations in the inhomogeneous environment into account. In Section 3 we solve the non-linear integral equation numerically and analyze the influence of the different parameters on the decay rate. The paper finishes with a conclusion.

  17. Further Improvement in 3DGRAPE

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2004-01-01

    3DGRAPE/AL:V2 denotes version 2 of the Three-Dimensional Grids About Anything by Poisson's Equation with Upgrades from Ames and Langley computer program. The preceding version, 3DGRAPE/AL, was described in Improved 3DGRAPE (ARC-14069) NASA Tech Briefs, Vol. 21, No. 5 (May 1997), page 66. These programs are so named because they generate volume grids by iteratively solving Poisson's Equation in three dimensions. The grids generated by the various versions of 3DGRAPE have been used in computational fluid dynamics (CFD). The main novel feature of 3DGRAPE/AL:V2 is the incorporation of an optional scheme in which anisotropic Lagrange-based trans-finite interpolation (ALBTFI) is coupled with exponential decay functions to compute and blend interior source terms. In the input to 3DGRAPE/AL:V2 the user can specify whether or not to invoke ALBTFI in combination with exponential-decay controls, angles, and cell size for controlling the character of grid lines. Of the known programs that solve elliptic partial differential equations for generating grids, 3DGRAPE/AL:V2 is the only code that offers a combination of speed and versatility with most options for controlling the densities and other characteristics of grids for CFD.

  18. Quark and Gluon Relaxation in Quark-Gluon Plasmas

    NASA Technical Reports Server (NTRS)

    Heiselberg, H.; Pethick, C. J.

    1993-01-01

    The quasiparticle decay rates for quarks and gluons in quark-gluon plasmas are calculated by solving the kinetic equation. Introducing an infrared cutoff to allow for nonperturbative effects, we evaluate the quasiparticle lifetime at momenta greater than the inverse Debye screening length to leading order in the coupling constant.

  19. Decay instability of an electron plasma wave in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Ferdous, T.; Salimullah, M.

    1996-03-01

    The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.

  20. Dynamical Evolution of a Doubly Quantized Vortex Imprinted in a Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mateo, A. Munoz; Delgado, V.

    2006-11-03

    The recent experiment by Shin et al. [Phys. Rev. Lett. 93, 160406 (2004)] on the decay of a doubly quantized vortex is analyzed by numerically solving the Gross-Pitaevskii equation. Our results demonstrate that the vortex decay is mainly a consequence of dynamical instability. The monotonic increase observed in the vortex lifetimes is a consequence of the fact that the measured lifetimes incorporate the time it takes for the initial perturbation to reach the central slice. When considered locally, the splitting occurs approximately at the same time in every condensate.

  1. Properties of solutions of the Kadomtsev-Petviashvili I equation

    NASA Astrophysics Data System (ADS)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A.

    1994-09-01

    The Kadomtsev-Petviashvili I (KPI) equation is considered as a useful laboratory for experimenting with new theoretical tools able to handle the specific features of integrable models in 2+1 dimensions. The linearized version of the KPI equation is first considered by solving the initial value problem for different classes of initial data. Properties of the solutions in different cases are analyzed in details. The obtained results are used as a guideline for studying the properties of the solution u(t,x,y) of the Kadomtsev-Petviashvili I (KPI) equation with given initial data u(0,x,y) belonging to the Schwartz space. The spectral theory associated to KPI is studied in the space of the Fourier transform of the solutions. The variables p={p1,p2} of the Fourier space are shown to be the most convenient spectral variables to use for spectral data. Spectral data are shown to decay rapidly at large p but to be discontinuous at p=0. Direct and inverse problems are solved with special attention to the behavior of all the quantities involved in the neighborhood of t=0 and p=0. It is shown in particular that the solution u(t,x,y) has a time derivative discontinuous at t=0 and that at any t≠0 it does not belong to the Schwartz space no matter how small in norm and rapidly decaying at large distances the initial data are chosen.

  2. Values of the phase space factors for double beta decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Sabin, E-mail: stoica@theory.nipne.ro; Mirea, Mihai; Horia Hulubei National Institute of Physics and Nuclear Engineering, 30 Reactorului street, P.O. Box MG6, Magurele

    2015-10-28

    We report an up-date list of the experimentally most interesting phase space factors for double beta decay (DBD). The electron/positron wave functions are obtained by solving the Dirac equations with a Coulomb potential derived from a realistic proton density distribution in nucleus and with inclusion of the finite nuclear size (FNS) and electron screening (ES) effects. We build up new numerical routines which allow us a good control of the accuracy of calculations. We found several notable differences as compared with previous results reported in literature and possible sources of these discrepancies are discussed.

  3. Three-Flavoured Non-Resonant Leptogenesis at Intermediate Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moffat, K.; Pascoli, S.; Petcov, S. T.

    Leptogenesis can successfully explain the matter-antimatter asymmetry via out-of-equilibrium decays of heavy Majorana neutrinos in the early Universe. In this article we focus on non-resonant thermal leptogenesis and we study the possibility of lowering its scale through flavour effects in an exhaustive exploration of the model parameter space. We numerically solve the density matrix equations for one and two decaying heavy Majorana neutrinos and present the level of fine-tuning of the light neutrino masses within these scenarios. We demonstrate that the scale of thermal leptogenesis may be as low as $10^6$ GeV.

  4. Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay

    NASA Astrophysics Data System (ADS)

    Dai, Qiuyi; Yang, Zhifeng

    2014-10-01

    In this paper, we consider initial-boundary value problem of viscoelastic wave equation with a delay term in the interior feedback. Namely, we study the following equation together with initial-boundary conditions of Dirichlet type in Ω × (0, + ∞) and prove that for arbitrary real numbers μ 1 and μ 2, the above-mentioned problem has a unique global solution under suitable assumptions on the kernel g. This improve the results of the previous literature such as Nicaise and Pignotti (SIAM J. Control Optim 45:1561-1585, 2006) and Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011) by removing the restriction imposed on μ 1 and μ 2. Furthermore, we also get an exponential decay results for the energy of the concerned problem in the case μ 1 = 0 which solves an open problem proposed by Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011).

  5. Leptogenesis from heavy right-handed neutrinos in CPT violating backgrounds

    NASA Astrophysics Data System (ADS)

    Bossingham, Thomas; Mavromatos, Nick E.; Sarkar, Sarben

    2018-02-01

    We discuss leptogenesis in a model with heavy right-handed Majorana neutrinos propagating in a constant but otherwise generic CPT-violating axial time-like background (motivated by string theory). At temperatures much higher than the temperature of the electroweak phase transition, we solve approximately, but analytically (using Padé approximants), the corresponding Boltzmann equations, which describe the generation of lepton asymmetry from the tree-level decays of heavy neutrinos into Standard Model leptons. At such temperatures these leptons are effectively massless. The current work completes in a rigorous way a preliminary treatment of the same system, by some of the present authors. In this earlier work, lepton asymmetry was crudely estimated considering the decay of a right-handed neutrino at rest. Our present analysis includes thermal momentum modes for the heavy neutrino and this leads to a total lepton asymmetry which is bigger by a factor of two as compared to the previous estimate. Nevertheless, our current and preliminary results for the freezeout are found to be in agreement (within a ˜ 12.5% uncertainty). Our analysis depends on a novel use of Padé approximants to solve the Boltzmann equations and may be more widely useful in cosmology.

  6. Quantum mechanical generalized phase-shift approach to atom-surface scattering: a Feshbach projection approach to dealing with closed channel effects.

    PubMed

    Maji, Kaushik; Kouri, Donald J

    2011-03-28

    We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.

  7. Determination of the thermal stress wave propagation in orthotropic hollow cylinder based on classical theory of thermoelasticity

    NASA Astrophysics Data System (ADS)

    Shahani, Amir Reza; Sharifi Torki, Hamid

    2018-01-01

    The thermoelasticity problem in a thick-walled orthotropic hollow cylinder is solved analytically using finite Hankel transform and Laplace transform. Time-dependent thermal and mechanical boundary conditions are applied on the inner and the outer surfaces of the cylinder. For solving the energy equation, the temperature itself is considered as boundary condition to be applied on both the inner and the outer surfaces of the orthotropic cylinder. Two different cases are assumed for solving the equation of motion: traction-traction problem (tractions are prescribed on both the inner and the outer surfaces) and traction-displacement (traction is prescribed on the inner surface and displacement is prescribed on the outer surface of the hollow orthotropic cylinder). Due to considering uncoupled theory, after obtaining temperature distribution, the dynamical structural problem is solved and closed-form relations are derived for radial displacement, radial and hoop stress. As a case study, exponentially decaying temperature with respect to time is prescribed on the inner surface of the cylinder and the temperature of the outer surface is considered to be zero. Owing to solving dynamical problem, the stress wave propagation and its reflections were observed after plotting the results in both cases.

  8. Traveling wavefront solutions to nonlinear reaction-diffusion-convection equations

    NASA Astrophysics Data System (ADS)

    Indekeu, Joseph O.; Smets, Ruben

    2017-08-01

    Physically motivated modified Fisher equations are studied in which nonlinear convection and nonlinear diffusion is allowed for besides the usual growth and spread of a population. It is pointed out that in a large variety of cases separable functions in the form of exponentially decaying sharp wavefronts solve the differential equation exactly provided a co-moving point source or sink is active at the wavefront. The velocity dispersion and front steepness may differ from those of some previously studied exact smooth traveling wave solutions. For an extension of the reaction-diffusion-convection equation, featuring a memory effect in the form of a maturity delay for growth and spread, also smooth exact wavefront solutions are obtained. The stability of the solutions is verified analytically and numerically.

  9. On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    2018-03-01

    The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"

  10. Auxiliary variables for numerically solving nonlinear equations with softly broken symmetries.

    PubMed

    Olum, Ken D; Masoumi, Ali

    2017-06-01

    General methods for solving simultaneous nonlinear equations work by generating a sequence of approximate solutions that successively improve a measure of the total error. However, if the total error function has a narrow curved valley, the available techniques tend to find the solution after a very large number of steps, if ever. The solver first converges rapidly to the valley, but once there it converges extremely slowly to the solution. In this paper we show that in the specific physically important case where these valleys are the result of a softly broken symmetry, the solution can often be found much more quickly by adding the generators of the softly broken symmetry as auxiliary variables. This makes the number of variables more than the equations and hence there will be a family of solutions, any one of which would be acceptable. We present a procedure for finding solutions in this case and apply it to several simple examples and an important problem in the physics of false vacuum decay. We also provide a Mathematica package that implements Powell's hybrid method with the generalization to allow more variables than equations.

  11. Automatic measurements and computations for radiochemical analyses

    USGS Publications Warehouse

    Rosholt, J.N.; Dooley, J.R.

    1960-01-01

    In natural radioactive sources the most important radioactive daughter products useful for geochemical studies are protactinium-231, the alpha-emitting thorium isotopes, and the radium isotopes. To resolve the abundances of these thorium and radium isotopes by their characteristic decay and growth patterns, a large number of repeated alpha activity measurements on the two chemically separated elements were made over extended periods of time. Alpha scintillation counting with automatic measurements and sample changing is used to obtain the basic count data. Generation of the required theoretical decay and growth functions, varying with time, and the least squares solution of the overdetermined simultaneous count rate equations are done with a digital computer. Examples of the complex count rate equations which may be solved and results of a natural sample containing four ??-emitting isotopes of thorium are illustrated. These methods facilitate the determination of the radioactive sources on the large scale required for many geochemical investigations.

  12. Hot Electrons from Two-Plasmon Decay

    NASA Astrophysics Data System (ADS)

    Russell, D. A.; Dubois, D. F.

    2000-10-01

    We solve, self-consistently, the relativistic quasilinear diffusion equation and Zakharov's model equations of Langmuir wave (LW) and ion acoustic wave (IAW) turbulence, in two dimensions, for saturated states of the Two-Plasmon Decay instability. Parameters are those of the shorter gradient scale-length (50 microns) high temperature (4 keV) inhomogeneous plasmas anticipated at LLE’s Omega laser facility. We calculate the fraction of incident laser power absorbed in hot electron production as a function of laser intensity for a plane-wave laser field propagating parallel to the background density gradient. Two distinct regimes are identified: In the strong-turbulent regime, hot electron bursts occur intermittently in time, well correlated with collapse in the LW and IAW fields. A significant fraction of the incident laser power ( ~10%) is absorbed by hot electrons during a single burst. In the weak or convective regime, relatively constant rates of hot electron production are observed at much reduced intensities.

  13. Propagation of mechanical waves through a stochastic medium with spherical symmetry

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, J. Adrián

    2018-01-01

    We theoretically analyze the propagation of outgoing mechanical waves through an infinite isotropic elastic medium possessing spherical symmetry whose Lamé coefficients and density are spatial random functions characterized by well-defined statistical parameters. We derive the differential equation that governs the average displacement for a system whose properties depend on the radial coordinate. We show that such an equation is an extended version of the well-known Bessel differential equation whose perturbative additional terms contain coefficients that depend directly on the squared noise intensities and the autocorrelation lengths in an exponential decay fashion. We numerically solve the second order differential equation for several values of noise intensities and autocorrelation lengths and compare the corresponding displacement profiles with that of the exact analytic solution for the case of absent inhomogeneities.

  14. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  15. Can phoretic particles swim in two dimensions?

    NASA Astrophysics Data System (ADS)

    Sondak, David; Hawley, Cory; Heng, Siyu; Vinsonhaler, Rebecca; Lauga, Eric; Thiffeault, Jean-Luc

    2016-12-01

    Artificial phoretic particles swim using self-generated gradients in chemical species (self-diffusiophoresis) or charges and currents (self-electrophoresis). These particles can be used to study the physics of collective motion in active matter and might have promising applications in bioengineering. In the case of self-diffusiophoresis, the classical physical model relies on a steady solution of the diffusion equation, from which chemical gradients, phoretic flows, and ultimately the swimming velocity may be derived. Motivated by disk-shaped particles in thin films and under confinement, we examine the extension to two dimensions. Because the two-dimensional diffusion equation lacks a steady state with the correct boundary conditions, Laplace transforms must be used to study the long-time behavior of the problem and determine the swimming velocity. For fixed chemical fluxes on the particle surface, we find that the swimming velocity ultimately always decays logarithmically in time. In the case of finite Péclet numbers, we solve the full advection-diffusion equation numerically and show that this decay can be avoided by the particle moving to regions of unconsumed reactant. Finite advection thus regularizes the two-dimensional phoretic problem.

  16. Multidisciplinary optimization of a controlled space structure using 150 design variables

    NASA Technical Reports Server (NTRS)

    James, Benjamin B.

    1993-01-01

    A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.

  17. Estimation of aquifer radionuclide concentrations by postprocessing of conservative tracer model results

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Vandersteen, K.; Rogiers, B.

    2012-04-01

    Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes. Although the proposed method represents a fast way to estimate the radionuclide concentrations without performing timely challenging simulations, its applicability has some limits. The radionuclide source needs to be assumed constant during the period of achieving a steady-state in the model. Otherwise, the source variability of individual radionuclides needs to be modelled using a numerical simulation. However, such a situation only occurs in cases of source variability in a period until steady-state is reached and such a simulation takes a relatively short time. The proposed method enables an effective estimation of individual radionuclide concentrations in the frame of performance assessment of a radioactive waste disposal. Reducing the calculation time to a minimum enables performing sensitivity and uncertainty analyses, testing alternative models, etc. thus enhancing the overall quality of the modelling analysis.

  18. Spectral narrowing and spin echo for localized carriers with heavy-tailed L evy distribution of hopping times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Z.; Mkhitaryan, Vagharsh; Raikh, M. E.

    2016-02-02

    We study analytically the free induction decay and the spin echo decay originating from the localized carriers moving between the sites which host random magnetic fields. Due to disorder in the site positions and energies, the on-site residence times, , are widely spread according to the L evy distribution. The power-law tail ∝ τ -1-∝ in the distribution of does not affect the conventional spectral narrowing for α > 2, but leads to a dramatic acceleration of the free induction decay in the domain 2 > α > 1. The next abrupt acceleration of the decay takes place as becomesmore » smaller than 1. In the latter domain the decay does not follow a simple-exponent law. To capture the behavior of the average spin in this domain, we solve the evolution equation for the average spin using the approach different from the conventional approach based on the Laplace transform. Unlike the free induction decay, the tail in the distribution of the residence times leads to the slow decay of the spin echo. The echo is dominated by realizations of the carrier motion for which the number of sites, visited by the carrier, is minimal.« less

  19. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  20. Similarity Solutions on Mixed Convection Heat Transfer from a Horizontal Surface Saturated in a Porous Medium with Internal Heat Generation

    NASA Astrophysics Data System (ADS)

    Ferdows, M.; Liu, D.

    2017-02-01

    The aim of this work is to study the mixed convection boundary layer flow from a horizontal surface embedded in a porous medium with exponential decaying internal heat generation (IHG). Boundary layer equations are reduced to two ordinary differential equations for the dimensionless stream function and temperature with two parameters: ɛ, the mixed convection parameter, and λ, the exponent of x. This problem is numerically solved with a system of parameters using built-in codes in Maple. The influences of these parameters on velocity and temperature profiles, and the Nusselt number, are thoroughly compared and discussed.

  1. Study of molecular N D bound states in the Bethe-Salpeter equation approach

    NASA Astrophysics Data System (ADS)

    Wang, Zhen-Yang; Qi, Jing-Juan; Guo, Xin-Heng; Wei, Ke-Wei

    2018-05-01

    We study the Λc(2595 )+ and Σc(2800 )0 states as the N D bound systems in the Bethe-Salpeter formalism in the ladder and instantaneous approximations. With the kernel induced by ρ , ω and σ exchanges, we solve the Bethe-Salpeter equations for the N D bound systems numerically and find that the bound states may exist. We assume that the observed states Λc(2595 )+ and Σc(2800 )0 are S -wave N D molecular bound states and calculate the decay widths of Λc(2595 )+→Σc0π+ and Σc(2800 )0→Λc+π-.

  2. Speed selection for traveling-wave solutions to the diffusion-reaction equation with cubic reaction term and Burgers nonlinear convection.

    PubMed

    Sabelnikov, V A; Lipatnikov, A N

    2014-09-01

    The problem of traveling wave (TW) speed selection for solutions to a generalized Murray-Burgers-KPP-Fisher parabolic equation with a strictly positive cubic reaction term is considered theoretically and the initial boundary value problem is numerically solved in order to support obtained analytical results. Depending on the magnitude of a parameter inherent in the reaction term (i) the term is either a concave function or a function with the inflection point and (ii) transition from pulled to pushed TW solution occurs due to interplay of two nonlinear terms; the reaction term and the Burgers convection term. Explicit pushed TW solutions are derived. It is shown that physically observable TW solutions, i.e., solutions obtained by solving the initial boundary value problem with a sufficiently steep initial condition, can be determined by seeking the TW solution characterized by the maximum decay rate at its leading edge. In the Appendix, the developed approach is applied to a non-linear diffusion-reaction equation that is widely used to model premixed turbulent combustion.

  3. Scattered surface wave energy in the seismic coda

    USGS Publications Warehouse

    Zeng, Y.

    2006-01-01

    One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.

  4. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  5. Deformation dependence of proton decay rates and angular distributions in a time-dependent approach

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Talou, P.; Strottman, D.

    1998-12-01

    A new, time-dependent, approach to proton decay from axially symmetric deformed nuclei is presented. The two-dimensional time-dependent Schrödinger equation for the interaction between the emitted proton and the rest of the nucleus is solved numerically for well defined initial quasi-stationary proton states. Applied to the hypothetical proton emission from excited states in deformed nuclei of 208Pb, this approach shows that the problem cannot be reduced to one dimension. There are in general more than one directions of emission with wide distributions around them, determined mainly by the quantum numbers of the initial wave function rather than by the potential landscape. The distribution of the "residual" angular momentum and its variation in time play a major role in the determination of the decay rate. In a couple of cases, no exponential decay was found during the calculated time evolution (2×10-21 sec) although more than half of the wave function escaped during that time.

  6. Mass spectra and decay properties of the c\\bar{c} meson

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Raghav; Kumar Rai, Ajay

    2018-06-01

    In this article we present the result of c\\bar{c} meson mass calculation by solving the Schrödinger equation numerically considering the Coulomb plus linear potential. The spin-hyperfine, spin-orbit and tensor components of one-gluon-exchange interactions are employed to obtain the mass spectra of c\\bar{c} meson. The calculated mass spectra are compared with the latest results of PDG and are found to be in good accordance. The Regge trajectories of the calculated mass spectra have also been constructed. The values of the wave function are extracted and employed to calculate the leptonic decay constant, γγ, gg, e+e-, light hadron (LH) and γγγ decay widths of S-wave 0^{-+} and 1^{- -} states of c\\bar{c} meson, the widths have been calculated by Van Royen-Weisskopf formula and by NRQCD mechanism incorporating relativistic corrections of order ν2. The γγ and gg decay widths of χ0 and χ2 states of c\\bar{c} meson have also been calculated. The calculated decay constants and widths have been compared with the experimental results.

  7. Decay of super-heavy particles: user guide of the SHdecay program

    NASA Astrophysics Data System (ADS)

    Barbot, C.

    2004-02-01

    I give here a detailed user guide for the C++ program SHdecay, which has been developed for computing the final spectra of stable particles (protons, photons, LSPs, electrons, neutrinos of the three species and their antiparticles) arising from the decay of a super-heavy X particle. It allows to compute in great detail the complete decay cascade for any given decay mode into particles of the Minimal Supersymmetric Standard Model (MSSM). In particular, it takes into account all interactions of the MSSM during the perturbative cascade (including not only QCD, but also the electroweak and 3rd generation Yukawa interactions), and includes a detailed treatment of the SUSY decay cascade (for a given set of parameters) and of the non-perturbative hadronization process. All these features allow us to ensure energy conservation over the whole cascade up to a numerical accuracy of a few per mille. Yet, this program also allows to restrict the computation to QCD or SUSY-QCD frameworks. I detail the input and output files, describe the role of each part of the program, and include some advice for using it best. Program summaryTitle of program: SHdecay Catalogue identifier:ADSL Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSL Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer and operating system: Program tested on PC running Linux KDE and Suse 8.1 Programming language used: C with STL C++ library and using the standard gnu g++ compiler No. lines in distributed program: 14 955 No. of bytes in distributed program, including test data, etc.: 624 487 Distribution format: tar gzip file Keywords: Super-heavy particles, fragmentation functions, DGLAP equations, supersymmetry, MSSM, UHECR Nature of physical problem: Obtaining the energy spectra of the final stable decay products (protons, photons, electrons, the three species of neutrinos and the LSPs) of a decaying super-heavy X particle, within the framework of the Minimal Supersymmetric Standard Model (MSSM). It can be done numerically by solving the full set of DGLAP equations in the MSSM for the perturbative evolution of the fragmentation functions Dp2p1( x, Q) of any particle p1 into any other p2 ( x is the energy fraction carried by the particle p2 and Q its virtuality), and by treating properly the different decay cascades of all unstable particles and the final hadronization of quarks and gluons. In order to obtain proper results at very low values of x (up to x˜10 -13), NLO color coherence effects have been included by using the Modified Leading Log Approximation (MLLA). Method of solution: the DGLAP equations are solved by a four order Runge-Kutta method with a fixed step. Typical running time: Around 35 hours for the first run, but the most time consuming sub-programs can be run only once for most applications.

  8. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less

  9. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    NASA Astrophysics Data System (ADS)

    de Almeida, Valmor F.

    2017-07-01

    A phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equation and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.

  10. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk - A numerical approach

    NASA Astrophysics Data System (ADS)

    Ramzan, Muhammad; Chung, Jae Dong; Ullah, Naeem

    The aim of present exploration is to study the flow of micropolar nanofluid due to a rotating disk in the presence of magnetic field and partial slip condition. The governing coupled partial differential equations are reduced to nonlinear ordinary differential equations using appropriate transformations. The differential equations are solved numerically by using Maple dsolve command with option numeric which utilize Runge-Kutta fourth-fifth order Fehlberg technique. A comparison to previous study is also added to validate the present results. Moreover, behavior of different parameters on velocity, microrotation, temperature and concentration of nanofluid are presented via graphs and tables. It is noted that the slip effect and magnetic field decay the velocity and microrotation or spin component.

  11. Modeling nuclear processes by Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less

  12. Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin

    2012-08-01

    SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.

  13. Force on a storage ring vacuum chamber after sudden turn-off of a magnet power supply

    NASA Astrophysics Data System (ADS)

    Sinha, Gautam; Prabhu, S. S.

    2011-10-01

    We are commissioning a 2.5 GeV synchrotron radiation source (SRS) where electrons travel in high vacuum inside the vacuum chambers made of aluminum alloys. These chambers are kept between the pole gaps of magnets and are made to facilitate the radiation coming out of the storage ring to the experimental station. These chambers are connected by metallic bellows. During the commissioning phase of the SRS, the metallic bellows became ruptured due to the frequent tripping of the dipole magnet power supply. The machine was down for quite some time. In the case of a power supply trip, the current in the magnets decays exponentially. It was observed experimentally that the fast B field decay generates a large eddy current in the chambers and consequently the chambers are subjected to a huge Lorentz force. This motivated us to develop a theoretical model to study the force acting on a metallic plate when exposed to an exponentially decaying field and then to extend it for a rectangular vacuum chamber. The problem is formulated using Maxwell’s equations and converted to the inhomogeneous Helmholtz equation. After taking the Laplace transform, the equation is solved with appropriate boundary conditions. Final results are obtained after taking the appropriate inverse Laplace transform. The expressions for eddy current contour and magnetic field produced by the eddy current are also derived. Variations of the force on chambers of different wall thickness due to spatially varying and exponentially time decaying field are presented. The result is a general theory which can be applied to different geometries and calculation of power loss as well. Comparisons are made with results obtained by simulation using a finite element based code, for quick verification of the theoretical model.

  14. INTERNATIONAL CONFERENCE ON SEMICONDUCTOR INJECTION LASERS SELCO-87: Transient heat conduction in laser diodes

    NASA Astrophysics Data System (ADS)

    Enders, P.; Galley, J.

    1988-11-01

    The dynamics of heat transfer in stripe GaAlAs laser diodes is investigated by solving the linear diffusion equation for a quasitwo-dimensional multilayer structure. The calculations are rationalized drastically by the transfer matrix method and also using for the first time the asymptotes of the decay constants. Special attention is given to the convergence of the Fourier series. A comparison with experimental results reveals however that this is essentially the Stefan problem (with moving boundary conditions).

  15. Statistical properties and correlation functions for drift waves

    NASA Technical Reports Server (NTRS)

    Horton, W.

    1986-01-01

    The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.

  16. Propagation and attenuation of Rayleigh waves in generalized thermoelastic media

    NASA Astrophysics Data System (ADS)

    Sharma, M. D.

    2014-01-01

    This study considers the propagation of Rayleigh waves in a generalized thermoelastic half-space with stress-free plane boundary. The boundary has the option of being either isothermal or thermally insulated. In either case, the dispersion equation is obtained in the form of a complex irrational expression due to the presence of radicals. This dispersion equation is rationalized into a polynomial equation, which is solvable, numerically, for exact complex roots. The roots of the dispersion equation are obtained after removing the extraneous zeros of this polynomial equation. Then, these roots are filtered out for the inhomogeneous propagation of waves decaying with depth. Numerical examples are solved to analyze the effects of thermal properties of elastic materials on the dispersion of existing surface waves. For these thermoelastic Rayleigh waves, the behavior of elliptical particle motion is studied inside and at the surface of the medium. Insulation of boundary does play a significant role in changing the speed, amplitude, and polarization of Rayleigh waves in thermoelastic media.

  17. Analysis of the cable equation with non-local and non-singular kernel fractional derivative

    NASA Astrophysics Data System (ADS)

    Karaagac, Berat

    2018-02-01

    Recently a new concept of differentiation was introduced in the literature where the kernel was converted from non-local singular to non-local and non-singular. One of the great advantages of this new kernel is its ability to portray fading memory and also well defined memory of the system under investigation. In this paper the cable equation which is used to develop mathematical models of signal decay in submarine or underwater telegraphic cables will be analysed using the Atangana-Baleanu fractional derivative due to the ability of the new fractional derivative to describe non-local fading memory. The existence and uniqueness of the more generalized model is presented in detail via the fixed point theorem. A new numerical scheme is used to solve the new equation. In addition, stability, convergence and numerical simulations are presented.

  18. Reconstructing particle masses in events with displaced vertices

    NASA Astrophysics Data System (ADS)

    Cottin, Giovanna

    2018-03-01

    We propose a simple way to extract particle masses given a displaced vertex signature in event topologies where two long-lived mother particles decay to visible particles and an invisible daughter. The mother could be either charged or neutral and the neutral daughter could correspond to a dark matter particle in different models. The method allows to extract the parent and daughter masses by using on-shell conditions and energy-momentum conservation, in addition to the displaced decay positions of the parents, which allows to solve the kinematic equations fully on an event-by-event basis. We show the validity of the method by means of simulations including detector effects. If displaced events are seen in discovery searches at the Large Hadron Collider (LHC), this technique can be applied.

  19. MATHEMATICS PANEL QUARTERLY PROGRESS REPORT FOR PERIOD ENDING JULY 31, 1952

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, C.L. ed.

    1952-10-27

    The background and status of the following projects of the Mathematics Panel are reported: test problems for the ORAC arithmetic units errors in matrix operations; basic studies in the Monte Carlo methods A Sturm-Liouville problems approximate steady-state solution of the equation of continuity; estimation of volume of lymph space; xradiation effects on respiration rates in grasshopper embnyos; temperature effects in irradiation experiments with yeast; LD/sub 50/ estimation for burros and swine exposed to gamma radiation; thermal-neutron penetration in tissues; kinetics of HBr-HBrO/sub 3/ reaction; isotope effect in reaction rate constants; experimental determination of diffusivity coefficientss Dirac wave equationss fitting amore » calibration curves beta decay (field factors); neutron decay theorys calculation of internal conversion coefficients with screening; estimation of alignment ratios; optimum allocation of counting times calculation of coincidence probabilities for a double-crystal detectors reactor inequalities; heat flow in long rectangular tubes; solving an equation by numerical methods; numerical integration; evalvation of a functions depigmentation of a biological dosimeter. (L.M.T.)« less

  20. Application of the unsteady vortex-lattice method to the nonlinear two-degree-of-freedom aeroelastic equations

    NASA Technical Reports Server (NTRS)

    Strganac, T. W.; Mook, D. T.

    1986-01-01

    A means of numerically simulating flutter is established by implementing a predictor-corrector algorithm to solve the equations of motion. Aerodynamic loads are provided by the unsteady vortex lattice method (UVLM). This method is illustrated via the obtainment of stable and unstable responses to initial disturbances in the case of two-degree-of-freedom motion. It was found that for some angles of attack and dynamic pressure, the initial disturbance decays, for others it grows (flutter). When flutter occurs, the solution yields the amplitude and period of the resulting limit cycle. The preliminaray results attest to the feasibility of this method for studying flutter in cases that would be difficult to treat using a classical approach.

  1. Finite-temperature effects in helical quantum turbulence

    NASA Astrophysics Data System (ADS)

    Clark Di Leoni, Patricio; Mininni, Pablo D.; Brachet, Marc E.

    2018-04-01

    We perform a study of the evolution of helical quantum turbulence at different temperatures by solving numerically the Gross-Pitaevskii and the stochastic Ginzburg-Landau equations, using up to 40963 grid points with a pseudospectral method. We show that for temperatures close to the critical one, the fluid described by these equations can act as a classical viscous flow, with the decay of the incompressible kinetic energy and the helicity becoming exponential. The transition from this behavior to the one observed at zero temperature is smooth as a function of temperature. Moreover, the presence of strong thermal effects can inhibit the development of a proper turbulent cascade. We provide Ansätze for the effective viscosity and friction as a function of the temperature.

  2. Unsteady MHD blood flow through porous medium in a parallel plate channel

    NASA Astrophysics Data System (ADS)

    Latha, R.; Rushi Kumar, B.

    2017-11-01

    In this study, we have analyzed heat and mass transfer effects on unsteady blood flow through parallel plate channel in a saturated porous medium in the presence of a transverse magnetic field with thermal radiation. The governing higher order nonlinear PDE’S are converted to dimensionless equations using dimensionless variables. The dimensionless equations are then solved analytically using boundary conditions by choosing the axial flow transport and the fields of concentration and temperature apart from the normal velocity as a function of y and t. The effects of different pertinent parameters appeared in this model viz thermal radiation, Prandtl number, Heat source parameter, Hartmann number, Permeability parameter, Decay parameter on axial flow transport and the normal velocity are analyzed in detail.

  3. Axisymmetric flow of Casson fluid by a swirling cylinder

    NASA Astrophysics Data System (ADS)

    Javed, Muhammad Faisal; Khan, Muhammad Imran; Khan, Niaz Bahadur; Muhammad, Riaz; Rehman, Muftooh Ur; Khan, Sajjad Wali; Khan, Tufail A.

    2018-06-01

    The present communication aims to investigate the influence of heat generation/absorption on axisymmetric Casson liquid flow over a stretched cylinder. Flow is caused due to torsional motion of cylinder. The governing physical problem is modelled and transferred into set of coupled nonlinear ordinary differential equations. These equations are solved numerically using built-in-Shooting method. Influence of sundry variables on the swirling velocity, temperature, coefficient of skin friction and heat transfer rate are computed and analyzed in a physical manner. Magnitude of axial skin friction is enhances for larger Reynold number and magnetic parameter while local Nusselt number decays with the enhancement of Casson parameter, heat generation/absorption and magnetic parameter. Comparison with already existing results is also given in the limiting case.

  4. Analytical evaluation of the trajectories of hypersonic projectiles launched into space

    NASA Astrophysics Data System (ADS)

    Stutz, John David

    An equation of motion has been derived that may be solved using simple analytic functions which describes the motion of a projectile launched from the surface of the Earth into space accounting for both Newtonian gravity and aerodynamic drag. The equation of motion is based upon the Kepler equation of motion differential and variable transformations with the inclusion of a decaying angular momentum driving function and appropriate simplifying assumptions. The new equation of motion is first compared to various numerical and analytical trajectory approximations in a non-rotating Earth reference frame. The Modified Kepler solution is then corrected to include Earth rotation and compared to a rotating Earth simulation. Finally, the modified equation of motion is used to predict the apogee and trajectory of projectiles launched into space by the High Altitude Research Project from 1961 to 1967. The new equation of motion allows for the rapid equalization of projectile trajectories and intercept solutions that may be used to calculate firing solutions to enable ground launched projectiles to intercept or rendezvous with targets in low Earth orbit such as ballistic missiles.

  5. Investigating the excited Ωc0 states through ΞcK ¯ and Ξc'K ¯ decay channels

    NASA Astrophysics Data System (ADS)

    Huang, Hongxia; Ping, Jialun; Wang, Fan

    2018-02-01

    Inspired by the five newly observed Ωc0 states by the LHCb detector, we study the Ωc0 states as the S -wave molecular pentaquarks with I =0 , JP=1/2- , 3/2-, and 5/2- by solving the renormalization group method equation in the framework of the chiral quark model. Both the energies and the decay widths are obtained in this work. Our results suggest that Ωc(3119 )0 can be explained as an S -wave resonance state of Ξ D with JP=1/2-, and the decay channels are the S -wave ΞcK ¯ and Ξc'K ¯ . Other reported Ωc0 states cannot be obtained in our present calculation. Another Ωc0 state with much higher mass 3533 MeV with JP=5/2- is also obtained. In addition, the calculation is extended to the Ωb0 states, and results similar to those of Ωc0 are obtained.

  6. Kraus operator solutions to a fermionic master equation describing a thermal bath and their matrix representation

    NASA Astrophysics Data System (ADS)

    Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia

    2016-04-01

    We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.

  7. A Time Domain Analysis of Gust-Cascade Interaction Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Hixon, R.; Sawyer, S. D.; Dyson, R. W.

    2003-01-01

    The gust response of a 2 D cascade is studied by solving the full nonlinear Euler equations employing higher order accurate spatial differencing and time stepping techniques. The solutions exhibit the exponential decay of the two circumferential mode orders of the cutoff blade passing frequency (BPF) tone and propagation of one circumferential mode order at 2BPF, as would be expected for the flow configuration considered. Two frequency excitations indicate that the interaction between the frequencies and the self interaction contribute to the amplitude of the propagating mode.

  8. The role of CP violating scatterings in baryogenesis—case study of the neutron portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldes, Iason; Bell, Nicole F.; Millar, Alexander

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  9. A three-dimensional method-of-characteristics solute-transport model (MOC3D)

    USGS Publications Warehouse

    Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.

    1996-01-01

    This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.

  10. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-01

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  11. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    NASA Astrophysics Data System (ADS)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  12. Reexamining cluster radioactivity in trans-lead nuclei with consideration of specific density distributions in daughter nuclei and clusters

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou; Ni, Dongdong

    2016-08-01

    We further investigate the cluster emission from heavy nuclei beyond the lead region in the framework of the preformed cluster model. The refined cluster-core potential is constructed by the double-folding integral of the density distributions of the daughter nucleus and the emitted cluster, where the radius or the diffuseness parameter in the Fermi density distribution formula is determined according to the available experimental data on the charge radii and the neutron skin thickness. The Schrödinger equation of the cluster-daughter relative motion is then solved within the outgoing Coulomb wave-function boundary conditions to obtain the decay width. It is found that the present decay width of cluster emitters is clearly enhanced as compared to that in the previous case, which involved the fixed parametrization for the density distributions of daughter nuclei and clusters. Among the whole procedure, the nuclear deformation of clusters is also introduced into the calculations, and the degree of its influence on the final decay half-life is checked to some extent. Moreover, the effect from the bubble density distribution of clusters on the final decay width is carefully discussed by using the central depressed distribution.

  13. Propagation of Disturbances in AC Electricity Grids.

    PubMed

    Tamrakar, Samyak; Conrath, Michael; Kettemann, Stefan

    2018-04-24

    The energy transition towards high shares of renewable energy will affect the stability of electricity grids in many ways. Here, we aim to study its impact on propagation of disturbances by solving nonlinear swing equations describing coupled rotating masses of synchronous generators and motors on different grid topologies. We consider a tree, a square grid and as a real grid topology, the german transmission grid. We identify ranges of parameters with different transient dynamics: the disturbance decays exponentially in time, superimposed by oscillations with the fast decay rate of a single node, or with a smaller decay rate without oscillations. Most remarkably, as the grid inertia is lowered, nodes may become correlated, slowing down the propagation from ballistic to diffusive motion, decaying with a power law in time. Applying linear response theory we show that tree grids have a spectral gap leading to exponential relaxation as protected by topology and independent on grid size. Meshed grids are found to have a spectral gap which decreases with increasing grid size, leading to slow power law relaxation and collective diffusive propagation of disturbances. We conclude by discussing consequences if no measures are undertaken to preserve the grid inertia in the energy transition.

  14. User`s guide for UTCHEM-5.32m a three dimensional chemical flood simulator. Final report, September 30, 1992--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    UTCHEM is a three-dimensional chemical flooding simulator. The solution scheme is analogous to IMPES, where pressure is solved for implicitly, but concentrations rather than saturations are then solved for explicitly. Phase saturations and concentrations are then solved in a flash routine. An energy balance equation is solved explicitly for reservoir temperature. The energy balance equation includes heat flow between the reservoir and the over-and under-burden rocks. The major physical phenomena modeled in the simulator are: dispersion; dilution effects; adsorption; interfacial tension; relative permeability; capillary trapping; cation exchange; phase density; compositional phase viscosity; phase behavior (pseudoquaternary); aqueous reactions; partitioning of chemicalmore » species between oil and water; dissolution/precipitation; cation exchange reactions involving more than two cations; in-situ generation of surfactant from acidic crude oil; pH dependent adsorption; polymer properties: shear thinning viscosity; inaccessible pore volume; permeability reduction; adsorption; gel properties: viscosity; permeability reduction; adsorption; tracer properties: partitioning; adsorption; radioactive decay; reaction (ester hydrolization); temperature dependent properties: viscosity; tracer reaction; gel reactions The following options are available with UTCHEM: isothermal or non-isothermal conditions, a constant or variable time-step, constant pressure or constant rate well conditions, horizontal and vertical wells, and a radial or Cartesian geometry. Please refer to the dissertation {open_quotes}Field Scale Simulation of Chemical Flooding{close_quotes} by Naji Saad, August, 1989, for a more detailed discussion of the UTCHEM simulator and its formulation.« less

  15. Properties of one-dimensional anharmonic lattice solitons

    NASA Astrophysics Data System (ADS)

    Szeftel, Jacob; Laurent-Gengoux, Pascal; Ilisca, Ernest; Hebbache, Mohamed

    2000-12-01

    The existence of bell- and kink-shaped solitons moving at constant velocity while keeping a permanent profile is studied in infinite periodic monoatomic chains of arbitrary anharmonicity by taking advantage of the equation of motion being integrable with respect to solitons. A second-order, non-linear differential equation involving advanced and retarded terms must be solved, which is done by implementing a scheme based on the finite element and Newton's methods. If the potential has a harmonic limit, the asymptotic time-decay behaves exponentially and there is a dispersion relation between propagation velocity and decay time. Inversely if the potential has no harmonic limit, the asymptotic regime shows up either as a power-law or faster than exponential. Excellent agreement is achieved with Toda's model. Illustrative examples are also given for the Fermi-Pasta-Ulam and sine-Gordon potentials. Owing to integrability an effective one-body potential is worked out in each case. Lattice and continuum solitons differ markedly from one another as regards the amplitude versus propagation velocity relationship and the asymptotic time behavior. The relevance of the linear stability analysis when applied to solitons propagating in an infinite crystal is questioned. The reasons preventing solitons from arising in a diatomic lattice are discussed.

  16. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Almeida, Valmor F.

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  17. An iterative phase-space explicit discontinuous Galerkin method for stellar radiative transfer in extended atmospheres

    DOE PAGES

    de Almeida, Valmor F.

    2017-04-19

    In this work, a phase-space discontinuous Galerkin (PSDG) method is presented for the solution of stellar radiative transfer problems. It allows for greater adaptivity than competing methods without sacrificing generality. The method is extensively tested on a spherically symmetric, static, inverse-power-law scattering atmosphere. Results for different sizes of atmospheres and intensities of scattering agreed with asymptotic values. The exponentially decaying behavior of the radiative field in the diffusive-transparent transition region, and the forward peaking behavior at the surface of extended atmospheres were accurately captured. The integrodifferential equation of radiation transfer is solved iteratively by alternating between the radiative pressure equationmore » and the original equation with the integral term treated as an energy density source term. In each iteration, the equations are solved via an explicit, flux-conserving, discontinuous Galerkin method. Finite elements are ordered in wave fronts perpendicular to the characteristic curves so that elemental linear algebraic systems are solved quickly by sweeping the phase space element by element. Two implementations of a diffusive boundary condition at the origin are demonstrated wherein the finite discontinuity in the radiation intensity is accurately captured by the proposed method. This allows for a consistent mechanism to preserve photon luminosity. The method was proved to be robust and fast, and a case is made for the adequacy of parallel processing. In addition to classical two-dimensional plots, results of normalized radiation intensity were mapped onto a log-polar surface exhibiting all distinguishing features of the problem studied.« less

  18. Local energy decay for linear wave equations with variable coefficients

    NASA Astrophysics Data System (ADS)

    Ikehata, Ryo

    2005-06-01

    A uniform local energy decay result is derived to the linear wave equation with spatial variable coefficients. We deal with this equation in an exterior domain with a star-shaped complement. Our advantage is that we do not assume any compactness of the support on the initial data, and its proof is quite simple. This generalizes a previous famous result due to Morawetz [The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14 (1961) 561-568]. In order to prove local energy decay, we mainly apply two types of ideas due to Ikehata-Matsuyama [L2-behaviour of solutions to the linear heat and wave equations in exterior domains, Sci. Math. Japon. 55 (2002) 33-42] and Todorova-Yordanov [Critical exponent for a nonlinear wave equation with damping, J. Differential Equations 174 (2001) 464-489].

  19. Three-body Final State Interaction in η→3π

    DOE PAGES

    Guo, Peng; Danilkin, Igor V.; Schott, Diane; ...

    2015-09-11

    We present an unitary dispersive model for themore » $$\\eta \\to 3 \\pi$$ decay process based upon the Khuri-Treiman equations which are solved by means of the Pasquier inversion method. The description of the hadronic final-state interactions for the $$\\eta \\to 3\\pi$$ decay is essential to reproduce the available data and to understand the existing discrepancies between Dalitz plot parameters from experiment and chiral perturbation theory. Our approach incorporates substraction constants that are fixed by fitting the recent high-statistics WASA-at-COSY data for $$\\eta \\to \\pi^+ \\pi^- \\pi^0$$. Based on the parameters obtained we predict the slope parameter for the neutral channel to be $$\\alpha=-0.022\\pm 0.004$$. Through matching to next-to-leading order chiral perturbation theory we estimate the quark mass double ratio to be $$Q=21.4 \\pm 0.4$$.« less

  20. Self-sustained radial oscillating flows between parallel disks

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Yang, W.-J.

    1985-05-01

    It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.

  1. Solving Differential Equations in R: Package deSolve

    EPA Science Inventory

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  2. Pseudoscalar D and B mesons in the hot dense and nonstrange symmetric medium

    NASA Astrophysics Data System (ADS)

    Chhabra, Rahul; Kumar, Arvind

    2017-01-01

    We investigate the effect of temperature and density on the shift in the masses and decay constants of the pseudoscalar D and B mesons in the nonstrange symmetric medium. We use chiral SU(3) model to calculate the medium modified scalar and isoscalar fields σ, ζ, δ and χ. We use these modified fields to calculate the in-medium quark and gluon condensates by solving the coupled equations of motions in the chiral SU(3) model. We obtain the medium modified mass and decay constant through these medium modified condensates using the QCD sum rules. Further we use the 3P0 model by taking the internal structure of the mesons to calculate the in-medium decay width of the higher charmonium states χ(3556) , ψ(3686) and ψ(3770) to the D D pairs, through the in-medium mass of D meson and neglecting the mass modification of higher charmonium states. We also compare the present data with the previous results. These results of present investigation may be important to explain the possible outcomes of the experiments like CBM, Panda at GSI.

  3. Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number

    NASA Astrophysics Data System (ADS)

    Smith, W. R.; Wang, Q. X.

    2017-08-01

    The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.

  4. Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers

    NASA Astrophysics Data System (ADS)

    Cartar, William; Mørk, Jesper; Hughes, Stephen

    2017-08-01

    We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N =7 , and a reduction in the nominal cavity mode volume for increasing amounts of disorder.

  5. Decay Properties of Axially Symmetric D-Solutions to the Steady Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Weng, Shangkun

    2018-03-01

    We investigate the decay properties of smooth axially symmetric D-solutions to the steady Navier-Stokes equations. The achievements of this paper are two folds. One is improved decay rates of u_{θ } and \

  6. Time-dependent Schrödinger equation for molecular core-hole dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picón, A.

    2017-02-01

    X-ray spectroscopy is an important tool for the investigation of matter. X rays primarily interact with inner-shell electrons, creating core (inner-shell) holes that will decay on the time scale of attoseconds to a few femtoseconds through electron relaxations involving the emission of a photon or an electron. Furthermore, the advent of femtosecond x-ray pulses expands x-ray spectroscopy to the time domain and will eventually allow the control of core-hole population on time scales comparable to core-vacancy lifetimes. For both cases, a theoretical approach that accounts for the x-ray interaction while the electron relaxations occur is required. We describe a time-dependentmore » framework, based on solving the time-dependent Schrödinger equation, that is suitable for describing the induced electron and nuclear dynamics.« less

  7. Technique for Very High Order Nonlinear Simulation and Validation

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2001-01-01

    Finding the sources of sound in large nonlinear fields via direct simulation currently requires excessive computational cost. This paper describes a simple technique for efficiently solving the multidimensional nonlinear Euler equations that significantly reduces this cost and demonstrates a useful approach for validating high order nonlinear methods. Up to 15th order accuracy in space and time methods were compared and it is shown that an algorithm with a fixed design accuracy approaches its maximal utility and then its usefulness exponentially decays unless higher accuracy is used. It is concluded that at least a 7th order method is required to efficiently propagate a harmonic wave using the nonlinear Euler equations to a distance of 5 wavelengths while maintaining an overall error tolerance that is low enough to capture both the mean flow and the acoustics.

  8. Spacelike matching to null infinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenginoglu, Anil; Tiglio, Manuel

    2009-07-15

    We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less

  9. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].

    PubMed

    Murase, Kenya

    2015-01-01

    In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.

  10. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  11. Magnetic field decay in black widow pulsars

    NASA Astrophysics Data System (ADS)

    Mendes, Camile; de Avellar, Marcio G. B.; Horvath, J. E.; Souza, Rodrigo A. de; Benvenuto, O. G.; De Vito, M. A.

    2018-04-01

    We study in this work the evolution of the magnetic field in `redback-black widow' pulsars. Evolutionary calculations of these `spider' systems suggest that first the accretion operates in the redback stage, and later the companion star ablates matter due to winds from the recycled pulsar. It is generally believed that mass accretion by the pulsar results in a rapid decay of the magnetic field when compared to the rate of an isolated neutron star. We study the evolution of the magnetic field in black widow pulsars by solving numerically the induction equation using the modified Crank-Nicolson method with intermittent episodes of mass accretion on to the neutron star. Our results show that the magnetic field does not fall below a minimum value (`bottom field') in spite of the long evolution time of the black widow systems, extending the previous conclusions for much younger low-mass X-ray binary systems. We find that in this scenario, the magnetic field decay is dominated by the accretion rate, and that the existence of a bottom field is likely related to the fact that the surface temperature of the pulsar does not decay as predicted by the current cooling models. We also observe that the impurity of the pulsar crust is not a dominant factor in the decay of magnetic field for the long evolution time of black widow systems.

  12. Predicting mesh density for adaptive modelling of the global atmosphere.

    PubMed

    Weller, Hilary

    2009-11-28

    The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.

  13. Encouraging Students to Think Strategically when Learning to Solve Linear Equations

    ERIC Educational Resources Information Center

    Robson, Daphne; Abell, Walt; Boustead, Therese

    2012-01-01

    Students who are preparing to study science and engineering need to understand equation solving but adult students returning to study can find this difficult. In this paper, the design of an online resource, Equations2go, for helping students learn to solve linear equations is investigated. Students learning to solve equations need to consider…

  14. New Mathematical Functions for Vacuum System Analysis

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2017-01-01

    A new bivariate function has been found that provides solutions of integrals having the form u (sup minus eta) e (sup u) du which arise when developing predictions for the behavior of pressure within a rigid volume under high vacuum conditions in the presence of venting as well as sources characterized by power law transient decay over the range [0,1] for eta and for u greater than or equal to 0. A few properties of the new function are explored in this work. For instance the eta equals 1/2 case reproduces the Dawson function. In addition, a slight variation of the solution technique reproduces the exponential integral for eta equals 1. The technique used to generate these functions leads to an approach for solving a more general class of nonlinear ordinary differential equations, with the potential for identifying other new functions that solve other integrals.

  15. Modeling of bioheat equation for skin and a preliminary study on a noninvasive diagnostic method for skin burn wounds.

    PubMed

    Lee, Shong-Leih; Lu, Yung-Hsiang

    2014-08-01

    Heat transfer in a unit three-dimensional skin tissue with an embedded vascular system of actual histology structure is computed in the present work. The tissue temperature and the blood temperatures in artery and vein vessels are solved with a multi-grid system. The mean temperature of the tissue over the cross-section of the unit skin area is evaluated. The resulting one-dimensional function is regarded as the temperature of healthy tissue (or injured skin but the blood perfusion is still normally working) for large area of skin in view of the symmetric and periodic structure of the paired artery-vein vessels in nature. A three-dimensional bioheat equation then is formulated by the superposition of the skin burn wound effect and the healthy skin temperature with and without thermal radiation exposure. When this bioheat equation is employed to simulate ADT process on burn wounds, the decaying factor of the skin surface temperature is found to be a sharply decreasing function of time in the self-cooling stage after a thermal radiation heating. Nevertheless, the boundary of non-healing (needing surgery) and healing regions in a large burn wound can be estimated by tracking the peak of the gradient of decaying factor within 30 s after the thermal radiation is turned off. Experimental studies on the full ADT procedure are needed to justify the assumptions in the present computation. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  16. Decoherence and spin echo in biological systems.

    PubMed

    Nesterov, Alexander I; Berman, Gennady P

    2015-05-01

    The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise, produced by the protein environment, is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach does not require the use of small interaction constants between the electron states and the protein fluctuations. It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bioapplications.

  17. Decoherence and spin echo in biological systems

    NASA Astrophysics Data System (ADS)

    Nesterov, Alexander I.; Berman, Gennady P.

    2015-05-01

    The spin-echo approach is extended to include biocomplexes for which the interaction with dynamical noise, produced by the protein environment, is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. Our approach does not require the use of small interaction constants between the electron states and the protein fluctuations. It is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bioapplications.

  18. Workshop Physics Activity Guide, Module 3: Heat Temperature and Nuclear Radiation, Thermodynamics, Kinetic Theory, Heat Engines, Nuclear Decay, and Random Monitoring (Units 16 - 18 & 28)

    NASA Astrophysics Data System (ADS)

    Laws, Priscilla W.

    2004-05-01

    The Workshop Physics Activity Guide is a set of student workbooks designed to serve as the foundation for a two-semester calculus-based introductory physics course. It consists of 28 units that interweave text materials with activities that include prediction, qualitative observation, explanation, equation derivation, mathematical modeling, quantitative experiments, and problem solving. Students use a powerful set of computer tools to record, display, and analyze data, as well as to develop mathematical models of physical phenomena. The design of many of the activities is based on the outcomes of physics education research.

  19. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  20. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

    PubMed

    Murase, Kenya

    2014-01-01

    Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

  1. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  2. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE PAGES

    Steyer, Andrew J.; Van Vleck, Erik S.

    2018-04-13

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  3. A Lyapunov and Sacker–Sell spectral stability theory for one-step methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steyer, Andrew J.; Van Vleck, Erik S.

    Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less

  4. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

    NASA Astrophysics Data System (ADS)

    Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

    2018-04-01

    In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

  5. Heavy quarkonia in a potential model: binding energy, decay width, and survival probability

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Chaturvedi, O. S. K.; Thakur, Lata

    2018-06-01

    Recently a lot of progress has been made in deriving the heavy quark potential within a QCD medium. In this article we have considered heavy quarkonium in a hot quark gluon plasma phase. The heavy-quark potential has been modeled properly for short as well as long distances. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. We have numerically solved the 1+1-dimensional Schrodinger equation for this potential and obtained the eigen wavefunction and binding energy for the 1 S and 2 S states of charmonium and bottomonium. Further, we have calculated the decay width and dissociation temperature of quarkonium states in the QCD plasma. Finally, we have used our recently proposed unified model with these new values of decay widths to calculate the survival probability of the various quarkonium states with respect to centrality at relativistic heavy ion collider and large hadron collider energies. This study provides a unified, consistent and comprehensive description of spectroscopic properties of various quarkonium states at finite temperatures along with their nuclear modification factor at different collision energies.

  6. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  7. Cognitive Load in Algebra: Element Interactivity in Solving Equations

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing

    2015-01-01

    Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

  8. Scaling analysis and instantons for thermally assisted tunneling and quantum Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Smelyanskiy, Vadim N.; Isakov, Sergei V.; Boixo, Sergio; Mazzola, Guglielmo; Troyer, Matthias; Neven, Hartmut

    2017-01-01

    We develop an instantonic calculus to derive an analytical expression for the thermally assisted tunneling decay rate of a metastable state in a fully connected quantum spin model. The tunneling decay problem can be mapped onto the Kramers escape problem of a classical random dynamical field. This dynamical field is simulated efficiently by path-integral quantum Monte Carlo (QMC). We show analytically that the exponential scaling with the number of spins of the thermally assisted quantum tunneling rate and the escape rate of the QMC process are identical. We relate this effect to the existence of a dominant instantonic tunneling path. The instanton trajectory is described by nonlinear dynamical mean-field theory equations for a single-site magnetization vector, which we solve exactly. Finally, we derive scaling relations for the "spiky" barrier shape when the spin tunneling and QMC rates scale polynomially with the number of spins N while a purely classical over-the-barrier activation rate scales exponentially with N .

  9. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1980-01-01

    The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.

  10. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    NASA Astrophysics Data System (ADS)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  11. Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation

    NASA Astrophysics Data System (ADS)

    Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua

    2018-06-01

    Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.

  12. Reconstruction de defauts a partir de donnees issues de capteurs a courants de foucault avec modele direct differentiel

    NASA Astrophysics Data System (ADS)

    Trillon, Adrien

    Eddy current tomography can be employed to caracterize flaws in metal plates in steam generators of nuclear power plants. Our goal is to evaluate a map of the relative conductivity that represents the flaw. This nonlinear ill-posed problem is difficult to solve and a forward model is needed. First, we studied existing forward models to chose the one that is the most adapted to our case. Finite difference and finite element methods matched very good to our application. We adapted contrast source inversion (CSI) type methods to the chosen model and a new criterion was proposed. These methods are based on the minimization of the weighted errors of the model equations, coupling and observation. They allow an error on the equations. It appeared that reconstruction quality grows with the decay of the error on the coupling equation. We resorted to augmented Lagrangian techniques to constrain coupling equation and to avoid conditioning problems. In order to overcome the ill-posed character of the problem, prior information was introduced about the shape of the flaw and the values of the relative conductivity. Efficiency of the methods are illustrated with simulated flaws in 2D case.

  13. On supporting students' understanding of solving linear equation by using flowchart

    NASA Astrophysics Data System (ADS)

    Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi

    2017-05-01

    The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.

  14. Development of the FHR advanced natural circulation analysis code and application to FHR safety analysis

    DOE PAGES

    Guo, Z.; Zweibaum, N.; Shao, M.; ...

    2016-04-19

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Zweibaum, N.; Shao, M.

    The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less

  16. Students' Equation Understanding and Solving in Iran

    ERIC Educational Resources Information Center

    Barahmand, Ali; Shahvarani, Ahmad

    2014-01-01

    The purpose of the present article is to investigate how 15-year-old Iranian students interpret the concept of equation, its solution, and studying the relation between the students' equation understanding and solving. Data from two equation-solving exercises are reported. Data analysis shows that there is a significant relationship between…

  17. Eye Movements Reveal Students' Strategies in Simple Equation Solving

    ERIC Educational Resources Information Center

    Susac, Ana; Bubic, Andreja; Kaponja, Jurica; Planinic, Maja; Palmovic, Marijan

    2014-01-01

    Equation rearrangement is an important skill required for problem solving in mathematics and science. Eye movements of 40 university students were recorded while they were rearranging simple algebraic equations. The participants also reported on their strategies during equation solving in a separate questionnaire. The analysis of the behavioral…

  18. Fractional Dynamics of Network Growth Constrained by Aging Node Interactions

    PubMed Central

    Safdari, Hadiseh; Zare Kamali, Milad; Shirazi, Amirhossein; Khalighi, Moein; Jafari, Gholamreza; Ausloos, Marcel

    2016-01-01

    In many social complex systems, in which agents are linked by non-linear interactions, the history of events strongly influences the whole network dynamics. However, a class of “commonly accepted beliefs” seems rarely studied. In this paper, we examine how the growth process of a (social) network is influenced by past circumstances. In order to tackle this cause, we simply modify the well known preferential attachment mechanism by imposing a time dependent kernel function in the network evolution equation. This approach leads to a fractional order Barabási-Albert (BA) differential equation, generalizing the BA model. Our results show that, with passing time, an aging process is observed for the network dynamics. The aging process leads to a decay for the node degree values, thereby creating an opposing process to the preferential attachment mechanism. On one hand, based on the preferential attachment mechanism, nodes with a high degree are more likely to absorb links; but, on the other hand, a node’s age has a reduced chance for new connections. This competitive scenario allows an increased chance for younger members to become a hub. Simulations of such a network growth with aging constraint confirm the results found from solving the fractional BA equation. We also report, as an exemplary application, an investigation of the collaboration network between Hollywood movie actors. It is undubiously shown that a decay in the dynamics of their collaboration rate is found, even including a sex difference. Such findings suggest a widely universal application of the so generalized BA model. PMID:27171424

  19. On the decay of solutions to the 2D Neumann exterior problem for the wave equation

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo; Shibata, Yoshihiro

    We consider the exterior problem in the plane for the wave equation with a Neumann boundary condition and study the asymptotic behavior of the solution for large times. For possible application we are interested to show a decay estimate which does not involve weighted norms of the initial data. In the paper we prove such an estimate, by a combination of the estimate of the local energy decay and decay estimates for the free space solution.

  20. Tachyon driven quantum cosmology in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Compean, H.; Garcia-Jimenez, G.; Obregon, O.

    2005-03-15

    Recently an effective action of the SDp-brane decaying process in string theory has been proposed. This effective description involves the Tachyon driven matter coupled to bosonic ten-dimensional Type II supergravity. Here the Hamiltonian formulation of this system is given. Exact solutions for the corresponding quantum theory by solving the Wheeler-deWitt equation in the late-time limit of the rolling tachyon are found. The energy spectrum and the probability densities for several values of p are shown and their possible interpretation is discussed. In the process the effects of electromagnetic fields are also incorporated and it is shown that in this casemore » the interpretation of tachyon regarded as 'matter clock' is modified.« less

  1. Method of mechanical quadratures for solving singular integral equations of various types

    NASA Astrophysics Data System (ADS)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  2. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    NASA Astrophysics Data System (ADS)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  3. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  4. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

    DOE PAGES

    Gomez, Thomas; Nagayama, Taisuke; Fontes, Chris; ...

    2018-04-23

    Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods). Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numericalmore » complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange) part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. Here, this technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.« less

  5. A simple and general method for solving detailed chemical evolution with delayed production of iron and other chemical elements

    NASA Astrophysics Data System (ADS)

    Vincenzo, F.; Matteucci, F.; Spitoni, E.

    2017-04-01

    We present a theoretical method for solving the chemical evolution of galaxies by assuming an instantaneous recycling approximation for chemical elements restored by massive stars and the delay time distribution formalism for delayed chemical enrichment by Type Ia Supernovae. The galaxy gas mass assembly history, together with the assumed stellar yields and initial mass function, represents the starting point of this method. We derive a simple and general equation, which closely relates the Laplace transforms of the galaxy gas accretion history and star formation history, which can be used to simplify the problem of retrieving these quantities in the galaxy evolution models assuming a linear Schmidt-Kennicutt law. We find that - once the galaxy star formation history has been reconstructed from our assumptions - the differential equation for the evolution of the chemical element X can be suitably solved with classical methods. We apply our model to reproduce the [O/Fe] and [Si/Fe] versus [Fe/H] chemical abundance patterns as observed at the solar neighbourhood by assuming a decaying exponential infall rate of gas and different delay time distributions for Type Ia Supernovae; we also explore the effect of assuming a non-linear Schmidt-Kennicutt law, with the index of the power law being k = 1.4. Although approximate, we conclude that our model with the single-degenerate scenario for Type Ia Supernovae provides the best agreement with the observed set of data. Our method can be used by other complementary galaxy stellar population synthesis models to predict also the chemical evolution of galaxies.

  6. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution tomore » reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.« less

  7. Fast decay of solutions for linear wave equations with dissipation localized near infinity in an exterior domain

    NASA Astrophysics Data System (ADS)

    Ryo, Ikehata

    Uniform energy and L2 decay of solutions for linear wave equations with localized dissipation will be given. In order to derive the L2-decay property of the solution, a useful device whose idea comes from Ikehata-Matsuyama (Sci. Math. Japon. 55 (2002) 33) is used. In fact, we shall show that the L2-norm and the total energy of solutions, respectively, decay like O(1/ t) and O(1/ t2) as t→+∞ for a kind of the weighted initial data.

  8. Statistical analysis and mathematical modeling of a tracer test on the Santa Clara River, Ventura County, California

    USGS Publications Warehouse

    Paybins, Katherine S.; Nishikawa, Tracy; Izbicki, John A.; Reichard, Eric G.

    1998-01-01

    To better understand flow processes, solute-transport processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 28-mile reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. Dye was injected at a site on Piru Creek, and fluorescence of river water was measured continuously at four sites and intermittently at two sites. Discharge measurements were also made at the six sites. The time of travel of the dye, peak dye concentration, and time-variance of time-concentration curves were obtained at each site. The long tails of the time-concentration curves are indicative of sources/sinks within the river, such as riffles and pools, or transient bank storage. A statistical analysis of the data indicates that, in general, the transport characteristics follow Fickian theory. These data and previously collected discharge data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). DAFLOW solves a simplified form of the diffusion-wave equation and uses empirical relations between flow rate and cross-sectional area, and flow rate and channel width. BLTM uses the velocity data from DAFLOW and solves the advection-dispersion transport equation, including first-order decay. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of dye mass in the middle, ephemeral, subreaches, and (2) ground-water recharge does not explain the loss of dye mass in the uppermost and lowermost, perennial, subreaches. This loss of mass was simulated using a linear decay term. The loss of mass in the perennial subreaches may be caused by a combination of photodecay or adsorption/desorption.

  9. Numerical Coupling and Simulation of Point-Mass System with the Turbulent Fluid Flow

    NASA Astrophysics Data System (ADS)

    Gao, Zheng

    A computational framework that combines the Eulerian description of the turbulence field with a Lagrangian point-mass ensemble is proposed in this dissertation. Depending on the Reynolds number, the turbulence field is simulated using Direct Numerical Simulation (DNS) or eddy viscosity model. In the meanwhile, the particle system, such as spring-mass system and cloud droplets, are modeled using the ordinary differential system, which is stiff and hence poses a challenge to the stability of the entire system. This computational framework is applied to the numerical study of parachute deceleration and cloud microphysics. These two distinct problems can be uniformly modeled with Partial Differential Equations (PDEs) and Ordinary Differential Equations (ODEs), and numerically solved in the same framework. For the parachute simulation, a novel porosity model is proposed to simulate the porous effects of the parachute canopy. This model is easy to implement with the projection method and is able to reproduce Darcy's law observed in the experiment. Moreover, the impacts of using different versions of k-epsilon turbulence model in the parachute simulation have been investigated and conclude that the standard and Re-Normalisation Group (RNG) model may overestimate the turbulence effects when Reynolds number is small while the Realizable model has a consistent performance with both large and small Reynolds number. For another application, cloud microphysics, the cloud entrainment-mixing problem is studied in the same numerical framework. Three sets of DNS are carried out with both decaying and forced turbulence. The numerical result suggests a new way parameterize the cloud mixing degree using the dynamical measures. The numerical experiments also verify the negative relationship between the droplets number concentration and the vorticity field. The results imply that the gravity has fewer impacts on the forced turbulence than the decaying turbulence. In summary, the proposed framework can be used to solve a physics problem that involves turbulence field and point-mass system, and therefore has a broad application.

  10. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).

    PubMed

    Murase, Kenya

    2016-01-01

    In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.

  11. Chemical Equation Balancing.

    ERIC Educational Resources Information Center

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  12. Systematic approach to thermal leptogenesis

    NASA Astrophysics Data System (ADS)

    Frossard, T.; Garny, M.; Hohenegger, A.; Kartavtsev, A.; Mitrouskas, D.

    2013-04-01

    In this work we study thermal leptogenesis using nonequilibrium quantum field theory. Starting from fundamental equations for correlators of the quantum fields we describe the steps necessary to obtain quantum-kinetic equations for quasiparticles. These can easily be compared to conventional results and overcome conceptional problems inherent in the canonical approach. Beyond CP-violating decays we include also those scattering processes which are tightly related to the decays in a consistent approximation of fourth order in the Yukawa couplings. It is demonstrated explicitly how the S-matrix elements for the scattering processes in the conventional approach are related to two- and three-loop contributions to the effective action. We derive effective decay and scattering amplitudes taking medium corrections and thermal masses into account. In this context we also investigate CP-violating Higgs decay within the same formalism. From the kinetic equations we derive rate equations for the lepton asymmetry improved in that they include quantum-statistical effects and medium corrections to the quasiparticle properties.

  13. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

    NASA Astrophysics Data System (ADS)

    Khataybeh, S. N.; Hashim, I.

    2018-04-01

    In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

  14. Self-Similar Compressible Free Vortices

    NASA Technical Reports Server (NTRS)

    vonEllenrieder, Karl

    1998-01-01

    Lie group methods are used to find both exact and numerical similarity solutions for compressible perturbations to all incompressible, two-dimensional, axisymmetric vortex reference flow. The reference flow vorticity satisfies an eigenvalue problem for which the solutions are a set of two-dimensional, self-similar, incompressible vortices. These solutions are augmented by deriving a conserved quantity for each eigenvalue, and identifying a Lie group which leaves the reference flow equations invariant. The partial differential equations governing the compressible perturbations to these reference flows are also invariant under the action of the same group. The similarity variables found with this group are used to determine the decay rates of the velocities and thermodynamic variables in the self-similar flows, and to reduce the governing partial differential equations to a set of ordinary differential equations. The ODE's are solved analytically and numerically for a Taylor vortex reference flow, and numerically for an Oseen vortex reference flow. The solutions are used to examine the dependencies of the temperature, density, entropy, dissipation and radial velocity on the Prandtl number. Also, experimental data on compressible free vortex flow are compared to the analytical results, the evolution of vortices from initial states which are not self-similar is discussed, and the energy transfer in a slightly-compressible vortex is considered.

  15. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  16. Solving the Helmholtz equation in conformal mapped ARROW structures using homotopy perturbation method.

    PubMed

    Reck, Kasper; Thomsen, Erik V; Hansen, Ole

    2011-01-31

    The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution.

  17. Will learning to solve one-step equations pose a challenge to 8th grade students?

    NASA Astrophysics Data System (ADS)

    Ngu, Bing Hiong; Phan, Huy P.

    2017-08-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. Element interactivity arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features (e.g. negative pronumeral) poses additional challenge to master equation solving skills. In an experiment, 41 8th grade students (girls = 16, boys = 25) sat for a pre-test, attended a session about equation solving, completed an acquisition phase which constituted the main intervention and were tested again in a post-test. The results showed that at post-test, students performed better on one-step equations tapping low rather than high element interactivity knowledge. In addition, students performed better on those one-step equations that contained no special features. Thus, both the degree of element interactivity and the operation with special features affect the challenge posed to 8th grade students on learning how to solve one-step equations.

  18. Evolution equation in the field theory of strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marui, M.; Sugamoto, A.; Oda, I.

    This paper reports on a stringy version of the Altarelli-Parisi equation given within the field theory of bosonic strings formulated in the light-cone gauge. Using this equation, the authors study the behavior of the decay function of strings under the change of reference scale, especially imposing an assumption of large transverse momentum. In some cases the n-th moment of the decay function behaves very differently from QCD.

  19. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  20. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  1. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  2. On the solution of the complex eikonal equation in acoustic VTI media: A perturbation plus optimization scheme

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart

    2018-04-01

    We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.

  3. CINE: Comet INfrared Excitation

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-08-01

    CINE calculates infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. One of the main mechanisms for molecular excitation in comets is the fluorescence by the solar radiation followed by radiative decay to the ground vibrational state. This command-line tool calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Fluorescence coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  4. Solving Cubic Equations by Polynomial Decomposition

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2011-01-01

    Several mathematicians struggled to solve cubic equations, and in 1515 Scipione del Ferro reportedly solved the cubic while participating in a local mathematical contest, but did not bother to publish his method. Then it was Cardano (1539) who first published the solution to the general cubic equation in his book "The Great Art, or, The Rules of…

  5. Similarity of Turbulent Energy Scale Budget Equation of a Round Turbulent Jet

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2014-11-01

    A novel extension to the similarity-based form of the transport equation for the second-order velocity structure function of <(δq) 2 > along the jet centreline (see Danaila et al., 2004) has been obtained. This new self-similar equation has the desirable benefit of requiring less extensive measurements to calculate the inhomogeneous (decay and production) terms of the transport equation. According to this equation, the normalized third-order structure function can be uniquely determined when the normalized second-order structure function, the power-law exponent of and the decay rate constants of and are available. In addition, on the basis of the current similarity analysis, the similarity assumptions in combination with power-law decay of mean velocity (U ~(x -x0) - 1) are strong enough to imply power-law decay of fluctuations ( ~(x -x0) m). The similarity solutions are then tested against new experimental data, which were taken along the centreline of a round jet at ReD = 50 , 000 . For the present set of initial conditions, exhibits a power-law behaviour with m = - 1 . 83 . This work was supported by grants from NSERC (Canada).

  6. Streaming current magnetic fields in a charged nanopore.

    PubMed

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  7. Streaming current magnetic fields in a charged nanopore

    NASA Astrophysics Data System (ADS)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  8. A coarse-grid projection method for accelerating incompressible flow computations

    NASA Astrophysics Data System (ADS)

    San, Omer; Staples, Anne

    2011-11-01

    We present a coarse-grid projection (CGP) algorithm for accelerating incompressible flow computations, which is applicable to methods involving Poisson equations as incompressibility constraints. CGP methodology is a modular approach that facilitates data transfer with simple interpolations and uses black-box solvers for the Poisson and advection-diffusion equations in the flow solver. Here, we investigate a particular CGP method for the vorticity-stream function formulation that uses the full weighting operation for mapping from fine to coarse grids, the third-order Runge-Kutta method for time stepping, and finite differences for the spatial discretization. After solving the Poisson equation on a coarsened grid, bilinear interpolation is used to obtain the fine data for consequent time stepping on the full grid. We compute several benchmark flows: the Taylor-Green vortex, a vortex pair merging, a double shear layer, decaying turbulence and the Taylor-Green vortex on a distorted grid. In all cases we use either FFT-based or V-cycle multigrid linear-cost Poisson solvers. Reducing the number of degrees of freedom of the Poisson solver by powers of two accelerates these computations while, for the first level of coarsening, retaining the same level of accuracy in the fine resolution vorticity field.

  9. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method

    NASA Astrophysics Data System (ADS)

    Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.

    2013-10-01

    In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.

  10. Heat Transfer Effects on a Fully Premixed Methane Impinging Flame

    DTIC Science & Technology

    2014-10-30

    Houzeaux et al., 2009). The GM- RES solver is also employed to solve for the enthalpy and species mass fractions. The Gauss - Seidel iterative method is...the system is therefore split to solve the mo- mentum and continuity equations independently. This is achieved by applying an iterative strategy...the momentum equation twice and the continuity equation once. The momentum equation is solved using the GMRES or BICGSTAB method (diagonal and Gauss

  11. Biological electric fields and rate equations for biophotons.

    PubMed

    Alvermann, M; Srivastava, Y N; Swain, J; Widom, A

    2015-04-01

    Biophoton intensities depend upon the squared modulus of the electric field. Hence, we first make some general estimates about the inherent electric fields within various biosystems. Generally, these intensities do not follow a simple exponential decay law. After a brief discussion on the inapplicability of a linear rate equation that leads to strict exponential decay, we study other, nonlinear rate equations that have been successfully used for biosystems along with their physical origins when available.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dustin Popp; Zander Mausolff; Sedat Goluoglu

    We are proposing to use the code, TDKENO, to model TREAT. TDKENO solves the time dependent, three dimensional Boltzmann transport equation with explicit representation of delayed neutrons. Instead of directly integrating this equation, the neutron flux is factored into two components – a rapidly varying amplitude equation and a slowly varying shape equation and each is solved separately on different time scales. The shape equation is solved using the 3D Monte Carlo transport code KENO, from Oak Ridge National Laboratory’s SCALE code package. Using the Monte Carlo method to solve the shape equation is still computationally intensive, but the operationmore » is only performed when needed. The amplitude equation is solved deterministically and frequently, so the solution gives an accurate time-dependent solution without having to repeatedly We have modified TDKENO to incorporate KENO-VI so that we may accurately represent the geometries within TREAT. This paper explains the motivation behind using generalized geometry, and provides the results of our modifications. TDKENO uses the Improved Quasi-Static method to accomplish this. In this method, the neutron flux is factored into two components. One component is a purely time-dependent and rapidly varying amplitude function, which is solved deterministically and very frequently (small time steps). The other is a slowly varying flux shape function that weakly depends on time and is only solved when needed (significantly larger time steps).« less

  13. Decay characterization of solutions to the viscous Camassa-Holm equations

    NASA Astrophysics Data System (ADS)

    Anh, Cung The; Trang, Pham Thi

    2018-02-01

    In this paper we study the decay characterization in the space H^Kσ({R}^n) of solutions to the viscous Camassa-Holm equations (VCHE) in the whole space {R}n (n=2, 3, 4 ), namely, where m+2p≤slant K , r^*=r^*(v_0) is the decay character of the initial datum v_0\\in H^Kσ({R}^n) . We also get the optimal lower bounds for decay rates of solutions to VCHE when -{n}/{2}. In particular, when v_0\\in H^Kσ({R}^n) \\cap L^1({R}^n) has decay character r^*(v_0)=0 , then we recover the previous results of Bjorland and Schonbek (2008 Ann. Inst. Henri Poincaré Anal. Non Linéaire 25 907-36).

  14. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    NASA Astrophysics Data System (ADS)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  15. Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1996-01-01

    A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.

  16. Numerical Modeling of Saturated Boiling in a Heated Tube

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; LeClair, Andre; Hartwig, Jason

    2017-01-01

    This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.

  17. Factors Affecting Differential Equation Problem Solving Ability of Students at Pre-University Level: A Conceptual Model

    ERIC Educational Resources Information Center

    Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen

    2017-01-01

    In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…

  18. A multilevel correction adaptive finite element method for Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  19. Relationship between population dynamics and the self-energy in driven non-equilibrium systems

    DOE PAGES

    Kemper, Alexander F.; Freericks, James K.

    2016-05-13

    We compare the decay rates of excited populations directly calculated within a Keldysh formalism to the equation of motion of the population itself for a Hubbard-Holstein model in two dimensions. While it is true that these two approaches must give the same answer, it is common to make a number of simplifying assumptions, within the differential equation for the populations, that allows one to interpret the decay in terms of hot electrons interacting with a phonon bath. Furthermore, we show how care must be taken to ensure an accurate treatment of the equation of motion for the populations due tomore » the fact that there are identities that require cancellations of terms that naively look like they contribute to the decay rates. In particular, the average time dependence of the Green's functions and self-energies plays a pivotal role in determining these decay rates.« less

  20. Performance of parallel computation using CUDA for solving the one-dimensional elasticity equations

    NASA Astrophysics Data System (ADS)

    Darmawan, J. B. B.; Mungkasi, S.

    2017-01-01

    In this paper, we investigate the performance of parallel computation in solving the one-dimensional elasticity equations. Elasticity equations are usually implemented in engineering science. Solving these equations fast and efficiently is desired. Therefore, we propose the use of parallel computation. Our parallel computation uses CUDA of the NVIDIA. Our research results show that parallel computation using CUDA has a great advantage and is powerful when the computation is of large scale.

  1. Compressible Flow Toolbox

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    The Compressible Flow Toolbox is primarily a MATLAB-language implementation of a set of algorithms that solve approximately 280 linear and nonlinear classical equations for compressible flow. The toolbox is useful for analysis of one-dimensional steady flow with either constant entropy, friction, heat transfer, or Mach number greater than 1. The toolbox also contains algorithms for comparing and validating the equation-solving algorithms against solutions previously published in open literature. The classical equations solved by the Compressible Flow Toolbox are as follows: The isentropic-flow equations, The Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), The Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section), The normal-shock equations, The oblique-shock equations, and The expansion equations.

  2. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  3. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

    NASA Astrophysics Data System (ADS)

    Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

    2017-04-01

    This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

  4. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

    ERIC Educational Resources Information Center

    Khotimah, Rita Pramujiyanti; Masduki

    2016-01-01

    Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

  5. Application of the Finite Element Method in Atomic and Molecular Physics

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  6. An adaptive grid algorithm for one-dimensional nonlinear equations

    NASA Technical Reports Server (NTRS)

    Gutierrez, William E.; Hills, Richard G.

    1990-01-01

    Richards' equation, which models the flow of liquid through unsaturated porous media, is highly nonlinear and difficult to solve. Step gradients in the field variables require the use of fine grids and small time step sizes. The numerical instabilities caused by the nonlinearities often require the use of iterative methods such as Picard or Newton interation. These difficulties result in large CPU requirements in solving Richards equation. With this in mind, adaptive and multigrid methods are investigated for use with nonlinear equations such as Richards' equation. Attention is focused on one-dimensional transient problems. To investigate the use of multigrid and adaptive grid methods, a series of problems are studied. First, a multigrid program is developed and used to solve an ordinary differential equation, demonstrating the efficiency with which low and high frequency errors are smoothed out. The multigrid algorithm and an adaptive grid algorithm is used to solve one-dimensional transient partial differential equations, such as the diffusive and convective-diffusion equations. The performance of these programs are compared to that of the Gauss-Seidel and tridiagonal methods. The adaptive and multigrid schemes outperformed the Gauss-Seidel algorithm, but were not as fast as the tridiagonal method. The adaptive grid scheme solved the problems slightly faster than the multigrid method. To solve nonlinear problems, Picard iterations are introduced into the adaptive grid and tridiagonal methods. Burgers' equation is used as a test problem for the two algorithms. Both methods obtain solutions of comparable accuracy for similar time increments. For the Burgers' equation, the adaptive grid method finds the solution approximately three times faster than the tridiagonal method. Finally, both schemes are used to solve the water content formulation of the Richards' equation. For this problem, the adaptive grid method obtains a more accurate solution in fewer work units and less computation time than required by the tridiagonal method. The performance of the adaptive grid method tends to degrade as the solution process proceeds in time, but still remains faster than the tridiagonal scheme.

  7. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  8. A Versatile Technique for Solving Quintic Equations

    ERIC Educational Resources Information Center

    Kulkarni, Raghavendra G.

    2006-01-01

    In this paper we present a versatile technique to solve several types of solvable quintic equations. In the technique described here, the given quintic is first converted to a sextic equation by adding a root, and the resulting sextic equation is decomposed into two cubic polynomials as factors in a novel fashion. The resultant cubic equations are…

  9. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Martinelli, L.

    1991-01-01

    The system of equations consisting of the full Navier-Stokes equations and two turbulence equations was solved for in the steady state using a multigrid strategy on unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time stepping scheme with a stability bound local time step, while the turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positively. Low Reynolds number modifications to the original two equation model are incorporated in a manner which results in well behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved for, initializing all quantities with uniform freestream values, and resulting in rapid and uniform convergence rates for the flow and turbulence equations.

  10. A Heuristic Fast Method to Solve the Nonlinear Schroedinger Equation in Fiber Bragg Gratings with Arbitrary Shape Input Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emami, F.; Hatami, M.; Keshavarz, A. R.

    2009-08-13

    Using a combination of Runge-Kutta and Jacobi iterative method, we could solve the nonlinear Schroedinger equation describing the pulse propagation in FBGs. By decomposing the electric field to forward and backward components in fiber Bragg grating and utilizing the Fourier series analysis technique, the boundary value problem of a set of coupled equations governing the pulse propagation in FBG changes to an initial condition coupled equations which can be solved by simple Runge-Kutta method.

  11. Integrating Geochemical Reactions with a Particle-Tracking Approach to Simulate Nitrogen Transport and Transformation in Aquifers

    NASA Astrophysics Data System (ADS)

    Cui, Z.; Welty, C.; Maxwell, R. M.

    2011-12-01

    Lagrangian, particle-tracking models are commonly used to simulate solute advection and dispersion in aquifers. They are computationally efficient and suffer from much less numerical dispersion than grid-based techniques, especially in heterogeneous and advectively-dominated systems. Although particle-tracking models are capable of simulating geochemical reactions, these reactions are often simplified to first-order decay and/or linear, first-order kinetics. Nitrogen transport and transformation in aquifers involves both biodegradation and higher-order geochemical reactions. In order to take advantage of the particle-tracking approach, we have enhanced an existing particle-tracking code SLIM-FAST, to simulate nitrogen transport and transformation in aquifers. The approach we are taking is a hybrid one: the reactive multispecies transport process is operator split into two steps: (1) the physical movement of the particles including the attachment/detachment to solid surfaces, which is modeled by a Lagrangian random-walk algorithm; and (2) multispecies reactions including biodegradation are modeled by coupling multiple Monod equations with other geochemical reactions. The coupled reaction system is solved by an ordinary differential equation solver. In order to solve the coupled system of equations, after step 1, the particles are converted to grid-based concentrations based on the mass and position of the particles, and after step 2 the newly calculated concentration values are mapped back to particles. The enhanced particle-tracking code is capable of simulating subsurface nitrogen transport and transformation in a three-dimensional domain with variably saturated conditions. Potential application of the enhanced code is to simulate subsurface nitrogen loading to the Chesapeake Bay and its tributaries. Implementation details, verification results of the enhanced code with one-dimensional analytical solutions and other existing numerical models will be presented in addition to a discussion of implementation challenges.

  12. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  13. Elimination of interference from water in KBr disk FT-IR spectra of solid biomaterials by chemometrics solved with kinetic modeling.

    PubMed

    Gordon, Sherald H; Harry-O'kuru, Rogers E; Mohamed, Abdellatif A

    2017-11-01

    Infrared analysis of proteins and polysaccharides by the well known KBr disk technique is notoriously frustrated and defeated by absorbed water interference in the important amide and hydroxyl regions of spectra. This interference has too often been overlooked or ignored even when the resulting distortion is critical or even fatal, as in quantitative analyses of protein secondary structure, because the water has been impossible to measure or eliminate. Therefore, a new chemometric method was devised that corrects spectra of materials in KBr disks by mathematically eliminating the water interference. A new concept termed the Beer-Lambert law absorbance ratio (R-matrix) model was augmented with water concentration ratios computed via an exponential decay kinetic model of the water absorption process in KBr, which rendered the otherwise indeterminate system of linear equations determinate and thus possible to solve in a formal analytic manner. Consequently, the heretofore baffling KBr water elimination problem is now solved once and for all. Using the new formal solution, efforts to eliminate water interference from KBr disks in research will be defeated no longer. Resulting spectra of protein were much more accurate than attenuated total reflection (ATR) spectra corrected using the well-accepted Advanced ATR Correction Algorithm. Published by Elsevier B.V.

  14. Diagrams benefit symbolic problem-solving.

    PubMed

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R

    2017-06-01

    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  15. Growth or decay of cosmological inhomogeneities as a function of their equation of state

    NASA Astrophysics Data System (ADS)

    Comer, G. L.; Deruelle, Nathalie; Langlois, David; Parry, Joe

    1994-03-01

    We expand Einstein's equations in the synchronous gauge in terms of a purely space-dependent, ``seed,'' metric. The (nonlinear) solution accurately describes a universe inhomogeneous at scales larger than the Hubble radius. We show that the inhomogeneities grow or decay, as time increases, depending on the equation of state for the matter (supposed to be a perfect fluid). We then consider the case when matter is a scalar field with an arbitrary potential. Finally we discuss the generality of the model and show that it is an attractor for a class of generic solutions of Einstein's equations.

  16. Correlation between elastic energy density and deep earthquakes distribution

    NASA Astrophysics Data System (ADS)

    Gunawardana, P. M.; Morra, G.

    2017-05-01

    The mechanism at the origin of the earthquakes below 30 km remains elusive as these events cannot be explained by brittle frictional processes. In this work we focus on the global total distribution of earthquakes frequency vs. depth from ∼50 km to 670 km depth. We develop a numerical model of self-driven subduction by solving the non-homogeneous Stokes equation using the ;Particle in cell method; in combination with a conservative finite difference scheme, here solved for the first time using Python and NumPy only. We show that most of the elastic energy is stored in the slab core and that it is strongly correlated with the earthquake frequency-depth distribution for a wide range of lithosphere and lithosphere-core viscosities. According to our results, we suggest that 1) slab bending at the bottom of the upper mantle causes the peak of the earthquake frequency-depth distribution that is observed at mantle transition depth; 2) the presence of a high viscous stiff core inside the lithosphere generates an elastic energy distribution that fits better with the exponential decay that is observed at intermediate depth.

  17. Metric versus observable operator representation, higher spin models

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  18. Numerical solution of the nonlinear Schrodinger equation by feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Shirvany, Yazdan; Hayati, Mohsen; Moradian, Rostam

    2008-12-01

    We present a method to solve boundary value problems using artificial neural networks (ANN). A trial solution of the differential equation is written as a feed-forward neural network containing adjustable parameters (the weights and biases). From the differential equation and its boundary conditions we prepare the energy function which is used in the back-propagation method with momentum term to update the network parameters. We improved energy function of ANN which is derived from Schrodinger equation and the boundary conditions. With this improvement of energy function we can use unsupervised training method in the ANN for solving the equation. Unsupervised training aims to minimize a non-negative energy function. We used the ANN method to solve Schrodinger equation for few quantum systems. Eigenfunctions and energy eigenvalues are calculated. Our numerical results are in agreement with their corresponding analytical solution and show the efficiency of ANN method for solving eigenvalue problems.

  19. Well-posedness and decay for the dissipative system modeling electro-hydrodynamics in negative Besov spaces

    NASA Astrophysics Data System (ADS)

    Zhao, Jihong; Liu, Qiao

    2017-07-01

    In Guo and Wang (2012) [10], Y. Guo and Y. Wang developed a general new energy method for proving the optimal time decay rates of the solutions to dissipative equations. In this paper, we generalize this method in the framework of homogeneous Besov spaces. Moreover, we apply this method to a model arising from electro-hydrodynamics, which is a strongly coupled system of the Navier-Stokes equations and the Poisson-Nernst-Planck equations through charge transport and external forcing terms. We show that some weighted negative Besov norms of solutions are preserved along time evolution, and obtain the optimal time decay rates of the higher-order spatial derivatives of solutions by the Fourier splitting approach and the interpolation techniques.

  20. Scattering transform for nonstationary Schroedinger equation with bidimensionally perturbed N-soliton potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.

    2006-12-15

    In the framework of the extended resolvent approach the direct and inverse scattering problems for the nonstationary Schroedinger equation with a potential being a perturbation of the N-soliton potential by means of a generic bidimensional smooth function decaying at large spaces are introduced and investigated. The initial value problem of the Kadomtsev-Petviashvili I equation for a solution describing N wave solitons on a generic smooth decaying background is then linearized, giving the time evolution of the spectral data.

  1. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  2. A mathematical approach for evaluating nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.

    1986-01-01

    A mathematical equation is presented which gives a quantitative relationship between time-voltage discharge curves, when a cell's ampere-hour capacity is determined at a constant discharge current. In particular the equation quantifies the initial exponential voltage decay; the rate of voltage decay; the overall voltage shift of the curve and the total capacity of the cell at the given discharge current. The results of 12 nickel-hydrogen boiler plate cells cycled to 80 percent depth-of-discharge (DOD) are discussed in association with these equations.

  3. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities

    PubMed Central

    Vázquez, J. L.

    2010-01-01

    The goal of this paper is to state the optimal decay rate for solutions of the nonlinear fast diffusion equation and, in self-similar variables, the optimal convergence rates to Barenblatt self-similar profiles and their generalizations. It relies on the identification of the optimal constants in some related Hardy–Poincaré inequalities and concludes a long series of papers devoted to generalized entropies, functional inequalities, and rates for nonlinear diffusion equations. PMID:20823259

  4. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    ERIC Educational Resources Information Center

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  5. BCS-BEC crossover and quantum hydrodynamics in p-wave superfluids with a symmetry of the A1 phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, M. Yu., E-mail: kagan@kapitza.ras.ru; Efremov, D. V.

    2010-03-15

    We solve the Leggett equations for the BCS-BEC crossover in a three dimensional resonance p-wave superfluid with the symmetry of the A1 phase. We calculate the sound velocity, the normal density, and the specific heat for the BCS domain ({mu} > 0), for the BEC domain ({mu} < 0), and close to the important point {mu} = 0 in the 100% polarized case. We find the indications of a quantum phase transition close to the point {mu}(T = 0) = 0. Deep in the BCS and BEC domains, the crossover ideas of Leggett, Nozieres, and Schmitt-Rink work quite well. Wemore » discuss the spectrum of orbital waves, the paradox of intrinsic angular momentum and the complicated problem of chiral anomaly in the BCS A1 phase at T = 0. We present two different approaches to the chiral anomaly, based on supersymmetric hydrodynamics and on the formal analogy with the Dirac equation in quantum electrodynamics. We evaluate the damping of nodal fermions due to different decay processes in the superclean case at T = 0 and find that a ballistic regime {omega}{tau} >> 1 occurs. We propose to use aerogel or nonmagnetic impurities to reach the hydrodynamic regime {omega}{tau} << 1 at T = 0. We discuss the concept of the spectral flow and exact cancelations between time derivatives of anomalous and quasiparticle currents in the equation for the total linear momentum conservation. We propose to derive and solve the kinetic equation for the nodal quasiparticles in both the hydrodynamic and ballistic regimes to demonstrate this cancelation explicitly. We briefly discuss the role of the other residual interactions different from damping and invite experimentalists to measure the spectrum and damping of orbital waves in the A phase of {sup 3}He at low temperatures.« less

  6. Theory and modelling of light-matter interactions in photonic crystal cavity systems coupled to quantum dot ensembles

    NASA Astrophysics Data System (ADS)

    Cartar, William K.

    Photonic crystal microcavity quantum dot lasers show promise as high quality-factor, low threshold lasers, that can be integrated on-chip, with tunable room temperature opera- tions. However, such semiconductor microcavity lasers are notoriously difficult to model in a self-consistent way and are primarily modelled by simplified rate equation approxima- tions, typically fit to experimental data, which limits investigations of their optimization and fundamental light-matter interaction processes. Moreover, simple cavity mode optical theory and rate equations have recently been shown to fail in explaining lasing threshold trends in triangular lattice photonic crystal cavities as a function of cavity size, and the potential impact of fabrication disorder is not well understood. In this thesis, we develop a simple but powerful numerical scheme for modelling the quantum dot active layer used for lasing in these photonic crystal cavity structures, as an ensemble of randomly posi- tioned artificial two-level atoms. Each two-level atom is defined by optical Bloch equations solved by a quantum master equation that includes phenomenological pure dephasing and an incoherent pump rate that effectively models a multi-level gain system. Light-matter in- teractions of both passive and lasing structures are analyzed using simulation defined tools and post-simulation Green function techniques. We implement an active layer ensemble of up to 24,000 statistically unique quantum dots in photonic crystal cavity simulations, using a self-consistent finite-difference time-domain method. This method has the distinct advantage of capturing effects such as dipole-dipole coupling and radiative decay, without the need for any phenomenological terms, since the time-domain solution self-consistently captures these effects. Our analysis demonstrates a powerful ability to connect with recent experimental trends, while remaining completely general in its set-up; for example, we do not invoke common approximations such as the rotating-wave or slowly-varying envelope approximations, and solve dynamics with zero a priori knowledge.

  7. Analytical solution of the time-dependent Bloch NMR flow equations: a translational mechanical analysis

    NASA Astrophysics Data System (ADS)

    Awojoyogbe, O. B.

    2004-08-01

    Various biological and physiological properties of living tissue can be studied by means of nuclear magnetic resonance techniques. Unfortunately, the basic physics of extracting the relevant information from the solution of Bloch nuclear magnetic resource (NMR) equations to accurately monitor the clinical state of biological systems is still not yet fully understood. Presently, there are no simple closed solutions known to the Bloch equations for a general RF excitation. Therefore the translational mechanical analysis of the Bloch NMR equations presented in this study, which can be taken as definitions of new functions to be studied in detail may reveal very important information from which various NMR flow parameters can be derived. Fortunately, many of the most important but hidden applications of blood flow parameters can be revealed without too much difficulty if appropriate mathematical techniques are used to solve the equations. In this study we are concerned with a mathematical study of the laws of NMR physics from the point of view of translational mechanical theory. The important contribution of this study is that solutions to the Bloch NMR flow equations do always exist and can be found as accurately as desired. We shall restrict our attention to cases where the radio frequency field can be treated by simple analytical methods. First we shall derive a time dependant second-order non-homogeneous linear differential equation from the Bloch NMR equation in term of the equilibrium magnetization M0, RF B1( t) field, T1 and T2 relaxation times. Then, we would develop a general method of solving the differential equation for the cases when RF B1( t)=0, and when RF B1( t)≠0. This allows us to obtain the intrinsic or natural behavior of the NMR system as well as the response of the system under investigation to a specific influence of external force to the system. Specifically, we consider the case where the RF B1 varies harmonically with time. Here the complete motion of the system consists of two parts. The first part describes the motion of the transverse magnetization My in the absence of RF B( t) field. The second part of the motion described by the particular integral of the derived differential equation does not decay with time but continues its periodic behavior indefinitely. The complete motion of the NMR flow system is then quantitatively and qualitatively described.

  8. Students’ difficulties in solving linear equation problems

    NASA Astrophysics Data System (ADS)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  9. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  10. Fault Tolerant Optimal Control.

    DTIC Science & Technology

    1982-08-01

    subsystem is modelled by deterministic or stochastic finite-dimensional vector differential or difference equations. The parameters of these equations...is no partial differential equation that must be solved. Thus we can sidestep the inability to solve the Bellman equation for control problems with x...transition models and cost functionals can be reduced to the search for solutions of nonlinear partial differential equations using ’verification

  11. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.

  12. Adiabatic decay of internal solitons due to Earth's rotation within the framework of the Gardner-Ostrovsky equation

    NASA Astrophysics Data System (ADS)

    Obregon, Maria; Raj, Nawin; Stepanyants, Yury

    2018-03-01

    The adiabatic decay of different types of internal wave solitons caused by the Earth's rotation is studied within the framework of the Gardner-Ostrovsky equation. The governing equation describing such processes includes quadratic and cubic nonlinear terms, as well as the Boussinesq and Coriolis dispersions: (ut + c ux + α u ux + α1 u2 ux + β uxxx)x = γ u. It is shown that at the early stage of evolution solitons gradually decay under the influence of weak Earth's rotation described by the parameter γ. The characteristic decay time is derived for different types of solitons for positive and negative coefficients of cubic nonlinearity α1 (both signs of that parameter may occur in the oceans). The coefficient of quadratic nonlinearity α determines only a polarity of solitary wave when α1 < 0 or the asymmetry of solitary waves of opposite polarity when α1 > 0. It is found that the adiabatic theory describes well the decay of solitons having bell-shaped profiles. In contrast to that, large amplitude table-top solitons, which can exist when α1 is negative, are structurally unstable. Under the influence of Earth's rotation, they transfer first to the bell-shaped solitons, which decay then adiabatically. Estimates of the characteristic decay time of internal solitons are presented for the real oceanographic conditions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  14. Primordial random motions and angular momenta of galaxies and galaxy clusters.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Lea, S.

    1973-01-01

    We study the decay of primordial random motions of galaxies and galaxy clusters in an expanding universe by solving a kinetic equation for the relaxation of differential energy spectra N(E, t). Systematic dissipative energy losses are included, involving gravitational drag by, and accretion of, intergalactic matter, as well as the effect of collisions with other systems. Formal and numerical solutions are described for two distinct modes of galaxy formation in a turbulent medium, corresponding to formation at a distinct epoch and to continuous formation of galaxies. We show that any primordial random motions of galaxies at the present epoch can amount to at most a few km/sec, and that collisions at early epochs can lead to the acquisition of significant amounts of primordial angular momentum.

  15. Evolution of the magnetic field generated by the Kelvin-Helmholtz instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modestov, M.; Bychkov, V.; Brodin, G.

    2014-07-15

    The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less

  16. Overview of Krylov subspace methods with applications to control problems

    NASA Technical Reports Server (NTRS)

    Saad, Youcef

    1989-01-01

    An overview of projection methods based on Krylov subspaces are given with emphasis on their application to solving matrix equations that arise in control problems. The main idea of Krylov subspace methods is to generate a basis of the Krylov subspace Span and seek an approximate solution the the original problem from this subspace. Thus, the original matrix problem of size N is approximated by one of dimension m typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now just becoming popular for solving nonlinear equations. It is shown how they can be used to solve partial pole placement problems, Sylvester's equation, and Lyapunov's equation.

  17. Adomian decomposition method used to solve the one-dimensional acoustic equations

    NASA Astrophysics Data System (ADS)

    Dispini, Meta; Mungkasi, Sudi

    2017-05-01

    In this paper we propose the use of Adomian decomposition method to solve one-dimensional acoustic equations. This recursive method can be calculated easily and the result is an approximation of the exact solution. We use the Maple software to compute the series in the Adomian decomposition. We obtain that the Adomian decomposition method is able to solve the acoustic equations with the physically correct behavior.

  18. FANS Simulation of Propeller Wash at Navy Harbors (ESTEP Project ER-201031)

    DTIC Science & Technology

    2016-08-01

    this study, the Finite-Analytic Navier–Stokes code was employed to solve the Reynolds-Averaged Navier–Stokes equations in conjunction with advanced...site-specific harbor configurations, it is desirable to perform propeller wash study by solving the Navier–Stokes equations directly in conjunction ...Analytic Navier–Stokes code was employed to solve the Reynolds-Averaged Navier–Stokes equations in conjunction with advanced near-wall turbulence

  19. Solving modal equations of motion with initial conditions using MSC/NASTRAN DMAP. Part 1: Implementing exact mode superposition

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Ibrahim, Omar M.; Manella, Richard T.

    1993-01-01

    Within the MSC/NASTRAN DMAP (Direct Matrix Abstraction Program) module TRD1, solving physical (coupled) or modal (uncoupled) transient equations of motion is performed using the Newmark-Beta or mode superposition algorithms, respectively. For equations of motion with initial conditions, only the Newmark-Beta integration routine has been available in MSC/NASTRAN solution sequences for solving physical systems and in custom DMAP sequences or alters for solving modal systems. In some cases, one difficulty with using the Newmark-Beta method is that the process of selecting suitable integration time steps for obtaining acceptable results is lengthy. In addition, when very small step sizes are required, a large amount of time can be spent integrating the equations of motion. For certain aerospace applications, a significant time savings can be realized when the equations of motion are solved using an exact integration routine instead of the Newmark-Beta numerical algorithm. In order to solve modal equations of motion with initial conditions and take advantage of efficiencies gained when using uncoupled solution algorithms (like that within TRD1), an exact mode superposition method using MSC/NASTRAN DMAP has been developed and successfully implemented as an enhancement to an existing coupled loads methodology at the NASA Lewis Research Center.

  20. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

    NASA Astrophysics Data System (ADS)

    Agarwal, P.; El-Sayed, A. A.

    2018-06-01

    In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

  1. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  2. Improving the Accuracy of the Chebyshev Rational Approximation Method Using Substeps

    DOE PAGES

    Isotalo, Aarno; Pusa, Maria

    2016-05-01

    The Chebyshev Rational Approximation Method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant sub-steps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the LU decompositions for the linear solves required in CRAM only need to be formed on the first substep. Themore » improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. Lastly, with substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.« less

  3. A fully vectorized numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Patel, N.

    1983-01-01

    A vectorizable algorithm is presented for the implicit finite difference solution of the incompressible Navier-Stokes equations in general curvilinear coordinates. The unsteady Reynolds averaged Navier-Stokes equations solved are in two dimension and non-conservative primitive variable form. A two-layer algebraic eddy viscosity turbulence model is used to incorporate the effects of turbulence. Two momentum equations and a Poisson pressure equation, which is obtained by taking the divergence of the momentum equations and satisfying the continuity equation, are solved simultaneously at each time step. An elliptic grid generation approach is used to generate a boundary conforming coordinate system about an airfoil. The governing equations are expressed in terms of the curvilinear coordinates and are solved on a uniform rectangular computational domain. A checkerboard SOR, which can effectively utilize the computer architectural concept of vector processing, is used for iterative solution of the governing equations.

  4. The Effect of Tutoring With Nonstandard Equations for Students With Mathematics Difficulty.

    PubMed

    Powell, Sarah R; Driver, Melissa K; Julian, Tyler E

    2015-01-01

    Students often misinterpret the equal sign (=) as operational instead of relational. Research indicates misinterpretation of the equal sign occurs because students receive relatively little exposure to equations that promote relational understanding of the equal sign. No study, however, has examined effects of nonstandard equations on the equation solving and equal-sign understanding of students with mathematics difficulty (MD). In the present study, second-grade students with MD (n = 51) were randomly assigned to standard equations tutoring, combined tutoring (standard and nonstandard equations), and no-tutoring control. Combined tutoring students demonstrated greater gains on equation-solving assessments and equal-sign tasks compared to the other two conditions. Standard tutoring students demonstrated improved skill on equation solving over control students, but combined tutoring students' performance gains were significantly larger. Results indicate that exposure to and practice with nonstandard equations positively influence student understanding of the equal sign. © Hammill Institute on Disabilities 2013.

  5. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

    PubMed

    Murase, Kenya

    2016-01-01

    Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

  6. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less

  7. Bifurcation Analysis and Nonlinear Decay of a Tumor in the Presence of an Immune Response

    NASA Astrophysics Data System (ADS)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-12-01

    The decay of a planar compact surface that is reduced through its boundary is considered. The interest of this problem lies in the fact that it can represent the destruction of a solid tumor by a population of immune cells. The theory of curves is utilized to derive the rate at which the area of the set decreases. Firstly, the process is represented as a discrete dynamical system. A recurrence equation describing the shrinkage of the area at any step is deduced. Then, a continuum limit is attained to derive an ordinary differential equation that governs the decay of the set. The solutions to the differential equation and its implications are discussed, and numerical simulations are carried out to test the accuracy of the decay law. Finally, the dynamics of a tumor-immune aggregate is inspected using this law and the theory of bifurcations. As the ratio of immune destruction to tumor growth increases, a saddle-node bifurcation stabilizes the tumor-free fixed point.

  8. Current Fluctuations in One Dimensional Diffusive Systems with a Step Initial Density Profile

    NASA Astrophysics Data System (ADS)

    Derrida, Bernard; Gerschenfeld, Antoine

    2009-12-01

    We show how to apply the macroscopic fluctuation theory (MFT) of Bertini, De Sole, Gabrielli, Jona-Lasinio, and Landim to study the current fluctuations of diffusive systems with a step initial condition. We argue that one has to distinguish between two ways of averaging (the annealed and the quenched cases) depending on whether we let the initial condition fluctuate or not. Although the initial condition is not a steady state, the distribution of the current satisfies a symmetry very reminiscent of the fluctuation theorem. We show how the equations of the MFT can be solved in the case of non-interacting particles. The symmetry of these equations can be used to deduce the distribution of the current for several other models, from its knowledge (Derrida and Gerschenfeld in J. Stat. Phys. 136, 1-15, 2009) for the symmetric simple exclusion process. In the range where the integrated current Qt˜sqrt{t} , we show that the non-Gaussian decay exp [- Q {/t 3}/ t] of the distribution of Q t is generic.

  9. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  10. Asymptotic scalings of developing curved pipe flow

    NASA Astrophysics Data System (ADS)

    Ault, Jesse; Chen, Kevin; Stone, Howard

    2015-11-01

    Asymptotic velocity and pressure scalings are identified for the developing curved pipe flow problem in the limit of small pipe curvature and high Reynolds numbers. The continuity and Navier-Stokes equations in toroidal coordinates are linearized about Dean's analytical curved pipe flow solution (Dean 1927). Applying appropriate scaling arguments to the perturbation pressure and velocity components and taking the limits of small curvature and large Reynolds number yields a set of governing equations and boundary conditions for the perturbations, independent of any Reynolds number and pipe curvature dependence. Direct numerical simulations are used to confirm these scaling arguments. Fully developed straight pipe flow is simulated entering a curved pipe section for a range of Reynolds numbers and pipe-to-curvature radius ratios. The maximum values of the axial and secondary velocity perturbation components along with the maximum value of the pressure perturbation are plotted along the curved pipe section. The results collapse when the scaling arguments are applied. The numerically solved decay of the velocity perturbation is also used to determine the entrance/development lengths for the curved pipe flows, which are shown to scale linearly with the Reynolds number.

  11. Scavenging of radioactive soluble gases from inhomogeneous atmosphere by evaporating rain droplets.

    PubMed

    Elperin, Tov; Fominykh, Andrew; Krasovitov, Boris

    2015-05-01

    We analyze effects of inhomogeneous concentration and temperature distributions in the atmosphere, rain droplet evaporation and radioactive decay of soluble gases on the rate of trace gas scavenging by rain. We employ a one-dimensional model of precipitation scavenging of radioactive soluble gaseous pollutants that is valid for small gradients and non-uniform initial altitudinal distributions of temperature and concentration in the atmosphere. We assume that conditions of equilibrium evaporation of rain droplets are fulfilled. It is demonstrated that transient altitudinal distribution of concentration under the influence of rain is determined by the linear wave equation that describes propagation of a scavenging wave front. The obtained equation is solved by the method of characteristics. Scavenging coefficients are calculated for wet removal of gaseous iodine-131 and tritiated water vapor (HTO) for the exponential initial distribution of trace gases concentration in the atmosphere and linear temperature distribution. Theoretical predictions of the dependence of the magnitude of the scavenging coefficient on rain intensity for tritiated water vapor are in good agreement with the available atmospheric measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  13. Modeling the turbulent kinetic energy equation for compressible, homogeneous turbulence

    NASA Technical Reports Server (NTRS)

    Aupoix, B.; Blaisdell, G. A.; Reynolds, William C.; Zeman, Otto

    1990-01-01

    The turbulent kinetic energy transport equation, which is the basis of turbulence models, is investigated for homogeneous, compressible turbulence using direct numerical simulations performed at CTR. It is shown that the partition between dilatational and solenoidal modes is very sensitive to initial conditions for isotropic decaying turbulence but not for sheared flows. The importance of the dilatational dissipation and of the pressure-dilatation term is evidenced from simulations and a transport equation is proposed to evaluate the pressure-dilatation term evolution. This transport equation seems to work well for sheared flows but does not account for initial condition sensitivity in isotropic decay. An improved model is proposed.

  14. Managing Element Interactivity in Equation Solving

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.; Yeung, Alexander Seeshing; Chung, Siu Fung

    2018-01-01

    Between two popular teaching methods (i.e., balance method vs. inverse method) for equation solving, the main difference occurs at the operational line (e.g., +2 on both sides vs. -2 becomes +2), whereby it alters the state of the equation and yet maintains its equality. Element interactivity occurs on both sides of the equation in the balance…

  15. Oblate-Earth Effects on the Calculation of Ec During Spacecraft Reentry

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Matney, Mark J.

    2017-01-01

    The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay because of the clustering of the human population in the same lower latitudes. This study expands upon prior work, and formalizes the correction that must be made to the calculation of the average exposed population density as a result of this effect. Although a generic equation can be derived from this work to approximate the effects of gravitational and atmospheric perturbations on a final decay, such an equation averages certain important subtleties in achieving a best fit over all conditions. The authors recommend that direct simulation be used to calculate the true Ec for any specific entry as a more accurate method. A generic equation is provided, represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.

  16. A FAST ITERATIVE METHOD FOR SOLVING THE EIKONAL EQUATION ON TRIANGULATED SURFACES*

    PubMed Central

    Fu, Zhisong; Jeong, Won-Ki; Pan, Yongsheng; Kirby, Robert M.; Whitaker, Ross T.

    2012-01-01

    This paper presents an efficient, fine-grained parallel algorithm for solving the Eikonal equation on triangular meshes. The Eikonal equation, and the broader class of Hamilton–Jacobi equations to which it belongs, have a wide range of applications from geometric optics and seismology to biological modeling and analysis of geometry and images. The ability to solve such equations accurately and efficiently provides new capabilities for exploring and visualizing parameter spaces and for solving inverse problems that rely on such equations in the forward model. Efficient solvers on state-of-the-art, parallel architectures require new algorithms that are not, in many cases, optimal, but are better suited to synchronous updates of the solution. In previous work [W. K. Jeong and R. T. Whitaker, SIAM J. Sci. Comput., 30 (2008), pp. 2512–2534], the authors proposed the fast iterative method (FIM) to efficiently solve the Eikonal equation on regular grids. In this paper we extend the fast iterative method to solve Eikonal equations efficiently on triangulated domains on the CPU and on parallel architectures, including graphics processors. We propose a new local update scheme that provides solutions of first-order accuracy for both architectures. We also propose a novel triangle-based update scheme and its corresponding data structure for efficient irregular data mapping to parallel single-instruction multiple-data (SIMD) processors. We provide detailed descriptions of the implementations on a single CPU, a multicore CPU with shared memory, and SIMD architectures with comparative results against state-of-the-art Eikonal solvers. PMID:22641200

  17. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  18. Evaluation of MOSTAS computer code for predicting dynamic loads in two bladed wind turbines

    NASA Technical Reports Server (NTRS)

    Kaza, K. R. V.; Janetzke, D. C.; Sullivan, T. L.

    1979-01-01

    Calculated dynamic blade loads were compared with measured loads over a range of yaw stiffnesses of the DOE/NASA Mod-O wind turbine to evaluate the performance of two versions of the MOSTAS computer code. The first version uses a time-averaged coefficient approximation in conjunction with a multi-blade coordinate transformation for two bladed rotors to solve the equations of motion by standard eigenanalysis. The second version accounts for periodic coefficients while solving the equations by a time history integration. A hypothetical three-degree of freedom dynamic model was investigated. The exact equations of motion of this model were solved using the Floquet-Lipunov method. The equations with time-averaged coefficients were solved by standard eigenanalysis.

  19. Investigation of double-beta decay at the Institute of Theoretical and Experimental Physics (ITEP, Moscow)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeldovich, O. Ya.; Kirpichnikov, I. V.

    Investigation of neutrinoless double-beta (2{beta}0{nu}) decay is presently being considered as one of the most important problems in particle physics and cosmology Interest in the problem was quickened by the observation of neutrino oscillations. The results of oscillation experiments determine the mass differences between different neutrino flavors, and the observation of neutrinoless decay may fix the absolute scale and the hierarchy of the neutrino masses. Investigation of 2{beta}0{nu} decay is the most efficient method for solving the problem of whether the neutrino is a Dirae or a Majorana particle, Physicists from the Institute of Theoretical and Experimental Physics (ITEP, Moscow)more » have been participating actively in solving this problem. They initiated and pioneered the application of semiconductor detectors manufactured from enriched germanium to searches for the double-beta decay of {sup 76}Ge. Investigations with {sup 76}Ge provided the most important results. At present, ITEP physicists are taking active part in four very large projects, GERDA. Majorana, EXO, and NEMO, which are capable of recording 2{beta}0{nu} decay at a Majorana neutrino mass of {approx} 10{sup -2} eV.« less

  20. Coupling lattice Boltzmann and continuum equations for flow and reactive transport in porous media.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coon, Ethan; Porter, Mark L.; Kang, Qinjun

    2012-06-18

    In spatially and temporally localized instances, capturing sub-reservoir scale information is necessary. Capturing sub-reservoir scale information everywhere is neither necessary, nor computationally possible. The lattice Boltzmann Method for solving pore-scale systems. At the pore-scale, LBM provides an extremely scalable, efficient way of solving Navier-Stokes equations on complex geometries. Coupling pore-scale and continuum scale systems via domain decomposition. By leveraging the interpolations implied by pore-scale and continuum scale discretizations, overlapping Schwartz domain decomposition is used to ensure continuity of pressure and flux. This approach is demonstrated on a fractured medium, in which Navier-Stokes equations are solved within the fracture while Darcy'smore » equation is solved away from the fracture Coupling reactive transport to pore-scale flow simulators allows hybrid approaches to be extended to solve multi-scale reactive transport.« less

  1. Streaming current magnetic fields in a charged nanopore

    PubMed Central

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  2. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... unity. First solve for χ by substituting the known values of p 1, (R/λ)1, and cos b in equation (1). Equation (2) may then be solved for δ and equation (3) for ε. At distances greater than 80/f1/3 MHz...

  3. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... unity. First solve for χ by substituting the known values of p 1, (R/λ)1, and cos b in equation (1). Equation (2) may then be solved for δ and equation (3) for ε. At distances greater than 80/f1/3 MHz...

  4. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... solve for χ by substituting the known values of p 1, (R/λ)1, and cos b in equation (1). Equation (2) may then be solved for δ and equation (3) for ε. At distances greater than 80/f1/3 MHz kilometers the...

  5. MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process

    USGS Publications Warehouse

    Harbaugh, Arlen W.; Banta, Edward R.; Hill, Mary C.; McDonald, Michael G.

    2000-01-01

    MODFLOW is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium by using a finite-difference method. Although MODFLOW was designed to be easily enhanced, the design was oriented toward additions to the ground-water flow equation. Frequently there is a need to solve additional equations; for example, transport equations and equations for estimating parameter values that produce the closest match between model-calculated heads and flows and measured values. This report documents a new version of MODFLOW, called MODFLOW-2000, which is designed to accommodate the solution of equations in addition to the ground-water flow equation. This report is a user's manual. It contains an overview of the old and added design concepts, documents one new package, and contains input instructions for using the model to solve the ground-water flow equation.

  6. Solving the interval type-2 fuzzy polynomial equation using the ranking method

    NASA Astrophysics Data System (ADS)

    Rahman, Nurhakimah Ab.; Abdullah, Lazim

    2014-07-01

    Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

  7. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  8. Decay-ratio calculation in the frequency domain with the LAPUR code using 1D-kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Cobo, J. L.; Escriva, A.; Garcia, C.

    This paper deals with the problem of computing the Decay Ratio in the frequency domain codes as the LAPUR code. First, it is explained how to calculate the feedback reactivity in the frequency domain using slab-geometry i.e. 1D kinetics, also we show how to perform the coupling of the 1D kinetics with the thermal-hydraulic part of the LAPUR code in order to obtain the reactivity feedback coefficients for the different channels. In addition, we show how to obtain the reactivity variation in the complex domain by solving the eigenvalue equation in the frequency domain and we compare this result withmore » the reactivity variation obtained in first order perturbation theory using the 1D neutron fluxes of the base case. Because LAPUR works in the linear regime, it is assumed that in general the perturbations are small. There is also a section devoted to the reactivity weighting factors used to couple the reactivity contribution from the different channels to the reactivity of the entire reactor core in point kinetics and 1D kinetics. Finally we analyze the effects of the different approaches on the DR value. (authors)« less

  9. Resonance and decay phenomena lead to quantum mechanical time asymmetry

    NASA Astrophysics Data System (ADS)

    Bohm, A.; Bui, H. V.

    2013-04-01

    The states (Schrödinger picture) and observables (Heisenberg picture) in the standard quantum theory evolve symmetrically in time, given by the unitary group with time extending over -∞ < t < +∞. This time evolution is a mathematical consequence of the Hilbert space boundary condition for the dynamical differential equations. However, this unitary group evolution violates causality. Moreover, it does not solve an old puzzle of Wigner: How does one describe excited states of atoms which decay exponentially, and how is their lifetime τ related to the Lorentzian width Γ? These question can be answered if one replaces the Hilbert space boundary condition by new, Hardy space boundary conditions. These Hardy space boundary conditions allow for a distinction between states (prepared by a preparation apparatus) and observables (detected by a registration apparatus). The new Hardy space quantum theory is time asymmetric, i.e, the time evolution is given by the semigroup with t0 <= t < +∞, which predicts a finite "beginning of time" t0, where t0 is the ensemble of time at which each individual system has been prepared. The Hardy space axiom also leads to the new prediction: the width Γ and the lifetime τ are exactly related by τ = hslash/Γ.

  10. Double-exponential decay of orientational correlations in semiflexible polyelectrolytes.

    PubMed

    Bačová, P; Košovan, P; Uhlík, F; Kuldová, J; Limpouchová, Z; Procházka, K

    2012-06-01

    In this paper we revisited the problem of persistence length of polyelectrolytes. We performed a series of Molecular Dynamics simulations using the Debye-Hückel approximation for electrostatics to test several equations which go beyond the classical description of Odijk, Skolnick and Fixman (OSF). The data confirm earlier observations that in the limit of large contour separations the decay of orientational correlations can be described by a single-exponential function and the decay length can be described by the OSF relation. However, at short countour separations the behaviour is more complex. Recent equations which introduce more complicated expressions and an additional length scale could describe the results very well on both the short and the long length scale. The equation of Manghi and Netz when used without adjustable parameters could capture the qualitative trend but deviated in a quantitative comparison. Better quantitative agreement within the estimated error could be obtained using three equations with one adjustable parameter: 1) the equation of Manghi and Netz; 2) the equation proposed by us in this paper; 3) the equation proposed by Cannavacciuolo and Pedersen. Two characteristic length scales can be identified in the data: the intrinsic or bare persistence length and the electrostatic persistence length. All three equations use a single parameter to describe a smooth crossover from the short-range behaviour dominated by the intrinsic stiffness of the chain to the long-range OSF-like behaviour.

  11. A general decay result of a viscoelastic equation with past history and boundary feedback

    NASA Astrophysics Data System (ADS)

    Messaoudi, Salim A.; Al-Gharabli, Mohammad M.

    2015-08-01

    In this paper, we consider a viscoelastic equation with a nonlinear feedback localized on a part of the boundary and in the presence of infinite memory term. In the domain as well as on a part of the boundary, we use the multiplier method and some properties of the convex functions to prove an explicit and general decay result.

  12. Parallel Algorithm Solves Coupled Differential Equations

    NASA Technical Reports Server (NTRS)

    Hayashi, A.

    1987-01-01

    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  13. Accurate solution of the Poisson equation with discontinuities

    NASA Astrophysics Data System (ADS)

    Nave, Jean-Christophe; Marques, Alexandre; Rosales, Rodolfo

    2017-11-01

    Solving the Poisson equation in the presence of discontinuities is of great importance in many applications of science and engineering. In many cases, the discontinuities are caused by interfaces between different media, such as in multiphase flows. These interfaces are themselves solutions to differential equations, and can assume complex configurations. For this reason, it is convenient to embed the interface into a regular triangulation or Cartesian grid and solve the Poisson equation in this regular domain. We present an extension of the Correction Function Method (CFM), which was developed to solve the Poisson equation in the context of embedded interfaces. The distinctive feature of the CFM is that it uses partial differential equations to construct smooth extensions of the solution in the vicinity of interfaces. A consequence of this approach is that it can achieve high order of accuracy while maintaining compact discretizations. The extension we present removes the restrictions of the original CFM, and yields a method that can solve the Poisson equation when discontinuities are present in the solution, the coefficients of the equation (material properties), and the source term. We show results computed to fourth order of accuracy in two and three dimensions. This work was partially funded by DARPA, NSF, and NSERC.

  14. Reverse and direct methods for solving the characteristic equation

    NASA Astrophysics Data System (ADS)

    Lozhkin, Alexander; Bozek, Pavol; Lyalin, Vadim; Tarasov, Vladimir; Tothova, Maria; Sultanov, Ravil

    2016-06-01

    Fundamentals of information-linguistic interpretation of the geometry presented shortly. The method of solving the characteristic equation based on Euler's formula is described. The separation of the characteristic equation for several disassembled for Jordan curves. Applications of the theory for problems of mechatronics outlined briefly.

  15. A method for the automated construction of the joint system of equations to solve the problem of the flow distribution in hydraulic networks

    NASA Astrophysics Data System (ADS)

    Novikov, A. E.

    1993-10-01

    There are several methods of solving the problem of the flow distribution in hydraulic networks. But all these methods have no mathematical tools for forming joint systems of equations to solve this problem. This paper suggests a method of constructing joint systems of equations to calculate hydraulic circuits of the arbitrary form. The graph concept, according to Kirchhoff, has been introduced.

  16. New conditions for obtaining the exact solutions of the general Riccati equation.

    PubMed

    Bougoffa, Lazhar

    2014-01-01

    We propose a direct method for solving the general Riccati equation y' = f(x) + g(x)y + h(x)y(2). We first reduce it into an equivalent equation, and then we formulate the relations between the coefficients functions f(x), g(x), and h(x) of the equation to obtain an equivalent separable equation from which the previous equation can be solved in closed form. Several examples are presented to demonstrate the efficiency of this method.

  17. Discussion summary: Fictitious domain methods

    NASA Technical Reports Server (NTRS)

    Glowinski, Rowland; Rodrigue, Garry

    1991-01-01

    Fictitious Domain methods are constructed in the following manner: Suppose a partial differential equation is to be solved on an open bounded set, Omega, in 2-D or 3-D. Let R be a rectangle domain containing the closure of Omega. The partial differential equation is first solved on R. Using the solution on R, the solution of the equation on Omega is then recovered by some procedure. The advantage of the fictitious domain method is that in many cases the solution of a partial differential equation on a rectangular region is easier to compute than on a nonrectangular region. Fictitious domain methods for solving elliptic PDEs on general regions are also very efficient when used on a parallel computer. The reason is that one can use the many domain decomposition methods that are available for solving the PDE on the fictitious rectangular region. The discussion on fictitious domain methods began with a talk by R. Glowinski in which he gave some examples of a variational approach to ficititious domain methods for solving the Helmholtz and Navier-Stokes equations.

  18. Propagation of solutions to the Fisher-KPP equation with slowly decaying initial data

    NASA Astrophysics Data System (ADS)

    Henderson, Christopher

    2016-10-01

    The Fisher-KPP equation is a model for population dynamics that has generated a huge amount of interest since its introduction in 1937. The speed with which a population spreads has been computed quite precisely when the initial data, u 0, decays exponentially. More recently, though, the case when the initial data decays more slowly has been studied. In Hamel F and Roques L (2010 J. Differ. Equ. 249 1726-45), the authors show that the level sets of height of m of u move super-linearly and may be bounded above and below by expressions of the form u0-1≤ft({{c}m}{{\\text{e}}-t}\\right) when u 0 decays algebraically of a small enough order. The constants c m for the upper and lower bounds that they obtain are not explicit and do not match. In this paper, we improve their precision for a broader class of initial data and for a broader class of equations. In particular, our approach yields the explicit highest order term in the location of the level sets, which in the most basic setting is given by u0-1≤ft(m{{\\text{e}}-t}/(1-m)\\right) as long as u 0 decays slower than {{\\text{e}}-\\sqrt{x}} . We generalize this to the previously unstudied setting when the nonlinearity is periodic in space. In addition, for large times, we characterize the profile of the solution in terms of a generalized logistic equation.

  19. Solving Equations Today.

    ERIC Educational Resources Information Center

    Shumway, Richard J.

    1989-01-01

    Illustrated is the problem of solving equations and some different strategies students might employ when using available technology. Gives illustrations for: exact solutions, approximate solutions, and approximate solutions which are graphically generated. (RT)

  20. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  1. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  2. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  3. Solving ay'' + by' + cy = 0 with a Simple Product Rule Approach

    ERIC Educational Resources Information Center

    Tolle, John

    2011-01-01

    When elementary ordinary differential equations (ODEs) of first and second order are included in the calculus curriculum, second-order linear constant coefficient ODEs are typically solved by a method more appropriate to differential equations courses. This method involves the characteristic equation and its roots, complex-valued solutions, and…

  4. Numerical solutions of Navier-Stokes equations for a Butler wing

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1985-01-01

    The flow field is simulated on the surface of a given delta wing (Butler wing) at zero incident in a uniform stream. The simulation is done by integrating a set of flow field equations. This set of equations governs the unsteady, viscous, compressible, heat conducting flow of an ideal gas. The equations are written in curvilinear coordinates so that the wing surface is represented accurately. These equations are solved by the finite difference method, and results obtained for high-speed freestream conditions are compared with theoretical and experimental results. In this study, the Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallel-piped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDC VPS 32 computer.

  5. Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.

    DTIC Science & Technology

    1980-12-01

    equations for two particle motions are developed . A computer program NGCEFF is constructed., the Navier-Stokes equation is solved by the finite difference...dynamic equations for two particle motions are developed . A computer program NGCEFF I is constructed, the Navier-Stokes equation is solved by the...spatial inhomogeneities for the aerosol. Thus, following an HCDA, an aerosol mixture of sodium compounds, fuel and core structural materials will

  6. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

    ERIC Educational Resources Information Center

    Goldston, J. W.

    This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

  7. The Number of Real Roots of a Cubic Equation

    ERIC Educational Resources Information Center

    Kavinoky, Richard; Thoo, John B.

    2008-01-01

    To find the number of distinct real roots of the cubic equation (1) x[caret]3 + bx[caret]2 + cx + d = 0, we could attempt to solve the equation. Fortunately, it is easy to tell the number of distinct real roots of (1) without having to solve the equation. The key is the discriminant. The discriminant of (1) appears in Cardan's (or Cardano's) cubic…

  8. A new Newton-like method for solving nonlinear equations.

    PubMed

    Saheya, B; Chen, Guo-Qing; Sui, Yun-Kang; Wu, Cai-Ying

    2016-01-01

    This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteration and obtains the quadratic convergence property. The numerical performance and comparison show that the proposed method is efficient.

  9. The convergence study of the homotopy analysis method for solving nonlinear Volterra-Fredholm integrodifferential equations.

    PubMed

    Ghanbari, Behzad

    2014-01-01

    We aim to study the convergence of the homotopy analysis method (HAM in short) for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.

  10. An approximately factored incremental strategy for calculating consistent discrete aerodynamic sensitivity derivatives

    NASA Technical Reports Server (NTRS)

    Korivi, V. M.; Taylor, A. C., III; Newman, P. A.; Hou, G. J.-W.; Jones, H. E.

    1992-01-01

    An incremental strategy is presented for iteratively solving very large systems of linear equations, which are associated with aerodynamic sensitivity derivatives for advanced CFD codes. It is shown that the left-hand side matrix operator and the well-known factorization algorithm used to solve the nonlinear flow equations can also be used to efficiently solve the linear sensitivity equations. Two airfoil problems are considered as an example: subsonic low Reynolds number laminar flow and transonic high Reynolds number turbulent flow.

  11. Solving constant-coefficient differential equations with dielectric metamaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Weixuan; Qu, Che; Zhang, Xiangdong

    2016-07-01

    Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.

  12. Control for well-posedness about a class of non-Newtonian incompressible porous medium fluid equations

    NASA Astrophysics Data System (ADS)

    Deng, Shuxian; Ge, Xinxin

    2017-10-01

    Considering the non-Newtonian fluid equation of incompressible porous media, using the properties of operator semigroup and measure space and the principle of squeezed image, Fourier analysis and a priori estimate in the measurement space are used to discuss the non-compressible porous media, the properness of the solution of the equation, its gradual behavior and its topological properties. Through the diffusion regularization method and the compressed limit compact method, we study the overall decay rate of the solution of the equation in a certain space when the initial value is sufficient. The decay estimation of the solution of the incompressible seepage equation is obtained, and the asymptotic behavior of the solution is obtained by using the double regularization model and the Duhamel principle.

  13. Stationary light pulse in solids with long-lived spin coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaojun; Wang Haihua; Wang Lei

    We present a detailed analysis of stationary light pulses (SLP's) for the case of inhomogeneous broadening in both optical and spin transitions, which is normally found in solid materials with long-lived spin coherence. By solving the Langevin equations of motion for the density matrix elements under the integral over the entire range of the inhomogeneous broadenings, the necessary conditions for creating the SLP in a solid are obtained. Then the decay and diffusion processes that the SLP undergoes are analyzed. The characteristics of such processes are studied based on the analytic solution of the SLP with a slowly varying envelope.more » The dependence of SLP lifetime on inhomogeneous broadenings of spin and optical transitions, which can be regarded as the laser linewidth in the repump scheme, has been discussed.« less

  14. A theoretical evaluation of rigid baffles in suppression of combustion instability

    NASA Technical Reports Server (NTRS)

    Baer, M. R.; Mitchell, C. E.

    1976-01-01

    An analytical technique for the prediction of the effects of rigid baffles on the stability of liquid propellant combustors is presented. A three dimensional combustor model characterized by a concentrated combustion source at the chamber injector and a constant Mach number nozzle is used. The linearized partial differential equations describing the unsteady flow field are solved by an eigenfunction matching method. Boundary layer corrections to this unsteady flow are used to evaluate viscous and turbulence effects within the flow. An integral stability relationship is then employed to predict the decay rate of the oscillations. Results show that sufficient dissipation exists to indicate that the proper mechanism of baffle damping is a fluid dynamic loss. The response of the dissipation model to varying baffle blade length, mean flow Mach number and oscillation amplitude is examined.

  15. Rotationally inelastic cross sections, rates and cooling times for para-H2 +, ortho-D2 + and HD+ in cold helium gas

    NASA Astrophysics Data System (ADS)

    Vera, Mario Hernández; Schiller, Stephan; Wester, Roland; Gianturco, Francesco Antonio

    2017-05-01

    In the present work we discuss the dynamical processes guiding the relaxation of the internal rotational energy of three diatomic ions, the para-H2+, the ortho-D2+ and the HD+ in collision with He atoms. The state-changing cross sections and rates for these Molecular Hydrogen Ions (MHIs) are obtained from Close Coupling quantum dynamics calculations and the decay times into their respective ground states are computed by further solving the relevant time-evolution equations. The comparison of the results from the three molecules allows us to obtain a detailed understanding, and a deep insight, on the relative efficiencies of the relaxation processes considered. Contribution to the Topical Issue "Dynamics of Molecular Systems (MOLEC 2016)", edited by Alberto Garcia-Vela, Luis Banares and Maria Luisa Senent.

  16. Diffusing-wave spectroscopy in an inhomogeneous object: Local viscoelastic spectra from ultrasound-assisted measurement of correlation decay arising from the ultrasound focal volume

    NASA Astrophysics Data System (ADS)

    Chandran, R. Sriram; Sarkar, Saikat; Kanhirodan, Rajan; Roy, Debasish; Vasu, Ram Mohan

    2014-07-01

    We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous object by measurement of the intensity autocorrelation [g2(τ)] that captures only the decay introduced by the temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth [M(τ)], introduced by the ultrasound forcing in the focal volume selected, on g2(τ). The modulation depth M (τi) at any delay time τi can be measured by short-time Fourier transform of g2(τ) and measurement of the magnitude of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS, we are able to connect the decay in M (τ) to the mean-squared displacement (MSD) of scattering centers and the MSD to G*(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with different viscoelastic properties is selected for demonstrating local DWS-based recovery of G*(ω) corresponding to these regions from the measured region specific M (τi)vsτi. The ultrasound-assisted measurement of MSD is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart covering small and large values of τ, the match was good only in the initial transients in regard to experimental measurements with ultrasound.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22,more » and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.« less

  18. Simulation of a flow around biting teeth

    NASA Astrophysics Data System (ADS)

    Narusawa, Hideaki; Yamamoto, Eriko; Kuwahara, Kunio

    2008-11-01

    We simulated a flow around biting teeth. The decayed tooth is a disease that a majority of people are annoyed. These are often generated from a deep groove at occlusal surface. It is known that a person who bites well doesn't suffer from a decayed tooth easily. Biting forces reach as much as 60 kg/cm^2 by an adult male, and when chewing, upper and lower teeth approach to bite by those forces. The crushed food mixed with saliva becomes high viscosity fluid, and is pushed out of ditches of teeth in the direction of the cheek or the tongue. Teeth with complex three dimension curved surface are thought to form venturi at this time, and to generate big pressure partially. An excellent dental articulation will possibly help a natural generation of a flow to remove dental plaque, i.e. the cause of the decayed tooth. Moreover, the relation of this flow with the destruction of the filled metal or the polymer is doubted. In this research, we try to clarify the pressure distributions by this flow generation as well as its dynamics when chewing. One of our goals is to enable an objective design of the shape of the dental fillings and the artificial tooth. Tooth has a very small uneven ground and a bluff body. In this case, to calculate a computational numerical simulation to solve the Navier-Stokes equations three dimension Cartesian coordinate system is employed.

  19. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  20. The change of the brain activation patterns as children learn algebra equation solving

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Carter, Cameron S.; Silk, Eli M.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Anderson, John R.

    2004-04-01

    In a brain imaging study of children learning algebra, it is shown that the same regions are active in children solving equations as are active in experienced adults solving equations. As with adults, practice in symbol manipulation produces a reduced activation in prefrontal cortex area. However, unlike adults, practice seems also to produce a decrease in a parietal area that is holding an image of the equation. This finding suggests that adolescents' brain responses are more plastic and change more with practice. These results are integrated in a cognitive model that predicts both the behavioral and brain imaging results.

  1. On the extraction of pressure fields from PIV velocity measurements in turbines

    NASA Astrophysics Data System (ADS)

    Villegas, Arturo; Diez, Fancisco J.

    2012-11-01

    In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.

  2. Solving Nonlinear Differential Equations in the Engineering Curriculum

    ERIC Educational Resources Information Center

    Auslander, David M.

    1977-01-01

    Described is the Dynamic System Simulation Language (SIM) mini-computer system utilized at the University of California, Los Angeles. It is used by engineering students for solving nonlinear differential equations. (SL)

  3. Effective equations and the inverse cascade theory for Kolmogorov flows

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    We study the two dimensional Kolmogorov flows in the limit as the forcing frequency goes to infinity. Direct numerical simulation indicates that the low frequency energy spectrum evolves to a universal kappa (exp -4) decay law. We derive effective equations governing the behavior of the large scale flow quantities. We then present numerical evidence that with smooth initial data, the solution to the effective equation develops a kappa (exp -4) type singularity at a finite time. This gives a convenient explanation for the kappa (exp -4) decay law exhibited by the original Kolmogorov flows.

  4. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  5. Estimating decay in 40- to 90-year-old grand fir stands in the Clearwater region of northern Idaho.

    Treesearch

    Gregory M. Filip; John W. Schwandt; Susan K. Hagle

    1990-01-01

    The fir decay equation for Oregon and Washington was used to predict stem decay in 12 grand fir (Abies grandis (Dougl. ex D. Don) Lindl.) stands in the Clearwater region of northern Idaho. These 12 stands represented a range in geographic and stand characteristic variation. All 12 observed decay percentages were within their associated 95-percent...

  6. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

    ERIC Educational Resources Information Center

    Didis, Makbule Gozde; Erbas, Ayhan Kursat

    2015-01-01

    This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

  7. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Muruganandam, P.; Adhikari, S. K.

    2009-10-01

    Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

  8. User Guide for Compressible Flow Toolbox Version 2.1 for Use With MATLAB(Registered Trademark); Version 7

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.

    2006-01-01

    This report provides a user guide for the Compressible Flow Toolbox, a collection of algorithms that solve almost 300 linear and nonlinear classical compressible flow relations. The algorithms, implemented in the popular MATLAB programming language, are useful for analysis of one-dimensional steady flow with constant entropy, friction, heat transfer, or shock discontinuities. The solutions do not include any gas dissociative effects. The toolbox also contains functions for comparing and validating the equation-solving algorithms against solutions previously published in the open literature. The classical equations solved by the Compressible Flow Toolbox are: isentropic-flow equations, Fanno flow equations (pertaining to flow of an ideal gas in a pipe with friction), Rayleigh flow equations (pertaining to frictionless flow of an ideal gas, with heat transfer, in a pipe of constant cross section.), normal-shock equations, oblique-shock equations, and Prandtl-Meyer expansion equations. At the time this report was published, the Compressible Flow Toolbox was available without cost from the NASA Software Repository.

  9. Computers and Mathematics

    DTIC Science & Technology

    1989-01-01

    Signs of Algebraic Numbers T. Sakkalis, New Mexico State University, Las Cruces ................................. 130 Efficient Reduction of Quadratic...equations. These equations are solved for dl,.. , d. and el ’.. e,, and a basis of minimal non-zero simultaneous solutions in which if d1 # 0, then ei = 0 and...and < el ,..,- emm d, dm > need to be considered because of the symmetric nature of the diophantine equations. These equations can be solved using

  10. On Solving Systems of Equations by Successive Reduction Using 2×2 Matrices

    ERIC Educational Resources Information Center

    Carley, Holly

    2014-01-01

    Usually a student learns to solve a system of linear equations in two ways: "substitution" and "elimination." While the two methods will of course lead to the same answer they are considered different because the thinking process is different. In this paper the author solves a system in these two ways to demonstrate the…

  11. A Model for Estimating Current and Future Timber Volume Loss from Stem Decay Caused by Heterobasidion annosum and Other Fungi in Stands of True Fir

    Treesearch

    Gregory M. Filip

    1989-01-01

    In 1979, an equation was developed to estimate the percentage of current and future timber volume loss due to stem decay caused by Heterobasidion annosum and other fungi in advance regeneration stands of grand and white fir in eastern Oregon and Washington. Methods for using and testing the equation are presented. Extensive testing in 1988 showed the...

  12. On the rates of decay to equilibrium in degenerate and defective Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Arnold, Anton; Einav, Amit; Wöhrer, Tobias

    2018-06-01

    We establish sharp long time asymptotic behaviour for a family of entropies to defective Fokker-Planck equations and show that, much like defective finite dimensional ODEs, their decay rate is an exponential multiplied by a polynomial in time. The novelty of our study lies in the amalgamation of spectral theory and a quantitative non-symmetric hypercontractivity result, as opposed to the usual approach of the entropy method.

  13. Motion of a curved vortex filament with decaying vortical core and axial velocity

    NASA Technical Reports Server (NTRS)

    Callegari, A. J.; Ting, L.

    1978-01-01

    The motion and decay of a curved vortex filament having large axial and circumferential velocity components in a three-dimensional stream are analyzed by using the method of matched asymptotic expansions of the incompressible Navier-Stokes equations. The small parameter is the square root of the ratio of the kinematic viscosity to the circulation. The outer region is analyzed by the classical Biot-Savart law, and its solution is matched to that of the inner region, where viscous effects are important. Equations describing the coupling between the inner vortex structure and the motion of the vortex filament as well as the time evolution of the inner vortex structure are obtained. Equations are derived for the motion of the vortex filament and for the change and decay in time and space of the leading-order circumferential and axial velocity and vorticity components. Solutions are constructed for these components in terms of initial data.

  14. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  15. Experimental quantum computing to solve systems of linear equations.

    PubMed

    Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2013-06-07

    Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

  16. Oblate-Earth Effects on the Calculation of Ec During Spacecraft Reentry

    NASA Technical Reports Server (NTRS)

    Bacon, John B.; Matney, Mark

    2017-01-01

    The bulge in the Earth at its equator has been shown to lead to a clustering of natural decays biased to occur towards the equator and away from the orbit's extreme latitudes. Such clustering must be considered when predicting the Expectation of Casualty (Ec) during a natural decay, because of the corresponding clustering of the human population in the lower latitudes. This study expands upon prior work, and formalizes in a single empirical equation the correction that must be made to the calculation of the average exposed population density as a result of this effect. The equation is represented as a function of ballistic number and inclination of the entering spacecraft over the credible range of ballistic numbers.

  17. Preconditioning Strategies for Solving Elliptic Difference Equations on a Multiprocessor.

    DTIC Science & Technology

    1982-01-01

    162, 1977. (MiGr8O] Mitchell, A., Griffiths, D., The Finite Difference Method in Partial Differential Equations , John Wiley & Sons, 1980. [Munk80...ADAL1b T35 AIR FO"CE INST OF TECH WRITG-PATTERSON AFS OH F/6 12/17PR CO ITIONIN STRATEGIES FOR SOLVING ELLIPTIC DIFFERENCE EWA-ETClU) 9UN S C K...TI TLE (ard S.tbr,,I) 5 TYPE OF REP’ORT & F IFIOD C_JVEFO Preconditioning Strategies for Solving Elliptic THESIS/VYYRY#YY0N Difference Equations on

  18. All-optical computation system for solving differential equations based on optical intensity differentiator.

    PubMed

    Tan, Sisi; Wu, Zhao; Lei, Lei; Hu, Shoujin; Dong, Jianji; Zhang, Xinliang

    2013-03-25

    We propose and experimentally demonstrate an all-optical differentiator-based computation system used for solving constant-coefficient first-order linear ordinary differential equations. It consists of an all-optical intensity differentiator and a wavelength converter, both based on a semiconductor optical amplifier (SOA) and an optical filter (OF). The equation is solved for various values of the constant-coefficient and two considered input waveforms, namely, super-Gaussian and Gaussian signals. An excellent agreement between the numerical simulation and the experimental results is obtained.

  19. Chaotic attractors in tumor growth and decay: a differential equation model.

    PubMed

    Harney, Michael; Yim, Wen-sau

    2015-01-01

    Tumorigenesis can be modeled as a system of chaotic nonlinear differential equations. A simulation of the system is realized by converting the differential equations to difference equations. The results of the simulation show that an increase in glucose in the presence of low oxygen levels decreases tumor growth.

  20. Solution of the Time-Dependent Schrödinger Equation by the Laplace Transform Method

    PubMed Central

    Lin, S. H.; Eyring, H.

    1971-01-01

    The time-dependent Schrödinger equation for two quite general types of perturbation has been solved by introducing the Laplace transforms to eliminate the time variable. The resulting time-independent differential equation can then be solved by the perturbation method, the variation method, the variation-perturbation method, and other methods. PMID:16591898

  1. Adapting HYDRUS-1D to simulate overland flow and reactive transport during sheet flow deviations

    USDA-ARS?s Scientific Manuscript database

    The HYDRUS-1D code is a popular numerical model for solving the Richards equation for variably-saturated water flow and solute transport in porous media. This code was adapted to solve rather than the Richards equation for subsurface flow the diffusion wave equation for overland flow at the soil sur...

  2. An electric-analog simulation of elliptic partial differential equations using finite element theory

    USGS Publications Warehouse

    Franke, O.L.; Pinder, G.F.; Patten, E.P.

    1982-01-01

    Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.

  3. Numerical evaluation of the intensity transport equation for well-known wavefronts and intensity distributions

    NASA Astrophysics Data System (ADS)

    Campos-García, Manuel; Granados-Agustín, Fermín.; Cornejo-Rodríguez, Alejandro; Estrada-Molina, Amilcar; Avendaño-Alejo, Maximino; Moreno-Oliva, Víctor Iván.

    2013-11-01

    In order to obtain a clearer interpretation of the Intensity Transport Equation (ITE), in this work, we propose an algorithm to solve it for some particular wavefronts and its corresponding intensity distributions. By simulating intensity distributions in some planes, the ITE is turns into a Poisson equation with Neumann boundary conditions. The Poisson equation is solved by means of the iterative algorithm SOR (Simultaneous Over-Relaxation).

  4. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  5. Investigation of viscous/inviscid interaction in transonic flow over airfoils with suction

    NASA Technical Reports Server (NTRS)

    Vemuru, C. S.; Tiwari, S. N.

    1988-01-01

    The viscous/inviscid interaction over transonic airfoils with and without suction is studied. The streamline angle at the edge of the boundary layer is used to couple the viscous and inviscid flows. The potential flow equations are solved for the inviscid flow field. In the shock region, the Euler equations are solved using the method of integral relations. For this, the potential flow solution is used as the initial and boundary conditions. An integral method is used to solve the laminar boundary-layer equations. Since both methods are integral methods, a continuous interaction is allowed between the outer inviscid flow region and the inner viscous flow region. To avoid the Goldstein singularity near the separation point the laminar boundary-layer equations are derived in an inverse form to obtain solution for the flows with small separations. The displacement thickness distribution is specified instead of the usual pressure distribution to solve the boundry-layer equations. The Euler equations are solved for the inviscid flow using the finite volume technique and the coupling is achieved by a surface transpiration model. A method is developed to apply a minimum amount of suction that is required to have an attached flow on the airfoil. The turbulent boundary layer equations are derived using the bi-logarithmic wall law for mass transfer. The results are found to be in good agreement with available experimental data and with the results of other computational methods.

  6. Numerical techniques in radiative heat transfer for general, scattering, plane-parallel media

    NASA Technical Reports Server (NTRS)

    Sharma, A.; Cogley, A. C.

    1982-01-01

    The study of radiative heat transfer with scattering usually leads to the solution of singular Fredholm integral equations. The present paper presents an accurate and efficient numerical method to solve certain integral equations that govern radiative equilibrium problems in plane-parallel geometry for both grey and nongrey, anisotropically scattering media. In particular, the nongrey problem is represented by a spectral integral of a system of nonlinear integral equations in space, which has not been solved previously. The numerical technique is constructed to handle this unique nongrey governing equation as well as the difficulties caused by singular kernels. Example problems are solved and the method's accuracy and computational speed are analyzed.

  7. Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials

    NASA Astrophysics Data System (ADS)

    Britt, S.; Tsynkov, S.; Turkel, E.

    2018-02-01

    We solve the wave equation with variable wave speed on nonconforming domains with fourth order accuracy in both space and time. This is accomplished using an implicit finite difference (FD) scheme for the wave equation and solving an elliptic (modified Helmholtz) equation at each time step with fourth order spatial accuracy by the method of difference potentials (MDP). High-order MDP utilizes compact FD schemes on regular structured grids to efficiently solve problems on nonconforming domains while maintaining the design convergence rate of the underlying FD scheme. Asymptotically, the computational complexity of high-order MDP scales the same as that for FD.

  8. Connecting the U-Th and U-Pb Chronometers: New Algorithms and Applications

    NASA Astrophysics Data System (ADS)

    McLean, N. M.; Smith, C. J. M.; Roberts, N. M. W.; Richards, D. A.

    2016-12-01

    The U-Th and U-Pb geochronometers are important clocks for separate intervals of the geologic timescale. U-Th dates exploit disequilibrium in the 238U intermediate daughter isotopes 234U and 230Th, and are often used to date corals and speleothems that are zero age through 800 ka. The U-Pb system relies on secular equilibrium decay of 238U to 206Pb and 235U to 207Pb over longer timescales, and can be used to date samples from <1 Ma to 4.5 Ga. Disequilibrium plays a role in young U-Pb dates, but only as a nuisance correction. Both chronometers can produce dates with uncertainties <0.1% near the center of their applicable age ranges, but become less precise at their intersection, when the 238U decay chain approaches secular equilibrium and there has been little time for ingrowth of radiogenic Pb. However, if measurements or assumptions about both chronometers can be made, then they can be combined into a single, more informed date. Coupling the datasets can improve their precision and accuracy and help interrogate the assumptions that underpin each. Working with this data is difficult for two reasons. The Bateman equations are long and cumbersome for U decay chains that include 238U, 234U, 230Th, 226Ra, 206Pb and 235U, 231Pa, and 207Pb. Also, Pb measurements often comprise varying amounts of radiogenic Pb from locally heterogeneous U concentrations mixed with varying amounts of common Pb. At present there is no established, flexible computational framework to combine information from measurements and/or assumptions of these parameters, and no way to visualize and interpret the results. We present new algorithms to quickly and accurately solve the system of differential equations defined by both of the uranium decay chains and the linear regression through the U-Pb isochron. The results are illustrated on a new concordia diagram, where the concordia curve is determined by measured and/or assumed U-series disequilibrium and can have unfamiliar topologies. We demonstrate this approach using data collected by solution and laser ablation ICPMS on carbonates with measurable 230Th and 234U disequilibrium, measurable disequilibrium for only 234U, and when only assumptions can be made about initial U-series disequilibrium. Potential applications include refining chronologies at ca. 1 Ma, an important period in Earth history.

  9. A fast marching algorithm for the factored eikonal equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treister, Eran, E-mail: erantreister@gmail.com; Haber, Eldad, E-mail: haber@math.ubc.ca; Department of Mathematics, The University of British Columbia, Vancouver, BC

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. Thismore » inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.« less

  10. Technique for handling wave propagation specific effects in biological tissue: mapping of the photon transport equation to Maxwell's equations.

    PubMed

    Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S

    2008-10-27

    A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.

  11. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  12. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  13. Isotopic effects in vibrational relaxation dynamics of H on a Si(100) surface

    NASA Astrophysics Data System (ADS)

    Bouakline, F.; Lorenz, U.; Melani, G.; Paramonov, G. K.; Saalfrank, P.

    2017-10-01

    In a recent paper [U. Lorenz and P. Saalfrank, Chem. Phys. 482, 69 (2017)], we proposed a robust scheme to set up a system-bath model Hamiltonian, describing the coupling of adsorbate vibrations (system) to surface phonons (bath), from first principles. The method is based on an embedded cluster approach, using orthogonal coordinates for system and bath modes, and an anharmonic phononic expansion of the system-bath interaction up to second order. In this contribution, we use this model Hamiltonian to calculate vibrational relaxation rates of H-Si and D-Si bending modes, coupled to a fully H(D)-covered Si(100)-( 2 × 1 ) surface, at zero temperature. The D-Si bending mode has an anharmonic frequency lying inside the bath frequency spectrum, whereas the H-Si bending mode frequency is outside the bath Debye band. Therefore, in the present calculations, we only take into account one-phonon system-bath couplings for the D-Si system and both one- and two-phonon interaction terms in the case of H-Si. The computation of vibrational lifetimes is performed with two different approaches, namely, Fermi's golden rule, and a generalized Bixon-Jortner model built in a restricted vibrational space of the adsorbate-surface zeroth-order Hamiltonian. For D-Si, the Bixon-Jortner Hamiltonian can be solved by exact diagonalization, serving as a benchmark, whereas for H-Si, an iterative scheme based on the recursive residue generation method is applied, with excellent convergence properties. We found that the lifetimes obtained with perturbation theory, albeit having almost the same order of magnitude—a few hundred fs for D-Si and a couple of ps for H-Si—, are strongly dependent on the discretized numerical representation of the bath spectral density. On the other hand, the Bixon-Jortner model is free of such numerical deficiencies, therefore providing better estimates of vibrational relaxation rates, at a very low computational cost. The results obtained with this model clearly show a net exponential decay of the time-dependent survival probability for the H-Si initial vibrational state, allowing an easy extraction of the bending mode "lifetime." This is in contrast with the D-Si system, whose survival probability exhibits a non-monotonic decay, making it difficult to define such a lifetime. This different behavior of the vibrational decay is rationalized in terms of the power spectrum of the adsorbate-surface system. In the case of D-Si, it consists of several, non-uniformly distributed peaks around the bending mode frequency, whereas the H-Si spectrum exhibits a single Lorentzian lineshape, whose width corresponds to the calculated lifetime. The present work gives some insight into mechanisms of vibration-phonon coupling at surfaces. It also serves as a benchmark for multidimensional system-bath quantum dynamics, for comparison with approximate schemes such as reduced, open-system density matrix theory (where the bath is traced out and a Liouville-von Neumann equation is solved) or approximate wavefunction methods to solve the combined system-bath Schrödinger equation.

  14. Flows in a tube structure: Equation on the graph

    NASA Astrophysics Data System (ADS)

    Panasenko, Grigory; Pileckas, Konstantin

    2014-08-01

    The steady-state Navier-Stokes equations in thin structures lead to some elliptic second order equation for the macroscopic pressure on a graph. At the nodes of the graph the pressure satisfies Kirchoff-type junction conditions. In the non-steady case the problem for the macroscopic pressure on the graph becomes nonlocal in time. In the paper we study the existence and uniqueness of a solution to such one-dimensional model on the graph for a pipe-wise network. We also prove the exponential decay of the solution with respect to the time variable in the case when the data decay exponentially with respect to time.

  15. Measurement of Radon in Indoor Air.

    ERIC Educational Resources Information Center

    Downey, Daniel M.; Simolunas, Glenn

    1988-01-01

    Describes a laboratory experiment to teach the principles of air sampling, gamma ray spectroscopy, nuclear decay, and radioactive equilibrium. Analyzes radon by carbon adsorption and gamma ray counting. Provides methodology and rate of decay equations. (MVL)

  16. Dynamic characteristics of a variable-mass flexible missile

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Bankovskis, J.

    1970-01-01

    The general motion of a variable mass flexible missile with internal flow and aerodynamic forces is considered. The resulting formulation comprises six ordinary differential equations for rigid body motion and three partial differential equations for elastic motion. The simultaneous differential equations are nonlinear and possess time-dependent coefficients. The differential equations are solved by a semi-analytical method leading to a set of purely ordinary differential equations which are then solved numerically. A computer program was developed for the numerical solution and results are presented for a given set of initial conditions.

  17. HAM2D: 2D Shearing Box Model

    NASA Astrophysics Data System (ADS)

    Gammie, Charles F.; Guan, Xiaoyue

    2012-10-01

    HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.

  18. On some theoretical and practical aspects of multigrid methods. [to solve finite element systems from elliptic equations

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.

    1979-01-01

    A description and explanation of a simple multigrid algorithm for solving finite element systems is given. Numerical results for an implementation are reported for a number of elliptic equations, including cases with singular coefficients and indefinite equations. The method shows the high efficiency, essentially independent of the grid spacing, predicted by the theory.

  19. A Multilevel Algorithm for the Solution of Second Order Elliptic Differential Equations on Sparse Grids

    NASA Technical Reports Server (NTRS)

    Pflaum, Christoph

    1996-01-01

    A multilevel algorithm is presented that solves general second order elliptic partial differential equations on adaptive sparse grids. The multilevel algorithm consists of several V-cycles. Suitable discretizations provide that the discrete equation system can be solved in an efficient way. Numerical experiments show a convergence rate of order Omicron(1) for the multilevel algorithm.

  20. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

    PubMed Central

    Southern, James A.; Plank, Gernot; Vigmond, Edward J.; Whiteley, Jonathan P.

    2017-01-01

    The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time whilst still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counter-intuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks it is shown that the coupled method is up to 80% faster than the conventional uncoupled method — and that parallel performance is better for the larger coupled problem. PMID:19457741

  1. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  2. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  3. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  4. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical andmore » physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.« less

  5. Kassiopeia: a modern, extensible C++ particle tracking package

    DOE PAGES

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; ...

    2017-05-16

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur inmore » flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.« less

  6. Experimental and numerical investigation of electrohydrodynamic flow in a point-to-ring corona discharge

    NASA Astrophysics Data System (ADS)

    Guan, Yifei; Vaddi, Ravi Sankar; Aliseda, Alberto; Novosselov, Igor

    2018-04-01

    An electrohydrodynamic (EHD) flow in a point-to-ring corona configuration is investigated experimentally and via a multiphysics computational model. The model couples the ion transport equation and the Navier-Stokes equations (NSE) to solve for the spatiotemporal distribution of electric field, flow field, and charge density. The numerical simulation results are validated against experimental measurements of the cathode voltage, ion concentration, and velocity profiles. The maximum flow velocity is at the centerline, and it decays rapidly with radial distance due to the viscous and electric forces acting on the partially ionized gas. To understand this coupling, a nondimensional parameter, X , is formulated as the ratio of the local electric force to the inertial term in the NSE. In the region of X ≥1 , the electric force dominates the flow dynamics, while in the X ≪1 region, the balance of viscous and inertial terms yields traditional pipe flow characteristics. This approach expands on the analytical model of Guan et al. by adding a description of the developing flow region. The approach allows the model to be used for the entire EHD domain, providing insights into the near-field flow in the corona region.

  7. Kassiopeia: a modern, extensible C++ particle tracking package

    NASA Astrophysics Data System (ADS)

    Furse, Daniel; Groh, Stefan; Trost, Nikolaus; Babutzka, Martin; Barrett, John P.; Behrens, Jan; Buzinsky, Nicholas; Corona, Thomas; Enomoto, Sanshiro; Erhard, Moritz; Formaggio, Joseph A.; Glück, Ferenc; Harms, Fabian; Heizmann, Florian; Hilk, Daniel; Käfer, Wolfgang; Kleesiek, Marco; Leiber, Benjamin; Mertens, Susanne; Oblath, Noah S.; Renschler, Pascal; Schwarz, Johannes; Slocum, Penny L.; Wandkowsky, Nancy; Wierman, Kevin; Zacher, Michael

    2017-05-01

    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease-of-use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occurring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle’s state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopeia.

  8. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  9. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  10. Spectral collocation for multiparameter eigenvalue problems arising from separable boundary value problems

    NASA Astrophysics Data System (ADS)

    Plestenjak, Bor; Gheorghiu, Călin I.; Hochstenbach, Michiel E.

    2015-10-01

    In numerous science and engineering applications a partial differential equation has to be solved on some fairly regular domain that allows the use of the method of separation of variables. In several orthogonal coordinate systems separation of variables applied to the Helmholtz, Laplace, or Schrödinger equation leads to a multiparameter eigenvalue problem (MEP); important cases include Mathieu's system, Lamé's system, and a system of spheroidal wave functions. Although multiparameter approaches are exploited occasionally to solve such equations numerically, MEPs remain less well known, and the variety of available numerical methods is not wide. The classical approach of discretizing the equations using standard finite differences leads to algebraic MEPs with large matrices, which are difficult to solve efficiently. The aim of this paper is to change this perspective. We show that by combining spectral collocation methods and new efficient numerical methods for algebraic MEPs it is possible to solve such problems both very efficiently and accurately. We improve on several previous results available in the literature, and also present a MATLAB toolbox for solving a wide range of problems.

  11. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  12. Evolution of scalar fields surrounding black holes on compactified constant mean curvature hypersurfaces

    NASA Astrophysics Data System (ADS)

    Morales, Manuel D.; Sarbach, Olivier

    2017-02-01

    Motivated by the goal for high accuracy modeling of gravitational radiation emitted by isolated systems, recently, there has been renewed interest in the numerical solution of the hyperboloidal initial value problem for Einstein's field equations in which the outer boundary of the numerical grid is placed at null infinity. In this article, we numerically implement the tetrad-based approach presented by Bardeen, Sarbach, and Buchman [Phys. Rev. D 83, 104045 (2011), 10.1103/PhysRevD.83.104045] for a spherically symmetric, minimally coupled, self-gravitating scalar field. When this field is massless, the evolution system reduces to a regular, first-order symmetric hyperbolic system of equations for the conformally rescaled scalar field which is coupled to a set of singular elliptic constraints for the metric coefficients. We show how to solve this system based on a numerical finite-difference approximation, obtaining stable numerical evolutions for initial black hole configurations which are surrounded by a spherical shell of scalar field, part of which disperses to infinity and part of which is accreted by the black hole. As a nontrivial test, we study the tail decay of the scalar field along different curves, including one along the marginally trapped tube, one describing the world line of a timelike observer at a finite radius outside the horizon, and one corresponding to a generator of null infinity. Our results are in perfect agreement with the usual power-law decay discussed in previous work. This article also contains a detailed analysis for the asymptotic behavior and regularity of the lapse, conformal factor, extrinsic curvature and the Misner-Sharp mass function along constant mean curvature slices.

  13. CFD-DEM Onset of Motion Analysis for Application to Bed Scour Risk Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitek, M. A.; Lottes, S. A.

    This CFD study with DEM was done as a part of the Federal Highway Administration’s (FHWA’s) effort to improve scour design procedures. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) model, available in CD-Adapco’s StarCCM+ software, was used to simulate multiphase systems, mainly those which combine fluids and solids. In this method the motion of discrete solids is accounted for by DEM, which applies Newton's laws of motion to every particle. The flow of the fluid is determined by the local averaged Navier–Stokes equations that can be solved using the traditional CFD approach. The interactions between the fluid phase and solidsmore » phase are modeled by use of Newton's third law. The inter-particle contact forces are included in the equations of motion. Soft-particle formulation is used, which allows particles to overlap. In this study DEM was used to model separate sediment grains and spherical particles laying on the bed with the aim to analyze their movement due to flow conditions. Critical shear stress causing the incipient movement of the sediment was established and compared to the available experimental data. An example of scour around a cylindrical pier is considered. Various depths of the scoured bed and flow conditions were taken into account to gain a better understanding of the erosion forces existing around bridge foundations. The decay of these forces with increasing scour depth was quantified with a ‘decay function’, which shows that particles become increasingly less likely to be set in motion by flow forces as a scour hole increases in depth. Computational and experimental examples of the scoured bed around a cylindrical pier are presented.« less

  14. Matrix algorithms for solving (in)homogeneous bound state equations

    PubMed Central

    Blank, M.; Krassnigg, A.

    2011-01-01

    In the functional approach to quantum chromodynamics, the properties of hadronic bound states are accessible via covariant integral equations, e.g. the Bethe–Salpeter equation for mesons. In particular, one has to deal with linear, homogeneous integral equations which, in sophisticated model setups, use numerical representations of the solutions of other integral equations as part of their input. Analogously, inhomogeneous equations can be constructed to obtain off-shell information in addition to bound-state masses and other properties obtained from the covariant analogue to a wave function of the bound state. These can be solved very efficiently using well-known matrix algorithms for eigenvalues (in the homogeneous case) and the solution of linear systems (in the inhomogeneous case). We demonstrate this by solving the homogeneous and inhomogeneous Bethe–Salpeter equations and find, e.g. that for the calculation of the mass spectrum it is as efficient or even advantageous to use the inhomogeneous equation as compared to the homogeneous. This is valuable insight, in particular for the study of baryons in a three-quark setup and more involved systems. PMID:21760640

  15. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

    PubMed

    Li, Shuai; Li, Yangming

    2013-10-28

    The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

  16. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  17. Users manual for a one-dimensional Lagrangian transport model

    USGS Publications Warehouse

    Schoellhamer, D.H.; Jobson, H.E.

    1986-01-01

    A Users Manual for the Lagrangian Transport Model (LTM) is presented. The LTM uses Lagrangian calculations that are based on a reference frame moving with the river flow. The Lagrangian reference frame eliminates the need to numerically solve the convective term of the convection-diffusion equation and provides significant numerical advantages over the more commonly used Eulerian reference frame. When properly applied, the LTM can simulate riverine transport and decay processes within the accuracy required by most water quality studies. The LTM is applicable to steady or unsteady one-dimensional unidirectional flows in fixed channels with tributary and lateral inflows. Application of the LTM is relatively simple and optional capabilities improve the model 's convenience. Appendices give file formats and three example LTM applications that include the incorporation of the QUAL II water quality model 's reaction kinetics into the LTM. (Author 's abstract)

  18. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    PubMed

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  19. Numerical simulation for aspects of homogeneous and heterogeneous reactions in forced convection flow of nanofluid

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed

    2018-03-01

    Mixed convection stagnation point flow of nanofluid by a vertical permeable circular cylinder has been addressed. Water is treated as ordinary liquid while nanoparticles include aluminium oxide, copper and titanium dioxide. Homogeneous-heterogeneous reactions are considered. The nonlinear higher order expressions are changed into first ordinary differential equations and then solved by built-in-Shooting method in mathematica. The results of velocity, temperature, concentration, skin friction and local Nusselt number are discussed. Our results demonstrate that surface drag force and heat transfer rate are enhanced linearly for higher estimation of curvature parameter. Further surface drag force decays for aluminium oxide and it enhances for copper nanoparticle. Heat transfer rate enhances with increasing all three types of nanoparticles. In addition, the lowest heat transfer rate is obtained in case of titanium dioxide when compared with copper and aluminium oxide.

  20. Cine: Line excitation by infrared fluorescence in cometary atmospheres

    NASA Astrophysics Data System (ADS)

    de Val-Borro, Miguel; Cordiner, Martin A.; Milam, Stefanie N.; Charnley, Steven B.

    2017-03-01

    CINE is a Python module for calculating infrared pumping efficiencies that can be applied to the most common molecules found in cometary comae such as water, hydrogen cyanide or methanol. Excitation by solar radiation of vibrational bands followed by radiative decay to the ground vibrational state is one of the main mechanisms for molecular excitation in comets. This code calculates the effective pumping rates for rotational levels in the ground vibrational state scaled by the heliocentric distance of the comet. Line transitions are queried from the latest version of the HITRAN spectroscopic repository using the astroquery affiliated package of astropy. Molecular data are obtained from the LAMDA database. These coefficients are useful for modeling rotational emission lines observed in cometary spectra at sub-millimeter wavelengths. Combined with computational methods to solve the radiative transfer equations based, e.g., on the Monte Carlo algorithm, this model can retrieve production rates and rotational temperatures from the observed emission spectrum.

  1. Annihilation rates of 3D2(2--) and 3D3(3--) heavy quarkonia

    NASA Astrophysics Data System (ADS)

    Wang, Tianhong; Fu, Hui-Feng; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2017-03-01

    We calculate the annihilation decay rates of the 3D 2(2--) and 3D 3(3--) charmonia and bottomonia by using the instantaneous Bethe-Salpeter (BS) method. The wave functions of states with quantum numbers JPC = 2-- and 3-- are constructed. By solving the corresponding instantaneous BS equations, we obtain the mass spectra and wave functions of the quarkonia. The annihilation amplitude is written within Mandelstam formalism and the relativistic corrections are taken into account properly. This is important, especially for high excited states, since their relativistic corrections are large. The results for the 3g channel are as follows: Γ13D2(cc¯)→ggg = 9.24 keV, Γ13D3(cc¯)→ggg = 25.0 keV, Γ13D2(bb¯)→ggg = 1.87 keV and Γ13D3(bb¯)→ggg = 0.815 keV.

  2. Aircraft Vortex Wake Descent and Decay under Real Atmospheric Effects

    DOT National Transportation Integrated Search

    1973-10-01

    Aircraft vortex wake descent and decay in a real atmosphere is studied analytically. Factors relating to encounter hazard, wake generation, wake descent and stability, and atmospheric dynamics are considered. Operational equations for encounter hazar...

  3. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

    PubMed

    Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

    2016-06-01

    The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

  4. A two-level stochastic collocation method for semilinear elliptic equations with random coefficients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Luoping; Zheng, Bin; Lin, Guang

    In this work, we propose a novel two-level discretization for solving semilinear elliptic equations with random coefficients. Motivated by the two-grid method for deterministic partial differential equations (PDEs) introduced by Xu, our two-level stochastic collocation method utilizes a two-grid finite element discretization in the physical space and a two-level collocation method in the random domain. In particular, we solve semilinear equations on a coarse meshmore » $$\\mathcal{T}_H$$ with a low level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_{P}$$) and solve linearized equations on a fine mesh $$\\mathcal{T}_h$$ using high level stochastic collocation (corresponding to the polynomial space $$\\mathcal{P}_p$$). We prove that the approximated solution obtained from this method achieves the same order of accuracy as that from solving the original semilinear problem directly by stochastic collocation method with $$\\mathcal{T}_h$$ and $$\\mathcal{P}_p$$. The two-level method is computationally more efficient, especially for nonlinear problems with high random dimensions. Numerical experiments are also provided to verify the theoretical results.« less

  5. Ion composition and temperature in the topside ionosphere.

    NASA Technical Reports Server (NTRS)

    Brace, L. H.; Dunham, G. S.; Mayr, H. G.

    1967-01-01

    Particle and energy continuity equations derived and solved by computer method ion composition and plasma temperature measured by Explorer XXII PARTICLE and energy continuity equations derived and solved by computer method for ion composition and plasma temperature measured by Explorer XXII

  6. Three ways to solve critical ϕ4 theory on 4 ‑ 𝜖 dimensional real projective space: Perturbation, bootstrap, and Schwinger-Dyson equation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Chika; Nakayama, Yu

    2018-03-01

    In this paper, we solve the two-point function of the lowest dimensional scalar operator in the critical ϕ4 theory on 4 ‑ 𝜖 dimensional real projective space in three different methods. The first is to use the conventional perturbation theory, and the second is to impose the cross-cap bootstrap equation, and the third is to solve the Schwinger-Dyson equation under the assumption of conformal invariance. We find that the three methods lead to mutually consistent results but each has its own advantage.

  7. A diffuse-interface method for two-phase flows with soluble surfactants

    PubMed Central

    Teigen, Knut Erik; Song, Peng; Lowengrub, John; Voigt, Axel

    2010-01-01

    A method is presented to solve two-phase problems involving soluble surfactants. The incompressible Navier–Stokes equations are solved along with equations for the bulk and interfacial surfactant concentrations. A non-linear equation of state is used to relate the surface tension to the interfacial surfactant concentration. The method is based on the use of a diffuse interface, which allows a simple implementation using standard finite difference or finite element techniques. Here, finite difference methods on a block-structured adaptive grid are used, and the resulting equations are solved using a non-linear multigrid method. Results are presented for a drop in shear flow in both 2D and 3D, and the effect of solubility is discussed. PMID:21218125

  8. Photoplasma of optically excited metal vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezuglov, N.N.; Llyucharev, A.N.; Stacewicz, T.

    1994-09-01

    A wide range of questions associated with various aspects of photoplasma physics is considered. A comprehensive analysis of processes of optical excitation and de-excitation depending on optical characteristics of an absorbing gas medium is given. Analytical methods used for determining the excitation degree of photoresonance plasma in conditions of resonance radiation transfer are described. The accuracy of the Biberman approximation for effective lifetimes in population kinetics of resonance plasma states is analyzed for many experimental conditions. A detailed discussion of primary ionization mechanisms in photoplasma is given; the kinetics of ionization processes is discussed; and systematization of various types ofmore » photoresonance plasma is presented. Basis aspects of the LIBORS model, which is widely used for studying ionization kinetics of laser photoresonance plasma, and its limitations are considered. An ingenious method used to analytically solve a class of decay-type nonlinear problems, which arise for the capture equation in the case of noticeable saturation of a resonance transition by a short laser pulse, is described. A reliable quantitative description of fluorescence decay curve peculiarities that are associated with the bleaching of gases at resonance line frequencies can be obtained by this method. Some possible applications of photoplasma in problems of optics and spectroscopy are considered. 75 refs., 24 figs., 1 tab.« less

  9. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  10. A solution to B → ππ puzzle and B → KK

    NASA Astrophysics Data System (ADS)

    Baek, Seungwon

    2008-01-01

    The large ratio of color-suppressed tree amplitude to color-allowed one in B → ππ decays is difficult to understand within the Standard Model, which is known as the " B → ππ puzzle". The two tree diagrams contain the up- and charm-quark component of penguin amplitude, Puc, which cannot be separated by measuring B → ππ decays alone. We show that the measurements of the branching ratio and direct CP asymmetry of B+ →K+K0 bar decay enable one to disentangle the Puc with two-fold ambiguity. One of the two degenerate solutions of the Puc can solve the B → ππ puzzle by giving | C / T | ∼ 0.3 which is consistent with the expectation in the Standard Model. We also show that the two solutions can be discriminated by the measurement of the indirect CP asymmetry of B0 →K0K0 bar. We point out that the corresponding puzzle in B → πK decays is not solved in this way.

  11. Global existence and energy decay rates for a Kirchhoff-type wave equation with nonlinear dissipation.

    PubMed

    Kim, Daewook; Kim, Dojin; Hong, Keum-Shik; Jung, Il Hyo

    2014-01-01

    The first objective of this paper is to prove the existence and uniqueness of global solutions for a Kirchhoff-type wave equation with nonlinear dissipation of the form Ku'' + M(|A (1/2) u|(2))Au + g(u') = 0 under suitable assumptions on K, A, M(·), and g(·). Next, we derive decay estimates of the energy under some growth conditions on the nonlinear dissipation g. Lastly, numerical simulations in order to verify the analytical results are given.

  12. Optimal decay rate for the wave equation on a square with constant damping on a strip

    NASA Astrophysics Data System (ADS)

    Stahn, Reinhard

    2017-04-01

    We consider the damped wave equation with Dirichlet boundary conditions on the unit square parametrized by Cartesian coordinates x and y. We assume the damping a to be strictly positive and constant for x<σ and zero for x>σ . We prove the exact t^{-4/3}-decay rate for the energy of classical solutions. Our main result (Theorem 1) answers question (1) of Anantharaman and Léautaud (Anal PDE 7(1):159-214, 2014, Section 2C).

  13. An exact solution for the solidification of a liquid slab of binary mixture

    NASA Technical Reports Server (NTRS)

    Antar, B. N.; Collins, F. G.; Aumalia, A. E.

    1986-01-01

    The time dependent temperature and concentration profiles of a one dimensional finite slab of a binary liquid alloy is investigated during solidification. The governing equations are reduced to a set of coupled, nonlinear initial value problems using the method outlined by Meyer. Two methods will be used to solve these equations. The first method uses a Runge-Kutta-Fehlberg integrator to solve the equations numerically. The second method comprises of finding closed form solutions of the equations.

  14. A new technique for solving the Parker-type wind equations

    NASA Technical Reports Server (NTRS)

    Melia, Fulvio

    1988-01-01

    Substitution of the novel function Phi for velocity, as one of the dependent variables in Parker-type solar wind equations, removes the critical point, and therefore the numerical difficulties encountered, from the set of coupled differential wind equations. The method has already been successfully used in a study of radiatively-driven mass loss from the surface of X-ray bursting neutron stars. The present technique for solving the equations of time-independent mass loss can be useful in similar applications.

  15. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding

    PubMed Central

    Crooks, Noelle M.; Alibali, Martha W.

    2013-01-01

    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the equations. PMID:24324454

  16. Comparing Balance and Inverse Methods on Learning Conceptual and Procedural Knowledge in Equation Solving: A Cognitive Load Perspective

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy Phuong

    2016-01-01

    We examined the use of balance and inverse methods in equation solving. The main difference between the balance and inverse methods lies in the operational line (e.g. +2 on both sides vs -2 becomes +2). Differential element interactivity favours the inverse method because the interaction between elements occurs on both sides of the equation for…

  17. Nonlinear Waves and Inverse Scattering

    DTIC Science & Technology

    1990-09-18

    to be published Proceedings: conference Chaos in Australia (February 1990). 5. On the Kadomtsev Petviashvili Equation and Associated Constraints by...Scattering Transfoni (IST). IST is a method which alows one to’solve nonlinear wave equations by solving certain related direct and inverse scattering...problems. We use these results to find solutions to nonlinear wave equations much like one uses Fourier analysis for linear problems. Moreover the

  18. Development of the Nuclear-Electronic Orbital Approach and Applications to Ionic Liquids and Tunneling Processes

    DTIC Science & Technology

    2010-02-24

    electronic Schrodinger equation . In previous grant cycles, we implemented the NEO approach at the Hartree-Fock (NEO-HF),13 configuration interaction...electronic and nuclear molecular orbitals. The resulting electronic and nuclear Hartree-Fock-Roothaan equations are solved iteratively until self...directly into the standard Hartree- Fock-Roothaan equations , which are solved iteratively to self-consistency. The density matrix representation

  19. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    PubMed Central

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  20. Wave-packet formation at the zero-dispersion point in the Gardner-Ostrovsky equation.

    PubMed

    Whitfield, A J; Johnson, E R

    2015-05-01

    The long-time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. There is currently no entirely satisfactory explanation as to why these wave packets form. Here the initial value problem is considered within the context of the Gardner-Ostrovsky, or rotation-modified extended Korteweg-de Vries, equation. The linear Gardner-Ostrovsky equation has maximum group velocity at a critical wave number, often called the zero-dispersion point. It is found here that a nonlinear splitting of the wave-number spectrum at the zero-dispersion point, where energy is shifted into the modulationally unstable regime of the Gardner-Ostrovsky equation, is responsible for the wave-packet formation. Numerical comparisons of the decay of a solitary wave in the Gardner-Ostrovsky equation and a derived nonlinear Schrödinger equation at the zero-dispersion point are used to confirm the spectral splitting.

  1. Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Matinelli, L.

    1994-01-01

    The steady state solution of the system of equations consisting of the full Navier-Stokes equations and two turbulence equations has been obtained using a multigrid strategy of unstructured meshes. The flow equations and turbulence equations are solved in a loosely coupled manner. The flow equations are advanced in time using a multistage Runge-Kutta time-stepping scheme with a stability-bound local time step, while turbulence equations are advanced in a point-implicit scheme with a time step which guarantees stability and positivity. Low-Reynolds-number modifications to the original two-equation model are incorporated in a manner which results in well-behaved equations for arbitrarily small wall distances. A variety of aerodynamic flows are solved, initializing all quantities with uniform freestream values. Rapid and uniform convergence rates for the flow and turbulence equations are observed.

  2. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

    PubMed

    Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

    2014-01-01

    In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

  3. AN EXACT PEAK CAPTURING AND OSCILLATION-FREE SCHEME TO SOLVE ADVECTION-DISPERSION TRANSPORT EQUATIONS

    EPA Science Inventory

    An exact peak capturing and essentially oscillation-free (EPCOF) algorithm, consisting of advection-dispersion decoupling, backward method of characteristics, forward node tracking, and adaptive local grid refinement, is developed to solve transport equations. This algorithm repr...

  4. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    PubMed

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  5. Sound decay in a rectangular room with impedance walls

    NASA Astrophysics Data System (ADS)

    Kanev, N. G.

    2012-09-01

    The problem of sound decay in a rectangular room is considered for the case of a room with walls the acoustic properties of which are described by the impedance, which implies a dependence of the absorption coefficient on the angle of incidence of sound waves. The ray approximation is used to determine the sound decay laws for different distributions of wall absorption. It is shown that, in a room with impedance walls, the sound decay is slower than in the conventional reverberation model, in which the wall absorption coefficient is independent of the angle of incidence. The problem is also solved in the wave approximation to determine the decay law for a preset frequency band.

  6. The impact of fraction magnitude knowledge on algebra performance and learning.

    PubMed

    Booth, Julie L; Newton, Kristie J; Twiss-Garrity, Laura K

    2014-02-01

    Knowledge of fractions is thought to be crucial for success with algebra, but empirical evidence supporting this conjecture is just beginning to emerge. In the current study, Algebra 1 students completed magnitude estimation tasks on three scales (0-1 [fractions], 0-1,000,000, and 0-62,571) just before beginning their unit on equation solving. Results indicated that fraction magnitude knowledge, and not whole number knowledge, was especially related to students' pretest knowledge of equation solving and encoding of equation features. Pretest fraction knowledge was also predictive of students' improvement in equation solving and equation encoding skills. Students' placement of unit fractions (e.g., those with a numerator of 1) was not especially useful for predicting algebra performance and learning in this population. Placement of non-unit fractions was more predictive, suggesting that proportional reasoning skills might be an important link between fraction knowledge and learning algebra. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ashwani; Chandramohan, V. P.

    2018-04-01

    A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.

  8. Exact solution of the hidden Markov processes.

    PubMed

    Saakian, David B

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M-1.

  9. Exact solution of the hidden Markov processes

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  10. Generalized Lagrangian Jacobi Gauss collocation method for solving unsteady isothermal gas through a micro-nano porous medium

    NASA Astrophysics Data System (ADS)

    Parand, Kourosh; Latifi, Sobhan; Delkhosh, Mehdi; Moayeri, Mohammad M.

    2018-01-01

    In the present paper, a new method based on the Generalized Lagrangian Jacobi Gauss (GLJG) collocation method is proposed. The nonlinear Kidder equation, which explains unsteady isothermal gas through a micro-nano porous medium, is a second-order two-point boundary value ordinary differential equation on the unbounded interval [0, ∞). Firstly, using the quasilinearization method, the equation is converted to a sequence of linear ordinary differential equations. Then, by using the GLJG collocation method, the problem is reduced to solving a system of algebraic equations. It must be mentioned that this equation is solved without domain truncation and variable changing. A comparison with some numerical solutions made and the obtained results indicate that the presented solution is highly accurate. The important value of the initial slope, y'(0), is obtained as -1.191790649719421734122828603800159364 for η = 0.5. Comparing to the best result obtained so far, it is accurate up to 36 decimal places.

  11. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

    NASA Astrophysics Data System (ADS)

    Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

    2017-11-01

    Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

  12. Instability and sound emission from a flow over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.

    1988-01-01

    The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.

  13. Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces

    NASA Astrophysics Data System (ADS)

    Lhermerout, Romain; Perkin, Susan

    2018-01-01

    Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.

  14. Structure and decays of nuclear three-body systems: The Gamow coupled-channel method in Jacobi coordinates

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Michel, N.; Nazarewicz, W.; Xu, F. R.

    2017-10-01

    Background: Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical open quantum systems. Theories of such states must take into account configuration mixing effects in the presence of strong coupling to the particle continuum space. Purpose: To describe structure and decays of three-body systems, we developed a Gamow coupled-channel (GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the complex-energy Gamow shell model (GSM) against the new framework. Methods: The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is automatically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe the angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which includes bound, scattering, and Gamow states. Results: We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and nucleon-nucleon angular correlations are in good agreement with the GSM results. Conclusions: We have demonstrated that a three-body GSM formalism explicitly constructed in the cluster-orbital shell model coordinates provides results similar to those with a GCC framework expressed in Jacobi coordinates, provided that a large configuration space is employed. Our calculations for A =6 systems and 26O show that nucleon-nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique has many attractive features when applied to bound and unbound states of three-body systems: it is precise, is efficient, and can be extended by introducing a microscopic model of the core.

  15. A new Euler scheme based on harmonic-polygon approach for solving first order ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah

    2017-10-01

    There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.

  16. Multiphysics Object Oriented Simulation Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Multiphysics Object Oriented Simulation Environment (MOOSE) software library developed at Idaho National Laboratory is a tool. MOOSE, like other tools, doesn't actually complete a task. Instead, MOOSE seeks to reduce the effort required to create engineering simulation applications. MOOSE itself is a software library: a blank canvas upon which you write equations and then MOOSE can help you solve them. MOOSE is comparable to a spreadsheet application. A spreadsheet, by itself, doesn't do anything. Only once equations are entered into it will a spreadsheet application compute anything. Such is the same for MOOSE. An engineer or scientist can utilizemore » the equation solvers within MOOSE to solve equations related to their area of study. For instance, a geomechanical scientist can input equations related to water flow in underground reservoirs and MOOSE can solve those equations to give the scientist an idea of how water could move over time. An engineer might input equations related to the forces in steel beams in order to understand the load bearing capacity of a bridge. Because MOOSE is a blank canvas it can be useful in many scientific and engineering pursuits.« less

  17. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

  18. Small-x asymptotics of the quark helicity distribution: Analytic results

    DOE PAGES

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2017-06-15

    In this Letter, we analytically solve the evolution equations for the small-x asymptotic behavior of the (flavor singlet) quark helicity distribution in the large- N c limit. Here, these evolution equations form a set of coupled integro-differential equations, which previously could only be solved numerically. This approximate numerical solution, however, revealed simplifying properties of the small-x asymptotics, which we exploit here to obtain an analytic solution.

  19. Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes

    ERIC Educational Resources Information Center

    Gauthier, N.

    2004-01-01

    An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…

  20. Computation of rotor-stator interaction using the Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Chen, Jen-Ping

    1995-01-01

    The numerical scheme presented belongs to a family of codes known as UNCLE (UNsteady Computation of fieLd Equations) as reported by Whitfield (1995), that is being used to solve problems in a variety of areas including compressible and incompressible flows. This derivation is specifically developed for general unsteady multi-blade-row turbomachinery problems. The scheme solves the Reynolds-averaged N-S equations with the Baldwin-Lomax turbulence model.

  1. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2012-09-30

    has been developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a...solution of the eikonal equation lies in the eikonal (and acoustic travel time) being a multi-valued function of position. A number of computational...approaches to solve the eikonal equation without ray tracing have been developed in mathematical and seismological communities (Vidale, 1990; Sava and

  2. Dynamics and Stability of Acoustic Wavefronts in the Ocean

    DTIC Science & Technology

    2011-09-01

    developed to solve the eikonal equation and calculate wavefront and ray trajectory displacements, which are required to be small over a correlation length...with a direct modeling of acoustic wavefronts in the ocean through numerical solution of the eikonal equation lies in the eikonal (and acoustic...travel time) being a multi-valued function of position. A number of computational approaches to solve the eikonal equation without ray tracing have been

  3. Solvent dynamics and electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Rasaiah, Jayendran C.; Zhu, Jianjun

    1994-02-01

    Recent experimental and theoretical studies of the influence of solvent dynamics on electron transfer (ET) reactions are discussed. It is seen that the survival probabilities of the reactants and products can be obtained as the solution to an integral equation using experimental or simulation data on the solvation dynamics. The theory developed for ET between thermally equilibrated reactants in solution, in which the ligand vibrations were treated classically, is extended to include quantum effects on the inner-shell ligand vibration and electron transfer from a nonequilibrium initial state prepared, for example, by laser excitation. This leads to a slight modification of the integral equation which is easily solved on a personal computer to provide results that can be directly compared with experiment. Analytic approximations to the solutions of the integral equation, ranging from a single exponential to multiexponential time dependence of the survival probabilities are discussed. The rate constant for the single exponential decay of the reactants interpolates between the thermal equilibrium rate constant kie (that is independent of solvent dynamics) and a diffusion controlled rate constant kid (determined by solvent dynamics) and also between the wide (A=0) and narrow (A=1) window limits dominated by inner-sphere ligand vibration and outer-sphere solvent reorganization respectively. The explicit dependence of the integral equation solutions on solvation dynamics S(t), the free energy of reaction ΔG0, the total reorganization energy λ and its partitioning between ligand vibration λq and solvent polarization fluctuations λ0, and the nature of the initial state should be useful in the analysis and design of ET experiments in different solvents.

  4. Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Luo, Xu-Dan; Musslimani, Ziad H.

    2018-01-01

    In 2013, a new nonlocal symmetry reduction of the well-known AKNS (an integrable system of partial differential equations, introduced by and named after Mark J. Ablowitz, David J. Kaup, and Alan C. Newell et al. (1974)) scattering problem was found. It was shown to give rise to a new nonlocal PT symmetric and integrable Hamiltonian nonlinear Schrödinger (NLS) equation. Subsequently, the inverse scattering transform was constructed for the case of rapidly decaying initial data and a family of spatially localized, time periodic one-soliton solutions was found. In this paper, the inverse scattering transform for the nonlocal NLS equation with nonzero boundary conditions at infinity is presented in four different cases when the data at infinity have constant amplitudes. The direct and inverse scattering problems are analyzed. Specifically, the direct problem is formulated, the analytic properties of the eigenfunctions and scattering data and their symmetries are obtained. The inverse scattering problem, which arises from a novel nonlocal system, is developed via a left-right Riemann-Hilbert problem in terms of a suitable uniformization variable and the time dependence of the scattering data is obtained. This leads to a method to linearize/solve the Cauchy problem. Pure soliton solutions are discussed, and explicit 1-soliton solution and two 2-soliton solutions are provided for three of the four different cases corresponding to two different signs of nonlinearity and two different values of the phase difference between plus and minus infinity. In another case, there are no solitons.

  5. Pattern of mathematic representation ability in magnetic electricity problem

    NASA Astrophysics Data System (ADS)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  6. Unmitigated numerical solution to the diffraction term in the parabolic nonlinear ultrasound wave equation.

    PubMed

    Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan

    2013-09-01

    Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.

  7. The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph W.

    2001-04-01

    The Parker-Sochacki Method--A Powerful New Method for Solving Systems of Differential Equations Joseph W. Rudmin (Physics Dept, James Madison University) A new system of solving systems of differential equations will be presented, which has been developed by J. Edgar Parker and James Sochacki, of the James Madison University Mathematics Department. The method produces MacClaurin Series solutions to systems of differential equations, with the coefficients in either algebraic or numerical form. The method yields high-degree solutions: 20th degree is easily obtainable. It is conceptually simple, fast, and extremely general. It has been applied to over a hundred systems of differential equations, some of which were previously unsolved, and has yet to fail to solve any system for which the MacClaurin series converges. The method is non-recursive: each coefficient in the series is calculated just once, in closed form, and its accuracy is limited only by the digital accuracy of the computer. Although the original differential equations may include any mathematical functions, the computational method includes ONLY the operations of addition, subtraction, and multiplication. Furthermore, it is perfectly suited to parallel -processing computer languages. Those who learn this system will never use Runge-Kutta or predictor-corrector methods again. Examples will be presented, including the classical many-body problem.

  8. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.

    2015-07-01

    In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.

  9. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  10. Reduction of the two dimensional stationary Navier-Stokes problem to a sequence of Fredholm integral equations of the second kind

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.

    1981-01-01

    Present approaches to solving the stationary Navier-Stokes equations are of limited value; however, there does exist an equivalent representation of the problem that has significant potential in solving such problems. This is due to the fact that the equivalent representation consists of a sequence of Fredholm integral equations of the second kind, and the solving of this type of problem is very well developed. For the problem in this form, there is an excellent chance to also determine explicit error estimates, since bounded, rather than unbounded, linear operators are dealt with.

  11. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay Derivas, E.

    1975-01-01

    A new iterative scheme for solving boundary value problems is presented. It consists of the introduction of an artificial time dependence into a modified version of the system of equations. Then explicit forward integrations in time are followed by explicit integrations backwards in time. The method converges under much more general conditions than schemes based in forward time integrations (false transient schemes). In particular it can attain a steady state solution of an elliptical system of equations even if the solution is unstable, in which case other iterative schemes fail to converge. The simplicity of its use makes it attractive for solving large systems of nonlinear equations.

  12. A family of conjugate gradient methods for large-scale nonlinear equations.

    PubMed

    Feng, Dexiang; Sun, Min; Wang, Xueyong

    2017-01-01

    In this paper, we present a family of conjugate gradient projection methods for solving large-scale nonlinear equations. At each iteration, it needs low storage and the subproblem can be easily solved. Compared with the existing solution methods for solving the problem, its global convergence is established without the restriction of the Lipschitz continuity on the underlying mapping. Preliminary numerical results are reported to show the efficiency of the proposed method.

  13. Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method

    NASA Astrophysics Data System (ADS)

    Arafa, A. A. M.; Rida, S. Z.; Mohammadein, A. A.; Ali, H. M.

    2013-06-01

    In this paper, we use Mittag—Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.

  14. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  15. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  16. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  17. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    NASA Technical Reports Server (NTRS)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  18. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Anirban; Gupta, Aritra, E-mail: anirbanbiswas@hri.res.in, E-mail: aritra@hri.res.in

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle,more » then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1){sub B−L} model. The U(1){sub B−L} model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y . Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.« less

  19. Calculation of momentum distribution function of a non-thermal fermionic dark matter

    NASA Astrophysics Data System (ADS)

    Biswas, Anirban; Gupta, Aritra

    2017-03-01

    The most widely studied scenario in dark matter phenomenology is the thermal WIMP scenario. Inspite of numerous efforts to detect WIMP, till now we have no direct evidence for it. A possible explanation for this non-observation of dark matter could be because of its very feeble interaction strength and hence, failing to thermalise with the rest of the cosmic soup. In other words, the dark matter might be of non-thermal origin where the relic density is obtained by the so-called freeze-in mechanism. Furthermore, if this non-thermal dark matter is itself produced substantially from the decay of another non-thermal mother particle, then their distribution functions may differ in both size and shape from the usual equilibrium distribution function. In this work, we have studied such a non-thermal (fermionic) dark matter scenario in the light of a new type of U(1)B-L model. The U(1)B-L model is interesting, since, besides being anomaly free, it can give rise to neutrino mass by Type II see-saw mechanism. Moreover, as we will show, it can accommodate a non-thermal fermionic dark matter as well. Starting from the collision terms, we have calculated the momentum distribution function for the dark matter by solving a coupled system of Boltzmann equations. We then used it to calculate the final relic abundance, as well as other relevant physical quantities. We have also compared our result with that obtained from solving the usual Boltzmann (or rate) equations directly in terms of comoving number density, Y. Our findings suggest that the latter approximation is valid only in cases where the system under study is close to equilibrium, and hence should be used with caution.

  20. Nonlinear Fourier algorithm applied to solving equations of gravitational gas dynamics

    NASA Technical Reports Server (NTRS)

    Kolosov, B. I.

    1979-01-01

    Two dimensional gas flow problems were reduced to an approximating system of common differential equations, which were solved by a standard procedure of the Runge-Kutta type. A theorem of the existence of stationary conical shock waves with the cone vertex in the gravitating center was proved.

  1. Elementary Algebra Connections to Precalculus

    ERIC Educational Resources Information Center

    Lopez-Boada, Roberto; Daire, Sandra Arguelles

    2013-01-01

    This article examines the attitudes of some precalculus students to solve trigonometric and logarithmic equations and systems using the concepts of elementary algebra. With the goal of enticing the students to search for and use connections among mathematical topics, they are asked to solve equations or systems specifically designed to allow…

  2. Will Learning to Solve One-Step Equations Pose a Challenge to 8th Grade Students?

    ERIC Educational Resources Information Center

    Ngu, Bing Hiong; Phan, Huy P.

    2017-01-01

    Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. "Element interactivity" arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features…

  3. Alternative Representations for Algebraic Problem Solving: When Are Graphs Better than Equations?

    ERIC Educational Resources Information Center

    Mielicki, Marta K.; Wiley, Jennifer

    2016-01-01

    Successful algebraic problem solving entails adaptability of solution methods using different representations. Prior research has suggested that students are more likely to prefer symbolic solution methods (equations) over graphical ones, even when graphical methods should be more efficient. However, this research has not tested how representation…

  4. Ten-Year-Old Students Solving Linear Equations

    ERIC Educational Resources Information Center

    Brizuela, Barbara; Schliemann, Analucia

    2004-01-01

    In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

  5. The Use of Transformations in Solving Equations

    ERIC Educational Resources Information Center

    Libeskind, Shlomo

    2010-01-01

    Many workshops and meetings with the US high school mathematics teachers revealed a lack of familiarity with the use of transformations in solving equations and problems related to the roots of polynomials. This note describes two transformational approaches to the derivation of the quadratic formula as well as transformational approaches to…

  6. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

    EPA Science Inventory

    Noniterative, unconditionally stable numerical techniques for solving condensational and
    dissolutional growth equations are given. Growth solutions are compared to Gear-code solutions for
    three cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

  7. Using Computer Symbolic Algebra to Solve Differential Equations.

    ERIC Educational Resources Information Center

    Mathews, John H.

    1989-01-01

    This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

  8. Thermal Non-Equilibrium Flows in Three Space Dimensions

    NASA Astrophysics Data System (ADS)

    Zeng, Yanni

    2016-01-01

    We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green's function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green's function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

  9. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-07-01

    The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.

  10. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    PubMed

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  11. Einstein gravity with torsion induced by the scalar field

    NASA Astrophysics Data System (ADS)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  12. New Galerkin operational matrices for solving Lane-Emden type equations

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.

    2016-04-01

    Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.

  13. Decay of Solutions of the Wave Equation in the Kerr Geometry

    NASA Astrophysics Data System (ADS)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2006-06-01

    We consider the Cauchy problem for the massless scalar wave equation in the Kerr geometry for smooth initial data compactly supported outside the event horizon. We prove that the solutions decay in time in L ∞ loc. The proof is based on a representation of the solution as an infinite sum over the angular momentum modes, each of which is an integral of the energy variable ω on the real line. This integral representation involves solutions of the radial and angular ODEs which arise in the separation of variables.

  14. Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.

    PubMed

    Abbasi, Mahdi

    2014-01-01

    Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.

  15. Development of a fractional-step method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    NASA Technical Reports Server (NTRS)

    Rosenfeld, Moshe; Kwak, Dochan; Vinokur, Marcel

    1992-01-01

    A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases.

  16. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  17. A functional equation for the specular reflection of rays.

    PubMed

    Le Bot, A

    2002-10-01

    This paper aims to generalize the "radiosity method" when applied to specular reflection. Within the field of thermics, the radiosity method is also called the "standard procedure." The integral equation for incident energy, which is usually derived for diffuse reflection, is replaced by a more appropriate functional equation. The latter is used to solve some specific problems and it is shown that all the classical features of specular reflection, for example, the existence of image sources, are embodied within this equation. This equation can be solved with the ray-tracing technique, despite the implemented mathematics being quite different. Several interesting features of the energy field are presented.

  18. Implicit Runge-Kutta Methods with Explicit Internal Stages

    NASA Astrophysics Data System (ADS)

    Skvortsov, L. M.

    2018-03-01

    The main computational costs of implicit Runge-Kutta methods are caused by solving a system of algebraic equations at every step. By introducing explicit stages, it is possible to increase the stage (or pseudo-stage) order of the method, which makes it possible to increase the accuracy and avoid reducing the order in solving stiff problems, without additional costs of solving algebraic equations. The paper presents implicit methods with an explicit first stage and one or two explicit internal stages. The results of solving test problems are compared with similar methods having no explicit internal stages.

  19. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    NASA Astrophysics Data System (ADS)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  20. A new Jacobi spectral collocation method for solving 1+1 fractional Schrödinger equations and fractional coupled Schrödinger systems

    NASA Astrophysics Data System (ADS)

    Bhrawy, A. H.; Doha, E. H.; Ezz-Eldien, S. S.; Van Gorder, Robert A.

    2014-12-01

    The Jacobi spectral collocation method (JSCM) is constructed and used in combination with the operational matrix of fractional derivatives (described in the Caputo sense) for the numerical solution of the time-fractional Schrödinger equation (T-FSE) and the space-fractional Schrödinger equation (S-FSE). The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations, which greatly simplifies the solution process. In addition, the presented approach is also applied to solve the time-fractional coupled Schrödinger system (T-FCSS). In order to demonstrate the validity and accuracy of the numerical scheme proposed, several numerical examples with their approximate solutions are presented with comparisons between our numerical results and those obtained by other methods.

  1. Global, decaying solutions of a focusing energy-critical heat equation in R4

    NASA Astrophysics Data System (ADS)

    Gustafson, Stephen; Roxanas, Dimitrios

    2018-05-01

    We study solutions of the focusing energy-critical nonlinear heat equation ut = Δu - | u|2 u in R4. We show that solutions emanating from initial data with energy and H˙1-norm below those of the stationary solution W are global and decay to zero, via the "concentration-compactness plus rigidity" strategy of Kenig-Merle [33,34]. First, global such solutions are shown to dissipate to zero, using a refinement of the small data theory and the L2-dissipation relation. Finite-time blow-up is then ruled out using the backwards-uniqueness of Escauriaza-Seregin-Sverak [17,18] in an argument similar to that of Kenig-Koch [32] for the Navier-Stokes equations.

  2. Global existence and large time asymptotic behavior of strong solutions to the Cauchy problem of 2D density-dependent Navier–Stokes equations with vacuum

    NASA Astrophysics Data System (ADS)

    Lü, Boqiang; Shi, Xiaoding; Zhong, Xin

    2018-06-01

    We are concerned with the Cauchy problem of the two-dimensional (2D) nonhomogeneous incompressible Navier–Stokes equations with vacuum as far-field density. It is proved that if the initial density decays not too slow at infinity, the 2D Cauchy problem of the density-dependent Navier–Stokes equations on the whole space admits a unique global strong solution. Note that the initial data can be arbitrarily large and the initial density can contain vacuum states and even have compact support. Furthermore, we also obtain the large time decay rates of the spatial gradients of the velocity and the pressure, which are the same as those of the homogeneous case.

  3. Numerical Simulations of Homogeneous Turbulence Using Lagrangian-Averaged Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Mohseni, Kamran; Shkoller, Steve; Kosovic, Branko; Marsden, Jerrold E.; Carati, Daniele; Wray, Alan; Rogallo, Robert

    2000-01-01

    The Lagrangian-averaged Navier-Stokes (LANS) equations are numerically evaluated as a turbulence closure. They are derived from a novel Lagrangian averaging procedure on the space of all volume-preserving maps and can be viewed as a numerical algorithm which removes the energy content from the small scales (smaller than some a priori fixed spatial scale alpha) using a dispersive rather than dissipative mechanism, thus maintaining the crucial features of the large scale flow. We examine the modeling capabilities of the LANS equations for decaying homogeneous turbulence, ascertain their ability to track the energy spectrum of fully resolved direct numerical simulations (DNS), compare the relative energy decay rates, and compare LANS with well-accepted large eddy simulation (LES) models.

  4. Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1

    NASA Astrophysics Data System (ADS)

    Munhoven, G.

    2013-08-01

    The total alkalinity-pH equation, which relates total alkalinity and pH for a given set of total concentrations of the acid-base systems that contribute to total alkalinity in a given water sample, is reviewed and its mathematical properties established. We prove that the equation function is strictly monotone and always has exactly one positive root. Different commonly used approximations are discussed and compared. An original method to derive appropriate initial values for the iterative solution of the cubic polynomial equation based upon carbonate-borate-alkalinity is presented. We then review different methods that have been used to solve the total alkalinity-pH equation, with a main focus on biogeochemical models. The shortcomings and limitations of these methods are made out and discussed. We then present two variants of a new, robust and universally convergent algorithm to solve the total alkalinity-pH equation. This algorithm does not require any a priori knowledge of the solution. SolveSAPHE (Solver Suite for Alkalinity-PH Equations) provides reference implementations of several variants of the new algorithm in Fortran 90, together with new implementations of other, previously published solvers. The new iterative procedure is shown to converge from any starting value to the physical solution. The extra computational cost for the convergence security is only 10-15% compared to the fastest algorithm in our test series.

  5. Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1985-01-01

    The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.

  6. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  7. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    PubMed Central

    Motsa, S. S.; Magagula, V. M.; Sibanda, P.

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature. PMID:25254252

  8. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    PubMed

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  9. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  10. Algorithm development for Maxwell's equations for computational electromagnetism

    NASA Technical Reports Server (NTRS)

    Goorjian, Peter M.

    1990-01-01

    A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.

  11. The application of MINIQUASI to thermal program boundary and initial value problems

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility of applying the solution techniques of Miniquasi to the set of equations which govern a thermoregulatory model is investigated. For solving nonlinear equations and/or boundary conditions, a Taylor Series expansion is required for linearization of both equations and boundary conditions. The solutions are iterative and in each iteration, a problem like the linear case is solved. It is shown that Miniquasi cannot be applied to the thermoregulatory model as originally planned.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Edmond

    Solving sparse problems is at the core of many DOE computational science applications. We focus on the challenge of developing sparse algorithms that can fully exploit the parallelism in extreme-scale computing systems, in particular systems with massive numbers of cores per node. Our approach is to express a sparse matrix factorization as a large number of bilinear constraint equations, and then solving these equations via an asynchronous iterative method. The unknowns in these equations are the matrix entries of the factorization that is desired.

  13. Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, J. F.; Conesa, M.; Alhama, I.

    2016-11-01

    Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.

  14. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  15. Numerical solution to generalized Burgers'-Fisher equation using Exp-function method hybridized with heuristic computation.

    PubMed

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.

  16. Numerical Solution to Generalized Burgers'-Fisher Equation Using Exp-Function Method Hybridized with Heuristic Computation

    PubMed Central

    Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul

    2015-01-01

    In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858

  17. The study of the Boltzmann equation of solid-gas two-phase flow with three-dimensional BGK model

    NASA Astrophysics Data System (ADS)

    Liu, Chang-jiang; Pang, Song; Xu, Qiang; He, Ling; Yang, Shao-peng; Qing, Yun-jie

    2018-06-01

    The motion of many solid-gas two-phase flows can be described by the Boltzmann equation. In order to simplify the Boltzmann equation, the convective-diffusion term is reserved and the collision term is replaced by the three-dimensional Bharnagar-Gross-Krook (BGK) model. Then the simplified Boltzmann equation is solved by homotopy perturbation method (HPM), and its approximate analytical solution is obtained. Through the analyzing, it is proved that the analytical solution satisfies all the constraint conditions, and its formation is in accord with the formation of the solution that is obtained by traditional Chapman-Enskog method, and the solving process of HPM is much more simple and convenient. This preliminarily shows the effectiveness and rapidness of HPM to solve the Boltzmann equation. The results obtained herein provide some theoretical basis for the further study of dynamic model of solid-gas two-phase flows, such as the sturzstrom of high-speed distant landslide caused by microseism and the sand storm caused by strong breeze.

  18. Numerical solution of the quantum Lenard-Balescu equation for a non-degenerate one-component plasma

    DOE PAGES

    Scullard, Christian R.; Belt, Andrew P.; Fennell, Susan C.; ...

    2016-09-01

    We present a numerical solution of the quantum Lenard-Balescu equation using a spectral method, namely an expansion in Laguerre polynomials. This method exactly conserves both particles and kinetic energy and facilitates the integration over the dielectric function. To demonstrate the method, we solve the equilibration problem for a spatially homogeneous one-component plasma with various initial conditions. Unlike the more usual Landau/Fokker-Planck system, this method requires no input Coulomb logarithm; the logarithmic terms in the collision integral arise naturally from the equation along with the non-logarithmic order-unity terms. The spectral method can also be used to solve the Landau equation andmore » a quantum version of the Landau equation in which the integration over the wavenumber requires only a lower cutoff. We solve these problems as well and compare them with the full Lenard-Balescu solution in the weak-coupling limit. Finally, we discuss the possible generalization of this method to include spatial inhomogeneity and velocity anisotropy.« less

  19. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  20. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  1. Two-dimensional computer simulation of EMVJ and grating solar cells under AMO illumination

    NASA Technical Reports Server (NTRS)

    Gray, J. L.; Schwartz, R. J.

    1984-01-01

    A computer program, SCAP2D (Solar Cell Analysis Program in 2-Dimensions), is used to evaluate the Etched Multiple Vertical Junction (EMVJ) and grating solar cells. The aim is to demonstrate how SCAP2D can be used to evaluate cell designs. The cell designs studied are by no means optimal designs. The SCAP2D program solves the three coupled, nonlinear partial differential equations, Poisson's Equation and the hole and electron continuity equations, simultaneously in two-dimensions using finite differences to discretize the equations and Newton's Method to linearize them. The variables solved for are the electrostatic potential and the hole and electron concentrations. Each linear system of equations is solved directly by Gaussian Elimination. Convergence of the Newton Iteration is assumed when the largest correction to the electrostatic potential or hole or electron quasi-potential is less than some predetermined error. A typical problem involves 2000 nodes with a Jacobi matrix of order 6000 and a bandwidth of 243.

  2. Computational complexities and storage requirements of some Riccati equation solvers

    NASA Technical Reports Server (NTRS)

    Utku, Senol; Garba, John A.; Ramesh, A. V.

    1989-01-01

    The linear optimal control problem of an nth-order time-invariant dynamic system with a quadratic performance functional is usually solved by the Hamilton-Jacobi approach. This leads to the solution of the differential matrix Riccati equation with a terminal condition. The bulk of the computation for the optimal control problem is related to the solution of this equation. There are various algorithms in the literature for solving the matrix Riccati equation. However, computational complexities and storage requirements as a function of numbers of state variables, control variables, and sensors are not available for all these algorithms. In this work, the computational complexities and storage requirements for some of these algorithms are given. These expressions show the immensity of the computational requirements of the algorithms in solving the Riccati equation for large-order systems such as the control of highly flexible space structures. The expressions are also needed to compute the speedup and efficiency of any implementation of these algorithms on concurrent machines.

  3. Multigrid calculation of three-dimensional turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1989-01-01

    Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

  4. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    PubMed

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  5. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the pressure field. Turbulent kinetic energy of the combustion cloud decayed due to enstrophy overline{ω 2} and dilatation overline{Δ 2}.

  6. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  7. A Simple Derivation of Kepler's Laws without Solving Differential Equations

    ERIC Educational Resources Information Center

    Provost, J.-P.; Bracco, C.

    2009-01-01

    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…

  8. The Multifaceted Variable Approach: Selection of Method in Solving Simple Linear Equations

    ERIC Educational Resources Information Center

    Tahir, Salma; Cavanagh, Michael

    2010-01-01

    This paper presents a comparison of the solution strategies used by two groups of Year 8 students as they solved linear equations. The experimental group studied algebra following a multifaceted variable approach, while the comparison group used a traditional approach. Students in the experimental group employed different solution strategies,…

  9. Modifying a numerical algorithm for solving the matrix equation X + AX T B = C

    NASA Astrophysics Data System (ADS)

    Vorontsov, Yu. O.

    2013-06-01

    Certain modifications are proposed for a numerical algorithm solving the matrix equation X + AX T B = C. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from O( n 4) to O( n 3) arithmetic operations.

  10. Solving rational matrix equations in the state space with applications to computer-aided control-system design

    NASA Technical Reports Server (NTRS)

    Packard, A. K.; Sastry, S. S.

    1986-01-01

    A method of solving a class of linear matrix equations over various rings is proposed, using results from linear geometric control theory. An algorithm, successfully implemented, is presented, along with non-trivial numerical examples. Applications of the method to the algebraic control system design methodology are discussed.

  11. Secondary Pre-Service Teachers' Algebraic Reasoning about Linear Equation Solving

    ERIC Educational Resources Information Center

    Alvey, Christina; Hudson, Rick A.; Newton, Jill; Males, Lorraine M.

    2016-01-01

    This study analyzes the responses of 12 secondary pre-service teachers on two tasks focused on reasoning when solving linear equations. By documenting the choices PSTs made while engaging in these tasks, we gain insight into how new teachers work mathematically, reason algebraically, communicate their thinking, and make pedagogical decisions. We…

  12. Synthesizing Strategies Creatively: Solving Linear Equations

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.; Tuba, Imre

    2015-01-01

    New strategies can ignite teachers' imagination to create new lessons or adapt lessons created by others. In this article, the authors present the experience of an algebra teacher and his students solving linear and literal equations and explain how the use of ideas found in past NCTM journals helped bring this lesson to life. The…

  13. Using 4th order Runge-Kutta method for solving a twisted Skyrme string equation

    NASA Astrophysics Data System (ADS)

    Hadi, Miftachul; Anderson, Malcolm; Husein, Andri

    2016-03-01

    We study numerical solution, especially using 4th order Runge-Kutta method, for solving a twisted Skyrme string equation. We find numerically that the value of minimum energy per unit length of vortex solution for a twisted Skyrmion string is 20.37 × 1060 eV/m.

  14. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  15. Solving the hypersingular boundary integral equation in three-dimensional acoustics using a regularization relationship.

    PubMed

    Yan, Zai You; Hung, Kin Chew; Zheng, Hui

    2003-05-01

    Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.

  16. Some observations on a new numerical method for solving Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Kumar, A.

    1981-01-01

    An explicit-implicit technique for solving Navier-Stokes equations is described which, is much less complex than other implicit methods. It is used to solve a complex, two-dimensional, steady-state, supersonic-flow problem. The computational efficiency of the method and the quality of the solution obtained from it at high Courant-Friedrich-Lewy (CFL) numbers are discussed. Modifications are discussed and certain observations are made about the method which may be helpful in using it successfully.

  17. A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B.B.; Ertekin, R.C.; College of Shipbuilding Engineering, Harbin Engineering University, 150001 Harbin

    2015-02-15

    This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green–Naghdi (GN) equations and the Irrotational Green–Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green–Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at differentmore » levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.« less

  18. A comparative study of diffraction of shallow-water waves by high-level IGN and GN equations

    NASA Astrophysics Data System (ADS)

    Zhao, B. B.; Ertekin, R. C.; Duan, W. Y.

    2015-02-01

    This work is on the nonlinear diffraction analysis of shallow-water waves, impinging on submerged obstacles, by two related theories, namely the classical Green-Naghdi (GN) equations and the Irrotational Green-Naghdi (IGN) equations, both sets of equations being at high levels and derived for incompressible and inviscid flows. Recently, the high-level Green-Naghdi equations have been applied to some wave transformation problems. The high-level IGN equations have also been used in the last decade to study certain wave propagation problems. However, past works on these theories used different numerical methods to solve these nonlinear and unsteady sets of differential equations and at different levels. Moreover, different physical problems have been solved in the past. Therefore, it has not been possible to understand the differences produced by these two sets of theories and their range of applicability so far. We are thus motivated to make a direct comparison of the results produced by these theories by use of the same numerical method to solve physically the same wave diffraction problems. We focus on comparing these two theories by using similar codes; only the equations used are different but other parts of the codes, such as the wave-maker, damping zone, discretion method, matrix solver, etc., are exactly the same. This way, we eliminate many potential sources of differences that could be produced by the solution of different equations. The physical problems include the presence of various submerged obstacles that can be used for example as breakwaters or to represent the continental shelf. A numerical wave tank is created by placing a wavemaker on one end and a wave absorbing beach on the other. The nonlinear and unsteady sets of differential equations are solved by the finite-difference method. The results are compared with different equations as well as with the available experimental data.

  19. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1994-01-01

    Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.

  20. The use of Galerkin finite-element methods to solve mass-transport equations

    USGS Publications Warehouse

    Grove, David B.

    1977-01-01

    The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)

  1. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  2. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  3. Vortex breakdown simulation - A circumspect study of the steady, laminar, axisymmetric model

    NASA Technical Reports Server (NTRS)

    Salas, M. D.; Kuruvila, G.

    1989-01-01

    The incompressible axisymmetric steady Navier-Stokes equations are written using the streamfunction-vorticity formulation. The resulting equations are discretized using a second-order central-difference scheme. The discretized equations are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers (based on vortex core radius) 100-1800 and swirl parameter 0.9-1.1. The effects of inflow boundary conditions, the location of farfield and outflow boundaries, and mesh refinement are examined. Finally, the stability of the steady solutions is investigated by solving the time-dependent equations.

  4. Self-consistent-field perturbation theory for the Schröautdinger equation

    NASA Astrophysics Data System (ADS)

    Goodson, David Z.

    1997-06-01

    A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.

  5. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  6. A new multigroup method for cross-sections that vary rapidly in energy

    DOE PAGES

    Haut, Terry Scot; Ahrens, Cory D.; Jonko, Alexandra; ...

    2016-11-04

    Here, we present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods.

  7. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  8. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  9. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

    NASA Astrophysics Data System (ADS)

    Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

    2018-03-01

    In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

  10. Code Development of Three-Dimensional General Relativistic Hydrodynamics with AMR (Adaptive-Mesh Refinement) and Results from Special and General Relativistic Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dönmez, Orhan

    2004-09-01

    In this paper, the general procedure to solve the general relativistic hydrodynamical (GRH) equations with adaptive-mesh refinement (AMR) is presented. In order to achieve, the GRH equations are written in the conservation form to exploit their hyperbolic character. The numerical solutions of GRH equations are obtained by high resolution shock Capturing schemes (HRSC), specifically designed to solve nonlinear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. The Marquina fluxes with MUSCL left and right states are used to solve GRH equations. First, different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations are carried out to verify the second-order convergence of the code in one, two and three dimensions. Results from uniform and AMR grid are compared. It is found that adaptive grid does a better job when the number of resolution is increased. Second, the GRH equations are tested using two different test problems which are Geodesic flow and Circular motion of particle In order to do this, the flux part of GRH equations is coupled with source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time.

  11. Solution Methods for Certain Evolution Equations

    NASA Astrophysics Data System (ADS)

    Vega-Guzman, Jose Manuel

    Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.

  12. Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2018-04-01

    In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.

  13. A method of solving simple harmonic oscillator Schroedinger equation

    NASA Technical Reports Server (NTRS)

    Maury, Juan Carlos F.

    1995-01-01

    A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

  14. Two-dimensional integrating matrices on rectangular grids. [solving differential equations associated with rotating structures

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1981-01-01

    The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.

  15. A probabilistic approach to radiative energy loss calculations for optically thick atmospheres - Hydrogen lines and continua

    NASA Technical Reports Server (NTRS)

    Canfield, R. C.; Ricchiazzi, P. J.

    1980-01-01

    An approximate probabilistic radiative transfer equation and the statistical equilibrium equations are simultaneously solved for a model hydrogen atom consisting of three bound levels and ionization continuum. The transfer equation for L-alpha, L-beta, H-alpha, and the Lyman continuum is explicitly solved assuming complete redistribution. The accuracy of this approach is tested by comparing source functions and radiative loss rates to values obtained with a method that solves the exact transfer equation. Two recent model solar-flare chromospheres are used for this test. It is shown that for the test atmospheres the probabilistic method gives values of the radiative loss rate that are characteristically good to a factor of 2. The advantage of this probabilistic approach is that it retains a description of the dominant physical processes of radiative transfer in the complete redistribution case, yet it achieves a major reduction in computational requirements.

  16. Online gaming for learning optimal team strategies in real time

    NASA Astrophysics Data System (ADS)

    Hudas, Gregory; Lewis, F. L.; Vamvoudakis, K. G.

    2010-04-01

    This paper first presents an overall view for dynamical decision-making in teams, both cooperative and competitive. Strategies for team decision problems, including optimal control, zero-sum 2-player games (H-infinity control) and so on are normally solved for off-line by solving associated matrix equations such as the Riccati equation. However, using that approach, players cannot change their objectives online in real time without calling for a completely new off-line solution for the new strategies. Therefore, in this paper we give a method for learning optimal team strategies online in real time as team dynamical play unfolds. In the linear quadratic regulator case, for instance, the method learns the Riccati equation solution online without ever solving the Riccati equation. This allows for truly dynamical team decisions where objective functions can change in real time and the system dynamics can be time-varying.

  17. Numerical Modeling of Flow Distribution in Micro-Fluidics Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok; Cole, Helen; Chen, C. P.

    2005-01-01

    This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.

  18. Homotopy perturbation method with Laplace Transform (LT-HPM) for solving Lane-Emden type differential equations (LETDEs).

    PubMed

    Tripathi, Rajnee; Mishra, Hradyesh Kumar

    2016-01-01

    In this communication, we describe the Homotopy Perturbation Method with Laplace Transform (LT-HPM), which is used to solve the Lane-Emden type differential equations. It's very difficult to solve numerically the Lane-Emden types of the differential equation. Here we implemented this method for two linear homogeneous, two linear nonhomogeneous, and four nonlinear homogeneous Lane-Emden type differential equations and use their appropriate comparisons with exact solutions. In the current study, some examples are better than other existing methods with their nearer results in the form of power series. The Laplace transform used to accelerate the convergence of power series and the results are shown in the tables and graphs which have good agreement with the other existing method in the literature. The results show that LT-HPM is very effective and easy to implement.

  19. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    PubMed

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  20. Long-time dynamics of Rouse-Zimm polymers in dilute solutions with hydrodynamic memory.

    PubMed

    Lisy, V; Tothova, J; Zatovsky, A V

    2004-12-01

    The dynamics of flexible polymers in dilute solutions is studied taking into account the hydrodynamic memory, as a consequence of fluid inertia. As distinct from the Rouse-Zimm (RZ) theory, the Boussinesq friction force acts on the monomers (beads) instead of the Stokes force, and the motion of the solvent is governed by the nonstationary Navier-Stokes equations. The obtained generalized RZ equation is solved approximately using the preaveraging of the Oseen tensor. It is shown that the time correlation functions describing the polymer motion essentially differ from those in the RZ model. The mean-square displacement (MSD) of the polymer coil is at short times approximately t(2) (instead of approximately t). At long times the MSD contains additional (to the Einstein term) contributions, the leading of which is approximately t. The relaxation of the internal normal modes of the polymer differs from the traditional exponential decay. It is displayed in the long-time tails of their correlation functions, the longest lived being approximately t(-3/2) in the Rouse limit and t(-5/2) in the Zimm case, when the hydrodynamic interaction is strong. It is discussed that the found peculiarities, in particular, an effectively slower diffusion of the polymer coil, should be observable in dynamic scattering experiments. (c) 2004 American Institute of Physics

  1. Characterization of anomalous relaxation using the time-fractional Bloch equation and multiple echo T2 *-weighted magnetic resonance imaging at 7 T.

    PubMed

    Qin, Shanlin; Liu, Fawang; Turner, Ian W; Yu, Qiang; Yang, Qianqian; Vegh, Viktor

    2017-04-01

    To study the utility of fractional calculus in modeling gradient-recalled echo MRI signal decay in the normal human brain. We solved analytically the extended time-fractional Bloch equations resulting in five model parameters, namely, the amplitude, relaxation rate, order of the time-fractional derivative, frequency shift, and constant offset. Voxel-level temporal fitting of the MRI signal was performed using the classical monoexponential model, a previously developed anomalous relaxation model, and using our extended time-fractional relaxation model. Nine brain regions segmented from multiple echo gradient-recalled echo 7 Tesla MRI data acquired from five participants were then used to investigate the characteristics of the extended time-fractional model parameters. We found that the extended time-fractional model is able to fit the experimental data with smaller mean squared error than the classical monoexponential relaxation model and the anomalous relaxation model, which do not account for frequency shift. We were able to fit multiple echo time MRI data with high accuracy using the developed model. Parameters of the model likely capture information on microstructural and susceptibility-induced changes in the human brain. Magn Reson Med 77:1485-1494, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Modeling of ultrashort pulsed laser irradiation in the cornea based on parabolic and hyperbolic heat equations using electrical analogy

    NASA Astrophysics Data System (ADS)

    Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.

    2014-03-01

    Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.

  3. Existence and energy decay of a nonuniform Timoshenko system with second sound

    NASA Astrophysics Data System (ADS)

    Hamadouche, Taklit; Messaoudi, Salim A.

    2018-02-01

    In this paper, we consider a linear thermoelastic Timoshenko system with variable physical parameters, where the heat conduction is given by Cattaneo's law and the coupling is via the displacement equation. We discuss the well-posedness and the regularity of solution using the semigroup theory. Moreover, we establish the exponential decay result provided that the stability function χ r(x)=0. Otherwise, we show that the solution decays polynomially.

  4. On Directly Solving SCHRÖDINGER Equation for H+2 Ion by Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saha, Rajendra; Bhattacharyya, S. P.

    Schrödinger equation (SE) is sought to be solved directly for the ground state of H+2 ion by invoking genetic algorithm (GA). In one approach the internuclear distance (R) is kept fixed, the corresponding electronic SE for H+2 is solved by GA at each R and the full potential energy curve (PEC) is constructed. The minimum of the PEC is then located giving Ve and Re. Alternatively, Ve and Re are located in a single run by allowing R to vary simultaneously while solving the electronic SE by genetic algorithm. The performance patterns of the two strategies are compared.

  5. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  6. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    NASA Technical Reports Server (NTRS)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  7. Constraints on decay plus oscillation solutions of the solar neutrino problem

    NASA Astrophysics Data System (ADS)

    Joshipura, Anjan S.; Massó, Eduard; Mohanty, Subhendra

    2002-12-01

    We examine the constraints on the nonradiative decay of neutrinos from the observations of solar neutrino experiments. The standard oscillation hypothesis among three neutrinos solves the solar and atmospheric neutrino problems. The decay of a massive neutrino mixed with the electron neutrino results in the depletion of the solar neutrino flux. We introduce neutrino decay in the oscillation hypothesis and demand that decay does not spoil the successful explanation of solar and atmospheric observations. We obtain a lower bound on the ratio of the lifetime over the mass of ν2, τ2/m2>22.7 s/MeV for the Mikheyev-Smirnov-Wolfenstein solution of the solar neutrino problem and τ2/m2>27.8 s/MeV for the vacuum oscillation solution (at 99% C.L.).

  8. Applications of the ETEM for obtaining optical soliton solutions for the Lakshmanan-Porsezian-Daniel model

    NASA Astrophysics Data System (ADS)

    Manafian, Jalil; Foroutan, Mohammadreza; Guzali, Aref

    2017-11-01

    This paper examines the effectiveness of an integration scheme which is called the extended trial equation method (ETEM) for solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the Lakshmanan-Porsezian-Daniel (LPD) equation with Kerr and power laws of nonlinearity which describes higher-order dispersion, full nonlinearity and spatiotemporal dispersion is considered, and as an achievement, a series of exact travelling-wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of LPD equation. The movement of obtained solutions is shown graphically, which helps to understand the physical phenomena of this optical soliton equation. Many other such types of nonlinear equations arising in basic fabric of communications network technology and nonlinear optics can also be solved by this method.

  9. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angstmann, C.N.; Donnelly, I.C.; Henry, B.I., E-mail: B.Henry@unsw.edu.au

    We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also showmore » that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.« less

  10. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    PubMed

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  11. Time-reversal symmetric resolution of unity without background integrals in open quantum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, Naomichi, E-mail: hatano@iis.u-tokyo.ac.jp; Ordonez, Gonzalo, E-mail: gordonez@butler.edu

    2014-12-15

    We present a new complete set of states for a class of open quantum systems, to be used in expansion of the Green’s function and the time-evolution operator. A remarkable feature of the complete set is that it observes time-reversal symmetry in the sense that it contains decaying states (resonant states) and growing states (anti-resonant states) parallelly. We can thereby pinpoint the occurrence of the breaking of time-reversal symmetry at the choice of whether we solve Schrödinger equation as an initial-condition problem or a terminal-condition problem. Another feature of the complete set is that in the subspace of the centralmore » scattering area of the system, it consists of contributions of all states with point spectra but does not contain any background integrals. In computing the time evolution, we can clearly see contribution of which point spectrum produces which time dependence. In the whole infinite state space, the complete set does contain an integral but it is over unperturbed eigenstates of the environmental area of the system and hence can be calculated analytically. We demonstrate the usefulness of the complete set by computing explicitly the survival probability and the escaping probability as well as the dynamics of wave packets. The origin of each term of matrix elements is clear in our formulation, particularly, the exponential decays due to the resonance poles.« less

  12. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    NASA Astrophysics Data System (ADS)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  13. Sensitivity of coronal loop sausage mode frequencies and decay rates to radial and longitudinal density inhomogeneities: a spectral approach

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.; Xiong, Ming

    2018-01-01

    Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.

  14. A Korteweg-de Vries description of dark solitons in polariton superfluids

    NASA Astrophysics Data System (ADS)

    Carretero-González, R.; Cuevas-Maraver, J.; Frantzeskakis, D. J.; Horikis, T. P.; Kevrekidis, P. G.; Rodrigues, A. S.

    2017-12-01

    We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed of a generalized open-dissipative Gross-Pitaevskii equation for the polaritons' wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.

  15. A novel approach to solve nonlinear Fredholm integral equations of the second kind.

    PubMed

    Li, Hu; Huang, Jin

    2016-01-01

    In this paper, we present a novel approach to solve nonlinear Fredholm integral equations of the second kind. This algorithm is constructed by the integral mean value theorem and Newton iteration. Convergence and error analysis of the numerical solutions are given. Moreover, Numerical examples show the algorithm is very effective and simple.

  16. To Solve or Not to Solve, that Is the Problem

    ERIC Educational Resources Information Center

    Braiden, Doug

    2011-01-01

    The senior school Mathematics syllabus is often restricted to the study of single variable differential equations of the first order. Unfortunately most real life examples do not follow such types of relations. In addition, very few differential equations in real life have exact solutions that can be expressed in finite terms. Even if the solution…

  17. Introducing Algebraic Structures through Solving Equations: Vertical Content Knowledge for K-12 Mathematics Teachers

    ERIC Educational Resources Information Center

    Wasserman, Nicholas H.

    2014-01-01

    Algebraic structures are a necessary aspect of algebraic thinking for K-12 students and teachers. An approach for introducing the algebraic structure of groups and fields through the arithmetic properties required for solving simple equations is summarized; the collective (not individual) importance of these axioms as a foundation for algebraic…

  18. Teacher-Designed Software for Interactive Linear Equations: Concepts, Interpretive Skills, Applications & Word-Problem Solving.

    ERIC Educational Resources Information Center

    Lawrence, Virginia

    No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…

  19. Insights into the School Mathematics Tradition from Solving Linear Equations

    ERIC Educational Resources Information Center

    Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

    2015-01-01

    In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

  20. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

    ERIC Educational Resources Information Center

    Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

    2018-01-01

    This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

  1. Solving Navier-Stokes' equation using Castillo-Grone's mimetic difference operators on GPUs

    NASA Astrophysics Data System (ADS)

    Abouali, Mohammad; Castillo, Jose

    2012-11-01

    This paper discusses the performance and the accuracy of Castillo-Grone's (CG) mimetic difference operator in solving the Navier-Stokes' equation in order to simulate oceanic and atmospheric flows. The implementation is further adapted to harness the power of the many computing cores available on the Graphics Processing Units (GPUs) and the speedup is discussed.

  2. Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations

    ERIC Educational Resources Information Center

    Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln

    2007-01-01

    A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…

  3. The Importance of Prior Knowledge when Comparing Examples: Influences on Conceptual and Procedural Knowledge of Equation Solving

    ERIC Educational Resources Information Center

    Rittle-Johnson, Bethany; Star, Jon R.; Durkin, Kelley

    2009-01-01

    Comparing multiple examples typically supports learning and transfer in laboratory studies and is considered a key feature of high-quality mathematics instruction. This experimental study investigated the importance of prior knowledge in learning from comparison. Seventh- and 8th-grade students (N = 236) learned to solve equations by comparing…

  4. Teaching Modeling with Partial Differential Equations: Several Successful Approaches

    ERIC Educational Resources Information Center

    Myers, Joseph; Trubatch, David; Winkel, Brian

    2008-01-01

    We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…

  5. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation

    NASA Astrophysics Data System (ADS)

    Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill

    We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.

  6. Power function decay of hydraulic conductivity for a TOPMODEL-based infiltration routine

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Endreny, Theodore A.; Hassett, James M.

    2006-11-01

    TOPMODEL rainfall-runoff hydrologic concepts are based on soil saturation processes, where soil controls on hydrograph recession have been represented by linear, exponential, and power function decay with soil depth. Although these decay formulations have been incorporated into baseflow decay and topographic index computations, only the linear and exponential forms have been incorporated into infiltration subroutines. This study develops a power function formulation of the Green and Ampt infiltration equation for the case where the power n = 1 and 2. This new function was created to represent field measurements in the New York City, USA, Ward Pound Ridge drinking water supply area, and provide support for similar sites reported by other researchers. Derivation of the power-function-based Green and Ampt model begins with the Green and Ampt formulation used by Beven in deriving an exponential decay model. Differences between the linear, exponential, and power function infiltration scenarios are sensitive to the relative difference between rainfall rates and hydraulic conductivity. Using a low-frequency 30 min design storm with 4.8 cm h-1 rain, the n = 2 power function formulation allows for a faster decay of infiltration and more rapid generation of runoff. Infiltration excess runoff is rare in most forested watersheds, and advantages of the power function infiltration routine may primarily include replication of field-observed processes in urbanized areas and numerical consistency with power function decay of baseflow and topographic index distributions. Equation development is presented within a TOPMODEL-based Ward Pound Ridge rainfall-runoff simulation. Copyright

  7. Application of Four-Point Newton-EGSOR iteration for the numerical solution of 2D Porous Medium Equations

    NASA Astrophysics Data System (ADS)

    Chew, J. V. L.; Sulaiman, J.

    2017-09-01

    Partial differential equations that are used in describing the nonlinear heat and mass transfer phenomena are difficult to be solved. For the case where the exact solution is difficult to be obtained, it is necessary to use a numerical procedure such as the finite difference method to solve a particular partial differential equation. In term of numerical procedure, a particular method can be considered as an efficient method if the method can give an approximate solution within the specified error with the least computational complexity. Throughout this paper, the two-dimensional Porous Medium Equation (2D PME) is discretized by using the implicit finite difference scheme to construct the corresponding approximation equation. Then this approximation equation yields a large-sized and sparse nonlinear system. By using the Newton method to linearize the nonlinear system, this paper deals with the application of the Four-Point Newton-EGSOR (4NEGSOR) iterative method for solving the 2D PMEs. In addition to that, the efficiency of the 4NEGSOR iterative method is studied by solving three examples of the problems. Based on the comparative analysis, the Newton-Gauss-Seidel (NGS) and the Newton-SOR (NSOR) iterative methods are also considered. The numerical findings show that the 4NEGSOR method is superior to the NGS and the NSOR methods in terms of the number of iterations to get the converged solutions, the time of computation and the maximum absolute errors produced by the methods.

  8. Flexibility in Problem Solving: The Case of Equation Solving

    ERIC Educational Resources Information Center

    Star, Jon R.; Rittle-Johnson, Bethany

    2008-01-01

    A key learning outcome in problem-solving domains is the development of flexible knowledge, where learners know multiple strategies and adaptively choose efficient strategies. Two interventions hypothesized to improve flexibility in problem solving were experimentally evaluated: prompts to discover multiple strategies and direct instruction on…

  9. Photons coming from an opaque obstacle as a manifestation of heavy neutrino decays

    NASA Astrophysics Data System (ADS)

    Reynoso, Matías M.; Romero, Ismael; Sampayo, Oscar A.

    2018-05-01

    Within the framework of physics beyond the standard model, we study the possibility that mesons produced in the atmosphere by the cosmic-ray flux decay to heavy Majorana neutrinos and the latter, in turn, decay mostly to photons in the low-mass region. We study the photon flux produced by sterile Majorana neutrinos (N ) decaying after passing through a massive and opaque object such as a mountain. To model the production of N 's in the atmosphere and their decay to photons, we consider the interaction between the Majorana neutrinos and the standard matter as modeled by an effective theory. We then calculate the heavy neutrino flux originated by the decay of mesons in the atmosphere. The surviving photon flux, originated by N decays, is calculated using transport equations that include the effects of Majorana neutrino production and decay.

  10. Incompressible viscous flow simulations of the NFAC wind tunnel

    NASA Technical Reports Server (NTRS)

    Champney, Joelle Milene

    1986-01-01

    The capabilities of an existing 3-D incompressible Navier-Stokes flow solver, INS3D, are extended and improved to solve turbulent flows through the incorporation of zero- and two-equation turbulence models. The two-equation model equations are solved in their high Reynolds number form and utilize wall functions in the treatment of solid wall boundary conditions. The implicit approximate factorization scheme is modified to improve the stability of the two-equation solver. Applications to the 3-D viscous flow inside the 80 by 120 feet open return wind tunnel of the National Full Scale Aerodynamics Complex (NFAC) are discussed and described.

  11. Efficient numerical method for solving Cauchy problem for the Gamma equation

    NASA Astrophysics Data System (ADS)

    Koleva, Miglena N.

    2011-12-01

    In this work we consider Cauchy problem for the so called Gamma equation, derived by transforming the fully nonlinear Black-Scholes equation for option price into a quasilinear parabolic equation for the second derivative (Greek) Γ = VSS of the option price V. We develop an efficient numerical method for solving the model problem concerning different volatility terms. Using suitable change of variables the problem is transformed on finite interval, keeping original behavior of the solution at the infinity. Then we construct Picard-Newton algorithm with adaptive mesh step in time, which can be applied also in the case of non-differentiable functions. Results of numerical simulations are given.

  12. A neuro approach to solve fuzzy Riccati differential equations

    NASA Astrophysics Data System (ADS)

    Shahrir, Mohammad Shazri; Kumaresan, N.; Kamali, M. Z. M.; Ratnavelu, Kurunathan

    2015-10-01

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  13. A neuro approach to solve fuzzy Riccati differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com; Telekom Malaysia, R&D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor; Kumaresan, N., E-mail: drnk2008@gmail.com

    There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

  14. Application of viscous-inviscid interaction methods to transonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Lee, D.; Pletcher, R. H.

    1986-01-01

    Two different viscous-inviscid interaction schemes were developed for the analysis of steady, turbulent, transonic, separated flows over axisymmetric bodies. The viscous and inviscid solutions are coupled through the displacement concept using a transpiration velocity approach. In the semi-inverse interaction scheme, the viscous and inviscid equations are solved in an explicitly separate manner and the displacement thickness distribution is iteratively updated by a simple coupling algorithm. In the simultaneous interaction method, local solutions of viscous and inviscid equations are treated simultaneously, and the displacement thickness is treated as an unknown and is obtained as a part of the solution through a global iteration procedure. The inviscid flow region is described by a direct finite-difference solution of a velocity potential equation in conservative form. The potential equation is solved on a numerically generated mesh by an approximate factorization (AF2) scheme in the semi-inverse interaction method and by a successive line overrelaxation (SLOR) scheme in the simultaneous interaction method. The boundary-layer equations are used for the viscous flow region. The continuity and momentum equations are solved inversely in a coupled manner using a fully implicit finite-difference scheme.

  15. A systematic approach to sketch Bethe-Salpeter equation

    NASA Astrophysics Data System (ADS)

    Qin, Si-xue

    2016-03-01

    To study meson properties, one needs to solve the gap equation for the quark propagator and the Bethe-Salpeter (BS) equation for the meson wavefunction, self-consistently. The gluon propagator, the quark-gluon vertex, and the quark-anti-quark scattering kernel are key pieces to solve those equations. Predicted by lattice-QCD and Dyson-Schwinger analyses of QCD's gauge sector, gluons are non-perturbatively massive. In the matter sector, the modeled gluon propagator which can produce a veracious description of meson properties needs to possess a mass scale, accordingly. Solving the well-known longitudinal Ward-Green-Takahashi identities (WGTIs) and the less-known transverse counterparts together, one obtains a nontrivial solution which can shed light on the structure of the quark-gluon vertex. It is highlighted that the phenomenologically proposed anomalous chromomagnetic moment (ACM) vertex originates from the QCD Lagrangian symmetries and its strength is proportional to the magnitude of dynamical chiral symmetry breaking (DCSB). The color-singlet vector and axial-vector WGTIs can relate the BS kernel and the dressed quark-gluon vertex to each other. Using the relation, one can truncate the gap equation and the BS equation, systematically, without violating crucial symmetries, e.g., gauge symmetry and chiral symmetry.

  16. Pseudo-time methods for constrained optimization problems governed by PDE

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1995-01-01

    In this paper we present a novel method for solving optimization problems governed by partial differential equations. Existing methods are gradient information in marching toward the minimum, where the constrained PDE is solved once (sometimes only approximately) per each optimization step. Such methods can be viewed as a marching techniques on the intersection of the state and costate hypersurfaces while improving the residuals of the design equations per each iteration. In contrast, the method presented here march on the design hypersurface and at each iteration improve the residuals of the state and costate equations. The new method is usually much less expensive per iteration step since, in most problems of practical interest, the design equation involves much less unknowns that that of either the state or costate equations. Convergence is shown using energy estimates for the evolution equations governing the iterative process. Numerical tests show that the new method allows the solution of the optimization problem in a cost of solving the analysis problems just a few times, independent of the number of design parameters. The method can be applied using single grid iterations as well as with multigrid solvers.

  17. An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Pletcher, Richard H.

    1994-01-01

    The Navier-Stokes equations are solved numerically for two-dimensional steady viscous laminar flows. The grids are generated based on the method of Delaunay triangulation. A finite-volume approach is used to discretize the conservation law form of the compressible flow equations written in terms of primitive variables. A preconditioning matrix is added to the equations so that low Mach number flows can be solved economically. The equations are time marched using either an implicit Gauss-Seidel iterative procedure or a solver based on a conjugate gradient like method. A four color scheme is employed to vectorize the block Gauss-Seidel relaxation procedure. This increases the memory requirements minimally and decreases the computer time spent solving the resulting system of equations substantially. A factor of 7.6 speed up in the matrix solver is typical for the viscous equations. Numerical results are obtained for inviscid flow over a bump in a channel at subsonic and transonic conditions for validation with structured solvers. Viscous results are computed for developing flow in a channel, a symmetric sudden expansion, periodic tandem cylinders in a cross-flow, and a four-port valve. Comparisons are made with available results obtained by other investigators.

  18. Numerical investigations of low-density nozzle flow by solving the Boltzmann equation

    NASA Technical Reports Server (NTRS)

    Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen

    1995-01-01

    A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.

  19. Stability of mixing layers

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Krothapalli, A

    1993-01-01

    The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.

  20. The Use of Iterative Linear-Equation Solvers in Codes for Large Systems of Stiff IVPs (Initial-Value Problems) for ODEs (Ordinary Differential Equations).

    DTIC Science & Technology

    1984-04-01

    numerical solution, of sstem ot stiff Wh-f Cr ODs. Fro- qontl. a substantial portia of the total computationskwok and cooap required! to solve stiff...exep, possl- bly, foreciadalms of problem. That is% a syste of linewat o nonlinear algebrac equa- tion mumt be solved at auk step of the numerical ...onjugate gradient method [431 is a mall-know ezuze, have prove to be particularly -2- efecti for solving the linear stwem that &ise in the numerical

Top